crypto: testmgr - delay execution of set-up code
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
142 if (delta < 0)
143 return;
fe44d621
PZ
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
3e51f33f
PZ
146}
147
bf5c91ba
IM
148/*
149 * Debugging: various feature bits
150 */
f00b45c1 151
f00b45c1
PZ
152#define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
bf5c91ba 155const_debug unsigned int sysctl_sched_features =
391e43da 156#include "features.h"
f00b45c1
PZ
157 0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled) \
163 #name ,
164
1292531f 165static const char * const sched_feat_names[] = {
391e43da 166#include "features.h"
f00b45c1
PZ
167};
168
169#undef SCHED_FEAT
170
34f3a814 171static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 172{
f00b45c1
PZ
173 int i;
174
f8b6d1cc 175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 179 }
34f3a814 180 seq_puts(m, "\n");
f00b45c1 181
34f3a814 182 return 0;
f00b45c1
PZ
183}
184
f8b6d1cc
PZ
185#ifdef HAVE_JUMP_LABEL
186
c5905afb
IM
187#define jump_label_key__true STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
189
190#define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
c5905afb 193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
c5905afb
IM
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
203}
204
205static void sched_feat_enable(int i)
206{
c5905afb
IM
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
1a687c2e 215static int sched_feat_set(char *cmp)
f00b45c1 216{
f00b45c1 217 int i;
1a687c2e 218 int neg = 0;
f00b45c1 219
524429c3 220 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
221 neg = 1;
222 cmp += 3;
223 }
224
f8b6d1cc 225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 227 if (neg) {
f00b45c1 228 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
229 sched_feat_disable(i);
230 } else {
f00b45c1 231 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
232 sched_feat_enable(i);
233 }
f00b45c1
PZ
234 break;
235 }
236 }
237
1a687c2e
MG
238 return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244{
245 char buf[64];
246 char *cmp;
247 int i;
5cd08fbf 248 struct inode *inode;
1a687c2e
MG
249
250 if (cnt > 63)
251 cnt = 63;
252
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
255
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
258
5cd08fbf
JB
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
1a687c2e 262 i = sched_feat_set(cmp);
5cd08fbf 263 mutex_unlock(&inode->i_mutex);
f8b6d1cc 264 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
265 return -EINVAL;
266
42994724 267 *ppos += cnt;
f00b45c1
PZ
268
269 return cnt;
270}
271
34f3a814
LZ
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274 return single_open(filp, sched_feat_show, NULL);
275}
276
828c0950 277static const struct file_operations sched_feat_fops = {
34f3a814
LZ
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
f00b45c1
PZ
283};
284
285static __init int sched_init_debug(void)
286{
f00b45c1
PZ
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
289
290 return 0;
291}
292late_initcall(sched_init_debug);
f8b6d1cc 293#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 294
b82d9fdd
PZ
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
e9e9250b
PZ
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
fa85ae24 309/*
9f0c1e56 310 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
311 * default: 1s
312 */
9f0c1e56 313unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 314
029632fb 315__read_mostly int scheduler_running;
6892b75e 316
9f0c1e56
PZ
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
fa85ae24 322
0970d299 323/*
0122ec5b 324 * __task_rq_lock - lock the rq @p resides on.
b29739f9 325 */
70b97a7f 326static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
327 __acquires(rq->lock)
328{
0970d299
PZ
329 struct rq *rq;
330
0122ec5b
PZ
331 lockdep_assert_held(&p->pi_lock);
332
3a5c359a 333 for (;;) {
0970d299 334 rq = task_rq(p);
05fa785c 335 raw_spin_lock(&rq->lock);
65cc8e48 336 if (likely(rq == task_rq(p)))
3a5c359a 337 return rq;
05fa785c 338 raw_spin_unlock(&rq->lock);
b29739f9 339 }
b29739f9
IM
340}
341
1da177e4 342/*
0122ec5b 343 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 344 */
70b97a7f 345static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 346 __acquires(p->pi_lock)
1da177e4
LT
347 __acquires(rq->lock)
348{
70b97a7f 349 struct rq *rq;
1da177e4 350
3a5c359a 351 for (;;) {
0122ec5b 352 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 353 rq = task_rq(p);
05fa785c 354 raw_spin_lock(&rq->lock);
65cc8e48 355 if (likely(rq == task_rq(p)))
3a5c359a 356 return rq;
0122ec5b
PZ
357 raw_spin_unlock(&rq->lock);
358 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 359 }
1da177e4
LT
360}
361
a9957449 362static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
363 __releases(rq->lock)
364{
05fa785c 365 raw_spin_unlock(&rq->lock);
b29739f9
IM
366}
367
0122ec5b
PZ
368static inline void
369task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 370 __releases(rq->lock)
0122ec5b 371 __releases(p->pi_lock)
1da177e4 372{
0122ec5b
PZ
373 raw_spin_unlock(&rq->lock);
374 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
375}
376
1da177e4 377/*
cc2a73b5 378 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 379 */
a9957449 380static struct rq *this_rq_lock(void)
1da177e4
LT
381 __acquires(rq->lock)
382{
70b97a7f 383 struct rq *rq;
1da177e4
LT
384
385 local_irq_disable();
386 rq = this_rq();
05fa785c 387 raw_spin_lock(&rq->lock);
1da177e4
LT
388
389 return rq;
390}
391
8f4d37ec
PZ
392#ifdef CONFIG_SCHED_HRTICK
393/*
394 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 395 */
8f4d37ec 396
8f4d37ec
PZ
397static void hrtick_clear(struct rq *rq)
398{
399 if (hrtimer_active(&rq->hrtick_timer))
400 hrtimer_cancel(&rq->hrtick_timer);
401}
402
8f4d37ec
PZ
403/*
404 * High-resolution timer tick.
405 * Runs from hardirq context with interrupts disabled.
406 */
407static enum hrtimer_restart hrtick(struct hrtimer *timer)
408{
409 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
410
411 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
412
05fa785c 413 raw_spin_lock(&rq->lock);
3e51f33f 414 update_rq_clock(rq);
8f4d37ec 415 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 416 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
417
418 return HRTIMER_NORESTART;
419}
420
95e904c7 421#ifdef CONFIG_SMP
971ee28c
PZ
422
423static int __hrtick_restart(struct rq *rq)
424{
425 struct hrtimer *timer = &rq->hrtick_timer;
426 ktime_t time = hrtimer_get_softexpires(timer);
427
428 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
429}
430
31656519
PZ
431/*
432 * called from hardirq (IPI) context
433 */
434static void __hrtick_start(void *arg)
b328ca18 435{
31656519 436 struct rq *rq = arg;
b328ca18 437
05fa785c 438 raw_spin_lock(&rq->lock);
971ee28c 439 __hrtick_restart(rq);
31656519 440 rq->hrtick_csd_pending = 0;
05fa785c 441 raw_spin_unlock(&rq->lock);
b328ca18
PZ
442}
443
31656519
PZ
444/*
445 * Called to set the hrtick timer state.
446 *
447 * called with rq->lock held and irqs disabled
448 */
029632fb 449void hrtick_start(struct rq *rq, u64 delay)
b328ca18 450{
31656519
PZ
451 struct hrtimer *timer = &rq->hrtick_timer;
452 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 453
cc584b21 454 hrtimer_set_expires(timer, time);
31656519
PZ
455
456 if (rq == this_rq()) {
971ee28c 457 __hrtick_restart(rq);
31656519 458 } else if (!rq->hrtick_csd_pending) {
c46fff2a 459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
460 rq->hrtick_csd_pending = 1;
461 }
b328ca18
PZ
462}
463
464static int
465hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466{
467 int cpu = (int)(long)hcpu;
468
469 switch (action) {
470 case CPU_UP_CANCELED:
471 case CPU_UP_CANCELED_FROZEN:
472 case CPU_DOWN_PREPARE:
473 case CPU_DOWN_PREPARE_FROZEN:
474 case CPU_DEAD:
475 case CPU_DEAD_FROZEN:
31656519 476 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
477 return NOTIFY_OK;
478 }
479
480 return NOTIFY_DONE;
481}
482
fa748203 483static __init void init_hrtick(void)
b328ca18
PZ
484{
485 hotcpu_notifier(hotplug_hrtick, 0);
486}
31656519
PZ
487#else
488/*
489 * Called to set the hrtick timer state.
490 *
491 * called with rq->lock held and irqs disabled
492 */
029632fb 493void hrtick_start(struct rq *rq, u64 delay)
31656519 494{
7f1e2ca9 495 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 496 HRTIMER_MODE_REL_PINNED, 0);
31656519 497}
b328ca18 498
006c75f1 499static inline void init_hrtick(void)
8f4d37ec 500{
8f4d37ec 501}
31656519 502#endif /* CONFIG_SMP */
8f4d37ec 503
31656519 504static void init_rq_hrtick(struct rq *rq)
8f4d37ec 505{
31656519
PZ
506#ifdef CONFIG_SMP
507 rq->hrtick_csd_pending = 0;
8f4d37ec 508
31656519
PZ
509 rq->hrtick_csd.flags = 0;
510 rq->hrtick_csd.func = __hrtick_start;
511 rq->hrtick_csd.info = rq;
512#endif
8f4d37ec 513
31656519
PZ
514 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515 rq->hrtick_timer.function = hrtick;
8f4d37ec 516}
006c75f1 517#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
518static inline void hrtick_clear(struct rq *rq)
519{
520}
521
8f4d37ec
PZ
522static inline void init_rq_hrtick(struct rq *rq)
523{
524}
525
b328ca18
PZ
526static inline void init_hrtick(void)
527{
528}
006c75f1 529#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 530
fd99f91a
PZ
531/*
532 * cmpxchg based fetch_or, macro so it works for different integer types
533 */
534#define fetch_or(ptr, val) \
535({ typeof(*(ptr)) __old, __val = *(ptr); \
536 for (;;) { \
537 __old = cmpxchg((ptr), __val, __val | (val)); \
538 if (__old == __val) \
539 break; \
540 __val = __old; \
541 } \
542 __old; \
543})
544
e3baac47 545#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
546/*
547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548 * this avoids any races wrt polling state changes and thereby avoids
549 * spurious IPIs.
550 */
551static bool set_nr_and_not_polling(struct task_struct *p)
552{
553 struct thread_info *ti = task_thread_info(p);
554 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
555}
e3baac47
PZ
556
557/*
558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
559 *
560 * If this returns true, then the idle task promises to call
561 * sched_ttwu_pending() and reschedule soon.
562 */
563static bool set_nr_if_polling(struct task_struct *p)
564{
565 struct thread_info *ti = task_thread_info(p);
566 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
567
568 for (;;) {
569 if (!(val & _TIF_POLLING_NRFLAG))
570 return false;
571 if (val & _TIF_NEED_RESCHED)
572 return true;
573 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574 if (old == val)
575 break;
576 val = old;
577 }
578 return true;
579}
580
fd99f91a
PZ
581#else
582static bool set_nr_and_not_polling(struct task_struct *p)
583{
584 set_tsk_need_resched(p);
585 return true;
586}
e3baac47
PZ
587
588#ifdef CONFIG_SMP
589static bool set_nr_if_polling(struct task_struct *p)
590{
591 return false;
592}
593#endif
fd99f91a
PZ
594#endif
595
c24d20db 596/*
8875125e 597 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
8875125e 603void resched_curr(struct rq *rq)
c24d20db 604{
8875125e 605 struct task_struct *curr = rq->curr;
c24d20db
IM
606 int cpu;
607
8875125e 608 lockdep_assert_held(&rq->lock);
c24d20db 609
8875125e 610 if (test_tsk_need_resched(curr))
c24d20db
IM
611 return;
612
8875125e 613 cpu = cpu_of(rq);
fd99f91a 614
f27dde8d 615 if (cpu == smp_processor_id()) {
8875125e 616 set_tsk_need_resched(curr);
f27dde8d 617 set_preempt_need_resched();
c24d20db 618 return;
f27dde8d 619 }
c24d20db 620
8875125e 621 if (set_nr_and_not_polling(curr))
c24d20db 622 smp_send_reschedule(cpu);
dfc68f29
AL
623 else
624 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
625}
626
029632fb 627void resched_cpu(int cpu)
c24d20db
IM
628{
629 struct rq *rq = cpu_rq(cpu);
630 unsigned long flags;
631
05fa785c 632 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 633 return;
8875125e 634 resched_curr(rq);
05fa785c 635 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 636}
06d8308c 637
b021fe3e 638#ifdef CONFIG_SMP
3451d024 639#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
640/*
641 * In the semi idle case, use the nearest busy cpu for migrating timers
642 * from an idle cpu. This is good for power-savings.
643 *
644 * We don't do similar optimization for completely idle system, as
645 * selecting an idle cpu will add more delays to the timers than intended
646 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
647 */
6201b4d6 648int get_nohz_timer_target(int pinned)
83cd4fe2
VP
649{
650 int cpu = smp_processor_id();
651 int i;
652 struct sched_domain *sd;
653
6201b4d6
VK
654 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655 return cpu;
656
057f3fad 657 rcu_read_lock();
83cd4fe2 658 for_each_domain(cpu, sd) {
057f3fad
PZ
659 for_each_cpu(i, sched_domain_span(sd)) {
660 if (!idle_cpu(i)) {
661 cpu = i;
662 goto unlock;
663 }
664 }
83cd4fe2 665 }
057f3fad
PZ
666unlock:
667 rcu_read_unlock();
83cd4fe2
VP
668 return cpu;
669}
06d8308c
TG
670/*
671 * When add_timer_on() enqueues a timer into the timer wheel of an
672 * idle CPU then this timer might expire before the next timer event
673 * which is scheduled to wake up that CPU. In case of a completely
674 * idle system the next event might even be infinite time into the
675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676 * leaves the inner idle loop so the newly added timer is taken into
677 * account when the CPU goes back to idle and evaluates the timer
678 * wheel for the next timer event.
679 */
1c20091e 680static void wake_up_idle_cpu(int cpu)
06d8308c
TG
681{
682 struct rq *rq = cpu_rq(cpu);
683
684 if (cpu == smp_processor_id())
685 return;
686
67b9ca70 687 if (set_nr_and_not_polling(rq->idle))
06d8308c 688 smp_send_reschedule(cpu);
dfc68f29
AL
689 else
690 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
691}
692
c5bfece2 693static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 694{
53c5fa16
FW
695 /*
696 * We just need the target to call irq_exit() and re-evaluate
697 * the next tick. The nohz full kick at least implies that.
698 * If needed we can still optimize that later with an
699 * empty IRQ.
700 */
c5bfece2 701 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
702 if (cpu != smp_processor_id() ||
703 tick_nohz_tick_stopped())
53c5fa16 704 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
705 return true;
706 }
707
708 return false;
709}
710
711void wake_up_nohz_cpu(int cpu)
712{
c5bfece2 713 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
714 wake_up_idle_cpu(cpu);
715}
716
ca38062e 717static inline bool got_nohz_idle_kick(void)
45bf76df 718{
1c792db7 719 int cpu = smp_processor_id();
873b4c65
VG
720
721 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722 return false;
723
724 if (idle_cpu(cpu) && !need_resched())
725 return true;
726
727 /*
728 * We can't run Idle Load Balance on this CPU for this time so we
729 * cancel it and clear NOHZ_BALANCE_KICK
730 */
731 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732 return false;
45bf76df
IM
733}
734
3451d024 735#else /* CONFIG_NO_HZ_COMMON */
45bf76df 736
ca38062e 737static inline bool got_nohz_idle_kick(void)
2069dd75 738{
ca38062e 739 return false;
2069dd75
PZ
740}
741
3451d024 742#endif /* CONFIG_NO_HZ_COMMON */
d842de87 743
ce831b38
FW
744#ifdef CONFIG_NO_HZ_FULL
745bool sched_can_stop_tick(void)
746{
3882ec64
FW
747 /*
748 * More than one running task need preemption.
749 * nr_running update is assumed to be visible
750 * after IPI is sent from wakers.
751 */
541b8264
VK
752 if (this_rq()->nr_running > 1)
753 return false;
ce831b38 754
541b8264 755 return true;
ce831b38
FW
756}
757#endif /* CONFIG_NO_HZ_FULL */
d842de87 758
029632fb 759void sched_avg_update(struct rq *rq)
18d95a28 760{
e9e9250b
PZ
761 s64 period = sched_avg_period();
762
78becc27 763 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
764 /*
765 * Inline assembly required to prevent the compiler
766 * optimising this loop into a divmod call.
767 * See __iter_div_u64_rem() for another example of this.
768 */
769 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
770 rq->age_stamp += period;
771 rq->rt_avg /= 2;
772 }
18d95a28
PZ
773}
774
6d6bc0ad 775#endif /* CONFIG_SMP */
18d95a28 776
a790de99
PT
777#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 779/*
8277434e
PT
780 * Iterate task_group tree rooted at *from, calling @down when first entering a
781 * node and @up when leaving it for the final time.
782 *
783 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 784 */
029632fb 785int walk_tg_tree_from(struct task_group *from,
8277434e 786 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
787{
788 struct task_group *parent, *child;
eb755805 789 int ret;
c09595f6 790
8277434e
PT
791 parent = from;
792
c09595f6 793down:
eb755805
PZ
794 ret = (*down)(parent, data);
795 if (ret)
8277434e 796 goto out;
c09595f6
PZ
797 list_for_each_entry_rcu(child, &parent->children, siblings) {
798 parent = child;
799 goto down;
800
801up:
802 continue;
803 }
eb755805 804 ret = (*up)(parent, data);
8277434e
PT
805 if (ret || parent == from)
806 goto out;
c09595f6
PZ
807
808 child = parent;
809 parent = parent->parent;
810 if (parent)
811 goto up;
8277434e 812out:
eb755805 813 return ret;
c09595f6
PZ
814}
815
029632fb 816int tg_nop(struct task_group *tg, void *data)
eb755805 817{
e2b245f8 818 return 0;
eb755805 819}
18d95a28
PZ
820#endif
821
45bf76df
IM
822static void set_load_weight(struct task_struct *p)
823{
f05998d4
NR
824 int prio = p->static_prio - MAX_RT_PRIO;
825 struct load_weight *load = &p->se.load;
826
dd41f596
IM
827 /*
828 * SCHED_IDLE tasks get minimal weight:
829 */
830 if (p->policy == SCHED_IDLE) {
c8b28116 831 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 832 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
833 return;
834 }
71f8bd46 835
c8b28116 836 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 837 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
838}
839
371fd7e7 840static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 841{
a64692a3 842 update_rq_clock(rq);
43148951 843 sched_info_queued(rq, p);
371fd7e7 844 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
845}
846
371fd7e7 847static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 848{
a64692a3 849 update_rq_clock(rq);
43148951 850 sched_info_dequeued(rq, p);
371fd7e7 851 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
852}
853
029632fb 854void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
855{
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible--;
858
371fd7e7 859 enqueue_task(rq, p, flags);
1e3c88bd
PZ
860}
861
029632fb 862void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
863{
864 if (task_contributes_to_load(p))
865 rq->nr_uninterruptible++;
866
371fd7e7 867 dequeue_task(rq, p, flags);
1e3c88bd
PZ
868}
869
fe44d621 870static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 871{
095c0aa8
GC
872/*
873 * In theory, the compile should just see 0 here, and optimize out the call
874 * to sched_rt_avg_update. But I don't trust it...
875 */
876#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877 s64 steal = 0, irq_delta = 0;
878#endif
879#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 880 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
881
882 /*
883 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884 * this case when a previous update_rq_clock() happened inside a
885 * {soft,}irq region.
886 *
887 * When this happens, we stop ->clock_task and only update the
888 * prev_irq_time stamp to account for the part that fit, so that a next
889 * update will consume the rest. This ensures ->clock_task is
890 * monotonic.
891 *
892 * It does however cause some slight miss-attribution of {soft,}irq
893 * time, a more accurate solution would be to update the irq_time using
894 * the current rq->clock timestamp, except that would require using
895 * atomic ops.
896 */
897 if (irq_delta > delta)
898 irq_delta = delta;
899
900 rq->prev_irq_time += irq_delta;
901 delta -= irq_delta;
095c0aa8
GC
902#endif
903#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 904 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
907
908 if (unlikely(steal > delta))
909 steal = delta;
910
095c0aa8 911 rq->prev_steal_time_rq += steal;
095c0aa8
GC
912 delta -= steal;
913 }
914#endif
915
fe44d621
PZ
916 rq->clock_task += delta;
917
095c0aa8 918#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 919 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
920 sched_rt_avg_update(rq, irq_delta + steal);
921#endif
aa483808
VP
922}
923
34f971f6
PZ
924void sched_set_stop_task(int cpu, struct task_struct *stop)
925{
926 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927 struct task_struct *old_stop = cpu_rq(cpu)->stop;
928
929 if (stop) {
930 /*
931 * Make it appear like a SCHED_FIFO task, its something
932 * userspace knows about and won't get confused about.
933 *
934 * Also, it will make PI more or less work without too
935 * much confusion -- but then, stop work should not
936 * rely on PI working anyway.
937 */
938 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
939
940 stop->sched_class = &stop_sched_class;
941 }
942
943 cpu_rq(cpu)->stop = stop;
944
945 if (old_stop) {
946 /*
947 * Reset it back to a normal scheduling class so that
948 * it can die in pieces.
949 */
950 old_stop->sched_class = &rt_sched_class;
951 }
952}
953
14531189 954/*
dd41f596 955 * __normal_prio - return the priority that is based on the static prio
14531189 956 */
14531189
IM
957static inline int __normal_prio(struct task_struct *p)
958{
dd41f596 959 return p->static_prio;
14531189
IM
960}
961
b29739f9
IM
962/*
963 * Calculate the expected normal priority: i.e. priority
964 * without taking RT-inheritance into account. Might be
965 * boosted by interactivity modifiers. Changes upon fork,
966 * setprio syscalls, and whenever the interactivity
967 * estimator recalculates.
968 */
36c8b586 969static inline int normal_prio(struct task_struct *p)
b29739f9
IM
970{
971 int prio;
972
aab03e05
DF
973 if (task_has_dl_policy(p))
974 prio = MAX_DL_PRIO-1;
975 else if (task_has_rt_policy(p))
b29739f9
IM
976 prio = MAX_RT_PRIO-1 - p->rt_priority;
977 else
978 prio = __normal_prio(p);
979 return prio;
980}
981
982/*
983 * Calculate the current priority, i.e. the priority
984 * taken into account by the scheduler. This value might
985 * be boosted by RT tasks, or might be boosted by
986 * interactivity modifiers. Will be RT if the task got
987 * RT-boosted. If not then it returns p->normal_prio.
988 */
36c8b586 989static int effective_prio(struct task_struct *p)
b29739f9
IM
990{
991 p->normal_prio = normal_prio(p);
992 /*
993 * If we are RT tasks or we were boosted to RT priority,
994 * keep the priority unchanged. Otherwise, update priority
995 * to the normal priority:
996 */
997 if (!rt_prio(p->prio))
998 return p->normal_prio;
999 return p->prio;
1000}
1001
1da177e4
LT
1002/**
1003 * task_curr - is this task currently executing on a CPU?
1004 * @p: the task in question.
e69f6186
YB
1005 *
1006 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1007 */
36c8b586 1008inline int task_curr(const struct task_struct *p)
1da177e4
LT
1009{
1010 return cpu_curr(task_cpu(p)) == p;
1011}
1012
cb469845
SR
1013static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 const struct sched_class *prev_class,
da7a735e 1015 int oldprio)
cb469845
SR
1016{
1017 if (prev_class != p->sched_class) {
1018 if (prev_class->switched_from)
da7a735e
PZ
1019 prev_class->switched_from(rq, p);
1020 p->sched_class->switched_to(rq, p);
2d3d891d 1021 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1022 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1023}
1024
029632fb 1025void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1026{
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
8875125e 1036 resched_curr(rq);
1e5a7405
PZ
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
fd2f4419 1046 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1047 rq->skip_clock_update = 1;
1048}
1049
1da177e4 1050#ifdef CONFIG_SMP
dd41f596 1051void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1052{
e2912009
PZ
1053#ifdef CONFIG_SCHED_DEBUG
1054 /*
1055 * We should never call set_task_cpu() on a blocked task,
1056 * ttwu() will sort out the placement.
1057 */
077614ee 1058 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1059 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1060
1061#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1062 /*
1063 * The caller should hold either p->pi_lock or rq->lock, when changing
1064 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1065 *
1066 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1067 * see task_group().
6c6c54e1
PZ
1068 *
1069 * Furthermore, all task_rq users should acquire both locks, see
1070 * task_rq_lock().
1071 */
0122ec5b
PZ
1072 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1073 lockdep_is_held(&task_rq(p)->lock)));
1074#endif
e2912009
PZ
1075#endif
1076
de1d7286 1077 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1078
0c69774e 1079 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1080 if (p->sched_class->migrate_task_rq)
1081 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1082 p->se.nr_migrations++;
a8b0ca17 1083 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1084 }
dd41f596
IM
1085
1086 __set_task_cpu(p, new_cpu);
c65cc870
IM
1087}
1088
ac66f547
PZ
1089static void __migrate_swap_task(struct task_struct *p, int cpu)
1090{
1091 if (p->on_rq) {
1092 struct rq *src_rq, *dst_rq;
1093
1094 src_rq = task_rq(p);
1095 dst_rq = cpu_rq(cpu);
1096
1097 deactivate_task(src_rq, p, 0);
1098 set_task_cpu(p, cpu);
1099 activate_task(dst_rq, p, 0);
1100 check_preempt_curr(dst_rq, p, 0);
1101 } else {
1102 /*
1103 * Task isn't running anymore; make it appear like we migrated
1104 * it before it went to sleep. This means on wakeup we make the
1105 * previous cpu our targer instead of where it really is.
1106 */
1107 p->wake_cpu = cpu;
1108 }
1109}
1110
1111struct migration_swap_arg {
1112 struct task_struct *src_task, *dst_task;
1113 int src_cpu, dst_cpu;
1114};
1115
1116static int migrate_swap_stop(void *data)
1117{
1118 struct migration_swap_arg *arg = data;
1119 struct rq *src_rq, *dst_rq;
1120 int ret = -EAGAIN;
1121
1122 src_rq = cpu_rq(arg->src_cpu);
1123 dst_rq = cpu_rq(arg->dst_cpu);
1124
74602315
PZ
1125 double_raw_lock(&arg->src_task->pi_lock,
1126 &arg->dst_task->pi_lock);
ac66f547
PZ
1127 double_rq_lock(src_rq, dst_rq);
1128 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1129 goto unlock;
1130
1131 if (task_cpu(arg->src_task) != arg->src_cpu)
1132 goto unlock;
1133
1134 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1135 goto unlock;
1136
1137 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1138 goto unlock;
1139
1140 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1141 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1142
1143 ret = 0;
1144
1145unlock:
1146 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1147 raw_spin_unlock(&arg->dst_task->pi_lock);
1148 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1149
1150 return ret;
1151}
1152
1153/*
1154 * Cross migrate two tasks
1155 */
1156int migrate_swap(struct task_struct *cur, struct task_struct *p)
1157{
1158 struct migration_swap_arg arg;
1159 int ret = -EINVAL;
1160
ac66f547
PZ
1161 arg = (struct migration_swap_arg){
1162 .src_task = cur,
1163 .src_cpu = task_cpu(cur),
1164 .dst_task = p,
1165 .dst_cpu = task_cpu(p),
1166 };
1167
1168 if (arg.src_cpu == arg.dst_cpu)
1169 goto out;
1170
6acce3ef
PZ
1171 /*
1172 * These three tests are all lockless; this is OK since all of them
1173 * will be re-checked with proper locks held further down the line.
1174 */
ac66f547
PZ
1175 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1176 goto out;
1177
1178 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1179 goto out;
1180
1181 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1182 goto out;
1183
286549dc 1184 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1185 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1186
1187out:
ac66f547
PZ
1188 return ret;
1189}
1190
969c7921 1191struct migration_arg {
36c8b586 1192 struct task_struct *task;
1da177e4 1193 int dest_cpu;
70b97a7f 1194};
1da177e4 1195
969c7921
TH
1196static int migration_cpu_stop(void *data);
1197
1da177e4
LT
1198/*
1199 * wait_task_inactive - wait for a thread to unschedule.
1200 *
85ba2d86
RM
1201 * If @match_state is nonzero, it's the @p->state value just checked and
1202 * not expected to change. If it changes, i.e. @p might have woken up,
1203 * then return zero. When we succeed in waiting for @p to be off its CPU,
1204 * we return a positive number (its total switch count). If a second call
1205 * a short while later returns the same number, the caller can be sure that
1206 * @p has remained unscheduled the whole time.
1207 *
1da177e4
LT
1208 * The caller must ensure that the task *will* unschedule sometime soon,
1209 * else this function might spin for a *long* time. This function can't
1210 * be called with interrupts off, or it may introduce deadlock with
1211 * smp_call_function() if an IPI is sent by the same process we are
1212 * waiting to become inactive.
1213 */
85ba2d86 1214unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1215{
1216 unsigned long flags;
dd41f596 1217 int running, on_rq;
85ba2d86 1218 unsigned long ncsw;
70b97a7f 1219 struct rq *rq;
1da177e4 1220
3a5c359a
AK
1221 for (;;) {
1222 /*
1223 * We do the initial early heuristics without holding
1224 * any task-queue locks at all. We'll only try to get
1225 * the runqueue lock when things look like they will
1226 * work out!
1227 */
1228 rq = task_rq(p);
fa490cfd 1229
3a5c359a
AK
1230 /*
1231 * If the task is actively running on another CPU
1232 * still, just relax and busy-wait without holding
1233 * any locks.
1234 *
1235 * NOTE! Since we don't hold any locks, it's not
1236 * even sure that "rq" stays as the right runqueue!
1237 * But we don't care, since "task_running()" will
1238 * return false if the runqueue has changed and p
1239 * is actually now running somewhere else!
1240 */
85ba2d86
RM
1241 while (task_running(rq, p)) {
1242 if (match_state && unlikely(p->state != match_state))
1243 return 0;
3a5c359a 1244 cpu_relax();
85ba2d86 1245 }
fa490cfd 1246
3a5c359a
AK
1247 /*
1248 * Ok, time to look more closely! We need the rq
1249 * lock now, to be *sure*. If we're wrong, we'll
1250 * just go back and repeat.
1251 */
1252 rq = task_rq_lock(p, &flags);
27a9da65 1253 trace_sched_wait_task(p);
3a5c359a 1254 running = task_running(rq, p);
fd2f4419 1255 on_rq = p->on_rq;
85ba2d86 1256 ncsw = 0;
f31e11d8 1257 if (!match_state || p->state == match_state)
93dcf55f 1258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1259 task_rq_unlock(rq, p, &flags);
fa490cfd 1260
85ba2d86
RM
1261 /*
1262 * If it changed from the expected state, bail out now.
1263 */
1264 if (unlikely(!ncsw))
1265 break;
1266
3a5c359a
AK
1267 /*
1268 * Was it really running after all now that we
1269 * checked with the proper locks actually held?
1270 *
1271 * Oops. Go back and try again..
1272 */
1273 if (unlikely(running)) {
1274 cpu_relax();
1275 continue;
1276 }
fa490cfd 1277
3a5c359a
AK
1278 /*
1279 * It's not enough that it's not actively running,
1280 * it must be off the runqueue _entirely_, and not
1281 * preempted!
1282 *
80dd99b3 1283 * So if it was still runnable (but just not actively
3a5c359a
AK
1284 * running right now), it's preempted, and we should
1285 * yield - it could be a while.
1286 */
1287 if (unlikely(on_rq)) {
8eb90c30
TG
1288 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1289
1290 set_current_state(TASK_UNINTERRUPTIBLE);
1291 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1292 continue;
1293 }
fa490cfd 1294
3a5c359a
AK
1295 /*
1296 * Ahh, all good. It wasn't running, and it wasn't
1297 * runnable, which means that it will never become
1298 * running in the future either. We're all done!
1299 */
1300 break;
1301 }
85ba2d86
RM
1302
1303 return ncsw;
1da177e4
LT
1304}
1305
1306/***
1307 * kick_process - kick a running thread to enter/exit the kernel
1308 * @p: the to-be-kicked thread
1309 *
1310 * Cause a process which is running on another CPU to enter
1311 * kernel-mode, without any delay. (to get signals handled.)
1312 *
25985edc 1313 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1314 * because all it wants to ensure is that the remote task enters
1315 * the kernel. If the IPI races and the task has been migrated
1316 * to another CPU then no harm is done and the purpose has been
1317 * achieved as well.
1318 */
36c8b586 1319void kick_process(struct task_struct *p)
1da177e4
LT
1320{
1321 int cpu;
1322
1323 preempt_disable();
1324 cpu = task_cpu(p);
1325 if ((cpu != smp_processor_id()) && task_curr(p))
1326 smp_send_reschedule(cpu);
1327 preempt_enable();
1328}
b43e3521 1329EXPORT_SYMBOL_GPL(kick_process);
476d139c 1330#endif /* CONFIG_SMP */
1da177e4 1331
970b13ba 1332#ifdef CONFIG_SMP
30da688e 1333/*
013fdb80 1334 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1335 */
5da9a0fb
PZ
1336static int select_fallback_rq(int cpu, struct task_struct *p)
1337{
aa00d89c
TC
1338 int nid = cpu_to_node(cpu);
1339 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1340 enum { cpuset, possible, fail } state = cpuset;
1341 int dest_cpu;
5da9a0fb 1342
aa00d89c
TC
1343 /*
1344 * If the node that the cpu is on has been offlined, cpu_to_node()
1345 * will return -1. There is no cpu on the node, and we should
1346 * select the cpu on the other node.
1347 */
1348 if (nid != -1) {
1349 nodemask = cpumask_of_node(nid);
1350
1351 /* Look for allowed, online CPU in same node. */
1352 for_each_cpu(dest_cpu, nodemask) {
1353 if (!cpu_online(dest_cpu))
1354 continue;
1355 if (!cpu_active(dest_cpu))
1356 continue;
1357 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1358 return dest_cpu;
1359 }
2baab4e9 1360 }
5da9a0fb 1361
2baab4e9
PZ
1362 for (;;) {
1363 /* Any allowed, online CPU? */
e3831edd 1364 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1365 if (!cpu_online(dest_cpu))
1366 continue;
1367 if (!cpu_active(dest_cpu))
1368 continue;
1369 goto out;
1370 }
5da9a0fb 1371
2baab4e9
PZ
1372 switch (state) {
1373 case cpuset:
1374 /* No more Mr. Nice Guy. */
1375 cpuset_cpus_allowed_fallback(p);
1376 state = possible;
1377 break;
1378
1379 case possible:
1380 do_set_cpus_allowed(p, cpu_possible_mask);
1381 state = fail;
1382 break;
1383
1384 case fail:
1385 BUG();
1386 break;
1387 }
1388 }
1389
1390out:
1391 if (state != cpuset) {
1392 /*
1393 * Don't tell them about moving exiting tasks or
1394 * kernel threads (both mm NULL), since they never
1395 * leave kernel.
1396 */
1397 if (p->mm && printk_ratelimit()) {
aac74dc4 1398 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1399 task_pid_nr(p), p->comm, cpu);
1400 }
5da9a0fb
PZ
1401 }
1402
1403 return dest_cpu;
1404}
1405
e2912009 1406/*
013fdb80 1407 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1408 */
970b13ba 1409static inline
ac66f547 1410int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1411{
ac66f547 1412 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1413
1414 /*
1415 * In order not to call set_task_cpu() on a blocking task we need
1416 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1417 * cpu.
1418 *
1419 * Since this is common to all placement strategies, this lives here.
1420 *
1421 * [ this allows ->select_task() to simply return task_cpu(p) and
1422 * not worry about this generic constraint ]
1423 */
fa17b507 1424 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1425 !cpu_online(cpu)))
5da9a0fb 1426 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1427
1428 return cpu;
970b13ba 1429}
09a40af5
MG
1430
1431static void update_avg(u64 *avg, u64 sample)
1432{
1433 s64 diff = sample - *avg;
1434 *avg += diff >> 3;
1435}
970b13ba
PZ
1436#endif
1437
d7c01d27 1438static void
b84cb5df 1439ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1440{
d7c01d27 1441#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1442 struct rq *rq = this_rq();
1443
d7c01d27
PZ
1444#ifdef CONFIG_SMP
1445 int this_cpu = smp_processor_id();
1446
1447 if (cpu == this_cpu) {
1448 schedstat_inc(rq, ttwu_local);
1449 schedstat_inc(p, se.statistics.nr_wakeups_local);
1450 } else {
1451 struct sched_domain *sd;
1452
1453 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1454 rcu_read_lock();
d7c01d27
PZ
1455 for_each_domain(this_cpu, sd) {
1456 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1457 schedstat_inc(sd, ttwu_wake_remote);
1458 break;
1459 }
1460 }
057f3fad 1461 rcu_read_unlock();
d7c01d27 1462 }
f339b9dc
PZ
1463
1464 if (wake_flags & WF_MIGRATED)
1465 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1466
d7c01d27
PZ
1467#endif /* CONFIG_SMP */
1468
1469 schedstat_inc(rq, ttwu_count);
9ed3811a 1470 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1471
1472 if (wake_flags & WF_SYNC)
9ed3811a 1473 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1474
d7c01d27
PZ
1475#endif /* CONFIG_SCHEDSTATS */
1476}
1477
1478static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1479{
9ed3811a 1480 activate_task(rq, p, en_flags);
fd2f4419 1481 p->on_rq = 1;
c2f7115e
PZ
1482
1483 /* if a worker is waking up, notify workqueue */
1484 if (p->flags & PF_WQ_WORKER)
1485 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1486}
1487
23f41eeb
PZ
1488/*
1489 * Mark the task runnable and perform wakeup-preemption.
1490 */
89363381 1491static void
23f41eeb 1492ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1493{
9ed3811a 1494 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1495 trace_sched_wakeup(p, true);
9ed3811a
TH
1496
1497 p->state = TASK_RUNNING;
1498#ifdef CONFIG_SMP
1499 if (p->sched_class->task_woken)
1500 p->sched_class->task_woken(rq, p);
1501
e69c6341 1502 if (rq->idle_stamp) {
78becc27 1503 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1504 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1505
abfafa54
JL
1506 update_avg(&rq->avg_idle, delta);
1507
1508 if (rq->avg_idle > max)
9ed3811a 1509 rq->avg_idle = max;
abfafa54 1510
9ed3811a
TH
1511 rq->idle_stamp = 0;
1512 }
1513#endif
1514}
1515
c05fbafb
PZ
1516static void
1517ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1518{
1519#ifdef CONFIG_SMP
1520 if (p->sched_contributes_to_load)
1521 rq->nr_uninterruptible--;
1522#endif
1523
1524 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1525 ttwu_do_wakeup(rq, p, wake_flags);
1526}
1527
1528/*
1529 * Called in case the task @p isn't fully descheduled from its runqueue,
1530 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1531 * since all we need to do is flip p->state to TASK_RUNNING, since
1532 * the task is still ->on_rq.
1533 */
1534static int ttwu_remote(struct task_struct *p, int wake_flags)
1535{
1536 struct rq *rq;
1537 int ret = 0;
1538
1539 rq = __task_rq_lock(p);
1540 if (p->on_rq) {
1ad4ec0d
FW
1541 /* check_preempt_curr() may use rq clock */
1542 update_rq_clock(rq);
c05fbafb
PZ
1543 ttwu_do_wakeup(rq, p, wake_flags);
1544 ret = 1;
1545 }
1546 __task_rq_unlock(rq);
1547
1548 return ret;
1549}
1550
317f3941 1551#ifdef CONFIG_SMP
e3baac47 1552void sched_ttwu_pending(void)
317f3941
PZ
1553{
1554 struct rq *rq = this_rq();
fa14ff4a
PZ
1555 struct llist_node *llist = llist_del_all(&rq->wake_list);
1556 struct task_struct *p;
e3baac47 1557 unsigned long flags;
317f3941 1558
e3baac47
PZ
1559 if (!llist)
1560 return;
1561
1562 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1563
fa14ff4a
PZ
1564 while (llist) {
1565 p = llist_entry(llist, struct task_struct, wake_entry);
1566 llist = llist_next(llist);
317f3941
PZ
1567 ttwu_do_activate(rq, p, 0);
1568 }
1569
e3baac47 1570 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1571}
1572
1573void scheduler_ipi(void)
1574{
f27dde8d
PZ
1575 /*
1576 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1577 * TIF_NEED_RESCHED remotely (for the first time) will also send
1578 * this IPI.
1579 */
8cb75e0c 1580 preempt_fold_need_resched();
f27dde8d 1581
fd2ac4f4 1582 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1583 return;
1584
1585 /*
1586 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1587 * traditionally all their work was done from the interrupt return
1588 * path. Now that we actually do some work, we need to make sure
1589 * we do call them.
1590 *
1591 * Some archs already do call them, luckily irq_enter/exit nest
1592 * properly.
1593 *
1594 * Arguably we should visit all archs and update all handlers,
1595 * however a fair share of IPIs are still resched only so this would
1596 * somewhat pessimize the simple resched case.
1597 */
1598 irq_enter();
fa14ff4a 1599 sched_ttwu_pending();
ca38062e
SS
1600
1601 /*
1602 * Check if someone kicked us for doing the nohz idle load balance.
1603 */
873b4c65 1604 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1605 this_rq()->idle_balance = 1;
ca38062e 1606 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1607 }
c5d753a5 1608 irq_exit();
317f3941
PZ
1609}
1610
1611static void ttwu_queue_remote(struct task_struct *p, int cpu)
1612{
e3baac47
PZ
1613 struct rq *rq = cpu_rq(cpu);
1614
1615 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1616 if (!set_nr_if_polling(rq->idle))
1617 smp_send_reschedule(cpu);
1618 else
1619 trace_sched_wake_idle_without_ipi(cpu);
1620 }
317f3941 1621}
d6aa8f85 1622
39be3501 1623bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1624{
1625 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1626}
d6aa8f85 1627#endif /* CONFIG_SMP */
317f3941 1628
c05fbafb
PZ
1629static void ttwu_queue(struct task_struct *p, int cpu)
1630{
1631 struct rq *rq = cpu_rq(cpu);
1632
17d9f311 1633#if defined(CONFIG_SMP)
39be3501 1634 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1635 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1636 ttwu_queue_remote(p, cpu);
1637 return;
1638 }
1639#endif
1640
c05fbafb
PZ
1641 raw_spin_lock(&rq->lock);
1642 ttwu_do_activate(rq, p, 0);
1643 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1644}
1645
1646/**
1da177e4 1647 * try_to_wake_up - wake up a thread
9ed3811a 1648 * @p: the thread to be awakened
1da177e4 1649 * @state: the mask of task states that can be woken
9ed3811a 1650 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1651 *
1652 * Put it on the run-queue if it's not already there. The "current"
1653 * thread is always on the run-queue (except when the actual
1654 * re-schedule is in progress), and as such you're allowed to do
1655 * the simpler "current->state = TASK_RUNNING" to mark yourself
1656 * runnable without the overhead of this.
1657 *
e69f6186 1658 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1659 * or @state didn't match @p's state.
1da177e4 1660 */
e4a52bcb
PZ
1661static int
1662try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1663{
1da177e4 1664 unsigned long flags;
c05fbafb 1665 int cpu, success = 0;
2398f2c6 1666
e0acd0a6
ON
1667 /*
1668 * If we are going to wake up a thread waiting for CONDITION we
1669 * need to ensure that CONDITION=1 done by the caller can not be
1670 * reordered with p->state check below. This pairs with mb() in
1671 * set_current_state() the waiting thread does.
1672 */
1673 smp_mb__before_spinlock();
013fdb80 1674 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1675 if (!(p->state & state))
1da177e4
LT
1676 goto out;
1677
c05fbafb 1678 success = 1; /* we're going to change ->state */
1da177e4 1679 cpu = task_cpu(p);
1da177e4 1680
c05fbafb
PZ
1681 if (p->on_rq && ttwu_remote(p, wake_flags))
1682 goto stat;
1da177e4 1683
1da177e4 1684#ifdef CONFIG_SMP
e9c84311 1685 /*
c05fbafb
PZ
1686 * If the owning (remote) cpu is still in the middle of schedule() with
1687 * this task as prev, wait until its done referencing the task.
e9c84311 1688 */
f3e94786 1689 while (p->on_cpu)
e4a52bcb 1690 cpu_relax();
0970d299 1691 /*
e4a52bcb 1692 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1693 */
e4a52bcb 1694 smp_rmb();
1da177e4 1695
a8e4f2ea 1696 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1697 p->state = TASK_WAKING;
e7693a36 1698
e4a52bcb 1699 if (p->sched_class->task_waking)
74f8e4b2 1700 p->sched_class->task_waking(p);
efbbd05a 1701
ac66f547 1702 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1703 if (task_cpu(p) != cpu) {
1704 wake_flags |= WF_MIGRATED;
e4a52bcb 1705 set_task_cpu(p, cpu);
f339b9dc 1706 }
1da177e4 1707#endif /* CONFIG_SMP */
1da177e4 1708
c05fbafb
PZ
1709 ttwu_queue(p, cpu);
1710stat:
b84cb5df 1711 ttwu_stat(p, cpu, wake_flags);
1da177e4 1712out:
013fdb80 1713 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1714
1715 return success;
1716}
1717
21aa9af0
TH
1718/**
1719 * try_to_wake_up_local - try to wake up a local task with rq lock held
1720 * @p: the thread to be awakened
1721 *
2acca55e 1722 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1723 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1724 * the current task.
21aa9af0
TH
1725 */
1726static void try_to_wake_up_local(struct task_struct *p)
1727{
1728 struct rq *rq = task_rq(p);
21aa9af0 1729
383efcd0
TH
1730 if (WARN_ON_ONCE(rq != this_rq()) ||
1731 WARN_ON_ONCE(p == current))
1732 return;
1733
21aa9af0
TH
1734 lockdep_assert_held(&rq->lock);
1735
2acca55e
PZ
1736 if (!raw_spin_trylock(&p->pi_lock)) {
1737 raw_spin_unlock(&rq->lock);
1738 raw_spin_lock(&p->pi_lock);
1739 raw_spin_lock(&rq->lock);
1740 }
1741
21aa9af0 1742 if (!(p->state & TASK_NORMAL))
2acca55e 1743 goto out;
21aa9af0 1744
fd2f4419 1745 if (!p->on_rq)
d7c01d27
PZ
1746 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1747
23f41eeb 1748 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1749 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1750out:
1751 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1752}
1753
50fa610a
DH
1754/**
1755 * wake_up_process - Wake up a specific process
1756 * @p: The process to be woken up.
1757 *
1758 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1759 * processes.
1760 *
1761 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1762 *
1763 * It may be assumed that this function implies a write memory barrier before
1764 * changing the task state if and only if any tasks are woken up.
1765 */
7ad5b3a5 1766int wake_up_process(struct task_struct *p)
1da177e4 1767{
9067ac85
ON
1768 WARN_ON(task_is_stopped_or_traced(p));
1769 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1770}
1da177e4
LT
1771EXPORT_SYMBOL(wake_up_process);
1772
7ad5b3a5 1773int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1774{
1775 return try_to_wake_up(p, state, 0);
1776}
1777
1da177e4
LT
1778/*
1779 * Perform scheduler related setup for a newly forked process p.
1780 * p is forked by current.
dd41f596
IM
1781 *
1782 * __sched_fork() is basic setup used by init_idle() too:
1783 */
5e1576ed 1784static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1785{
fd2f4419
PZ
1786 p->on_rq = 0;
1787
1788 p->se.on_rq = 0;
dd41f596
IM
1789 p->se.exec_start = 0;
1790 p->se.sum_exec_runtime = 0;
f6cf891c 1791 p->se.prev_sum_exec_runtime = 0;
6c594c21 1792 p->se.nr_migrations = 0;
da7a735e 1793 p->se.vruntime = 0;
fd2f4419 1794 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1795
1796#ifdef CONFIG_SCHEDSTATS
41acab88 1797 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1798#endif
476d139c 1799
aab03e05
DF
1800 RB_CLEAR_NODE(&p->dl.rb_node);
1801 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1802 p->dl.dl_runtime = p->dl.runtime = 0;
1803 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1804 p->dl.dl_period = 0;
aab03e05
DF
1805 p->dl.flags = 0;
1806
fa717060 1807 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1808
e107be36
AK
1809#ifdef CONFIG_PREEMPT_NOTIFIERS
1810 INIT_HLIST_HEAD(&p->preempt_notifiers);
1811#endif
cbee9f88
PZ
1812
1813#ifdef CONFIG_NUMA_BALANCING
1814 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1815 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1816 p->mm->numa_scan_seq = 0;
1817 }
1818
5e1576ed
RR
1819 if (clone_flags & CLONE_VM)
1820 p->numa_preferred_nid = current->numa_preferred_nid;
1821 else
1822 p->numa_preferred_nid = -1;
1823
cbee9f88
PZ
1824 p->node_stamp = 0ULL;
1825 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1826 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1827 p->numa_work.next = &p->numa_work;
ff1df896
RR
1828 p->numa_faults_memory = NULL;
1829 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1830 p->last_task_numa_placement = 0;
1831 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1832
1833 INIT_LIST_HEAD(&p->numa_entry);
1834 p->numa_group = NULL;
cbee9f88 1835#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1836}
1837
1a687c2e 1838#ifdef CONFIG_NUMA_BALANCING
3105b86a 1839#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1840void set_numabalancing_state(bool enabled)
1841{
1842 if (enabled)
1843 sched_feat_set("NUMA");
1844 else
1845 sched_feat_set("NO_NUMA");
1846}
3105b86a
MG
1847#else
1848__read_mostly bool numabalancing_enabled;
1849
1850void set_numabalancing_state(bool enabled)
1851{
1852 numabalancing_enabled = enabled;
dd41f596 1853}
3105b86a 1854#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1855
1856#ifdef CONFIG_PROC_SYSCTL
1857int sysctl_numa_balancing(struct ctl_table *table, int write,
1858 void __user *buffer, size_t *lenp, loff_t *ppos)
1859{
1860 struct ctl_table t;
1861 int err;
1862 int state = numabalancing_enabled;
1863
1864 if (write && !capable(CAP_SYS_ADMIN))
1865 return -EPERM;
1866
1867 t = *table;
1868 t.data = &state;
1869 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1870 if (err < 0)
1871 return err;
1872 if (write)
1873 set_numabalancing_state(state);
1874 return err;
1875}
1876#endif
1877#endif
dd41f596
IM
1878
1879/*
1880 * fork()/clone()-time setup:
1881 */
aab03e05 1882int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1883{
0122ec5b 1884 unsigned long flags;
dd41f596
IM
1885 int cpu = get_cpu();
1886
5e1576ed 1887 __sched_fork(clone_flags, p);
06b83b5f 1888 /*
0017d735 1889 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1890 * nobody will actually run it, and a signal or other external
1891 * event cannot wake it up and insert it on the runqueue either.
1892 */
0017d735 1893 p->state = TASK_RUNNING;
dd41f596 1894
c350a04e
MG
1895 /*
1896 * Make sure we do not leak PI boosting priority to the child.
1897 */
1898 p->prio = current->normal_prio;
1899
b9dc29e7
MG
1900 /*
1901 * Revert to default priority/policy on fork if requested.
1902 */
1903 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1904 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1905 p->policy = SCHED_NORMAL;
6c697bdf 1906 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1907 p->rt_priority = 0;
1908 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1909 p->static_prio = NICE_TO_PRIO(0);
1910
1911 p->prio = p->normal_prio = __normal_prio(p);
1912 set_load_weight(p);
6c697bdf 1913
b9dc29e7
MG
1914 /*
1915 * We don't need the reset flag anymore after the fork. It has
1916 * fulfilled its duty:
1917 */
1918 p->sched_reset_on_fork = 0;
1919 }
ca94c442 1920
aab03e05
DF
1921 if (dl_prio(p->prio)) {
1922 put_cpu();
1923 return -EAGAIN;
1924 } else if (rt_prio(p->prio)) {
1925 p->sched_class = &rt_sched_class;
1926 } else {
2ddbf952 1927 p->sched_class = &fair_sched_class;
aab03e05 1928 }
b29739f9 1929
cd29fe6f
PZ
1930 if (p->sched_class->task_fork)
1931 p->sched_class->task_fork(p);
1932
86951599
PZ
1933 /*
1934 * The child is not yet in the pid-hash so no cgroup attach races,
1935 * and the cgroup is pinned to this child due to cgroup_fork()
1936 * is ran before sched_fork().
1937 *
1938 * Silence PROVE_RCU.
1939 */
0122ec5b 1940 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1941 set_task_cpu(p, cpu);
0122ec5b 1942 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1943
52f17b6c 1944#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1945 if (likely(sched_info_on()))
52f17b6c 1946 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1947#endif
3ca7a440
PZ
1948#if defined(CONFIG_SMP)
1949 p->on_cpu = 0;
4866cde0 1950#endif
01028747 1951 init_task_preempt_count(p);
806c09a7 1952#ifdef CONFIG_SMP
917b627d 1953 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1954 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1955#endif
917b627d 1956
476d139c 1957 put_cpu();
aab03e05 1958 return 0;
1da177e4
LT
1959}
1960
332ac17e
DF
1961unsigned long to_ratio(u64 period, u64 runtime)
1962{
1963 if (runtime == RUNTIME_INF)
1964 return 1ULL << 20;
1965
1966 /*
1967 * Doing this here saves a lot of checks in all
1968 * the calling paths, and returning zero seems
1969 * safe for them anyway.
1970 */
1971 if (period == 0)
1972 return 0;
1973
1974 return div64_u64(runtime << 20, period);
1975}
1976
1977#ifdef CONFIG_SMP
1978inline struct dl_bw *dl_bw_of(int i)
1979{
1980 return &cpu_rq(i)->rd->dl_bw;
1981}
1982
de212f18 1983static inline int dl_bw_cpus(int i)
332ac17e 1984{
de212f18
PZ
1985 struct root_domain *rd = cpu_rq(i)->rd;
1986 int cpus = 0;
1987
1988 for_each_cpu_and(i, rd->span, cpu_active_mask)
1989 cpus++;
1990
1991 return cpus;
332ac17e
DF
1992}
1993#else
1994inline struct dl_bw *dl_bw_of(int i)
1995{
1996 return &cpu_rq(i)->dl.dl_bw;
1997}
1998
de212f18 1999static inline int dl_bw_cpus(int i)
332ac17e
DF
2000{
2001 return 1;
2002}
2003#endif
2004
2005static inline
2006void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2007{
2008 dl_b->total_bw -= tsk_bw;
2009}
2010
2011static inline
2012void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2013{
2014 dl_b->total_bw += tsk_bw;
2015}
2016
2017static inline
2018bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2019{
2020 return dl_b->bw != -1 &&
2021 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2022}
2023
2024/*
2025 * We must be sure that accepting a new task (or allowing changing the
2026 * parameters of an existing one) is consistent with the bandwidth
2027 * constraints. If yes, this function also accordingly updates the currently
2028 * allocated bandwidth to reflect the new situation.
2029 *
2030 * This function is called while holding p's rq->lock.
2031 */
2032static int dl_overflow(struct task_struct *p, int policy,
2033 const struct sched_attr *attr)
2034{
2035
2036 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2037 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2038 u64 runtime = attr->sched_runtime;
2039 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2040 int cpus, err = -1;
332ac17e
DF
2041
2042 if (new_bw == p->dl.dl_bw)
2043 return 0;
2044
2045 /*
2046 * Either if a task, enters, leave, or stays -deadline but changes
2047 * its parameters, we may need to update accordingly the total
2048 * allocated bandwidth of the container.
2049 */
2050 raw_spin_lock(&dl_b->lock);
de212f18 2051 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2052 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2053 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2054 __dl_add(dl_b, new_bw);
2055 err = 0;
2056 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2057 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2058 __dl_clear(dl_b, p->dl.dl_bw);
2059 __dl_add(dl_b, new_bw);
2060 err = 0;
2061 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2062 __dl_clear(dl_b, p->dl.dl_bw);
2063 err = 0;
2064 }
2065 raw_spin_unlock(&dl_b->lock);
2066
2067 return err;
2068}
2069
2070extern void init_dl_bw(struct dl_bw *dl_b);
2071
1da177e4
LT
2072/*
2073 * wake_up_new_task - wake up a newly created task for the first time.
2074 *
2075 * This function will do some initial scheduler statistics housekeeping
2076 * that must be done for every newly created context, then puts the task
2077 * on the runqueue and wakes it.
2078 */
3e51e3ed 2079void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2080{
2081 unsigned long flags;
dd41f596 2082 struct rq *rq;
fabf318e 2083
ab2515c4 2084 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2085#ifdef CONFIG_SMP
2086 /*
2087 * Fork balancing, do it here and not earlier because:
2088 * - cpus_allowed can change in the fork path
2089 * - any previously selected cpu might disappear through hotplug
fabf318e 2090 */
ac66f547 2091 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2092#endif
2093
a75cdaa9
AS
2094 /* Initialize new task's runnable average */
2095 init_task_runnable_average(p);
ab2515c4 2096 rq = __task_rq_lock(p);
cd29fe6f 2097 activate_task(rq, p, 0);
fd2f4419 2098 p->on_rq = 1;
89363381 2099 trace_sched_wakeup_new(p, true);
a7558e01 2100 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2101#ifdef CONFIG_SMP
efbbd05a
PZ
2102 if (p->sched_class->task_woken)
2103 p->sched_class->task_woken(rq, p);
9a897c5a 2104#endif
0122ec5b 2105 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2106}
2107
e107be36
AK
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109
2110/**
80dd99b3 2111 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2112 * @notifier: notifier struct to register
e107be36
AK
2113 */
2114void preempt_notifier_register(struct preempt_notifier *notifier)
2115{
2116 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2117}
2118EXPORT_SYMBOL_GPL(preempt_notifier_register);
2119
2120/**
2121 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2122 * @notifier: notifier struct to unregister
e107be36
AK
2123 *
2124 * This is safe to call from within a preemption notifier.
2125 */
2126void preempt_notifier_unregister(struct preempt_notifier *notifier)
2127{
2128 hlist_del(&notifier->link);
2129}
2130EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2131
2132static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2133{
2134 struct preempt_notifier *notifier;
e107be36 2135
b67bfe0d 2136 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2137 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2138}
2139
2140static void
2141fire_sched_out_preempt_notifiers(struct task_struct *curr,
2142 struct task_struct *next)
2143{
2144 struct preempt_notifier *notifier;
e107be36 2145
b67bfe0d 2146 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2147 notifier->ops->sched_out(notifier, next);
2148}
2149
6d6bc0ad 2150#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2151
2152static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2153{
2154}
2155
2156static void
2157fire_sched_out_preempt_notifiers(struct task_struct *curr,
2158 struct task_struct *next)
2159{
2160}
2161
6d6bc0ad 2162#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2163
4866cde0
NP
2164/**
2165 * prepare_task_switch - prepare to switch tasks
2166 * @rq: the runqueue preparing to switch
421cee29 2167 * @prev: the current task that is being switched out
4866cde0
NP
2168 * @next: the task we are going to switch to.
2169 *
2170 * This is called with the rq lock held and interrupts off. It must
2171 * be paired with a subsequent finish_task_switch after the context
2172 * switch.
2173 *
2174 * prepare_task_switch sets up locking and calls architecture specific
2175 * hooks.
2176 */
e107be36
AK
2177static inline void
2178prepare_task_switch(struct rq *rq, struct task_struct *prev,
2179 struct task_struct *next)
4866cde0 2180{
895dd92c 2181 trace_sched_switch(prev, next);
43148951 2182 sched_info_switch(rq, prev, next);
fe4b04fa 2183 perf_event_task_sched_out(prev, next);
e107be36 2184 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2185 prepare_lock_switch(rq, next);
2186 prepare_arch_switch(next);
2187}
2188
1da177e4
LT
2189/**
2190 * finish_task_switch - clean up after a task-switch
344babaa 2191 * @rq: runqueue associated with task-switch
1da177e4
LT
2192 * @prev: the thread we just switched away from.
2193 *
4866cde0
NP
2194 * finish_task_switch must be called after the context switch, paired
2195 * with a prepare_task_switch call before the context switch.
2196 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2197 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2198 *
2199 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2200 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2201 * with the lock held can cause deadlocks; see schedule() for
2202 * details.)
2203 */
a9957449 2204static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2205 __releases(rq->lock)
2206{
1da177e4 2207 struct mm_struct *mm = rq->prev_mm;
55a101f8 2208 long prev_state;
1da177e4
LT
2209
2210 rq->prev_mm = NULL;
2211
2212 /*
2213 * A task struct has one reference for the use as "current".
c394cc9f 2214 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2215 * schedule one last time. The schedule call will never return, and
2216 * the scheduled task must drop that reference.
c394cc9f 2217 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2218 * still held, otherwise prev could be scheduled on another cpu, die
2219 * there before we look at prev->state, and then the reference would
2220 * be dropped twice.
2221 * Manfred Spraul <manfred@colorfullife.com>
2222 */
55a101f8 2223 prev_state = prev->state;
bf9fae9f 2224 vtime_task_switch(prev);
4866cde0 2225 finish_arch_switch(prev);
a8d757ef 2226 perf_event_task_sched_in(prev, current);
4866cde0 2227 finish_lock_switch(rq, prev);
01f23e16 2228 finish_arch_post_lock_switch();
e8fa1362 2229
e107be36 2230 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2231 if (mm)
2232 mmdrop(mm);
c394cc9f 2233 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2234 if (prev->sched_class->task_dead)
2235 prev->sched_class->task_dead(prev);
2236
c6fd91f0 2237 /*
2238 * Remove function-return probe instances associated with this
2239 * task and put them back on the free list.
9761eea8 2240 */
c6fd91f0 2241 kprobe_flush_task(prev);
1da177e4 2242 put_task_struct(prev);
c6fd91f0 2243 }
99e5ada9
FW
2244
2245 tick_nohz_task_switch(current);
1da177e4
LT
2246}
2247
3f029d3c
GH
2248#ifdef CONFIG_SMP
2249
3f029d3c
GH
2250/* rq->lock is NOT held, but preemption is disabled */
2251static inline void post_schedule(struct rq *rq)
2252{
2253 if (rq->post_schedule) {
2254 unsigned long flags;
2255
05fa785c 2256 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2257 if (rq->curr->sched_class->post_schedule)
2258 rq->curr->sched_class->post_schedule(rq);
05fa785c 2259 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2260
2261 rq->post_schedule = 0;
2262 }
2263}
2264
2265#else
da19ab51 2266
3f029d3c
GH
2267static inline void post_schedule(struct rq *rq)
2268{
1da177e4
LT
2269}
2270
3f029d3c
GH
2271#endif
2272
1da177e4
LT
2273/**
2274 * schedule_tail - first thing a freshly forked thread must call.
2275 * @prev: the thread we just switched away from.
2276 */
722a9f92 2277asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2278 __releases(rq->lock)
2279{
70b97a7f
IM
2280 struct rq *rq = this_rq();
2281
4866cde0 2282 finish_task_switch(rq, prev);
da19ab51 2283
3f029d3c
GH
2284 /*
2285 * FIXME: do we need to worry about rq being invalidated by the
2286 * task_switch?
2287 */
2288 post_schedule(rq);
70b97a7f 2289
4866cde0
NP
2290#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2291 /* In this case, finish_task_switch does not reenable preemption */
2292 preempt_enable();
2293#endif
1da177e4 2294 if (current->set_child_tid)
b488893a 2295 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2296}
2297
2298/*
2299 * context_switch - switch to the new MM and the new
2300 * thread's register state.
2301 */
dd41f596 2302static inline void
70b97a7f 2303context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2304 struct task_struct *next)
1da177e4 2305{
dd41f596 2306 struct mm_struct *mm, *oldmm;
1da177e4 2307
e107be36 2308 prepare_task_switch(rq, prev, next);
fe4b04fa 2309
dd41f596
IM
2310 mm = next->mm;
2311 oldmm = prev->active_mm;
9226d125
ZA
2312 /*
2313 * For paravirt, this is coupled with an exit in switch_to to
2314 * combine the page table reload and the switch backend into
2315 * one hypercall.
2316 */
224101ed 2317 arch_start_context_switch(prev);
9226d125 2318
31915ab4 2319 if (!mm) {
1da177e4
LT
2320 next->active_mm = oldmm;
2321 atomic_inc(&oldmm->mm_count);
2322 enter_lazy_tlb(oldmm, next);
2323 } else
2324 switch_mm(oldmm, mm, next);
2325
31915ab4 2326 if (!prev->mm) {
1da177e4 2327 prev->active_mm = NULL;
1da177e4
LT
2328 rq->prev_mm = oldmm;
2329 }
3a5f5e48
IM
2330 /*
2331 * Since the runqueue lock will be released by the next
2332 * task (which is an invalid locking op but in the case
2333 * of the scheduler it's an obvious special-case), so we
2334 * do an early lockdep release here:
2335 */
2336#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2337 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2338#endif
1da177e4 2339
91d1aa43 2340 context_tracking_task_switch(prev, next);
1da177e4
LT
2341 /* Here we just switch the register state and the stack. */
2342 switch_to(prev, next, prev);
2343
dd41f596
IM
2344 barrier();
2345 /*
2346 * this_rq must be evaluated again because prev may have moved
2347 * CPUs since it called schedule(), thus the 'rq' on its stack
2348 * frame will be invalid.
2349 */
2350 finish_task_switch(this_rq(), prev);
1da177e4
LT
2351}
2352
2353/*
1c3e8264 2354 * nr_running and nr_context_switches:
1da177e4
LT
2355 *
2356 * externally visible scheduler statistics: current number of runnable
1c3e8264 2357 * threads, total number of context switches performed since bootup.
1da177e4
LT
2358 */
2359unsigned long nr_running(void)
2360{
2361 unsigned long i, sum = 0;
2362
2363 for_each_online_cpu(i)
2364 sum += cpu_rq(i)->nr_running;
2365
2366 return sum;
f711f609 2367}
1da177e4 2368
1da177e4 2369unsigned long long nr_context_switches(void)
46cb4b7c 2370{
cc94abfc
SR
2371 int i;
2372 unsigned long long sum = 0;
46cb4b7c 2373
0a945022 2374 for_each_possible_cpu(i)
1da177e4 2375 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2376
1da177e4
LT
2377 return sum;
2378}
483b4ee6 2379
1da177e4
LT
2380unsigned long nr_iowait(void)
2381{
2382 unsigned long i, sum = 0;
483b4ee6 2383
0a945022 2384 for_each_possible_cpu(i)
1da177e4 2385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2386
1da177e4
LT
2387 return sum;
2388}
483b4ee6 2389
8c215bd3 2390unsigned long nr_iowait_cpu(int cpu)
69d25870 2391{
8c215bd3 2392 struct rq *this = cpu_rq(cpu);
69d25870
AV
2393 return atomic_read(&this->nr_iowait);
2394}
46cb4b7c 2395
372ba8cb
MG
2396void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2397{
2398 struct rq *this = this_rq();
2399 *nr_waiters = atomic_read(&this->nr_iowait);
2400 *load = this->cpu_load[0];
2401}
2402
dd41f596 2403#ifdef CONFIG_SMP
8a0be9ef 2404
46cb4b7c 2405/*
38022906
PZ
2406 * sched_exec - execve() is a valuable balancing opportunity, because at
2407 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2408 */
38022906 2409void sched_exec(void)
46cb4b7c 2410{
38022906 2411 struct task_struct *p = current;
1da177e4 2412 unsigned long flags;
0017d735 2413 int dest_cpu;
46cb4b7c 2414
8f42ced9 2415 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2416 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2417 if (dest_cpu == smp_processor_id())
2418 goto unlock;
38022906 2419
8f42ced9 2420 if (likely(cpu_active(dest_cpu))) {
969c7921 2421 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2422
8f42ced9
PZ
2423 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2424 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2425 return;
2426 }
0017d735 2427unlock:
8f42ced9 2428 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2429}
dd41f596 2430
1da177e4
LT
2431#endif
2432
1da177e4 2433DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2434DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2435
2436EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2437EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2438
2439/*
c5f8d995 2440 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2441 * @p in case that task is currently running.
c5f8d995
HS
2442 *
2443 * Called with task_rq_lock() held on @rq.
1da177e4 2444 */
c5f8d995
HS
2445static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2446{
2447 u64 ns = 0;
2448
4036ac15
MG
2449 /*
2450 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2451 * project cycles that may never be accounted to this
2452 * thread, breaking clock_gettime().
2453 */
2454 if (task_current(rq, p) && p->on_rq) {
c5f8d995 2455 update_rq_clock(rq);
78becc27 2456 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2457 if ((s64)ns < 0)
2458 ns = 0;
2459 }
2460
2461 return ns;
2462}
2463
bb34d92f 2464unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2465{
1da177e4 2466 unsigned long flags;
41b86e9c 2467 struct rq *rq;
bb34d92f 2468 u64 ns = 0;
48f24c4d 2469
41b86e9c 2470 rq = task_rq_lock(p, &flags);
c5f8d995 2471 ns = do_task_delta_exec(p, rq);
0122ec5b 2472 task_rq_unlock(rq, p, &flags);
1508487e 2473
c5f8d995
HS
2474 return ns;
2475}
f06febc9 2476
c5f8d995
HS
2477/*
2478 * Return accounted runtime for the task.
2479 * In case the task is currently running, return the runtime plus current's
2480 * pending runtime that have not been accounted yet.
2481 */
2482unsigned long long task_sched_runtime(struct task_struct *p)
2483{
2484 unsigned long flags;
2485 struct rq *rq;
2486 u64 ns = 0;
2487
911b2898
PZ
2488#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2489 /*
2490 * 64-bit doesn't need locks to atomically read a 64bit value.
2491 * So we have a optimization chance when the task's delta_exec is 0.
2492 * Reading ->on_cpu is racy, but this is ok.
2493 *
2494 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2495 * If we race with it entering cpu, unaccounted time is 0. This is
2496 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2497 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2498 * been accounted, so we're correct here as well.
911b2898 2499 */
4036ac15 2500 if (!p->on_cpu || !p->on_rq)
911b2898
PZ
2501 return p->se.sum_exec_runtime;
2502#endif
2503
c5f8d995
HS
2504 rq = task_rq_lock(p, &flags);
2505 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2506 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2507
2508 return ns;
2509}
48f24c4d 2510
7835b98b
CL
2511/*
2512 * This function gets called by the timer code, with HZ frequency.
2513 * We call it with interrupts disabled.
7835b98b
CL
2514 */
2515void scheduler_tick(void)
2516{
7835b98b
CL
2517 int cpu = smp_processor_id();
2518 struct rq *rq = cpu_rq(cpu);
dd41f596 2519 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2520
2521 sched_clock_tick();
dd41f596 2522
05fa785c 2523 raw_spin_lock(&rq->lock);
3e51f33f 2524 update_rq_clock(rq);
fa85ae24 2525 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2526 update_cpu_load_active(rq);
05fa785c 2527 raw_spin_unlock(&rq->lock);
7835b98b 2528
e9d2b064 2529 perf_event_task_tick();
e220d2dc 2530
e418e1c2 2531#ifdef CONFIG_SMP
6eb57e0d 2532 rq->idle_balance = idle_cpu(cpu);
7caff66f 2533 trigger_load_balance(rq);
e418e1c2 2534#endif
265f22a9 2535 rq_last_tick_reset(rq);
1da177e4
LT
2536}
2537
265f22a9
FW
2538#ifdef CONFIG_NO_HZ_FULL
2539/**
2540 * scheduler_tick_max_deferment
2541 *
2542 * Keep at least one tick per second when a single
2543 * active task is running because the scheduler doesn't
2544 * yet completely support full dynticks environment.
2545 *
2546 * This makes sure that uptime, CFS vruntime, load
2547 * balancing, etc... continue to move forward, even
2548 * with a very low granularity.
e69f6186
YB
2549 *
2550 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2551 */
2552u64 scheduler_tick_max_deferment(void)
2553{
2554 struct rq *rq = this_rq();
2555 unsigned long next, now = ACCESS_ONCE(jiffies);
2556
2557 next = rq->last_sched_tick + HZ;
2558
2559 if (time_before_eq(next, now))
2560 return 0;
2561
8fe8ff09 2562 return jiffies_to_nsecs(next - now);
1da177e4 2563}
265f22a9 2564#endif
1da177e4 2565
132380a0 2566notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2567{
2568 if (in_lock_functions(addr)) {
2569 addr = CALLER_ADDR2;
2570 if (in_lock_functions(addr))
2571 addr = CALLER_ADDR3;
2572 }
2573 return addr;
2574}
1da177e4 2575
7e49fcce
SR
2576#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2577 defined(CONFIG_PREEMPT_TRACER))
2578
edafe3a5 2579void preempt_count_add(int val)
1da177e4 2580{
6cd8a4bb 2581#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2582 /*
2583 * Underflow?
2584 */
9a11b49a
IM
2585 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2586 return;
6cd8a4bb 2587#endif
bdb43806 2588 __preempt_count_add(val);
6cd8a4bb 2589#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2590 /*
2591 * Spinlock count overflowing soon?
2592 */
33859f7f
MOS
2593 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2594 PREEMPT_MASK - 10);
6cd8a4bb 2595#endif
8f47b187
TG
2596 if (preempt_count() == val) {
2597 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2598#ifdef CONFIG_DEBUG_PREEMPT
2599 current->preempt_disable_ip = ip;
2600#endif
2601 trace_preempt_off(CALLER_ADDR0, ip);
2602 }
1da177e4 2603}
bdb43806 2604EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2605NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2606
edafe3a5 2607void preempt_count_sub(int val)
1da177e4 2608{
6cd8a4bb 2609#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2610 /*
2611 * Underflow?
2612 */
01e3eb82 2613 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2614 return;
1da177e4
LT
2615 /*
2616 * Is the spinlock portion underflowing?
2617 */
9a11b49a
IM
2618 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2619 !(preempt_count() & PREEMPT_MASK)))
2620 return;
6cd8a4bb 2621#endif
9a11b49a 2622
6cd8a4bb
SR
2623 if (preempt_count() == val)
2624 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2625 __preempt_count_sub(val);
1da177e4 2626}
bdb43806 2627EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2628NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2629
2630#endif
2631
2632/*
dd41f596 2633 * Print scheduling while atomic bug:
1da177e4 2634 */
dd41f596 2635static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2636{
664dfa65
DJ
2637 if (oops_in_progress)
2638 return;
2639
3df0fc5b
PZ
2640 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2641 prev->comm, prev->pid, preempt_count());
838225b4 2642
dd41f596 2643 debug_show_held_locks(prev);
e21f5b15 2644 print_modules();
dd41f596
IM
2645 if (irqs_disabled())
2646 print_irqtrace_events(prev);
8f47b187
TG
2647#ifdef CONFIG_DEBUG_PREEMPT
2648 if (in_atomic_preempt_off()) {
2649 pr_err("Preemption disabled at:");
2650 print_ip_sym(current->preempt_disable_ip);
2651 pr_cont("\n");
2652 }
2653#endif
6135fc1e 2654 dump_stack();
373d4d09 2655 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2656}
1da177e4 2657
dd41f596
IM
2658/*
2659 * Various schedule()-time debugging checks and statistics:
2660 */
2661static inline void schedule_debug(struct task_struct *prev)
2662{
1da177e4 2663 /*
41a2d6cf 2664 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2665 * schedule() atomically, we ignore that path. Otherwise whine
2666 * if we are scheduling when we should not.
1da177e4 2667 */
192301e7 2668 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2669 __schedule_bug(prev);
b3fbab05 2670 rcu_sleep_check();
dd41f596 2671
1da177e4
LT
2672 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2673
2d72376b 2674 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2675}
2676
2677/*
2678 * Pick up the highest-prio task:
2679 */
2680static inline struct task_struct *
606dba2e 2681pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2682{
37e117c0 2683 const struct sched_class *class = &fair_sched_class;
dd41f596 2684 struct task_struct *p;
1da177e4
LT
2685
2686 /*
dd41f596
IM
2687 * Optimization: we know that if all tasks are in
2688 * the fair class we can call that function directly:
1da177e4 2689 */
37e117c0 2690 if (likely(prev->sched_class == class &&
38033c37 2691 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2692 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2693 if (unlikely(p == RETRY_TASK))
2694 goto again;
2695
2696 /* assumes fair_sched_class->next == idle_sched_class */
2697 if (unlikely(!p))
2698 p = idle_sched_class.pick_next_task(rq, prev);
2699
2700 return p;
1da177e4
LT
2701 }
2702
37e117c0 2703again:
34f971f6 2704 for_each_class(class) {
606dba2e 2705 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2706 if (p) {
2707 if (unlikely(p == RETRY_TASK))
2708 goto again;
dd41f596 2709 return p;
37e117c0 2710 }
dd41f596 2711 }
34f971f6
PZ
2712
2713 BUG(); /* the idle class will always have a runnable task */
dd41f596 2714}
1da177e4 2715
dd41f596 2716/*
c259e01a 2717 * __schedule() is the main scheduler function.
edde96ea
PE
2718 *
2719 * The main means of driving the scheduler and thus entering this function are:
2720 *
2721 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2722 *
2723 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2724 * paths. For example, see arch/x86/entry_64.S.
2725 *
2726 * To drive preemption between tasks, the scheduler sets the flag in timer
2727 * interrupt handler scheduler_tick().
2728 *
2729 * 3. Wakeups don't really cause entry into schedule(). They add a
2730 * task to the run-queue and that's it.
2731 *
2732 * Now, if the new task added to the run-queue preempts the current
2733 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2734 * called on the nearest possible occasion:
2735 *
2736 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2737 *
2738 * - in syscall or exception context, at the next outmost
2739 * preempt_enable(). (this might be as soon as the wake_up()'s
2740 * spin_unlock()!)
2741 *
2742 * - in IRQ context, return from interrupt-handler to
2743 * preemptible context
2744 *
2745 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2746 * then at the next:
2747 *
2748 * - cond_resched() call
2749 * - explicit schedule() call
2750 * - return from syscall or exception to user-space
2751 * - return from interrupt-handler to user-space
dd41f596 2752 */
c259e01a 2753static void __sched __schedule(void)
dd41f596
IM
2754{
2755 struct task_struct *prev, *next;
67ca7bde 2756 unsigned long *switch_count;
dd41f596 2757 struct rq *rq;
31656519 2758 int cpu;
dd41f596 2759
ff743345
PZ
2760need_resched:
2761 preempt_disable();
dd41f596
IM
2762 cpu = smp_processor_id();
2763 rq = cpu_rq(cpu);
25502a6c 2764 rcu_note_context_switch(cpu);
dd41f596 2765 prev = rq->curr;
dd41f596 2766
dd41f596 2767 schedule_debug(prev);
1da177e4 2768
31656519 2769 if (sched_feat(HRTICK))
f333fdc9 2770 hrtick_clear(rq);
8f4d37ec 2771
e0acd0a6
ON
2772 /*
2773 * Make sure that signal_pending_state()->signal_pending() below
2774 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2775 * done by the caller to avoid the race with signal_wake_up().
2776 */
2777 smp_mb__before_spinlock();
05fa785c 2778 raw_spin_lock_irq(&rq->lock);
1da177e4 2779
246d86b5 2780 switch_count = &prev->nivcsw;
1da177e4 2781 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2782 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2783 prev->state = TASK_RUNNING;
21aa9af0 2784 } else {
2acca55e
PZ
2785 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2786 prev->on_rq = 0;
2787
21aa9af0 2788 /*
2acca55e
PZ
2789 * If a worker went to sleep, notify and ask workqueue
2790 * whether it wants to wake up a task to maintain
2791 * concurrency.
21aa9af0
TH
2792 */
2793 if (prev->flags & PF_WQ_WORKER) {
2794 struct task_struct *to_wakeup;
2795
2796 to_wakeup = wq_worker_sleeping(prev, cpu);
2797 if (to_wakeup)
2798 try_to_wake_up_local(to_wakeup);
2799 }
21aa9af0 2800 }
dd41f596 2801 switch_count = &prev->nvcsw;
1da177e4
LT
2802 }
2803
606dba2e
PZ
2804 if (prev->on_rq || rq->skip_clock_update < 0)
2805 update_rq_clock(rq);
2806
2807 next = pick_next_task(rq, prev);
f26f9aff 2808 clear_tsk_need_resched(prev);
f27dde8d 2809 clear_preempt_need_resched();
f26f9aff 2810 rq->skip_clock_update = 0;
1da177e4 2811
1da177e4 2812 if (likely(prev != next)) {
1da177e4
LT
2813 rq->nr_switches++;
2814 rq->curr = next;
2815 ++*switch_count;
2816
dd41f596 2817 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2818 /*
246d86b5
ON
2819 * The context switch have flipped the stack from under us
2820 * and restored the local variables which were saved when
2821 * this task called schedule() in the past. prev == current
2822 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2823 */
2824 cpu = smp_processor_id();
2825 rq = cpu_rq(cpu);
1da177e4 2826 } else
05fa785c 2827 raw_spin_unlock_irq(&rq->lock);
1da177e4 2828
3f029d3c 2829 post_schedule(rq);
1da177e4 2830
ba74c144 2831 sched_preempt_enable_no_resched();
ff743345 2832 if (need_resched())
1da177e4
LT
2833 goto need_resched;
2834}
c259e01a 2835
9c40cef2
TG
2836static inline void sched_submit_work(struct task_struct *tsk)
2837{
3c7d5184 2838 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2839 return;
2840 /*
2841 * If we are going to sleep and we have plugged IO queued,
2842 * make sure to submit it to avoid deadlocks.
2843 */
2844 if (blk_needs_flush_plug(tsk))
2845 blk_schedule_flush_plug(tsk);
2846}
2847
722a9f92 2848asmlinkage __visible void __sched schedule(void)
c259e01a 2849{
9c40cef2
TG
2850 struct task_struct *tsk = current;
2851
2852 sched_submit_work(tsk);
c259e01a
TG
2853 __schedule();
2854}
1da177e4
LT
2855EXPORT_SYMBOL(schedule);
2856
91d1aa43 2857#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2858asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2859{
2860 /*
2861 * If we come here after a random call to set_need_resched(),
2862 * or we have been woken up remotely but the IPI has not yet arrived,
2863 * we haven't yet exited the RCU idle mode. Do it here manually until
2864 * we find a better solution.
2865 */
91d1aa43 2866 user_exit();
20ab65e3 2867 schedule();
91d1aa43 2868 user_enter();
20ab65e3
FW
2869}
2870#endif
2871
c5491ea7
TG
2872/**
2873 * schedule_preempt_disabled - called with preemption disabled
2874 *
2875 * Returns with preemption disabled. Note: preempt_count must be 1
2876 */
2877void __sched schedule_preempt_disabled(void)
2878{
ba74c144 2879 sched_preempt_enable_no_resched();
c5491ea7
TG
2880 schedule();
2881 preempt_disable();
2882}
2883
1da177e4
LT
2884#ifdef CONFIG_PREEMPT
2885/*
2ed6e34f 2886 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2887 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2888 * occur there and call schedule directly.
2889 */
722a9f92 2890asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2891{
1da177e4
LT
2892 /*
2893 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2894 * we do not want to preempt the current task. Just return..
1da177e4 2895 */
fbb00b56 2896 if (likely(!preemptible()))
1da177e4
LT
2897 return;
2898
3a5c359a 2899 do {
bdb43806 2900 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2901 __schedule();
bdb43806 2902 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2903
3a5c359a
AK
2904 /*
2905 * Check again in case we missed a preemption opportunity
2906 * between schedule and now.
2907 */
2908 barrier();
5ed0cec0 2909 } while (need_resched());
1da177e4 2910}
376e2424 2911NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2912EXPORT_SYMBOL(preempt_schedule);
32e475d7 2913#endif /* CONFIG_PREEMPT */
1da177e4
LT
2914
2915/*
2ed6e34f 2916 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2917 * off of irq context.
2918 * Note, that this is called and return with irqs disabled. This will
2919 * protect us against recursive calling from irq.
2920 */
722a9f92 2921asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2922{
b22366cd 2923 enum ctx_state prev_state;
6478d880 2924
2ed6e34f 2925 /* Catch callers which need to be fixed */
f27dde8d 2926 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2927
b22366cd
FW
2928 prev_state = exception_enter();
2929
3a5c359a 2930 do {
bdb43806 2931 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2932 local_irq_enable();
c259e01a 2933 __schedule();
3a5c359a 2934 local_irq_disable();
bdb43806 2935 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2936
3a5c359a
AK
2937 /*
2938 * Check again in case we missed a preemption opportunity
2939 * between schedule and now.
2940 */
2941 barrier();
5ed0cec0 2942 } while (need_resched());
b22366cd
FW
2943
2944 exception_exit(prev_state);
1da177e4
LT
2945}
2946
63859d4f 2947int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2948 void *key)
1da177e4 2949{
63859d4f 2950 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2951}
1da177e4
LT
2952EXPORT_SYMBOL(default_wake_function);
2953
b29739f9
IM
2954#ifdef CONFIG_RT_MUTEXES
2955
2956/*
2957 * rt_mutex_setprio - set the current priority of a task
2958 * @p: task
2959 * @prio: prio value (kernel-internal form)
2960 *
2961 * This function changes the 'effective' priority of a task. It does
2962 * not touch ->normal_prio like __setscheduler().
2963 *
c365c292
TG
2964 * Used by the rt_mutex code to implement priority inheritance
2965 * logic. Call site only calls if the priority of the task changed.
b29739f9 2966 */
36c8b586 2967void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2968{
2d3d891d 2969 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2970 struct rq *rq;
83ab0aa0 2971 const struct sched_class *prev_class;
b29739f9 2972
aab03e05 2973 BUG_ON(prio > MAX_PRIO);
b29739f9 2974
0122ec5b 2975 rq = __task_rq_lock(p);
b29739f9 2976
1c4dd99b
TG
2977 /*
2978 * Idle task boosting is a nono in general. There is one
2979 * exception, when PREEMPT_RT and NOHZ is active:
2980 *
2981 * The idle task calls get_next_timer_interrupt() and holds
2982 * the timer wheel base->lock on the CPU and another CPU wants
2983 * to access the timer (probably to cancel it). We can safely
2984 * ignore the boosting request, as the idle CPU runs this code
2985 * with interrupts disabled and will complete the lock
2986 * protected section without being interrupted. So there is no
2987 * real need to boost.
2988 */
2989 if (unlikely(p == rq->idle)) {
2990 WARN_ON(p != rq->curr);
2991 WARN_ON(p->pi_blocked_on);
2992 goto out_unlock;
2993 }
2994
a8027073 2995 trace_sched_pi_setprio(p, prio);
d5f9f942 2996 oldprio = p->prio;
83ab0aa0 2997 prev_class = p->sched_class;
fd2f4419 2998 on_rq = p->on_rq;
051a1d1a 2999 running = task_current(rq, p);
0e1f3483 3000 if (on_rq)
69be72c1 3001 dequeue_task(rq, p, 0);
0e1f3483
HS
3002 if (running)
3003 p->sched_class->put_prev_task(rq, p);
dd41f596 3004
2d3d891d
DF
3005 /*
3006 * Boosting condition are:
3007 * 1. -rt task is running and holds mutex A
3008 * --> -dl task blocks on mutex A
3009 *
3010 * 2. -dl task is running and holds mutex A
3011 * --> -dl task blocks on mutex A and could preempt the
3012 * running task
3013 */
3014 if (dl_prio(prio)) {
466af29b
ON
3015 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3016 if (!dl_prio(p->normal_prio) ||
3017 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3018 p->dl.dl_boosted = 1;
3019 p->dl.dl_throttled = 0;
3020 enqueue_flag = ENQUEUE_REPLENISH;
3021 } else
3022 p->dl.dl_boosted = 0;
aab03e05 3023 p->sched_class = &dl_sched_class;
2d3d891d
DF
3024 } else if (rt_prio(prio)) {
3025 if (dl_prio(oldprio))
3026 p->dl.dl_boosted = 0;
3027 if (oldprio < prio)
3028 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3029 p->sched_class = &rt_sched_class;
2d3d891d
DF
3030 } else {
3031 if (dl_prio(oldprio))
3032 p->dl.dl_boosted = 0;
dd41f596 3033 p->sched_class = &fair_sched_class;
2d3d891d 3034 }
dd41f596 3035
b29739f9
IM
3036 p->prio = prio;
3037
0e1f3483
HS
3038 if (running)
3039 p->sched_class->set_curr_task(rq);
da7a735e 3040 if (on_rq)
2d3d891d 3041 enqueue_task(rq, p, enqueue_flag);
cb469845 3042
da7a735e 3043 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3044out_unlock:
0122ec5b 3045 __task_rq_unlock(rq);
b29739f9 3046}
b29739f9 3047#endif
d50dde5a 3048
36c8b586 3049void set_user_nice(struct task_struct *p, long nice)
1da177e4 3050{
dd41f596 3051 int old_prio, delta, on_rq;
1da177e4 3052 unsigned long flags;
70b97a7f 3053 struct rq *rq;
1da177e4 3054
75e45d51 3055 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3056 return;
3057 /*
3058 * We have to be careful, if called from sys_setpriority(),
3059 * the task might be in the middle of scheduling on another CPU.
3060 */
3061 rq = task_rq_lock(p, &flags);
3062 /*
3063 * The RT priorities are set via sched_setscheduler(), but we still
3064 * allow the 'normal' nice value to be set - but as expected
3065 * it wont have any effect on scheduling until the task is
aab03e05 3066 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3067 */
aab03e05 3068 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3069 p->static_prio = NICE_TO_PRIO(nice);
3070 goto out_unlock;
3071 }
fd2f4419 3072 on_rq = p->on_rq;
c09595f6 3073 if (on_rq)
69be72c1 3074 dequeue_task(rq, p, 0);
1da177e4 3075
1da177e4 3076 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3077 set_load_weight(p);
b29739f9
IM
3078 old_prio = p->prio;
3079 p->prio = effective_prio(p);
3080 delta = p->prio - old_prio;
1da177e4 3081
dd41f596 3082 if (on_rq) {
371fd7e7 3083 enqueue_task(rq, p, 0);
1da177e4 3084 /*
d5f9f942
AM
3085 * If the task increased its priority or is running and
3086 * lowered its priority, then reschedule its CPU:
1da177e4 3087 */
d5f9f942 3088 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3089 resched_curr(rq);
1da177e4
LT
3090 }
3091out_unlock:
0122ec5b 3092 task_rq_unlock(rq, p, &flags);
1da177e4 3093}
1da177e4
LT
3094EXPORT_SYMBOL(set_user_nice);
3095
e43379f1
MM
3096/*
3097 * can_nice - check if a task can reduce its nice value
3098 * @p: task
3099 * @nice: nice value
3100 */
36c8b586 3101int can_nice(const struct task_struct *p, const int nice)
e43379f1 3102{
024f4747 3103 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3104 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3105
78d7d407 3106 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3107 capable(CAP_SYS_NICE));
3108}
3109
1da177e4
LT
3110#ifdef __ARCH_WANT_SYS_NICE
3111
3112/*
3113 * sys_nice - change the priority of the current process.
3114 * @increment: priority increment
3115 *
3116 * sys_setpriority is a more generic, but much slower function that
3117 * does similar things.
3118 */
5add95d4 3119SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3120{
48f24c4d 3121 long nice, retval;
1da177e4
LT
3122
3123 /*
3124 * Setpriority might change our priority at the same moment.
3125 * We don't have to worry. Conceptually one call occurs first
3126 * and we have a single winner.
3127 */
a9467fa3 3128 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3129 nice = task_nice(current) + increment;
1da177e4 3130
a9467fa3 3131 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3132 if (increment < 0 && !can_nice(current, nice))
3133 return -EPERM;
3134
1da177e4
LT
3135 retval = security_task_setnice(current, nice);
3136 if (retval)
3137 return retval;
3138
3139 set_user_nice(current, nice);
3140 return 0;
3141}
3142
3143#endif
3144
3145/**
3146 * task_prio - return the priority value of a given task.
3147 * @p: the task in question.
3148 *
e69f6186 3149 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3150 * RT tasks are offset by -200. Normal tasks are centered
3151 * around 0, value goes from -16 to +15.
3152 */
36c8b586 3153int task_prio(const struct task_struct *p)
1da177e4
LT
3154{
3155 return p->prio - MAX_RT_PRIO;
3156}
3157
1da177e4
LT
3158/**
3159 * idle_cpu - is a given cpu idle currently?
3160 * @cpu: the processor in question.
e69f6186
YB
3161 *
3162 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3163 */
3164int idle_cpu(int cpu)
3165{
908a3283
TG
3166 struct rq *rq = cpu_rq(cpu);
3167
3168 if (rq->curr != rq->idle)
3169 return 0;
3170
3171 if (rq->nr_running)
3172 return 0;
3173
3174#ifdef CONFIG_SMP
3175 if (!llist_empty(&rq->wake_list))
3176 return 0;
3177#endif
3178
3179 return 1;
1da177e4
LT
3180}
3181
1da177e4
LT
3182/**
3183 * idle_task - return the idle task for a given cpu.
3184 * @cpu: the processor in question.
e69f6186
YB
3185 *
3186 * Return: The idle task for the cpu @cpu.
1da177e4 3187 */
36c8b586 3188struct task_struct *idle_task(int cpu)
1da177e4
LT
3189{
3190 return cpu_rq(cpu)->idle;
3191}
3192
3193/**
3194 * find_process_by_pid - find a process with a matching PID value.
3195 * @pid: the pid in question.
e69f6186
YB
3196 *
3197 * The task of @pid, if found. %NULL otherwise.
1da177e4 3198 */
a9957449 3199static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3200{
228ebcbe 3201 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3202}
3203
aab03e05
DF
3204/*
3205 * This function initializes the sched_dl_entity of a newly becoming
3206 * SCHED_DEADLINE task.
3207 *
3208 * Only the static values are considered here, the actual runtime and the
3209 * absolute deadline will be properly calculated when the task is enqueued
3210 * for the first time with its new policy.
3211 */
3212static void
3213__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3214{
3215 struct sched_dl_entity *dl_se = &p->dl;
3216
3217 init_dl_task_timer(dl_se);
3218 dl_se->dl_runtime = attr->sched_runtime;
3219 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3220 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3221 dl_se->flags = attr->sched_flags;
332ac17e 3222 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3223 dl_se->dl_throttled = 0;
3224 dl_se->dl_new = 1;
5bfd126e 3225 dl_se->dl_yielded = 0;
aab03e05
DF
3226}
3227
c13db6b1
SR
3228/*
3229 * sched_setparam() passes in -1 for its policy, to let the functions
3230 * it calls know not to change it.
3231 */
3232#define SETPARAM_POLICY -1
3233
c365c292
TG
3234static void __setscheduler_params(struct task_struct *p,
3235 const struct sched_attr *attr)
1da177e4 3236{
d50dde5a
DF
3237 int policy = attr->sched_policy;
3238
c13db6b1 3239 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3240 policy = p->policy;
3241
1da177e4 3242 p->policy = policy;
d50dde5a 3243
aab03e05
DF
3244 if (dl_policy(policy))
3245 __setparam_dl(p, attr);
39fd8fd2 3246 else if (fair_policy(policy))
d50dde5a
DF
3247 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3248
39fd8fd2
PZ
3249 /*
3250 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3251 * !rt_policy. Always setting this ensures that things like
3252 * getparam()/getattr() don't report silly values for !rt tasks.
3253 */
3254 p->rt_priority = attr->sched_priority;
383afd09 3255 p->normal_prio = normal_prio(p);
c365c292
TG
3256 set_load_weight(p);
3257}
39fd8fd2 3258
c365c292
TG
3259/* Actually do priority change: must hold pi & rq lock. */
3260static void __setscheduler(struct rq *rq, struct task_struct *p,
3261 const struct sched_attr *attr)
3262{
3263 __setscheduler_params(p, attr);
d50dde5a 3264
383afd09
SR
3265 /*
3266 * If we get here, there was no pi waiters boosting the
3267 * task. It is safe to use the normal prio.
3268 */
3269 p->prio = normal_prio(p);
3270
aab03e05
DF
3271 if (dl_prio(p->prio))
3272 p->sched_class = &dl_sched_class;
3273 else if (rt_prio(p->prio))
ffd44db5
PZ
3274 p->sched_class = &rt_sched_class;
3275 else
3276 p->sched_class = &fair_sched_class;
1da177e4 3277}
aab03e05
DF
3278
3279static void
3280__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3281{
3282 struct sched_dl_entity *dl_se = &p->dl;
3283
3284 attr->sched_priority = p->rt_priority;
3285 attr->sched_runtime = dl_se->dl_runtime;
3286 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3287 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3288 attr->sched_flags = dl_se->flags;
3289}
3290
3291/*
3292 * This function validates the new parameters of a -deadline task.
3293 * We ask for the deadline not being zero, and greater or equal
755378a4 3294 * than the runtime, as well as the period of being zero or
332ac17e 3295 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3296 * user parameters are above the internal resolution of 1us (we
3297 * check sched_runtime only since it is always the smaller one) and
3298 * below 2^63 ns (we have to check both sched_deadline and
3299 * sched_period, as the latter can be zero).
aab03e05
DF
3300 */
3301static bool
3302__checkparam_dl(const struct sched_attr *attr)
3303{
b0827819
JL
3304 /* deadline != 0 */
3305 if (attr->sched_deadline == 0)
3306 return false;
3307
3308 /*
3309 * Since we truncate DL_SCALE bits, make sure we're at least
3310 * that big.
3311 */
3312 if (attr->sched_runtime < (1ULL << DL_SCALE))
3313 return false;
3314
3315 /*
3316 * Since we use the MSB for wrap-around and sign issues, make
3317 * sure it's not set (mind that period can be equal to zero).
3318 */
3319 if (attr->sched_deadline & (1ULL << 63) ||
3320 attr->sched_period & (1ULL << 63))
3321 return false;
3322
3323 /* runtime <= deadline <= period (if period != 0) */
3324 if ((attr->sched_period != 0 &&
3325 attr->sched_period < attr->sched_deadline) ||
3326 attr->sched_deadline < attr->sched_runtime)
3327 return false;
3328
3329 return true;
aab03e05
DF
3330}
3331
c69e8d9c
DH
3332/*
3333 * check the target process has a UID that matches the current process's
3334 */
3335static bool check_same_owner(struct task_struct *p)
3336{
3337 const struct cred *cred = current_cred(), *pcred;
3338 bool match;
3339
3340 rcu_read_lock();
3341 pcred = __task_cred(p);
9c806aa0
EB
3342 match = (uid_eq(cred->euid, pcred->euid) ||
3343 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3344 rcu_read_unlock();
3345 return match;
3346}
3347
d50dde5a
DF
3348static int __sched_setscheduler(struct task_struct *p,
3349 const struct sched_attr *attr,
3350 bool user)
1da177e4 3351{
383afd09
SR
3352 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3353 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3354 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3355 int policy = attr->sched_policy;
1da177e4 3356 unsigned long flags;
83ab0aa0 3357 const struct sched_class *prev_class;
70b97a7f 3358 struct rq *rq;
ca94c442 3359 int reset_on_fork;
1da177e4 3360
66e5393a
SR
3361 /* may grab non-irq protected spin_locks */
3362 BUG_ON(in_interrupt());
1da177e4
LT
3363recheck:
3364 /* double check policy once rq lock held */
ca94c442
LP
3365 if (policy < 0) {
3366 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3367 policy = oldpolicy = p->policy;
ca94c442 3368 } else {
7479f3c9 3369 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3370
aab03e05
DF
3371 if (policy != SCHED_DEADLINE &&
3372 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3373 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3374 policy != SCHED_IDLE)
3375 return -EINVAL;
3376 }
3377
7479f3c9
PZ
3378 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3379 return -EINVAL;
3380
1da177e4
LT
3381 /*
3382 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3383 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3384 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3385 */
0bb040a4 3386 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3387 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3388 return -EINVAL;
aab03e05
DF
3389 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3390 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3391 return -EINVAL;
3392
37e4ab3f
OC
3393 /*
3394 * Allow unprivileged RT tasks to decrease priority:
3395 */
961ccddd 3396 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3397 if (fair_policy(policy)) {
d0ea0268 3398 if (attr->sched_nice < task_nice(p) &&
eaad4513 3399 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3400 return -EPERM;
3401 }
3402
e05606d3 3403 if (rt_policy(policy)) {
a44702e8
ON
3404 unsigned long rlim_rtprio =
3405 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3406
3407 /* can't set/change the rt policy */
3408 if (policy != p->policy && !rlim_rtprio)
3409 return -EPERM;
3410
3411 /* can't increase priority */
d50dde5a
DF
3412 if (attr->sched_priority > p->rt_priority &&
3413 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3414 return -EPERM;
3415 }
c02aa73b 3416
d44753b8
JL
3417 /*
3418 * Can't set/change SCHED_DEADLINE policy at all for now
3419 * (safest behavior); in the future we would like to allow
3420 * unprivileged DL tasks to increase their relative deadline
3421 * or reduce their runtime (both ways reducing utilization)
3422 */
3423 if (dl_policy(policy))
3424 return -EPERM;
3425
dd41f596 3426 /*
c02aa73b
DH
3427 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3428 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3429 */
c02aa73b 3430 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3431 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3432 return -EPERM;
3433 }
5fe1d75f 3434
37e4ab3f 3435 /* can't change other user's priorities */
c69e8d9c 3436 if (!check_same_owner(p))
37e4ab3f 3437 return -EPERM;
ca94c442
LP
3438
3439 /* Normal users shall not reset the sched_reset_on_fork flag */
3440 if (p->sched_reset_on_fork && !reset_on_fork)
3441 return -EPERM;
37e4ab3f 3442 }
1da177e4 3443
725aad24 3444 if (user) {
b0ae1981 3445 retval = security_task_setscheduler(p);
725aad24
JF
3446 if (retval)
3447 return retval;
3448 }
3449
b29739f9
IM
3450 /*
3451 * make sure no PI-waiters arrive (or leave) while we are
3452 * changing the priority of the task:
0122ec5b 3453 *
25985edc 3454 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3455 * runqueue lock must be held.
3456 */
0122ec5b 3457 rq = task_rq_lock(p, &flags);
dc61b1d6 3458
34f971f6
PZ
3459 /*
3460 * Changing the policy of the stop threads its a very bad idea
3461 */
3462 if (p == rq->stop) {
0122ec5b 3463 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3464 return -EINVAL;
3465 }
3466
a51e9198 3467 /*
d6b1e911
TG
3468 * If not changing anything there's no need to proceed further,
3469 * but store a possible modification of reset_on_fork.
a51e9198 3470 */
d50dde5a 3471 if (unlikely(policy == p->policy)) {
d0ea0268 3472 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3473 goto change;
3474 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3475 goto change;
aab03e05
DF
3476 if (dl_policy(policy))
3477 goto change;
d50dde5a 3478
d6b1e911 3479 p->sched_reset_on_fork = reset_on_fork;
45afb173 3480 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3481 return 0;
3482 }
d50dde5a 3483change:
a51e9198 3484
dc61b1d6 3485 if (user) {
332ac17e 3486#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3487 /*
3488 * Do not allow realtime tasks into groups that have no runtime
3489 * assigned.
3490 */
3491 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3492 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3493 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3494 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3495 return -EPERM;
3496 }
dc61b1d6 3497#endif
332ac17e
DF
3498#ifdef CONFIG_SMP
3499 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3500 cpumask_t *span = rq->rd->span;
332ac17e
DF
3501
3502 /*
3503 * Don't allow tasks with an affinity mask smaller than
3504 * the entire root_domain to become SCHED_DEADLINE. We
3505 * will also fail if there's no bandwidth available.
3506 */
e4099a5e
PZ
3507 if (!cpumask_subset(span, &p->cpus_allowed) ||
3508 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3509 task_rq_unlock(rq, p, &flags);
3510 return -EPERM;
3511 }
3512 }
3513#endif
3514 }
dc61b1d6 3515
1da177e4
LT
3516 /* recheck policy now with rq lock held */
3517 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3518 policy = oldpolicy = -1;
0122ec5b 3519 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3520 goto recheck;
3521 }
332ac17e
DF
3522
3523 /*
3524 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3525 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3526 * is available.
3527 */
e4099a5e 3528 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3529 task_rq_unlock(rq, p, &flags);
3530 return -EBUSY;
3531 }
3532
c365c292
TG
3533 p->sched_reset_on_fork = reset_on_fork;
3534 oldprio = p->prio;
3535
3536 /*
3537 * Special case for priority boosted tasks.
3538 *
3539 * If the new priority is lower or equal (user space view)
3540 * than the current (boosted) priority, we just store the new
3541 * normal parameters and do not touch the scheduler class and
3542 * the runqueue. This will be done when the task deboost
3543 * itself.
3544 */
3545 if (rt_mutex_check_prio(p, newprio)) {
3546 __setscheduler_params(p, attr);
3547 task_rq_unlock(rq, p, &flags);
3548 return 0;
3549 }
3550
fd2f4419 3551 on_rq = p->on_rq;
051a1d1a 3552 running = task_current(rq, p);
0e1f3483 3553 if (on_rq)
4ca9b72b 3554 dequeue_task(rq, p, 0);
0e1f3483
HS
3555 if (running)
3556 p->sched_class->put_prev_task(rq, p);
f6b53205 3557
83ab0aa0 3558 prev_class = p->sched_class;
d50dde5a 3559 __setscheduler(rq, p, attr);
f6b53205 3560
0e1f3483
HS
3561 if (running)
3562 p->sched_class->set_curr_task(rq);
81a44c54
TG
3563 if (on_rq) {
3564 /*
3565 * We enqueue to tail when the priority of a task is
3566 * increased (user space view).
3567 */
3568 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3569 }
cb469845 3570
da7a735e 3571 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3572 task_rq_unlock(rq, p, &flags);
b29739f9 3573
95e02ca9
TG
3574 rt_mutex_adjust_pi(p);
3575
1da177e4
LT
3576 return 0;
3577}
961ccddd 3578
7479f3c9
PZ
3579static int _sched_setscheduler(struct task_struct *p, int policy,
3580 const struct sched_param *param, bool check)
3581{
3582 struct sched_attr attr = {
3583 .sched_policy = policy,
3584 .sched_priority = param->sched_priority,
3585 .sched_nice = PRIO_TO_NICE(p->static_prio),
3586 };
3587
c13db6b1
SR
3588 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3589 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3590 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3591 policy &= ~SCHED_RESET_ON_FORK;
3592 attr.sched_policy = policy;
3593 }
3594
3595 return __sched_setscheduler(p, &attr, check);
3596}
961ccddd
RR
3597/**
3598 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3599 * @p: the task in question.
3600 * @policy: new policy.
3601 * @param: structure containing the new RT priority.
3602 *
e69f6186
YB
3603 * Return: 0 on success. An error code otherwise.
3604 *
961ccddd
RR
3605 * NOTE that the task may be already dead.
3606 */
3607int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3608 const struct sched_param *param)
961ccddd 3609{
7479f3c9 3610 return _sched_setscheduler(p, policy, param, true);
961ccddd 3611}
1da177e4
LT
3612EXPORT_SYMBOL_GPL(sched_setscheduler);
3613
d50dde5a
DF
3614int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3615{
3616 return __sched_setscheduler(p, attr, true);
3617}
3618EXPORT_SYMBOL_GPL(sched_setattr);
3619
961ccddd
RR
3620/**
3621 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3622 * @p: the task in question.
3623 * @policy: new policy.
3624 * @param: structure containing the new RT priority.
3625 *
3626 * Just like sched_setscheduler, only don't bother checking if the
3627 * current context has permission. For example, this is needed in
3628 * stop_machine(): we create temporary high priority worker threads,
3629 * but our caller might not have that capability.
e69f6186
YB
3630 *
3631 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3632 */
3633int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3634 const struct sched_param *param)
961ccddd 3635{
7479f3c9 3636 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3637}
3638
95cdf3b7
IM
3639static int
3640do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3641{
1da177e4
LT
3642 struct sched_param lparam;
3643 struct task_struct *p;
36c8b586 3644 int retval;
1da177e4
LT
3645
3646 if (!param || pid < 0)
3647 return -EINVAL;
3648 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3649 return -EFAULT;
5fe1d75f
ON
3650
3651 rcu_read_lock();
3652 retval = -ESRCH;
1da177e4 3653 p = find_process_by_pid(pid);
5fe1d75f
ON
3654 if (p != NULL)
3655 retval = sched_setscheduler(p, policy, &lparam);
3656 rcu_read_unlock();
36c8b586 3657
1da177e4
LT
3658 return retval;
3659}
3660
d50dde5a
DF
3661/*
3662 * Mimics kernel/events/core.c perf_copy_attr().
3663 */
3664static int sched_copy_attr(struct sched_attr __user *uattr,
3665 struct sched_attr *attr)
3666{
3667 u32 size;
3668 int ret;
3669
3670 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3671 return -EFAULT;
3672
3673 /*
3674 * zero the full structure, so that a short copy will be nice.
3675 */
3676 memset(attr, 0, sizeof(*attr));
3677
3678 ret = get_user(size, &uattr->size);
3679 if (ret)
3680 return ret;
3681
3682 if (size > PAGE_SIZE) /* silly large */
3683 goto err_size;
3684
3685 if (!size) /* abi compat */
3686 size = SCHED_ATTR_SIZE_VER0;
3687
3688 if (size < SCHED_ATTR_SIZE_VER0)
3689 goto err_size;
3690
3691 /*
3692 * If we're handed a bigger struct than we know of,
3693 * ensure all the unknown bits are 0 - i.e. new
3694 * user-space does not rely on any kernel feature
3695 * extensions we dont know about yet.
3696 */
3697 if (size > sizeof(*attr)) {
3698 unsigned char __user *addr;
3699 unsigned char __user *end;
3700 unsigned char val;
3701
3702 addr = (void __user *)uattr + sizeof(*attr);
3703 end = (void __user *)uattr + size;
3704
3705 for (; addr < end; addr++) {
3706 ret = get_user(val, addr);
3707 if (ret)
3708 return ret;
3709 if (val)
3710 goto err_size;
3711 }
3712 size = sizeof(*attr);
3713 }
3714
3715 ret = copy_from_user(attr, uattr, size);
3716 if (ret)
3717 return -EFAULT;
3718
3719 /*
3720 * XXX: do we want to be lenient like existing syscalls; or do we want
3721 * to be strict and return an error on out-of-bounds values?
3722 */
75e45d51 3723 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3724
e78c7bca 3725 return 0;
d50dde5a
DF
3726
3727err_size:
3728 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3729 return -E2BIG;
d50dde5a
DF
3730}
3731
1da177e4
LT
3732/**
3733 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3734 * @pid: the pid in question.
3735 * @policy: new policy.
3736 * @param: structure containing the new RT priority.
e69f6186
YB
3737 *
3738 * Return: 0 on success. An error code otherwise.
1da177e4 3739 */
5add95d4
HC
3740SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3741 struct sched_param __user *, param)
1da177e4 3742{
c21761f1
JB
3743 /* negative values for policy are not valid */
3744 if (policy < 0)
3745 return -EINVAL;
3746
1da177e4
LT
3747 return do_sched_setscheduler(pid, policy, param);
3748}
3749
3750/**
3751 * sys_sched_setparam - set/change the RT priority of a thread
3752 * @pid: the pid in question.
3753 * @param: structure containing the new RT priority.
e69f6186
YB
3754 *
3755 * Return: 0 on success. An error code otherwise.
1da177e4 3756 */
5add95d4 3757SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3758{
c13db6b1 3759 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3760}
3761
d50dde5a
DF
3762/**
3763 * sys_sched_setattr - same as above, but with extended sched_attr
3764 * @pid: the pid in question.
5778fccf 3765 * @uattr: structure containing the extended parameters.
db66d756 3766 * @flags: for future extension.
d50dde5a 3767 */
6d35ab48
PZ
3768SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3769 unsigned int, flags)
d50dde5a
DF
3770{
3771 struct sched_attr attr;
3772 struct task_struct *p;
3773 int retval;
3774
6d35ab48 3775 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3776 return -EINVAL;
3777
143cf23d
MK
3778 retval = sched_copy_attr(uattr, &attr);
3779 if (retval)
3780 return retval;
d50dde5a 3781
b14ed2c2 3782 if ((int)attr.sched_policy < 0)
dbdb2275 3783 return -EINVAL;
d50dde5a
DF
3784
3785 rcu_read_lock();
3786 retval = -ESRCH;
3787 p = find_process_by_pid(pid);
3788 if (p != NULL)
3789 retval = sched_setattr(p, &attr);
3790 rcu_read_unlock();
3791
3792 return retval;
3793}
3794
1da177e4
LT
3795/**
3796 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3797 * @pid: the pid in question.
e69f6186
YB
3798 *
3799 * Return: On success, the policy of the thread. Otherwise, a negative error
3800 * code.
1da177e4 3801 */
5add95d4 3802SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3803{
36c8b586 3804 struct task_struct *p;
3a5c359a 3805 int retval;
1da177e4
LT
3806
3807 if (pid < 0)
3a5c359a 3808 return -EINVAL;
1da177e4
LT
3809
3810 retval = -ESRCH;
5fe85be0 3811 rcu_read_lock();
1da177e4
LT
3812 p = find_process_by_pid(pid);
3813 if (p) {
3814 retval = security_task_getscheduler(p);
3815 if (!retval)
ca94c442
LP
3816 retval = p->policy
3817 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3818 }
5fe85be0 3819 rcu_read_unlock();
1da177e4
LT
3820 return retval;
3821}
3822
3823/**
ca94c442 3824 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3825 * @pid: the pid in question.
3826 * @param: structure containing the RT priority.
e69f6186
YB
3827 *
3828 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3829 * code.
1da177e4 3830 */
5add95d4 3831SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3832{
ce5f7f82 3833 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3834 struct task_struct *p;
3a5c359a 3835 int retval;
1da177e4
LT
3836
3837 if (!param || pid < 0)
3a5c359a 3838 return -EINVAL;
1da177e4 3839
5fe85be0 3840 rcu_read_lock();
1da177e4
LT
3841 p = find_process_by_pid(pid);
3842 retval = -ESRCH;
3843 if (!p)
3844 goto out_unlock;
3845
3846 retval = security_task_getscheduler(p);
3847 if (retval)
3848 goto out_unlock;
3849
ce5f7f82
PZ
3850 if (task_has_rt_policy(p))
3851 lp.sched_priority = p->rt_priority;
5fe85be0 3852 rcu_read_unlock();
1da177e4
LT
3853
3854 /*
3855 * This one might sleep, we cannot do it with a spinlock held ...
3856 */
3857 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3858
1da177e4
LT
3859 return retval;
3860
3861out_unlock:
5fe85be0 3862 rcu_read_unlock();
1da177e4
LT
3863 return retval;
3864}
3865
d50dde5a
DF
3866static int sched_read_attr(struct sched_attr __user *uattr,
3867 struct sched_attr *attr,
3868 unsigned int usize)
3869{
3870 int ret;
3871
3872 if (!access_ok(VERIFY_WRITE, uattr, usize))
3873 return -EFAULT;
3874
3875 /*
3876 * If we're handed a smaller struct than we know of,
3877 * ensure all the unknown bits are 0 - i.e. old
3878 * user-space does not get uncomplete information.
3879 */
3880 if (usize < sizeof(*attr)) {
3881 unsigned char *addr;
3882 unsigned char *end;
3883
3884 addr = (void *)attr + usize;
3885 end = (void *)attr + sizeof(*attr);
3886
3887 for (; addr < end; addr++) {
3888 if (*addr)
22400674 3889 return -EFBIG;
d50dde5a
DF
3890 }
3891
3892 attr->size = usize;
3893 }
3894
4efbc454 3895 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3896 if (ret)
3897 return -EFAULT;
3898
22400674 3899 return 0;
d50dde5a
DF
3900}
3901
3902/**
aab03e05 3903 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3904 * @pid: the pid in question.
5778fccf 3905 * @uattr: structure containing the extended parameters.
d50dde5a 3906 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3907 * @flags: for future extension.
d50dde5a 3908 */
6d35ab48
PZ
3909SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3910 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3911{
3912 struct sched_attr attr = {
3913 .size = sizeof(struct sched_attr),
3914 };
3915 struct task_struct *p;
3916 int retval;
3917
3918 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3919 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3920 return -EINVAL;
3921
3922 rcu_read_lock();
3923 p = find_process_by_pid(pid);
3924 retval = -ESRCH;
3925 if (!p)
3926 goto out_unlock;
3927
3928 retval = security_task_getscheduler(p);
3929 if (retval)
3930 goto out_unlock;
3931
3932 attr.sched_policy = p->policy;
7479f3c9
PZ
3933 if (p->sched_reset_on_fork)
3934 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3935 if (task_has_dl_policy(p))
3936 __getparam_dl(p, &attr);
3937 else if (task_has_rt_policy(p))
d50dde5a
DF
3938 attr.sched_priority = p->rt_priority;
3939 else
d0ea0268 3940 attr.sched_nice = task_nice(p);
d50dde5a
DF
3941
3942 rcu_read_unlock();
3943
3944 retval = sched_read_attr(uattr, &attr, size);
3945 return retval;
3946
3947out_unlock:
3948 rcu_read_unlock();
3949 return retval;
3950}
3951
96f874e2 3952long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3953{
5a16f3d3 3954 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3955 struct task_struct *p;
3956 int retval;
1da177e4 3957
23f5d142 3958 rcu_read_lock();
1da177e4
LT
3959
3960 p = find_process_by_pid(pid);
3961 if (!p) {
23f5d142 3962 rcu_read_unlock();
1da177e4
LT
3963 return -ESRCH;
3964 }
3965
23f5d142 3966 /* Prevent p going away */
1da177e4 3967 get_task_struct(p);
23f5d142 3968 rcu_read_unlock();
1da177e4 3969
14a40ffc
TH
3970 if (p->flags & PF_NO_SETAFFINITY) {
3971 retval = -EINVAL;
3972 goto out_put_task;
3973 }
5a16f3d3
RR
3974 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3975 retval = -ENOMEM;
3976 goto out_put_task;
3977 }
3978 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3979 retval = -ENOMEM;
3980 goto out_free_cpus_allowed;
3981 }
1da177e4 3982 retval = -EPERM;
4c44aaaf
EB
3983 if (!check_same_owner(p)) {
3984 rcu_read_lock();
3985 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3986 rcu_read_unlock();
3987 goto out_unlock;
3988 }
3989 rcu_read_unlock();
3990 }
1da177e4 3991
b0ae1981 3992 retval = security_task_setscheduler(p);
e7834f8f
DQ
3993 if (retval)
3994 goto out_unlock;
3995
e4099a5e
PZ
3996
3997 cpuset_cpus_allowed(p, cpus_allowed);
3998 cpumask_and(new_mask, in_mask, cpus_allowed);
3999
332ac17e
DF
4000 /*
4001 * Since bandwidth control happens on root_domain basis,
4002 * if admission test is enabled, we only admit -deadline
4003 * tasks allowed to run on all the CPUs in the task's
4004 * root_domain.
4005 */
4006#ifdef CONFIG_SMP
4007 if (task_has_dl_policy(p)) {
4008 const struct cpumask *span = task_rq(p)->rd->span;
4009
e4099a5e 4010 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
4011 retval = -EBUSY;
4012 goto out_unlock;
4013 }
4014 }
4015#endif
49246274 4016again:
5a16f3d3 4017 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4018
8707d8b8 4019 if (!retval) {
5a16f3d3
RR
4020 cpuset_cpus_allowed(p, cpus_allowed);
4021 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4022 /*
4023 * We must have raced with a concurrent cpuset
4024 * update. Just reset the cpus_allowed to the
4025 * cpuset's cpus_allowed
4026 */
5a16f3d3 4027 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4028 goto again;
4029 }
4030 }
1da177e4 4031out_unlock:
5a16f3d3
RR
4032 free_cpumask_var(new_mask);
4033out_free_cpus_allowed:
4034 free_cpumask_var(cpus_allowed);
4035out_put_task:
1da177e4 4036 put_task_struct(p);
1da177e4
LT
4037 return retval;
4038}
4039
4040static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4041 struct cpumask *new_mask)
1da177e4 4042{
96f874e2
RR
4043 if (len < cpumask_size())
4044 cpumask_clear(new_mask);
4045 else if (len > cpumask_size())
4046 len = cpumask_size();
4047
1da177e4
LT
4048 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4049}
4050
4051/**
4052 * sys_sched_setaffinity - set the cpu affinity of a process
4053 * @pid: pid of the process
4054 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4055 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4056 *
4057 * Return: 0 on success. An error code otherwise.
1da177e4 4058 */
5add95d4
HC
4059SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4060 unsigned long __user *, user_mask_ptr)
1da177e4 4061{
5a16f3d3 4062 cpumask_var_t new_mask;
1da177e4
LT
4063 int retval;
4064
5a16f3d3
RR
4065 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4066 return -ENOMEM;
1da177e4 4067
5a16f3d3
RR
4068 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4069 if (retval == 0)
4070 retval = sched_setaffinity(pid, new_mask);
4071 free_cpumask_var(new_mask);
4072 return retval;
1da177e4
LT
4073}
4074
96f874e2 4075long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4076{
36c8b586 4077 struct task_struct *p;
31605683 4078 unsigned long flags;
1da177e4 4079 int retval;
1da177e4 4080
23f5d142 4081 rcu_read_lock();
1da177e4
LT
4082
4083 retval = -ESRCH;
4084 p = find_process_by_pid(pid);
4085 if (!p)
4086 goto out_unlock;
4087
e7834f8f
DQ
4088 retval = security_task_getscheduler(p);
4089 if (retval)
4090 goto out_unlock;
4091
013fdb80 4092 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4093 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4094 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4095
4096out_unlock:
23f5d142 4097 rcu_read_unlock();
1da177e4 4098
9531b62f 4099 return retval;
1da177e4
LT
4100}
4101
4102/**
4103 * sys_sched_getaffinity - get the cpu affinity of a process
4104 * @pid: pid of the process
4105 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4106 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4107 *
4108 * Return: 0 on success. An error code otherwise.
1da177e4 4109 */
5add95d4
HC
4110SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4111 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4112{
4113 int ret;
f17c8607 4114 cpumask_var_t mask;
1da177e4 4115
84fba5ec 4116 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4117 return -EINVAL;
4118 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4119 return -EINVAL;
4120
f17c8607
RR
4121 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4122 return -ENOMEM;
1da177e4 4123
f17c8607
RR
4124 ret = sched_getaffinity(pid, mask);
4125 if (ret == 0) {
8bc037fb 4126 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4127
4128 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4129 ret = -EFAULT;
4130 else
cd3d8031 4131 ret = retlen;
f17c8607
RR
4132 }
4133 free_cpumask_var(mask);
1da177e4 4134
f17c8607 4135 return ret;
1da177e4
LT
4136}
4137
4138/**
4139 * sys_sched_yield - yield the current processor to other threads.
4140 *
dd41f596
IM
4141 * This function yields the current CPU to other tasks. If there are no
4142 * other threads running on this CPU then this function will return.
e69f6186
YB
4143 *
4144 * Return: 0.
1da177e4 4145 */
5add95d4 4146SYSCALL_DEFINE0(sched_yield)
1da177e4 4147{
70b97a7f 4148 struct rq *rq = this_rq_lock();
1da177e4 4149
2d72376b 4150 schedstat_inc(rq, yld_count);
4530d7ab 4151 current->sched_class->yield_task(rq);
1da177e4
LT
4152
4153 /*
4154 * Since we are going to call schedule() anyway, there's
4155 * no need to preempt or enable interrupts:
4156 */
4157 __release(rq->lock);
8a25d5de 4158 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4159 do_raw_spin_unlock(&rq->lock);
ba74c144 4160 sched_preempt_enable_no_resched();
1da177e4
LT
4161
4162 schedule();
4163
4164 return 0;
4165}
4166
e7b38404 4167static void __cond_resched(void)
1da177e4 4168{
bdb43806 4169 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4170 __schedule();
bdb43806 4171 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4172}
4173
02b67cc3 4174int __sched _cond_resched(void)
1da177e4 4175{
d86ee480 4176 if (should_resched()) {
1da177e4
LT
4177 __cond_resched();
4178 return 1;
4179 }
4180 return 0;
4181}
02b67cc3 4182EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4183
4184/*
613afbf8 4185 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4186 * call schedule, and on return reacquire the lock.
4187 *
41a2d6cf 4188 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4189 * operations here to prevent schedule() from being called twice (once via
4190 * spin_unlock(), once by hand).
4191 */
613afbf8 4192int __cond_resched_lock(spinlock_t *lock)
1da177e4 4193{
d86ee480 4194 int resched = should_resched();
6df3cecb
JK
4195 int ret = 0;
4196
f607c668
PZ
4197 lockdep_assert_held(lock);
4198
4a81e832 4199 if (spin_needbreak(lock) || resched) {
1da177e4 4200 spin_unlock(lock);
d86ee480 4201 if (resched)
95c354fe
NP
4202 __cond_resched();
4203 else
4204 cpu_relax();
6df3cecb 4205 ret = 1;
1da177e4 4206 spin_lock(lock);
1da177e4 4207 }
6df3cecb 4208 return ret;
1da177e4 4209}
613afbf8 4210EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4211
613afbf8 4212int __sched __cond_resched_softirq(void)
1da177e4
LT
4213{
4214 BUG_ON(!in_softirq());
4215
d86ee480 4216 if (should_resched()) {
98d82567 4217 local_bh_enable();
1da177e4
LT
4218 __cond_resched();
4219 local_bh_disable();
4220 return 1;
4221 }
4222 return 0;
4223}
613afbf8 4224EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4225
1da177e4
LT
4226/**
4227 * yield - yield the current processor to other threads.
4228 *
8e3fabfd
PZ
4229 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4230 *
4231 * The scheduler is at all times free to pick the calling task as the most
4232 * eligible task to run, if removing the yield() call from your code breaks
4233 * it, its already broken.
4234 *
4235 * Typical broken usage is:
4236 *
4237 * while (!event)
4238 * yield();
4239 *
4240 * where one assumes that yield() will let 'the other' process run that will
4241 * make event true. If the current task is a SCHED_FIFO task that will never
4242 * happen. Never use yield() as a progress guarantee!!
4243 *
4244 * If you want to use yield() to wait for something, use wait_event().
4245 * If you want to use yield() to be 'nice' for others, use cond_resched().
4246 * If you still want to use yield(), do not!
1da177e4
LT
4247 */
4248void __sched yield(void)
4249{
4250 set_current_state(TASK_RUNNING);
4251 sys_sched_yield();
4252}
1da177e4
LT
4253EXPORT_SYMBOL(yield);
4254
d95f4122
MG
4255/**
4256 * yield_to - yield the current processor to another thread in
4257 * your thread group, or accelerate that thread toward the
4258 * processor it's on.
16addf95
RD
4259 * @p: target task
4260 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4261 *
4262 * It's the caller's job to ensure that the target task struct
4263 * can't go away on us before we can do any checks.
4264 *
e69f6186 4265 * Return:
7b270f60
PZ
4266 * true (>0) if we indeed boosted the target task.
4267 * false (0) if we failed to boost the target.
4268 * -ESRCH if there's no task to yield to.
d95f4122 4269 */
fa93384f 4270int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4271{
4272 struct task_struct *curr = current;
4273 struct rq *rq, *p_rq;
4274 unsigned long flags;
c3c18640 4275 int yielded = 0;
d95f4122
MG
4276
4277 local_irq_save(flags);
4278 rq = this_rq();
4279
4280again:
4281 p_rq = task_rq(p);
7b270f60
PZ
4282 /*
4283 * If we're the only runnable task on the rq and target rq also
4284 * has only one task, there's absolutely no point in yielding.
4285 */
4286 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4287 yielded = -ESRCH;
4288 goto out_irq;
4289 }
4290
d95f4122 4291 double_rq_lock(rq, p_rq);
39e24d8f 4292 if (task_rq(p) != p_rq) {
d95f4122
MG
4293 double_rq_unlock(rq, p_rq);
4294 goto again;
4295 }
4296
4297 if (!curr->sched_class->yield_to_task)
7b270f60 4298 goto out_unlock;
d95f4122
MG
4299
4300 if (curr->sched_class != p->sched_class)
7b270f60 4301 goto out_unlock;
d95f4122
MG
4302
4303 if (task_running(p_rq, p) || p->state)
7b270f60 4304 goto out_unlock;
d95f4122
MG
4305
4306 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4307 if (yielded) {
d95f4122 4308 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4309 /*
4310 * Make p's CPU reschedule; pick_next_entity takes care of
4311 * fairness.
4312 */
4313 if (preempt && rq != p_rq)
8875125e 4314 resched_curr(p_rq);
6d1cafd8 4315 }
d95f4122 4316
7b270f60 4317out_unlock:
d95f4122 4318 double_rq_unlock(rq, p_rq);
7b270f60 4319out_irq:
d95f4122
MG
4320 local_irq_restore(flags);
4321
7b270f60 4322 if (yielded > 0)
d95f4122
MG
4323 schedule();
4324
4325 return yielded;
4326}
4327EXPORT_SYMBOL_GPL(yield_to);
4328
1da177e4 4329/*
41a2d6cf 4330 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4331 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4332 */
4333void __sched io_schedule(void)
4334{
54d35f29 4335 struct rq *rq = raw_rq();
1da177e4 4336
0ff92245 4337 delayacct_blkio_start();
1da177e4 4338 atomic_inc(&rq->nr_iowait);
73c10101 4339 blk_flush_plug(current);
8f0dfc34 4340 current->in_iowait = 1;
1da177e4 4341 schedule();
8f0dfc34 4342 current->in_iowait = 0;
1da177e4 4343 atomic_dec(&rq->nr_iowait);
0ff92245 4344 delayacct_blkio_end();
1da177e4 4345}
1da177e4
LT
4346EXPORT_SYMBOL(io_schedule);
4347
4348long __sched io_schedule_timeout(long timeout)
4349{
54d35f29 4350 struct rq *rq = raw_rq();
1da177e4
LT
4351 long ret;
4352
0ff92245 4353 delayacct_blkio_start();
1da177e4 4354 atomic_inc(&rq->nr_iowait);
73c10101 4355 blk_flush_plug(current);
8f0dfc34 4356 current->in_iowait = 1;
1da177e4 4357 ret = schedule_timeout(timeout);
8f0dfc34 4358 current->in_iowait = 0;
1da177e4 4359 atomic_dec(&rq->nr_iowait);
0ff92245 4360 delayacct_blkio_end();
1da177e4
LT
4361 return ret;
4362}
4363
4364/**
4365 * sys_sched_get_priority_max - return maximum RT priority.
4366 * @policy: scheduling class.
4367 *
e69f6186
YB
4368 * Return: On success, this syscall returns the maximum
4369 * rt_priority that can be used by a given scheduling class.
4370 * On failure, a negative error code is returned.
1da177e4 4371 */
5add95d4 4372SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4373{
4374 int ret = -EINVAL;
4375
4376 switch (policy) {
4377 case SCHED_FIFO:
4378 case SCHED_RR:
4379 ret = MAX_USER_RT_PRIO-1;
4380 break;
aab03e05 4381 case SCHED_DEADLINE:
1da177e4 4382 case SCHED_NORMAL:
b0a9499c 4383 case SCHED_BATCH:
dd41f596 4384 case SCHED_IDLE:
1da177e4
LT
4385 ret = 0;
4386 break;
4387 }
4388 return ret;
4389}
4390
4391/**
4392 * sys_sched_get_priority_min - return minimum RT priority.
4393 * @policy: scheduling class.
4394 *
e69f6186
YB
4395 * Return: On success, this syscall returns the minimum
4396 * rt_priority that can be used by a given scheduling class.
4397 * On failure, a negative error code is returned.
1da177e4 4398 */
5add95d4 4399SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4400{
4401 int ret = -EINVAL;
4402
4403 switch (policy) {
4404 case SCHED_FIFO:
4405 case SCHED_RR:
4406 ret = 1;
4407 break;
aab03e05 4408 case SCHED_DEADLINE:
1da177e4 4409 case SCHED_NORMAL:
b0a9499c 4410 case SCHED_BATCH:
dd41f596 4411 case SCHED_IDLE:
1da177e4
LT
4412 ret = 0;
4413 }
4414 return ret;
4415}
4416
4417/**
4418 * sys_sched_rr_get_interval - return the default timeslice of a process.
4419 * @pid: pid of the process.
4420 * @interval: userspace pointer to the timeslice value.
4421 *
4422 * this syscall writes the default timeslice value of a given process
4423 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4424 *
4425 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4426 * an error code.
1da177e4 4427 */
17da2bd9 4428SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4429 struct timespec __user *, interval)
1da177e4 4430{
36c8b586 4431 struct task_struct *p;
a4ec24b4 4432 unsigned int time_slice;
dba091b9
TG
4433 unsigned long flags;
4434 struct rq *rq;
3a5c359a 4435 int retval;
1da177e4 4436 struct timespec t;
1da177e4
LT
4437
4438 if (pid < 0)
3a5c359a 4439 return -EINVAL;
1da177e4
LT
4440
4441 retval = -ESRCH;
1a551ae7 4442 rcu_read_lock();
1da177e4
LT
4443 p = find_process_by_pid(pid);
4444 if (!p)
4445 goto out_unlock;
4446
4447 retval = security_task_getscheduler(p);
4448 if (retval)
4449 goto out_unlock;
4450
dba091b9 4451 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4452 time_slice = 0;
4453 if (p->sched_class->get_rr_interval)
4454 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4455 task_rq_unlock(rq, p, &flags);
a4ec24b4 4456
1a551ae7 4457 rcu_read_unlock();
a4ec24b4 4458 jiffies_to_timespec(time_slice, &t);
1da177e4 4459 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4460 return retval;
3a5c359a 4461
1da177e4 4462out_unlock:
1a551ae7 4463 rcu_read_unlock();
1da177e4
LT
4464 return retval;
4465}
4466
7c731e0a 4467static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4468
82a1fcb9 4469void sched_show_task(struct task_struct *p)
1da177e4 4470{
1da177e4 4471 unsigned long free = 0;
4e79752c 4472 int ppid;
36c8b586 4473 unsigned state;
1da177e4 4474
1da177e4 4475 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4476 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4477 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4478#if BITS_PER_LONG == 32
1da177e4 4479 if (state == TASK_RUNNING)
3df0fc5b 4480 printk(KERN_CONT " running ");
1da177e4 4481 else
3df0fc5b 4482 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4483#else
4484 if (state == TASK_RUNNING)
3df0fc5b 4485 printk(KERN_CONT " running task ");
1da177e4 4486 else
3df0fc5b 4487 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4488#endif
4489#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4490 free = stack_not_used(p);
1da177e4 4491#endif
4e79752c
PM
4492 rcu_read_lock();
4493 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4494 rcu_read_unlock();
3df0fc5b 4495 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4496 task_pid_nr(p), ppid,
aa47b7e0 4497 (unsigned long)task_thread_info(p)->flags);
1da177e4 4498
3d1cb205 4499 print_worker_info(KERN_INFO, p);
5fb5e6de 4500 show_stack(p, NULL);
1da177e4
LT
4501}
4502
e59e2ae2 4503void show_state_filter(unsigned long state_filter)
1da177e4 4504{
36c8b586 4505 struct task_struct *g, *p;
1da177e4 4506
4bd77321 4507#if BITS_PER_LONG == 32
3df0fc5b
PZ
4508 printk(KERN_INFO
4509 " task PC stack pid father\n");
1da177e4 4510#else
3df0fc5b
PZ
4511 printk(KERN_INFO
4512 " task PC stack pid father\n");
1da177e4 4513#endif
510f5acc 4514 rcu_read_lock();
1da177e4
LT
4515 do_each_thread(g, p) {
4516 /*
4517 * reset the NMI-timeout, listing all files on a slow
25985edc 4518 * console might take a lot of time:
1da177e4
LT
4519 */
4520 touch_nmi_watchdog();
39bc89fd 4521 if (!state_filter || (p->state & state_filter))
82a1fcb9 4522 sched_show_task(p);
1da177e4
LT
4523 } while_each_thread(g, p);
4524
04c9167f
JF
4525 touch_all_softlockup_watchdogs();
4526
dd41f596
IM
4527#ifdef CONFIG_SCHED_DEBUG
4528 sysrq_sched_debug_show();
4529#endif
510f5acc 4530 rcu_read_unlock();
e59e2ae2
IM
4531 /*
4532 * Only show locks if all tasks are dumped:
4533 */
93335a21 4534 if (!state_filter)
e59e2ae2 4535 debug_show_all_locks();
1da177e4
LT
4536}
4537
0db0628d 4538void init_idle_bootup_task(struct task_struct *idle)
1df21055 4539{
dd41f596 4540 idle->sched_class = &idle_sched_class;
1df21055
IM
4541}
4542
f340c0d1
IM
4543/**
4544 * init_idle - set up an idle thread for a given CPU
4545 * @idle: task in question
4546 * @cpu: cpu the idle task belongs to
4547 *
4548 * NOTE: this function does not set the idle thread's NEED_RESCHED
4549 * flag, to make booting more robust.
4550 */
0db0628d 4551void init_idle(struct task_struct *idle, int cpu)
1da177e4 4552{
70b97a7f 4553 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4554 unsigned long flags;
4555
05fa785c 4556 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4557
5e1576ed 4558 __sched_fork(0, idle);
06b83b5f 4559 idle->state = TASK_RUNNING;
dd41f596
IM
4560 idle->se.exec_start = sched_clock();
4561
1e1b6c51 4562 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4563 /*
4564 * We're having a chicken and egg problem, even though we are
4565 * holding rq->lock, the cpu isn't yet set to this cpu so the
4566 * lockdep check in task_group() will fail.
4567 *
4568 * Similar case to sched_fork(). / Alternatively we could
4569 * use task_rq_lock() here and obtain the other rq->lock.
4570 *
4571 * Silence PROVE_RCU
4572 */
4573 rcu_read_lock();
dd41f596 4574 __set_task_cpu(idle, cpu);
6506cf6c 4575 rcu_read_unlock();
1da177e4 4576
1da177e4 4577 rq->curr = rq->idle = idle;
77177856 4578 idle->on_rq = 1;
3ca7a440
PZ
4579#if defined(CONFIG_SMP)
4580 idle->on_cpu = 1;
4866cde0 4581#endif
05fa785c 4582 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4583
4584 /* Set the preempt count _outside_ the spinlocks! */
01028747 4585 init_idle_preempt_count(idle, cpu);
55cd5340 4586
dd41f596
IM
4587 /*
4588 * The idle tasks have their own, simple scheduling class:
4589 */
4590 idle->sched_class = &idle_sched_class;
868baf07 4591 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4592 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4593#if defined(CONFIG_SMP)
4594 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4595#endif
19978ca6
IM
4596}
4597
1da177e4 4598#ifdef CONFIG_SMP
1e1b6c51
KM
4599void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4600{
4601 if (p->sched_class && p->sched_class->set_cpus_allowed)
4602 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4603
4604 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4605 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4606}
4607
1da177e4
LT
4608/*
4609 * This is how migration works:
4610 *
969c7921
TH
4611 * 1) we invoke migration_cpu_stop() on the target CPU using
4612 * stop_one_cpu().
4613 * 2) stopper starts to run (implicitly forcing the migrated thread
4614 * off the CPU)
4615 * 3) it checks whether the migrated task is still in the wrong runqueue.
4616 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4617 * it and puts it into the right queue.
969c7921
TH
4618 * 5) stopper completes and stop_one_cpu() returns and the migration
4619 * is done.
1da177e4
LT
4620 */
4621
4622/*
4623 * Change a given task's CPU affinity. Migrate the thread to a
4624 * proper CPU and schedule it away if the CPU it's executing on
4625 * is removed from the allowed bitmask.
4626 *
4627 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4628 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4629 * call is not atomic; no spinlocks may be held.
4630 */
96f874e2 4631int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4632{
4633 unsigned long flags;
70b97a7f 4634 struct rq *rq;
969c7921 4635 unsigned int dest_cpu;
48f24c4d 4636 int ret = 0;
1da177e4
LT
4637
4638 rq = task_rq_lock(p, &flags);
e2912009 4639
db44fc01
YZ
4640 if (cpumask_equal(&p->cpus_allowed, new_mask))
4641 goto out;
4642
6ad4c188 4643 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4644 ret = -EINVAL;
4645 goto out;
4646 }
4647
1e1b6c51 4648 do_set_cpus_allowed(p, new_mask);
73fe6aae 4649
1da177e4 4650 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4651 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4652 goto out;
4653
969c7921 4654 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4655 if (p->on_rq) {
969c7921 4656 struct migration_arg arg = { p, dest_cpu };
1da177e4 4657 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4658 task_rq_unlock(rq, p, &flags);
969c7921 4659 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4660 tlb_migrate_finish(p->mm);
4661 return 0;
4662 }
4663out:
0122ec5b 4664 task_rq_unlock(rq, p, &flags);
48f24c4d 4665
1da177e4
LT
4666 return ret;
4667}
cd8ba7cd 4668EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4669
4670/*
41a2d6cf 4671 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4672 * this because either it can't run here any more (set_cpus_allowed()
4673 * away from this CPU, or CPU going down), or because we're
4674 * attempting to rebalance this task on exec (sched_exec).
4675 *
4676 * So we race with normal scheduler movements, but that's OK, as long
4677 * as the task is no longer on this CPU.
efc30814
KK
4678 *
4679 * Returns non-zero if task was successfully migrated.
1da177e4 4680 */
efc30814 4681static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4682{
70b97a7f 4683 struct rq *rq_dest, *rq_src;
e2912009 4684 int ret = 0;
1da177e4 4685
e761b772 4686 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4687 return ret;
1da177e4
LT
4688
4689 rq_src = cpu_rq(src_cpu);
4690 rq_dest = cpu_rq(dest_cpu);
4691
0122ec5b 4692 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4693 double_rq_lock(rq_src, rq_dest);
4694 /* Already moved. */
4695 if (task_cpu(p) != src_cpu)
b1e38734 4696 goto done;
1da177e4 4697 /* Affinity changed (again). */
fa17b507 4698 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4699 goto fail;
1da177e4 4700
e2912009
PZ
4701 /*
4702 * If we're not on a rq, the next wake-up will ensure we're
4703 * placed properly.
4704 */
fd2f4419 4705 if (p->on_rq) {
4ca9b72b 4706 dequeue_task(rq_src, p, 0);
e2912009 4707 set_task_cpu(p, dest_cpu);
4ca9b72b 4708 enqueue_task(rq_dest, p, 0);
15afe09b 4709 check_preempt_curr(rq_dest, p, 0);
1da177e4 4710 }
b1e38734 4711done:
efc30814 4712 ret = 1;
b1e38734 4713fail:
1da177e4 4714 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4715 raw_spin_unlock(&p->pi_lock);
efc30814 4716 return ret;
1da177e4
LT
4717}
4718
e6628d5b
MG
4719#ifdef CONFIG_NUMA_BALANCING
4720/* Migrate current task p to target_cpu */
4721int migrate_task_to(struct task_struct *p, int target_cpu)
4722{
4723 struct migration_arg arg = { p, target_cpu };
4724 int curr_cpu = task_cpu(p);
4725
4726 if (curr_cpu == target_cpu)
4727 return 0;
4728
4729 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4730 return -EINVAL;
4731
4732 /* TODO: This is not properly updating schedstats */
4733
286549dc 4734 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4735 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4736}
0ec8aa00
PZ
4737
4738/*
4739 * Requeue a task on a given node and accurately track the number of NUMA
4740 * tasks on the runqueues
4741 */
4742void sched_setnuma(struct task_struct *p, int nid)
4743{
4744 struct rq *rq;
4745 unsigned long flags;
4746 bool on_rq, running;
4747
4748 rq = task_rq_lock(p, &flags);
4749 on_rq = p->on_rq;
4750 running = task_current(rq, p);
4751
4752 if (on_rq)
4753 dequeue_task(rq, p, 0);
4754 if (running)
4755 p->sched_class->put_prev_task(rq, p);
4756
4757 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4758
4759 if (running)
4760 p->sched_class->set_curr_task(rq);
4761 if (on_rq)
4762 enqueue_task(rq, p, 0);
4763 task_rq_unlock(rq, p, &flags);
4764}
e6628d5b
MG
4765#endif
4766
1da177e4 4767/*
969c7921
TH
4768 * migration_cpu_stop - this will be executed by a highprio stopper thread
4769 * and performs thread migration by bumping thread off CPU then
4770 * 'pushing' onto another runqueue.
1da177e4 4771 */
969c7921 4772static int migration_cpu_stop(void *data)
1da177e4 4773{
969c7921 4774 struct migration_arg *arg = data;
f7b4cddc 4775
969c7921
TH
4776 /*
4777 * The original target cpu might have gone down and we might
4778 * be on another cpu but it doesn't matter.
4779 */
f7b4cddc 4780 local_irq_disable();
969c7921 4781 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4782 local_irq_enable();
1da177e4 4783 return 0;
f7b4cddc
ON
4784}
4785
1da177e4 4786#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4787
054b9108 4788/*
48c5ccae
PZ
4789 * Ensures that the idle task is using init_mm right before its cpu goes
4790 * offline.
054b9108 4791 */
48c5ccae 4792void idle_task_exit(void)
1da177e4 4793{
48c5ccae 4794 struct mm_struct *mm = current->active_mm;
e76bd8d9 4795
48c5ccae 4796 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4797
a53efe5f 4798 if (mm != &init_mm) {
48c5ccae 4799 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4800 finish_arch_post_lock_switch();
4801 }
48c5ccae 4802 mmdrop(mm);
1da177e4
LT
4803}
4804
4805/*
5d180232
PZ
4806 * Since this CPU is going 'away' for a while, fold any nr_active delta
4807 * we might have. Assumes we're called after migrate_tasks() so that the
4808 * nr_active count is stable.
4809 *
4810 * Also see the comment "Global load-average calculations".
1da177e4 4811 */
5d180232 4812static void calc_load_migrate(struct rq *rq)
1da177e4 4813{
5d180232
PZ
4814 long delta = calc_load_fold_active(rq);
4815 if (delta)
4816 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4817}
4818
3f1d2a31
PZ
4819static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4820{
4821}
4822
4823static const struct sched_class fake_sched_class = {
4824 .put_prev_task = put_prev_task_fake,
4825};
4826
4827static struct task_struct fake_task = {
4828 /*
4829 * Avoid pull_{rt,dl}_task()
4830 */
4831 .prio = MAX_PRIO + 1,
4832 .sched_class = &fake_sched_class,
4833};
4834
48f24c4d 4835/*
48c5ccae
PZ
4836 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4837 * try_to_wake_up()->select_task_rq().
4838 *
4839 * Called with rq->lock held even though we'er in stop_machine() and
4840 * there's no concurrency possible, we hold the required locks anyway
4841 * because of lock validation efforts.
1da177e4 4842 */
48c5ccae 4843static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4844{
70b97a7f 4845 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4846 struct task_struct *next, *stop = rq->stop;
4847 int dest_cpu;
1da177e4
LT
4848
4849 /*
48c5ccae
PZ
4850 * Fudge the rq selection such that the below task selection loop
4851 * doesn't get stuck on the currently eligible stop task.
4852 *
4853 * We're currently inside stop_machine() and the rq is either stuck
4854 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4855 * either way we should never end up calling schedule() until we're
4856 * done here.
1da177e4 4857 */
48c5ccae 4858 rq->stop = NULL;
48f24c4d 4859
77bd3970
FW
4860 /*
4861 * put_prev_task() and pick_next_task() sched
4862 * class method both need to have an up-to-date
4863 * value of rq->clock[_task]
4864 */
4865 update_rq_clock(rq);
4866
dd41f596 4867 for ( ; ; ) {
48c5ccae
PZ
4868 /*
4869 * There's this thread running, bail when that's the only
4870 * remaining thread.
4871 */
4872 if (rq->nr_running == 1)
dd41f596 4873 break;
48c5ccae 4874
3f1d2a31 4875 next = pick_next_task(rq, &fake_task);
48c5ccae 4876 BUG_ON(!next);
79c53799 4877 next->sched_class->put_prev_task(rq, next);
e692ab53 4878
48c5ccae
PZ
4879 /* Find suitable destination for @next, with force if needed. */
4880 dest_cpu = select_fallback_rq(dead_cpu, next);
4881 raw_spin_unlock(&rq->lock);
4882
4883 __migrate_task(next, dead_cpu, dest_cpu);
4884
4885 raw_spin_lock(&rq->lock);
1da177e4 4886 }
dce48a84 4887
48c5ccae 4888 rq->stop = stop;
dce48a84 4889}
48c5ccae 4890
1da177e4
LT
4891#endif /* CONFIG_HOTPLUG_CPU */
4892
e692ab53
NP
4893#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4894
4895static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4896 {
4897 .procname = "sched_domain",
c57baf1e 4898 .mode = 0555,
e0361851 4899 },
56992309 4900 {}
e692ab53
NP
4901};
4902
4903static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4904 {
4905 .procname = "kernel",
c57baf1e 4906 .mode = 0555,
e0361851
AD
4907 .child = sd_ctl_dir,
4908 },
56992309 4909 {}
e692ab53
NP
4910};
4911
4912static struct ctl_table *sd_alloc_ctl_entry(int n)
4913{
4914 struct ctl_table *entry =
5cf9f062 4915 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4916
e692ab53
NP
4917 return entry;
4918}
4919
6382bc90
MM
4920static void sd_free_ctl_entry(struct ctl_table **tablep)
4921{
cd790076 4922 struct ctl_table *entry;
6382bc90 4923
cd790076
MM
4924 /*
4925 * In the intermediate directories, both the child directory and
4926 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4927 * will always be set. In the lowest directory the names are
cd790076
MM
4928 * static strings and all have proc handlers.
4929 */
4930 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4931 if (entry->child)
4932 sd_free_ctl_entry(&entry->child);
cd790076
MM
4933 if (entry->proc_handler == NULL)
4934 kfree(entry->procname);
4935 }
6382bc90
MM
4936
4937 kfree(*tablep);
4938 *tablep = NULL;
4939}
4940
201c373e 4941static int min_load_idx = 0;
fd9b86d3 4942static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4943
e692ab53 4944static void
e0361851 4945set_table_entry(struct ctl_table *entry,
e692ab53 4946 const char *procname, void *data, int maxlen,
201c373e
NK
4947 umode_t mode, proc_handler *proc_handler,
4948 bool load_idx)
e692ab53 4949{
e692ab53
NP
4950 entry->procname = procname;
4951 entry->data = data;
4952 entry->maxlen = maxlen;
4953 entry->mode = mode;
4954 entry->proc_handler = proc_handler;
201c373e
NK
4955
4956 if (load_idx) {
4957 entry->extra1 = &min_load_idx;
4958 entry->extra2 = &max_load_idx;
4959 }
e692ab53
NP
4960}
4961
4962static struct ctl_table *
4963sd_alloc_ctl_domain_table(struct sched_domain *sd)
4964{
37e6bae8 4965 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4966
ad1cdc1d
MM
4967 if (table == NULL)
4968 return NULL;
4969
e0361851 4970 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4971 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4972 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4973 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4974 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4975 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4976 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4977 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4978 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4979 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4980 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4981 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4982 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4983 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4984 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4985 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4986 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4987 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4988 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4989 &sd->cache_nice_tries,
201c373e 4990 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4991 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4992 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4993 set_table_entry(&table[11], "max_newidle_lb_cost",
4994 &sd->max_newidle_lb_cost,
4995 sizeof(long), 0644, proc_doulongvec_minmax, false);
4996 set_table_entry(&table[12], "name", sd->name,
201c373e 4997 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4998 /* &table[13] is terminator */
e692ab53
NP
4999
5000 return table;
5001}
5002
be7002e6 5003static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5004{
5005 struct ctl_table *entry, *table;
5006 struct sched_domain *sd;
5007 int domain_num = 0, i;
5008 char buf[32];
5009
5010 for_each_domain(cpu, sd)
5011 domain_num++;
5012 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5013 if (table == NULL)
5014 return NULL;
e692ab53
NP
5015
5016 i = 0;
5017 for_each_domain(cpu, sd) {
5018 snprintf(buf, 32, "domain%d", i);
e692ab53 5019 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5020 entry->mode = 0555;
e692ab53
NP
5021 entry->child = sd_alloc_ctl_domain_table(sd);
5022 entry++;
5023 i++;
5024 }
5025 return table;
5026}
5027
5028static struct ctl_table_header *sd_sysctl_header;
6382bc90 5029static void register_sched_domain_sysctl(void)
e692ab53 5030{
6ad4c188 5031 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5032 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5033 char buf[32];
5034
7378547f
MM
5035 WARN_ON(sd_ctl_dir[0].child);
5036 sd_ctl_dir[0].child = entry;
5037
ad1cdc1d
MM
5038 if (entry == NULL)
5039 return;
5040
6ad4c188 5041 for_each_possible_cpu(i) {
e692ab53 5042 snprintf(buf, 32, "cpu%d", i);
e692ab53 5043 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5044 entry->mode = 0555;
e692ab53 5045 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5046 entry++;
e692ab53 5047 }
7378547f
MM
5048
5049 WARN_ON(sd_sysctl_header);
e692ab53
NP
5050 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5051}
6382bc90 5052
7378547f 5053/* may be called multiple times per register */
6382bc90
MM
5054static void unregister_sched_domain_sysctl(void)
5055{
7378547f
MM
5056 if (sd_sysctl_header)
5057 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5058 sd_sysctl_header = NULL;
7378547f
MM
5059 if (sd_ctl_dir[0].child)
5060 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5061}
e692ab53 5062#else
6382bc90
MM
5063static void register_sched_domain_sysctl(void)
5064{
5065}
5066static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5067{
5068}
5069#endif
5070
1f11eb6a
GH
5071static void set_rq_online(struct rq *rq)
5072{
5073 if (!rq->online) {
5074 const struct sched_class *class;
5075
c6c4927b 5076 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5077 rq->online = 1;
5078
5079 for_each_class(class) {
5080 if (class->rq_online)
5081 class->rq_online(rq);
5082 }
5083 }
5084}
5085
5086static void set_rq_offline(struct rq *rq)
5087{
5088 if (rq->online) {
5089 const struct sched_class *class;
5090
5091 for_each_class(class) {
5092 if (class->rq_offline)
5093 class->rq_offline(rq);
5094 }
5095
c6c4927b 5096 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5097 rq->online = 0;
5098 }
5099}
5100
1da177e4
LT
5101/*
5102 * migration_call - callback that gets triggered when a CPU is added.
5103 * Here we can start up the necessary migration thread for the new CPU.
5104 */
0db0628d 5105static int
48f24c4d 5106migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5107{
48f24c4d 5108 int cpu = (long)hcpu;
1da177e4 5109 unsigned long flags;
969c7921 5110 struct rq *rq = cpu_rq(cpu);
1da177e4 5111
48c5ccae 5112 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5113
1da177e4 5114 case CPU_UP_PREPARE:
a468d389 5115 rq->calc_load_update = calc_load_update;
1da177e4 5116 break;
48f24c4d 5117
1da177e4 5118 case CPU_ONLINE:
1f94ef59 5119 /* Update our root-domain */
05fa785c 5120 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5121 if (rq->rd) {
c6c4927b 5122 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5123
5124 set_rq_online(rq);
1f94ef59 5125 }
05fa785c 5126 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5127 break;
48f24c4d 5128
1da177e4 5129#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5130 case CPU_DYING:
317f3941 5131 sched_ttwu_pending();
57d885fe 5132 /* Update our root-domain */
05fa785c 5133 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5134 if (rq->rd) {
c6c4927b 5135 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5136 set_rq_offline(rq);
57d885fe 5137 }
48c5ccae
PZ
5138 migrate_tasks(cpu);
5139 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5140 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5141 break;
48c5ccae 5142
5d180232 5143 case CPU_DEAD:
f319da0c 5144 calc_load_migrate(rq);
57d885fe 5145 break;
1da177e4
LT
5146#endif
5147 }
49c022e6
PZ
5148
5149 update_max_interval();
5150
1da177e4
LT
5151 return NOTIFY_OK;
5152}
5153
f38b0820
PM
5154/*
5155 * Register at high priority so that task migration (migrate_all_tasks)
5156 * happens before everything else. This has to be lower priority than
cdd6c482 5157 * the notifier in the perf_event subsystem, though.
1da177e4 5158 */
0db0628d 5159static struct notifier_block migration_notifier = {
1da177e4 5160 .notifier_call = migration_call,
50a323b7 5161 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5162};
5163
a803f026
CM
5164static void __cpuinit set_cpu_rq_start_time(void)
5165{
5166 int cpu = smp_processor_id();
5167 struct rq *rq = cpu_rq(cpu);
5168 rq->age_stamp = sched_clock_cpu(cpu);
5169}
5170
0db0628d 5171static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5172 unsigned long action, void *hcpu)
5173{
5174 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5175 case CPU_STARTING:
5176 set_cpu_rq_start_time();
5177 return NOTIFY_OK;
3a101d05
TH
5178 case CPU_DOWN_FAILED:
5179 set_cpu_active((long)hcpu, true);
5180 return NOTIFY_OK;
5181 default:
5182 return NOTIFY_DONE;
5183 }
5184}
5185
0db0628d 5186static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5187 unsigned long action, void *hcpu)
5188{
de212f18
PZ
5189 unsigned long flags;
5190 long cpu = (long)hcpu;
5191
3a101d05
TH
5192 switch (action & ~CPU_TASKS_FROZEN) {
5193 case CPU_DOWN_PREPARE:
de212f18
PZ
5194 set_cpu_active(cpu, false);
5195
5196 /* explicitly allow suspend */
5197 if (!(action & CPU_TASKS_FROZEN)) {
5198 struct dl_bw *dl_b = dl_bw_of(cpu);
5199 bool overflow;
5200 int cpus;
5201
5202 raw_spin_lock_irqsave(&dl_b->lock, flags);
5203 cpus = dl_bw_cpus(cpu);
5204 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5205 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5206
5207 if (overflow)
5208 return notifier_from_errno(-EBUSY);
5209 }
3a101d05 5210 return NOTIFY_OK;
3a101d05 5211 }
de212f18
PZ
5212
5213 return NOTIFY_DONE;
3a101d05
TH
5214}
5215
7babe8db 5216static int __init migration_init(void)
1da177e4
LT
5217{
5218 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5219 int err;
48f24c4d 5220
3a101d05 5221 /* Initialize migration for the boot CPU */
07dccf33
AM
5222 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5223 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5224 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5225 register_cpu_notifier(&migration_notifier);
7babe8db 5226
3a101d05
TH
5227 /* Register cpu active notifiers */
5228 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5229 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5230
a004cd42 5231 return 0;
1da177e4 5232}
7babe8db 5233early_initcall(migration_init);
1da177e4
LT
5234#endif
5235
5236#ifdef CONFIG_SMP
476f3534 5237
4cb98839
PZ
5238static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5239
3e9830dc 5240#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5241
d039ac60 5242static __read_mostly int sched_debug_enabled;
f6630114 5243
d039ac60 5244static int __init sched_debug_setup(char *str)
f6630114 5245{
d039ac60 5246 sched_debug_enabled = 1;
f6630114
MT
5247
5248 return 0;
5249}
d039ac60
PZ
5250early_param("sched_debug", sched_debug_setup);
5251
5252static inline bool sched_debug(void)
5253{
5254 return sched_debug_enabled;
5255}
f6630114 5256
7c16ec58 5257static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5258 struct cpumask *groupmask)
1da177e4 5259{
4dcf6aff 5260 struct sched_group *group = sd->groups;
434d53b0 5261 char str[256];
1da177e4 5262
968ea6d8 5263 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5264 cpumask_clear(groupmask);
4dcf6aff
IM
5265
5266 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5267
5268 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5269 printk("does not load-balance\n");
4dcf6aff 5270 if (sd->parent)
3df0fc5b
PZ
5271 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5272 " has parent");
4dcf6aff 5273 return -1;
41c7ce9a
NP
5274 }
5275
3df0fc5b 5276 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5277
758b2cdc 5278 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5279 printk(KERN_ERR "ERROR: domain->span does not contain "
5280 "CPU%d\n", cpu);
4dcf6aff 5281 }
758b2cdc 5282 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5283 printk(KERN_ERR "ERROR: domain->groups does not contain"
5284 " CPU%d\n", cpu);
4dcf6aff 5285 }
1da177e4 5286
4dcf6aff 5287 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5288 do {
4dcf6aff 5289 if (!group) {
3df0fc5b
PZ
5290 printk("\n");
5291 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5292 break;
5293 }
5294
c3decf0d 5295 /*
63b2ca30
NP
5296 * Even though we initialize ->capacity to something semi-sane,
5297 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5298 * domain iteration is still funny without causing /0 traps.
5299 */
63b2ca30 5300 if (!group->sgc->capacity_orig) {
3df0fc5b 5301 printk(KERN_CONT "\n");
63b2ca30 5302 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5303 break;
5304 }
1da177e4 5305
758b2cdc 5306 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5307 printk(KERN_CONT "\n");
5308 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5309 break;
5310 }
1da177e4 5311
cb83b629
PZ
5312 if (!(sd->flags & SD_OVERLAP) &&
5313 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5314 printk(KERN_CONT "\n");
5315 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5316 break;
5317 }
1da177e4 5318
758b2cdc 5319 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5320
968ea6d8 5321 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5322
3df0fc5b 5323 printk(KERN_CONT " %s", str);
ca8ce3d0 5324 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5325 printk(KERN_CONT " (cpu_capacity = %d)",
5326 group->sgc->capacity);
381512cf 5327 }
1da177e4 5328
4dcf6aff
IM
5329 group = group->next;
5330 } while (group != sd->groups);
3df0fc5b 5331 printk(KERN_CONT "\n");
1da177e4 5332
758b2cdc 5333 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5334 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5335
758b2cdc
RR
5336 if (sd->parent &&
5337 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5338 printk(KERN_ERR "ERROR: parent span is not a superset "
5339 "of domain->span\n");
4dcf6aff
IM
5340 return 0;
5341}
1da177e4 5342
4dcf6aff
IM
5343static void sched_domain_debug(struct sched_domain *sd, int cpu)
5344{
5345 int level = 0;
1da177e4 5346
d039ac60 5347 if (!sched_debug_enabled)
f6630114
MT
5348 return;
5349
4dcf6aff
IM
5350 if (!sd) {
5351 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5352 return;
5353 }
1da177e4 5354
4dcf6aff
IM
5355 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5356
5357 for (;;) {
4cb98839 5358 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5359 break;
1da177e4
LT
5360 level++;
5361 sd = sd->parent;
33859f7f 5362 if (!sd)
4dcf6aff
IM
5363 break;
5364 }
1da177e4 5365}
6d6bc0ad 5366#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5367# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5368static inline bool sched_debug(void)
5369{
5370 return false;
5371}
6d6bc0ad 5372#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5373
1a20ff27 5374static int sd_degenerate(struct sched_domain *sd)
245af2c7 5375{
758b2cdc 5376 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5377 return 1;
5378
5379 /* Following flags need at least 2 groups */
5380 if (sd->flags & (SD_LOAD_BALANCE |
5381 SD_BALANCE_NEWIDLE |
5382 SD_BALANCE_FORK |
89c4710e 5383 SD_BALANCE_EXEC |
5d4dfddd 5384 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5385 SD_SHARE_PKG_RESOURCES |
5386 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5387 if (sd->groups != sd->groups->next)
5388 return 0;
5389 }
5390
5391 /* Following flags don't use groups */
c88d5910 5392 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5393 return 0;
5394
5395 return 1;
5396}
5397
48f24c4d
IM
5398static int
5399sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5400{
5401 unsigned long cflags = sd->flags, pflags = parent->flags;
5402
5403 if (sd_degenerate(parent))
5404 return 1;
5405
758b2cdc 5406 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5407 return 0;
5408
245af2c7
SS
5409 /* Flags needing groups don't count if only 1 group in parent */
5410 if (parent->groups == parent->groups->next) {
5411 pflags &= ~(SD_LOAD_BALANCE |
5412 SD_BALANCE_NEWIDLE |
5413 SD_BALANCE_FORK |
89c4710e 5414 SD_BALANCE_EXEC |
5d4dfddd 5415 SD_SHARE_CPUCAPACITY |
10866e62 5416 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5417 SD_PREFER_SIBLING |
5418 SD_SHARE_POWERDOMAIN);
5436499e
KC
5419 if (nr_node_ids == 1)
5420 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5421 }
5422 if (~cflags & pflags)
5423 return 0;
5424
5425 return 1;
5426}
5427
dce840a0 5428static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5429{
dce840a0 5430 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5431
68e74568 5432 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5433 cpudl_cleanup(&rd->cpudl);
1baca4ce 5434 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5435 free_cpumask_var(rd->rto_mask);
5436 free_cpumask_var(rd->online);
5437 free_cpumask_var(rd->span);
5438 kfree(rd);
5439}
5440
57d885fe
GH
5441static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5442{
a0490fa3 5443 struct root_domain *old_rd = NULL;
57d885fe 5444 unsigned long flags;
57d885fe 5445
05fa785c 5446 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5447
5448 if (rq->rd) {
a0490fa3 5449 old_rd = rq->rd;
57d885fe 5450
c6c4927b 5451 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5452 set_rq_offline(rq);
57d885fe 5453
c6c4927b 5454 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5455
a0490fa3 5456 /*
0515973f 5457 * If we dont want to free the old_rd yet then
a0490fa3
IM
5458 * set old_rd to NULL to skip the freeing later
5459 * in this function:
5460 */
5461 if (!atomic_dec_and_test(&old_rd->refcount))
5462 old_rd = NULL;
57d885fe
GH
5463 }
5464
5465 atomic_inc(&rd->refcount);
5466 rq->rd = rd;
5467
c6c4927b 5468 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5469 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5470 set_rq_online(rq);
57d885fe 5471
05fa785c 5472 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5473
5474 if (old_rd)
dce840a0 5475 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5476}
5477
68c38fc3 5478static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5479{
5480 memset(rd, 0, sizeof(*rd));
5481
68c38fc3 5482 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5483 goto out;
68c38fc3 5484 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5485 goto free_span;
1baca4ce 5486 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5487 goto free_online;
1baca4ce
JL
5488 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5489 goto free_dlo_mask;
6e0534f2 5490
332ac17e 5491 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5492 if (cpudl_init(&rd->cpudl) != 0)
5493 goto free_dlo_mask;
332ac17e 5494
68c38fc3 5495 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5496 goto free_rto_mask;
c6c4927b 5497 return 0;
6e0534f2 5498
68e74568
RR
5499free_rto_mask:
5500 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5501free_dlo_mask:
5502 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5503free_online:
5504 free_cpumask_var(rd->online);
5505free_span:
5506 free_cpumask_var(rd->span);
0c910d28 5507out:
c6c4927b 5508 return -ENOMEM;
57d885fe
GH
5509}
5510
029632fb
PZ
5511/*
5512 * By default the system creates a single root-domain with all cpus as
5513 * members (mimicking the global state we have today).
5514 */
5515struct root_domain def_root_domain;
5516
57d885fe
GH
5517static void init_defrootdomain(void)
5518{
68c38fc3 5519 init_rootdomain(&def_root_domain);
c6c4927b 5520
57d885fe
GH
5521 atomic_set(&def_root_domain.refcount, 1);
5522}
5523
dc938520 5524static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5525{
5526 struct root_domain *rd;
5527
5528 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5529 if (!rd)
5530 return NULL;
5531
68c38fc3 5532 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5533 kfree(rd);
5534 return NULL;
5535 }
57d885fe
GH
5536
5537 return rd;
5538}
5539
63b2ca30 5540static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5541{
5542 struct sched_group *tmp, *first;
5543
5544 if (!sg)
5545 return;
5546
5547 first = sg;
5548 do {
5549 tmp = sg->next;
5550
63b2ca30
NP
5551 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5552 kfree(sg->sgc);
e3589f6c
PZ
5553
5554 kfree(sg);
5555 sg = tmp;
5556 } while (sg != first);
5557}
5558
dce840a0
PZ
5559static void free_sched_domain(struct rcu_head *rcu)
5560{
5561 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5562
5563 /*
5564 * If its an overlapping domain it has private groups, iterate and
5565 * nuke them all.
5566 */
5567 if (sd->flags & SD_OVERLAP) {
5568 free_sched_groups(sd->groups, 1);
5569 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5570 kfree(sd->groups->sgc);
dce840a0 5571 kfree(sd->groups);
9c3f75cb 5572 }
dce840a0
PZ
5573 kfree(sd);
5574}
5575
5576static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5577{
5578 call_rcu(&sd->rcu, free_sched_domain);
5579}
5580
5581static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5582{
5583 for (; sd; sd = sd->parent)
5584 destroy_sched_domain(sd, cpu);
5585}
5586
518cd623
PZ
5587/*
5588 * Keep a special pointer to the highest sched_domain that has
5589 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5590 * allows us to avoid some pointer chasing select_idle_sibling().
5591 *
5592 * Also keep a unique ID per domain (we use the first cpu number in
5593 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5594 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5595 */
5596DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5597DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5598DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5599DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5600DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5601DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5602
5603static void update_top_cache_domain(int cpu)
5604{
5605 struct sched_domain *sd;
5d4cf996 5606 struct sched_domain *busy_sd = NULL;
518cd623 5607 int id = cpu;
7d9ffa89 5608 int size = 1;
518cd623
PZ
5609
5610 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5611 if (sd) {
518cd623 5612 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5613 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5614 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5615 }
5d4cf996 5616 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5617
5618 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5619 per_cpu(sd_llc_size, cpu) = size;
518cd623 5620 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5621
5622 sd = lowest_flag_domain(cpu, SD_NUMA);
5623 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5624
5625 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5626 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5627}
5628
1da177e4 5629/*
0eab9146 5630 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5631 * hold the hotplug lock.
5632 */
0eab9146
IM
5633static void
5634cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5635{
70b97a7f 5636 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5637 struct sched_domain *tmp;
5638
5639 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5640 for (tmp = sd; tmp; ) {
245af2c7
SS
5641 struct sched_domain *parent = tmp->parent;
5642 if (!parent)
5643 break;
f29c9b1c 5644
1a848870 5645 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5646 tmp->parent = parent->parent;
1a848870
SS
5647 if (parent->parent)
5648 parent->parent->child = tmp;
10866e62
PZ
5649 /*
5650 * Transfer SD_PREFER_SIBLING down in case of a
5651 * degenerate parent; the spans match for this
5652 * so the property transfers.
5653 */
5654 if (parent->flags & SD_PREFER_SIBLING)
5655 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5656 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5657 } else
5658 tmp = tmp->parent;
245af2c7
SS
5659 }
5660
1a848870 5661 if (sd && sd_degenerate(sd)) {
dce840a0 5662 tmp = sd;
245af2c7 5663 sd = sd->parent;
dce840a0 5664 destroy_sched_domain(tmp, cpu);
1a848870
SS
5665 if (sd)
5666 sd->child = NULL;
5667 }
1da177e4 5668
4cb98839 5669 sched_domain_debug(sd, cpu);
1da177e4 5670
57d885fe 5671 rq_attach_root(rq, rd);
dce840a0 5672 tmp = rq->sd;
674311d5 5673 rcu_assign_pointer(rq->sd, sd);
dce840a0 5674 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5675
5676 update_top_cache_domain(cpu);
1da177e4
LT
5677}
5678
5679/* cpus with isolated domains */
dcc30a35 5680static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5681
5682/* Setup the mask of cpus configured for isolated domains */
5683static int __init isolated_cpu_setup(char *str)
5684{
bdddd296 5685 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5686 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5687 return 1;
5688}
5689
8927f494 5690__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5691
49a02c51 5692struct s_data {
21d42ccf 5693 struct sched_domain ** __percpu sd;
49a02c51
AH
5694 struct root_domain *rd;
5695};
5696
2109b99e 5697enum s_alloc {
2109b99e 5698 sa_rootdomain,
21d42ccf 5699 sa_sd,
dce840a0 5700 sa_sd_storage,
2109b99e
AH
5701 sa_none,
5702};
5703
c1174876
PZ
5704/*
5705 * Build an iteration mask that can exclude certain CPUs from the upwards
5706 * domain traversal.
5707 *
5708 * Asymmetric node setups can result in situations where the domain tree is of
5709 * unequal depth, make sure to skip domains that already cover the entire
5710 * range.
5711 *
5712 * In that case build_sched_domains() will have terminated the iteration early
5713 * and our sibling sd spans will be empty. Domains should always include the
5714 * cpu they're built on, so check that.
5715 *
5716 */
5717static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5718{
5719 const struct cpumask *span = sched_domain_span(sd);
5720 struct sd_data *sdd = sd->private;
5721 struct sched_domain *sibling;
5722 int i;
5723
5724 for_each_cpu(i, span) {
5725 sibling = *per_cpu_ptr(sdd->sd, i);
5726 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5727 continue;
5728
5729 cpumask_set_cpu(i, sched_group_mask(sg));
5730 }
5731}
5732
5733/*
5734 * Return the canonical balance cpu for this group, this is the first cpu
5735 * of this group that's also in the iteration mask.
5736 */
5737int group_balance_cpu(struct sched_group *sg)
5738{
5739 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5740}
5741
e3589f6c
PZ
5742static int
5743build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5744{
5745 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5746 const struct cpumask *span = sched_domain_span(sd);
5747 struct cpumask *covered = sched_domains_tmpmask;
5748 struct sd_data *sdd = sd->private;
5749 struct sched_domain *child;
5750 int i;
5751
5752 cpumask_clear(covered);
5753
5754 for_each_cpu(i, span) {
5755 struct cpumask *sg_span;
5756
5757 if (cpumask_test_cpu(i, covered))
5758 continue;
5759
c1174876
PZ
5760 child = *per_cpu_ptr(sdd->sd, i);
5761
5762 /* See the comment near build_group_mask(). */
5763 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5764 continue;
5765
e3589f6c 5766 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5767 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5768
5769 if (!sg)
5770 goto fail;
5771
5772 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5773 if (child->child) {
5774 child = child->child;
5775 cpumask_copy(sg_span, sched_domain_span(child));
5776 } else
5777 cpumask_set_cpu(i, sg_span);
5778
5779 cpumask_or(covered, covered, sg_span);
5780
63b2ca30
NP
5781 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5782 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5783 build_group_mask(sd, sg);
5784
c3decf0d 5785 /*
63b2ca30 5786 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5787 * domains and no possible iteration will get us here, we won't
5788 * die on a /0 trap.
5789 */
ca8ce3d0 5790 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5791 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5792
c1174876
PZ
5793 /*
5794 * Make sure the first group of this domain contains the
5795 * canonical balance cpu. Otherwise the sched_domain iteration
5796 * breaks. See update_sg_lb_stats().
5797 */
74a5ce20 5798 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5799 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5800 groups = sg;
5801
5802 if (!first)
5803 first = sg;
5804 if (last)
5805 last->next = sg;
5806 last = sg;
5807 last->next = first;
5808 }
5809 sd->groups = groups;
5810
5811 return 0;
5812
5813fail:
5814 free_sched_groups(first, 0);
5815
5816 return -ENOMEM;
5817}
5818
dce840a0 5819static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5820{
dce840a0
PZ
5821 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5822 struct sched_domain *child = sd->child;
1da177e4 5823
dce840a0
PZ
5824 if (child)
5825 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5826
9c3f75cb 5827 if (sg) {
dce840a0 5828 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5829 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5830 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5831 }
dce840a0
PZ
5832
5833 return cpu;
1e9f28fa 5834}
1e9f28fa 5835
01a08546 5836/*
dce840a0
PZ
5837 * build_sched_groups will build a circular linked list of the groups
5838 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5839 * and ->cpu_capacity to 0.
e3589f6c
PZ
5840 *
5841 * Assumes the sched_domain tree is fully constructed
01a08546 5842 */
e3589f6c
PZ
5843static int
5844build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5845{
dce840a0
PZ
5846 struct sched_group *first = NULL, *last = NULL;
5847 struct sd_data *sdd = sd->private;
5848 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5849 struct cpumask *covered;
dce840a0 5850 int i;
9c1cfda2 5851
e3589f6c
PZ
5852 get_group(cpu, sdd, &sd->groups);
5853 atomic_inc(&sd->groups->ref);
5854
0936629f 5855 if (cpu != cpumask_first(span))
e3589f6c
PZ
5856 return 0;
5857
f96225fd
PZ
5858 lockdep_assert_held(&sched_domains_mutex);
5859 covered = sched_domains_tmpmask;
5860
dce840a0 5861 cpumask_clear(covered);
6711cab4 5862
dce840a0
PZ
5863 for_each_cpu(i, span) {
5864 struct sched_group *sg;
cd08e923 5865 int group, j;
6711cab4 5866
dce840a0
PZ
5867 if (cpumask_test_cpu(i, covered))
5868 continue;
6711cab4 5869
cd08e923 5870 group = get_group(i, sdd, &sg);
c1174876 5871 cpumask_setall(sched_group_mask(sg));
0601a88d 5872
dce840a0
PZ
5873 for_each_cpu(j, span) {
5874 if (get_group(j, sdd, NULL) != group)
5875 continue;
0601a88d 5876
dce840a0
PZ
5877 cpumask_set_cpu(j, covered);
5878 cpumask_set_cpu(j, sched_group_cpus(sg));
5879 }
0601a88d 5880
dce840a0
PZ
5881 if (!first)
5882 first = sg;
5883 if (last)
5884 last->next = sg;
5885 last = sg;
5886 }
5887 last->next = first;
e3589f6c
PZ
5888
5889 return 0;
0601a88d 5890}
51888ca2 5891
89c4710e 5892/*
63b2ca30 5893 * Initialize sched groups cpu_capacity.
89c4710e 5894 *
63b2ca30 5895 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5896 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5897 * Typically cpu_capacity for all the groups in a sched domain will be same
5898 * unless there are asymmetries in the topology. If there are asymmetries,
5899 * group having more cpu_capacity will pickup more load compared to the
5900 * group having less cpu_capacity.
89c4710e 5901 */
63b2ca30 5902static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5903{
e3589f6c 5904 struct sched_group *sg = sd->groups;
89c4710e 5905
94c95ba6 5906 WARN_ON(!sg);
e3589f6c
PZ
5907
5908 do {
5909 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5910 sg = sg->next;
5911 } while (sg != sd->groups);
89c4710e 5912
c1174876 5913 if (cpu != group_balance_cpu(sg))
e3589f6c 5914 return;
aae6d3dd 5915
63b2ca30
NP
5916 update_group_capacity(sd, cpu);
5917 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5918}
5919
7c16ec58
MT
5920/*
5921 * Initializers for schedule domains
5922 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5923 */
5924
1d3504fc 5925static int default_relax_domain_level = -1;
60495e77 5926int sched_domain_level_max;
1d3504fc
HS
5927
5928static int __init setup_relax_domain_level(char *str)
5929{
a841f8ce
DS
5930 if (kstrtoint(str, 0, &default_relax_domain_level))
5931 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5932
1d3504fc
HS
5933 return 1;
5934}
5935__setup("relax_domain_level=", setup_relax_domain_level);
5936
5937static void set_domain_attribute(struct sched_domain *sd,
5938 struct sched_domain_attr *attr)
5939{
5940 int request;
5941
5942 if (!attr || attr->relax_domain_level < 0) {
5943 if (default_relax_domain_level < 0)
5944 return;
5945 else
5946 request = default_relax_domain_level;
5947 } else
5948 request = attr->relax_domain_level;
5949 if (request < sd->level) {
5950 /* turn off idle balance on this domain */
c88d5910 5951 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5952 } else {
5953 /* turn on idle balance on this domain */
c88d5910 5954 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5955 }
5956}
5957
54ab4ff4
PZ
5958static void __sdt_free(const struct cpumask *cpu_map);
5959static int __sdt_alloc(const struct cpumask *cpu_map);
5960
2109b99e
AH
5961static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5962 const struct cpumask *cpu_map)
5963{
5964 switch (what) {
2109b99e 5965 case sa_rootdomain:
822ff793
PZ
5966 if (!atomic_read(&d->rd->refcount))
5967 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5968 case sa_sd:
5969 free_percpu(d->sd); /* fall through */
dce840a0 5970 case sa_sd_storage:
54ab4ff4 5971 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5972 case sa_none:
5973 break;
5974 }
5975}
3404c8d9 5976
2109b99e
AH
5977static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5978 const struct cpumask *cpu_map)
5979{
dce840a0
PZ
5980 memset(d, 0, sizeof(*d));
5981
54ab4ff4
PZ
5982 if (__sdt_alloc(cpu_map))
5983 return sa_sd_storage;
dce840a0
PZ
5984 d->sd = alloc_percpu(struct sched_domain *);
5985 if (!d->sd)
5986 return sa_sd_storage;
2109b99e 5987 d->rd = alloc_rootdomain();
dce840a0 5988 if (!d->rd)
21d42ccf 5989 return sa_sd;
2109b99e
AH
5990 return sa_rootdomain;
5991}
57d885fe 5992
dce840a0
PZ
5993/*
5994 * NULL the sd_data elements we've used to build the sched_domain and
5995 * sched_group structure so that the subsequent __free_domain_allocs()
5996 * will not free the data we're using.
5997 */
5998static void claim_allocations(int cpu, struct sched_domain *sd)
5999{
6000 struct sd_data *sdd = sd->private;
dce840a0
PZ
6001
6002 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6003 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6004
e3589f6c 6005 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6006 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6007
63b2ca30
NP
6008 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6009 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6010}
6011
cb83b629 6012#ifdef CONFIG_NUMA
cb83b629 6013static int sched_domains_numa_levels;
cb83b629
PZ
6014static int *sched_domains_numa_distance;
6015static struct cpumask ***sched_domains_numa_masks;
6016static int sched_domains_curr_level;
143e1e28 6017#endif
cb83b629 6018
143e1e28
VG
6019/*
6020 * SD_flags allowed in topology descriptions.
6021 *
5d4dfddd 6022 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6023 * SD_SHARE_PKG_RESOURCES - describes shared caches
6024 * SD_NUMA - describes NUMA topologies
d77b3ed5 6025 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6026 *
6027 * Odd one out:
6028 * SD_ASYM_PACKING - describes SMT quirks
6029 */
6030#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6031 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6032 SD_SHARE_PKG_RESOURCES | \
6033 SD_NUMA | \
d77b3ed5
VG
6034 SD_ASYM_PACKING | \
6035 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6036
6037static struct sched_domain *
143e1e28 6038sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6039{
6040 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6041 int sd_weight, sd_flags = 0;
6042
6043#ifdef CONFIG_NUMA
6044 /*
6045 * Ugly hack to pass state to sd_numa_mask()...
6046 */
6047 sched_domains_curr_level = tl->numa_level;
6048#endif
6049
6050 sd_weight = cpumask_weight(tl->mask(cpu));
6051
6052 if (tl->sd_flags)
6053 sd_flags = (*tl->sd_flags)();
6054 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6055 "wrong sd_flags in topology description\n"))
6056 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6057
6058 *sd = (struct sched_domain){
6059 .min_interval = sd_weight,
6060 .max_interval = 2*sd_weight,
6061 .busy_factor = 32,
870a0bb5 6062 .imbalance_pct = 125,
143e1e28
VG
6063
6064 .cache_nice_tries = 0,
6065 .busy_idx = 0,
6066 .idle_idx = 0,
cb83b629
PZ
6067 .newidle_idx = 0,
6068 .wake_idx = 0,
6069 .forkexec_idx = 0,
6070
6071 .flags = 1*SD_LOAD_BALANCE
6072 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6073 | 1*SD_BALANCE_EXEC
6074 | 1*SD_BALANCE_FORK
cb83b629 6075 | 0*SD_BALANCE_WAKE
143e1e28 6076 | 1*SD_WAKE_AFFINE
5d4dfddd 6077 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6078 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6079 | 0*SD_SERIALIZE
cb83b629 6080 | 0*SD_PREFER_SIBLING
143e1e28
VG
6081 | 0*SD_NUMA
6082 | sd_flags
cb83b629 6083 ,
143e1e28 6084
cb83b629
PZ
6085 .last_balance = jiffies,
6086 .balance_interval = sd_weight,
143e1e28 6087 .smt_gain = 0,
2b4cfe64
JL
6088 .max_newidle_lb_cost = 0,
6089 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6090#ifdef CONFIG_SCHED_DEBUG
6091 .name = tl->name,
6092#endif
cb83b629 6093 };
cb83b629
PZ
6094
6095 /*
143e1e28 6096 * Convert topological properties into behaviour.
cb83b629 6097 */
143e1e28 6098
5d4dfddd 6099 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6100 sd->imbalance_pct = 110;
6101 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6102
6103 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6104 sd->imbalance_pct = 117;
6105 sd->cache_nice_tries = 1;
6106 sd->busy_idx = 2;
6107
6108#ifdef CONFIG_NUMA
6109 } else if (sd->flags & SD_NUMA) {
6110 sd->cache_nice_tries = 2;
6111 sd->busy_idx = 3;
6112 sd->idle_idx = 2;
6113
6114 sd->flags |= SD_SERIALIZE;
6115 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6116 sd->flags &= ~(SD_BALANCE_EXEC |
6117 SD_BALANCE_FORK |
6118 SD_WAKE_AFFINE);
6119 }
6120
6121#endif
6122 } else {
6123 sd->flags |= SD_PREFER_SIBLING;
6124 sd->cache_nice_tries = 1;
6125 sd->busy_idx = 2;
6126 sd->idle_idx = 1;
6127 }
6128
6129 sd->private = &tl->data;
cb83b629
PZ
6130
6131 return sd;
6132}
6133
143e1e28
VG
6134/*
6135 * Topology list, bottom-up.
6136 */
6137static struct sched_domain_topology_level default_topology[] = {
6138#ifdef CONFIG_SCHED_SMT
6139 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6140#endif
6141#ifdef CONFIG_SCHED_MC
6142 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6143#endif
6144 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6145 { NULL, },
6146};
6147
6148struct sched_domain_topology_level *sched_domain_topology = default_topology;
6149
6150#define for_each_sd_topology(tl) \
6151 for (tl = sched_domain_topology; tl->mask; tl++)
6152
6153void set_sched_topology(struct sched_domain_topology_level *tl)
6154{
6155 sched_domain_topology = tl;
6156}
6157
6158#ifdef CONFIG_NUMA
6159
cb83b629
PZ
6160static const struct cpumask *sd_numa_mask(int cpu)
6161{
6162 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6163}
6164
d039ac60
PZ
6165static void sched_numa_warn(const char *str)
6166{
6167 static int done = false;
6168 int i,j;
6169
6170 if (done)
6171 return;
6172
6173 done = true;
6174
6175 printk(KERN_WARNING "ERROR: %s\n\n", str);
6176
6177 for (i = 0; i < nr_node_ids; i++) {
6178 printk(KERN_WARNING " ");
6179 for (j = 0; j < nr_node_ids; j++)
6180 printk(KERN_CONT "%02d ", node_distance(i,j));
6181 printk(KERN_CONT "\n");
6182 }
6183 printk(KERN_WARNING "\n");
6184}
6185
6186static bool find_numa_distance(int distance)
6187{
6188 int i;
6189
6190 if (distance == node_distance(0, 0))
6191 return true;
6192
6193 for (i = 0; i < sched_domains_numa_levels; i++) {
6194 if (sched_domains_numa_distance[i] == distance)
6195 return true;
6196 }
6197
6198 return false;
6199}
6200
cb83b629
PZ
6201static void sched_init_numa(void)
6202{
6203 int next_distance, curr_distance = node_distance(0, 0);
6204 struct sched_domain_topology_level *tl;
6205 int level = 0;
6206 int i, j, k;
6207
cb83b629
PZ
6208 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6209 if (!sched_domains_numa_distance)
6210 return;
6211
6212 /*
6213 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6214 * unique distances in the node_distance() table.
6215 *
6216 * Assumes node_distance(0,j) includes all distances in
6217 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6218 */
6219 next_distance = curr_distance;
6220 for (i = 0; i < nr_node_ids; i++) {
6221 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6222 for (k = 0; k < nr_node_ids; k++) {
6223 int distance = node_distance(i, k);
6224
6225 if (distance > curr_distance &&
6226 (distance < next_distance ||
6227 next_distance == curr_distance))
6228 next_distance = distance;
6229
6230 /*
6231 * While not a strong assumption it would be nice to know
6232 * about cases where if node A is connected to B, B is not
6233 * equally connected to A.
6234 */
6235 if (sched_debug() && node_distance(k, i) != distance)
6236 sched_numa_warn("Node-distance not symmetric");
6237
6238 if (sched_debug() && i && !find_numa_distance(distance))
6239 sched_numa_warn("Node-0 not representative");
6240 }
6241 if (next_distance != curr_distance) {
6242 sched_domains_numa_distance[level++] = next_distance;
6243 sched_domains_numa_levels = level;
6244 curr_distance = next_distance;
6245 } else break;
cb83b629 6246 }
d039ac60
PZ
6247
6248 /*
6249 * In case of sched_debug() we verify the above assumption.
6250 */
6251 if (!sched_debug())
6252 break;
cb83b629
PZ
6253 }
6254 /*
6255 * 'level' contains the number of unique distances, excluding the
6256 * identity distance node_distance(i,i).
6257 *
28b4a521 6258 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6259 * numbers.
6260 */
6261
5f7865f3
TC
6262 /*
6263 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6264 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6265 * the array will contain less then 'level' members. This could be
6266 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6267 * in other functions.
6268 *
6269 * We reset it to 'level' at the end of this function.
6270 */
6271 sched_domains_numa_levels = 0;
6272
cb83b629
PZ
6273 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6274 if (!sched_domains_numa_masks)
6275 return;
6276
6277 /*
6278 * Now for each level, construct a mask per node which contains all
6279 * cpus of nodes that are that many hops away from us.
6280 */
6281 for (i = 0; i < level; i++) {
6282 sched_domains_numa_masks[i] =
6283 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6284 if (!sched_domains_numa_masks[i])
6285 return;
6286
6287 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6288 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6289 if (!mask)
6290 return;
6291
6292 sched_domains_numa_masks[i][j] = mask;
6293
6294 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6295 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6296 continue;
6297
6298 cpumask_or(mask, mask, cpumask_of_node(k));
6299 }
6300 }
6301 }
6302
143e1e28
VG
6303 /* Compute default topology size */
6304 for (i = 0; sched_domain_topology[i].mask; i++);
6305
c515db8c 6306 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6307 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6308 if (!tl)
6309 return;
6310
6311 /*
6312 * Copy the default topology bits..
6313 */
143e1e28
VG
6314 for (i = 0; sched_domain_topology[i].mask; i++)
6315 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6316
6317 /*
6318 * .. and append 'j' levels of NUMA goodness.
6319 */
6320 for (j = 0; j < level; i++, j++) {
6321 tl[i] = (struct sched_domain_topology_level){
cb83b629 6322 .mask = sd_numa_mask,
143e1e28 6323 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6324 .flags = SDTL_OVERLAP,
6325 .numa_level = j,
143e1e28 6326 SD_INIT_NAME(NUMA)
cb83b629
PZ
6327 };
6328 }
6329
6330 sched_domain_topology = tl;
5f7865f3
TC
6331
6332 sched_domains_numa_levels = level;
cb83b629 6333}
301a5cba
TC
6334
6335static void sched_domains_numa_masks_set(int cpu)
6336{
6337 int i, j;
6338 int node = cpu_to_node(cpu);
6339
6340 for (i = 0; i < sched_domains_numa_levels; i++) {
6341 for (j = 0; j < nr_node_ids; j++) {
6342 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6343 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6344 }
6345 }
6346}
6347
6348static void sched_domains_numa_masks_clear(int cpu)
6349{
6350 int i, j;
6351 for (i = 0; i < sched_domains_numa_levels; i++) {
6352 for (j = 0; j < nr_node_ids; j++)
6353 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6354 }
6355}
6356
6357/*
6358 * Update sched_domains_numa_masks[level][node] array when new cpus
6359 * are onlined.
6360 */
6361static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6362 unsigned long action,
6363 void *hcpu)
6364{
6365 int cpu = (long)hcpu;
6366
6367 switch (action & ~CPU_TASKS_FROZEN) {
6368 case CPU_ONLINE:
6369 sched_domains_numa_masks_set(cpu);
6370 break;
6371
6372 case CPU_DEAD:
6373 sched_domains_numa_masks_clear(cpu);
6374 break;
6375
6376 default:
6377 return NOTIFY_DONE;
6378 }
6379
6380 return NOTIFY_OK;
cb83b629
PZ
6381}
6382#else
6383static inline void sched_init_numa(void)
6384{
6385}
301a5cba
TC
6386
6387static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6388 unsigned long action,
6389 void *hcpu)
6390{
6391 return 0;
6392}
cb83b629
PZ
6393#endif /* CONFIG_NUMA */
6394
54ab4ff4
PZ
6395static int __sdt_alloc(const struct cpumask *cpu_map)
6396{
6397 struct sched_domain_topology_level *tl;
6398 int j;
6399
27723a68 6400 for_each_sd_topology(tl) {
54ab4ff4
PZ
6401 struct sd_data *sdd = &tl->data;
6402
6403 sdd->sd = alloc_percpu(struct sched_domain *);
6404 if (!sdd->sd)
6405 return -ENOMEM;
6406
6407 sdd->sg = alloc_percpu(struct sched_group *);
6408 if (!sdd->sg)
6409 return -ENOMEM;
6410
63b2ca30
NP
6411 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6412 if (!sdd->sgc)
9c3f75cb
PZ
6413 return -ENOMEM;
6414
54ab4ff4
PZ
6415 for_each_cpu(j, cpu_map) {
6416 struct sched_domain *sd;
6417 struct sched_group *sg;
63b2ca30 6418 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6419
6420 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6421 GFP_KERNEL, cpu_to_node(j));
6422 if (!sd)
6423 return -ENOMEM;
6424
6425 *per_cpu_ptr(sdd->sd, j) = sd;
6426
6427 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6428 GFP_KERNEL, cpu_to_node(j));
6429 if (!sg)
6430 return -ENOMEM;
6431
30b4e9eb
IM
6432 sg->next = sg;
6433
54ab4ff4 6434 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6435
63b2ca30 6436 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6437 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6438 if (!sgc)
9c3f75cb
PZ
6439 return -ENOMEM;
6440
63b2ca30 6441 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6442 }
6443 }
6444
6445 return 0;
6446}
6447
6448static void __sdt_free(const struct cpumask *cpu_map)
6449{
6450 struct sched_domain_topology_level *tl;
6451 int j;
6452
27723a68 6453 for_each_sd_topology(tl) {
54ab4ff4
PZ
6454 struct sd_data *sdd = &tl->data;
6455
6456 for_each_cpu(j, cpu_map) {
fb2cf2c6 6457 struct sched_domain *sd;
6458
6459 if (sdd->sd) {
6460 sd = *per_cpu_ptr(sdd->sd, j);
6461 if (sd && (sd->flags & SD_OVERLAP))
6462 free_sched_groups(sd->groups, 0);
6463 kfree(*per_cpu_ptr(sdd->sd, j));
6464 }
6465
6466 if (sdd->sg)
6467 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6468 if (sdd->sgc)
6469 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6470 }
6471 free_percpu(sdd->sd);
fb2cf2c6 6472 sdd->sd = NULL;
54ab4ff4 6473 free_percpu(sdd->sg);
fb2cf2c6 6474 sdd->sg = NULL;
63b2ca30
NP
6475 free_percpu(sdd->sgc);
6476 sdd->sgc = NULL;
54ab4ff4
PZ
6477 }
6478}
6479
2c402dc3 6480struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6481 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6482 struct sched_domain *child, int cpu)
2c402dc3 6483{
143e1e28 6484 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6485 if (!sd)
d069b916 6486 return child;
2c402dc3 6487
2c402dc3 6488 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6489 if (child) {
6490 sd->level = child->level + 1;
6491 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6492 child->parent = sd;
c75e0128 6493 sd->child = child;
6ae72dff
PZ
6494
6495 if (!cpumask_subset(sched_domain_span(child),
6496 sched_domain_span(sd))) {
6497 pr_err("BUG: arch topology borken\n");
6498#ifdef CONFIG_SCHED_DEBUG
6499 pr_err(" the %s domain not a subset of the %s domain\n",
6500 child->name, sd->name);
6501#endif
6502 /* Fixup, ensure @sd has at least @child cpus. */
6503 cpumask_or(sched_domain_span(sd),
6504 sched_domain_span(sd),
6505 sched_domain_span(child));
6506 }
6507
60495e77 6508 }
a841f8ce 6509 set_domain_attribute(sd, attr);
2c402dc3
PZ
6510
6511 return sd;
6512}
6513
2109b99e
AH
6514/*
6515 * Build sched domains for a given set of cpus and attach the sched domains
6516 * to the individual cpus
6517 */
dce840a0
PZ
6518static int build_sched_domains(const struct cpumask *cpu_map,
6519 struct sched_domain_attr *attr)
2109b99e 6520{
1c632169 6521 enum s_alloc alloc_state;
dce840a0 6522 struct sched_domain *sd;
2109b99e 6523 struct s_data d;
822ff793 6524 int i, ret = -ENOMEM;
9c1cfda2 6525
2109b99e
AH
6526 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6527 if (alloc_state != sa_rootdomain)
6528 goto error;
9c1cfda2 6529
dce840a0 6530 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6531 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6532 struct sched_domain_topology_level *tl;
6533
3bd65a80 6534 sd = NULL;
27723a68 6535 for_each_sd_topology(tl) {
4a850cbe 6536 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6537 if (tl == sched_domain_topology)
6538 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6539 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6540 sd->flags |= SD_OVERLAP;
d110235d
PZ
6541 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6542 break;
e3589f6c 6543 }
dce840a0
PZ
6544 }
6545
6546 /* Build the groups for the domains */
6547 for_each_cpu(i, cpu_map) {
6548 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6549 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6550 if (sd->flags & SD_OVERLAP) {
6551 if (build_overlap_sched_groups(sd, i))
6552 goto error;
6553 } else {
6554 if (build_sched_groups(sd, i))
6555 goto error;
6556 }
1cf51902 6557 }
a06dadbe 6558 }
9c1cfda2 6559
ced549fa 6560 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6561 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6562 if (!cpumask_test_cpu(i, cpu_map))
6563 continue;
9c1cfda2 6564
dce840a0
PZ
6565 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6566 claim_allocations(i, sd);
63b2ca30 6567 init_sched_groups_capacity(i, sd);
dce840a0 6568 }
f712c0c7 6569 }
9c1cfda2 6570
1da177e4 6571 /* Attach the domains */
dce840a0 6572 rcu_read_lock();
abcd083a 6573 for_each_cpu(i, cpu_map) {
21d42ccf 6574 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6575 cpu_attach_domain(sd, d.rd, i);
1da177e4 6576 }
dce840a0 6577 rcu_read_unlock();
51888ca2 6578
822ff793 6579 ret = 0;
51888ca2 6580error:
2109b99e 6581 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6582 return ret;
1da177e4 6583}
029190c5 6584
acc3f5d7 6585static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6586static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6587static struct sched_domain_attr *dattr_cur;
6588 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6589
6590/*
6591 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6592 * cpumask) fails, then fallback to a single sched domain,
6593 * as determined by the single cpumask fallback_doms.
029190c5 6594 */
4212823f 6595static cpumask_var_t fallback_doms;
029190c5 6596
ee79d1bd
HC
6597/*
6598 * arch_update_cpu_topology lets virtualized architectures update the
6599 * cpu core maps. It is supposed to return 1 if the topology changed
6600 * or 0 if it stayed the same.
6601 */
52f5684c 6602int __weak arch_update_cpu_topology(void)
22e52b07 6603{
ee79d1bd 6604 return 0;
22e52b07
HC
6605}
6606
acc3f5d7
RR
6607cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6608{
6609 int i;
6610 cpumask_var_t *doms;
6611
6612 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6613 if (!doms)
6614 return NULL;
6615 for (i = 0; i < ndoms; i++) {
6616 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6617 free_sched_domains(doms, i);
6618 return NULL;
6619 }
6620 }
6621 return doms;
6622}
6623
6624void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6625{
6626 unsigned int i;
6627 for (i = 0; i < ndoms; i++)
6628 free_cpumask_var(doms[i]);
6629 kfree(doms);
6630}
6631
1a20ff27 6632/*
41a2d6cf 6633 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6634 * For now this just excludes isolated cpus, but could be used to
6635 * exclude other special cases in the future.
1a20ff27 6636 */
c4a8849a 6637static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6638{
7378547f
MM
6639 int err;
6640
22e52b07 6641 arch_update_cpu_topology();
029190c5 6642 ndoms_cur = 1;
acc3f5d7 6643 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6644 if (!doms_cur)
acc3f5d7
RR
6645 doms_cur = &fallback_doms;
6646 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6647 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6648 register_sched_domain_sysctl();
7378547f
MM
6649
6650 return err;
1a20ff27
DG
6651}
6652
1a20ff27
DG
6653/*
6654 * Detach sched domains from a group of cpus specified in cpu_map
6655 * These cpus will now be attached to the NULL domain
6656 */
96f874e2 6657static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6658{
6659 int i;
6660
dce840a0 6661 rcu_read_lock();
abcd083a 6662 for_each_cpu(i, cpu_map)
57d885fe 6663 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6664 rcu_read_unlock();
1a20ff27
DG
6665}
6666
1d3504fc
HS
6667/* handle null as "default" */
6668static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6669 struct sched_domain_attr *new, int idx_new)
6670{
6671 struct sched_domain_attr tmp;
6672
6673 /* fast path */
6674 if (!new && !cur)
6675 return 1;
6676
6677 tmp = SD_ATTR_INIT;
6678 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6679 new ? (new + idx_new) : &tmp,
6680 sizeof(struct sched_domain_attr));
6681}
6682
029190c5
PJ
6683/*
6684 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6685 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6686 * doms_new[] to the current sched domain partitioning, doms_cur[].
6687 * It destroys each deleted domain and builds each new domain.
6688 *
acc3f5d7 6689 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6690 * The masks don't intersect (don't overlap.) We should setup one
6691 * sched domain for each mask. CPUs not in any of the cpumasks will
6692 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6693 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6694 * it as it is.
6695 *
acc3f5d7
RR
6696 * The passed in 'doms_new' should be allocated using
6697 * alloc_sched_domains. This routine takes ownership of it and will
6698 * free_sched_domains it when done with it. If the caller failed the
6699 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6700 * and partition_sched_domains() will fallback to the single partition
6701 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6702 *
96f874e2 6703 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6704 * ndoms_new == 0 is a special case for destroying existing domains,
6705 * and it will not create the default domain.
dfb512ec 6706 *
029190c5
PJ
6707 * Call with hotplug lock held
6708 */
acc3f5d7 6709void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6710 struct sched_domain_attr *dattr_new)
029190c5 6711{
dfb512ec 6712 int i, j, n;
d65bd5ec 6713 int new_topology;
029190c5 6714
712555ee 6715 mutex_lock(&sched_domains_mutex);
a1835615 6716
7378547f
MM
6717 /* always unregister in case we don't destroy any domains */
6718 unregister_sched_domain_sysctl();
6719
d65bd5ec
HC
6720 /* Let architecture update cpu core mappings. */
6721 new_topology = arch_update_cpu_topology();
6722
dfb512ec 6723 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6724
6725 /* Destroy deleted domains */
6726 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6727 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6728 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6729 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6730 goto match1;
6731 }
6732 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6733 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6734match1:
6735 ;
6736 }
6737
c8d2d47a 6738 n = ndoms_cur;
e761b772 6739 if (doms_new == NULL) {
c8d2d47a 6740 n = 0;
acc3f5d7 6741 doms_new = &fallback_doms;
6ad4c188 6742 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6743 WARN_ON_ONCE(dattr_new);
e761b772
MK
6744 }
6745
029190c5
PJ
6746 /* Build new domains */
6747 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6748 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6749 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6750 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6751 goto match2;
6752 }
6753 /* no match - add a new doms_new */
dce840a0 6754 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6755match2:
6756 ;
6757 }
6758
6759 /* Remember the new sched domains */
acc3f5d7
RR
6760 if (doms_cur != &fallback_doms)
6761 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6762 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6763 doms_cur = doms_new;
1d3504fc 6764 dattr_cur = dattr_new;
029190c5 6765 ndoms_cur = ndoms_new;
7378547f
MM
6766
6767 register_sched_domain_sysctl();
a1835615 6768
712555ee 6769 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6770}
6771
d35be8ba
SB
6772static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6773
1da177e4 6774/*
3a101d05
TH
6775 * Update cpusets according to cpu_active mask. If cpusets are
6776 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6777 * around partition_sched_domains().
d35be8ba
SB
6778 *
6779 * If we come here as part of a suspend/resume, don't touch cpusets because we
6780 * want to restore it back to its original state upon resume anyway.
1da177e4 6781 */
0b2e918a
TH
6782static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6783 void *hcpu)
e761b772 6784{
d35be8ba
SB
6785 switch (action) {
6786 case CPU_ONLINE_FROZEN:
6787 case CPU_DOWN_FAILED_FROZEN:
6788
6789 /*
6790 * num_cpus_frozen tracks how many CPUs are involved in suspend
6791 * resume sequence. As long as this is not the last online
6792 * operation in the resume sequence, just build a single sched
6793 * domain, ignoring cpusets.
6794 */
6795 num_cpus_frozen--;
6796 if (likely(num_cpus_frozen)) {
6797 partition_sched_domains(1, NULL, NULL);
6798 break;
6799 }
6800
6801 /*
6802 * This is the last CPU online operation. So fall through and
6803 * restore the original sched domains by considering the
6804 * cpuset configurations.
6805 */
6806
e761b772 6807 case CPU_ONLINE:
6ad4c188 6808 case CPU_DOWN_FAILED:
7ddf96b0 6809 cpuset_update_active_cpus(true);
d35be8ba 6810 break;
3a101d05
TH
6811 default:
6812 return NOTIFY_DONE;
6813 }
d35be8ba 6814 return NOTIFY_OK;
3a101d05 6815}
e761b772 6816
0b2e918a
TH
6817static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6818 void *hcpu)
3a101d05 6819{
d35be8ba 6820 switch (action) {
3a101d05 6821 case CPU_DOWN_PREPARE:
7ddf96b0 6822 cpuset_update_active_cpus(false);
d35be8ba
SB
6823 break;
6824 case CPU_DOWN_PREPARE_FROZEN:
6825 num_cpus_frozen++;
6826 partition_sched_domains(1, NULL, NULL);
6827 break;
e761b772
MK
6828 default:
6829 return NOTIFY_DONE;
6830 }
d35be8ba 6831 return NOTIFY_OK;
e761b772 6832}
e761b772 6833
1da177e4
LT
6834void __init sched_init_smp(void)
6835{
dcc30a35
RR
6836 cpumask_var_t non_isolated_cpus;
6837
6838 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6839 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6840
cb83b629
PZ
6841 sched_init_numa();
6842
6acce3ef
PZ
6843 /*
6844 * There's no userspace yet to cause hotplug operations; hence all the
6845 * cpu masks are stable and all blatant races in the below code cannot
6846 * happen.
6847 */
712555ee 6848 mutex_lock(&sched_domains_mutex);
c4a8849a 6849 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6850 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6851 if (cpumask_empty(non_isolated_cpus))
6852 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6853 mutex_unlock(&sched_domains_mutex);
e761b772 6854
301a5cba 6855 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6856 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6857 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6858
b328ca18 6859 init_hrtick();
5c1e1767
NP
6860
6861 /* Move init over to a non-isolated CPU */
dcc30a35 6862 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6863 BUG();
19978ca6 6864 sched_init_granularity();
dcc30a35 6865 free_cpumask_var(non_isolated_cpus);
4212823f 6866
0e3900e6 6867 init_sched_rt_class();
1baca4ce 6868 init_sched_dl_class();
1da177e4
LT
6869}
6870#else
6871void __init sched_init_smp(void)
6872{
19978ca6 6873 sched_init_granularity();
1da177e4
LT
6874}
6875#endif /* CONFIG_SMP */
6876
cd1bb94b
AB
6877const_debug unsigned int sysctl_timer_migration = 1;
6878
1da177e4
LT
6879int in_sched_functions(unsigned long addr)
6880{
1da177e4
LT
6881 return in_lock_functions(addr) ||
6882 (addr >= (unsigned long)__sched_text_start
6883 && addr < (unsigned long)__sched_text_end);
6884}
6885
029632fb 6886#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6887/*
6888 * Default task group.
6889 * Every task in system belongs to this group at bootup.
6890 */
029632fb 6891struct task_group root_task_group;
35cf4e50 6892LIST_HEAD(task_groups);
052f1dc7 6893#endif
6f505b16 6894
e6252c3e 6895DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6896
1da177e4
LT
6897void __init sched_init(void)
6898{
dd41f596 6899 int i, j;
434d53b0
MT
6900 unsigned long alloc_size = 0, ptr;
6901
6902#ifdef CONFIG_FAIR_GROUP_SCHED
6903 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6904#endif
6905#ifdef CONFIG_RT_GROUP_SCHED
6906 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6907#endif
df7c8e84 6908#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6909 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6910#endif
434d53b0 6911 if (alloc_size) {
36b7b6d4 6912 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6913
6914#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6915 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6916 ptr += nr_cpu_ids * sizeof(void **);
6917
07e06b01 6918 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6919 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6920
6d6bc0ad 6921#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6922#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6923 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6924 ptr += nr_cpu_ids * sizeof(void **);
6925
07e06b01 6926 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6927 ptr += nr_cpu_ids * sizeof(void **);
6928
6d6bc0ad 6929#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6930#ifdef CONFIG_CPUMASK_OFFSTACK
6931 for_each_possible_cpu(i) {
e6252c3e 6932 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6933 ptr += cpumask_size();
6934 }
6935#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6936 }
dd41f596 6937
332ac17e
DF
6938 init_rt_bandwidth(&def_rt_bandwidth,
6939 global_rt_period(), global_rt_runtime());
6940 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6941 global_rt_period(), global_rt_runtime());
332ac17e 6942
57d885fe
GH
6943#ifdef CONFIG_SMP
6944 init_defrootdomain();
6945#endif
6946
d0b27fa7 6947#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6948 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6949 global_rt_period(), global_rt_runtime());
6d6bc0ad 6950#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6951
7c941438 6952#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6953 list_add(&root_task_group.list, &task_groups);
6954 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6955 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6956 autogroup_init(&init_task);
54c707e9 6957
7c941438 6958#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6959
0a945022 6960 for_each_possible_cpu(i) {
70b97a7f 6961 struct rq *rq;
1da177e4
LT
6962
6963 rq = cpu_rq(i);
05fa785c 6964 raw_spin_lock_init(&rq->lock);
7897986b 6965 rq->nr_running = 0;
dce48a84
TG
6966 rq->calc_load_active = 0;
6967 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6968 init_cfs_rq(&rq->cfs);
6f505b16 6969 init_rt_rq(&rq->rt, rq);
aab03e05 6970 init_dl_rq(&rq->dl, rq);
dd41f596 6971#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6972 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6973 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6974 /*
07e06b01 6975 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6976 *
6977 * In case of task-groups formed thr' the cgroup filesystem, it
6978 * gets 100% of the cpu resources in the system. This overall
6979 * system cpu resource is divided among the tasks of
07e06b01 6980 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6981 * based on each entity's (task or task-group's) weight
6982 * (se->load.weight).
6983 *
07e06b01 6984 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6985 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6986 * then A0's share of the cpu resource is:
6987 *
0d905bca 6988 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6989 *
07e06b01
YZ
6990 * We achieve this by letting root_task_group's tasks sit
6991 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6992 */
ab84d31e 6993 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6994 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6995#endif /* CONFIG_FAIR_GROUP_SCHED */
6996
6997 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6998#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6999 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7000#endif
1da177e4 7001
dd41f596
IM
7002 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7003 rq->cpu_load[j] = 0;
fdf3e95d
VP
7004
7005 rq->last_load_update_tick = jiffies;
7006
1da177e4 7007#ifdef CONFIG_SMP
41c7ce9a 7008 rq->sd = NULL;
57d885fe 7009 rq->rd = NULL;
ca8ce3d0 7010 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7011 rq->post_schedule = 0;
1da177e4 7012 rq->active_balance = 0;
dd41f596 7013 rq->next_balance = jiffies;
1da177e4 7014 rq->push_cpu = 0;
0a2966b4 7015 rq->cpu = i;
1f11eb6a 7016 rq->online = 0;
eae0c9df
MG
7017 rq->idle_stamp = 0;
7018 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7019 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7020
7021 INIT_LIST_HEAD(&rq->cfs_tasks);
7022
dc938520 7023 rq_attach_root(rq, &def_root_domain);
3451d024 7024#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7025 rq->nohz_flags = 0;
83cd4fe2 7026#endif
265f22a9
FW
7027#ifdef CONFIG_NO_HZ_FULL
7028 rq->last_sched_tick = 0;
7029#endif
1da177e4 7030#endif
8f4d37ec 7031 init_rq_hrtick(rq);
1da177e4 7032 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7033 }
7034
2dd73a4f 7035 set_load_weight(&init_task);
b50f60ce 7036
e107be36
AK
7037#ifdef CONFIG_PREEMPT_NOTIFIERS
7038 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7039#endif
7040
1da177e4
LT
7041 /*
7042 * The boot idle thread does lazy MMU switching as well:
7043 */
7044 atomic_inc(&init_mm.mm_count);
7045 enter_lazy_tlb(&init_mm, current);
7046
7047 /*
7048 * Make us the idle thread. Technically, schedule() should not be
7049 * called from this thread, however somewhere below it might be,
7050 * but because we are the idle thread, we just pick up running again
7051 * when this runqueue becomes "idle".
7052 */
7053 init_idle(current, smp_processor_id());
dce48a84
TG
7054
7055 calc_load_update = jiffies + LOAD_FREQ;
7056
dd41f596
IM
7057 /*
7058 * During early bootup we pretend to be a normal task:
7059 */
7060 current->sched_class = &fair_sched_class;
6892b75e 7061
bf4d83f6 7062#ifdef CONFIG_SMP
4cb98839 7063 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7064 /* May be allocated at isolcpus cmdline parse time */
7065 if (cpu_isolated_map == NULL)
7066 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7067 idle_thread_set_boot_cpu();
a803f026 7068 set_cpu_rq_start_time();
029632fb
PZ
7069#endif
7070 init_sched_fair_class();
6a7b3dc3 7071
6892b75e 7072 scheduler_running = 1;
1da177e4
LT
7073}
7074
d902db1e 7075#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7076static inline int preempt_count_equals(int preempt_offset)
7077{
234da7bc 7078 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7079
4ba8216c 7080 return (nested == preempt_offset);
e4aafea2
FW
7081}
7082
d894837f 7083void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7084{
1da177e4
LT
7085 static unsigned long prev_jiffy; /* ratelimiting */
7086
b3fbab05 7087 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7088 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7089 !is_idle_task(current)) ||
e4aafea2 7090 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7091 return;
7092 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7093 return;
7094 prev_jiffy = jiffies;
7095
3df0fc5b
PZ
7096 printk(KERN_ERR
7097 "BUG: sleeping function called from invalid context at %s:%d\n",
7098 file, line);
7099 printk(KERN_ERR
7100 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7101 in_atomic(), irqs_disabled(),
7102 current->pid, current->comm);
aef745fc
IM
7103
7104 debug_show_held_locks(current);
7105 if (irqs_disabled())
7106 print_irqtrace_events(current);
8f47b187
TG
7107#ifdef CONFIG_DEBUG_PREEMPT
7108 if (!preempt_count_equals(preempt_offset)) {
7109 pr_err("Preemption disabled at:");
7110 print_ip_sym(current->preempt_disable_ip);
7111 pr_cont("\n");
7112 }
7113#endif
aef745fc 7114 dump_stack();
1da177e4
LT
7115}
7116EXPORT_SYMBOL(__might_sleep);
7117#endif
7118
7119#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7120static void normalize_task(struct rq *rq, struct task_struct *p)
7121{
da7a735e 7122 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7123 struct sched_attr attr = {
7124 .sched_policy = SCHED_NORMAL,
7125 };
da7a735e 7126 int old_prio = p->prio;
3a5e4dc1 7127 int on_rq;
3e51f33f 7128
fd2f4419 7129 on_rq = p->on_rq;
3a5e4dc1 7130 if (on_rq)
4ca9b72b 7131 dequeue_task(rq, p, 0);
d50dde5a 7132 __setscheduler(rq, p, &attr);
3a5e4dc1 7133 if (on_rq) {
4ca9b72b 7134 enqueue_task(rq, p, 0);
8875125e 7135 resched_curr(rq);
3a5e4dc1 7136 }
da7a735e
PZ
7137
7138 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7139}
7140
1da177e4
LT
7141void normalize_rt_tasks(void)
7142{
a0f98a1c 7143 struct task_struct *g, *p;
1da177e4 7144 unsigned long flags;
70b97a7f 7145 struct rq *rq;
1da177e4 7146
4cf5d77a 7147 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7148 do_each_thread(g, p) {
178be793
IM
7149 /*
7150 * Only normalize user tasks:
7151 */
7152 if (!p->mm)
7153 continue;
7154
6cfb0d5d 7155 p->se.exec_start = 0;
6cfb0d5d 7156#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7157 p->se.statistics.wait_start = 0;
7158 p->se.statistics.sleep_start = 0;
7159 p->se.statistics.block_start = 0;
6cfb0d5d 7160#endif
dd41f596 7161
aab03e05 7162 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7163 /*
7164 * Renice negative nice level userspace
7165 * tasks back to 0:
7166 */
d0ea0268 7167 if (task_nice(p) < 0 && p->mm)
dd41f596 7168 set_user_nice(p, 0);
1da177e4 7169 continue;
dd41f596 7170 }
1da177e4 7171
1d615482 7172 raw_spin_lock(&p->pi_lock);
b29739f9 7173 rq = __task_rq_lock(p);
1da177e4 7174
178be793 7175 normalize_task(rq, p);
3a5e4dc1 7176
b29739f9 7177 __task_rq_unlock(rq);
1d615482 7178 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7179 } while_each_thread(g, p);
7180
4cf5d77a 7181 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7182}
7183
7184#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7185
67fc4e0c 7186#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7187/*
67fc4e0c 7188 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7189 *
7190 * They can only be called when the whole system has been
7191 * stopped - every CPU needs to be quiescent, and no scheduling
7192 * activity can take place. Using them for anything else would
7193 * be a serious bug, and as a result, they aren't even visible
7194 * under any other configuration.
7195 */
7196
7197/**
7198 * curr_task - return the current task for a given cpu.
7199 * @cpu: the processor in question.
7200 *
7201 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7202 *
7203 * Return: The current task for @cpu.
1df5c10a 7204 */
36c8b586 7205struct task_struct *curr_task(int cpu)
1df5c10a
LT
7206{
7207 return cpu_curr(cpu);
7208}
7209
67fc4e0c
JW
7210#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7211
7212#ifdef CONFIG_IA64
1df5c10a
LT
7213/**
7214 * set_curr_task - set the current task for a given cpu.
7215 * @cpu: the processor in question.
7216 * @p: the task pointer to set.
7217 *
7218 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7219 * are serviced on a separate stack. It allows the architecture to switch the
7220 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7221 * must be called with all CPU's synchronized, and interrupts disabled, the
7222 * and caller must save the original value of the current task (see
7223 * curr_task() above) and restore that value before reenabling interrupts and
7224 * re-starting the system.
7225 *
7226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7227 */
36c8b586 7228void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7229{
7230 cpu_curr(cpu) = p;
7231}
7232
7233#endif
29f59db3 7234
7c941438 7235#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7236/* task_group_lock serializes the addition/removal of task groups */
7237static DEFINE_SPINLOCK(task_group_lock);
7238
bccbe08a
PZ
7239static void free_sched_group(struct task_group *tg)
7240{
7241 free_fair_sched_group(tg);
7242 free_rt_sched_group(tg);
e9aa1dd1 7243 autogroup_free(tg);
bccbe08a
PZ
7244 kfree(tg);
7245}
7246
7247/* allocate runqueue etc for a new task group */
ec7dc8ac 7248struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7249{
7250 struct task_group *tg;
bccbe08a
PZ
7251
7252 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7253 if (!tg)
7254 return ERR_PTR(-ENOMEM);
7255
ec7dc8ac 7256 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7257 goto err;
7258
ec7dc8ac 7259 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7260 goto err;
7261
ace783b9
LZ
7262 return tg;
7263
7264err:
7265 free_sched_group(tg);
7266 return ERR_PTR(-ENOMEM);
7267}
7268
7269void sched_online_group(struct task_group *tg, struct task_group *parent)
7270{
7271 unsigned long flags;
7272
8ed36996 7273 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7274 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7275
7276 WARN_ON(!parent); /* root should already exist */
7277
7278 tg->parent = parent;
f473aa5e 7279 INIT_LIST_HEAD(&tg->children);
09f2724a 7280 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7281 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7282}
7283
9b5b7751 7284/* rcu callback to free various structures associated with a task group */
6f505b16 7285static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7286{
29f59db3 7287 /* now it should be safe to free those cfs_rqs */
6f505b16 7288 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7289}
7290
9b5b7751 7291/* Destroy runqueue etc associated with a task group */
4cf86d77 7292void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7293{
7294 /* wait for possible concurrent references to cfs_rqs complete */
7295 call_rcu(&tg->rcu, free_sched_group_rcu);
7296}
7297
7298void sched_offline_group(struct task_group *tg)
29f59db3 7299{
8ed36996 7300 unsigned long flags;
9b5b7751 7301 int i;
29f59db3 7302
3d4b47b4
PZ
7303 /* end participation in shares distribution */
7304 for_each_possible_cpu(i)
bccbe08a 7305 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7306
7307 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7308 list_del_rcu(&tg->list);
f473aa5e 7309 list_del_rcu(&tg->siblings);
8ed36996 7310 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7311}
7312
9b5b7751 7313/* change task's runqueue when it moves between groups.
3a252015
IM
7314 * The caller of this function should have put the task in its new group
7315 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7316 * reflect its new group.
9b5b7751
SV
7317 */
7318void sched_move_task(struct task_struct *tsk)
29f59db3 7319{
8323f26c 7320 struct task_group *tg;
29f59db3
SV
7321 int on_rq, running;
7322 unsigned long flags;
7323 struct rq *rq;
7324
7325 rq = task_rq_lock(tsk, &flags);
7326
051a1d1a 7327 running = task_current(rq, tsk);
fd2f4419 7328 on_rq = tsk->on_rq;
29f59db3 7329
0e1f3483 7330 if (on_rq)
29f59db3 7331 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7332 if (unlikely(running))
7333 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7334
073219e9 7335 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7336 lockdep_is_held(&tsk->sighand->siglock)),
7337 struct task_group, css);
7338 tg = autogroup_task_group(tsk, tg);
7339 tsk->sched_task_group = tg;
7340
810b3817 7341#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7342 if (tsk->sched_class->task_move_group)
7343 tsk->sched_class->task_move_group(tsk, on_rq);
7344 else
810b3817 7345#endif
b2b5ce02 7346 set_task_rq(tsk, task_cpu(tsk));
810b3817 7347
0e1f3483
HS
7348 if (unlikely(running))
7349 tsk->sched_class->set_curr_task(rq);
7350 if (on_rq)
371fd7e7 7351 enqueue_task(rq, tsk, 0);
29f59db3 7352
0122ec5b 7353 task_rq_unlock(rq, tsk, &flags);
29f59db3 7354}
7c941438 7355#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7356
a790de99
PT
7357#ifdef CONFIG_RT_GROUP_SCHED
7358/*
7359 * Ensure that the real time constraints are schedulable.
7360 */
7361static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7362
9a7e0b18
PZ
7363/* Must be called with tasklist_lock held */
7364static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7365{
9a7e0b18 7366 struct task_struct *g, *p;
b40b2e8e 7367
9a7e0b18 7368 do_each_thread(g, p) {
029632fb 7369 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7370 return 1;
7371 } while_each_thread(g, p);
b40b2e8e 7372
9a7e0b18
PZ
7373 return 0;
7374}
b40b2e8e 7375
9a7e0b18
PZ
7376struct rt_schedulable_data {
7377 struct task_group *tg;
7378 u64 rt_period;
7379 u64 rt_runtime;
7380};
b40b2e8e 7381
a790de99 7382static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7383{
7384 struct rt_schedulable_data *d = data;
7385 struct task_group *child;
7386 unsigned long total, sum = 0;
7387 u64 period, runtime;
b40b2e8e 7388
9a7e0b18
PZ
7389 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7390 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7391
9a7e0b18
PZ
7392 if (tg == d->tg) {
7393 period = d->rt_period;
7394 runtime = d->rt_runtime;
b40b2e8e 7395 }
b40b2e8e 7396
4653f803
PZ
7397 /*
7398 * Cannot have more runtime than the period.
7399 */
7400 if (runtime > period && runtime != RUNTIME_INF)
7401 return -EINVAL;
6f505b16 7402
4653f803
PZ
7403 /*
7404 * Ensure we don't starve existing RT tasks.
7405 */
9a7e0b18
PZ
7406 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7407 return -EBUSY;
6f505b16 7408
9a7e0b18 7409 total = to_ratio(period, runtime);
6f505b16 7410
4653f803
PZ
7411 /*
7412 * Nobody can have more than the global setting allows.
7413 */
7414 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7415 return -EINVAL;
6f505b16 7416
4653f803
PZ
7417 /*
7418 * The sum of our children's runtime should not exceed our own.
7419 */
9a7e0b18
PZ
7420 list_for_each_entry_rcu(child, &tg->children, siblings) {
7421 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7422 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7423
9a7e0b18
PZ
7424 if (child == d->tg) {
7425 period = d->rt_period;
7426 runtime = d->rt_runtime;
7427 }
6f505b16 7428
9a7e0b18 7429 sum += to_ratio(period, runtime);
9f0c1e56 7430 }
6f505b16 7431
9a7e0b18
PZ
7432 if (sum > total)
7433 return -EINVAL;
7434
7435 return 0;
6f505b16
PZ
7436}
7437
9a7e0b18 7438static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7439{
8277434e
PT
7440 int ret;
7441
9a7e0b18
PZ
7442 struct rt_schedulable_data data = {
7443 .tg = tg,
7444 .rt_period = period,
7445 .rt_runtime = runtime,
7446 };
7447
8277434e
PT
7448 rcu_read_lock();
7449 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7450 rcu_read_unlock();
7451
7452 return ret;
521f1a24
DG
7453}
7454
ab84d31e 7455static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7456 u64 rt_period, u64 rt_runtime)
6f505b16 7457{
ac086bc2 7458 int i, err = 0;
9f0c1e56 7459
9f0c1e56 7460 mutex_lock(&rt_constraints_mutex);
521f1a24 7461 read_lock(&tasklist_lock);
9a7e0b18
PZ
7462 err = __rt_schedulable(tg, rt_period, rt_runtime);
7463 if (err)
9f0c1e56 7464 goto unlock;
ac086bc2 7465
0986b11b 7466 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7467 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7468 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7469
7470 for_each_possible_cpu(i) {
7471 struct rt_rq *rt_rq = tg->rt_rq[i];
7472
0986b11b 7473 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7474 rt_rq->rt_runtime = rt_runtime;
0986b11b 7475 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7476 }
0986b11b 7477 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7478unlock:
521f1a24 7479 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7480 mutex_unlock(&rt_constraints_mutex);
7481
7482 return err;
6f505b16
PZ
7483}
7484
25cc7da7 7485static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7486{
7487 u64 rt_runtime, rt_period;
7488
7489 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7490 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7491 if (rt_runtime_us < 0)
7492 rt_runtime = RUNTIME_INF;
7493
ab84d31e 7494 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7495}
7496
25cc7da7 7497static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7498{
7499 u64 rt_runtime_us;
7500
d0b27fa7 7501 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7502 return -1;
7503
d0b27fa7 7504 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7505 do_div(rt_runtime_us, NSEC_PER_USEC);
7506 return rt_runtime_us;
7507}
d0b27fa7 7508
25cc7da7 7509static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7510{
7511 u64 rt_runtime, rt_period;
7512
7513 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7514 rt_runtime = tg->rt_bandwidth.rt_runtime;
7515
619b0488
R
7516 if (rt_period == 0)
7517 return -EINVAL;
7518
ab84d31e 7519 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7520}
7521
25cc7da7 7522static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7523{
7524 u64 rt_period_us;
7525
7526 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7527 do_div(rt_period_us, NSEC_PER_USEC);
7528 return rt_period_us;
7529}
332ac17e 7530#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7531
332ac17e 7532#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7533static int sched_rt_global_constraints(void)
7534{
7535 int ret = 0;
7536
7537 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7538 read_lock(&tasklist_lock);
4653f803 7539 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7540 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7541 mutex_unlock(&rt_constraints_mutex);
7542
7543 return ret;
7544}
54e99124 7545
25cc7da7 7546static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7547{
7548 /* Don't accept realtime tasks when there is no way for them to run */
7549 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7550 return 0;
7551
7552 return 1;
7553}
7554
6d6bc0ad 7555#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7556static int sched_rt_global_constraints(void)
7557{
ac086bc2 7558 unsigned long flags;
332ac17e 7559 int i, ret = 0;
ec5d4989 7560
0986b11b 7561 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7562 for_each_possible_cpu(i) {
7563 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7564
0986b11b 7565 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7566 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7567 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7568 }
0986b11b 7569 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7570
332ac17e 7571 return ret;
d0b27fa7 7572}
6d6bc0ad 7573#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7574
332ac17e
DF
7575static int sched_dl_global_constraints(void)
7576{
1724813d
PZ
7577 u64 runtime = global_rt_runtime();
7578 u64 period = global_rt_period();
332ac17e 7579 u64 new_bw = to_ratio(period, runtime);
1724813d 7580 int cpu, ret = 0;
49516342 7581 unsigned long flags;
332ac17e
DF
7582
7583 /*
7584 * Here we want to check the bandwidth not being set to some
7585 * value smaller than the currently allocated bandwidth in
7586 * any of the root_domains.
7587 *
7588 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7589 * cycling on root_domains... Discussion on different/better
7590 * solutions is welcome!
7591 */
1724813d
PZ
7592 for_each_possible_cpu(cpu) {
7593 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7594
49516342 7595 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7596 if (new_bw < dl_b->total_bw)
7597 ret = -EBUSY;
49516342 7598 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7599
7600 if (ret)
7601 break;
332ac17e
DF
7602 }
7603
1724813d 7604 return ret;
332ac17e
DF
7605}
7606
1724813d 7607static void sched_dl_do_global(void)
ce0dbbbb 7608{
1724813d
PZ
7609 u64 new_bw = -1;
7610 int cpu;
49516342 7611 unsigned long flags;
ce0dbbbb 7612
1724813d
PZ
7613 def_dl_bandwidth.dl_period = global_rt_period();
7614 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7615
7616 if (global_rt_runtime() != RUNTIME_INF)
7617 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7618
7619 /*
7620 * FIXME: As above...
7621 */
7622 for_each_possible_cpu(cpu) {
7623 struct dl_bw *dl_b = dl_bw_of(cpu);
7624
49516342 7625 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7626 dl_b->bw = new_bw;
49516342 7627 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7628 }
1724813d
PZ
7629}
7630
7631static int sched_rt_global_validate(void)
7632{
7633 if (sysctl_sched_rt_period <= 0)
7634 return -EINVAL;
7635
e9e7cb38
JL
7636 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7637 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7638 return -EINVAL;
7639
7640 return 0;
7641}
7642
7643static void sched_rt_do_global(void)
7644{
7645 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7646 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7647}
7648
d0b27fa7 7649int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7650 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7651 loff_t *ppos)
7652{
d0b27fa7
PZ
7653 int old_period, old_runtime;
7654 static DEFINE_MUTEX(mutex);
1724813d 7655 int ret;
d0b27fa7
PZ
7656
7657 mutex_lock(&mutex);
7658 old_period = sysctl_sched_rt_period;
7659 old_runtime = sysctl_sched_rt_runtime;
7660
8d65af78 7661 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7662
7663 if (!ret && write) {
1724813d
PZ
7664 ret = sched_rt_global_validate();
7665 if (ret)
7666 goto undo;
7667
d0b27fa7 7668 ret = sched_rt_global_constraints();
1724813d
PZ
7669 if (ret)
7670 goto undo;
7671
7672 ret = sched_dl_global_constraints();
7673 if (ret)
7674 goto undo;
7675
7676 sched_rt_do_global();
7677 sched_dl_do_global();
7678 }
7679 if (0) {
7680undo:
7681 sysctl_sched_rt_period = old_period;
7682 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7683 }
7684 mutex_unlock(&mutex);
7685
7686 return ret;
7687}
68318b8e 7688
1724813d 7689int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7690 void __user *buffer, size_t *lenp,
7691 loff_t *ppos)
7692{
7693 int ret;
332ac17e 7694 static DEFINE_MUTEX(mutex);
332ac17e
DF
7695
7696 mutex_lock(&mutex);
332ac17e 7697 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7698 /* make sure that internally we keep jiffies */
7699 /* also, writing zero resets timeslice to default */
332ac17e 7700 if (!ret && write) {
1724813d
PZ
7701 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7702 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7703 }
7704 mutex_unlock(&mutex);
332ac17e
DF
7705 return ret;
7706}
7707
052f1dc7 7708#ifdef CONFIG_CGROUP_SCHED
68318b8e 7709
a7c6d554 7710static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7711{
a7c6d554 7712 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7713}
7714
eb95419b
TH
7715static struct cgroup_subsys_state *
7716cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7717{
eb95419b
TH
7718 struct task_group *parent = css_tg(parent_css);
7719 struct task_group *tg;
68318b8e 7720
eb95419b 7721 if (!parent) {
68318b8e 7722 /* This is early initialization for the top cgroup */
07e06b01 7723 return &root_task_group.css;
68318b8e
SV
7724 }
7725
ec7dc8ac 7726 tg = sched_create_group(parent);
68318b8e
SV
7727 if (IS_ERR(tg))
7728 return ERR_PTR(-ENOMEM);
7729
68318b8e
SV
7730 return &tg->css;
7731}
7732
eb95419b 7733static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7734{
eb95419b 7735 struct task_group *tg = css_tg(css);
5c9d535b 7736 struct task_group *parent = css_tg(css->parent);
ace783b9 7737
63876986
TH
7738 if (parent)
7739 sched_online_group(tg, parent);
ace783b9
LZ
7740 return 0;
7741}
7742
eb95419b 7743static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7744{
eb95419b 7745 struct task_group *tg = css_tg(css);
68318b8e
SV
7746
7747 sched_destroy_group(tg);
7748}
7749
eb95419b 7750static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7751{
eb95419b 7752 struct task_group *tg = css_tg(css);
ace783b9
LZ
7753
7754 sched_offline_group(tg);
7755}
7756
eb95419b 7757static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7758 struct cgroup_taskset *tset)
68318b8e 7759{
bb9d97b6
TH
7760 struct task_struct *task;
7761
924f0d9a 7762 cgroup_taskset_for_each(task, tset) {
b68aa230 7763#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7764 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7765 return -EINVAL;
b68aa230 7766#else
bb9d97b6
TH
7767 /* We don't support RT-tasks being in separate groups */
7768 if (task->sched_class != &fair_sched_class)
7769 return -EINVAL;
b68aa230 7770#endif
bb9d97b6 7771 }
be367d09
BB
7772 return 0;
7773}
68318b8e 7774
eb95419b 7775static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7776 struct cgroup_taskset *tset)
68318b8e 7777{
bb9d97b6
TH
7778 struct task_struct *task;
7779
924f0d9a 7780 cgroup_taskset_for_each(task, tset)
bb9d97b6 7781 sched_move_task(task);
68318b8e
SV
7782}
7783
eb95419b
TH
7784static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7785 struct cgroup_subsys_state *old_css,
7786 struct task_struct *task)
068c5cc5
PZ
7787{
7788 /*
7789 * cgroup_exit() is called in the copy_process() failure path.
7790 * Ignore this case since the task hasn't ran yet, this avoids
7791 * trying to poke a half freed task state from generic code.
7792 */
7793 if (!(task->flags & PF_EXITING))
7794 return;
7795
7796 sched_move_task(task);
7797}
7798
052f1dc7 7799#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7800static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7801 struct cftype *cftype, u64 shareval)
68318b8e 7802{
182446d0 7803 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7804}
7805
182446d0
TH
7806static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7807 struct cftype *cft)
68318b8e 7808{
182446d0 7809 struct task_group *tg = css_tg(css);
68318b8e 7810
c8b28116 7811 return (u64) scale_load_down(tg->shares);
68318b8e 7812}
ab84d31e
PT
7813
7814#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7815static DEFINE_MUTEX(cfs_constraints_mutex);
7816
ab84d31e
PT
7817const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7818const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7819
a790de99
PT
7820static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7821
ab84d31e
PT
7822static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7823{
56f570e5 7824 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7825 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7826
7827 if (tg == &root_task_group)
7828 return -EINVAL;
7829
7830 /*
7831 * Ensure we have at some amount of bandwidth every period. This is
7832 * to prevent reaching a state of large arrears when throttled via
7833 * entity_tick() resulting in prolonged exit starvation.
7834 */
7835 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7836 return -EINVAL;
7837
7838 /*
7839 * Likewise, bound things on the otherside by preventing insane quota
7840 * periods. This also allows us to normalize in computing quota
7841 * feasibility.
7842 */
7843 if (period > max_cfs_quota_period)
7844 return -EINVAL;
7845
0e59bdae
KT
7846 /*
7847 * Prevent race between setting of cfs_rq->runtime_enabled and
7848 * unthrottle_offline_cfs_rqs().
7849 */
7850 get_online_cpus();
a790de99
PT
7851 mutex_lock(&cfs_constraints_mutex);
7852 ret = __cfs_schedulable(tg, period, quota);
7853 if (ret)
7854 goto out_unlock;
7855
58088ad0 7856 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7857 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7858 /*
7859 * If we need to toggle cfs_bandwidth_used, off->on must occur
7860 * before making related changes, and on->off must occur afterwards
7861 */
7862 if (runtime_enabled && !runtime_was_enabled)
7863 cfs_bandwidth_usage_inc();
ab84d31e
PT
7864 raw_spin_lock_irq(&cfs_b->lock);
7865 cfs_b->period = ns_to_ktime(period);
7866 cfs_b->quota = quota;
58088ad0 7867
a9cf55b2 7868 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7869 /* restart the period timer (if active) to handle new period expiry */
7870 if (runtime_enabled && cfs_b->timer_active) {
7871 /* force a reprogram */
09dc4ab0 7872 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7873 }
ab84d31e
PT
7874 raw_spin_unlock_irq(&cfs_b->lock);
7875
0e59bdae 7876 for_each_online_cpu(i) {
ab84d31e 7877 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7878 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7879
7880 raw_spin_lock_irq(&rq->lock);
58088ad0 7881 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7882 cfs_rq->runtime_remaining = 0;
671fd9da 7883
029632fb 7884 if (cfs_rq->throttled)
671fd9da 7885 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7886 raw_spin_unlock_irq(&rq->lock);
7887 }
1ee14e6c
BS
7888 if (runtime_was_enabled && !runtime_enabled)
7889 cfs_bandwidth_usage_dec();
a790de99
PT
7890out_unlock:
7891 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7892 put_online_cpus();
ab84d31e 7893
a790de99 7894 return ret;
ab84d31e
PT
7895}
7896
7897int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7898{
7899 u64 quota, period;
7900
029632fb 7901 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7902 if (cfs_quota_us < 0)
7903 quota = RUNTIME_INF;
7904 else
7905 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7906
7907 return tg_set_cfs_bandwidth(tg, period, quota);
7908}
7909
7910long tg_get_cfs_quota(struct task_group *tg)
7911{
7912 u64 quota_us;
7913
029632fb 7914 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7915 return -1;
7916
029632fb 7917 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7918 do_div(quota_us, NSEC_PER_USEC);
7919
7920 return quota_us;
7921}
7922
7923int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7924{
7925 u64 quota, period;
7926
7927 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7928 quota = tg->cfs_bandwidth.quota;
ab84d31e 7929
ab84d31e
PT
7930 return tg_set_cfs_bandwidth(tg, period, quota);
7931}
7932
7933long tg_get_cfs_period(struct task_group *tg)
7934{
7935 u64 cfs_period_us;
7936
029632fb 7937 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7938 do_div(cfs_period_us, NSEC_PER_USEC);
7939
7940 return cfs_period_us;
7941}
7942
182446d0
TH
7943static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7944 struct cftype *cft)
ab84d31e 7945{
182446d0 7946 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7947}
7948
182446d0
TH
7949static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7950 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7951{
182446d0 7952 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7953}
7954
182446d0
TH
7955static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7956 struct cftype *cft)
ab84d31e 7957{
182446d0 7958 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7959}
7960
182446d0
TH
7961static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7962 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7963{
182446d0 7964 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7965}
7966
a790de99
PT
7967struct cfs_schedulable_data {
7968 struct task_group *tg;
7969 u64 period, quota;
7970};
7971
7972/*
7973 * normalize group quota/period to be quota/max_period
7974 * note: units are usecs
7975 */
7976static u64 normalize_cfs_quota(struct task_group *tg,
7977 struct cfs_schedulable_data *d)
7978{
7979 u64 quota, period;
7980
7981 if (tg == d->tg) {
7982 period = d->period;
7983 quota = d->quota;
7984 } else {
7985 period = tg_get_cfs_period(tg);
7986 quota = tg_get_cfs_quota(tg);
7987 }
7988
7989 /* note: these should typically be equivalent */
7990 if (quota == RUNTIME_INF || quota == -1)
7991 return RUNTIME_INF;
7992
7993 return to_ratio(period, quota);
7994}
7995
7996static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7997{
7998 struct cfs_schedulable_data *d = data;
029632fb 7999 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8000 s64 quota = 0, parent_quota = -1;
8001
8002 if (!tg->parent) {
8003 quota = RUNTIME_INF;
8004 } else {
029632fb 8005 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8006
8007 quota = normalize_cfs_quota(tg, d);
8008 parent_quota = parent_b->hierarchal_quota;
8009
8010 /*
8011 * ensure max(child_quota) <= parent_quota, inherit when no
8012 * limit is set
8013 */
8014 if (quota == RUNTIME_INF)
8015 quota = parent_quota;
8016 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8017 return -EINVAL;
8018 }
8019 cfs_b->hierarchal_quota = quota;
8020
8021 return 0;
8022}
8023
8024static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8025{
8277434e 8026 int ret;
a790de99
PT
8027 struct cfs_schedulable_data data = {
8028 .tg = tg,
8029 .period = period,
8030 .quota = quota,
8031 };
8032
8033 if (quota != RUNTIME_INF) {
8034 do_div(data.period, NSEC_PER_USEC);
8035 do_div(data.quota, NSEC_PER_USEC);
8036 }
8037
8277434e
PT
8038 rcu_read_lock();
8039 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8040 rcu_read_unlock();
8041
8042 return ret;
a790de99 8043}
e8da1b18 8044
2da8ca82 8045static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8046{
2da8ca82 8047 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8048 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8049
44ffc75b
TH
8050 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8051 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8052 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8053
8054 return 0;
8055}
ab84d31e 8056#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8057#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8058
052f1dc7 8059#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8060static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8061 struct cftype *cft, s64 val)
6f505b16 8062{
182446d0 8063 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8064}
8065
182446d0
TH
8066static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8067 struct cftype *cft)
6f505b16 8068{
182446d0 8069 return sched_group_rt_runtime(css_tg(css));
6f505b16 8070}
d0b27fa7 8071
182446d0
TH
8072static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8073 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8074{
182446d0 8075 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8076}
8077
182446d0
TH
8078static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8079 struct cftype *cft)
d0b27fa7 8080{
182446d0 8081 return sched_group_rt_period(css_tg(css));
d0b27fa7 8082}
6d6bc0ad 8083#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8084
fe5c7cc2 8085static struct cftype cpu_files[] = {
052f1dc7 8086#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8087 {
8088 .name = "shares",
f4c753b7
PM
8089 .read_u64 = cpu_shares_read_u64,
8090 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8091 },
052f1dc7 8092#endif
ab84d31e
PT
8093#ifdef CONFIG_CFS_BANDWIDTH
8094 {
8095 .name = "cfs_quota_us",
8096 .read_s64 = cpu_cfs_quota_read_s64,
8097 .write_s64 = cpu_cfs_quota_write_s64,
8098 },
8099 {
8100 .name = "cfs_period_us",
8101 .read_u64 = cpu_cfs_period_read_u64,
8102 .write_u64 = cpu_cfs_period_write_u64,
8103 },
e8da1b18
NR
8104 {
8105 .name = "stat",
2da8ca82 8106 .seq_show = cpu_stats_show,
e8da1b18 8107 },
ab84d31e 8108#endif
052f1dc7 8109#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8110 {
9f0c1e56 8111 .name = "rt_runtime_us",
06ecb27c
PM
8112 .read_s64 = cpu_rt_runtime_read,
8113 .write_s64 = cpu_rt_runtime_write,
6f505b16 8114 },
d0b27fa7
PZ
8115 {
8116 .name = "rt_period_us",
f4c753b7
PM
8117 .read_u64 = cpu_rt_period_read_uint,
8118 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8119 },
052f1dc7 8120#endif
4baf6e33 8121 { } /* terminate */
68318b8e
SV
8122};
8123
073219e9 8124struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8125 .css_alloc = cpu_cgroup_css_alloc,
8126 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8127 .css_online = cpu_cgroup_css_online,
8128 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8129 .can_attach = cpu_cgroup_can_attach,
8130 .attach = cpu_cgroup_attach,
068c5cc5 8131 .exit = cpu_cgroup_exit,
5577964e 8132 .legacy_cftypes = cpu_files,
68318b8e
SV
8133 .early_init = 1,
8134};
8135
052f1dc7 8136#endif /* CONFIG_CGROUP_SCHED */
d842de87 8137
b637a328
PM
8138void dump_cpu_task(int cpu)
8139{
8140 pr_info("Task dump for CPU %d:\n", cpu);
8141 sched_show_task(cpu_curr(cpu));
8142}
This page took 2.546513 seconds and 5 git commands to generate.