sched/fair: Use time_after() in record_wakee()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621
PZ
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta;
127 update_rq_clock_task(rq, delta);
3e51f33f
PZ
128}
129
bf5c91ba
IM
130/*
131 * Debugging: various feature bits
132 */
f00b45c1 133
f00b45c1
PZ
134#define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136
bf5c91ba 137const_debug unsigned int sysctl_sched_features =
391e43da 138#include "features.h"
f00b45c1
PZ
139 0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled) \
145 #name ,
146
1292531f 147static const char * const sched_feat_names[] = {
391e43da 148#include "features.h"
f00b45c1
PZ
149};
150
151#undef SCHED_FEAT
152
34f3a814 153static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 154{
f00b45c1
PZ
155 int i;
156
f8b6d1cc 157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 161 }
34f3a814 162 seq_puts(m, "\n");
f00b45c1 163
34f3a814 164 return 0;
f00b45c1
PZ
165}
166
f8b6d1cc
PZ
167#ifdef HAVE_JUMP_LABEL
168
c5905afb
IM
169#define jump_label_key__true STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
171
172#define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled ,
174
c5905afb 175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
c5905afb
IM
183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
185}
186
187static void sched_feat_enable(int i)
188{
c5905afb
IM
189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
1a687c2e 197static int sched_feat_set(char *cmp)
f00b45c1 198{
f00b45c1 199 int i;
1a687c2e 200 int neg = 0;
f00b45c1 201
524429c3 202 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
203 neg = 1;
204 cmp += 3;
205 }
206
f8b6d1cc 207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 209 if (neg) {
f00b45c1 210 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
211 sched_feat_disable(i);
212 } else {
f00b45c1 213 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
214 sched_feat_enable(i);
215 }
f00b45c1
PZ
216 break;
217 }
218 }
219
1a687c2e
MG
220 return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos)
226{
227 char buf[64];
228 char *cmp;
229 int i;
230
231 if (cnt > 63)
232 cnt = 63;
233
234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT;
236
237 buf[cnt] = 0;
238 cmp = strstrip(buf);
239
240 i = sched_feat_set(cmp);
f8b6d1cc 241 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
242 return -EINVAL;
243
42994724 244 *ppos += cnt;
f00b45c1
PZ
245
246 return cnt;
247}
248
34f3a814
LZ
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251 return single_open(filp, sched_feat_show, NULL);
252}
253
828c0950 254static const struct file_operations sched_feat_fops = {
34f3a814
LZ
255 .open = sched_feat_open,
256 .write = sched_feat_write,
257 .read = seq_read,
258 .llseek = seq_lseek,
259 .release = single_release,
f00b45c1
PZ
260};
261
262static __init int sched_init_debug(void)
263{
f00b45c1
PZ
264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops);
266
267 return 0;
268}
269late_initcall(sched_init_debug);
f8b6d1cc 270#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 271
b82d9fdd
PZ
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
e9e9250b
PZ
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
fa85ae24 286/*
9f0c1e56 287 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
288 * default: 1s
289 */
9f0c1e56 290unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 291
029632fb 292__read_mostly int scheduler_running;
6892b75e 293
9f0c1e56
PZ
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
fa85ae24 299
0970d299 300/*
0122ec5b 301 * __task_rq_lock - lock the rq @p resides on.
b29739f9 302 */
70b97a7f 303static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
304 __acquires(rq->lock)
305{
0970d299
PZ
306 struct rq *rq;
307
0122ec5b
PZ
308 lockdep_assert_held(&p->pi_lock);
309
3a5c359a 310 for (;;) {
0970d299 311 rq = task_rq(p);
05fa785c 312 raw_spin_lock(&rq->lock);
65cc8e48 313 if (likely(rq == task_rq(p)))
3a5c359a 314 return rq;
05fa785c 315 raw_spin_unlock(&rq->lock);
b29739f9 316 }
b29739f9
IM
317}
318
1da177e4 319/*
0122ec5b 320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 321 */
70b97a7f 322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 323 __acquires(p->pi_lock)
1da177e4
LT
324 __acquires(rq->lock)
325{
70b97a7f 326 struct rq *rq;
1da177e4 327
3a5c359a 328 for (;;) {
0122ec5b 329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 330 rq = task_rq(p);
05fa785c 331 raw_spin_lock(&rq->lock);
65cc8e48 332 if (likely(rq == task_rq(p)))
3a5c359a 333 return rq;
0122ec5b
PZ
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 336 }
1da177e4
LT
337}
338
a9957449 339static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
340 __releases(rq->lock)
341{
05fa785c 342 raw_spin_unlock(&rq->lock);
b29739f9
IM
343}
344
0122ec5b
PZ
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 347 __releases(rq->lock)
0122ec5b 348 __releases(p->pi_lock)
1da177e4 349{
0122ec5b
PZ
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
352}
353
1da177e4 354/*
cc2a73b5 355 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 356 */
a9957449 357static struct rq *this_rq_lock(void)
1da177e4
LT
358 __acquires(rq->lock)
359{
70b97a7f 360 struct rq *rq;
1da177e4
LT
361
362 local_irq_disable();
363 rq = this_rq();
05fa785c 364 raw_spin_lock(&rq->lock);
1da177e4
LT
365
366 return rq;
367}
368
8f4d37ec
PZ
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 372 */
8f4d37ec 373
8f4d37ec
PZ
374static void hrtick_clear(struct rq *rq)
375{
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378}
379
8f4d37ec
PZ
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
05fa785c 390 raw_spin_lock(&rq->lock);
3e51f33f 391 update_rq_clock(rq);
8f4d37ec 392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 393 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
394
395 return HRTIMER_NORESTART;
396}
397
95e904c7 398#ifdef CONFIG_SMP
971ee28c
PZ
399
400static int __hrtick_restart(struct rq *rq)
401{
402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer);
404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
31656519
PZ
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
b328ca18 412{
31656519 413 struct rq *rq = arg;
b328ca18 414
05fa785c 415 raw_spin_lock(&rq->lock);
971ee28c 416 __hrtick_restart(rq);
31656519 417 rq->hrtick_csd_pending = 0;
05fa785c 418 raw_spin_unlock(&rq->lock);
b328ca18
PZ
419}
420
31656519
PZ
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
029632fb 426void hrtick_start(struct rq *rq, u64 delay)
b328ca18 427{
31656519
PZ
428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 430
cc584b21 431 hrtimer_set_expires(timer, time);
31656519
PZ
432
433 if (rq == this_rq()) {
971ee28c 434 __hrtick_restart(rq);
31656519 435 } else if (!rq->hrtick_csd_pending) {
c46fff2a 436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
437 rq->hrtick_csd_pending = 1;
438 }
b328ca18
PZ
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444 int cpu = (int)(long)hcpu;
445
446 switch (action) {
447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN:
31656519 453 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
454 return NOTIFY_OK;
455 }
456
457 return NOTIFY_DONE;
458}
459
fa748203 460static __init void init_hrtick(void)
b328ca18
PZ
461{
462 hotcpu_notifier(hotplug_hrtick, 0);
463}
31656519
PZ
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
029632fb 470void hrtick_start(struct rq *rq, u64 delay)
31656519 471{
7f1e2ca9 472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 473 HRTIMER_MODE_REL_PINNED, 0);
31656519 474}
b328ca18 475
006c75f1 476static inline void init_hrtick(void)
8f4d37ec 477{
8f4d37ec 478}
31656519 479#endif /* CONFIG_SMP */
8f4d37ec 480
31656519 481static void init_rq_hrtick(struct rq *rq)
8f4d37ec 482{
31656519
PZ
483#ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0;
8f4d37ec 485
31656519
PZ
486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq;
489#endif
8f4d37ec 490
31656519
PZ
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick;
8f4d37ec 493}
006c75f1 494#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
8f4d37ec
PZ
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
b328ca18
PZ
503static inline void init_hrtick(void)
504{
505}
006c75f1 506#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 507
fd99f91a
PZ
508/*
509 * cmpxchg based fetch_or, macro so it works for different integer types
510 */
511#define fetch_or(ptr, val) \
512({ typeof(*(ptr)) __old, __val = *(ptr); \
513 for (;;) { \
514 __old = cmpxchg((ptr), __val, __val | (val)); \
515 if (__old == __val) \
516 break; \
517 __val = __old; \
518 } \
519 __old; \
520})
521
522#ifdef TIF_POLLING_NRFLAG
523/*
524 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
525 * this avoids any races wrt polling state changes and thereby avoids
526 * spurious IPIs.
527 */
528static bool set_nr_and_not_polling(struct task_struct *p)
529{
530 struct thread_info *ti = task_thread_info(p);
531 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
532}
533#else
534static bool set_nr_and_not_polling(struct task_struct *p)
535{
536 set_tsk_need_resched(p);
537 return true;
538}
539#endif
540
c24d20db
IM
541/*
542 * resched_task - mark a task 'to be rescheduled now'.
543 *
544 * On UP this means the setting of the need_resched flag, on SMP it
545 * might also involve a cross-CPU call to trigger the scheduler on
546 * the target CPU.
547 */
029632fb 548void resched_task(struct task_struct *p)
c24d20db
IM
549{
550 int cpu;
551
b021fe3e 552 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 553
5ed0cec0 554 if (test_tsk_need_resched(p))
c24d20db
IM
555 return;
556
c24d20db 557 cpu = task_cpu(p);
fd99f91a 558
f27dde8d 559 if (cpu == smp_processor_id()) {
fd99f91a 560 set_tsk_need_resched(p);
f27dde8d 561 set_preempt_need_resched();
c24d20db 562 return;
f27dde8d 563 }
c24d20db 564
fd99f91a 565 if (set_nr_and_not_polling(p))
c24d20db
IM
566 smp_send_reschedule(cpu);
567}
568
029632fb 569void resched_cpu(int cpu)
c24d20db
IM
570{
571 struct rq *rq = cpu_rq(cpu);
572 unsigned long flags;
573
05fa785c 574 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
575 return;
576 resched_task(cpu_curr(cpu));
05fa785c 577 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 578}
06d8308c 579
b021fe3e 580#ifdef CONFIG_SMP
3451d024 581#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
582/*
583 * In the semi idle case, use the nearest busy cpu for migrating timers
584 * from an idle cpu. This is good for power-savings.
585 *
586 * We don't do similar optimization for completely idle system, as
587 * selecting an idle cpu will add more delays to the timers than intended
588 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
589 */
6201b4d6 590int get_nohz_timer_target(int pinned)
83cd4fe2
VP
591{
592 int cpu = smp_processor_id();
593 int i;
594 struct sched_domain *sd;
595
6201b4d6
VK
596 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
597 return cpu;
598
057f3fad 599 rcu_read_lock();
83cd4fe2 600 for_each_domain(cpu, sd) {
057f3fad
PZ
601 for_each_cpu(i, sched_domain_span(sd)) {
602 if (!idle_cpu(i)) {
603 cpu = i;
604 goto unlock;
605 }
606 }
83cd4fe2 607 }
057f3fad
PZ
608unlock:
609 rcu_read_unlock();
83cd4fe2
VP
610 return cpu;
611}
06d8308c
TG
612/*
613 * When add_timer_on() enqueues a timer into the timer wheel of an
614 * idle CPU then this timer might expire before the next timer event
615 * which is scheduled to wake up that CPU. In case of a completely
616 * idle system the next event might even be infinite time into the
617 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
618 * leaves the inner idle loop so the newly added timer is taken into
619 * account when the CPU goes back to idle and evaluates the timer
620 * wheel for the next timer event.
621 */
1c20091e 622static void wake_up_idle_cpu(int cpu)
06d8308c
TG
623{
624 struct rq *rq = cpu_rq(cpu);
625
626 if (cpu == smp_processor_id())
627 return;
628
629 /*
630 * This is safe, as this function is called with the timer
631 * wheel base lock of (cpu) held. When the CPU is on the way
632 * to idle and has not yet set rq->curr to idle then it will
633 * be serialized on the timer wheel base lock and take the new
634 * timer into account automatically.
635 */
636 if (rq->curr != rq->idle)
637 return;
45bf76df 638
45bf76df 639 /*
06d8308c
TG
640 * We can set TIF_RESCHED on the idle task of the other CPU
641 * lockless. The worst case is that the other CPU runs the
642 * idle task through an additional NOOP schedule()
45bf76df 643 */
5ed0cec0 644 set_tsk_need_resched(rq->idle);
45bf76df 645
06d8308c
TG
646 /* NEED_RESCHED must be visible before we test polling */
647 smp_mb();
648 if (!tsk_is_polling(rq->idle))
649 smp_send_reschedule(cpu);
45bf76df
IM
650}
651
c5bfece2 652static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 653{
c5bfece2 654 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
655 if (cpu != smp_processor_id() ||
656 tick_nohz_tick_stopped())
657 smp_send_reschedule(cpu);
658 return true;
659 }
660
661 return false;
662}
663
664void wake_up_nohz_cpu(int cpu)
665{
c5bfece2 666 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
667 wake_up_idle_cpu(cpu);
668}
669
ca38062e 670static inline bool got_nohz_idle_kick(void)
45bf76df 671{
1c792db7 672 int cpu = smp_processor_id();
873b4c65
VG
673
674 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
675 return false;
676
677 if (idle_cpu(cpu) && !need_resched())
678 return true;
679
680 /*
681 * We can't run Idle Load Balance on this CPU for this time so we
682 * cancel it and clear NOHZ_BALANCE_KICK
683 */
684 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
685 return false;
45bf76df
IM
686}
687
3451d024 688#else /* CONFIG_NO_HZ_COMMON */
45bf76df 689
ca38062e 690static inline bool got_nohz_idle_kick(void)
2069dd75 691{
ca38062e 692 return false;
2069dd75
PZ
693}
694
3451d024 695#endif /* CONFIG_NO_HZ_COMMON */
d842de87 696
ce831b38
FW
697#ifdef CONFIG_NO_HZ_FULL
698bool sched_can_stop_tick(void)
699{
700 struct rq *rq;
701
702 rq = this_rq();
703
704 /* Make sure rq->nr_running update is visible after the IPI */
705 smp_rmb();
706
707 /* More than one running task need preemption */
708 if (rq->nr_running > 1)
709 return false;
710
711 return true;
712}
713#endif /* CONFIG_NO_HZ_FULL */
d842de87 714
029632fb 715void sched_avg_update(struct rq *rq)
18d95a28 716{
e9e9250b
PZ
717 s64 period = sched_avg_period();
718
78becc27 719 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
720 /*
721 * Inline assembly required to prevent the compiler
722 * optimising this loop into a divmod call.
723 * See __iter_div_u64_rem() for another example of this.
724 */
725 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
726 rq->age_stamp += period;
727 rq->rt_avg /= 2;
728 }
18d95a28
PZ
729}
730
6d6bc0ad 731#endif /* CONFIG_SMP */
18d95a28 732
a790de99
PT
733#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
734 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 735/*
8277434e
PT
736 * Iterate task_group tree rooted at *from, calling @down when first entering a
737 * node and @up when leaving it for the final time.
738 *
739 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 740 */
029632fb 741int walk_tg_tree_from(struct task_group *from,
8277434e 742 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
743{
744 struct task_group *parent, *child;
eb755805 745 int ret;
c09595f6 746
8277434e
PT
747 parent = from;
748
c09595f6 749down:
eb755805
PZ
750 ret = (*down)(parent, data);
751 if (ret)
8277434e 752 goto out;
c09595f6
PZ
753 list_for_each_entry_rcu(child, &parent->children, siblings) {
754 parent = child;
755 goto down;
756
757up:
758 continue;
759 }
eb755805 760 ret = (*up)(parent, data);
8277434e
PT
761 if (ret || parent == from)
762 goto out;
c09595f6
PZ
763
764 child = parent;
765 parent = parent->parent;
766 if (parent)
767 goto up;
8277434e 768out:
eb755805 769 return ret;
c09595f6
PZ
770}
771
029632fb 772int tg_nop(struct task_group *tg, void *data)
eb755805 773{
e2b245f8 774 return 0;
eb755805 775}
18d95a28
PZ
776#endif
777
45bf76df
IM
778static void set_load_weight(struct task_struct *p)
779{
f05998d4
NR
780 int prio = p->static_prio - MAX_RT_PRIO;
781 struct load_weight *load = &p->se.load;
782
dd41f596
IM
783 /*
784 * SCHED_IDLE tasks get minimal weight:
785 */
786 if (p->policy == SCHED_IDLE) {
c8b28116 787 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 788 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
789 return;
790 }
71f8bd46 791
c8b28116 792 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 793 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
794}
795
371fd7e7 796static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 797{
a64692a3 798 update_rq_clock(rq);
43148951 799 sched_info_queued(rq, p);
371fd7e7 800 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
801}
802
371fd7e7 803static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 804{
a64692a3 805 update_rq_clock(rq);
43148951 806 sched_info_dequeued(rq, p);
371fd7e7 807 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
808}
809
029632fb 810void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
811{
812 if (task_contributes_to_load(p))
813 rq->nr_uninterruptible--;
814
371fd7e7 815 enqueue_task(rq, p, flags);
1e3c88bd
PZ
816}
817
029632fb 818void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
819{
820 if (task_contributes_to_load(p))
821 rq->nr_uninterruptible++;
822
371fd7e7 823 dequeue_task(rq, p, flags);
1e3c88bd
PZ
824}
825
fe44d621 826static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 827{
095c0aa8
GC
828/*
829 * In theory, the compile should just see 0 here, and optimize out the call
830 * to sched_rt_avg_update. But I don't trust it...
831 */
832#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
833 s64 steal = 0, irq_delta = 0;
834#endif
835#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 836 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
837
838 /*
839 * Since irq_time is only updated on {soft,}irq_exit, we might run into
840 * this case when a previous update_rq_clock() happened inside a
841 * {soft,}irq region.
842 *
843 * When this happens, we stop ->clock_task and only update the
844 * prev_irq_time stamp to account for the part that fit, so that a next
845 * update will consume the rest. This ensures ->clock_task is
846 * monotonic.
847 *
848 * It does however cause some slight miss-attribution of {soft,}irq
849 * time, a more accurate solution would be to update the irq_time using
850 * the current rq->clock timestamp, except that would require using
851 * atomic ops.
852 */
853 if (irq_delta > delta)
854 irq_delta = delta;
855
856 rq->prev_irq_time += irq_delta;
857 delta -= irq_delta;
095c0aa8
GC
858#endif
859#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 860 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
861 steal = paravirt_steal_clock(cpu_of(rq));
862 steal -= rq->prev_steal_time_rq;
863
864 if (unlikely(steal > delta))
865 steal = delta;
866
095c0aa8 867 rq->prev_steal_time_rq += steal;
095c0aa8
GC
868 delta -= steal;
869 }
870#endif
871
fe44d621
PZ
872 rq->clock_task += delta;
873
095c0aa8
GC
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
876 sched_rt_avg_update(rq, irq_delta + steal);
877#endif
aa483808
VP
878}
879
34f971f6
PZ
880void sched_set_stop_task(int cpu, struct task_struct *stop)
881{
882 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
883 struct task_struct *old_stop = cpu_rq(cpu)->stop;
884
885 if (stop) {
886 /*
887 * Make it appear like a SCHED_FIFO task, its something
888 * userspace knows about and won't get confused about.
889 *
890 * Also, it will make PI more or less work without too
891 * much confusion -- but then, stop work should not
892 * rely on PI working anyway.
893 */
894 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
895
896 stop->sched_class = &stop_sched_class;
897 }
898
899 cpu_rq(cpu)->stop = stop;
900
901 if (old_stop) {
902 /*
903 * Reset it back to a normal scheduling class so that
904 * it can die in pieces.
905 */
906 old_stop->sched_class = &rt_sched_class;
907 }
908}
909
14531189 910/*
dd41f596 911 * __normal_prio - return the priority that is based on the static prio
14531189 912 */
14531189
IM
913static inline int __normal_prio(struct task_struct *p)
914{
dd41f596 915 return p->static_prio;
14531189
IM
916}
917
b29739f9
IM
918/*
919 * Calculate the expected normal priority: i.e. priority
920 * without taking RT-inheritance into account. Might be
921 * boosted by interactivity modifiers. Changes upon fork,
922 * setprio syscalls, and whenever the interactivity
923 * estimator recalculates.
924 */
36c8b586 925static inline int normal_prio(struct task_struct *p)
b29739f9
IM
926{
927 int prio;
928
aab03e05
DF
929 if (task_has_dl_policy(p))
930 prio = MAX_DL_PRIO-1;
931 else if (task_has_rt_policy(p))
b29739f9
IM
932 prio = MAX_RT_PRIO-1 - p->rt_priority;
933 else
934 prio = __normal_prio(p);
935 return prio;
936}
937
938/*
939 * Calculate the current priority, i.e. the priority
940 * taken into account by the scheduler. This value might
941 * be boosted by RT tasks, or might be boosted by
942 * interactivity modifiers. Will be RT if the task got
943 * RT-boosted. If not then it returns p->normal_prio.
944 */
36c8b586 945static int effective_prio(struct task_struct *p)
b29739f9
IM
946{
947 p->normal_prio = normal_prio(p);
948 /*
949 * If we are RT tasks or we were boosted to RT priority,
950 * keep the priority unchanged. Otherwise, update priority
951 * to the normal priority:
952 */
953 if (!rt_prio(p->prio))
954 return p->normal_prio;
955 return p->prio;
956}
957
1da177e4
LT
958/**
959 * task_curr - is this task currently executing on a CPU?
960 * @p: the task in question.
e69f6186
YB
961 *
962 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 963 */
36c8b586 964inline int task_curr(const struct task_struct *p)
1da177e4
LT
965{
966 return cpu_curr(task_cpu(p)) == p;
967}
968
cb469845
SR
969static inline void check_class_changed(struct rq *rq, struct task_struct *p,
970 const struct sched_class *prev_class,
da7a735e 971 int oldprio)
cb469845
SR
972{
973 if (prev_class != p->sched_class) {
974 if (prev_class->switched_from)
da7a735e
PZ
975 prev_class->switched_from(rq, p);
976 p->sched_class->switched_to(rq, p);
2d3d891d 977 } else if (oldprio != p->prio || dl_task(p))
da7a735e 978 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
979}
980
029632fb 981void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
982{
983 const struct sched_class *class;
984
985 if (p->sched_class == rq->curr->sched_class) {
986 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
987 } else {
988 for_each_class(class) {
989 if (class == rq->curr->sched_class)
990 break;
991 if (class == p->sched_class) {
992 resched_task(rq->curr);
993 break;
994 }
995 }
996 }
997
998 /*
999 * A queue event has occurred, and we're going to schedule. In
1000 * this case, we can save a useless back to back clock update.
1001 */
fd2f4419 1002 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1003 rq->skip_clock_update = 1;
1004}
1005
1da177e4 1006#ifdef CONFIG_SMP
dd41f596 1007void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1008{
e2912009
PZ
1009#ifdef CONFIG_SCHED_DEBUG
1010 /*
1011 * We should never call set_task_cpu() on a blocked task,
1012 * ttwu() will sort out the placement.
1013 */
077614ee 1014 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1015 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1016
1017#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1018 /*
1019 * The caller should hold either p->pi_lock or rq->lock, when changing
1020 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1021 *
1022 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1023 * see task_group().
6c6c54e1
PZ
1024 *
1025 * Furthermore, all task_rq users should acquire both locks, see
1026 * task_rq_lock().
1027 */
0122ec5b
PZ
1028 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1029 lockdep_is_held(&task_rq(p)->lock)));
1030#endif
e2912009
PZ
1031#endif
1032
de1d7286 1033 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1034
0c69774e 1035 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1036 if (p->sched_class->migrate_task_rq)
1037 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1038 p->se.nr_migrations++;
a8b0ca17 1039 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1040 }
dd41f596
IM
1041
1042 __set_task_cpu(p, new_cpu);
c65cc870
IM
1043}
1044
ac66f547
PZ
1045static void __migrate_swap_task(struct task_struct *p, int cpu)
1046{
1047 if (p->on_rq) {
1048 struct rq *src_rq, *dst_rq;
1049
1050 src_rq = task_rq(p);
1051 dst_rq = cpu_rq(cpu);
1052
1053 deactivate_task(src_rq, p, 0);
1054 set_task_cpu(p, cpu);
1055 activate_task(dst_rq, p, 0);
1056 check_preempt_curr(dst_rq, p, 0);
1057 } else {
1058 /*
1059 * Task isn't running anymore; make it appear like we migrated
1060 * it before it went to sleep. This means on wakeup we make the
1061 * previous cpu our targer instead of where it really is.
1062 */
1063 p->wake_cpu = cpu;
1064 }
1065}
1066
1067struct migration_swap_arg {
1068 struct task_struct *src_task, *dst_task;
1069 int src_cpu, dst_cpu;
1070};
1071
1072static int migrate_swap_stop(void *data)
1073{
1074 struct migration_swap_arg *arg = data;
1075 struct rq *src_rq, *dst_rq;
1076 int ret = -EAGAIN;
1077
1078 src_rq = cpu_rq(arg->src_cpu);
1079 dst_rq = cpu_rq(arg->dst_cpu);
1080
74602315
PZ
1081 double_raw_lock(&arg->src_task->pi_lock,
1082 &arg->dst_task->pi_lock);
ac66f547
PZ
1083 double_rq_lock(src_rq, dst_rq);
1084 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1085 goto unlock;
1086
1087 if (task_cpu(arg->src_task) != arg->src_cpu)
1088 goto unlock;
1089
1090 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1091 goto unlock;
1092
1093 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1094 goto unlock;
1095
1096 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1097 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1098
1099 ret = 0;
1100
1101unlock:
1102 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1103 raw_spin_unlock(&arg->dst_task->pi_lock);
1104 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1105
1106 return ret;
1107}
1108
1109/*
1110 * Cross migrate two tasks
1111 */
1112int migrate_swap(struct task_struct *cur, struct task_struct *p)
1113{
1114 struct migration_swap_arg arg;
1115 int ret = -EINVAL;
1116
ac66f547
PZ
1117 arg = (struct migration_swap_arg){
1118 .src_task = cur,
1119 .src_cpu = task_cpu(cur),
1120 .dst_task = p,
1121 .dst_cpu = task_cpu(p),
1122 };
1123
1124 if (arg.src_cpu == arg.dst_cpu)
1125 goto out;
1126
6acce3ef
PZ
1127 /*
1128 * These three tests are all lockless; this is OK since all of them
1129 * will be re-checked with proper locks held further down the line.
1130 */
ac66f547
PZ
1131 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1132 goto out;
1133
1134 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1135 goto out;
1136
1137 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1138 goto out;
1139
286549dc 1140 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1141 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1142
1143out:
ac66f547
PZ
1144 return ret;
1145}
1146
969c7921 1147struct migration_arg {
36c8b586 1148 struct task_struct *task;
1da177e4 1149 int dest_cpu;
70b97a7f 1150};
1da177e4 1151
969c7921
TH
1152static int migration_cpu_stop(void *data);
1153
1da177e4
LT
1154/*
1155 * wait_task_inactive - wait for a thread to unschedule.
1156 *
85ba2d86
RM
1157 * If @match_state is nonzero, it's the @p->state value just checked and
1158 * not expected to change. If it changes, i.e. @p might have woken up,
1159 * then return zero. When we succeed in waiting for @p to be off its CPU,
1160 * we return a positive number (its total switch count). If a second call
1161 * a short while later returns the same number, the caller can be sure that
1162 * @p has remained unscheduled the whole time.
1163 *
1da177e4
LT
1164 * The caller must ensure that the task *will* unschedule sometime soon,
1165 * else this function might spin for a *long* time. This function can't
1166 * be called with interrupts off, or it may introduce deadlock with
1167 * smp_call_function() if an IPI is sent by the same process we are
1168 * waiting to become inactive.
1169 */
85ba2d86 1170unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1171{
1172 unsigned long flags;
dd41f596 1173 int running, on_rq;
85ba2d86 1174 unsigned long ncsw;
70b97a7f 1175 struct rq *rq;
1da177e4 1176
3a5c359a
AK
1177 for (;;) {
1178 /*
1179 * We do the initial early heuristics without holding
1180 * any task-queue locks at all. We'll only try to get
1181 * the runqueue lock when things look like they will
1182 * work out!
1183 */
1184 rq = task_rq(p);
fa490cfd 1185
3a5c359a
AK
1186 /*
1187 * If the task is actively running on another CPU
1188 * still, just relax and busy-wait without holding
1189 * any locks.
1190 *
1191 * NOTE! Since we don't hold any locks, it's not
1192 * even sure that "rq" stays as the right runqueue!
1193 * But we don't care, since "task_running()" will
1194 * return false if the runqueue has changed and p
1195 * is actually now running somewhere else!
1196 */
85ba2d86
RM
1197 while (task_running(rq, p)) {
1198 if (match_state && unlikely(p->state != match_state))
1199 return 0;
3a5c359a 1200 cpu_relax();
85ba2d86 1201 }
fa490cfd 1202
3a5c359a
AK
1203 /*
1204 * Ok, time to look more closely! We need the rq
1205 * lock now, to be *sure*. If we're wrong, we'll
1206 * just go back and repeat.
1207 */
1208 rq = task_rq_lock(p, &flags);
27a9da65 1209 trace_sched_wait_task(p);
3a5c359a 1210 running = task_running(rq, p);
fd2f4419 1211 on_rq = p->on_rq;
85ba2d86 1212 ncsw = 0;
f31e11d8 1213 if (!match_state || p->state == match_state)
93dcf55f 1214 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1215 task_rq_unlock(rq, p, &flags);
fa490cfd 1216
85ba2d86
RM
1217 /*
1218 * If it changed from the expected state, bail out now.
1219 */
1220 if (unlikely(!ncsw))
1221 break;
1222
3a5c359a
AK
1223 /*
1224 * Was it really running after all now that we
1225 * checked with the proper locks actually held?
1226 *
1227 * Oops. Go back and try again..
1228 */
1229 if (unlikely(running)) {
1230 cpu_relax();
1231 continue;
1232 }
fa490cfd 1233
3a5c359a
AK
1234 /*
1235 * It's not enough that it's not actively running,
1236 * it must be off the runqueue _entirely_, and not
1237 * preempted!
1238 *
80dd99b3 1239 * So if it was still runnable (but just not actively
3a5c359a
AK
1240 * running right now), it's preempted, and we should
1241 * yield - it could be a while.
1242 */
1243 if (unlikely(on_rq)) {
8eb90c30
TG
1244 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1245
1246 set_current_state(TASK_UNINTERRUPTIBLE);
1247 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1248 continue;
1249 }
fa490cfd 1250
3a5c359a
AK
1251 /*
1252 * Ahh, all good. It wasn't running, and it wasn't
1253 * runnable, which means that it will never become
1254 * running in the future either. We're all done!
1255 */
1256 break;
1257 }
85ba2d86
RM
1258
1259 return ncsw;
1da177e4
LT
1260}
1261
1262/***
1263 * kick_process - kick a running thread to enter/exit the kernel
1264 * @p: the to-be-kicked thread
1265 *
1266 * Cause a process which is running on another CPU to enter
1267 * kernel-mode, without any delay. (to get signals handled.)
1268 *
25985edc 1269 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1270 * because all it wants to ensure is that the remote task enters
1271 * the kernel. If the IPI races and the task has been migrated
1272 * to another CPU then no harm is done and the purpose has been
1273 * achieved as well.
1274 */
36c8b586 1275void kick_process(struct task_struct *p)
1da177e4
LT
1276{
1277 int cpu;
1278
1279 preempt_disable();
1280 cpu = task_cpu(p);
1281 if ((cpu != smp_processor_id()) && task_curr(p))
1282 smp_send_reschedule(cpu);
1283 preempt_enable();
1284}
b43e3521 1285EXPORT_SYMBOL_GPL(kick_process);
476d139c 1286#endif /* CONFIG_SMP */
1da177e4 1287
970b13ba 1288#ifdef CONFIG_SMP
30da688e 1289/*
013fdb80 1290 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1291 */
5da9a0fb
PZ
1292static int select_fallback_rq(int cpu, struct task_struct *p)
1293{
aa00d89c
TC
1294 int nid = cpu_to_node(cpu);
1295 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1296 enum { cpuset, possible, fail } state = cpuset;
1297 int dest_cpu;
5da9a0fb 1298
aa00d89c
TC
1299 /*
1300 * If the node that the cpu is on has been offlined, cpu_to_node()
1301 * will return -1. There is no cpu on the node, and we should
1302 * select the cpu on the other node.
1303 */
1304 if (nid != -1) {
1305 nodemask = cpumask_of_node(nid);
1306
1307 /* Look for allowed, online CPU in same node. */
1308 for_each_cpu(dest_cpu, nodemask) {
1309 if (!cpu_online(dest_cpu))
1310 continue;
1311 if (!cpu_active(dest_cpu))
1312 continue;
1313 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1314 return dest_cpu;
1315 }
2baab4e9 1316 }
5da9a0fb 1317
2baab4e9
PZ
1318 for (;;) {
1319 /* Any allowed, online CPU? */
e3831edd 1320 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1321 if (!cpu_online(dest_cpu))
1322 continue;
1323 if (!cpu_active(dest_cpu))
1324 continue;
1325 goto out;
1326 }
5da9a0fb 1327
2baab4e9
PZ
1328 switch (state) {
1329 case cpuset:
1330 /* No more Mr. Nice Guy. */
1331 cpuset_cpus_allowed_fallback(p);
1332 state = possible;
1333 break;
1334
1335 case possible:
1336 do_set_cpus_allowed(p, cpu_possible_mask);
1337 state = fail;
1338 break;
1339
1340 case fail:
1341 BUG();
1342 break;
1343 }
1344 }
1345
1346out:
1347 if (state != cpuset) {
1348 /*
1349 * Don't tell them about moving exiting tasks or
1350 * kernel threads (both mm NULL), since they never
1351 * leave kernel.
1352 */
1353 if (p->mm && printk_ratelimit()) {
1354 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1355 task_pid_nr(p), p->comm, cpu);
1356 }
5da9a0fb
PZ
1357 }
1358
1359 return dest_cpu;
1360}
1361
e2912009 1362/*
013fdb80 1363 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1364 */
970b13ba 1365static inline
ac66f547 1366int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1367{
ac66f547 1368 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1369
1370 /*
1371 * In order not to call set_task_cpu() on a blocking task we need
1372 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1373 * cpu.
1374 *
1375 * Since this is common to all placement strategies, this lives here.
1376 *
1377 * [ this allows ->select_task() to simply return task_cpu(p) and
1378 * not worry about this generic constraint ]
1379 */
fa17b507 1380 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1381 !cpu_online(cpu)))
5da9a0fb 1382 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1383
1384 return cpu;
970b13ba 1385}
09a40af5
MG
1386
1387static void update_avg(u64 *avg, u64 sample)
1388{
1389 s64 diff = sample - *avg;
1390 *avg += diff >> 3;
1391}
970b13ba
PZ
1392#endif
1393
d7c01d27 1394static void
b84cb5df 1395ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1396{
d7c01d27 1397#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1398 struct rq *rq = this_rq();
1399
d7c01d27
PZ
1400#ifdef CONFIG_SMP
1401 int this_cpu = smp_processor_id();
1402
1403 if (cpu == this_cpu) {
1404 schedstat_inc(rq, ttwu_local);
1405 schedstat_inc(p, se.statistics.nr_wakeups_local);
1406 } else {
1407 struct sched_domain *sd;
1408
1409 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1410 rcu_read_lock();
d7c01d27
PZ
1411 for_each_domain(this_cpu, sd) {
1412 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1413 schedstat_inc(sd, ttwu_wake_remote);
1414 break;
1415 }
1416 }
057f3fad 1417 rcu_read_unlock();
d7c01d27 1418 }
f339b9dc
PZ
1419
1420 if (wake_flags & WF_MIGRATED)
1421 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1422
d7c01d27
PZ
1423#endif /* CONFIG_SMP */
1424
1425 schedstat_inc(rq, ttwu_count);
9ed3811a 1426 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1427
1428 if (wake_flags & WF_SYNC)
9ed3811a 1429 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1430
d7c01d27
PZ
1431#endif /* CONFIG_SCHEDSTATS */
1432}
1433
1434static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1435{
9ed3811a 1436 activate_task(rq, p, en_flags);
fd2f4419 1437 p->on_rq = 1;
c2f7115e
PZ
1438
1439 /* if a worker is waking up, notify workqueue */
1440 if (p->flags & PF_WQ_WORKER)
1441 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1442}
1443
23f41eeb
PZ
1444/*
1445 * Mark the task runnable and perform wakeup-preemption.
1446 */
89363381 1447static void
23f41eeb 1448ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1449{
9ed3811a 1450 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1451 trace_sched_wakeup(p, true);
9ed3811a
TH
1452
1453 p->state = TASK_RUNNING;
1454#ifdef CONFIG_SMP
1455 if (p->sched_class->task_woken)
1456 p->sched_class->task_woken(rq, p);
1457
e69c6341 1458 if (rq->idle_stamp) {
78becc27 1459 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1460 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1461
abfafa54
JL
1462 update_avg(&rq->avg_idle, delta);
1463
1464 if (rq->avg_idle > max)
9ed3811a 1465 rq->avg_idle = max;
abfafa54 1466
9ed3811a
TH
1467 rq->idle_stamp = 0;
1468 }
1469#endif
1470}
1471
c05fbafb
PZ
1472static void
1473ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1474{
1475#ifdef CONFIG_SMP
1476 if (p->sched_contributes_to_load)
1477 rq->nr_uninterruptible--;
1478#endif
1479
1480 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1481 ttwu_do_wakeup(rq, p, wake_flags);
1482}
1483
1484/*
1485 * Called in case the task @p isn't fully descheduled from its runqueue,
1486 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1487 * since all we need to do is flip p->state to TASK_RUNNING, since
1488 * the task is still ->on_rq.
1489 */
1490static int ttwu_remote(struct task_struct *p, int wake_flags)
1491{
1492 struct rq *rq;
1493 int ret = 0;
1494
1495 rq = __task_rq_lock(p);
1496 if (p->on_rq) {
1ad4ec0d
FW
1497 /* check_preempt_curr() may use rq clock */
1498 update_rq_clock(rq);
c05fbafb
PZ
1499 ttwu_do_wakeup(rq, p, wake_flags);
1500 ret = 1;
1501 }
1502 __task_rq_unlock(rq);
1503
1504 return ret;
1505}
1506
317f3941 1507#ifdef CONFIG_SMP
fa14ff4a 1508static void sched_ttwu_pending(void)
317f3941
PZ
1509{
1510 struct rq *rq = this_rq();
fa14ff4a
PZ
1511 struct llist_node *llist = llist_del_all(&rq->wake_list);
1512 struct task_struct *p;
317f3941
PZ
1513
1514 raw_spin_lock(&rq->lock);
1515
fa14ff4a
PZ
1516 while (llist) {
1517 p = llist_entry(llist, struct task_struct, wake_entry);
1518 llist = llist_next(llist);
317f3941
PZ
1519 ttwu_do_activate(rq, p, 0);
1520 }
1521
1522 raw_spin_unlock(&rq->lock);
1523}
1524
1525void scheduler_ipi(void)
1526{
f27dde8d
PZ
1527 /*
1528 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1529 * TIF_NEED_RESCHED remotely (for the first time) will also send
1530 * this IPI.
1531 */
8cb75e0c 1532 preempt_fold_need_resched();
f27dde8d 1533
873b4c65
VG
1534 if (llist_empty(&this_rq()->wake_list)
1535 && !tick_nohz_full_cpu(smp_processor_id())
1536 && !got_nohz_idle_kick())
c5d753a5
PZ
1537 return;
1538
1539 /*
1540 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1541 * traditionally all their work was done from the interrupt return
1542 * path. Now that we actually do some work, we need to make sure
1543 * we do call them.
1544 *
1545 * Some archs already do call them, luckily irq_enter/exit nest
1546 * properly.
1547 *
1548 * Arguably we should visit all archs and update all handlers,
1549 * however a fair share of IPIs are still resched only so this would
1550 * somewhat pessimize the simple resched case.
1551 */
1552 irq_enter();
ff442c51 1553 tick_nohz_full_check();
fa14ff4a 1554 sched_ttwu_pending();
ca38062e
SS
1555
1556 /*
1557 * Check if someone kicked us for doing the nohz idle load balance.
1558 */
873b4c65 1559 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1560 this_rq()->idle_balance = 1;
ca38062e 1561 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1562 }
c5d753a5 1563 irq_exit();
317f3941
PZ
1564}
1565
1566static void ttwu_queue_remote(struct task_struct *p, int cpu)
1567{
fa14ff4a 1568 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1569 smp_send_reschedule(cpu);
1570}
d6aa8f85 1571
39be3501 1572bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1573{
1574 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1575}
d6aa8f85 1576#endif /* CONFIG_SMP */
317f3941 1577
c05fbafb
PZ
1578static void ttwu_queue(struct task_struct *p, int cpu)
1579{
1580 struct rq *rq = cpu_rq(cpu);
1581
17d9f311 1582#if defined(CONFIG_SMP)
39be3501 1583 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1584 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1585 ttwu_queue_remote(p, cpu);
1586 return;
1587 }
1588#endif
1589
c05fbafb
PZ
1590 raw_spin_lock(&rq->lock);
1591 ttwu_do_activate(rq, p, 0);
1592 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1593}
1594
1595/**
1da177e4 1596 * try_to_wake_up - wake up a thread
9ed3811a 1597 * @p: the thread to be awakened
1da177e4 1598 * @state: the mask of task states that can be woken
9ed3811a 1599 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1600 *
1601 * Put it on the run-queue if it's not already there. The "current"
1602 * thread is always on the run-queue (except when the actual
1603 * re-schedule is in progress), and as such you're allowed to do
1604 * the simpler "current->state = TASK_RUNNING" to mark yourself
1605 * runnable without the overhead of this.
1606 *
e69f6186 1607 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1608 * or @state didn't match @p's state.
1da177e4 1609 */
e4a52bcb
PZ
1610static int
1611try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1612{
1da177e4 1613 unsigned long flags;
c05fbafb 1614 int cpu, success = 0;
2398f2c6 1615
e0acd0a6
ON
1616 /*
1617 * If we are going to wake up a thread waiting for CONDITION we
1618 * need to ensure that CONDITION=1 done by the caller can not be
1619 * reordered with p->state check below. This pairs with mb() in
1620 * set_current_state() the waiting thread does.
1621 */
1622 smp_mb__before_spinlock();
013fdb80 1623 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1624 if (!(p->state & state))
1da177e4
LT
1625 goto out;
1626
c05fbafb 1627 success = 1; /* we're going to change ->state */
1da177e4 1628 cpu = task_cpu(p);
1da177e4 1629
c05fbafb
PZ
1630 if (p->on_rq && ttwu_remote(p, wake_flags))
1631 goto stat;
1da177e4 1632
1da177e4 1633#ifdef CONFIG_SMP
e9c84311 1634 /*
c05fbafb
PZ
1635 * If the owning (remote) cpu is still in the middle of schedule() with
1636 * this task as prev, wait until its done referencing the task.
e9c84311 1637 */
f3e94786 1638 while (p->on_cpu)
e4a52bcb 1639 cpu_relax();
0970d299 1640 /*
e4a52bcb 1641 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1642 */
e4a52bcb 1643 smp_rmb();
1da177e4 1644
a8e4f2ea 1645 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1646 p->state = TASK_WAKING;
e7693a36 1647
e4a52bcb 1648 if (p->sched_class->task_waking)
74f8e4b2 1649 p->sched_class->task_waking(p);
efbbd05a 1650
ac66f547 1651 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1652 if (task_cpu(p) != cpu) {
1653 wake_flags |= WF_MIGRATED;
e4a52bcb 1654 set_task_cpu(p, cpu);
f339b9dc 1655 }
1da177e4 1656#endif /* CONFIG_SMP */
1da177e4 1657
c05fbafb
PZ
1658 ttwu_queue(p, cpu);
1659stat:
b84cb5df 1660 ttwu_stat(p, cpu, wake_flags);
1da177e4 1661out:
013fdb80 1662 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1663
1664 return success;
1665}
1666
21aa9af0
TH
1667/**
1668 * try_to_wake_up_local - try to wake up a local task with rq lock held
1669 * @p: the thread to be awakened
1670 *
2acca55e 1671 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1672 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1673 * the current task.
21aa9af0
TH
1674 */
1675static void try_to_wake_up_local(struct task_struct *p)
1676{
1677 struct rq *rq = task_rq(p);
21aa9af0 1678
383efcd0
TH
1679 if (WARN_ON_ONCE(rq != this_rq()) ||
1680 WARN_ON_ONCE(p == current))
1681 return;
1682
21aa9af0
TH
1683 lockdep_assert_held(&rq->lock);
1684
2acca55e
PZ
1685 if (!raw_spin_trylock(&p->pi_lock)) {
1686 raw_spin_unlock(&rq->lock);
1687 raw_spin_lock(&p->pi_lock);
1688 raw_spin_lock(&rq->lock);
1689 }
1690
21aa9af0 1691 if (!(p->state & TASK_NORMAL))
2acca55e 1692 goto out;
21aa9af0 1693
fd2f4419 1694 if (!p->on_rq)
d7c01d27
PZ
1695 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1696
23f41eeb 1697 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1698 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1699out:
1700 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1701}
1702
50fa610a
DH
1703/**
1704 * wake_up_process - Wake up a specific process
1705 * @p: The process to be woken up.
1706 *
1707 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1708 * processes.
1709 *
1710 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1711 *
1712 * It may be assumed that this function implies a write memory barrier before
1713 * changing the task state if and only if any tasks are woken up.
1714 */
7ad5b3a5 1715int wake_up_process(struct task_struct *p)
1da177e4 1716{
9067ac85
ON
1717 WARN_ON(task_is_stopped_or_traced(p));
1718 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1719}
1da177e4
LT
1720EXPORT_SYMBOL(wake_up_process);
1721
7ad5b3a5 1722int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1723{
1724 return try_to_wake_up(p, state, 0);
1725}
1726
1da177e4
LT
1727/*
1728 * Perform scheduler related setup for a newly forked process p.
1729 * p is forked by current.
dd41f596
IM
1730 *
1731 * __sched_fork() is basic setup used by init_idle() too:
1732 */
5e1576ed 1733static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1734{
fd2f4419
PZ
1735 p->on_rq = 0;
1736
1737 p->se.on_rq = 0;
dd41f596
IM
1738 p->se.exec_start = 0;
1739 p->se.sum_exec_runtime = 0;
f6cf891c 1740 p->se.prev_sum_exec_runtime = 0;
6c594c21 1741 p->se.nr_migrations = 0;
da7a735e 1742 p->se.vruntime = 0;
fd2f4419 1743 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1744
1745#ifdef CONFIG_SCHEDSTATS
41acab88 1746 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1747#endif
476d139c 1748
aab03e05
DF
1749 RB_CLEAR_NODE(&p->dl.rb_node);
1750 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1751 p->dl.dl_runtime = p->dl.runtime = 0;
1752 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1753 p->dl.dl_period = 0;
aab03e05
DF
1754 p->dl.flags = 0;
1755
fa717060 1756 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1757
e107be36
AK
1758#ifdef CONFIG_PREEMPT_NOTIFIERS
1759 INIT_HLIST_HEAD(&p->preempt_notifiers);
1760#endif
cbee9f88
PZ
1761
1762#ifdef CONFIG_NUMA_BALANCING
1763 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1764 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1765 p->mm->numa_scan_seq = 0;
1766 }
1767
5e1576ed
RR
1768 if (clone_flags & CLONE_VM)
1769 p->numa_preferred_nid = current->numa_preferred_nid;
1770 else
1771 p->numa_preferred_nid = -1;
1772
cbee9f88
PZ
1773 p->node_stamp = 0ULL;
1774 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1775 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1776 p->numa_work.next = &p->numa_work;
ff1df896
RR
1777 p->numa_faults_memory = NULL;
1778 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1779 p->last_task_numa_placement = 0;
1780 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1781
1782 INIT_LIST_HEAD(&p->numa_entry);
1783 p->numa_group = NULL;
cbee9f88 1784#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1785}
1786
1a687c2e 1787#ifdef CONFIG_NUMA_BALANCING
3105b86a 1788#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1789void set_numabalancing_state(bool enabled)
1790{
1791 if (enabled)
1792 sched_feat_set("NUMA");
1793 else
1794 sched_feat_set("NO_NUMA");
1795}
3105b86a
MG
1796#else
1797__read_mostly bool numabalancing_enabled;
1798
1799void set_numabalancing_state(bool enabled)
1800{
1801 numabalancing_enabled = enabled;
dd41f596 1802}
3105b86a 1803#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1804
1805#ifdef CONFIG_PROC_SYSCTL
1806int sysctl_numa_balancing(struct ctl_table *table, int write,
1807 void __user *buffer, size_t *lenp, loff_t *ppos)
1808{
1809 struct ctl_table t;
1810 int err;
1811 int state = numabalancing_enabled;
1812
1813 if (write && !capable(CAP_SYS_ADMIN))
1814 return -EPERM;
1815
1816 t = *table;
1817 t.data = &state;
1818 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1819 if (err < 0)
1820 return err;
1821 if (write)
1822 set_numabalancing_state(state);
1823 return err;
1824}
1825#endif
1826#endif
dd41f596
IM
1827
1828/*
1829 * fork()/clone()-time setup:
1830 */
aab03e05 1831int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1832{
0122ec5b 1833 unsigned long flags;
dd41f596
IM
1834 int cpu = get_cpu();
1835
5e1576ed 1836 __sched_fork(clone_flags, p);
06b83b5f 1837 /*
0017d735 1838 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1839 * nobody will actually run it, and a signal or other external
1840 * event cannot wake it up and insert it on the runqueue either.
1841 */
0017d735 1842 p->state = TASK_RUNNING;
dd41f596 1843
c350a04e
MG
1844 /*
1845 * Make sure we do not leak PI boosting priority to the child.
1846 */
1847 p->prio = current->normal_prio;
1848
b9dc29e7
MG
1849 /*
1850 * Revert to default priority/policy on fork if requested.
1851 */
1852 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1853 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1854 p->policy = SCHED_NORMAL;
6c697bdf 1855 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1856 p->rt_priority = 0;
1857 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1858 p->static_prio = NICE_TO_PRIO(0);
1859
1860 p->prio = p->normal_prio = __normal_prio(p);
1861 set_load_weight(p);
6c697bdf 1862
b9dc29e7
MG
1863 /*
1864 * We don't need the reset flag anymore after the fork. It has
1865 * fulfilled its duty:
1866 */
1867 p->sched_reset_on_fork = 0;
1868 }
ca94c442 1869
aab03e05
DF
1870 if (dl_prio(p->prio)) {
1871 put_cpu();
1872 return -EAGAIN;
1873 } else if (rt_prio(p->prio)) {
1874 p->sched_class = &rt_sched_class;
1875 } else {
2ddbf952 1876 p->sched_class = &fair_sched_class;
aab03e05 1877 }
b29739f9 1878
cd29fe6f
PZ
1879 if (p->sched_class->task_fork)
1880 p->sched_class->task_fork(p);
1881
86951599
PZ
1882 /*
1883 * The child is not yet in the pid-hash so no cgroup attach races,
1884 * and the cgroup is pinned to this child due to cgroup_fork()
1885 * is ran before sched_fork().
1886 *
1887 * Silence PROVE_RCU.
1888 */
0122ec5b 1889 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1890 set_task_cpu(p, cpu);
0122ec5b 1891 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1892
52f17b6c 1893#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1894 if (likely(sched_info_on()))
52f17b6c 1895 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1896#endif
3ca7a440
PZ
1897#if defined(CONFIG_SMP)
1898 p->on_cpu = 0;
4866cde0 1899#endif
01028747 1900 init_task_preempt_count(p);
806c09a7 1901#ifdef CONFIG_SMP
917b627d 1902 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1903 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1904#endif
917b627d 1905
476d139c 1906 put_cpu();
aab03e05 1907 return 0;
1da177e4
LT
1908}
1909
332ac17e
DF
1910unsigned long to_ratio(u64 period, u64 runtime)
1911{
1912 if (runtime == RUNTIME_INF)
1913 return 1ULL << 20;
1914
1915 /*
1916 * Doing this here saves a lot of checks in all
1917 * the calling paths, and returning zero seems
1918 * safe for them anyway.
1919 */
1920 if (period == 0)
1921 return 0;
1922
1923 return div64_u64(runtime << 20, period);
1924}
1925
1926#ifdef CONFIG_SMP
1927inline struct dl_bw *dl_bw_of(int i)
1928{
1929 return &cpu_rq(i)->rd->dl_bw;
1930}
1931
de212f18 1932static inline int dl_bw_cpus(int i)
332ac17e 1933{
de212f18
PZ
1934 struct root_domain *rd = cpu_rq(i)->rd;
1935 int cpus = 0;
1936
1937 for_each_cpu_and(i, rd->span, cpu_active_mask)
1938 cpus++;
1939
1940 return cpus;
332ac17e
DF
1941}
1942#else
1943inline struct dl_bw *dl_bw_of(int i)
1944{
1945 return &cpu_rq(i)->dl.dl_bw;
1946}
1947
de212f18 1948static inline int dl_bw_cpus(int i)
332ac17e
DF
1949{
1950 return 1;
1951}
1952#endif
1953
1954static inline
1955void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1956{
1957 dl_b->total_bw -= tsk_bw;
1958}
1959
1960static inline
1961void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1962{
1963 dl_b->total_bw += tsk_bw;
1964}
1965
1966static inline
1967bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1968{
1969 return dl_b->bw != -1 &&
1970 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1971}
1972
1973/*
1974 * We must be sure that accepting a new task (or allowing changing the
1975 * parameters of an existing one) is consistent with the bandwidth
1976 * constraints. If yes, this function also accordingly updates the currently
1977 * allocated bandwidth to reflect the new situation.
1978 *
1979 * This function is called while holding p's rq->lock.
1980 */
1981static int dl_overflow(struct task_struct *p, int policy,
1982 const struct sched_attr *attr)
1983{
1984
1985 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 1986 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
1987 u64 runtime = attr->sched_runtime;
1988 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1989 int cpus, err = -1;
332ac17e
DF
1990
1991 if (new_bw == p->dl.dl_bw)
1992 return 0;
1993
1994 /*
1995 * Either if a task, enters, leave, or stays -deadline but changes
1996 * its parameters, we may need to update accordingly the total
1997 * allocated bandwidth of the container.
1998 */
1999 raw_spin_lock(&dl_b->lock);
de212f18 2000 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2001 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2002 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2003 __dl_add(dl_b, new_bw);
2004 err = 0;
2005 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2006 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2007 __dl_clear(dl_b, p->dl.dl_bw);
2008 __dl_add(dl_b, new_bw);
2009 err = 0;
2010 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2011 __dl_clear(dl_b, p->dl.dl_bw);
2012 err = 0;
2013 }
2014 raw_spin_unlock(&dl_b->lock);
2015
2016 return err;
2017}
2018
2019extern void init_dl_bw(struct dl_bw *dl_b);
2020
1da177e4
LT
2021/*
2022 * wake_up_new_task - wake up a newly created task for the first time.
2023 *
2024 * This function will do some initial scheduler statistics housekeeping
2025 * that must be done for every newly created context, then puts the task
2026 * on the runqueue and wakes it.
2027 */
3e51e3ed 2028void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2029{
2030 unsigned long flags;
dd41f596 2031 struct rq *rq;
fabf318e 2032
ab2515c4 2033 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2034#ifdef CONFIG_SMP
2035 /*
2036 * Fork balancing, do it here and not earlier because:
2037 * - cpus_allowed can change in the fork path
2038 * - any previously selected cpu might disappear through hotplug
fabf318e 2039 */
ac66f547 2040 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2041#endif
2042
a75cdaa9
AS
2043 /* Initialize new task's runnable average */
2044 init_task_runnable_average(p);
ab2515c4 2045 rq = __task_rq_lock(p);
cd29fe6f 2046 activate_task(rq, p, 0);
fd2f4419 2047 p->on_rq = 1;
89363381 2048 trace_sched_wakeup_new(p, true);
a7558e01 2049 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2050#ifdef CONFIG_SMP
efbbd05a
PZ
2051 if (p->sched_class->task_woken)
2052 p->sched_class->task_woken(rq, p);
9a897c5a 2053#endif
0122ec5b 2054 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2055}
2056
e107be36
AK
2057#ifdef CONFIG_PREEMPT_NOTIFIERS
2058
2059/**
80dd99b3 2060 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2061 * @notifier: notifier struct to register
e107be36
AK
2062 */
2063void preempt_notifier_register(struct preempt_notifier *notifier)
2064{
2065 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2066}
2067EXPORT_SYMBOL_GPL(preempt_notifier_register);
2068
2069/**
2070 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2071 * @notifier: notifier struct to unregister
e107be36
AK
2072 *
2073 * This is safe to call from within a preemption notifier.
2074 */
2075void preempt_notifier_unregister(struct preempt_notifier *notifier)
2076{
2077 hlist_del(&notifier->link);
2078}
2079EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2080
2081static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2082{
2083 struct preempt_notifier *notifier;
e107be36 2084
b67bfe0d 2085 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2086 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2087}
2088
2089static void
2090fire_sched_out_preempt_notifiers(struct task_struct *curr,
2091 struct task_struct *next)
2092{
2093 struct preempt_notifier *notifier;
e107be36 2094
b67bfe0d 2095 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2096 notifier->ops->sched_out(notifier, next);
2097}
2098
6d6bc0ad 2099#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2100
2101static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2102{
2103}
2104
2105static void
2106fire_sched_out_preempt_notifiers(struct task_struct *curr,
2107 struct task_struct *next)
2108{
2109}
2110
6d6bc0ad 2111#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2112
4866cde0
NP
2113/**
2114 * prepare_task_switch - prepare to switch tasks
2115 * @rq: the runqueue preparing to switch
421cee29 2116 * @prev: the current task that is being switched out
4866cde0
NP
2117 * @next: the task we are going to switch to.
2118 *
2119 * This is called with the rq lock held and interrupts off. It must
2120 * be paired with a subsequent finish_task_switch after the context
2121 * switch.
2122 *
2123 * prepare_task_switch sets up locking and calls architecture specific
2124 * hooks.
2125 */
e107be36
AK
2126static inline void
2127prepare_task_switch(struct rq *rq, struct task_struct *prev,
2128 struct task_struct *next)
4866cde0 2129{
895dd92c 2130 trace_sched_switch(prev, next);
43148951 2131 sched_info_switch(rq, prev, next);
fe4b04fa 2132 perf_event_task_sched_out(prev, next);
e107be36 2133 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2134 prepare_lock_switch(rq, next);
2135 prepare_arch_switch(next);
2136}
2137
1da177e4
LT
2138/**
2139 * finish_task_switch - clean up after a task-switch
344babaa 2140 * @rq: runqueue associated with task-switch
1da177e4
LT
2141 * @prev: the thread we just switched away from.
2142 *
4866cde0
NP
2143 * finish_task_switch must be called after the context switch, paired
2144 * with a prepare_task_switch call before the context switch.
2145 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2146 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2147 *
2148 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2149 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2150 * with the lock held can cause deadlocks; see schedule() for
2151 * details.)
2152 */
a9957449 2153static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2154 __releases(rq->lock)
2155{
1da177e4 2156 struct mm_struct *mm = rq->prev_mm;
55a101f8 2157 long prev_state;
1da177e4
LT
2158
2159 rq->prev_mm = NULL;
2160
2161 /*
2162 * A task struct has one reference for the use as "current".
c394cc9f 2163 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2164 * schedule one last time. The schedule call will never return, and
2165 * the scheduled task must drop that reference.
c394cc9f 2166 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2167 * still held, otherwise prev could be scheduled on another cpu, die
2168 * there before we look at prev->state, and then the reference would
2169 * be dropped twice.
2170 * Manfred Spraul <manfred@colorfullife.com>
2171 */
55a101f8 2172 prev_state = prev->state;
bf9fae9f 2173 vtime_task_switch(prev);
4866cde0 2174 finish_arch_switch(prev);
a8d757ef 2175 perf_event_task_sched_in(prev, current);
4866cde0 2176 finish_lock_switch(rq, prev);
01f23e16 2177 finish_arch_post_lock_switch();
e8fa1362 2178
e107be36 2179 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2180 if (mm)
2181 mmdrop(mm);
c394cc9f 2182 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2183 if (prev->sched_class->task_dead)
2184 prev->sched_class->task_dead(prev);
2185
c6fd91f0 2186 /*
2187 * Remove function-return probe instances associated with this
2188 * task and put them back on the free list.
9761eea8 2189 */
c6fd91f0 2190 kprobe_flush_task(prev);
1da177e4 2191 put_task_struct(prev);
c6fd91f0 2192 }
99e5ada9
FW
2193
2194 tick_nohz_task_switch(current);
1da177e4
LT
2195}
2196
3f029d3c
GH
2197#ifdef CONFIG_SMP
2198
3f029d3c
GH
2199/* rq->lock is NOT held, but preemption is disabled */
2200static inline void post_schedule(struct rq *rq)
2201{
2202 if (rq->post_schedule) {
2203 unsigned long flags;
2204
05fa785c 2205 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2206 if (rq->curr->sched_class->post_schedule)
2207 rq->curr->sched_class->post_schedule(rq);
05fa785c 2208 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2209
2210 rq->post_schedule = 0;
2211 }
2212}
2213
2214#else
da19ab51 2215
3f029d3c
GH
2216static inline void post_schedule(struct rq *rq)
2217{
1da177e4
LT
2218}
2219
3f029d3c
GH
2220#endif
2221
1da177e4
LT
2222/**
2223 * schedule_tail - first thing a freshly forked thread must call.
2224 * @prev: the thread we just switched away from.
2225 */
722a9f92 2226asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2227 __releases(rq->lock)
2228{
70b97a7f
IM
2229 struct rq *rq = this_rq();
2230
4866cde0 2231 finish_task_switch(rq, prev);
da19ab51 2232
3f029d3c
GH
2233 /*
2234 * FIXME: do we need to worry about rq being invalidated by the
2235 * task_switch?
2236 */
2237 post_schedule(rq);
70b97a7f 2238
4866cde0
NP
2239#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2240 /* In this case, finish_task_switch does not reenable preemption */
2241 preempt_enable();
2242#endif
1da177e4 2243 if (current->set_child_tid)
b488893a 2244 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2245}
2246
2247/*
2248 * context_switch - switch to the new MM and the new
2249 * thread's register state.
2250 */
dd41f596 2251static inline void
70b97a7f 2252context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2253 struct task_struct *next)
1da177e4 2254{
dd41f596 2255 struct mm_struct *mm, *oldmm;
1da177e4 2256
e107be36 2257 prepare_task_switch(rq, prev, next);
fe4b04fa 2258
dd41f596
IM
2259 mm = next->mm;
2260 oldmm = prev->active_mm;
9226d125
ZA
2261 /*
2262 * For paravirt, this is coupled with an exit in switch_to to
2263 * combine the page table reload and the switch backend into
2264 * one hypercall.
2265 */
224101ed 2266 arch_start_context_switch(prev);
9226d125 2267
31915ab4 2268 if (!mm) {
1da177e4
LT
2269 next->active_mm = oldmm;
2270 atomic_inc(&oldmm->mm_count);
2271 enter_lazy_tlb(oldmm, next);
2272 } else
2273 switch_mm(oldmm, mm, next);
2274
31915ab4 2275 if (!prev->mm) {
1da177e4 2276 prev->active_mm = NULL;
1da177e4
LT
2277 rq->prev_mm = oldmm;
2278 }
3a5f5e48
IM
2279 /*
2280 * Since the runqueue lock will be released by the next
2281 * task (which is an invalid locking op but in the case
2282 * of the scheduler it's an obvious special-case), so we
2283 * do an early lockdep release here:
2284 */
2285#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2286 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2287#endif
1da177e4 2288
91d1aa43 2289 context_tracking_task_switch(prev, next);
1da177e4
LT
2290 /* Here we just switch the register state and the stack. */
2291 switch_to(prev, next, prev);
2292
dd41f596
IM
2293 barrier();
2294 /*
2295 * this_rq must be evaluated again because prev may have moved
2296 * CPUs since it called schedule(), thus the 'rq' on its stack
2297 * frame will be invalid.
2298 */
2299 finish_task_switch(this_rq(), prev);
1da177e4
LT
2300}
2301
2302/*
1c3e8264 2303 * nr_running and nr_context_switches:
1da177e4
LT
2304 *
2305 * externally visible scheduler statistics: current number of runnable
1c3e8264 2306 * threads, total number of context switches performed since bootup.
1da177e4
LT
2307 */
2308unsigned long nr_running(void)
2309{
2310 unsigned long i, sum = 0;
2311
2312 for_each_online_cpu(i)
2313 sum += cpu_rq(i)->nr_running;
2314
2315 return sum;
f711f609 2316}
1da177e4 2317
1da177e4 2318unsigned long long nr_context_switches(void)
46cb4b7c 2319{
cc94abfc
SR
2320 int i;
2321 unsigned long long sum = 0;
46cb4b7c 2322
0a945022 2323 for_each_possible_cpu(i)
1da177e4 2324 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2325
1da177e4
LT
2326 return sum;
2327}
483b4ee6 2328
1da177e4
LT
2329unsigned long nr_iowait(void)
2330{
2331 unsigned long i, sum = 0;
483b4ee6 2332
0a945022 2333 for_each_possible_cpu(i)
1da177e4 2334 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2335
1da177e4
LT
2336 return sum;
2337}
483b4ee6 2338
8c215bd3 2339unsigned long nr_iowait_cpu(int cpu)
69d25870 2340{
8c215bd3 2341 struct rq *this = cpu_rq(cpu);
69d25870
AV
2342 return atomic_read(&this->nr_iowait);
2343}
46cb4b7c 2344
dd41f596 2345#ifdef CONFIG_SMP
8a0be9ef 2346
46cb4b7c 2347/*
38022906
PZ
2348 * sched_exec - execve() is a valuable balancing opportunity, because at
2349 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2350 */
38022906 2351void sched_exec(void)
46cb4b7c 2352{
38022906 2353 struct task_struct *p = current;
1da177e4 2354 unsigned long flags;
0017d735 2355 int dest_cpu;
46cb4b7c 2356
8f42ced9 2357 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2358 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2359 if (dest_cpu == smp_processor_id())
2360 goto unlock;
38022906 2361
8f42ced9 2362 if (likely(cpu_active(dest_cpu))) {
969c7921 2363 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2364
8f42ced9
PZ
2365 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2366 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2367 return;
2368 }
0017d735 2369unlock:
8f42ced9 2370 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2371}
dd41f596 2372
1da177e4
LT
2373#endif
2374
1da177e4 2375DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2376DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2377
2378EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2379EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2380
2381/*
c5f8d995 2382 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2383 * @p in case that task is currently running.
c5f8d995
HS
2384 *
2385 * Called with task_rq_lock() held on @rq.
1da177e4 2386 */
c5f8d995
HS
2387static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2388{
2389 u64 ns = 0;
2390
2391 if (task_current(rq, p)) {
2392 update_rq_clock(rq);
78becc27 2393 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2394 if ((s64)ns < 0)
2395 ns = 0;
2396 }
2397
2398 return ns;
2399}
2400
bb34d92f 2401unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2402{
1da177e4 2403 unsigned long flags;
41b86e9c 2404 struct rq *rq;
bb34d92f 2405 u64 ns = 0;
48f24c4d 2406
41b86e9c 2407 rq = task_rq_lock(p, &flags);
c5f8d995 2408 ns = do_task_delta_exec(p, rq);
0122ec5b 2409 task_rq_unlock(rq, p, &flags);
1508487e 2410
c5f8d995
HS
2411 return ns;
2412}
f06febc9 2413
c5f8d995
HS
2414/*
2415 * Return accounted runtime for the task.
2416 * In case the task is currently running, return the runtime plus current's
2417 * pending runtime that have not been accounted yet.
2418 */
2419unsigned long long task_sched_runtime(struct task_struct *p)
2420{
2421 unsigned long flags;
2422 struct rq *rq;
2423 u64 ns = 0;
2424
911b2898
PZ
2425#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2426 /*
2427 * 64-bit doesn't need locks to atomically read a 64bit value.
2428 * So we have a optimization chance when the task's delta_exec is 0.
2429 * Reading ->on_cpu is racy, but this is ok.
2430 *
2431 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2432 * If we race with it entering cpu, unaccounted time is 0. This is
2433 * indistinguishable from the read occurring a few cycles earlier.
2434 */
2435 if (!p->on_cpu)
2436 return p->se.sum_exec_runtime;
2437#endif
2438
c5f8d995
HS
2439 rq = task_rq_lock(p, &flags);
2440 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2441 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2442
2443 return ns;
2444}
48f24c4d 2445
7835b98b
CL
2446/*
2447 * This function gets called by the timer code, with HZ frequency.
2448 * We call it with interrupts disabled.
7835b98b
CL
2449 */
2450void scheduler_tick(void)
2451{
7835b98b
CL
2452 int cpu = smp_processor_id();
2453 struct rq *rq = cpu_rq(cpu);
dd41f596 2454 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2455
2456 sched_clock_tick();
dd41f596 2457
05fa785c 2458 raw_spin_lock(&rq->lock);
3e51f33f 2459 update_rq_clock(rq);
fa85ae24 2460 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2461 update_cpu_load_active(rq);
05fa785c 2462 raw_spin_unlock(&rq->lock);
7835b98b 2463
e9d2b064 2464 perf_event_task_tick();
e220d2dc 2465
e418e1c2 2466#ifdef CONFIG_SMP
6eb57e0d 2467 rq->idle_balance = idle_cpu(cpu);
7caff66f 2468 trigger_load_balance(rq);
e418e1c2 2469#endif
265f22a9 2470 rq_last_tick_reset(rq);
1da177e4
LT
2471}
2472
265f22a9
FW
2473#ifdef CONFIG_NO_HZ_FULL
2474/**
2475 * scheduler_tick_max_deferment
2476 *
2477 * Keep at least one tick per second when a single
2478 * active task is running because the scheduler doesn't
2479 * yet completely support full dynticks environment.
2480 *
2481 * This makes sure that uptime, CFS vruntime, load
2482 * balancing, etc... continue to move forward, even
2483 * with a very low granularity.
e69f6186
YB
2484 *
2485 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2486 */
2487u64 scheduler_tick_max_deferment(void)
2488{
2489 struct rq *rq = this_rq();
2490 unsigned long next, now = ACCESS_ONCE(jiffies);
2491
2492 next = rq->last_sched_tick + HZ;
2493
2494 if (time_before_eq(next, now))
2495 return 0;
2496
8fe8ff09 2497 return jiffies_to_nsecs(next - now);
1da177e4 2498}
265f22a9 2499#endif
1da177e4 2500
132380a0 2501notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2502{
2503 if (in_lock_functions(addr)) {
2504 addr = CALLER_ADDR2;
2505 if (in_lock_functions(addr))
2506 addr = CALLER_ADDR3;
2507 }
2508 return addr;
2509}
1da177e4 2510
7e49fcce
SR
2511#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2512 defined(CONFIG_PREEMPT_TRACER))
2513
bdb43806 2514void __kprobes preempt_count_add(int val)
1da177e4 2515{
6cd8a4bb 2516#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2517 /*
2518 * Underflow?
2519 */
9a11b49a
IM
2520 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2521 return;
6cd8a4bb 2522#endif
bdb43806 2523 __preempt_count_add(val);
6cd8a4bb 2524#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2525 /*
2526 * Spinlock count overflowing soon?
2527 */
33859f7f
MOS
2528 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2529 PREEMPT_MASK - 10);
6cd8a4bb 2530#endif
8f47b187
TG
2531 if (preempt_count() == val) {
2532 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2533#ifdef CONFIG_DEBUG_PREEMPT
2534 current->preempt_disable_ip = ip;
2535#endif
2536 trace_preempt_off(CALLER_ADDR0, ip);
2537 }
1da177e4 2538}
bdb43806 2539EXPORT_SYMBOL(preempt_count_add);
1da177e4 2540
bdb43806 2541void __kprobes preempt_count_sub(int val)
1da177e4 2542{
6cd8a4bb 2543#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2544 /*
2545 * Underflow?
2546 */
01e3eb82 2547 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2548 return;
1da177e4
LT
2549 /*
2550 * Is the spinlock portion underflowing?
2551 */
9a11b49a
IM
2552 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2553 !(preempt_count() & PREEMPT_MASK)))
2554 return;
6cd8a4bb 2555#endif
9a11b49a 2556
6cd8a4bb
SR
2557 if (preempt_count() == val)
2558 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2559 __preempt_count_sub(val);
1da177e4 2560}
bdb43806 2561EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2562
2563#endif
2564
2565/*
dd41f596 2566 * Print scheduling while atomic bug:
1da177e4 2567 */
dd41f596 2568static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2569{
664dfa65
DJ
2570 if (oops_in_progress)
2571 return;
2572
3df0fc5b
PZ
2573 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2574 prev->comm, prev->pid, preempt_count());
838225b4 2575
dd41f596 2576 debug_show_held_locks(prev);
e21f5b15 2577 print_modules();
dd41f596
IM
2578 if (irqs_disabled())
2579 print_irqtrace_events(prev);
8f47b187
TG
2580#ifdef CONFIG_DEBUG_PREEMPT
2581 if (in_atomic_preempt_off()) {
2582 pr_err("Preemption disabled at:");
2583 print_ip_sym(current->preempt_disable_ip);
2584 pr_cont("\n");
2585 }
2586#endif
6135fc1e 2587 dump_stack();
373d4d09 2588 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2589}
1da177e4 2590
dd41f596
IM
2591/*
2592 * Various schedule()-time debugging checks and statistics:
2593 */
2594static inline void schedule_debug(struct task_struct *prev)
2595{
1da177e4 2596 /*
41a2d6cf 2597 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2598 * schedule() atomically, we ignore that path. Otherwise whine
2599 * if we are scheduling when we should not.
1da177e4 2600 */
192301e7 2601 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2602 __schedule_bug(prev);
b3fbab05 2603 rcu_sleep_check();
dd41f596 2604
1da177e4
LT
2605 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2606
2d72376b 2607 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2608}
2609
2610/*
2611 * Pick up the highest-prio task:
2612 */
2613static inline struct task_struct *
606dba2e 2614pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2615{
37e117c0 2616 const struct sched_class *class = &fair_sched_class;
dd41f596 2617 struct task_struct *p;
1da177e4
LT
2618
2619 /*
dd41f596
IM
2620 * Optimization: we know that if all tasks are in
2621 * the fair class we can call that function directly:
1da177e4 2622 */
37e117c0 2623 if (likely(prev->sched_class == class &&
38033c37 2624 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2625 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2626 if (unlikely(p == RETRY_TASK))
2627 goto again;
2628
2629 /* assumes fair_sched_class->next == idle_sched_class */
2630 if (unlikely(!p))
2631 p = idle_sched_class.pick_next_task(rq, prev);
2632
2633 return p;
1da177e4
LT
2634 }
2635
37e117c0 2636again:
34f971f6 2637 for_each_class(class) {
606dba2e 2638 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2639 if (p) {
2640 if (unlikely(p == RETRY_TASK))
2641 goto again;
dd41f596 2642 return p;
37e117c0 2643 }
dd41f596 2644 }
34f971f6
PZ
2645
2646 BUG(); /* the idle class will always have a runnable task */
dd41f596 2647}
1da177e4 2648
dd41f596 2649/*
c259e01a 2650 * __schedule() is the main scheduler function.
edde96ea
PE
2651 *
2652 * The main means of driving the scheduler and thus entering this function are:
2653 *
2654 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2655 *
2656 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2657 * paths. For example, see arch/x86/entry_64.S.
2658 *
2659 * To drive preemption between tasks, the scheduler sets the flag in timer
2660 * interrupt handler scheduler_tick().
2661 *
2662 * 3. Wakeups don't really cause entry into schedule(). They add a
2663 * task to the run-queue and that's it.
2664 *
2665 * Now, if the new task added to the run-queue preempts the current
2666 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2667 * called on the nearest possible occasion:
2668 *
2669 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2670 *
2671 * - in syscall or exception context, at the next outmost
2672 * preempt_enable(). (this might be as soon as the wake_up()'s
2673 * spin_unlock()!)
2674 *
2675 * - in IRQ context, return from interrupt-handler to
2676 * preemptible context
2677 *
2678 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2679 * then at the next:
2680 *
2681 * - cond_resched() call
2682 * - explicit schedule() call
2683 * - return from syscall or exception to user-space
2684 * - return from interrupt-handler to user-space
dd41f596 2685 */
c259e01a 2686static void __sched __schedule(void)
dd41f596
IM
2687{
2688 struct task_struct *prev, *next;
67ca7bde 2689 unsigned long *switch_count;
dd41f596 2690 struct rq *rq;
31656519 2691 int cpu;
dd41f596 2692
ff743345
PZ
2693need_resched:
2694 preempt_disable();
dd41f596
IM
2695 cpu = smp_processor_id();
2696 rq = cpu_rq(cpu);
25502a6c 2697 rcu_note_context_switch(cpu);
dd41f596 2698 prev = rq->curr;
dd41f596 2699
dd41f596 2700 schedule_debug(prev);
1da177e4 2701
31656519 2702 if (sched_feat(HRTICK))
f333fdc9 2703 hrtick_clear(rq);
8f4d37ec 2704
e0acd0a6
ON
2705 /*
2706 * Make sure that signal_pending_state()->signal_pending() below
2707 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2708 * done by the caller to avoid the race with signal_wake_up().
2709 */
2710 smp_mb__before_spinlock();
05fa785c 2711 raw_spin_lock_irq(&rq->lock);
1da177e4 2712
246d86b5 2713 switch_count = &prev->nivcsw;
1da177e4 2714 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2715 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2716 prev->state = TASK_RUNNING;
21aa9af0 2717 } else {
2acca55e
PZ
2718 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2719 prev->on_rq = 0;
2720
21aa9af0 2721 /*
2acca55e
PZ
2722 * If a worker went to sleep, notify and ask workqueue
2723 * whether it wants to wake up a task to maintain
2724 * concurrency.
21aa9af0
TH
2725 */
2726 if (prev->flags & PF_WQ_WORKER) {
2727 struct task_struct *to_wakeup;
2728
2729 to_wakeup = wq_worker_sleeping(prev, cpu);
2730 if (to_wakeup)
2731 try_to_wake_up_local(to_wakeup);
2732 }
21aa9af0 2733 }
dd41f596 2734 switch_count = &prev->nvcsw;
1da177e4
LT
2735 }
2736
606dba2e
PZ
2737 if (prev->on_rq || rq->skip_clock_update < 0)
2738 update_rq_clock(rq);
2739
2740 next = pick_next_task(rq, prev);
f26f9aff 2741 clear_tsk_need_resched(prev);
f27dde8d 2742 clear_preempt_need_resched();
f26f9aff 2743 rq->skip_clock_update = 0;
1da177e4 2744
1da177e4 2745 if (likely(prev != next)) {
1da177e4
LT
2746 rq->nr_switches++;
2747 rq->curr = next;
2748 ++*switch_count;
2749
dd41f596 2750 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2751 /*
246d86b5
ON
2752 * The context switch have flipped the stack from under us
2753 * and restored the local variables which were saved when
2754 * this task called schedule() in the past. prev == current
2755 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2756 */
2757 cpu = smp_processor_id();
2758 rq = cpu_rq(cpu);
1da177e4 2759 } else
05fa785c 2760 raw_spin_unlock_irq(&rq->lock);
1da177e4 2761
3f029d3c 2762 post_schedule(rq);
1da177e4 2763
ba74c144 2764 sched_preempt_enable_no_resched();
ff743345 2765 if (need_resched())
1da177e4
LT
2766 goto need_resched;
2767}
c259e01a 2768
9c40cef2
TG
2769static inline void sched_submit_work(struct task_struct *tsk)
2770{
3c7d5184 2771 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2772 return;
2773 /*
2774 * If we are going to sleep and we have plugged IO queued,
2775 * make sure to submit it to avoid deadlocks.
2776 */
2777 if (blk_needs_flush_plug(tsk))
2778 blk_schedule_flush_plug(tsk);
2779}
2780
722a9f92 2781asmlinkage __visible void __sched schedule(void)
c259e01a 2782{
9c40cef2
TG
2783 struct task_struct *tsk = current;
2784
2785 sched_submit_work(tsk);
c259e01a
TG
2786 __schedule();
2787}
1da177e4
LT
2788EXPORT_SYMBOL(schedule);
2789
91d1aa43 2790#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2791asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2792{
2793 /*
2794 * If we come here after a random call to set_need_resched(),
2795 * or we have been woken up remotely but the IPI has not yet arrived,
2796 * we haven't yet exited the RCU idle mode. Do it here manually until
2797 * we find a better solution.
2798 */
91d1aa43 2799 user_exit();
20ab65e3 2800 schedule();
91d1aa43 2801 user_enter();
20ab65e3
FW
2802}
2803#endif
2804
c5491ea7
TG
2805/**
2806 * schedule_preempt_disabled - called with preemption disabled
2807 *
2808 * Returns with preemption disabled. Note: preempt_count must be 1
2809 */
2810void __sched schedule_preempt_disabled(void)
2811{
ba74c144 2812 sched_preempt_enable_no_resched();
c5491ea7
TG
2813 schedule();
2814 preempt_disable();
2815}
2816
1da177e4
LT
2817#ifdef CONFIG_PREEMPT
2818/*
2ed6e34f 2819 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2820 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2821 * occur there and call schedule directly.
2822 */
722a9f92 2823asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2824{
1da177e4
LT
2825 /*
2826 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2827 * we do not want to preempt the current task. Just return..
1da177e4 2828 */
fbb00b56 2829 if (likely(!preemptible()))
1da177e4
LT
2830 return;
2831
3a5c359a 2832 do {
bdb43806 2833 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2834 __schedule();
bdb43806 2835 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2836
3a5c359a
AK
2837 /*
2838 * Check again in case we missed a preemption opportunity
2839 * between schedule and now.
2840 */
2841 barrier();
5ed0cec0 2842 } while (need_resched());
1da177e4 2843}
1da177e4 2844EXPORT_SYMBOL(preempt_schedule);
32e475d7 2845#endif /* CONFIG_PREEMPT */
1da177e4
LT
2846
2847/*
2ed6e34f 2848 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2849 * off of irq context.
2850 * Note, that this is called and return with irqs disabled. This will
2851 * protect us against recursive calling from irq.
2852 */
722a9f92 2853asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2854{
b22366cd 2855 enum ctx_state prev_state;
6478d880 2856
2ed6e34f 2857 /* Catch callers which need to be fixed */
f27dde8d 2858 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2859
b22366cd
FW
2860 prev_state = exception_enter();
2861
3a5c359a 2862 do {
bdb43806 2863 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2864 local_irq_enable();
c259e01a 2865 __schedule();
3a5c359a 2866 local_irq_disable();
bdb43806 2867 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2868
3a5c359a
AK
2869 /*
2870 * Check again in case we missed a preemption opportunity
2871 * between schedule and now.
2872 */
2873 barrier();
5ed0cec0 2874 } while (need_resched());
b22366cd
FW
2875
2876 exception_exit(prev_state);
1da177e4
LT
2877}
2878
63859d4f 2879int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2880 void *key)
1da177e4 2881{
63859d4f 2882 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2883}
1da177e4
LT
2884EXPORT_SYMBOL(default_wake_function);
2885
b29739f9
IM
2886#ifdef CONFIG_RT_MUTEXES
2887
2888/*
2889 * rt_mutex_setprio - set the current priority of a task
2890 * @p: task
2891 * @prio: prio value (kernel-internal form)
2892 *
2893 * This function changes the 'effective' priority of a task. It does
2894 * not touch ->normal_prio like __setscheduler().
2895 *
c365c292
TG
2896 * Used by the rt_mutex code to implement priority inheritance
2897 * logic. Call site only calls if the priority of the task changed.
b29739f9 2898 */
36c8b586 2899void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2900{
2d3d891d 2901 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2902 struct rq *rq;
83ab0aa0 2903 const struct sched_class *prev_class;
b29739f9 2904
aab03e05 2905 BUG_ON(prio > MAX_PRIO);
b29739f9 2906
0122ec5b 2907 rq = __task_rq_lock(p);
b29739f9 2908
1c4dd99b
TG
2909 /*
2910 * Idle task boosting is a nono in general. There is one
2911 * exception, when PREEMPT_RT and NOHZ is active:
2912 *
2913 * The idle task calls get_next_timer_interrupt() and holds
2914 * the timer wheel base->lock on the CPU and another CPU wants
2915 * to access the timer (probably to cancel it). We can safely
2916 * ignore the boosting request, as the idle CPU runs this code
2917 * with interrupts disabled and will complete the lock
2918 * protected section without being interrupted. So there is no
2919 * real need to boost.
2920 */
2921 if (unlikely(p == rq->idle)) {
2922 WARN_ON(p != rq->curr);
2923 WARN_ON(p->pi_blocked_on);
2924 goto out_unlock;
2925 }
2926
a8027073 2927 trace_sched_pi_setprio(p, prio);
2d3d891d 2928 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2929 oldprio = p->prio;
83ab0aa0 2930 prev_class = p->sched_class;
fd2f4419 2931 on_rq = p->on_rq;
051a1d1a 2932 running = task_current(rq, p);
0e1f3483 2933 if (on_rq)
69be72c1 2934 dequeue_task(rq, p, 0);
0e1f3483
HS
2935 if (running)
2936 p->sched_class->put_prev_task(rq, p);
dd41f596 2937
2d3d891d
DF
2938 /*
2939 * Boosting condition are:
2940 * 1. -rt task is running and holds mutex A
2941 * --> -dl task blocks on mutex A
2942 *
2943 * 2. -dl task is running and holds mutex A
2944 * --> -dl task blocks on mutex A and could preempt the
2945 * running task
2946 */
2947 if (dl_prio(prio)) {
2948 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2949 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2950 p->dl.dl_boosted = 1;
2951 p->dl.dl_throttled = 0;
2952 enqueue_flag = ENQUEUE_REPLENISH;
2953 } else
2954 p->dl.dl_boosted = 0;
aab03e05 2955 p->sched_class = &dl_sched_class;
2d3d891d
DF
2956 } else if (rt_prio(prio)) {
2957 if (dl_prio(oldprio))
2958 p->dl.dl_boosted = 0;
2959 if (oldprio < prio)
2960 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2961 p->sched_class = &rt_sched_class;
2d3d891d
DF
2962 } else {
2963 if (dl_prio(oldprio))
2964 p->dl.dl_boosted = 0;
dd41f596 2965 p->sched_class = &fair_sched_class;
2d3d891d 2966 }
dd41f596 2967
b29739f9
IM
2968 p->prio = prio;
2969
0e1f3483
HS
2970 if (running)
2971 p->sched_class->set_curr_task(rq);
da7a735e 2972 if (on_rq)
2d3d891d 2973 enqueue_task(rq, p, enqueue_flag);
cb469845 2974
da7a735e 2975 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2976out_unlock:
0122ec5b 2977 __task_rq_unlock(rq);
b29739f9 2978}
b29739f9 2979#endif
d50dde5a 2980
36c8b586 2981void set_user_nice(struct task_struct *p, long nice)
1da177e4 2982{
dd41f596 2983 int old_prio, delta, on_rq;
1da177e4 2984 unsigned long flags;
70b97a7f 2985 struct rq *rq;
1da177e4 2986
75e45d51 2987 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
2988 return;
2989 /*
2990 * We have to be careful, if called from sys_setpriority(),
2991 * the task might be in the middle of scheduling on another CPU.
2992 */
2993 rq = task_rq_lock(p, &flags);
2994 /*
2995 * The RT priorities are set via sched_setscheduler(), but we still
2996 * allow the 'normal' nice value to be set - but as expected
2997 * it wont have any effect on scheduling until the task is
aab03e05 2998 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 2999 */
aab03e05 3000 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3001 p->static_prio = NICE_TO_PRIO(nice);
3002 goto out_unlock;
3003 }
fd2f4419 3004 on_rq = p->on_rq;
c09595f6 3005 if (on_rq)
69be72c1 3006 dequeue_task(rq, p, 0);
1da177e4 3007
1da177e4 3008 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3009 set_load_weight(p);
b29739f9
IM
3010 old_prio = p->prio;
3011 p->prio = effective_prio(p);
3012 delta = p->prio - old_prio;
1da177e4 3013
dd41f596 3014 if (on_rq) {
371fd7e7 3015 enqueue_task(rq, p, 0);
1da177e4 3016 /*
d5f9f942
AM
3017 * If the task increased its priority or is running and
3018 * lowered its priority, then reschedule its CPU:
1da177e4 3019 */
d5f9f942 3020 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3021 resched_task(rq->curr);
3022 }
3023out_unlock:
0122ec5b 3024 task_rq_unlock(rq, p, &flags);
1da177e4 3025}
1da177e4
LT
3026EXPORT_SYMBOL(set_user_nice);
3027
e43379f1
MM
3028/*
3029 * can_nice - check if a task can reduce its nice value
3030 * @p: task
3031 * @nice: nice value
3032 */
36c8b586 3033int can_nice(const struct task_struct *p, const int nice)
e43379f1 3034{
024f4747 3035 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3036 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3037
78d7d407 3038 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3039 capable(CAP_SYS_NICE));
3040}
3041
1da177e4
LT
3042#ifdef __ARCH_WANT_SYS_NICE
3043
3044/*
3045 * sys_nice - change the priority of the current process.
3046 * @increment: priority increment
3047 *
3048 * sys_setpriority is a more generic, but much slower function that
3049 * does similar things.
3050 */
5add95d4 3051SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3052{
48f24c4d 3053 long nice, retval;
1da177e4
LT
3054
3055 /*
3056 * Setpriority might change our priority at the same moment.
3057 * We don't have to worry. Conceptually one call occurs first
3058 * and we have a single winner.
3059 */
a9467fa3 3060 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3061 nice = task_nice(current) + increment;
1da177e4 3062
a9467fa3 3063 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3064 if (increment < 0 && !can_nice(current, nice))
3065 return -EPERM;
3066
1da177e4
LT
3067 retval = security_task_setnice(current, nice);
3068 if (retval)
3069 return retval;
3070
3071 set_user_nice(current, nice);
3072 return 0;
3073}
3074
3075#endif
3076
3077/**
3078 * task_prio - return the priority value of a given task.
3079 * @p: the task in question.
3080 *
e69f6186 3081 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3082 * RT tasks are offset by -200. Normal tasks are centered
3083 * around 0, value goes from -16 to +15.
3084 */
36c8b586 3085int task_prio(const struct task_struct *p)
1da177e4
LT
3086{
3087 return p->prio - MAX_RT_PRIO;
3088}
3089
1da177e4
LT
3090/**
3091 * idle_cpu - is a given cpu idle currently?
3092 * @cpu: the processor in question.
e69f6186
YB
3093 *
3094 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3095 */
3096int idle_cpu(int cpu)
3097{
908a3283
TG
3098 struct rq *rq = cpu_rq(cpu);
3099
3100 if (rq->curr != rq->idle)
3101 return 0;
3102
3103 if (rq->nr_running)
3104 return 0;
3105
3106#ifdef CONFIG_SMP
3107 if (!llist_empty(&rq->wake_list))
3108 return 0;
3109#endif
3110
3111 return 1;
1da177e4
LT
3112}
3113
1da177e4
LT
3114/**
3115 * idle_task - return the idle task for a given cpu.
3116 * @cpu: the processor in question.
e69f6186
YB
3117 *
3118 * Return: The idle task for the cpu @cpu.
1da177e4 3119 */
36c8b586 3120struct task_struct *idle_task(int cpu)
1da177e4
LT
3121{
3122 return cpu_rq(cpu)->idle;
3123}
3124
3125/**
3126 * find_process_by_pid - find a process with a matching PID value.
3127 * @pid: the pid in question.
e69f6186
YB
3128 *
3129 * The task of @pid, if found. %NULL otherwise.
1da177e4 3130 */
a9957449 3131static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3132{
228ebcbe 3133 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3134}
3135
aab03e05
DF
3136/*
3137 * This function initializes the sched_dl_entity of a newly becoming
3138 * SCHED_DEADLINE task.
3139 *
3140 * Only the static values are considered here, the actual runtime and the
3141 * absolute deadline will be properly calculated when the task is enqueued
3142 * for the first time with its new policy.
3143 */
3144static void
3145__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3146{
3147 struct sched_dl_entity *dl_se = &p->dl;
3148
3149 init_dl_task_timer(dl_se);
3150 dl_se->dl_runtime = attr->sched_runtime;
3151 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3152 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3153 dl_se->flags = attr->sched_flags;
332ac17e 3154 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3155 dl_se->dl_throttled = 0;
3156 dl_se->dl_new = 1;
5bfd126e 3157 dl_se->dl_yielded = 0;
aab03e05
DF
3158}
3159
c365c292
TG
3160static void __setscheduler_params(struct task_struct *p,
3161 const struct sched_attr *attr)
1da177e4 3162{
d50dde5a
DF
3163 int policy = attr->sched_policy;
3164
39fd8fd2
PZ
3165 if (policy == -1) /* setparam */
3166 policy = p->policy;
3167
1da177e4 3168 p->policy = policy;
d50dde5a 3169
aab03e05
DF
3170 if (dl_policy(policy))
3171 __setparam_dl(p, attr);
39fd8fd2 3172 else if (fair_policy(policy))
d50dde5a
DF
3173 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3174
39fd8fd2
PZ
3175 /*
3176 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3177 * !rt_policy. Always setting this ensures that things like
3178 * getparam()/getattr() don't report silly values for !rt tasks.
3179 */
3180 p->rt_priority = attr->sched_priority;
383afd09 3181 p->normal_prio = normal_prio(p);
c365c292
TG
3182 set_load_weight(p);
3183}
39fd8fd2 3184
c365c292
TG
3185/* Actually do priority change: must hold pi & rq lock. */
3186static void __setscheduler(struct rq *rq, struct task_struct *p,
3187 const struct sched_attr *attr)
3188{
3189 __setscheduler_params(p, attr);
d50dde5a 3190
383afd09
SR
3191 /*
3192 * If we get here, there was no pi waiters boosting the
3193 * task. It is safe to use the normal prio.
3194 */
3195 p->prio = normal_prio(p);
3196
aab03e05
DF
3197 if (dl_prio(p->prio))
3198 p->sched_class = &dl_sched_class;
3199 else if (rt_prio(p->prio))
ffd44db5
PZ
3200 p->sched_class = &rt_sched_class;
3201 else
3202 p->sched_class = &fair_sched_class;
1da177e4 3203}
aab03e05
DF
3204
3205static void
3206__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3207{
3208 struct sched_dl_entity *dl_se = &p->dl;
3209
3210 attr->sched_priority = p->rt_priority;
3211 attr->sched_runtime = dl_se->dl_runtime;
3212 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3213 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3214 attr->sched_flags = dl_se->flags;
3215}
3216
3217/*
3218 * This function validates the new parameters of a -deadline task.
3219 * We ask for the deadline not being zero, and greater or equal
755378a4 3220 * than the runtime, as well as the period of being zero or
332ac17e 3221 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3222 * user parameters are above the internal resolution of 1us (we
3223 * check sched_runtime only since it is always the smaller one) and
3224 * below 2^63 ns (we have to check both sched_deadline and
3225 * sched_period, as the latter can be zero).
aab03e05
DF
3226 */
3227static bool
3228__checkparam_dl(const struct sched_attr *attr)
3229{
b0827819
JL
3230 /* deadline != 0 */
3231 if (attr->sched_deadline == 0)
3232 return false;
3233
3234 /*
3235 * Since we truncate DL_SCALE bits, make sure we're at least
3236 * that big.
3237 */
3238 if (attr->sched_runtime < (1ULL << DL_SCALE))
3239 return false;
3240
3241 /*
3242 * Since we use the MSB for wrap-around and sign issues, make
3243 * sure it's not set (mind that period can be equal to zero).
3244 */
3245 if (attr->sched_deadline & (1ULL << 63) ||
3246 attr->sched_period & (1ULL << 63))
3247 return false;
3248
3249 /* runtime <= deadline <= period (if period != 0) */
3250 if ((attr->sched_period != 0 &&
3251 attr->sched_period < attr->sched_deadline) ||
3252 attr->sched_deadline < attr->sched_runtime)
3253 return false;
3254
3255 return true;
aab03e05
DF
3256}
3257
c69e8d9c
DH
3258/*
3259 * check the target process has a UID that matches the current process's
3260 */
3261static bool check_same_owner(struct task_struct *p)
3262{
3263 const struct cred *cred = current_cred(), *pcred;
3264 bool match;
3265
3266 rcu_read_lock();
3267 pcred = __task_cred(p);
9c806aa0
EB
3268 match = (uid_eq(cred->euid, pcred->euid) ||
3269 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3270 rcu_read_unlock();
3271 return match;
3272}
3273
d50dde5a
DF
3274static int __sched_setscheduler(struct task_struct *p,
3275 const struct sched_attr *attr,
3276 bool user)
1da177e4 3277{
383afd09
SR
3278 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3279 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3280 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3281 int policy = attr->sched_policy;
1da177e4 3282 unsigned long flags;
83ab0aa0 3283 const struct sched_class *prev_class;
70b97a7f 3284 struct rq *rq;
ca94c442 3285 int reset_on_fork;
1da177e4 3286
66e5393a
SR
3287 /* may grab non-irq protected spin_locks */
3288 BUG_ON(in_interrupt());
1da177e4
LT
3289recheck:
3290 /* double check policy once rq lock held */
ca94c442
LP
3291 if (policy < 0) {
3292 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3293 policy = oldpolicy = p->policy;
ca94c442 3294 } else {
7479f3c9 3295 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3296
aab03e05
DF
3297 if (policy != SCHED_DEADLINE &&
3298 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3299 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3300 policy != SCHED_IDLE)
3301 return -EINVAL;
3302 }
3303
7479f3c9
PZ
3304 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3305 return -EINVAL;
3306
1da177e4
LT
3307 /*
3308 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3309 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3310 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3311 */
0bb040a4 3312 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3313 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3314 return -EINVAL;
aab03e05
DF
3315 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3316 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3317 return -EINVAL;
3318
37e4ab3f
OC
3319 /*
3320 * Allow unprivileged RT tasks to decrease priority:
3321 */
961ccddd 3322 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3323 if (fair_policy(policy)) {
d0ea0268 3324 if (attr->sched_nice < task_nice(p) &&
eaad4513 3325 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3326 return -EPERM;
3327 }
3328
e05606d3 3329 if (rt_policy(policy)) {
a44702e8
ON
3330 unsigned long rlim_rtprio =
3331 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3332
3333 /* can't set/change the rt policy */
3334 if (policy != p->policy && !rlim_rtprio)
3335 return -EPERM;
3336
3337 /* can't increase priority */
d50dde5a
DF
3338 if (attr->sched_priority > p->rt_priority &&
3339 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3340 return -EPERM;
3341 }
c02aa73b 3342
d44753b8
JL
3343 /*
3344 * Can't set/change SCHED_DEADLINE policy at all for now
3345 * (safest behavior); in the future we would like to allow
3346 * unprivileged DL tasks to increase their relative deadline
3347 * or reduce their runtime (both ways reducing utilization)
3348 */
3349 if (dl_policy(policy))
3350 return -EPERM;
3351
dd41f596 3352 /*
c02aa73b
DH
3353 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3354 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3355 */
c02aa73b 3356 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3357 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3358 return -EPERM;
3359 }
5fe1d75f 3360
37e4ab3f 3361 /* can't change other user's priorities */
c69e8d9c 3362 if (!check_same_owner(p))
37e4ab3f 3363 return -EPERM;
ca94c442
LP
3364
3365 /* Normal users shall not reset the sched_reset_on_fork flag */
3366 if (p->sched_reset_on_fork && !reset_on_fork)
3367 return -EPERM;
37e4ab3f 3368 }
1da177e4 3369
725aad24 3370 if (user) {
b0ae1981 3371 retval = security_task_setscheduler(p);
725aad24
JF
3372 if (retval)
3373 return retval;
3374 }
3375
b29739f9
IM
3376 /*
3377 * make sure no PI-waiters arrive (or leave) while we are
3378 * changing the priority of the task:
0122ec5b 3379 *
25985edc 3380 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3381 * runqueue lock must be held.
3382 */
0122ec5b 3383 rq = task_rq_lock(p, &flags);
dc61b1d6 3384
34f971f6
PZ
3385 /*
3386 * Changing the policy of the stop threads its a very bad idea
3387 */
3388 if (p == rq->stop) {
0122ec5b 3389 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3390 return -EINVAL;
3391 }
3392
a51e9198 3393 /*
d6b1e911
TG
3394 * If not changing anything there's no need to proceed further,
3395 * but store a possible modification of reset_on_fork.
a51e9198 3396 */
d50dde5a 3397 if (unlikely(policy == p->policy)) {
d0ea0268 3398 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3399 goto change;
3400 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3401 goto change;
aab03e05
DF
3402 if (dl_policy(policy))
3403 goto change;
d50dde5a 3404
d6b1e911 3405 p->sched_reset_on_fork = reset_on_fork;
45afb173 3406 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3407 return 0;
3408 }
d50dde5a 3409change:
a51e9198 3410
dc61b1d6 3411 if (user) {
332ac17e 3412#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3413 /*
3414 * Do not allow realtime tasks into groups that have no runtime
3415 * assigned.
3416 */
3417 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3418 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3419 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3420 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3421 return -EPERM;
3422 }
dc61b1d6 3423#endif
332ac17e
DF
3424#ifdef CONFIG_SMP
3425 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3426 cpumask_t *span = rq->rd->span;
332ac17e
DF
3427
3428 /*
3429 * Don't allow tasks with an affinity mask smaller than
3430 * the entire root_domain to become SCHED_DEADLINE. We
3431 * will also fail if there's no bandwidth available.
3432 */
e4099a5e
PZ
3433 if (!cpumask_subset(span, &p->cpus_allowed) ||
3434 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3435 task_rq_unlock(rq, p, &flags);
3436 return -EPERM;
3437 }
3438 }
3439#endif
3440 }
dc61b1d6 3441
1da177e4
LT
3442 /* recheck policy now with rq lock held */
3443 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3444 policy = oldpolicy = -1;
0122ec5b 3445 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3446 goto recheck;
3447 }
332ac17e
DF
3448
3449 /*
3450 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3451 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3452 * is available.
3453 */
e4099a5e 3454 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3455 task_rq_unlock(rq, p, &flags);
3456 return -EBUSY;
3457 }
3458
c365c292
TG
3459 p->sched_reset_on_fork = reset_on_fork;
3460 oldprio = p->prio;
3461
3462 /*
3463 * Special case for priority boosted tasks.
3464 *
3465 * If the new priority is lower or equal (user space view)
3466 * than the current (boosted) priority, we just store the new
3467 * normal parameters and do not touch the scheduler class and
3468 * the runqueue. This will be done when the task deboost
3469 * itself.
3470 */
3471 if (rt_mutex_check_prio(p, newprio)) {
3472 __setscheduler_params(p, attr);
3473 task_rq_unlock(rq, p, &flags);
3474 return 0;
3475 }
3476
fd2f4419 3477 on_rq = p->on_rq;
051a1d1a 3478 running = task_current(rq, p);
0e1f3483 3479 if (on_rq)
4ca9b72b 3480 dequeue_task(rq, p, 0);
0e1f3483
HS
3481 if (running)
3482 p->sched_class->put_prev_task(rq, p);
f6b53205 3483
83ab0aa0 3484 prev_class = p->sched_class;
d50dde5a 3485 __setscheduler(rq, p, attr);
f6b53205 3486
0e1f3483
HS
3487 if (running)
3488 p->sched_class->set_curr_task(rq);
81a44c54
TG
3489 if (on_rq) {
3490 /*
3491 * We enqueue to tail when the priority of a task is
3492 * increased (user space view).
3493 */
3494 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3495 }
cb469845 3496
da7a735e 3497 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3498 task_rq_unlock(rq, p, &flags);
b29739f9 3499
95e02ca9
TG
3500 rt_mutex_adjust_pi(p);
3501
1da177e4
LT
3502 return 0;
3503}
961ccddd 3504
7479f3c9
PZ
3505static int _sched_setscheduler(struct task_struct *p, int policy,
3506 const struct sched_param *param, bool check)
3507{
3508 struct sched_attr attr = {
3509 .sched_policy = policy,
3510 .sched_priority = param->sched_priority,
3511 .sched_nice = PRIO_TO_NICE(p->static_prio),
3512 };
3513
3514 /*
3515 * Fixup the legacy SCHED_RESET_ON_FORK hack
3516 */
3517 if (policy & SCHED_RESET_ON_FORK) {
3518 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3519 policy &= ~SCHED_RESET_ON_FORK;
3520 attr.sched_policy = policy;
3521 }
3522
3523 return __sched_setscheduler(p, &attr, check);
3524}
961ccddd
RR
3525/**
3526 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3527 * @p: the task in question.
3528 * @policy: new policy.
3529 * @param: structure containing the new RT priority.
3530 *
e69f6186
YB
3531 * Return: 0 on success. An error code otherwise.
3532 *
961ccddd
RR
3533 * NOTE that the task may be already dead.
3534 */
3535int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3536 const struct sched_param *param)
961ccddd 3537{
7479f3c9 3538 return _sched_setscheduler(p, policy, param, true);
961ccddd 3539}
1da177e4
LT
3540EXPORT_SYMBOL_GPL(sched_setscheduler);
3541
d50dde5a
DF
3542int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3543{
3544 return __sched_setscheduler(p, attr, true);
3545}
3546EXPORT_SYMBOL_GPL(sched_setattr);
3547
961ccddd
RR
3548/**
3549 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3550 * @p: the task in question.
3551 * @policy: new policy.
3552 * @param: structure containing the new RT priority.
3553 *
3554 * Just like sched_setscheduler, only don't bother checking if the
3555 * current context has permission. For example, this is needed in
3556 * stop_machine(): we create temporary high priority worker threads,
3557 * but our caller might not have that capability.
e69f6186
YB
3558 *
3559 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3560 */
3561int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3562 const struct sched_param *param)
961ccddd 3563{
7479f3c9 3564 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3565}
3566
95cdf3b7
IM
3567static int
3568do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3569{
1da177e4
LT
3570 struct sched_param lparam;
3571 struct task_struct *p;
36c8b586 3572 int retval;
1da177e4
LT
3573
3574 if (!param || pid < 0)
3575 return -EINVAL;
3576 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3577 return -EFAULT;
5fe1d75f
ON
3578
3579 rcu_read_lock();
3580 retval = -ESRCH;
1da177e4 3581 p = find_process_by_pid(pid);
5fe1d75f
ON
3582 if (p != NULL)
3583 retval = sched_setscheduler(p, policy, &lparam);
3584 rcu_read_unlock();
36c8b586 3585
1da177e4
LT
3586 return retval;
3587}
3588
d50dde5a
DF
3589/*
3590 * Mimics kernel/events/core.c perf_copy_attr().
3591 */
3592static int sched_copy_attr(struct sched_attr __user *uattr,
3593 struct sched_attr *attr)
3594{
3595 u32 size;
3596 int ret;
3597
3598 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3599 return -EFAULT;
3600
3601 /*
3602 * zero the full structure, so that a short copy will be nice.
3603 */
3604 memset(attr, 0, sizeof(*attr));
3605
3606 ret = get_user(size, &uattr->size);
3607 if (ret)
3608 return ret;
3609
3610 if (size > PAGE_SIZE) /* silly large */
3611 goto err_size;
3612
3613 if (!size) /* abi compat */
3614 size = SCHED_ATTR_SIZE_VER0;
3615
3616 if (size < SCHED_ATTR_SIZE_VER0)
3617 goto err_size;
3618
3619 /*
3620 * If we're handed a bigger struct than we know of,
3621 * ensure all the unknown bits are 0 - i.e. new
3622 * user-space does not rely on any kernel feature
3623 * extensions we dont know about yet.
3624 */
3625 if (size > sizeof(*attr)) {
3626 unsigned char __user *addr;
3627 unsigned char __user *end;
3628 unsigned char val;
3629
3630 addr = (void __user *)uattr + sizeof(*attr);
3631 end = (void __user *)uattr + size;
3632
3633 for (; addr < end; addr++) {
3634 ret = get_user(val, addr);
3635 if (ret)
3636 return ret;
3637 if (val)
3638 goto err_size;
3639 }
3640 size = sizeof(*attr);
3641 }
3642
3643 ret = copy_from_user(attr, uattr, size);
3644 if (ret)
3645 return -EFAULT;
3646
3647 /*
3648 * XXX: do we want to be lenient like existing syscalls; or do we want
3649 * to be strict and return an error on out-of-bounds values?
3650 */
75e45d51 3651 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3652
e78c7bca 3653 return 0;
d50dde5a
DF
3654
3655err_size:
3656 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3657 return -E2BIG;
d50dde5a
DF
3658}
3659
1da177e4
LT
3660/**
3661 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3662 * @pid: the pid in question.
3663 * @policy: new policy.
3664 * @param: structure containing the new RT priority.
e69f6186
YB
3665 *
3666 * Return: 0 on success. An error code otherwise.
1da177e4 3667 */
5add95d4
HC
3668SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3669 struct sched_param __user *, param)
1da177e4 3670{
c21761f1
JB
3671 /* negative values for policy are not valid */
3672 if (policy < 0)
3673 return -EINVAL;
3674
1da177e4
LT
3675 return do_sched_setscheduler(pid, policy, param);
3676}
3677
3678/**
3679 * sys_sched_setparam - set/change the RT priority of a thread
3680 * @pid: the pid in question.
3681 * @param: structure containing the new RT priority.
e69f6186
YB
3682 *
3683 * Return: 0 on success. An error code otherwise.
1da177e4 3684 */
5add95d4 3685SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3686{
3687 return do_sched_setscheduler(pid, -1, param);
3688}
3689
d50dde5a
DF
3690/**
3691 * sys_sched_setattr - same as above, but with extended sched_attr
3692 * @pid: the pid in question.
5778fccf 3693 * @uattr: structure containing the extended parameters.
db66d756 3694 * @flags: for future extension.
d50dde5a 3695 */
6d35ab48
PZ
3696SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3697 unsigned int, flags)
d50dde5a
DF
3698{
3699 struct sched_attr attr;
3700 struct task_struct *p;
3701 int retval;
3702
6d35ab48 3703 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3704 return -EINVAL;
3705
143cf23d
MK
3706 retval = sched_copy_attr(uattr, &attr);
3707 if (retval)
3708 return retval;
d50dde5a 3709
dbdb2275
PZ
3710 if (attr.sched_policy < 0)
3711 return -EINVAL;
d50dde5a
DF
3712
3713 rcu_read_lock();
3714 retval = -ESRCH;
3715 p = find_process_by_pid(pid);
3716 if (p != NULL)
3717 retval = sched_setattr(p, &attr);
3718 rcu_read_unlock();
3719
3720 return retval;
3721}
3722
1da177e4
LT
3723/**
3724 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3725 * @pid: the pid in question.
e69f6186
YB
3726 *
3727 * Return: On success, the policy of the thread. Otherwise, a negative error
3728 * code.
1da177e4 3729 */
5add95d4 3730SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3731{
36c8b586 3732 struct task_struct *p;
3a5c359a 3733 int retval;
1da177e4
LT
3734
3735 if (pid < 0)
3a5c359a 3736 return -EINVAL;
1da177e4
LT
3737
3738 retval = -ESRCH;
5fe85be0 3739 rcu_read_lock();
1da177e4
LT
3740 p = find_process_by_pid(pid);
3741 if (p) {
3742 retval = security_task_getscheduler(p);
3743 if (!retval)
ca94c442
LP
3744 retval = p->policy
3745 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3746 }
5fe85be0 3747 rcu_read_unlock();
1da177e4
LT
3748 return retval;
3749}
3750
3751/**
ca94c442 3752 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3753 * @pid: the pid in question.
3754 * @param: structure containing the RT priority.
e69f6186
YB
3755 *
3756 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3757 * code.
1da177e4 3758 */
5add95d4 3759SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3760{
ce5f7f82 3761 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3762 struct task_struct *p;
3a5c359a 3763 int retval;
1da177e4
LT
3764
3765 if (!param || pid < 0)
3a5c359a 3766 return -EINVAL;
1da177e4 3767
5fe85be0 3768 rcu_read_lock();
1da177e4
LT
3769 p = find_process_by_pid(pid);
3770 retval = -ESRCH;
3771 if (!p)
3772 goto out_unlock;
3773
3774 retval = security_task_getscheduler(p);
3775 if (retval)
3776 goto out_unlock;
3777
ce5f7f82
PZ
3778 if (task_has_rt_policy(p))
3779 lp.sched_priority = p->rt_priority;
5fe85be0 3780 rcu_read_unlock();
1da177e4
LT
3781
3782 /*
3783 * This one might sleep, we cannot do it with a spinlock held ...
3784 */
3785 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3786
1da177e4
LT
3787 return retval;
3788
3789out_unlock:
5fe85be0 3790 rcu_read_unlock();
1da177e4
LT
3791 return retval;
3792}
3793
d50dde5a
DF
3794static int sched_read_attr(struct sched_attr __user *uattr,
3795 struct sched_attr *attr,
3796 unsigned int usize)
3797{
3798 int ret;
3799
3800 if (!access_ok(VERIFY_WRITE, uattr, usize))
3801 return -EFAULT;
3802
3803 /*
3804 * If we're handed a smaller struct than we know of,
3805 * ensure all the unknown bits are 0 - i.e. old
3806 * user-space does not get uncomplete information.
3807 */
3808 if (usize < sizeof(*attr)) {
3809 unsigned char *addr;
3810 unsigned char *end;
3811
3812 addr = (void *)attr + usize;
3813 end = (void *)attr + sizeof(*attr);
3814
3815 for (; addr < end; addr++) {
3816 if (*addr)
22400674 3817 return -EFBIG;
d50dde5a
DF
3818 }
3819
3820 attr->size = usize;
3821 }
3822
4efbc454 3823 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3824 if (ret)
3825 return -EFAULT;
3826
22400674 3827 return 0;
d50dde5a
DF
3828}
3829
3830/**
aab03e05 3831 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3832 * @pid: the pid in question.
5778fccf 3833 * @uattr: structure containing the extended parameters.
d50dde5a 3834 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3835 * @flags: for future extension.
d50dde5a 3836 */
6d35ab48
PZ
3837SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3838 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3839{
3840 struct sched_attr attr = {
3841 .size = sizeof(struct sched_attr),
3842 };
3843 struct task_struct *p;
3844 int retval;
3845
3846 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3847 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3848 return -EINVAL;
3849
3850 rcu_read_lock();
3851 p = find_process_by_pid(pid);
3852 retval = -ESRCH;
3853 if (!p)
3854 goto out_unlock;
3855
3856 retval = security_task_getscheduler(p);
3857 if (retval)
3858 goto out_unlock;
3859
3860 attr.sched_policy = p->policy;
7479f3c9
PZ
3861 if (p->sched_reset_on_fork)
3862 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3863 if (task_has_dl_policy(p))
3864 __getparam_dl(p, &attr);
3865 else if (task_has_rt_policy(p))
d50dde5a
DF
3866 attr.sched_priority = p->rt_priority;
3867 else
d0ea0268 3868 attr.sched_nice = task_nice(p);
d50dde5a
DF
3869
3870 rcu_read_unlock();
3871
3872 retval = sched_read_attr(uattr, &attr, size);
3873 return retval;
3874
3875out_unlock:
3876 rcu_read_unlock();
3877 return retval;
3878}
3879
96f874e2 3880long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3881{
5a16f3d3 3882 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3883 struct task_struct *p;
3884 int retval;
1da177e4 3885
23f5d142 3886 rcu_read_lock();
1da177e4
LT
3887
3888 p = find_process_by_pid(pid);
3889 if (!p) {
23f5d142 3890 rcu_read_unlock();
1da177e4
LT
3891 return -ESRCH;
3892 }
3893
23f5d142 3894 /* Prevent p going away */
1da177e4 3895 get_task_struct(p);
23f5d142 3896 rcu_read_unlock();
1da177e4 3897
14a40ffc
TH
3898 if (p->flags & PF_NO_SETAFFINITY) {
3899 retval = -EINVAL;
3900 goto out_put_task;
3901 }
5a16f3d3
RR
3902 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3903 retval = -ENOMEM;
3904 goto out_put_task;
3905 }
3906 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3907 retval = -ENOMEM;
3908 goto out_free_cpus_allowed;
3909 }
1da177e4 3910 retval = -EPERM;
4c44aaaf
EB
3911 if (!check_same_owner(p)) {
3912 rcu_read_lock();
3913 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3914 rcu_read_unlock();
3915 goto out_unlock;
3916 }
3917 rcu_read_unlock();
3918 }
1da177e4 3919
b0ae1981 3920 retval = security_task_setscheduler(p);
e7834f8f
DQ
3921 if (retval)
3922 goto out_unlock;
3923
e4099a5e
PZ
3924
3925 cpuset_cpus_allowed(p, cpus_allowed);
3926 cpumask_and(new_mask, in_mask, cpus_allowed);
3927
332ac17e
DF
3928 /*
3929 * Since bandwidth control happens on root_domain basis,
3930 * if admission test is enabled, we only admit -deadline
3931 * tasks allowed to run on all the CPUs in the task's
3932 * root_domain.
3933 */
3934#ifdef CONFIG_SMP
3935 if (task_has_dl_policy(p)) {
3936 const struct cpumask *span = task_rq(p)->rd->span;
3937
e4099a5e 3938 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3939 retval = -EBUSY;
3940 goto out_unlock;
3941 }
3942 }
3943#endif
49246274 3944again:
5a16f3d3 3945 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3946
8707d8b8 3947 if (!retval) {
5a16f3d3
RR
3948 cpuset_cpus_allowed(p, cpus_allowed);
3949 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3950 /*
3951 * We must have raced with a concurrent cpuset
3952 * update. Just reset the cpus_allowed to the
3953 * cpuset's cpus_allowed
3954 */
5a16f3d3 3955 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3956 goto again;
3957 }
3958 }
1da177e4 3959out_unlock:
5a16f3d3
RR
3960 free_cpumask_var(new_mask);
3961out_free_cpus_allowed:
3962 free_cpumask_var(cpus_allowed);
3963out_put_task:
1da177e4 3964 put_task_struct(p);
1da177e4
LT
3965 return retval;
3966}
3967
3968static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3969 struct cpumask *new_mask)
1da177e4 3970{
96f874e2
RR
3971 if (len < cpumask_size())
3972 cpumask_clear(new_mask);
3973 else if (len > cpumask_size())
3974 len = cpumask_size();
3975
1da177e4
LT
3976 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3977}
3978
3979/**
3980 * sys_sched_setaffinity - set the cpu affinity of a process
3981 * @pid: pid of the process
3982 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3983 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3984 *
3985 * Return: 0 on success. An error code otherwise.
1da177e4 3986 */
5add95d4
HC
3987SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3988 unsigned long __user *, user_mask_ptr)
1da177e4 3989{
5a16f3d3 3990 cpumask_var_t new_mask;
1da177e4
LT
3991 int retval;
3992
5a16f3d3
RR
3993 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3994 return -ENOMEM;
1da177e4 3995
5a16f3d3
RR
3996 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3997 if (retval == 0)
3998 retval = sched_setaffinity(pid, new_mask);
3999 free_cpumask_var(new_mask);
4000 return retval;
1da177e4
LT
4001}
4002
96f874e2 4003long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4004{
36c8b586 4005 struct task_struct *p;
31605683 4006 unsigned long flags;
1da177e4 4007 int retval;
1da177e4 4008
23f5d142 4009 rcu_read_lock();
1da177e4
LT
4010
4011 retval = -ESRCH;
4012 p = find_process_by_pid(pid);
4013 if (!p)
4014 goto out_unlock;
4015
e7834f8f
DQ
4016 retval = security_task_getscheduler(p);
4017 if (retval)
4018 goto out_unlock;
4019
013fdb80 4020 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4021 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4022 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4023
4024out_unlock:
23f5d142 4025 rcu_read_unlock();
1da177e4 4026
9531b62f 4027 return retval;
1da177e4
LT
4028}
4029
4030/**
4031 * sys_sched_getaffinity - get the cpu affinity of a process
4032 * @pid: pid of the process
4033 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4034 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4035 *
4036 * Return: 0 on success. An error code otherwise.
1da177e4 4037 */
5add95d4
HC
4038SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4039 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4040{
4041 int ret;
f17c8607 4042 cpumask_var_t mask;
1da177e4 4043
84fba5ec 4044 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4045 return -EINVAL;
4046 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4047 return -EINVAL;
4048
f17c8607
RR
4049 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4050 return -ENOMEM;
1da177e4 4051
f17c8607
RR
4052 ret = sched_getaffinity(pid, mask);
4053 if (ret == 0) {
8bc037fb 4054 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4055
4056 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4057 ret = -EFAULT;
4058 else
cd3d8031 4059 ret = retlen;
f17c8607
RR
4060 }
4061 free_cpumask_var(mask);
1da177e4 4062
f17c8607 4063 return ret;
1da177e4
LT
4064}
4065
4066/**
4067 * sys_sched_yield - yield the current processor to other threads.
4068 *
dd41f596
IM
4069 * This function yields the current CPU to other tasks. If there are no
4070 * other threads running on this CPU then this function will return.
e69f6186
YB
4071 *
4072 * Return: 0.
1da177e4 4073 */
5add95d4 4074SYSCALL_DEFINE0(sched_yield)
1da177e4 4075{
70b97a7f 4076 struct rq *rq = this_rq_lock();
1da177e4 4077
2d72376b 4078 schedstat_inc(rq, yld_count);
4530d7ab 4079 current->sched_class->yield_task(rq);
1da177e4
LT
4080
4081 /*
4082 * Since we are going to call schedule() anyway, there's
4083 * no need to preempt or enable interrupts:
4084 */
4085 __release(rq->lock);
8a25d5de 4086 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4087 do_raw_spin_unlock(&rq->lock);
ba74c144 4088 sched_preempt_enable_no_resched();
1da177e4
LT
4089
4090 schedule();
4091
4092 return 0;
4093}
4094
e7b38404 4095static void __cond_resched(void)
1da177e4 4096{
bdb43806 4097 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4098 __schedule();
bdb43806 4099 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4100}
4101
02b67cc3 4102int __sched _cond_resched(void)
1da177e4 4103{
d86ee480 4104 if (should_resched()) {
1da177e4
LT
4105 __cond_resched();
4106 return 1;
4107 }
4108 return 0;
4109}
02b67cc3 4110EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4111
4112/*
613afbf8 4113 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4114 * call schedule, and on return reacquire the lock.
4115 *
41a2d6cf 4116 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4117 * operations here to prevent schedule() from being called twice (once via
4118 * spin_unlock(), once by hand).
4119 */
613afbf8 4120int __cond_resched_lock(spinlock_t *lock)
1da177e4 4121{
d86ee480 4122 int resched = should_resched();
6df3cecb
JK
4123 int ret = 0;
4124
f607c668
PZ
4125 lockdep_assert_held(lock);
4126
95c354fe 4127 if (spin_needbreak(lock) || resched) {
1da177e4 4128 spin_unlock(lock);
d86ee480 4129 if (resched)
95c354fe
NP
4130 __cond_resched();
4131 else
4132 cpu_relax();
6df3cecb 4133 ret = 1;
1da177e4 4134 spin_lock(lock);
1da177e4 4135 }
6df3cecb 4136 return ret;
1da177e4 4137}
613afbf8 4138EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4139
613afbf8 4140int __sched __cond_resched_softirq(void)
1da177e4
LT
4141{
4142 BUG_ON(!in_softirq());
4143
d86ee480 4144 if (should_resched()) {
98d82567 4145 local_bh_enable();
1da177e4
LT
4146 __cond_resched();
4147 local_bh_disable();
4148 return 1;
4149 }
4150 return 0;
4151}
613afbf8 4152EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4153
1da177e4
LT
4154/**
4155 * yield - yield the current processor to other threads.
4156 *
8e3fabfd
PZ
4157 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4158 *
4159 * The scheduler is at all times free to pick the calling task as the most
4160 * eligible task to run, if removing the yield() call from your code breaks
4161 * it, its already broken.
4162 *
4163 * Typical broken usage is:
4164 *
4165 * while (!event)
4166 * yield();
4167 *
4168 * where one assumes that yield() will let 'the other' process run that will
4169 * make event true. If the current task is a SCHED_FIFO task that will never
4170 * happen. Never use yield() as a progress guarantee!!
4171 *
4172 * If you want to use yield() to wait for something, use wait_event().
4173 * If you want to use yield() to be 'nice' for others, use cond_resched().
4174 * If you still want to use yield(), do not!
1da177e4
LT
4175 */
4176void __sched yield(void)
4177{
4178 set_current_state(TASK_RUNNING);
4179 sys_sched_yield();
4180}
1da177e4
LT
4181EXPORT_SYMBOL(yield);
4182
d95f4122
MG
4183/**
4184 * yield_to - yield the current processor to another thread in
4185 * your thread group, or accelerate that thread toward the
4186 * processor it's on.
16addf95
RD
4187 * @p: target task
4188 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4189 *
4190 * It's the caller's job to ensure that the target task struct
4191 * can't go away on us before we can do any checks.
4192 *
e69f6186 4193 * Return:
7b270f60
PZ
4194 * true (>0) if we indeed boosted the target task.
4195 * false (0) if we failed to boost the target.
4196 * -ESRCH if there's no task to yield to.
d95f4122
MG
4197 */
4198bool __sched yield_to(struct task_struct *p, bool preempt)
4199{
4200 struct task_struct *curr = current;
4201 struct rq *rq, *p_rq;
4202 unsigned long flags;
c3c18640 4203 int yielded = 0;
d95f4122
MG
4204
4205 local_irq_save(flags);
4206 rq = this_rq();
4207
4208again:
4209 p_rq = task_rq(p);
7b270f60
PZ
4210 /*
4211 * If we're the only runnable task on the rq and target rq also
4212 * has only one task, there's absolutely no point in yielding.
4213 */
4214 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4215 yielded = -ESRCH;
4216 goto out_irq;
4217 }
4218
d95f4122 4219 double_rq_lock(rq, p_rq);
39e24d8f 4220 if (task_rq(p) != p_rq) {
d95f4122
MG
4221 double_rq_unlock(rq, p_rq);
4222 goto again;
4223 }
4224
4225 if (!curr->sched_class->yield_to_task)
7b270f60 4226 goto out_unlock;
d95f4122
MG
4227
4228 if (curr->sched_class != p->sched_class)
7b270f60 4229 goto out_unlock;
d95f4122
MG
4230
4231 if (task_running(p_rq, p) || p->state)
7b270f60 4232 goto out_unlock;
d95f4122
MG
4233
4234 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4235 if (yielded) {
d95f4122 4236 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4237 /*
4238 * Make p's CPU reschedule; pick_next_entity takes care of
4239 * fairness.
4240 */
4241 if (preempt && rq != p_rq)
4242 resched_task(p_rq->curr);
4243 }
d95f4122 4244
7b270f60 4245out_unlock:
d95f4122 4246 double_rq_unlock(rq, p_rq);
7b270f60 4247out_irq:
d95f4122
MG
4248 local_irq_restore(flags);
4249
7b270f60 4250 if (yielded > 0)
d95f4122
MG
4251 schedule();
4252
4253 return yielded;
4254}
4255EXPORT_SYMBOL_GPL(yield_to);
4256
1da177e4 4257/*
41a2d6cf 4258 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4259 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4260 */
4261void __sched io_schedule(void)
4262{
54d35f29 4263 struct rq *rq = raw_rq();
1da177e4 4264
0ff92245 4265 delayacct_blkio_start();
1da177e4 4266 atomic_inc(&rq->nr_iowait);
73c10101 4267 blk_flush_plug(current);
8f0dfc34 4268 current->in_iowait = 1;
1da177e4 4269 schedule();
8f0dfc34 4270 current->in_iowait = 0;
1da177e4 4271 atomic_dec(&rq->nr_iowait);
0ff92245 4272 delayacct_blkio_end();
1da177e4 4273}
1da177e4
LT
4274EXPORT_SYMBOL(io_schedule);
4275
4276long __sched io_schedule_timeout(long timeout)
4277{
54d35f29 4278 struct rq *rq = raw_rq();
1da177e4
LT
4279 long ret;
4280
0ff92245 4281 delayacct_blkio_start();
1da177e4 4282 atomic_inc(&rq->nr_iowait);
73c10101 4283 blk_flush_plug(current);
8f0dfc34 4284 current->in_iowait = 1;
1da177e4 4285 ret = schedule_timeout(timeout);
8f0dfc34 4286 current->in_iowait = 0;
1da177e4 4287 atomic_dec(&rq->nr_iowait);
0ff92245 4288 delayacct_blkio_end();
1da177e4
LT
4289 return ret;
4290}
4291
4292/**
4293 * sys_sched_get_priority_max - return maximum RT priority.
4294 * @policy: scheduling class.
4295 *
e69f6186
YB
4296 * Return: On success, this syscall returns the maximum
4297 * rt_priority that can be used by a given scheduling class.
4298 * On failure, a negative error code is returned.
1da177e4 4299 */
5add95d4 4300SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4301{
4302 int ret = -EINVAL;
4303
4304 switch (policy) {
4305 case SCHED_FIFO:
4306 case SCHED_RR:
4307 ret = MAX_USER_RT_PRIO-1;
4308 break;
aab03e05 4309 case SCHED_DEADLINE:
1da177e4 4310 case SCHED_NORMAL:
b0a9499c 4311 case SCHED_BATCH:
dd41f596 4312 case SCHED_IDLE:
1da177e4
LT
4313 ret = 0;
4314 break;
4315 }
4316 return ret;
4317}
4318
4319/**
4320 * sys_sched_get_priority_min - return minimum RT priority.
4321 * @policy: scheduling class.
4322 *
e69f6186
YB
4323 * Return: On success, this syscall returns the minimum
4324 * rt_priority that can be used by a given scheduling class.
4325 * On failure, a negative error code is returned.
1da177e4 4326 */
5add95d4 4327SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4328{
4329 int ret = -EINVAL;
4330
4331 switch (policy) {
4332 case SCHED_FIFO:
4333 case SCHED_RR:
4334 ret = 1;
4335 break;
aab03e05 4336 case SCHED_DEADLINE:
1da177e4 4337 case SCHED_NORMAL:
b0a9499c 4338 case SCHED_BATCH:
dd41f596 4339 case SCHED_IDLE:
1da177e4
LT
4340 ret = 0;
4341 }
4342 return ret;
4343}
4344
4345/**
4346 * sys_sched_rr_get_interval - return the default timeslice of a process.
4347 * @pid: pid of the process.
4348 * @interval: userspace pointer to the timeslice value.
4349 *
4350 * this syscall writes the default timeslice value of a given process
4351 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4352 *
4353 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4354 * an error code.
1da177e4 4355 */
17da2bd9 4356SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4357 struct timespec __user *, interval)
1da177e4 4358{
36c8b586 4359 struct task_struct *p;
a4ec24b4 4360 unsigned int time_slice;
dba091b9
TG
4361 unsigned long flags;
4362 struct rq *rq;
3a5c359a 4363 int retval;
1da177e4 4364 struct timespec t;
1da177e4
LT
4365
4366 if (pid < 0)
3a5c359a 4367 return -EINVAL;
1da177e4
LT
4368
4369 retval = -ESRCH;
1a551ae7 4370 rcu_read_lock();
1da177e4
LT
4371 p = find_process_by_pid(pid);
4372 if (!p)
4373 goto out_unlock;
4374
4375 retval = security_task_getscheduler(p);
4376 if (retval)
4377 goto out_unlock;
4378
dba091b9 4379 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4380 time_slice = 0;
4381 if (p->sched_class->get_rr_interval)
4382 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4383 task_rq_unlock(rq, p, &flags);
a4ec24b4 4384
1a551ae7 4385 rcu_read_unlock();
a4ec24b4 4386 jiffies_to_timespec(time_slice, &t);
1da177e4 4387 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4388 return retval;
3a5c359a 4389
1da177e4 4390out_unlock:
1a551ae7 4391 rcu_read_unlock();
1da177e4
LT
4392 return retval;
4393}
4394
7c731e0a 4395static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4396
82a1fcb9 4397void sched_show_task(struct task_struct *p)
1da177e4 4398{
1da177e4 4399 unsigned long free = 0;
4e79752c 4400 int ppid;
36c8b586 4401 unsigned state;
1da177e4 4402
1da177e4 4403 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4404 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4405 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4406#if BITS_PER_LONG == 32
1da177e4 4407 if (state == TASK_RUNNING)
3df0fc5b 4408 printk(KERN_CONT " running ");
1da177e4 4409 else
3df0fc5b 4410 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4411#else
4412 if (state == TASK_RUNNING)
3df0fc5b 4413 printk(KERN_CONT " running task ");
1da177e4 4414 else
3df0fc5b 4415 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4416#endif
4417#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4418 free = stack_not_used(p);
1da177e4 4419#endif
4e79752c
PM
4420 rcu_read_lock();
4421 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4422 rcu_read_unlock();
3df0fc5b 4423 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4424 task_pid_nr(p), ppid,
aa47b7e0 4425 (unsigned long)task_thread_info(p)->flags);
1da177e4 4426
3d1cb205 4427 print_worker_info(KERN_INFO, p);
5fb5e6de 4428 show_stack(p, NULL);
1da177e4
LT
4429}
4430
e59e2ae2 4431void show_state_filter(unsigned long state_filter)
1da177e4 4432{
36c8b586 4433 struct task_struct *g, *p;
1da177e4 4434
4bd77321 4435#if BITS_PER_LONG == 32
3df0fc5b
PZ
4436 printk(KERN_INFO
4437 " task PC stack pid father\n");
1da177e4 4438#else
3df0fc5b
PZ
4439 printk(KERN_INFO
4440 " task PC stack pid father\n");
1da177e4 4441#endif
510f5acc 4442 rcu_read_lock();
1da177e4
LT
4443 do_each_thread(g, p) {
4444 /*
4445 * reset the NMI-timeout, listing all files on a slow
25985edc 4446 * console might take a lot of time:
1da177e4
LT
4447 */
4448 touch_nmi_watchdog();
39bc89fd 4449 if (!state_filter || (p->state & state_filter))
82a1fcb9 4450 sched_show_task(p);
1da177e4
LT
4451 } while_each_thread(g, p);
4452
04c9167f
JF
4453 touch_all_softlockup_watchdogs();
4454
dd41f596
IM
4455#ifdef CONFIG_SCHED_DEBUG
4456 sysrq_sched_debug_show();
4457#endif
510f5acc 4458 rcu_read_unlock();
e59e2ae2
IM
4459 /*
4460 * Only show locks if all tasks are dumped:
4461 */
93335a21 4462 if (!state_filter)
e59e2ae2 4463 debug_show_all_locks();
1da177e4
LT
4464}
4465
0db0628d 4466void init_idle_bootup_task(struct task_struct *idle)
1df21055 4467{
dd41f596 4468 idle->sched_class = &idle_sched_class;
1df21055
IM
4469}
4470
f340c0d1
IM
4471/**
4472 * init_idle - set up an idle thread for a given CPU
4473 * @idle: task in question
4474 * @cpu: cpu the idle task belongs to
4475 *
4476 * NOTE: this function does not set the idle thread's NEED_RESCHED
4477 * flag, to make booting more robust.
4478 */
0db0628d 4479void init_idle(struct task_struct *idle, int cpu)
1da177e4 4480{
70b97a7f 4481 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4482 unsigned long flags;
4483
05fa785c 4484 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4485
5e1576ed 4486 __sched_fork(0, idle);
06b83b5f 4487 idle->state = TASK_RUNNING;
dd41f596
IM
4488 idle->se.exec_start = sched_clock();
4489
1e1b6c51 4490 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4491 /*
4492 * We're having a chicken and egg problem, even though we are
4493 * holding rq->lock, the cpu isn't yet set to this cpu so the
4494 * lockdep check in task_group() will fail.
4495 *
4496 * Similar case to sched_fork(). / Alternatively we could
4497 * use task_rq_lock() here and obtain the other rq->lock.
4498 *
4499 * Silence PROVE_RCU
4500 */
4501 rcu_read_lock();
dd41f596 4502 __set_task_cpu(idle, cpu);
6506cf6c 4503 rcu_read_unlock();
1da177e4 4504
1da177e4 4505 rq->curr = rq->idle = idle;
77177856 4506 idle->on_rq = 1;
3ca7a440
PZ
4507#if defined(CONFIG_SMP)
4508 idle->on_cpu = 1;
4866cde0 4509#endif
05fa785c 4510 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4511
4512 /* Set the preempt count _outside_ the spinlocks! */
01028747 4513 init_idle_preempt_count(idle, cpu);
55cd5340 4514
dd41f596
IM
4515 /*
4516 * The idle tasks have their own, simple scheduling class:
4517 */
4518 idle->sched_class = &idle_sched_class;
868baf07 4519 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4520 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4521#if defined(CONFIG_SMP)
4522 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4523#endif
19978ca6
IM
4524}
4525
1da177e4 4526#ifdef CONFIG_SMP
1e1b6c51
KM
4527void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4528{
4529 if (p->sched_class && p->sched_class->set_cpus_allowed)
4530 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4531
4532 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4533 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4534}
4535
1da177e4
LT
4536/*
4537 * This is how migration works:
4538 *
969c7921
TH
4539 * 1) we invoke migration_cpu_stop() on the target CPU using
4540 * stop_one_cpu().
4541 * 2) stopper starts to run (implicitly forcing the migrated thread
4542 * off the CPU)
4543 * 3) it checks whether the migrated task is still in the wrong runqueue.
4544 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4545 * it and puts it into the right queue.
969c7921
TH
4546 * 5) stopper completes and stop_one_cpu() returns and the migration
4547 * is done.
1da177e4
LT
4548 */
4549
4550/*
4551 * Change a given task's CPU affinity. Migrate the thread to a
4552 * proper CPU and schedule it away if the CPU it's executing on
4553 * is removed from the allowed bitmask.
4554 *
4555 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4556 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4557 * call is not atomic; no spinlocks may be held.
4558 */
96f874e2 4559int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4560{
4561 unsigned long flags;
70b97a7f 4562 struct rq *rq;
969c7921 4563 unsigned int dest_cpu;
48f24c4d 4564 int ret = 0;
1da177e4
LT
4565
4566 rq = task_rq_lock(p, &flags);
e2912009 4567
db44fc01
YZ
4568 if (cpumask_equal(&p->cpus_allowed, new_mask))
4569 goto out;
4570
6ad4c188 4571 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4572 ret = -EINVAL;
4573 goto out;
4574 }
4575
1e1b6c51 4576 do_set_cpus_allowed(p, new_mask);
73fe6aae 4577
1da177e4 4578 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4579 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4580 goto out;
4581
969c7921 4582 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4583 if (p->on_rq) {
969c7921 4584 struct migration_arg arg = { p, dest_cpu };
1da177e4 4585 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4586 task_rq_unlock(rq, p, &flags);
969c7921 4587 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4588 tlb_migrate_finish(p->mm);
4589 return 0;
4590 }
4591out:
0122ec5b 4592 task_rq_unlock(rq, p, &flags);
48f24c4d 4593
1da177e4
LT
4594 return ret;
4595}
cd8ba7cd 4596EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4597
4598/*
41a2d6cf 4599 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4600 * this because either it can't run here any more (set_cpus_allowed()
4601 * away from this CPU, or CPU going down), or because we're
4602 * attempting to rebalance this task on exec (sched_exec).
4603 *
4604 * So we race with normal scheduler movements, but that's OK, as long
4605 * as the task is no longer on this CPU.
efc30814
KK
4606 *
4607 * Returns non-zero if task was successfully migrated.
1da177e4 4608 */
efc30814 4609static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4610{
70b97a7f 4611 struct rq *rq_dest, *rq_src;
e2912009 4612 int ret = 0;
1da177e4 4613
e761b772 4614 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4615 return ret;
1da177e4
LT
4616
4617 rq_src = cpu_rq(src_cpu);
4618 rq_dest = cpu_rq(dest_cpu);
4619
0122ec5b 4620 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4621 double_rq_lock(rq_src, rq_dest);
4622 /* Already moved. */
4623 if (task_cpu(p) != src_cpu)
b1e38734 4624 goto done;
1da177e4 4625 /* Affinity changed (again). */
fa17b507 4626 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4627 goto fail;
1da177e4 4628
e2912009
PZ
4629 /*
4630 * If we're not on a rq, the next wake-up will ensure we're
4631 * placed properly.
4632 */
fd2f4419 4633 if (p->on_rq) {
4ca9b72b 4634 dequeue_task(rq_src, p, 0);
e2912009 4635 set_task_cpu(p, dest_cpu);
4ca9b72b 4636 enqueue_task(rq_dest, p, 0);
15afe09b 4637 check_preempt_curr(rq_dest, p, 0);
1da177e4 4638 }
b1e38734 4639done:
efc30814 4640 ret = 1;
b1e38734 4641fail:
1da177e4 4642 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4643 raw_spin_unlock(&p->pi_lock);
efc30814 4644 return ret;
1da177e4
LT
4645}
4646
e6628d5b
MG
4647#ifdef CONFIG_NUMA_BALANCING
4648/* Migrate current task p to target_cpu */
4649int migrate_task_to(struct task_struct *p, int target_cpu)
4650{
4651 struct migration_arg arg = { p, target_cpu };
4652 int curr_cpu = task_cpu(p);
4653
4654 if (curr_cpu == target_cpu)
4655 return 0;
4656
4657 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4658 return -EINVAL;
4659
4660 /* TODO: This is not properly updating schedstats */
4661
286549dc 4662 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4663 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4664}
0ec8aa00
PZ
4665
4666/*
4667 * Requeue a task on a given node and accurately track the number of NUMA
4668 * tasks on the runqueues
4669 */
4670void sched_setnuma(struct task_struct *p, int nid)
4671{
4672 struct rq *rq;
4673 unsigned long flags;
4674 bool on_rq, running;
4675
4676 rq = task_rq_lock(p, &flags);
4677 on_rq = p->on_rq;
4678 running = task_current(rq, p);
4679
4680 if (on_rq)
4681 dequeue_task(rq, p, 0);
4682 if (running)
4683 p->sched_class->put_prev_task(rq, p);
4684
4685 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4686
4687 if (running)
4688 p->sched_class->set_curr_task(rq);
4689 if (on_rq)
4690 enqueue_task(rq, p, 0);
4691 task_rq_unlock(rq, p, &flags);
4692}
e6628d5b
MG
4693#endif
4694
1da177e4 4695/*
969c7921
TH
4696 * migration_cpu_stop - this will be executed by a highprio stopper thread
4697 * and performs thread migration by bumping thread off CPU then
4698 * 'pushing' onto another runqueue.
1da177e4 4699 */
969c7921 4700static int migration_cpu_stop(void *data)
1da177e4 4701{
969c7921 4702 struct migration_arg *arg = data;
f7b4cddc 4703
969c7921
TH
4704 /*
4705 * The original target cpu might have gone down and we might
4706 * be on another cpu but it doesn't matter.
4707 */
f7b4cddc 4708 local_irq_disable();
969c7921 4709 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4710 local_irq_enable();
1da177e4 4711 return 0;
f7b4cddc
ON
4712}
4713
1da177e4 4714#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4715
054b9108 4716/*
48c5ccae
PZ
4717 * Ensures that the idle task is using init_mm right before its cpu goes
4718 * offline.
054b9108 4719 */
48c5ccae 4720void idle_task_exit(void)
1da177e4 4721{
48c5ccae 4722 struct mm_struct *mm = current->active_mm;
e76bd8d9 4723
48c5ccae 4724 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4725
a53efe5f 4726 if (mm != &init_mm) {
48c5ccae 4727 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4728 finish_arch_post_lock_switch();
4729 }
48c5ccae 4730 mmdrop(mm);
1da177e4
LT
4731}
4732
4733/*
5d180232
PZ
4734 * Since this CPU is going 'away' for a while, fold any nr_active delta
4735 * we might have. Assumes we're called after migrate_tasks() so that the
4736 * nr_active count is stable.
4737 *
4738 * Also see the comment "Global load-average calculations".
1da177e4 4739 */
5d180232 4740static void calc_load_migrate(struct rq *rq)
1da177e4 4741{
5d180232
PZ
4742 long delta = calc_load_fold_active(rq);
4743 if (delta)
4744 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4745}
4746
3f1d2a31
PZ
4747static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4748{
4749}
4750
4751static const struct sched_class fake_sched_class = {
4752 .put_prev_task = put_prev_task_fake,
4753};
4754
4755static struct task_struct fake_task = {
4756 /*
4757 * Avoid pull_{rt,dl}_task()
4758 */
4759 .prio = MAX_PRIO + 1,
4760 .sched_class = &fake_sched_class,
4761};
4762
48f24c4d 4763/*
48c5ccae
PZ
4764 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4765 * try_to_wake_up()->select_task_rq().
4766 *
4767 * Called with rq->lock held even though we'er in stop_machine() and
4768 * there's no concurrency possible, we hold the required locks anyway
4769 * because of lock validation efforts.
1da177e4 4770 */
48c5ccae 4771static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4772{
70b97a7f 4773 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4774 struct task_struct *next, *stop = rq->stop;
4775 int dest_cpu;
1da177e4
LT
4776
4777 /*
48c5ccae
PZ
4778 * Fudge the rq selection such that the below task selection loop
4779 * doesn't get stuck on the currently eligible stop task.
4780 *
4781 * We're currently inside stop_machine() and the rq is either stuck
4782 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4783 * either way we should never end up calling schedule() until we're
4784 * done here.
1da177e4 4785 */
48c5ccae 4786 rq->stop = NULL;
48f24c4d 4787
77bd3970
FW
4788 /*
4789 * put_prev_task() and pick_next_task() sched
4790 * class method both need to have an up-to-date
4791 * value of rq->clock[_task]
4792 */
4793 update_rq_clock(rq);
4794
dd41f596 4795 for ( ; ; ) {
48c5ccae
PZ
4796 /*
4797 * There's this thread running, bail when that's the only
4798 * remaining thread.
4799 */
4800 if (rq->nr_running == 1)
dd41f596 4801 break;
48c5ccae 4802
3f1d2a31 4803 next = pick_next_task(rq, &fake_task);
48c5ccae 4804 BUG_ON(!next);
79c53799 4805 next->sched_class->put_prev_task(rq, next);
e692ab53 4806
48c5ccae
PZ
4807 /* Find suitable destination for @next, with force if needed. */
4808 dest_cpu = select_fallback_rq(dead_cpu, next);
4809 raw_spin_unlock(&rq->lock);
4810
4811 __migrate_task(next, dead_cpu, dest_cpu);
4812
4813 raw_spin_lock(&rq->lock);
1da177e4 4814 }
dce48a84 4815
48c5ccae 4816 rq->stop = stop;
dce48a84 4817}
48c5ccae 4818
1da177e4
LT
4819#endif /* CONFIG_HOTPLUG_CPU */
4820
e692ab53
NP
4821#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4822
4823static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4824 {
4825 .procname = "sched_domain",
c57baf1e 4826 .mode = 0555,
e0361851 4827 },
56992309 4828 {}
e692ab53
NP
4829};
4830
4831static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4832 {
4833 .procname = "kernel",
c57baf1e 4834 .mode = 0555,
e0361851
AD
4835 .child = sd_ctl_dir,
4836 },
56992309 4837 {}
e692ab53
NP
4838};
4839
4840static struct ctl_table *sd_alloc_ctl_entry(int n)
4841{
4842 struct ctl_table *entry =
5cf9f062 4843 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4844
e692ab53
NP
4845 return entry;
4846}
4847
6382bc90
MM
4848static void sd_free_ctl_entry(struct ctl_table **tablep)
4849{
cd790076 4850 struct ctl_table *entry;
6382bc90 4851
cd790076
MM
4852 /*
4853 * In the intermediate directories, both the child directory and
4854 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4855 * will always be set. In the lowest directory the names are
cd790076
MM
4856 * static strings and all have proc handlers.
4857 */
4858 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4859 if (entry->child)
4860 sd_free_ctl_entry(&entry->child);
cd790076
MM
4861 if (entry->proc_handler == NULL)
4862 kfree(entry->procname);
4863 }
6382bc90
MM
4864
4865 kfree(*tablep);
4866 *tablep = NULL;
4867}
4868
201c373e 4869static int min_load_idx = 0;
fd9b86d3 4870static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4871
e692ab53 4872static void
e0361851 4873set_table_entry(struct ctl_table *entry,
e692ab53 4874 const char *procname, void *data, int maxlen,
201c373e
NK
4875 umode_t mode, proc_handler *proc_handler,
4876 bool load_idx)
e692ab53 4877{
e692ab53
NP
4878 entry->procname = procname;
4879 entry->data = data;
4880 entry->maxlen = maxlen;
4881 entry->mode = mode;
4882 entry->proc_handler = proc_handler;
201c373e
NK
4883
4884 if (load_idx) {
4885 entry->extra1 = &min_load_idx;
4886 entry->extra2 = &max_load_idx;
4887 }
e692ab53
NP
4888}
4889
4890static struct ctl_table *
4891sd_alloc_ctl_domain_table(struct sched_domain *sd)
4892{
37e6bae8 4893 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4894
ad1cdc1d
MM
4895 if (table == NULL)
4896 return NULL;
4897
e0361851 4898 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4899 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4900 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4901 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4902 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4903 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4904 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4905 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4906 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4907 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4908 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4909 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4910 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4911 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4912 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4913 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4914 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4915 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4916 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4917 &sd->cache_nice_tries,
201c373e 4918 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4919 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4920 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4921 set_table_entry(&table[11], "max_newidle_lb_cost",
4922 &sd->max_newidle_lb_cost,
4923 sizeof(long), 0644, proc_doulongvec_minmax, false);
4924 set_table_entry(&table[12], "name", sd->name,
201c373e 4925 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4926 /* &table[13] is terminator */
e692ab53
NP
4927
4928 return table;
4929}
4930
be7002e6 4931static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4932{
4933 struct ctl_table *entry, *table;
4934 struct sched_domain *sd;
4935 int domain_num = 0, i;
4936 char buf[32];
4937
4938 for_each_domain(cpu, sd)
4939 domain_num++;
4940 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4941 if (table == NULL)
4942 return NULL;
e692ab53
NP
4943
4944 i = 0;
4945 for_each_domain(cpu, sd) {
4946 snprintf(buf, 32, "domain%d", i);
e692ab53 4947 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4948 entry->mode = 0555;
e692ab53
NP
4949 entry->child = sd_alloc_ctl_domain_table(sd);
4950 entry++;
4951 i++;
4952 }
4953 return table;
4954}
4955
4956static struct ctl_table_header *sd_sysctl_header;
6382bc90 4957static void register_sched_domain_sysctl(void)
e692ab53 4958{
6ad4c188 4959 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4960 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4961 char buf[32];
4962
7378547f
MM
4963 WARN_ON(sd_ctl_dir[0].child);
4964 sd_ctl_dir[0].child = entry;
4965
ad1cdc1d
MM
4966 if (entry == NULL)
4967 return;
4968
6ad4c188 4969 for_each_possible_cpu(i) {
e692ab53 4970 snprintf(buf, 32, "cpu%d", i);
e692ab53 4971 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4972 entry->mode = 0555;
e692ab53 4973 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4974 entry++;
e692ab53 4975 }
7378547f
MM
4976
4977 WARN_ON(sd_sysctl_header);
e692ab53
NP
4978 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4979}
6382bc90 4980
7378547f 4981/* may be called multiple times per register */
6382bc90
MM
4982static void unregister_sched_domain_sysctl(void)
4983{
7378547f
MM
4984 if (sd_sysctl_header)
4985 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4986 sd_sysctl_header = NULL;
7378547f
MM
4987 if (sd_ctl_dir[0].child)
4988 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4989}
e692ab53 4990#else
6382bc90
MM
4991static void register_sched_domain_sysctl(void)
4992{
4993}
4994static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4995{
4996}
4997#endif
4998
1f11eb6a
GH
4999static void set_rq_online(struct rq *rq)
5000{
5001 if (!rq->online) {
5002 const struct sched_class *class;
5003
c6c4927b 5004 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5005 rq->online = 1;
5006
5007 for_each_class(class) {
5008 if (class->rq_online)
5009 class->rq_online(rq);
5010 }
5011 }
5012}
5013
5014static void set_rq_offline(struct rq *rq)
5015{
5016 if (rq->online) {
5017 const struct sched_class *class;
5018
5019 for_each_class(class) {
5020 if (class->rq_offline)
5021 class->rq_offline(rq);
5022 }
5023
c6c4927b 5024 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5025 rq->online = 0;
5026 }
5027}
5028
1da177e4
LT
5029/*
5030 * migration_call - callback that gets triggered when a CPU is added.
5031 * Here we can start up the necessary migration thread for the new CPU.
5032 */
0db0628d 5033static int
48f24c4d 5034migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5035{
48f24c4d 5036 int cpu = (long)hcpu;
1da177e4 5037 unsigned long flags;
969c7921 5038 struct rq *rq = cpu_rq(cpu);
1da177e4 5039
48c5ccae 5040 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5041
1da177e4 5042 case CPU_UP_PREPARE:
a468d389 5043 rq->calc_load_update = calc_load_update;
1da177e4 5044 break;
48f24c4d 5045
1da177e4 5046 case CPU_ONLINE:
1f94ef59 5047 /* Update our root-domain */
05fa785c 5048 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5049 if (rq->rd) {
c6c4927b 5050 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5051
5052 set_rq_online(rq);
1f94ef59 5053 }
05fa785c 5054 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5055 break;
48f24c4d 5056
1da177e4 5057#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5058 case CPU_DYING:
317f3941 5059 sched_ttwu_pending();
57d885fe 5060 /* Update our root-domain */
05fa785c 5061 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5062 if (rq->rd) {
c6c4927b 5063 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5064 set_rq_offline(rq);
57d885fe 5065 }
48c5ccae
PZ
5066 migrate_tasks(cpu);
5067 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5068 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5069 break;
48c5ccae 5070
5d180232 5071 case CPU_DEAD:
f319da0c 5072 calc_load_migrate(rq);
57d885fe 5073 break;
1da177e4
LT
5074#endif
5075 }
49c022e6
PZ
5076
5077 update_max_interval();
5078
1da177e4
LT
5079 return NOTIFY_OK;
5080}
5081
f38b0820
PM
5082/*
5083 * Register at high priority so that task migration (migrate_all_tasks)
5084 * happens before everything else. This has to be lower priority than
cdd6c482 5085 * the notifier in the perf_event subsystem, though.
1da177e4 5086 */
0db0628d 5087static struct notifier_block migration_notifier = {
1da177e4 5088 .notifier_call = migration_call,
50a323b7 5089 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5090};
5091
a803f026
CM
5092static void __cpuinit set_cpu_rq_start_time(void)
5093{
5094 int cpu = smp_processor_id();
5095 struct rq *rq = cpu_rq(cpu);
5096 rq->age_stamp = sched_clock_cpu(cpu);
5097}
5098
0db0628d 5099static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5100 unsigned long action, void *hcpu)
5101{
5102 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5103 case CPU_STARTING:
5104 set_cpu_rq_start_time();
5105 return NOTIFY_OK;
3a101d05
TH
5106 case CPU_DOWN_FAILED:
5107 set_cpu_active((long)hcpu, true);
5108 return NOTIFY_OK;
5109 default:
5110 return NOTIFY_DONE;
5111 }
5112}
5113
0db0628d 5114static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5115 unsigned long action, void *hcpu)
5116{
de212f18
PZ
5117 unsigned long flags;
5118 long cpu = (long)hcpu;
5119
3a101d05
TH
5120 switch (action & ~CPU_TASKS_FROZEN) {
5121 case CPU_DOWN_PREPARE:
de212f18
PZ
5122 set_cpu_active(cpu, false);
5123
5124 /* explicitly allow suspend */
5125 if (!(action & CPU_TASKS_FROZEN)) {
5126 struct dl_bw *dl_b = dl_bw_of(cpu);
5127 bool overflow;
5128 int cpus;
5129
5130 raw_spin_lock_irqsave(&dl_b->lock, flags);
5131 cpus = dl_bw_cpus(cpu);
5132 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5133 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5134
5135 if (overflow)
5136 return notifier_from_errno(-EBUSY);
5137 }
3a101d05 5138 return NOTIFY_OK;
3a101d05 5139 }
de212f18
PZ
5140
5141 return NOTIFY_DONE;
3a101d05
TH
5142}
5143
7babe8db 5144static int __init migration_init(void)
1da177e4
LT
5145{
5146 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5147 int err;
48f24c4d 5148
3a101d05 5149 /* Initialize migration for the boot CPU */
07dccf33
AM
5150 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5151 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5152 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5153 register_cpu_notifier(&migration_notifier);
7babe8db 5154
3a101d05
TH
5155 /* Register cpu active notifiers */
5156 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5157 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5158
a004cd42 5159 return 0;
1da177e4 5160}
7babe8db 5161early_initcall(migration_init);
1da177e4
LT
5162#endif
5163
5164#ifdef CONFIG_SMP
476f3534 5165
4cb98839
PZ
5166static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5167
3e9830dc 5168#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5169
d039ac60 5170static __read_mostly int sched_debug_enabled;
f6630114 5171
d039ac60 5172static int __init sched_debug_setup(char *str)
f6630114 5173{
d039ac60 5174 sched_debug_enabled = 1;
f6630114
MT
5175
5176 return 0;
5177}
d039ac60
PZ
5178early_param("sched_debug", sched_debug_setup);
5179
5180static inline bool sched_debug(void)
5181{
5182 return sched_debug_enabled;
5183}
f6630114 5184
7c16ec58 5185static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5186 struct cpumask *groupmask)
1da177e4 5187{
4dcf6aff 5188 struct sched_group *group = sd->groups;
434d53b0 5189 char str[256];
1da177e4 5190
968ea6d8 5191 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5192 cpumask_clear(groupmask);
4dcf6aff
IM
5193
5194 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5195
5196 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5197 printk("does not load-balance\n");
4dcf6aff 5198 if (sd->parent)
3df0fc5b
PZ
5199 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5200 " has parent");
4dcf6aff 5201 return -1;
41c7ce9a
NP
5202 }
5203
3df0fc5b 5204 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5205
758b2cdc 5206 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5207 printk(KERN_ERR "ERROR: domain->span does not contain "
5208 "CPU%d\n", cpu);
4dcf6aff 5209 }
758b2cdc 5210 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5211 printk(KERN_ERR "ERROR: domain->groups does not contain"
5212 " CPU%d\n", cpu);
4dcf6aff 5213 }
1da177e4 5214
4dcf6aff 5215 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5216 do {
4dcf6aff 5217 if (!group) {
3df0fc5b
PZ
5218 printk("\n");
5219 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5220 break;
5221 }
5222
c3decf0d
PZ
5223 /*
5224 * Even though we initialize ->power to something semi-sane,
5225 * we leave power_orig unset. This allows us to detect if
5226 * domain iteration is still funny without causing /0 traps.
5227 */
5228 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5229 printk(KERN_CONT "\n");
5230 printk(KERN_ERR "ERROR: domain->cpu_power not "
5231 "set\n");
4dcf6aff
IM
5232 break;
5233 }
1da177e4 5234
758b2cdc 5235 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5236 printk(KERN_CONT "\n");
5237 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5238 break;
5239 }
1da177e4 5240
cb83b629
PZ
5241 if (!(sd->flags & SD_OVERLAP) &&
5242 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5243 printk(KERN_CONT "\n");
5244 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5245 break;
5246 }
1da177e4 5247
758b2cdc 5248 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5249
968ea6d8 5250 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5251
3df0fc5b 5252 printk(KERN_CONT " %s", str);
9c3f75cb 5253 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5254 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5255 group->sgp->power);
381512cf 5256 }
1da177e4 5257
4dcf6aff
IM
5258 group = group->next;
5259 } while (group != sd->groups);
3df0fc5b 5260 printk(KERN_CONT "\n");
1da177e4 5261
758b2cdc 5262 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5263 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5264
758b2cdc
RR
5265 if (sd->parent &&
5266 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5267 printk(KERN_ERR "ERROR: parent span is not a superset "
5268 "of domain->span\n");
4dcf6aff
IM
5269 return 0;
5270}
1da177e4 5271
4dcf6aff
IM
5272static void sched_domain_debug(struct sched_domain *sd, int cpu)
5273{
5274 int level = 0;
1da177e4 5275
d039ac60 5276 if (!sched_debug_enabled)
f6630114
MT
5277 return;
5278
4dcf6aff
IM
5279 if (!sd) {
5280 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5281 return;
5282 }
1da177e4 5283
4dcf6aff
IM
5284 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5285
5286 for (;;) {
4cb98839 5287 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5288 break;
1da177e4
LT
5289 level++;
5290 sd = sd->parent;
33859f7f 5291 if (!sd)
4dcf6aff
IM
5292 break;
5293 }
1da177e4 5294}
6d6bc0ad 5295#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5296# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5297static inline bool sched_debug(void)
5298{
5299 return false;
5300}
6d6bc0ad 5301#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5302
1a20ff27 5303static int sd_degenerate(struct sched_domain *sd)
245af2c7 5304{
758b2cdc 5305 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5306 return 1;
5307
5308 /* Following flags need at least 2 groups */
5309 if (sd->flags & (SD_LOAD_BALANCE |
5310 SD_BALANCE_NEWIDLE |
5311 SD_BALANCE_FORK |
89c4710e
SS
5312 SD_BALANCE_EXEC |
5313 SD_SHARE_CPUPOWER |
d77b3ed5
VG
5314 SD_SHARE_PKG_RESOURCES |
5315 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5316 if (sd->groups != sd->groups->next)
5317 return 0;
5318 }
5319
5320 /* Following flags don't use groups */
c88d5910 5321 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5322 return 0;
5323
5324 return 1;
5325}
5326
48f24c4d
IM
5327static int
5328sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5329{
5330 unsigned long cflags = sd->flags, pflags = parent->flags;
5331
5332 if (sd_degenerate(parent))
5333 return 1;
5334
758b2cdc 5335 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5336 return 0;
5337
245af2c7
SS
5338 /* Flags needing groups don't count if only 1 group in parent */
5339 if (parent->groups == parent->groups->next) {
5340 pflags &= ~(SD_LOAD_BALANCE |
5341 SD_BALANCE_NEWIDLE |
5342 SD_BALANCE_FORK |
89c4710e
SS
5343 SD_BALANCE_EXEC |
5344 SD_SHARE_CPUPOWER |
10866e62 5345 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5346 SD_PREFER_SIBLING |
5347 SD_SHARE_POWERDOMAIN);
5436499e
KC
5348 if (nr_node_ids == 1)
5349 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5350 }
5351 if (~cflags & pflags)
5352 return 0;
5353
5354 return 1;
5355}
5356
dce840a0 5357static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5358{
dce840a0 5359 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5360
68e74568 5361 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5362 cpudl_cleanup(&rd->cpudl);
1baca4ce 5363 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5364 free_cpumask_var(rd->rto_mask);
5365 free_cpumask_var(rd->online);
5366 free_cpumask_var(rd->span);
5367 kfree(rd);
5368}
5369
57d885fe
GH
5370static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5371{
a0490fa3 5372 struct root_domain *old_rd = NULL;
57d885fe 5373 unsigned long flags;
57d885fe 5374
05fa785c 5375 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5376
5377 if (rq->rd) {
a0490fa3 5378 old_rd = rq->rd;
57d885fe 5379
c6c4927b 5380 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5381 set_rq_offline(rq);
57d885fe 5382
c6c4927b 5383 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5384
a0490fa3 5385 /*
0515973f 5386 * If we dont want to free the old_rd yet then
a0490fa3
IM
5387 * set old_rd to NULL to skip the freeing later
5388 * in this function:
5389 */
5390 if (!atomic_dec_and_test(&old_rd->refcount))
5391 old_rd = NULL;
57d885fe
GH
5392 }
5393
5394 atomic_inc(&rd->refcount);
5395 rq->rd = rd;
5396
c6c4927b 5397 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5398 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5399 set_rq_online(rq);
57d885fe 5400
05fa785c 5401 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5402
5403 if (old_rd)
dce840a0 5404 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5405}
5406
68c38fc3 5407static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5408{
5409 memset(rd, 0, sizeof(*rd));
5410
68c38fc3 5411 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5412 goto out;
68c38fc3 5413 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5414 goto free_span;
1baca4ce 5415 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5416 goto free_online;
1baca4ce
JL
5417 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5418 goto free_dlo_mask;
6e0534f2 5419
332ac17e 5420 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5421 if (cpudl_init(&rd->cpudl) != 0)
5422 goto free_dlo_mask;
332ac17e 5423
68c38fc3 5424 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5425 goto free_rto_mask;
c6c4927b 5426 return 0;
6e0534f2 5427
68e74568
RR
5428free_rto_mask:
5429 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5430free_dlo_mask:
5431 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5432free_online:
5433 free_cpumask_var(rd->online);
5434free_span:
5435 free_cpumask_var(rd->span);
0c910d28 5436out:
c6c4927b 5437 return -ENOMEM;
57d885fe
GH
5438}
5439
029632fb
PZ
5440/*
5441 * By default the system creates a single root-domain with all cpus as
5442 * members (mimicking the global state we have today).
5443 */
5444struct root_domain def_root_domain;
5445
57d885fe
GH
5446static void init_defrootdomain(void)
5447{
68c38fc3 5448 init_rootdomain(&def_root_domain);
c6c4927b 5449
57d885fe
GH
5450 atomic_set(&def_root_domain.refcount, 1);
5451}
5452
dc938520 5453static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5454{
5455 struct root_domain *rd;
5456
5457 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5458 if (!rd)
5459 return NULL;
5460
68c38fc3 5461 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5462 kfree(rd);
5463 return NULL;
5464 }
57d885fe
GH
5465
5466 return rd;
5467}
5468
e3589f6c
PZ
5469static void free_sched_groups(struct sched_group *sg, int free_sgp)
5470{
5471 struct sched_group *tmp, *first;
5472
5473 if (!sg)
5474 return;
5475
5476 first = sg;
5477 do {
5478 tmp = sg->next;
5479
5480 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5481 kfree(sg->sgp);
5482
5483 kfree(sg);
5484 sg = tmp;
5485 } while (sg != first);
5486}
5487
dce840a0
PZ
5488static void free_sched_domain(struct rcu_head *rcu)
5489{
5490 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5491
5492 /*
5493 * If its an overlapping domain it has private groups, iterate and
5494 * nuke them all.
5495 */
5496 if (sd->flags & SD_OVERLAP) {
5497 free_sched_groups(sd->groups, 1);
5498 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5499 kfree(sd->groups->sgp);
dce840a0 5500 kfree(sd->groups);
9c3f75cb 5501 }
dce840a0
PZ
5502 kfree(sd);
5503}
5504
5505static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5506{
5507 call_rcu(&sd->rcu, free_sched_domain);
5508}
5509
5510static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5511{
5512 for (; sd; sd = sd->parent)
5513 destroy_sched_domain(sd, cpu);
5514}
5515
518cd623
PZ
5516/*
5517 * Keep a special pointer to the highest sched_domain that has
5518 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5519 * allows us to avoid some pointer chasing select_idle_sibling().
5520 *
5521 * Also keep a unique ID per domain (we use the first cpu number in
5522 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5523 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5524 */
5525DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5526DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5527DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5528DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5529DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5530DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5531
5532static void update_top_cache_domain(int cpu)
5533{
5534 struct sched_domain *sd;
5d4cf996 5535 struct sched_domain *busy_sd = NULL;
518cd623 5536 int id = cpu;
7d9ffa89 5537 int size = 1;
518cd623
PZ
5538
5539 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5540 if (sd) {
518cd623 5541 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5542 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5543 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5544 }
5d4cf996 5545 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5546
5547 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5548 per_cpu(sd_llc_size, cpu) = size;
518cd623 5549 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5550
5551 sd = lowest_flag_domain(cpu, SD_NUMA);
5552 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5553
5554 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5555 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5556}
5557
1da177e4 5558/*
0eab9146 5559 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5560 * hold the hotplug lock.
5561 */
0eab9146
IM
5562static void
5563cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5564{
70b97a7f 5565 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5566 struct sched_domain *tmp;
5567
5568 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5569 for (tmp = sd; tmp; ) {
245af2c7
SS
5570 struct sched_domain *parent = tmp->parent;
5571 if (!parent)
5572 break;
f29c9b1c 5573
1a848870 5574 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5575 tmp->parent = parent->parent;
1a848870
SS
5576 if (parent->parent)
5577 parent->parent->child = tmp;
10866e62
PZ
5578 /*
5579 * Transfer SD_PREFER_SIBLING down in case of a
5580 * degenerate parent; the spans match for this
5581 * so the property transfers.
5582 */
5583 if (parent->flags & SD_PREFER_SIBLING)
5584 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5585 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5586 } else
5587 tmp = tmp->parent;
245af2c7
SS
5588 }
5589
1a848870 5590 if (sd && sd_degenerate(sd)) {
dce840a0 5591 tmp = sd;
245af2c7 5592 sd = sd->parent;
dce840a0 5593 destroy_sched_domain(tmp, cpu);
1a848870
SS
5594 if (sd)
5595 sd->child = NULL;
5596 }
1da177e4 5597
4cb98839 5598 sched_domain_debug(sd, cpu);
1da177e4 5599
57d885fe 5600 rq_attach_root(rq, rd);
dce840a0 5601 tmp = rq->sd;
674311d5 5602 rcu_assign_pointer(rq->sd, sd);
dce840a0 5603 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5604
5605 update_top_cache_domain(cpu);
1da177e4
LT
5606}
5607
5608/* cpus with isolated domains */
dcc30a35 5609static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5610
5611/* Setup the mask of cpus configured for isolated domains */
5612static int __init isolated_cpu_setup(char *str)
5613{
bdddd296 5614 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5615 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5616 return 1;
5617}
5618
8927f494 5619__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5620
49a02c51 5621struct s_data {
21d42ccf 5622 struct sched_domain ** __percpu sd;
49a02c51
AH
5623 struct root_domain *rd;
5624};
5625
2109b99e 5626enum s_alloc {
2109b99e 5627 sa_rootdomain,
21d42ccf 5628 sa_sd,
dce840a0 5629 sa_sd_storage,
2109b99e
AH
5630 sa_none,
5631};
5632
c1174876
PZ
5633/*
5634 * Build an iteration mask that can exclude certain CPUs from the upwards
5635 * domain traversal.
5636 *
5637 * Asymmetric node setups can result in situations where the domain tree is of
5638 * unequal depth, make sure to skip domains that already cover the entire
5639 * range.
5640 *
5641 * In that case build_sched_domains() will have terminated the iteration early
5642 * and our sibling sd spans will be empty. Domains should always include the
5643 * cpu they're built on, so check that.
5644 *
5645 */
5646static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5647{
5648 const struct cpumask *span = sched_domain_span(sd);
5649 struct sd_data *sdd = sd->private;
5650 struct sched_domain *sibling;
5651 int i;
5652
5653 for_each_cpu(i, span) {
5654 sibling = *per_cpu_ptr(sdd->sd, i);
5655 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5656 continue;
5657
5658 cpumask_set_cpu(i, sched_group_mask(sg));
5659 }
5660}
5661
5662/*
5663 * Return the canonical balance cpu for this group, this is the first cpu
5664 * of this group that's also in the iteration mask.
5665 */
5666int group_balance_cpu(struct sched_group *sg)
5667{
5668 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5669}
5670
e3589f6c
PZ
5671static int
5672build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5673{
5674 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5675 const struct cpumask *span = sched_domain_span(sd);
5676 struct cpumask *covered = sched_domains_tmpmask;
5677 struct sd_data *sdd = sd->private;
5678 struct sched_domain *child;
5679 int i;
5680
5681 cpumask_clear(covered);
5682
5683 for_each_cpu(i, span) {
5684 struct cpumask *sg_span;
5685
5686 if (cpumask_test_cpu(i, covered))
5687 continue;
5688
c1174876
PZ
5689 child = *per_cpu_ptr(sdd->sd, i);
5690
5691 /* See the comment near build_group_mask(). */
5692 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5693 continue;
5694
e3589f6c 5695 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5696 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5697
5698 if (!sg)
5699 goto fail;
5700
5701 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5702 if (child->child) {
5703 child = child->child;
5704 cpumask_copy(sg_span, sched_domain_span(child));
5705 } else
5706 cpumask_set_cpu(i, sg_span);
5707
5708 cpumask_or(covered, covered, sg_span);
5709
74a5ce20 5710 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5711 if (atomic_inc_return(&sg->sgp->ref) == 1)
5712 build_group_mask(sd, sg);
5713
c3decf0d
PZ
5714 /*
5715 * Initialize sgp->power such that even if we mess up the
5716 * domains and no possible iteration will get us here, we won't
5717 * die on a /0 trap.
5718 */
5719 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5720 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5721
c1174876
PZ
5722 /*
5723 * Make sure the first group of this domain contains the
5724 * canonical balance cpu. Otherwise the sched_domain iteration
5725 * breaks. See update_sg_lb_stats().
5726 */
74a5ce20 5727 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5728 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5729 groups = sg;
5730
5731 if (!first)
5732 first = sg;
5733 if (last)
5734 last->next = sg;
5735 last = sg;
5736 last->next = first;
5737 }
5738 sd->groups = groups;
5739
5740 return 0;
5741
5742fail:
5743 free_sched_groups(first, 0);
5744
5745 return -ENOMEM;
5746}
5747
dce840a0 5748static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5749{
dce840a0
PZ
5750 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5751 struct sched_domain *child = sd->child;
1da177e4 5752
dce840a0
PZ
5753 if (child)
5754 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5755
9c3f75cb 5756 if (sg) {
dce840a0 5757 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5758 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5759 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5760 }
dce840a0
PZ
5761
5762 return cpu;
1e9f28fa 5763}
1e9f28fa 5764
01a08546 5765/*
dce840a0
PZ
5766 * build_sched_groups will build a circular linked list of the groups
5767 * covered by the given span, and will set each group's ->cpumask correctly,
5768 * and ->cpu_power to 0.
e3589f6c
PZ
5769 *
5770 * Assumes the sched_domain tree is fully constructed
01a08546 5771 */
e3589f6c
PZ
5772static int
5773build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5774{
dce840a0
PZ
5775 struct sched_group *first = NULL, *last = NULL;
5776 struct sd_data *sdd = sd->private;
5777 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5778 struct cpumask *covered;
dce840a0 5779 int i;
9c1cfda2 5780
e3589f6c
PZ
5781 get_group(cpu, sdd, &sd->groups);
5782 atomic_inc(&sd->groups->ref);
5783
0936629f 5784 if (cpu != cpumask_first(span))
e3589f6c
PZ
5785 return 0;
5786
f96225fd
PZ
5787 lockdep_assert_held(&sched_domains_mutex);
5788 covered = sched_domains_tmpmask;
5789
dce840a0 5790 cpumask_clear(covered);
6711cab4 5791
dce840a0
PZ
5792 for_each_cpu(i, span) {
5793 struct sched_group *sg;
cd08e923 5794 int group, j;
6711cab4 5795
dce840a0
PZ
5796 if (cpumask_test_cpu(i, covered))
5797 continue;
6711cab4 5798
cd08e923 5799 group = get_group(i, sdd, &sg);
c1174876 5800 cpumask_setall(sched_group_mask(sg));
0601a88d 5801
dce840a0
PZ
5802 for_each_cpu(j, span) {
5803 if (get_group(j, sdd, NULL) != group)
5804 continue;
0601a88d 5805
dce840a0
PZ
5806 cpumask_set_cpu(j, covered);
5807 cpumask_set_cpu(j, sched_group_cpus(sg));
5808 }
0601a88d 5809
dce840a0
PZ
5810 if (!first)
5811 first = sg;
5812 if (last)
5813 last->next = sg;
5814 last = sg;
5815 }
5816 last->next = first;
e3589f6c
PZ
5817
5818 return 0;
0601a88d 5819}
51888ca2 5820
89c4710e
SS
5821/*
5822 * Initialize sched groups cpu_power.
5823 *
5824 * cpu_power indicates the capacity of sched group, which is used while
5825 * distributing the load between different sched groups in a sched domain.
5826 * Typically cpu_power for all the groups in a sched domain will be same unless
5827 * there are asymmetries in the topology. If there are asymmetries, group
5828 * having more cpu_power will pickup more load compared to the group having
5829 * less cpu_power.
89c4710e
SS
5830 */
5831static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5832{
e3589f6c 5833 struct sched_group *sg = sd->groups;
89c4710e 5834
94c95ba6 5835 WARN_ON(!sg);
e3589f6c
PZ
5836
5837 do {
5838 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5839 sg = sg->next;
5840 } while (sg != sd->groups);
89c4710e 5841
c1174876 5842 if (cpu != group_balance_cpu(sg))
e3589f6c 5843 return;
aae6d3dd 5844
d274cb30 5845 update_group_power(sd, cpu);
69e1e811 5846 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5847}
5848
7c16ec58
MT
5849/*
5850 * Initializers for schedule domains
5851 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5852 */
5853
1d3504fc 5854static int default_relax_domain_level = -1;
60495e77 5855int sched_domain_level_max;
1d3504fc
HS
5856
5857static int __init setup_relax_domain_level(char *str)
5858{
a841f8ce
DS
5859 if (kstrtoint(str, 0, &default_relax_domain_level))
5860 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5861
1d3504fc
HS
5862 return 1;
5863}
5864__setup("relax_domain_level=", setup_relax_domain_level);
5865
5866static void set_domain_attribute(struct sched_domain *sd,
5867 struct sched_domain_attr *attr)
5868{
5869 int request;
5870
5871 if (!attr || attr->relax_domain_level < 0) {
5872 if (default_relax_domain_level < 0)
5873 return;
5874 else
5875 request = default_relax_domain_level;
5876 } else
5877 request = attr->relax_domain_level;
5878 if (request < sd->level) {
5879 /* turn off idle balance on this domain */
c88d5910 5880 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5881 } else {
5882 /* turn on idle balance on this domain */
c88d5910 5883 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5884 }
5885}
5886
54ab4ff4
PZ
5887static void __sdt_free(const struct cpumask *cpu_map);
5888static int __sdt_alloc(const struct cpumask *cpu_map);
5889
2109b99e
AH
5890static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5891 const struct cpumask *cpu_map)
5892{
5893 switch (what) {
2109b99e 5894 case sa_rootdomain:
822ff793
PZ
5895 if (!atomic_read(&d->rd->refcount))
5896 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5897 case sa_sd:
5898 free_percpu(d->sd); /* fall through */
dce840a0 5899 case sa_sd_storage:
54ab4ff4 5900 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5901 case sa_none:
5902 break;
5903 }
5904}
3404c8d9 5905
2109b99e
AH
5906static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5907 const struct cpumask *cpu_map)
5908{
dce840a0
PZ
5909 memset(d, 0, sizeof(*d));
5910
54ab4ff4
PZ
5911 if (__sdt_alloc(cpu_map))
5912 return sa_sd_storage;
dce840a0
PZ
5913 d->sd = alloc_percpu(struct sched_domain *);
5914 if (!d->sd)
5915 return sa_sd_storage;
2109b99e 5916 d->rd = alloc_rootdomain();
dce840a0 5917 if (!d->rd)
21d42ccf 5918 return sa_sd;
2109b99e
AH
5919 return sa_rootdomain;
5920}
57d885fe 5921
dce840a0
PZ
5922/*
5923 * NULL the sd_data elements we've used to build the sched_domain and
5924 * sched_group structure so that the subsequent __free_domain_allocs()
5925 * will not free the data we're using.
5926 */
5927static void claim_allocations(int cpu, struct sched_domain *sd)
5928{
5929 struct sd_data *sdd = sd->private;
dce840a0
PZ
5930
5931 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5932 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5933
e3589f6c 5934 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5935 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5936
5937 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5938 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5939}
5940
cb83b629 5941#ifdef CONFIG_NUMA
cb83b629 5942static int sched_domains_numa_levels;
cb83b629
PZ
5943static int *sched_domains_numa_distance;
5944static struct cpumask ***sched_domains_numa_masks;
5945static int sched_domains_curr_level;
143e1e28 5946#endif
cb83b629 5947
143e1e28
VG
5948/*
5949 * SD_flags allowed in topology descriptions.
5950 *
5951 * SD_SHARE_CPUPOWER - describes SMT topologies
5952 * SD_SHARE_PKG_RESOURCES - describes shared caches
5953 * SD_NUMA - describes NUMA topologies
d77b3ed5 5954 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
5955 *
5956 * Odd one out:
5957 * SD_ASYM_PACKING - describes SMT quirks
5958 */
5959#define TOPOLOGY_SD_FLAGS \
5960 (SD_SHARE_CPUPOWER | \
5961 SD_SHARE_PKG_RESOURCES | \
5962 SD_NUMA | \
d77b3ed5
VG
5963 SD_ASYM_PACKING | \
5964 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
5965
5966static struct sched_domain *
143e1e28 5967sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
5968{
5969 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
5970 int sd_weight, sd_flags = 0;
5971
5972#ifdef CONFIG_NUMA
5973 /*
5974 * Ugly hack to pass state to sd_numa_mask()...
5975 */
5976 sched_domains_curr_level = tl->numa_level;
5977#endif
5978
5979 sd_weight = cpumask_weight(tl->mask(cpu));
5980
5981 if (tl->sd_flags)
5982 sd_flags = (*tl->sd_flags)();
5983 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
5984 "wrong sd_flags in topology description\n"))
5985 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
5986
5987 *sd = (struct sched_domain){
5988 .min_interval = sd_weight,
5989 .max_interval = 2*sd_weight,
5990 .busy_factor = 32,
870a0bb5 5991 .imbalance_pct = 125,
143e1e28
VG
5992
5993 .cache_nice_tries = 0,
5994 .busy_idx = 0,
5995 .idle_idx = 0,
cb83b629
PZ
5996 .newidle_idx = 0,
5997 .wake_idx = 0,
5998 .forkexec_idx = 0,
5999
6000 .flags = 1*SD_LOAD_BALANCE
6001 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6002 | 1*SD_BALANCE_EXEC
6003 | 1*SD_BALANCE_FORK
cb83b629 6004 | 0*SD_BALANCE_WAKE
143e1e28 6005 | 1*SD_WAKE_AFFINE
cb83b629 6006 | 0*SD_SHARE_CPUPOWER
cb83b629 6007 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6008 | 0*SD_SERIALIZE
cb83b629 6009 | 0*SD_PREFER_SIBLING
143e1e28
VG
6010 | 0*SD_NUMA
6011 | sd_flags
cb83b629 6012 ,
143e1e28 6013
cb83b629
PZ
6014 .last_balance = jiffies,
6015 .balance_interval = sd_weight,
143e1e28 6016 .smt_gain = 0,
2b4cfe64
JL
6017 .max_newidle_lb_cost = 0,
6018 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6019#ifdef CONFIG_SCHED_DEBUG
6020 .name = tl->name,
6021#endif
cb83b629 6022 };
cb83b629
PZ
6023
6024 /*
143e1e28 6025 * Convert topological properties into behaviour.
cb83b629 6026 */
143e1e28
VG
6027
6028 if (sd->flags & SD_SHARE_CPUPOWER) {
6029 sd->imbalance_pct = 110;
6030 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6031
6032 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6033 sd->imbalance_pct = 117;
6034 sd->cache_nice_tries = 1;
6035 sd->busy_idx = 2;
6036
6037#ifdef CONFIG_NUMA
6038 } else if (sd->flags & SD_NUMA) {
6039 sd->cache_nice_tries = 2;
6040 sd->busy_idx = 3;
6041 sd->idle_idx = 2;
6042
6043 sd->flags |= SD_SERIALIZE;
6044 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6045 sd->flags &= ~(SD_BALANCE_EXEC |
6046 SD_BALANCE_FORK |
6047 SD_WAKE_AFFINE);
6048 }
6049
6050#endif
6051 } else {
6052 sd->flags |= SD_PREFER_SIBLING;
6053 sd->cache_nice_tries = 1;
6054 sd->busy_idx = 2;
6055 sd->idle_idx = 1;
6056 }
6057
6058 sd->private = &tl->data;
cb83b629
PZ
6059
6060 return sd;
6061}
6062
143e1e28
VG
6063/*
6064 * Topology list, bottom-up.
6065 */
6066static struct sched_domain_topology_level default_topology[] = {
6067#ifdef CONFIG_SCHED_SMT
6068 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6069#endif
6070#ifdef CONFIG_SCHED_MC
6071 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6072#endif
6073 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6074 { NULL, },
6075};
6076
6077struct sched_domain_topology_level *sched_domain_topology = default_topology;
6078
6079#define for_each_sd_topology(tl) \
6080 for (tl = sched_domain_topology; tl->mask; tl++)
6081
6082void set_sched_topology(struct sched_domain_topology_level *tl)
6083{
6084 sched_domain_topology = tl;
6085}
6086
6087#ifdef CONFIG_NUMA
6088
cb83b629
PZ
6089static const struct cpumask *sd_numa_mask(int cpu)
6090{
6091 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6092}
6093
d039ac60
PZ
6094static void sched_numa_warn(const char *str)
6095{
6096 static int done = false;
6097 int i,j;
6098
6099 if (done)
6100 return;
6101
6102 done = true;
6103
6104 printk(KERN_WARNING "ERROR: %s\n\n", str);
6105
6106 for (i = 0; i < nr_node_ids; i++) {
6107 printk(KERN_WARNING " ");
6108 for (j = 0; j < nr_node_ids; j++)
6109 printk(KERN_CONT "%02d ", node_distance(i,j));
6110 printk(KERN_CONT "\n");
6111 }
6112 printk(KERN_WARNING "\n");
6113}
6114
6115static bool find_numa_distance(int distance)
6116{
6117 int i;
6118
6119 if (distance == node_distance(0, 0))
6120 return true;
6121
6122 for (i = 0; i < sched_domains_numa_levels; i++) {
6123 if (sched_domains_numa_distance[i] == distance)
6124 return true;
6125 }
6126
6127 return false;
6128}
6129
cb83b629
PZ
6130static void sched_init_numa(void)
6131{
6132 int next_distance, curr_distance = node_distance(0, 0);
6133 struct sched_domain_topology_level *tl;
6134 int level = 0;
6135 int i, j, k;
6136
cb83b629
PZ
6137 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6138 if (!sched_domains_numa_distance)
6139 return;
6140
6141 /*
6142 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6143 * unique distances in the node_distance() table.
6144 *
6145 * Assumes node_distance(0,j) includes all distances in
6146 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6147 */
6148 next_distance = curr_distance;
6149 for (i = 0; i < nr_node_ids; i++) {
6150 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6151 for (k = 0; k < nr_node_ids; k++) {
6152 int distance = node_distance(i, k);
6153
6154 if (distance > curr_distance &&
6155 (distance < next_distance ||
6156 next_distance == curr_distance))
6157 next_distance = distance;
6158
6159 /*
6160 * While not a strong assumption it would be nice to know
6161 * about cases where if node A is connected to B, B is not
6162 * equally connected to A.
6163 */
6164 if (sched_debug() && node_distance(k, i) != distance)
6165 sched_numa_warn("Node-distance not symmetric");
6166
6167 if (sched_debug() && i && !find_numa_distance(distance))
6168 sched_numa_warn("Node-0 not representative");
6169 }
6170 if (next_distance != curr_distance) {
6171 sched_domains_numa_distance[level++] = next_distance;
6172 sched_domains_numa_levels = level;
6173 curr_distance = next_distance;
6174 } else break;
cb83b629 6175 }
d039ac60
PZ
6176
6177 /*
6178 * In case of sched_debug() we verify the above assumption.
6179 */
6180 if (!sched_debug())
6181 break;
cb83b629
PZ
6182 }
6183 /*
6184 * 'level' contains the number of unique distances, excluding the
6185 * identity distance node_distance(i,i).
6186 *
28b4a521 6187 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6188 * numbers.
6189 */
6190
5f7865f3
TC
6191 /*
6192 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6193 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6194 * the array will contain less then 'level' members. This could be
6195 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6196 * in other functions.
6197 *
6198 * We reset it to 'level' at the end of this function.
6199 */
6200 sched_domains_numa_levels = 0;
6201
cb83b629
PZ
6202 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6203 if (!sched_domains_numa_masks)
6204 return;
6205
6206 /*
6207 * Now for each level, construct a mask per node which contains all
6208 * cpus of nodes that are that many hops away from us.
6209 */
6210 for (i = 0; i < level; i++) {
6211 sched_domains_numa_masks[i] =
6212 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6213 if (!sched_domains_numa_masks[i])
6214 return;
6215
6216 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6217 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6218 if (!mask)
6219 return;
6220
6221 sched_domains_numa_masks[i][j] = mask;
6222
6223 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6224 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6225 continue;
6226
6227 cpumask_or(mask, mask, cpumask_of_node(k));
6228 }
6229 }
6230 }
6231
143e1e28
VG
6232 /* Compute default topology size */
6233 for (i = 0; sched_domain_topology[i].mask; i++);
6234
c515db8c 6235 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6236 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6237 if (!tl)
6238 return;
6239
6240 /*
6241 * Copy the default topology bits..
6242 */
143e1e28
VG
6243 for (i = 0; sched_domain_topology[i].mask; i++)
6244 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6245
6246 /*
6247 * .. and append 'j' levels of NUMA goodness.
6248 */
6249 for (j = 0; j < level; i++, j++) {
6250 tl[i] = (struct sched_domain_topology_level){
cb83b629 6251 .mask = sd_numa_mask,
143e1e28 6252 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6253 .flags = SDTL_OVERLAP,
6254 .numa_level = j,
143e1e28 6255 SD_INIT_NAME(NUMA)
cb83b629
PZ
6256 };
6257 }
6258
6259 sched_domain_topology = tl;
5f7865f3
TC
6260
6261 sched_domains_numa_levels = level;
cb83b629 6262}
301a5cba
TC
6263
6264static void sched_domains_numa_masks_set(int cpu)
6265{
6266 int i, j;
6267 int node = cpu_to_node(cpu);
6268
6269 for (i = 0; i < sched_domains_numa_levels; i++) {
6270 for (j = 0; j < nr_node_ids; j++) {
6271 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6272 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6273 }
6274 }
6275}
6276
6277static void sched_domains_numa_masks_clear(int cpu)
6278{
6279 int i, j;
6280 for (i = 0; i < sched_domains_numa_levels; i++) {
6281 for (j = 0; j < nr_node_ids; j++)
6282 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6283 }
6284}
6285
6286/*
6287 * Update sched_domains_numa_masks[level][node] array when new cpus
6288 * are onlined.
6289 */
6290static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6291 unsigned long action,
6292 void *hcpu)
6293{
6294 int cpu = (long)hcpu;
6295
6296 switch (action & ~CPU_TASKS_FROZEN) {
6297 case CPU_ONLINE:
6298 sched_domains_numa_masks_set(cpu);
6299 break;
6300
6301 case CPU_DEAD:
6302 sched_domains_numa_masks_clear(cpu);
6303 break;
6304
6305 default:
6306 return NOTIFY_DONE;
6307 }
6308
6309 return NOTIFY_OK;
cb83b629
PZ
6310}
6311#else
6312static inline void sched_init_numa(void)
6313{
6314}
301a5cba
TC
6315
6316static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6317 unsigned long action,
6318 void *hcpu)
6319{
6320 return 0;
6321}
cb83b629
PZ
6322#endif /* CONFIG_NUMA */
6323
54ab4ff4
PZ
6324static int __sdt_alloc(const struct cpumask *cpu_map)
6325{
6326 struct sched_domain_topology_level *tl;
6327 int j;
6328
27723a68 6329 for_each_sd_topology(tl) {
54ab4ff4
PZ
6330 struct sd_data *sdd = &tl->data;
6331
6332 sdd->sd = alloc_percpu(struct sched_domain *);
6333 if (!sdd->sd)
6334 return -ENOMEM;
6335
6336 sdd->sg = alloc_percpu(struct sched_group *);
6337 if (!sdd->sg)
6338 return -ENOMEM;
6339
9c3f75cb
PZ
6340 sdd->sgp = alloc_percpu(struct sched_group_power *);
6341 if (!sdd->sgp)
6342 return -ENOMEM;
6343
54ab4ff4
PZ
6344 for_each_cpu(j, cpu_map) {
6345 struct sched_domain *sd;
6346 struct sched_group *sg;
9c3f75cb 6347 struct sched_group_power *sgp;
54ab4ff4
PZ
6348
6349 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6350 GFP_KERNEL, cpu_to_node(j));
6351 if (!sd)
6352 return -ENOMEM;
6353
6354 *per_cpu_ptr(sdd->sd, j) = sd;
6355
6356 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6357 GFP_KERNEL, cpu_to_node(j));
6358 if (!sg)
6359 return -ENOMEM;
6360
30b4e9eb
IM
6361 sg->next = sg;
6362
54ab4ff4 6363 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6364
c1174876 6365 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6366 GFP_KERNEL, cpu_to_node(j));
6367 if (!sgp)
6368 return -ENOMEM;
6369
6370 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6371 }
6372 }
6373
6374 return 0;
6375}
6376
6377static void __sdt_free(const struct cpumask *cpu_map)
6378{
6379 struct sched_domain_topology_level *tl;
6380 int j;
6381
27723a68 6382 for_each_sd_topology(tl) {
54ab4ff4
PZ
6383 struct sd_data *sdd = &tl->data;
6384
6385 for_each_cpu(j, cpu_map) {
fb2cf2c6 6386 struct sched_domain *sd;
6387
6388 if (sdd->sd) {
6389 sd = *per_cpu_ptr(sdd->sd, j);
6390 if (sd && (sd->flags & SD_OVERLAP))
6391 free_sched_groups(sd->groups, 0);
6392 kfree(*per_cpu_ptr(sdd->sd, j));
6393 }
6394
6395 if (sdd->sg)
6396 kfree(*per_cpu_ptr(sdd->sg, j));
6397 if (sdd->sgp)
6398 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6399 }
6400 free_percpu(sdd->sd);
fb2cf2c6 6401 sdd->sd = NULL;
54ab4ff4 6402 free_percpu(sdd->sg);
fb2cf2c6 6403 sdd->sg = NULL;
9c3f75cb 6404 free_percpu(sdd->sgp);
fb2cf2c6 6405 sdd->sgp = NULL;
54ab4ff4
PZ
6406 }
6407}
6408
2c402dc3 6409struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6410 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6411 struct sched_domain *child, int cpu)
2c402dc3 6412{
143e1e28 6413 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6414 if (!sd)
d069b916 6415 return child;
2c402dc3 6416
2c402dc3 6417 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6418 if (child) {
6419 sd->level = child->level + 1;
6420 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6421 child->parent = sd;
c75e0128 6422 sd->child = child;
60495e77 6423 }
a841f8ce 6424 set_domain_attribute(sd, attr);
2c402dc3
PZ
6425
6426 return sd;
6427}
6428
2109b99e
AH
6429/*
6430 * Build sched domains for a given set of cpus and attach the sched domains
6431 * to the individual cpus
6432 */
dce840a0
PZ
6433static int build_sched_domains(const struct cpumask *cpu_map,
6434 struct sched_domain_attr *attr)
2109b99e 6435{
1c632169 6436 enum s_alloc alloc_state;
dce840a0 6437 struct sched_domain *sd;
2109b99e 6438 struct s_data d;
822ff793 6439 int i, ret = -ENOMEM;
9c1cfda2 6440
2109b99e
AH
6441 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6442 if (alloc_state != sa_rootdomain)
6443 goto error;
9c1cfda2 6444
dce840a0 6445 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6446 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6447 struct sched_domain_topology_level *tl;
6448
3bd65a80 6449 sd = NULL;
27723a68 6450 for_each_sd_topology(tl) {
4a850cbe 6451 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6452 if (tl == sched_domain_topology)
6453 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6454 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6455 sd->flags |= SD_OVERLAP;
d110235d
PZ
6456 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6457 break;
e3589f6c 6458 }
dce840a0
PZ
6459 }
6460
6461 /* Build the groups for the domains */
6462 for_each_cpu(i, cpu_map) {
6463 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6464 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6465 if (sd->flags & SD_OVERLAP) {
6466 if (build_overlap_sched_groups(sd, i))
6467 goto error;
6468 } else {
6469 if (build_sched_groups(sd, i))
6470 goto error;
6471 }
1cf51902 6472 }
a06dadbe 6473 }
9c1cfda2 6474
1da177e4 6475 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6476 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6477 if (!cpumask_test_cpu(i, cpu_map))
6478 continue;
9c1cfda2 6479
dce840a0
PZ
6480 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6481 claim_allocations(i, sd);
cd4ea6ae 6482 init_sched_groups_power(i, sd);
dce840a0 6483 }
f712c0c7 6484 }
9c1cfda2 6485
1da177e4 6486 /* Attach the domains */
dce840a0 6487 rcu_read_lock();
abcd083a 6488 for_each_cpu(i, cpu_map) {
21d42ccf 6489 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6490 cpu_attach_domain(sd, d.rd, i);
1da177e4 6491 }
dce840a0 6492 rcu_read_unlock();
51888ca2 6493
822ff793 6494 ret = 0;
51888ca2 6495error:
2109b99e 6496 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6497 return ret;
1da177e4 6498}
029190c5 6499
acc3f5d7 6500static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6501static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6502static struct sched_domain_attr *dattr_cur;
6503 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6504
6505/*
6506 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6507 * cpumask) fails, then fallback to a single sched domain,
6508 * as determined by the single cpumask fallback_doms.
029190c5 6509 */
4212823f 6510static cpumask_var_t fallback_doms;
029190c5 6511
ee79d1bd
HC
6512/*
6513 * arch_update_cpu_topology lets virtualized architectures update the
6514 * cpu core maps. It is supposed to return 1 if the topology changed
6515 * or 0 if it stayed the same.
6516 */
52f5684c 6517int __weak arch_update_cpu_topology(void)
22e52b07 6518{
ee79d1bd 6519 return 0;
22e52b07
HC
6520}
6521
acc3f5d7
RR
6522cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6523{
6524 int i;
6525 cpumask_var_t *doms;
6526
6527 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6528 if (!doms)
6529 return NULL;
6530 for (i = 0; i < ndoms; i++) {
6531 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6532 free_sched_domains(doms, i);
6533 return NULL;
6534 }
6535 }
6536 return doms;
6537}
6538
6539void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6540{
6541 unsigned int i;
6542 for (i = 0; i < ndoms; i++)
6543 free_cpumask_var(doms[i]);
6544 kfree(doms);
6545}
6546
1a20ff27 6547/*
41a2d6cf 6548 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6549 * For now this just excludes isolated cpus, but could be used to
6550 * exclude other special cases in the future.
1a20ff27 6551 */
c4a8849a 6552static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6553{
7378547f
MM
6554 int err;
6555
22e52b07 6556 arch_update_cpu_topology();
029190c5 6557 ndoms_cur = 1;
acc3f5d7 6558 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6559 if (!doms_cur)
acc3f5d7
RR
6560 doms_cur = &fallback_doms;
6561 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6562 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6563 register_sched_domain_sysctl();
7378547f
MM
6564
6565 return err;
1a20ff27
DG
6566}
6567
1a20ff27
DG
6568/*
6569 * Detach sched domains from a group of cpus specified in cpu_map
6570 * These cpus will now be attached to the NULL domain
6571 */
96f874e2 6572static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6573{
6574 int i;
6575
dce840a0 6576 rcu_read_lock();
abcd083a 6577 for_each_cpu(i, cpu_map)
57d885fe 6578 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6579 rcu_read_unlock();
1a20ff27
DG
6580}
6581
1d3504fc
HS
6582/* handle null as "default" */
6583static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6584 struct sched_domain_attr *new, int idx_new)
6585{
6586 struct sched_domain_attr tmp;
6587
6588 /* fast path */
6589 if (!new && !cur)
6590 return 1;
6591
6592 tmp = SD_ATTR_INIT;
6593 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6594 new ? (new + idx_new) : &tmp,
6595 sizeof(struct sched_domain_attr));
6596}
6597
029190c5
PJ
6598/*
6599 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6600 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6601 * doms_new[] to the current sched domain partitioning, doms_cur[].
6602 * It destroys each deleted domain and builds each new domain.
6603 *
acc3f5d7 6604 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6605 * The masks don't intersect (don't overlap.) We should setup one
6606 * sched domain for each mask. CPUs not in any of the cpumasks will
6607 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6608 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6609 * it as it is.
6610 *
acc3f5d7
RR
6611 * The passed in 'doms_new' should be allocated using
6612 * alloc_sched_domains. This routine takes ownership of it and will
6613 * free_sched_domains it when done with it. If the caller failed the
6614 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6615 * and partition_sched_domains() will fallback to the single partition
6616 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6617 *
96f874e2 6618 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6619 * ndoms_new == 0 is a special case for destroying existing domains,
6620 * and it will not create the default domain.
dfb512ec 6621 *
029190c5
PJ
6622 * Call with hotplug lock held
6623 */
acc3f5d7 6624void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6625 struct sched_domain_attr *dattr_new)
029190c5 6626{
dfb512ec 6627 int i, j, n;
d65bd5ec 6628 int new_topology;
029190c5 6629
712555ee 6630 mutex_lock(&sched_domains_mutex);
a1835615 6631
7378547f
MM
6632 /* always unregister in case we don't destroy any domains */
6633 unregister_sched_domain_sysctl();
6634
d65bd5ec
HC
6635 /* Let architecture update cpu core mappings. */
6636 new_topology = arch_update_cpu_topology();
6637
dfb512ec 6638 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6639
6640 /* Destroy deleted domains */
6641 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6642 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6643 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6644 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6645 goto match1;
6646 }
6647 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6648 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6649match1:
6650 ;
6651 }
6652
c8d2d47a 6653 n = ndoms_cur;
e761b772 6654 if (doms_new == NULL) {
c8d2d47a 6655 n = 0;
acc3f5d7 6656 doms_new = &fallback_doms;
6ad4c188 6657 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6658 WARN_ON_ONCE(dattr_new);
e761b772
MK
6659 }
6660
029190c5
PJ
6661 /* Build new domains */
6662 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6663 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6664 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6665 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6666 goto match2;
6667 }
6668 /* no match - add a new doms_new */
dce840a0 6669 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6670match2:
6671 ;
6672 }
6673
6674 /* Remember the new sched domains */
acc3f5d7
RR
6675 if (doms_cur != &fallback_doms)
6676 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6677 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6678 doms_cur = doms_new;
1d3504fc 6679 dattr_cur = dattr_new;
029190c5 6680 ndoms_cur = ndoms_new;
7378547f
MM
6681
6682 register_sched_domain_sysctl();
a1835615 6683
712555ee 6684 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6685}
6686
d35be8ba
SB
6687static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6688
1da177e4 6689/*
3a101d05
TH
6690 * Update cpusets according to cpu_active mask. If cpusets are
6691 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6692 * around partition_sched_domains().
d35be8ba
SB
6693 *
6694 * If we come here as part of a suspend/resume, don't touch cpusets because we
6695 * want to restore it back to its original state upon resume anyway.
1da177e4 6696 */
0b2e918a
TH
6697static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6698 void *hcpu)
e761b772 6699{
d35be8ba
SB
6700 switch (action) {
6701 case CPU_ONLINE_FROZEN:
6702 case CPU_DOWN_FAILED_FROZEN:
6703
6704 /*
6705 * num_cpus_frozen tracks how many CPUs are involved in suspend
6706 * resume sequence. As long as this is not the last online
6707 * operation in the resume sequence, just build a single sched
6708 * domain, ignoring cpusets.
6709 */
6710 num_cpus_frozen--;
6711 if (likely(num_cpus_frozen)) {
6712 partition_sched_domains(1, NULL, NULL);
6713 break;
6714 }
6715
6716 /*
6717 * This is the last CPU online operation. So fall through and
6718 * restore the original sched domains by considering the
6719 * cpuset configurations.
6720 */
6721
e761b772 6722 case CPU_ONLINE:
6ad4c188 6723 case CPU_DOWN_FAILED:
7ddf96b0 6724 cpuset_update_active_cpus(true);
d35be8ba 6725 break;
3a101d05
TH
6726 default:
6727 return NOTIFY_DONE;
6728 }
d35be8ba 6729 return NOTIFY_OK;
3a101d05 6730}
e761b772 6731
0b2e918a
TH
6732static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6733 void *hcpu)
3a101d05 6734{
d35be8ba 6735 switch (action) {
3a101d05 6736 case CPU_DOWN_PREPARE:
7ddf96b0 6737 cpuset_update_active_cpus(false);
d35be8ba
SB
6738 break;
6739 case CPU_DOWN_PREPARE_FROZEN:
6740 num_cpus_frozen++;
6741 partition_sched_domains(1, NULL, NULL);
6742 break;
e761b772
MK
6743 default:
6744 return NOTIFY_DONE;
6745 }
d35be8ba 6746 return NOTIFY_OK;
e761b772 6747}
e761b772 6748
1da177e4
LT
6749void __init sched_init_smp(void)
6750{
dcc30a35
RR
6751 cpumask_var_t non_isolated_cpus;
6752
6753 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6754 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6755
cb83b629
PZ
6756 sched_init_numa();
6757
6acce3ef
PZ
6758 /*
6759 * There's no userspace yet to cause hotplug operations; hence all the
6760 * cpu masks are stable and all blatant races in the below code cannot
6761 * happen.
6762 */
712555ee 6763 mutex_lock(&sched_domains_mutex);
c4a8849a 6764 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6765 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6766 if (cpumask_empty(non_isolated_cpus))
6767 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6768 mutex_unlock(&sched_domains_mutex);
e761b772 6769
301a5cba 6770 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6771 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6772 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6773
b328ca18 6774 init_hrtick();
5c1e1767
NP
6775
6776 /* Move init over to a non-isolated CPU */
dcc30a35 6777 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6778 BUG();
19978ca6 6779 sched_init_granularity();
dcc30a35 6780 free_cpumask_var(non_isolated_cpus);
4212823f 6781
0e3900e6 6782 init_sched_rt_class();
1baca4ce 6783 init_sched_dl_class();
1da177e4
LT
6784}
6785#else
6786void __init sched_init_smp(void)
6787{
19978ca6 6788 sched_init_granularity();
1da177e4
LT
6789}
6790#endif /* CONFIG_SMP */
6791
cd1bb94b
AB
6792const_debug unsigned int sysctl_timer_migration = 1;
6793
1da177e4
LT
6794int in_sched_functions(unsigned long addr)
6795{
1da177e4
LT
6796 return in_lock_functions(addr) ||
6797 (addr >= (unsigned long)__sched_text_start
6798 && addr < (unsigned long)__sched_text_end);
6799}
6800
029632fb 6801#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6802/*
6803 * Default task group.
6804 * Every task in system belongs to this group at bootup.
6805 */
029632fb 6806struct task_group root_task_group;
35cf4e50 6807LIST_HEAD(task_groups);
052f1dc7 6808#endif
6f505b16 6809
e6252c3e 6810DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6811
1da177e4
LT
6812void __init sched_init(void)
6813{
dd41f596 6814 int i, j;
434d53b0
MT
6815 unsigned long alloc_size = 0, ptr;
6816
6817#ifdef CONFIG_FAIR_GROUP_SCHED
6818 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6819#endif
6820#ifdef CONFIG_RT_GROUP_SCHED
6821 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6822#endif
df7c8e84 6823#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6824 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6825#endif
434d53b0 6826 if (alloc_size) {
36b7b6d4 6827 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6828
6829#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6830 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6831 ptr += nr_cpu_ids * sizeof(void **);
6832
07e06b01 6833 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6834 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6835
6d6bc0ad 6836#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6837#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6838 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6839 ptr += nr_cpu_ids * sizeof(void **);
6840
07e06b01 6841 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6842 ptr += nr_cpu_ids * sizeof(void **);
6843
6d6bc0ad 6844#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6845#ifdef CONFIG_CPUMASK_OFFSTACK
6846 for_each_possible_cpu(i) {
e6252c3e 6847 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6848 ptr += cpumask_size();
6849 }
6850#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6851 }
dd41f596 6852
332ac17e
DF
6853 init_rt_bandwidth(&def_rt_bandwidth,
6854 global_rt_period(), global_rt_runtime());
6855 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6856 global_rt_period(), global_rt_runtime());
332ac17e 6857
57d885fe
GH
6858#ifdef CONFIG_SMP
6859 init_defrootdomain();
6860#endif
6861
d0b27fa7 6862#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6863 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6864 global_rt_period(), global_rt_runtime());
6d6bc0ad 6865#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6866
7c941438 6867#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6868 list_add(&root_task_group.list, &task_groups);
6869 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6870 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6871 autogroup_init(&init_task);
54c707e9 6872
7c941438 6873#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6874
0a945022 6875 for_each_possible_cpu(i) {
70b97a7f 6876 struct rq *rq;
1da177e4
LT
6877
6878 rq = cpu_rq(i);
05fa785c 6879 raw_spin_lock_init(&rq->lock);
7897986b 6880 rq->nr_running = 0;
dce48a84
TG
6881 rq->calc_load_active = 0;
6882 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6883 init_cfs_rq(&rq->cfs);
6f505b16 6884 init_rt_rq(&rq->rt, rq);
aab03e05 6885 init_dl_rq(&rq->dl, rq);
dd41f596 6886#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6887 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6888 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6889 /*
07e06b01 6890 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6891 *
6892 * In case of task-groups formed thr' the cgroup filesystem, it
6893 * gets 100% of the cpu resources in the system. This overall
6894 * system cpu resource is divided among the tasks of
07e06b01 6895 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6896 * based on each entity's (task or task-group's) weight
6897 * (se->load.weight).
6898 *
07e06b01 6899 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6900 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6901 * then A0's share of the cpu resource is:
6902 *
0d905bca 6903 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6904 *
07e06b01
YZ
6905 * We achieve this by letting root_task_group's tasks sit
6906 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6907 */
ab84d31e 6908 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6909 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6910#endif /* CONFIG_FAIR_GROUP_SCHED */
6911
6912 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6913#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6914 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6915#endif
1da177e4 6916
dd41f596
IM
6917 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6918 rq->cpu_load[j] = 0;
fdf3e95d
VP
6919
6920 rq->last_load_update_tick = jiffies;
6921
1da177e4 6922#ifdef CONFIG_SMP
41c7ce9a 6923 rq->sd = NULL;
57d885fe 6924 rq->rd = NULL;
1399fa78 6925 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6926 rq->post_schedule = 0;
1da177e4 6927 rq->active_balance = 0;
dd41f596 6928 rq->next_balance = jiffies;
1da177e4 6929 rq->push_cpu = 0;
0a2966b4 6930 rq->cpu = i;
1f11eb6a 6931 rq->online = 0;
eae0c9df
MG
6932 rq->idle_stamp = 0;
6933 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6934 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6935
6936 INIT_LIST_HEAD(&rq->cfs_tasks);
6937
dc938520 6938 rq_attach_root(rq, &def_root_domain);
3451d024 6939#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6940 rq->nohz_flags = 0;
83cd4fe2 6941#endif
265f22a9
FW
6942#ifdef CONFIG_NO_HZ_FULL
6943 rq->last_sched_tick = 0;
6944#endif
1da177e4 6945#endif
8f4d37ec 6946 init_rq_hrtick(rq);
1da177e4 6947 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6948 }
6949
2dd73a4f 6950 set_load_weight(&init_task);
b50f60ce 6951
e107be36
AK
6952#ifdef CONFIG_PREEMPT_NOTIFIERS
6953 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6954#endif
6955
1da177e4
LT
6956 /*
6957 * The boot idle thread does lazy MMU switching as well:
6958 */
6959 atomic_inc(&init_mm.mm_count);
6960 enter_lazy_tlb(&init_mm, current);
6961
6962 /*
6963 * Make us the idle thread. Technically, schedule() should not be
6964 * called from this thread, however somewhere below it might be,
6965 * but because we are the idle thread, we just pick up running again
6966 * when this runqueue becomes "idle".
6967 */
6968 init_idle(current, smp_processor_id());
dce48a84
TG
6969
6970 calc_load_update = jiffies + LOAD_FREQ;
6971
dd41f596
IM
6972 /*
6973 * During early bootup we pretend to be a normal task:
6974 */
6975 current->sched_class = &fair_sched_class;
6892b75e 6976
bf4d83f6 6977#ifdef CONFIG_SMP
4cb98839 6978 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6979 /* May be allocated at isolcpus cmdline parse time */
6980 if (cpu_isolated_map == NULL)
6981 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6982 idle_thread_set_boot_cpu();
a803f026 6983 set_cpu_rq_start_time();
029632fb
PZ
6984#endif
6985 init_sched_fair_class();
6a7b3dc3 6986
6892b75e 6987 scheduler_running = 1;
1da177e4
LT
6988}
6989
d902db1e 6990#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6991static inline int preempt_count_equals(int preempt_offset)
6992{
234da7bc 6993 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6994
4ba8216c 6995 return (nested == preempt_offset);
e4aafea2
FW
6996}
6997
d894837f 6998void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6999{
1da177e4
LT
7000 static unsigned long prev_jiffy; /* ratelimiting */
7001
b3fbab05 7002 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7003 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7004 !is_idle_task(current)) ||
e4aafea2 7005 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7006 return;
7007 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7008 return;
7009 prev_jiffy = jiffies;
7010
3df0fc5b
PZ
7011 printk(KERN_ERR
7012 "BUG: sleeping function called from invalid context at %s:%d\n",
7013 file, line);
7014 printk(KERN_ERR
7015 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7016 in_atomic(), irqs_disabled(),
7017 current->pid, current->comm);
aef745fc
IM
7018
7019 debug_show_held_locks(current);
7020 if (irqs_disabled())
7021 print_irqtrace_events(current);
8f47b187
TG
7022#ifdef CONFIG_DEBUG_PREEMPT
7023 if (!preempt_count_equals(preempt_offset)) {
7024 pr_err("Preemption disabled at:");
7025 print_ip_sym(current->preempt_disable_ip);
7026 pr_cont("\n");
7027 }
7028#endif
aef745fc 7029 dump_stack();
1da177e4
LT
7030}
7031EXPORT_SYMBOL(__might_sleep);
7032#endif
7033
7034#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7035static void normalize_task(struct rq *rq, struct task_struct *p)
7036{
da7a735e 7037 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7038 struct sched_attr attr = {
7039 .sched_policy = SCHED_NORMAL,
7040 };
da7a735e 7041 int old_prio = p->prio;
3a5e4dc1 7042 int on_rq;
3e51f33f 7043
fd2f4419 7044 on_rq = p->on_rq;
3a5e4dc1 7045 if (on_rq)
4ca9b72b 7046 dequeue_task(rq, p, 0);
d50dde5a 7047 __setscheduler(rq, p, &attr);
3a5e4dc1 7048 if (on_rq) {
4ca9b72b 7049 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7050 resched_task(rq->curr);
7051 }
da7a735e
PZ
7052
7053 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7054}
7055
1da177e4
LT
7056void normalize_rt_tasks(void)
7057{
a0f98a1c 7058 struct task_struct *g, *p;
1da177e4 7059 unsigned long flags;
70b97a7f 7060 struct rq *rq;
1da177e4 7061
4cf5d77a 7062 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7063 do_each_thread(g, p) {
178be793
IM
7064 /*
7065 * Only normalize user tasks:
7066 */
7067 if (!p->mm)
7068 continue;
7069
6cfb0d5d 7070 p->se.exec_start = 0;
6cfb0d5d 7071#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7072 p->se.statistics.wait_start = 0;
7073 p->se.statistics.sleep_start = 0;
7074 p->se.statistics.block_start = 0;
6cfb0d5d 7075#endif
dd41f596 7076
aab03e05 7077 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7078 /*
7079 * Renice negative nice level userspace
7080 * tasks back to 0:
7081 */
d0ea0268 7082 if (task_nice(p) < 0 && p->mm)
dd41f596 7083 set_user_nice(p, 0);
1da177e4 7084 continue;
dd41f596 7085 }
1da177e4 7086
1d615482 7087 raw_spin_lock(&p->pi_lock);
b29739f9 7088 rq = __task_rq_lock(p);
1da177e4 7089
178be793 7090 normalize_task(rq, p);
3a5e4dc1 7091
b29739f9 7092 __task_rq_unlock(rq);
1d615482 7093 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7094 } while_each_thread(g, p);
7095
4cf5d77a 7096 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7097}
7098
7099#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7100
67fc4e0c 7101#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7102/*
67fc4e0c 7103 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7104 *
7105 * They can only be called when the whole system has been
7106 * stopped - every CPU needs to be quiescent, and no scheduling
7107 * activity can take place. Using them for anything else would
7108 * be a serious bug, and as a result, they aren't even visible
7109 * under any other configuration.
7110 */
7111
7112/**
7113 * curr_task - return the current task for a given cpu.
7114 * @cpu: the processor in question.
7115 *
7116 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7117 *
7118 * Return: The current task for @cpu.
1df5c10a 7119 */
36c8b586 7120struct task_struct *curr_task(int cpu)
1df5c10a
LT
7121{
7122 return cpu_curr(cpu);
7123}
7124
67fc4e0c
JW
7125#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7126
7127#ifdef CONFIG_IA64
1df5c10a
LT
7128/**
7129 * set_curr_task - set the current task for a given cpu.
7130 * @cpu: the processor in question.
7131 * @p: the task pointer to set.
7132 *
7133 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7134 * are serviced on a separate stack. It allows the architecture to switch the
7135 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7136 * must be called with all CPU's synchronized, and interrupts disabled, the
7137 * and caller must save the original value of the current task (see
7138 * curr_task() above) and restore that value before reenabling interrupts and
7139 * re-starting the system.
7140 *
7141 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7142 */
36c8b586 7143void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7144{
7145 cpu_curr(cpu) = p;
7146}
7147
7148#endif
29f59db3 7149
7c941438 7150#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7151/* task_group_lock serializes the addition/removal of task groups */
7152static DEFINE_SPINLOCK(task_group_lock);
7153
bccbe08a
PZ
7154static void free_sched_group(struct task_group *tg)
7155{
7156 free_fair_sched_group(tg);
7157 free_rt_sched_group(tg);
e9aa1dd1 7158 autogroup_free(tg);
bccbe08a
PZ
7159 kfree(tg);
7160}
7161
7162/* allocate runqueue etc for a new task group */
ec7dc8ac 7163struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7164{
7165 struct task_group *tg;
bccbe08a
PZ
7166
7167 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7168 if (!tg)
7169 return ERR_PTR(-ENOMEM);
7170
ec7dc8ac 7171 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7172 goto err;
7173
ec7dc8ac 7174 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7175 goto err;
7176
ace783b9
LZ
7177 return tg;
7178
7179err:
7180 free_sched_group(tg);
7181 return ERR_PTR(-ENOMEM);
7182}
7183
7184void sched_online_group(struct task_group *tg, struct task_group *parent)
7185{
7186 unsigned long flags;
7187
8ed36996 7188 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7189 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7190
7191 WARN_ON(!parent); /* root should already exist */
7192
7193 tg->parent = parent;
f473aa5e 7194 INIT_LIST_HEAD(&tg->children);
09f2724a 7195 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7196 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7197}
7198
9b5b7751 7199/* rcu callback to free various structures associated with a task group */
6f505b16 7200static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7201{
29f59db3 7202 /* now it should be safe to free those cfs_rqs */
6f505b16 7203 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7204}
7205
9b5b7751 7206/* Destroy runqueue etc associated with a task group */
4cf86d77 7207void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7208{
7209 /* wait for possible concurrent references to cfs_rqs complete */
7210 call_rcu(&tg->rcu, free_sched_group_rcu);
7211}
7212
7213void sched_offline_group(struct task_group *tg)
29f59db3 7214{
8ed36996 7215 unsigned long flags;
9b5b7751 7216 int i;
29f59db3 7217
3d4b47b4
PZ
7218 /* end participation in shares distribution */
7219 for_each_possible_cpu(i)
bccbe08a 7220 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7221
7222 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7223 list_del_rcu(&tg->list);
f473aa5e 7224 list_del_rcu(&tg->siblings);
8ed36996 7225 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7226}
7227
9b5b7751 7228/* change task's runqueue when it moves between groups.
3a252015
IM
7229 * The caller of this function should have put the task in its new group
7230 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7231 * reflect its new group.
9b5b7751
SV
7232 */
7233void sched_move_task(struct task_struct *tsk)
29f59db3 7234{
8323f26c 7235 struct task_group *tg;
29f59db3
SV
7236 int on_rq, running;
7237 unsigned long flags;
7238 struct rq *rq;
7239
7240 rq = task_rq_lock(tsk, &flags);
7241
051a1d1a 7242 running = task_current(rq, tsk);
fd2f4419 7243 on_rq = tsk->on_rq;
29f59db3 7244
0e1f3483 7245 if (on_rq)
29f59db3 7246 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7247 if (unlikely(running))
7248 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7249
073219e9 7250 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7251 lockdep_is_held(&tsk->sighand->siglock)),
7252 struct task_group, css);
7253 tg = autogroup_task_group(tsk, tg);
7254 tsk->sched_task_group = tg;
7255
810b3817 7256#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7257 if (tsk->sched_class->task_move_group)
7258 tsk->sched_class->task_move_group(tsk, on_rq);
7259 else
810b3817 7260#endif
b2b5ce02 7261 set_task_rq(tsk, task_cpu(tsk));
810b3817 7262
0e1f3483
HS
7263 if (unlikely(running))
7264 tsk->sched_class->set_curr_task(rq);
7265 if (on_rq)
371fd7e7 7266 enqueue_task(rq, tsk, 0);
29f59db3 7267
0122ec5b 7268 task_rq_unlock(rq, tsk, &flags);
29f59db3 7269}
7c941438 7270#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7271
a790de99
PT
7272#ifdef CONFIG_RT_GROUP_SCHED
7273/*
7274 * Ensure that the real time constraints are schedulable.
7275 */
7276static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7277
9a7e0b18
PZ
7278/* Must be called with tasklist_lock held */
7279static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7280{
9a7e0b18 7281 struct task_struct *g, *p;
b40b2e8e 7282
9a7e0b18 7283 do_each_thread(g, p) {
029632fb 7284 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7285 return 1;
7286 } while_each_thread(g, p);
b40b2e8e 7287
9a7e0b18
PZ
7288 return 0;
7289}
b40b2e8e 7290
9a7e0b18
PZ
7291struct rt_schedulable_data {
7292 struct task_group *tg;
7293 u64 rt_period;
7294 u64 rt_runtime;
7295};
b40b2e8e 7296
a790de99 7297static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7298{
7299 struct rt_schedulable_data *d = data;
7300 struct task_group *child;
7301 unsigned long total, sum = 0;
7302 u64 period, runtime;
b40b2e8e 7303
9a7e0b18
PZ
7304 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7305 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7306
9a7e0b18
PZ
7307 if (tg == d->tg) {
7308 period = d->rt_period;
7309 runtime = d->rt_runtime;
b40b2e8e 7310 }
b40b2e8e 7311
4653f803
PZ
7312 /*
7313 * Cannot have more runtime than the period.
7314 */
7315 if (runtime > period && runtime != RUNTIME_INF)
7316 return -EINVAL;
6f505b16 7317
4653f803
PZ
7318 /*
7319 * Ensure we don't starve existing RT tasks.
7320 */
9a7e0b18
PZ
7321 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7322 return -EBUSY;
6f505b16 7323
9a7e0b18 7324 total = to_ratio(period, runtime);
6f505b16 7325
4653f803
PZ
7326 /*
7327 * Nobody can have more than the global setting allows.
7328 */
7329 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7330 return -EINVAL;
6f505b16 7331
4653f803
PZ
7332 /*
7333 * The sum of our children's runtime should not exceed our own.
7334 */
9a7e0b18
PZ
7335 list_for_each_entry_rcu(child, &tg->children, siblings) {
7336 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7337 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7338
9a7e0b18
PZ
7339 if (child == d->tg) {
7340 period = d->rt_period;
7341 runtime = d->rt_runtime;
7342 }
6f505b16 7343
9a7e0b18 7344 sum += to_ratio(period, runtime);
9f0c1e56 7345 }
6f505b16 7346
9a7e0b18
PZ
7347 if (sum > total)
7348 return -EINVAL;
7349
7350 return 0;
6f505b16
PZ
7351}
7352
9a7e0b18 7353static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7354{
8277434e
PT
7355 int ret;
7356
9a7e0b18
PZ
7357 struct rt_schedulable_data data = {
7358 .tg = tg,
7359 .rt_period = period,
7360 .rt_runtime = runtime,
7361 };
7362
8277434e
PT
7363 rcu_read_lock();
7364 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7365 rcu_read_unlock();
7366
7367 return ret;
521f1a24
DG
7368}
7369
ab84d31e 7370static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7371 u64 rt_period, u64 rt_runtime)
6f505b16 7372{
ac086bc2 7373 int i, err = 0;
9f0c1e56 7374
9f0c1e56 7375 mutex_lock(&rt_constraints_mutex);
521f1a24 7376 read_lock(&tasklist_lock);
9a7e0b18
PZ
7377 err = __rt_schedulable(tg, rt_period, rt_runtime);
7378 if (err)
9f0c1e56 7379 goto unlock;
ac086bc2 7380
0986b11b 7381 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7382 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7383 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7384
7385 for_each_possible_cpu(i) {
7386 struct rt_rq *rt_rq = tg->rt_rq[i];
7387
0986b11b 7388 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7389 rt_rq->rt_runtime = rt_runtime;
0986b11b 7390 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7391 }
0986b11b 7392 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7393unlock:
521f1a24 7394 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7395 mutex_unlock(&rt_constraints_mutex);
7396
7397 return err;
6f505b16
PZ
7398}
7399
25cc7da7 7400static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7401{
7402 u64 rt_runtime, rt_period;
7403
7404 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7405 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7406 if (rt_runtime_us < 0)
7407 rt_runtime = RUNTIME_INF;
7408
ab84d31e 7409 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7410}
7411
25cc7da7 7412static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7413{
7414 u64 rt_runtime_us;
7415
d0b27fa7 7416 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7417 return -1;
7418
d0b27fa7 7419 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7420 do_div(rt_runtime_us, NSEC_PER_USEC);
7421 return rt_runtime_us;
7422}
d0b27fa7 7423
25cc7da7 7424static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7425{
7426 u64 rt_runtime, rt_period;
7427
7428 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7429 rt_runtime = tg->rt_bandwidth.rt_runtime;
7430
619b0488
R
7431 if (rt_period == 0)
7432 return -EINVAL;
7433
ab84d31e 7434 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7435}
7436
25cc7da7 7437static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7438{
7439 u64 rt_period_us;
7440
7441 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7442 do_div(rt_period_us, NSEC_PER_USEC);
7443 return rt_period_us;
7444}
332ac17e 7445#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7446
332ac17e 7447#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7448static int sched_rt_global_constraints(void)
7449{
7450 int ret = 0;
7451
7452 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7453 read_lock(&tasklist_lock);
4653f803 7454 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7455 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7456 mutex_unlock(&rt_constraints_mutex);
7457
7458 return ret;
7459}
54e99124 7460
25cc7da7 7461static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7462{
7463 /* Don't accept realtime tasks when there is no way for them to run */
7464 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7465 return 0;
7466
7467 return 1;
7468}
7469
6d6bc0ad 7470#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7471static int sched_rt_global_constraints(void)
7472{
ac086bc2 7473 unsigned long flags;
332ac17e 7474 int i, ret = 0;
ec5d4989 7475
0986b11b 7476 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7477 for_each_possible_cpu(i) {
7478 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7479
0986b11b 7480 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7481 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7482 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7483 }
0986b11b 7484 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7485
332ac17e 7486 return ret;
d0b27fa7 7487}
6d6bc0ad 7488#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7489
332ac17e
DF
7490static int sched_dl_global_constraints(void)
7491{
1724813d
PZ
7492 u64 runtime = global_rt_runtime();
7493 u64 period = global_rt_period();
332ac17e 7494 u64 new_bw = to_ratio(period, runtime);
1724813d 7495 int cpu, ret = 0;
49516342 7496 unsigned long flags;
332ac17e
DF
7497
7498 /*
7499 * Here we want to check the bandwidth not being set to some
7500 * value smaller than the currently allocated bandwidth in
7501 * any of the root_domains.
7502 *
7503 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7504 * cycling on root_domains... Discussion on different/better
7505 * solutions is welcome!
7506 */
1724813d
PZ
7507 for_each_possible_cpu(cpu) {
7508 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7509
49516342 7510 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7511 if (new_bw < dl_b->total_bw)
7512 ret = -EBUSY;
49516342 7513 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7514
7515 if (ret)
7516 break;
332ac17e
DF
7517 }
7518
1724813d 7519 return ret;
332ac17e
DF
7520}
7521
1724813d 7522static void sched_dl_do_global(void)
ce0dbbbb 7523{
1724813d
PZ
7524 u64 new_bw = -1;
7525 int cpu;
49516342 7526 unsigned long flags;
ce0dbbbb 7527
1724813d
PZ
7528 def_dl_bandwidth.dl_period = global_rt_period();
7529 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7530
7531 if (global_rt_runtime() != RUNTIME_INF)
7532 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7533
7534 /*
7535 * FIXME: As above...
7536 */
7537 for_each_possible_cpu(cpu) {
7538 struct dl_bw *dl_b = dl_bw_of(cpu);
7539
49516342 7540 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7541 dl_b->bw = new_bw;
49516342 7542 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7543 }
1724813d
PZ
7544}
7545
7546static int sched_rt_global_validate(void)
7547{
7548 if (sysctl_sched_rt_period <= 0)
7549 return -EINVAL;
7550
e9e7cb38
JL
7551 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7552 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7553 return -EINVAL;
7554
7555 return 0;
7556}
7557
7558static void sched_rt_do_global(void)
7559{
7560 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7561 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7562}
7563
d0b27fa7 7564int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7565 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7566 loff_t *ppos)
7567{
d0b27fa7
PZ
7568 int old_period, old_runtime;
7569 static DEFINE_MUTEX(mutex);
1724813d 7570 int ret;
d0b27fa7
PZ
7571
7572 mutex_lock(&mutex);
7573 old_period = sysctl_sched_rt_period;
7574 old_runtime = sysctl_sched_rt_runtime;
7575
8d65af78 7576 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7577
7578 if (!ret && write) {
1724813d
PZ
7579 ret = sched_rt_global_validate();
7580 if (ret)
7581 goto undo;
7582
d0b27fa7 7583 ret = sched_rt_global_constraints();
1724813d
PZ
7584 if (ret)
7585 goto undo;
7586
7587 ret = sched_dl_global_constraints();
7588 if (ret)
7589 goto undo;
7590
7591 sched_rt_do_global();
7592 sched_dl_do_global();
7593 }
7594 if (0) {
7595undo:
7596 sysctl_sched_rt_period = old_period;
7597 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7598 }
7599 mutex_unlock(&mutex);
7600
7601 return ret;
7602}
68318b8e 7603
1724813d 7604int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7605 void __user *buffer, size_t *lenp,
7606 loff_t *ppos)
7607{
7608 int ret;
332ac17e 7609 static DEFINE_MUTEX(mutex);
332ac17e
DF
7610
7611 mutex_lock(&mutex);
332ac17e 7612 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7613 /* make sure that internally we keep jiffies */
7614 /* also, writing zero resets timeslice to default */
332ac17e 7615 if (!ret && write) {
1724813d
PZ
7616 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7617 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7618 }
7619 mutex_unlock(&mutex);
332ac17e
DF
7620 return ret;
7621}
7622
052f1dc7 7623#ifdef CONFIG_CGROUP_SCHED
68318b8e 7624
a7c6d554 7625static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7626{
a7c6d554 7627 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7628}
7629
eb95419b
TH
7630static struct cgroup_subsys_state *
7631cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7632{
eb95419b
TH
7633 struct task_group *parent = css_tg(parent_css);
7634 struct task_group *tg;
68318b8e 7635
eb95419b 7636 if (!parent) {
68318b8e 7637 /* This is early initialization for the top cgroup */
07e06b01 7638 return &root_task_group.css;
68318b8e
SV
7639 }
7640
ec7dc8ac 7641 tg = sched_create_group(parent);
68318b8e
SV
7642 if (IS_ERR(tg))
7643 return ERR_PTR(-ENOMEM);
7644
68318b8e
SV
7645 return &tg->css;
7646}
7647
eb95419b 7648static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7649{
eb95419b
TH
7650 struct task_group *tg = css_tg(css);
7651 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7652
63876986
TH
7653 if (parent)
7654 sched_online_group(tg, parent);
ace783b9
LZ
7655 return 0;
7656}
7657
eb95419b 7658static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7659{
eb95419b 7660 struct task_group *tg = css_tg(css);
68318b8e
SV
7661
7662 sched_destroy_group(tg);
7663}
7664
eb95419b 7665static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7666{
eb95419b 7667 struct task_group *tg = css_tg(css);
ace783b9
LZ
7668
7669 sched_offline_group(tg);
7670}
7671
eb95419b 7672static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7673 struct cgroup_taskset *tset)
68318b8e 7674{
bb9d97b6
TH
7675 struct task_struct *task;
7676
924f0d9a 7677 cgroup_taskset_for_each(task, tset) {
b68aa230 7678#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7679 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7680 return -EINVAL;
b68aa230 7681#else
bb9d97b6
TH
7682 /* We don't support RT-tasks being in separate groups */
7683 if (task->sched_class != &fair_sched_class)
7684 return -EINVAL;
b68aa230 7685#endif
bb9d97b6 7686 }
be367d09
BB
7687 return 0;
7688}
68318b8e 7689
eb95419b 7690static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7691 struct cgroup_taskset *tset)
68318b8e 7692{
bb9d97b6
TH
7693 struct task_struct *task;
7694
924f0d9a 7695 cgroup_taskset_for_each(task, tset)
bb9d97b6 7696 sched_move_task(task);
68318b8e
SV
7697}
7698
eb95419b
TH
7699static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7700 struct cgroup_subsys_state *old_css,
7701 struct task_struct *task)
068c5cc5
PZ
7702{
7703 /*
7704 * cgroup_exit() is called in the copy_process() failure path.
7705 * Ignore this case since the task hasn't ran yet, this avoids
7706 * trying to poke a half freed task state from generic code.
7707 */
7708 if (!(task->flags & PF_EXITING))
7709 return;
7710
7711 sched_move_task(task);
7712}
7713
052f1dc7 7714#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7715static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7716 struct cftype *cftype, u64 shareval)
68318b8e 7717{
182446d0 7718 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7719}
7720
182446d0
TH
7721static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7722 struct cftype *cft)
68318b8e 7723{
182446d0 7724 struct task_group *tg = css_tg(css);
68318b8e 7725
c8b28116 7726 return (u64) scale_load_down(tg->shares);
68318b8e 7727}
ab84d31e
PT
7728
7729#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7730static DEFINE_MUTEX(cfs_constraints_mutex);
7731
ab84d31e
PT
7732const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7733const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7734
a790de99
PT
7735static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7736
ab84d31e
PT
7737static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7738{
56f570e5 7739 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7740 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7741
7742 if (tg == &root_task_group)
7743 return -EINVAL;
7744
7745 /*
7746 * Ensure we have at some amount of bandwidth every period. This is
7747 * to prevent reaching a state of large arrears when throttled via
7748 * entity_tick() resulting in prolonged exit starvation.
7749 */
7750 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7751 return -EINVAL;
7752
7753 /*
7754 * Likewise, bound things on the otherside by preventing insane quota
7755 * periods. This also allows us to normalize in computing quota
7756 * feasibility.
7757 */
7758 if (period > max_cfs_quota_period)
7759 return -EINVAL;
7760
a790de99
PT
7761 mutex_lock(&cfs_constraints_mutex);
7762 ret = __cfs_schedulable(tg, period, quota);
7763 if (ret)
7764 goto out_unlock;
7765
58088ad0 7766 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7767 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7768 /*
7769 * If we need to toggle cfs_bandwidth_used, off->on must occur
7770 * before making related changes, and on->off must occur afterwards
7771 */
7772 if (runtime_enabled && !runtime_was_enabled)
7773 cfs_bandwidth_usage_inc();
ab84d31e
PT
7774 raw_spin_lock_irq(&cfs_b->lock);
7775 cfs_b->period = ns_to_ktime(period);
7776 cfs_b->quota = quota;
58088ad0 7777
a9cf55b2 7778 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7779 /* restart the period timer (if active) to handle new period expiry */
7780 if (runtime_enabled && cfs_b->timer_active) {
7781 /* force a reprogram */
7782 cfs_b->timer_active = 0;
7783 __start_cfs_bandwidth(cfs_b);
7784 }
ab84d31e
PT
7785 raw_spin_unlock_irq(&cfs_b->lock);
7786
7787 for_each_possible_cpu(i) {
7788 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7789 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7790
7791 raw_spin_lock_irq(&rq->lock);
58088ad0 7792 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7793 cfs_rq->runtime_remaining = 0;
671fd9da 7794
029632fb 7795 if (cfs_rq->throttled)
671fd9da 7796 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7797 raw_spin_unlock_irq(&rq->lock);
7798 }
1ee14e6c
BS
7799 if (runtime_was_enabled && !runtime_enabled)
7800 cfs_bandwidth_usage_dec();
a790de99
PT
7801out_unlock:
7802 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7803
a790de99 7804 return ret;
ab84d31e
PT
7805}
7806
7807int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7808{
7809 u64 quota, period;
7810
029632fb 7811 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7812 if (cfs_quota_us < 0)
7813 quota = RUNTIME_INF;
7814 else
7815 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7816
7817 return tg_set_cfs_bandwidth(tg, period, quota);
7818}
7819
7820long tg_get_cfs_quota(struct task_group *tg)
7821{
7822 u64 quota_us;
7823
029632fb 7824 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7825 return -1;
7826
029632fb 7827 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7828 do_div(quota_us, NSEC_PER_USEC);
7829
7830 return quota_us;
7831}
7832
7833int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7834{
7835 u64 quota, period;
7836
7837 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7838 quota = tg->cfs_bandwidth.quota;
ab84d31e 7839
ab84d31e
PT
7840 return tg_set_cfs_bandwidth(tg, period, quota);
7841}
7842
7843long tg_get_cfs_period(struct task_group *tg)
7844{
7845 u64 cfs_period_us;
7846
029632fb 7847 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7848 do_div(cfs_period_us, NSEC_PER_USEC);
7849
7850 return cfs_period_us;
7851}
7852
182446d0
TH
7853static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7854 struct cftype *cft)
ab84d31e 7855{
182446d0 7856 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7857}
7858
182446d0
TH
7859static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7860 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7861{
182446d0 7862 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7863}
7864
182446d0
TH
7865static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7866 struct cftype *cft)
ab84d31e 7867{
182446d0 7868 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7869}
7870
182446d0
TH
7871static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7872 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7873{
182446d0 7874 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7875}
7876
a790de99
PT
7877struct cfs_schedulable_data {
7878 struct task_group *tg;
7879 u64 period, quota;
7880};
7881
7882/*
7883 * normalize group quota/period to be quota/max_period
7884 * note: units are usecs
7885 */
7886static u64 normalize_cfs_quota(struct task_group *tg,
7887 struct cfs_schedulable_data *d)
7888{
7889 u64 quota, period;
7890
7891 if (tg == d->tg) {
7892 period = d->period;
7893 quota = d->quota;
7894 } else {
7895 period = tg_get_cfs_period(tg);
7896 quota = tg_get_cfs_quota(tg);
7897 }
7898
7899 /* note: these should typically be equivalent */
7900 if (quota == RUNTIME_INF || quota == -1)
7901 return RUNTIME_INF;
7902
7903 return to_ratio(period, quota);
7904}
7905
7906static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7907{
7908 struct cfs_schedulable_data *d = data;
029632fb 7909 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7910 s64 quota = 0, parent_quota = -1;
7911
7912 if (!tg->parent) {
7913 quota = RUNTIME_INF;
7914 } else {
029632fb 7915 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7916
7917 quota = normalize_cfs_quota(tg, d);
7918 parent_quota = parent_b->hierarchal_quota;
7919
7920 /*
7921 * ensure max(child_quota) <= parent_quota, inherit when no
7922 * limit is set
7923 */
7924 if (quota == RUNTIME_INF)
7925 quota = parent_quota;
7926 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7927 return -EINVAL;
7928 }
7929 cfs_b->hierarchal_quota = quota;
7930
7931 return 0;
7932}
7933
7934static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7935{
8277434e 7936 int ret;
a790de99
PT
7937 struct cfs_schedulable_data data = {
7938 .tg = tg,
7939 .period = period,
7940 .quota = quota,
7941 };
7942
7943 if (quota != RUNTIME_INF) {
7944 do_div(data.period, NSEC_PER_USEC);
7945 do_div(data.quota, NSEC_PER_USEC);
7946 }
7947
8277434e
PT
7948 rcu_read_lock();
7949 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7950 rcu_read_unlock();
7951
7952 return ret;
a790de99 7953}
e8da1b18 7954
2da8ca82 7955static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7956{
2da8ca82 7957 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7958 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7959
44ffc75b
TH
7960 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7961 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7962 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7963
7964 return 0;
7965}
ab84d31e 7966#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7967#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7968
052f1dc7 7969#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7970static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7971 struct cftype *cft, s64 val)
6f505b16 7972{
182446d0 7973 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7974}
7975
182446d0
TH
7976static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7977 struct cftype *cft)
6f505b16 7978{
182446d0 7979 return sched_group_rt_runtime(css_tg(css));
6f505b16 7980}
d0b27fa7 7981
182446d0
TH
7982static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7983 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7984{
182446d0 7985 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7986}
7987
182446d0
TH
7988static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7989 struct cftype *cft)
d0b27fa7 7990{
182446d0 7991 return sched_group_rt_period(css_tg(css));
d0b27fa7 7992}
6d6bc0ad 7993#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7994
fe5c7cc2 7995static struct cftype cpu_files[] = {
052f1dc7 7996#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7997 {
7998 .name = "shares",
f4c753b7
PM
7999 .read_u64 = cpu_shares_read_u64,
8000 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8001 },
052f1dc7 8002#endif
ab84d31e
PT
8003#ifdef CONFIG_CFS_BANDWIDTH
8004 {
8005 .name = "cfs_quota_us",
8006 .read_s64 = cpu_cfs_quota_read_s64,
8007 .write_s64 = cpu_cfs_quota_write_s64,
8008 },
8009 {
8010 .name = "cfs_period_us",
8011 .read_u64 = cpu_cfs_period_read_u64,
8012 .write_u64 = cpu_cfs_period_write_u64,
8013 },
e8da1b18
NR
8014 {
8015 .name = "stat",
2da8ca82 8016 .seq_show = cpu_stats_show,
e8da1b18 8017 },
ab84d31e 8018#endif
052f1dc7 8019#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8020 {
9f0c1e56 8021 .name = "rt_runtime_us",
06ecb27c
PM
8022 .read_s64 = cpu_rt_runtime_read,
8023 .write_s64 = cpu_rt_runtime_write,
6f505b16 8024 },
d0b27fa7
PZ
8025 {
8026 .name = "rt_period_us",
f4c753b7
PM
8027 .read_u64 = cpu_rt_period_read_uint,
8028 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8029 },
052f1dc7 8030#endif
4baf6e33 8031 { } /* terminate */
68318b8e
SV
8032};
8033
073219e9 8034struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8035 .css_alloc = cpu_cgroup_css_alloc,
8036 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8037 .css_online = cpu_cgroup_css_online,
8038 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8039 .can_attach = cpu_cgroup_can_attach,
8040 .attach = cpu_cgroup_attach,
068c5cc5 8041 .exit = cpu_cgroup_exit,
4baf6e33 8042 .base_cftypes = cpu_files,
68318b8e
SV
8043 .early_init = 1,
8044};
8045
052f1dc7 8046#endif /* CONFIG_CGROUP_SCHED */
d842de87 8047
b637a328
PM
8048void dump_cpu_task(int cpu)
8049{
8050 pr_info("Task dump for CPU %d:\n", cpu);
8051 sched_show_task(cpu_curr(cpu));
8052}
This page took 2.547453 seconds and 5 git commands to generate.