Linux 4.4-rc1
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c 48/* Primary plane formats for gen <= 3 */
568db4f2 49static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
465c120c 52 DRM_FORMAT_XRGB1555,
67fe7dc5 53 DRM_FORMAT_XRGB8888,
465c120c
MR
54};
55
56/* Primary plane formats for gen >= 4 */
568db4f2 57static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64};
65
66static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
465c120c 70 DRM_FORMAT_XBGR8888,
67fe7dc5 71 DRM_FORMAT_ARGB8888,
465c120c
MR
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
465c120c 74 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
75 DRM_FORMAT_YUYV,
76 DRM_FORMAT_YVYU,
77 DRM_FORMAT_UYVY,
78 DRM_FORMAT_VYUY,
465c120c
MR
79};
80
3d7d6510
MR
81/* Cursor formats */
82static const uint32_t intel_cursor_formats[] = {
83 DRM_FORMAT_ARGB8888,
84};
85
6b383a7f 86static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 87
f1f644dc 88static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 89 struct intel_crtc_state *pipe_config);
18442d08 90static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 91 struct intel_crtc_state *pipe_config);
f1f644dc 92
eb1bfe80
JB
93static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
5b18e57c
DV
97static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 99static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
29407aab 102static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
103static void haswell_set_pipeconf(struct drm_crtc *crtc);
104static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 105static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 106 const struct intel_crtc_state *pipe_config);
d288f65f 107static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 108 const struct intel_crtc_state *pipe_config);
613d2b27
ML
109static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
111static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
113static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
bfd16b2a
ML
115static void skylake_pfit_enable(struct intel_crtc *crtc);
116static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 118static void intel_modeset_setup_hw_state(struct drm_device *dev);
e7457a9a 119
79e53945 120typedef struct {
0206e353 121 int min, max;
79e53945
JB
122} intel_range_t;
123
124typedef struct {
0206e353
AJ
125 int dot_limit;
126 int p2_slow, p2_fast;
79e53945
JB
127} intel_p2_t;
128
d4906093
ML
129typedef struct intel_limit intel_limit_t;
130struct intel_limit {
0206e353
AJ
131 intel_range_t dot, vco, n, m, m1, m2, p, p1;
132 intel_p2_t p2;
d4906093 133};
79e53945 134
bfa7df01
VS
135/* returns HPLL frequency in kHz */
136static int valleyview_get_vco(struct drm_i915_private *dev_priv)
137{
138 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
139
140 /* Obtain SKU information */
141 mutex_lock(&dev_priv->sb_lock);
142 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
143 CCK_FUSE_HPLL_FREQ_MASK;
144 mutex_unlock(&dev_priv->sb_lock);
145
146 return vco_freq[hpll_freq] * 1000;
147}
148
149static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
150 const char *name, u32 reg)
151{
152 u32 val;
153 int divider;
154
155 if (dev_priv->hpll_freq == 0)
156 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
157
158 mutex_lock(&dev_priv->sb_lock);
159 val = vlv_cck_read(dev_priv, reg);
160 mutex_unlock(&dev_priv->sb_lock);
161
162 divider = val & CCK_FREQUENCY_VALUES;
163
164 WARN((val & CCK_FREQUENCY_STATUS) !=
165 (divider << CCK_FREQUENCY_STATUS_SHIFT),
166 "%s change in progress\n", name);
167
168 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
169}
170
d2acd215
DV
171int
172intel_pch_rawclk(struct drm_device *dev)
173{
174 struct drm_i915_private *dev_priv = dev->dev_private;
175
176 WARN_ON(!HAS_PCH_SPLIT(dev));
177
178 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
179}
180
79e50a4f
JN
181/* hrawclock is 1/4 the FSB frequency */
182int intel_hrawclk(struct drm_device *dev)
183{
184 struct drm_i915_private *dev_priv = dev->dev_private;
185 uint32_t clkcfg;
186
187 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188 if (IS_VALLEYVIEW(dev))
189 return 200;
190
191 clkcfg = I915_READ(CLKCFG);
192 switch (clkcfg & CLKCFG_FSB_MASK) {
193 case CLKCFG_FSB_400:
194 return 100;
195 case CLKCFG_FSB_533:
196 return 133;
197 case CLKCFG_FSB_667:
198 return 166;
199 case CLKCFG_FSB_800:
200 return 200;
201 case CLKCFG_FSB_1067:
202 return 266;
203 case CLKCFG_FSB_1333:
204 return 333;
205 /* these two are just a guess; one of them might be right */
206 case CLKCFG_FSB_1600:
207 case CLKCFG_FSB_1600_ALT:
208 return 400;
209 default:
210 return 133;
211 }
212}
213
bfa7df01
VS
214static void intel_update_czclk(struct drm_i915_private *dev_priv)
215{
216 if (!IS_VALLEYVIEW(dev_priv))
217 return;
218
219 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
220 CCK_CZ_CLOCK_CONTROL);
221
222 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
223}
224
021357ac
CW
225static inline u32 /* units of 100MHz */
226intel_fdi_link_freq(struct drm_device *dev)
227{
8b99e68c
CW
228 if (IS_GEN5(dev)) {
229 struct drm_i915_private *dev_priv = dev->dev_private;
230 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
231 } else
232 return 27;
021357ac
CW
233}
234
5d536e28 235static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 236 .dot = { .min = 25000, .max = 350000 },
9c333719 237 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 238 .n = { .min = 2, .max = 16 },
0206e353
AJ
239 .m = { .min = 96, .max = 140 },
240 .m1 = { .min = 18, .max = 26 },
241 .m2 = { .min = 6, .max = 16 },
242 .p = { .min = 4, .max = 128 },
243 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
244 .p2 = { .dot_limit = 165000,
245 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
246};
247
5d536e28
DV
248static const intel_limit_t intel_limits_i8xx_dvo = {
249 .dot = { .min = 25000, .max = 350000 },
9c333719 250 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 251 .n = { .min = 2, .max = 16 },
5d536e28
DV
252 .m = { .min = 96, .max = 140 },
253 .m1 = { .min = 18, .max = 26 },
254 .m2 = { .min = 6, .max = 16 },
255 .p = { .min = 4, .max = 128 },
256 .p1 = { .min = 2, .max = 33 },
257 .p2 = { .dot_limit = 165000,
258 .p2_slow = 4, .p2_fast = 4 },
259};
260
e4b36699 261static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 262 .dot = { .min = 25000, .max = 350000 },
9c333719 263 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 264 .n = { .min = 2, .max = 16 },
0206e353
AJ
265 .m = { .min = 96, .max = 140 },
266 .m1 = { .min = 18, .max = 26 },
267 .m2 = { .min = 6, .max = 16 },
268 .p = { .min = 4, .max = 128 },
269 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
270 .p2 = { .dot_limit = 165000,
271 .p2_slow = 14, .p2_fast = 7 },
e4b36699 272};
273e27ca 273
e4b36699 274static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
275 .dot = { .min = 20000, .max = 400000 },
276 .vco = { .min = 1400000, .max = 2800000 },
277 .n = { .min = 1, .max = 6 },
278 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
279 .m1 = { .min = 8, .max = 18 },
280 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
285};
286
287static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1400000, .max = 2800000 },
290 .n = { .min = 1, .max = 6 },
291 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
292 .m1 = { .min = 8, .max = 18 },
293 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
294 .p = { .min = 7, .max = 98 },
295 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
298};
299
273e27ca 300
e4b36699 301static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
302 .dot = { .min = 25000, .max = 270000 },
303 .vco = { .min = 1750000, .max = 3500000},
304 .n = { .min = 1, .max = 4 },
305 .m = { .min = 104, .max = 138 },
306 .m1 = { .min = 17, .max = 23 },
307 .m2 = { .min = 5, .max = 11 },
308 .p = { .min = 10, .max = 30 },
309 .p1 = { .min = 1, .max = 3},
310 .p2 = { .dot_limit = 270000,
311 .p2_slow = 10,
312 .p2_fast = 10
044c7c41 313 },
e4b36699
KP
314};
315
316static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
317 .dot = { .min = 22000, .max = 400000 },
318 .vco = { .min = 1750000, .max = 3500000},
319 .n = { .min = 1, .max = 4 },
320 .m = { .min = 104, .max = 138 },
321 .m1 = { .min = 16, .max = 23 },
322 .m2 = { .min = 5, .max = 11 },
323 .p = { .min = 5, .max = 80 },
324 .p1 = { .min = 1, .max = 8},
325 .p2 = { .dot_limit = 165000,
326 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
327};
328
329static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
330 .dot = { .min = 20000, .max = 115000 },
331 .vco = { .min = 1750000, .max = 3500000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 28, .max = 112 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 0,
339 .p2_slow = 14, .p2_fast = 14
044c7c41 340 },
e4b36699
KP
341};
342
343static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
344 .dot = { .min = 80000, .max = 224000 },
345 .vco = { .min = 1750000, .max = 3500000 },
346 .n = { .min = 1, .max = 3 },
347 .m = { .min = 104, .max = 138 },
348 .m1 = { .min = 17, .max = 23 },
349 .m2 = { .min = 5, .max = 11 },
350 .p = { .min = 14, .max = 42 },
351 .p1 = { .min = 2, .max = 6 },
352 .p2 = { .dot_limit = 0,
353 .p2_slow = 7, .p2_fast = 7
044c7c41 354 },
e4b36699
KP
355};
356
f2b115e6 357static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
358 .dot = { .min = 20000, .max = 400000},
359 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 360 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
361 .n = { .min = 3, .max = 6 },
362 .m = { .min = 2, .max = 256 },
273e27ca 363 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
364 .m1 = { .min = 0, .max = 0 },
365 .m2 = { .min = 0, .max = 254 },
366 .p = { .min = 5, .max = 80 },
367 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
368 .p2 = { .dot_limit = 200000,
369 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
370};
371
f2b115e6 372static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
373 .dot = { .min = 20000, .max = 400000 },
374 .vco = { .min = 1700000, .max = 3500000 },
375 .n = { .min = 3, .max = 6 },
376 .m = { .min = 2, .max = 256 },
377 .m1 = { .min = 0, .max = 0 },
378 .m2 = { .min = 0, .max = 254 },
379 .p = { .min = 7, .max = 112 },
380 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
381 .p2 = { .dot_limit = 112000,
382 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
383};
384
273e27ca
EA
385/* Ironlake / Sandybridge
386 *
387 * We calculate clock using (register_value + 2) for N/M1/M2, so here
388 * the range value for them is (actual_value - 2).
389 */
b91ad0ec 390static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
391 .dot = { .min = 25000, .max = 350000 },
392 .vco = { .min = 1760000, .max = 3510000 },
393 .n = { .min = 1, .max = 5 },
394 .m = { .min = 79, .max = 127 },
395 .m1 = { .min = 12, .max = 22 },
396 .m2 = { .min = 5, .max = 9 },
397 .p = { .min = 5, .max = 80 },
398 .p1 = { .min = 1, .max = 8 },
399 .p2 = { .dot_limit = 225000,
400 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
401};
402
b91ad0ec 403static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
404 .dot = { .min = 25000, .max = 350000 },
405 .vco = { .min = 1760000, .max = 3510000 },
406 .n = { .min = 1, .max = 3 },
407 .m = { .min = 79, .max = 118 },
408 .m1 = { .min = 12, .max = 22 },
409 .m2 = { .min = 5, .max = 9 },
410 .p = { .min = 28, .max = 112 },
411 .p1 = { .min = 2, .max = 8 },
412 .p2 = { .dot_limit = 225000,
413 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
414};
415
416static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
417 .dot = { .min = 25000, .max = 350000 },
418 .vco = { .min = 1760000, .max = 3510000 },
419 .n = { .min = 1, .max = 3 },
420 .m = { .min = 79, .max = 127 },
421 .m1 = { .min = 12, .max = 22 },
422 .m2 = { .min = 5, .max = 9 },
423 .p = { .min = 14, .max = 56 },
424 .p1 = { .min = 2, .max = 8 },
425 .p2 = { .dot_limit = 225000,
426 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
427};
428
273e27ca 429/* LVDS 100mhz refclk limits. */
b91ad0ec 430static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
431 .dot = { .min = 25000, .max = 350000 },
432 .vco = { .min = 1760000, .max = 3510000 },
433 .n = { .min = 1, .max = 2 },
434 .m = { .min = 79, .max = 126 },
435 .m1 = { .min = 12, .max = 22 },
436 .m2 = { .min = 5, .max = 9 },
437 .p = { .min = 28, .max = 112 },
0206e353 438 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
439 .p2 = { .dot_limit = 225000,
440 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
441};
442
443static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
444 .dot = { .min = 25000, .max = 350000 },
445 .vco = { .min = 1760000, .max = 3510000 },
446 .n = { .min = 1, .max = 3 },
447 .m = { .min = 79, .max = 126 },
448 .m1 = { .min = 12, .max = 22 },
449 .m2 = { .min = 5, .max = 9 },
450 .p = { .min = 14, .max = 42 },
0206e353 451 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
452 .p2 = { .dot_limit = 225000,
453 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
454};
455
dc730512 456static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
457 /*
458 * These are the data rate limits (measured in fast clocks)
459 * since those are the strictest limits we have. The fast
460 * clock and actual rate limits are more relaxed, so checking
461 * them would make no difference.
462 */
463 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 464 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 465 .n = { .min = 1, .max = 7 },
a0c4da24
JB
466 .m1 = { .min = 2, .max = 3 },
467 .m2 = { .min = 11, .max = 156 },
b99ab663 468 .p1 = { .min = 2, .max = 3 },
5fdc9c49 469 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
470};
471
ef9348c8
CML
472static const intel_limit_t intel_limits_chv = {
473 /*
474 * These are the data rate limits (measured in fast clocks)
475 * since those are the strictest limits we have. The fast
476 * clock and actual rate limits are more relaxed, so checking
477 * them would make no difference.
478 */
479 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 480 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
481 .n = { .min = 1, .max = 1 },
482 .m1 = { .min = 2, .max = 2 },
483 .m2 = { .min = 24 << 22, .max = 175 << 22 },
484 .p1 = { .min = 2, .max = 4 },
485 .p2 = { .p2_slow = 1, .p2_fast = 14 },
486};
487
5ab7b0b7
ID
488static const intel_limit_t intel_limits_bxt = {
489 /* FIXME: find real dot limits */
490 .dot = { .min = 0, .max = INT_MAX },
e6292556 491 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
492 .n = { .min = 1, .max = 1 },
493 .m1 = { .min = 2, .max = 2 },
494 /* FIXME: find real m2 limits */
495 .m2 = { .min = 2 << 22, .max = 255 << 22 },
496 .p1 = { .min = 2, .max = 4 },
497 .p2 = { .p2_slow = 1, .p2_fast = 20 },
498};
499
cdba954e
ACO
500static bool
501needs_modeset(struct drm_crtc_state *state)
502{
fc596660 503 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
504}
505
e0638cdf
PZ
506/**
507 * Returns whether any output on the specified pipe is of the specified type
508 */
4093561b 509bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 510{
409ee761 511 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
512 struct intel_encoder *encoder;
513
409ee761 514 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
515 if (encoder->type == type)
516 return true;
517
518 return false;
519}
520
d0737e1d
ACO
521/**
522 * Returns whether any output on the specified pipe will have the specified
523 * type after a staged modeset is complete, i.e., the same as
524 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
525 * encoder->crtc.
526 */
a93e255f
ACO
527static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
528 int type)
d0737e1d 529{
a93e255f 530 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 531 struct drm_connector *connector;
a93e255f 532 struct drm_connector_state *connector_state;
d0737e1d 533 struct intel_encoder *encoder;
a93e255f
ACO
534 int i, num_connectors = 0;
535
da3ced29 536 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
537 if (connector_state->crtc != crtc_state->base.crtc)
538 continue;
539
540 num_connectors++;
d0737e1d 541
a93e255f
ACO
542 encoder = to_intel_encoder(connector_state->best_encoder);
543 if (encoder->type == type)
d0737e1d 544 return true;
a93e255f
ACO
545 }
546
547 WARN_ON(num_connectors == 0);
d0737e1d
ACO
548
549 return false;
550}
551
a93e255f
ACO
552static const intel_limit_t *
553intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 554{
a93e255f 555 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 556 const intel_limit_t *limit;
b91ad0ec 557
a93e255f 558 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 559 if (intel_is_dual_link_lvds(dev)) {
1b894b59 560 if (refclk == 100000)
b91ad0ec
ZW
561 limit = &intel_limits_ironlake_dual_lvds_100m;
562 else
563 limit = &intel_limits_ironlake_dual_lvds;
564 } else {
1b894b59 565 if (refclk == 100000)
b91ad0ec
ZW
566 limit = &intel_limits_ironlake_single_lvds_100m;
567 else
568 limit = &intel_limits_ironlake_single_lvds;
569 }
c6bb3538 570 } else
b91ad0ec 571 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
572
573 return limit;
574}
575
a93e255f
ACO
576static const intel_limit_t *
577intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 578{
a93e255f 579 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
580 const intel_limit_t *limit;
581
a93e255f 582 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 583 if (intel_is_dual_link_lvds(dev))
e4b36699 584 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 585 else
e4b36699 586 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
587 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
588 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 589 limit = &intel_limits_g4x_hdmi;
a93e255f 590 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 591 limit = &intel_limits_g4x_sdvo;
044c7c41 592 } else /* The option is for other outputs */
e4b36699 593 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
594
595 return limit;
596}
597
a93e255f
ACO
598static const intel_limit_t *
599intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 600{
a93e255f 601 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
602 const intel_limit_t *limit;
603
5ab7b0b7
ID
604 if (IS_BROXTON(dev))
605 limit = &intel_limits_bxt;
606 else if (HAS_PCH_SPLIT(dev))
a93e255f 607 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 608 else if (IS_G4X(dev)) {
a93e255f 609 limit = intel_g4x_limit(crtc_state);
f2b115e6 610 } else if (IS_PINEVIEW(dev)) {
a93e255f 611 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 612 limit = &intel_limits_pineview_lvds;
2177832f 613 else
f2b115e6 614 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
615 } else if (IS_CHERRYVIEW(dev)) {
616 limit = &intel_limits_chv;
a0c4da24 617 } else if (IS_VALLEYVIEW(dev)) {
dc730512 618 limit = &intel_limits_vlv;
a6c45cf0 619 } else if (!IS_GEN2(dev)) {
a93e255f 620 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
621 limit = &intel_limits_i9xx_lvds;
622 else
623 limit = &intel_limits_i9xx_sdvo;
79e53945 624 } else {
a93e255f 625 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 626 limit = &intel_limits_i8xx_lvds;
a93e255f 627 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 628 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
629 else
630 limit = &intel_limits_i8xx_dac;
79e53945
JB
631 }
632 return limit;
633}
634
dccbea3b
ID
635/*
636 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
637 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
638 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
639 * The helpers' return value is the rate of the clock that is fed to the
640 * display engine's pipe which can be the above fast dot clock rate or a
641 * divided-down version of it.
642 */
f2b115e6 643/* m1 is reserved as 0 in Pineview, n is a ring counter */
dccbea3b 644static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
79e53945 645{
2177832f
SL
646 clock->m = clock->m2 + 2;
647 clock->p = clock->p1 * clock->p2;
ed5ca77e 648 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 649 return 0;
fb03ac01
VS
650 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
651 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
652
653 return clock->dot;
2177832f
SL
654}
655
7429e9d4
DV
656static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
657{
658 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
659}
660
dccbea3b 661static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
2177832f 662{
7429e9d4 663 clock->m = i9xx_dpll_compute_m(clock);
79e53945 664 clock->p = clock->p1 * clock->p2;
ed5ca77e 665 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 666 return 0;
fb03ac01
VS
667 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
668 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
669
670 return clock->dot;
79e53945
JB
671}
672
dccbea3b 673static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
589eca67
ID
674{
675 clock->m = clock->m1 * clock->m2;
676 clock->p = clock->p1 * clock->p2;
677 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 678 return 0;
589eca67
ID
679 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
680 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
681
682 return clock->dot / 5;
589eca67
ID
683}
684
dccbea3b 685int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
ef9348c8
CML
686{
687 clock->m = clock->m1 * clock->m2;
688 clock->p = clock->p1 * clock->p2;
689 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 690 return 0;
ef9348c8
CML
691 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
692 clock->n << 22);
693 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
694
695 return clock->dot / 5;
ef9348c8
CML
696}
697
7c04d1d9 698#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
699/**
700 * Returns whether the given set of divisors are valid for a given refclk with
701 * the given connectors.
702 */
703
1b894b59
CW
704static bool intel_PLL_is_valid(struct drm_device *dev,
705 const intel_limit_t *limit,
706 const intel_clock_t *clock)
79e53945 707{
f01b7962
VS
708 if (clock->n < limit->n.min || limit->n.max < clock->n)
709 INTELPllInvalid("n out of range\n");
79e53945 710 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 711 INTELPllInvalid("p1 out of range\n");
79e53945 712 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 713 INTELPllInvalid("m2 out of range\n");
79e53945 714 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 715 INTELPllInvalid("m1 out of range\n");
f01b7962 716
5ab7b0b7 717 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
718 if (clock->m1 <= clock->m2)
719 INTELPllInvalid("m1 <= m2\n");
720
5ab7b0b7 721 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
722 if (clock->p < limit->p.min || limit->p.max < clock->p)
723 INTELPllInvalid("p out of range\n");
724 if (clock->m < limit->m.min || limit->m.max < clock->m)
725 INTELPllInvalid("m out of range\n");
726 }
727
79e53945 728 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 729 INTELPllInvalid("vco out of range\n");
79e53945
JB
730 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
731 * connector, etc., rather than just a single range.
732 */
733 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 734 INTELPllInvalid("dot out of range\n");
79e53945
JB
735
736 return true;
737}
738
3b1429d9
VS
739static int
740i9xx_select_p2_div(const intel_limit_t *limit,
741 const struct intel_crtc_state *crtc_state,
742 int target)
79e53945 743{
3b1429d9 744 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 745
a93e255f 746 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 747 /*
a210b028
DV
748 * For LVDS just rely on its current settings for dual-channel.
749 * We haven't figured out how to reliably set up different
750 * single/dual channel state, if we even can.
79e53945 751 */
1974cad0 752 if (intel_is_dual_link_lvds(dev))
3b1429d9 753 return limit->p2.p2_fast;
79e53945 754 else
3b1429d9 755 return limit->p2.p2_slow;
79e53945
JB
756 } else {
757 if (target < limit->p2.dot_limit)
3b1429d9 758 return limit->p2.p2_slow;
79e53945 759 else
3b1429d9 760 return limit->p2.p2_fast;
79e53945 761 }
3b1429d9
VS
762}
763
764static bool
765i9xx_find_best_dpll(const intel_limit_t *limit,
766 struct intel_crtc_state *crtc_state,
767 int target, int refclk, intel_clock_t *match_clock,
768 intel_clock_t *best_clock)
769{
770 struct drm_device *dev = crtc_state->base.crtc->dev;
771 intel_clock_t clock;
772 int err = target;
79e53945 773
0206e353 774 memset(best_clock, 0, sizeof(*best_clock));
79e53945 775
3b1429d9
VS
776 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
42158660
ZY
778 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779 clock.m1++) {
780 for (clock.m2 = limit->m2.min;
781 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 782 if (clock.m2 >= clock.m1)
42158660
ZY
783 break;
784 for (clock.n = limit->n.min;
785 clock.n <= limit->n.max; clock.n++) {
786 for (clock.p1 = limit->p1.min;
787 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
788 int this_err;
789
dccbea3b 790 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
793 continue;
794 if (match_clock &&
795 clock.p != match_clock->p)
796 continue;
797
798 this_err = abs(clock.dot - target);
799 if (this_err < err) {
800 *best_clock = clock;
801 err = this_err;
802 }
803 }
804 }
805 }
806 }
807
808 return (err != target);
809}
810
811static bool
a93e255f
ACO
812pnv_find_best_dpll(const intel_limit_t *limit,
813 struct intel_crtc_state *crtc_state,
ee9300bb
DV
814 int target, int refclk, intel_clock_t *match_clock,
815 intel_clock_t *best_clock)
79e53945 816{
3b1429d9 817 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 818 intel_clock_t clock;
79e53945
JB
819 int err = target;
820
0206e353 821 memset(best_clock, 0, sizeof(*best_clock));
79e53945 822
3b1429d9
VS
823 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
824
42158660
ZY
825 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826 clock.m1++) {
827 for (clock.m2 = limit->m2.min;
828 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
829 for (clock.n = limit->n.min;
830 clock.n <= limit->n.max; clock.n++) {
831 for (clock.p1 = limit->p1.min;
832 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
833 int this_err;
834
dccbea3b 835 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
836 if (!intel_PLL_is_valid(dev, limit,
837 &clock))
79e53945 838 continue;
cec2f356
SP
839 if (match_clock &&
840 clock.p != match_clock->p)
841 continue;
79e53945
JB
842
843 this_err = abs(clock.dot - target);
844 if (this_err < err) {
845 *best_clock = clock;
846 err = this_err;
847 }
848 }
849 }
850 }
851 }
852
853 return (err != target);
854}
855
d4906093 856static bool
a93e255f
ACO
857g4x_find_best_dpll(const intel_limit_t *limit,
858 struct intel_crtc_state *crtc_state,
ee9300bb
DV
859 int target, int refclk, intel_clock_t *match_clock,
860 intel_clock_t *best_clock)
d4906093 861{
3b1429d9 862 struct drm_device *dev = crtc_state->base.crtc->dev;
d4906093
ML
863 intel_clock_t clock;
864 int max_n;
3b1429d9 865 bool found = false;
6ba770dc
AJ
866 /* approximately equals target * 0.00585 */
867 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
868
869 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
870
871 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
872
d4906093 873 max_n = limit->n.max;
f77f13e2 874 /* based on hardware requirement, prefer smaller n to precision */
d4906093 875 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 876 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
877 for (clock.m1 = limit->m1.max;
878 clock.m1 >= limit->m1.min; clock.m1--) {
879 for (clock.m2 = limit->m2.max;
880 clock.m2 >= limit->m2.min; clock.m2--) {
881 for (clock.p1 = limit->p1.max;
882 clock.p1 >= limit->p1.min; clock.p1--) {
883 int this_err;
884
dccbea3b 885 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
886 if (!intel_PLL_is_valid(dev, limit,
887 &clock))
d4906093 888 continue;
1b894b59
CW
889
890 this_err = abs(clock.dot - target);
d4906093
ML
891 if (this_err < err_most) {
892 *best_clock = clock;
893 err_most = this_err;
894 max_n = clock.n;
895 found = true;
896 }
897 }
898 }
899 }
900 }
2c07245f
ZW
901 return found;
902}
903
d5dd62bd
ID
904/*
905 * Check if the calculated PLL configuration is more optimal compared to the
906 * best configuration and error found so far. Return the calculated error.
907 */
908static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
909 const intel_clock_t *calculated_clock,
910 const intel_clock_t *best_clock,
911 unsigned int best_error_ppm,
912 unsigned int *error_ppm)
913{
9ca3ba01
ID
914 /*
915 * For CHV ignore the error and consider only the P value.
916 * Prefer a bigger P value based on HW requirements.
917 */
918 if (IS_CHERRYVIEW(dev)) {
919 *error_ppm = 0;
920
921 return calculated_clock->p > best_clock->p;
922 }
923
24be4e46
ID
924 if (WARN_ON_ONCE(!target_freq))
925 return false;
926
d5dd62bd
ID
927 *error_ppm = div_u64(1000000ULL *
928 abs(target_freq - calculated_clock->dot),
929 target_freq);
930 /*
931 * Prefer a better P value over a better (smaller) error if the error
932 * is small. Ensure this preference for future configurations too by
933 * setting the error to 0.
934 */
935 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
936 *error_ppm = 0;
937
938 return true;
939 }
940
941 return *error_ppm + 10 < best_error_ppm;
942}
943
a0c4da24 944static bool
a93e255f
ACO
945vlv_find_best_dpll(const intel_limit_t *limit,
946 struct intel_crtc_state *crtc_state,
ee9300bb
DV
947 int target, int refclk, intel_clock_t *match_clock,
948 intel_clock_t *best_clock)
a0c4da24 949{
a93e255f 950 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 951 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 952 intel_clock_t clock;
69e4f900 953 unsigned int bestppm = 1000000;
27e639bf
VS
954 /* min update 19.2 MHz */
955 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 956 bool found = false;
a0c4da24 957
6b4bf1c4
VS
958 target *= 5; /* fast clock */
959
960 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
961
962 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 963 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 964 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 965 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 966 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 967 clock.p = clock.p1 * clock.p2;
a0c4da24 968 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 969 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 970 unsigned int ppm;
69e4f900 971
6b4bf1c4
VS
972 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
973 refclk * clock.m1);
974
dccbea3b 975 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 976
f01b7962
VS
977 if (!intel_PLL_is_valid(dev, limit,
978 &clock))
43b0ac53
VS
979 continue;
980
d5dd62bd
ID
981 if (!vlv_PLL_is_optimal(dev, target,
982 &clock,
983 best_clock,
984 bestppm, &ppm))
985 continue;
6b4bf1c4 986
d5dd62bd
ID
987 *best_clock = clock;
988 bestppm = ppm;
989 found = true;
a0c4da24
JB
990 }
991 }
992 }
993 }
a0c4da24 994
49e497ef 995 return found;
a0c4da24 996}
a4fc5ed6 997
ef9348c8 998static bool
a93e255f
ACO
999chv_find_best_dpll(const intel_limit_t *limit,
1000 struct intel_crtc_state *crtc_state,
ef9348c8
CML
1001 int target, int refclk, intel_clock_t *match_clock,
1002 intel_clock_t *best_clock)
1003{
a93e255f 1004 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 1005 struct drm_device *dev = crtc->base.dev;
9ca3ba01 1006 unsigned int best_error_ppm;
ef9348c8
CML
1007 intel_clock_t clock;
1008 uint64_t m2;
1009 int found = false;
1010
1011 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 1012 best_error_ppm = 1000000;
ef9348c8
CML
1013
1014 /*
1015 * Based on hardware doc, the n always set to 1, and m1 always
1016 * set to 2. If requires to support 200Mhz refclk, we need to
1017 * revisit this because n may not 1 anymore.
1018 */
1019 clock.n = 1, clock.m1 = 2;
1020 target *= 5; /* fast clock */
1021
1022 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1023 for (clock.p2 = limit->p2.p2_fast;
1024 clock.p2 >= limit->p2.p2_slow;
1025 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 1026 unsigned int error_ppm;
ef9348c8
CML
1027
1028 clock.p = clock.p1 * clock.p2;
1029
1030 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1031 clock.n) << 22, refclk * clock.m1);
1032
1033 if (m2 > INT_MAX/clock.m1)
1034 continue;
1035
1036 clock.m2 = m2;
1037
dccbea3b 1038 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
1039
1040 if (!intel_PLL_is_valid(dev, limit, &clock))
1041 continue;
1042
9ca3ba01
ID
1043 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1044 best_error_ppm, &error_ppm))
1045 continue;
1046
1047 *best_clock = clock;
1048 best_error_ppm = error_ppm;
1049 found = true;
ef9348c8
CML
1050 }
1051 }
1052
1053 return found;
1054}
1055
5ab7b0b7
ID
1056bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1057 intel_clock_t *best_clock)
1058{
1059 int refclk = i9xx_get_refclk(crtc_state, 0);
1060
1061 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1062 target_clock, refclk, NULL, best_clock);
1063}
1064
20ddf665
VS
1065bool intel_crtc_active(struct drm_crtc *crtc)
1066{
1067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068
1069 /* Be paranoid as we can arrive here with only partial
1070 * state retrieved from the hardware during setup.
1071 *
241bfc38 1072 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1073 * as Haswell has gained clock readout/fastboot support.
1074 *
66e514c1 1075 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1076 * properly reconstruct framebuffers.
c3d1f436
MR
1077 *
1078 * FIXME: The intel_crtc->active here should be switched to
1079 * crtc->state->active once we have proper CRTC states wired up
1080 * for atomic.
20ddf665 1081 */
c3d1f436 1082 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1083 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1084}
1085
a5c961d1
PZ
1086enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1087 enum pipe pipe)
1088{
1089 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1091
6e3c9717 1092 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1093}
1094
fbf49ea2
VS
1095static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1096{
1097 struct drm_i915_private *dev_priv = dev->dev_private;
1098 u32 reg = PIPEDSL(pipe);
1099 u32 line1, line2;
1100 u32 line_mask;
1101
1102 if (IS_GEN2(dev))
1103 line_mask = DSL_LINEMASK_GEN2;
1104 else
1105 line_mask = DSL_LINEMASK_GEN3;
1106
1107 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1108 msleep(5);
fbf49ea2
VS
1109 line2 = I915_READ(reg) & line_mask;
1110
1111 return line1 == line2;
1112}
1113
ab7ad7f6
KP
1114/*
1115 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1116 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1117 *
1118 * After disabling a pipe, we can't wait for vblank in the usual way,
1119 * spinning on the vblank interrupt status bit, since we won't actually
1120 * see an interrupt when the pipe is disabled.
1121 *
ab7ad7f6
KP
1122 * On Gen4 and above:
1123 * wait for the pipe register state bit to turn off
1124 *
1125 * Otherwise:
1126 * wait for the display line value to settle (it usually
1127 * ends up stopping at the start of the next frame).
58e10eb9 1128 *
9d0498a2 1129 */
575f7ab7 1130static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1131{
575f7ab7 1132 struct drm_device *dev = crtc->base.dev;
9d0498a2 1133 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1134 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1135 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1136
1137 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1138 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1139
1140 /* Wait for the Pipe State to go off */
58e10eb9
CW
1141 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1142 100))
284637d9 1143 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1144 } else {
ab7ad7f6 1145 /* Wait for the display line to settle */
fbf49ea2 1146 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1147 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1148 }
79e53945
JB
1149}
1150
b24e7179
JB
1151static const char *state_string(bool enabled)
1152{
1153 return enabled ? "on" : "off";
1154}
1155
1156/* Only for pre-ILK configs */
55607e8a
DV
1157void assert_pll(struct drm_i915_private *dev_priv,
1158 enum pipe pipe, bool state)
b24e7179 1159{
b24e7179
JB
1160 u32 val;
1161 bool cur_state;
1162
649636ef 1163 val = I915_READ(DPLL(pipe));
b24e7179 1164 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1165 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1166 "PLL state assertion failure (expected %s, current %s)\n",
1167 state_string(state), state_string(cur_state));
1168}
b24e7179 1169
23538ef1
JN
1170/* XXX: the dsi pll is shared between MIPI DSI ports */
1171static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1172{
1173 u32 val;
1174 bool cur_state;
1175
a580516d 1176 mutex_lock(&dev_priv->sb_lock);
23538ef1 1177 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1178 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1179
1180 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1181 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1182 "DSI PLL state assertion failure (expected %s, current %s)\n",
1183 state_string(state), state_string(cur_state));
1184}
1185#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1186#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1187
55607e8a 1188struct intel_shared_dpll *
e2b78267
DV
1189intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1190{
1191 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1192
6e3c9717 1193 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1194 return NULL;
1195
6e3c9717 1196 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1197}
1198
040484af 1199/* For ILK+ */
55607e8a
DV
1200void assert_shared_dpll(struct drm_i915_private *dev_priv,
1201 struct intel_shared_dpll *pll,
1202 bool state)
040484af 1203{
040484af 1204 bool cur_state;
5358901f 1205 struct intel_dpll_hw_state hw_state;
040484af 1206
92b27b08 1207 if (WARN (!pll,
46edb027 1208 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1209 return;
ee7b9f93 1210
5358901f 1211 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1212 I915_STATE_WARN(cur_state != state,
5358901f
DV
1213 "%s assertion failure (expected %s, current %s)\n",
1214 pll->name, state_string(state), state_string(cur_state));
040484af 1215}
040484af
JB
1216
1217static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
1219{
040484af 1220 bool cur_state;
ad80a810
PZ
1221 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1222 pipe);
040484af 1223
affa9354
PZ
1224 if (HAS_DDI(dev_priv->dev)) {
1225 /* DDI does not have a specific FDI_TX register */
649636ef 1226 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1227 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1228 } else {
649636ef 1229 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1230 cur_state = !!(val & FDI_TX_ENABLE);
1231 }
e2c719b7 1232 I915_STATE_WARN(cur_state != state,
040484af
JB
1233 "FDI TX state assertion failure (expected %s, current %s)\n",
1234 state_string(state), state_string(cur_state));
1235}
1236#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1237#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1238
1239static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
1241{
040484af
JB
1242 u32 val;
1243 bool cur_state;
1244
649636ef 1245 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1246 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1247 I915_STATE_WARN(cur_state != state,
040484af
JB
1248 "FDI RX state assertion failure (expected %s, current %s)\n",
1249 state_string(state), state_string(cur_state));
1250}
1251#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1252#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1253
1254static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1255 enum pipe pipe)
1256{
040484af
JB
1257 u32 val;
1258
1259 /* ILK FDI PLL is always enabled */
3d13ef2e 1260 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1261 return;
1262
bf507ef7 1263 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1264 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1265 return;
1266
649636ef 1267 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1268 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1269}
1270
55607e8a
DV
1271void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1272 enum pipe pipe, bool state)
040484af 1273{
040484af 1274 u32 val;
55607e8a 1275 bool cur_state;
040484af 1276
649636ef 1277 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1278 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1279 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1280 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1281 state_string(state), state_string(cur_state));
040484af
JB
1282}
1283
b680c37a
DV
1284void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1285 enum pipe pipe)
ea0760cf 1286{
bedd4dba
JN
1287 struct drm_device *dev = dev_priv->dev;
1288 int pp_reg;
ea0760cf
JB
1289 u32 val;
1290 enum pipe panel_pipe = PIPE_A;
0de3b485 1291 bool locked = true;
ea0760cf 1292
bedd4dba
JN
1293 if (WARN_ON(HAS_DDI(dev)))
1294 return;
1295
1296 if (HAS_PCH_SPLIT(dev)) {
1297 u32 port_sel;
1298
ea0760cf 1299 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1300 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1301
1302 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1303 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1304 panel_pipe = PIPE_B;
1305 /* XXX: else fix for eDP */
1306 } else if (IS_VALLEYVIEW(dev)) {
1307 /* presumably write lock depends on pipe, not port select */
1308 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1309 panel_pipe = pipe;
ea0760cf
JB
1310 } else {
1311 pp_reg = PP_CONTROL;
bedd4dba
JN
1312 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1313 panel_pipe = PIPE_B;
ea0760cf
JB
1314 }
1315
1316 val = I915_READ(pp_reg);
1317 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1318 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1319 locked = false;
1320
e2c719b7 1321 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1322 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1323 pipe_name(pipe));
ea0760cf
JB
1324}
1325
93ce0ba6
JN
1326static void assert_cursor(struct drm_i915_private *dev_priv,
1327 enum pipe pipe, bool state)
1328{
1329 struct drm_device *dev = dev_priv->dev;
1330 bool cur_state;
1331
d9d82081 1332 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1333 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1334 else
5efb3e28 1335 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1336
e2c719b7 1337 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1338 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1339 pipe_name(pipe), state_string(state), state_string(cur_state));
1340}
1341#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1342#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1343
b840d907
JB
1344void assert_pipe(struct drm_i915_private *dev_priv,
1345 enum pipe pipe, bool state)
b24e7179 1346{
63d7bbe9 1347 bool cur_state;
702e7a56
PZ
1348 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1349 pipe);
b24e7179 1350
b6b5d049
VS
1351 /* if we need the pipe quirk it must be always on */
1352 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1353 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1354 state = true;
1355
f458ebbc 1356 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1357 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1358 cur_state = false;
1359 } else {
649636ef 1360 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161
PZ
1361 cur_state = !!(val & PIPECONF_ENABLE);
1362 }
1363
e2c719b7 1364 I915_STATE_WARN(cur_state != state,
63d7bbe9 1365 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1366 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1367}
1368
931872fc
CW
1369static void assert_plane(struct drm_i915_private *dev_priv,
1370 enum plane plane, bool state)
b24e7179 1371{
b24e7179 1372 u32 val;
931872fc 1373 bool cur_state;
b24e7179 1374
649636ef 1375 val = I915_READ(DSPCNTR(plane));
931872fc 1376 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1377 I915_STATE_WARN(cur_state != state,
931872fc
CW
1378 "plane %c assertion failure (expected %s, current %s)\n",
1379 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1380}
1381
931872fc
CW
1382#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1383#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1384
b24e7179
JB
1385static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1386 enum pipe pipe)
1387{
653e1026 1388 struct drm_device *dev = dev_priv->dev;
649636ef 1389 int i;
b24e7179 1390
653e1026
VS
1391 /* Primary planes are fixed to pipes on gen4+ */
1392 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1393 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1394 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1395 "plane %c assertion failure, should be disabled but not\n",
1396 plane_name(pipe));
19ec1358 1397 return;
28c05794 1398 }
19ec1358 1399
b24e7179 1400 /* Need to check both planes against the pipe */
055e393f 1401 for_each_pipe(dev_priv, i) {
649636ef
VS
1402 u32 val = I915_READ(DSPCNTR(i));
1403 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1404 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1405 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1406 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1407 plane_name(i), pipe_name(pipe));
b24e7179
JB
1408 }
1409}
1410
19332d7a
JB
1411static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe)
1413{
20674eef 1414 struct drm_device *dev = dev_priv->dev;
649636ef 1415 int sprite;
19332d7a 1416
7feb8b88 1417 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1418 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1419 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1420 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1421 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1422 sprite, pipe_name(pipe));
1423 }
1424 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1425 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1426 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1427 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1428 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1429 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1430 }
1431 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1432 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1433 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1434 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1435 plane_name(pipe), pipe_name(pipe));
1436 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1437 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1438 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1439 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1440 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1441 }
1442}
1443
08c71e5e
VS
1444static void assert_vblank_disabled(struct drm_crtc *crtc)
1445{
e2c719b7 1446 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1447 drm_crtc_vblank_put(crtc);
1448}
1449
89eff4be 1450static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1451{
1452 u32 val;
1453 bool enabled;
1454
e2c719b7 1455 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1456
92f2584a
JB
1457 val = I915_READ(PCH_DREF_CONTROL);
1458 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1459 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1460 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1461}
1462
ab9412ba
DV
1463static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
92f2584a 1465{
92f2584a
JB
1466 u32 val;
1467 bool enabled;
1468
649636ef 1469 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1470 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1471 I915_STATE_WARN(enabled,
9db4a9c7
JB
1472 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1473 pipe_name(pipe));
92f2584a
JB
1474}
1475
4e634389
KP
1476static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1477 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1478{
1479 if ((val & DP_PORT_EN) == 0)
1480 return false;
1481
1482 if (HAS_PCH_CPT(dev_priv->dev)) {
1483 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1484 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1485 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1486 return false;
44f37d1f
CML
1487 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1488 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1489 return false;
f0575e92
KP
1490 } else {
1491 if ((val & DP_PIPE_MASK) != (pipe << 30))
1492 return false;
1493 }
1494 return true;
1495}
1496
1519b995
KP
1497static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1498 enum pipe pipe, u32 val)
1499{
dc0fa718 1500 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1501 return false;
1502
1503 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1504 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1505 return false;
44f37d1f
CML
1506 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1507 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1508 return false;
1519b995 1509 } else {
dc0fa718 1510 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1511 return false;
1512 }
1513 return true;
1514}
1515
1516static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1517 enum pipe pipe, u32 val)
1518{
1519 if ((val & LVDS_PORT_EN) == 0)
1520 return false;
1521
1522 if (HAS_PCH_CPT(dev_priv->dev)) {
1523 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524 return false;
1525 } else {
1526 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1527 return false;
1528 }
1529 return true;
1530}
1531
1532static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1533 enum pipe pipe, u32 val)
1534{
1535 if ((val & ADPA_DAC_ENABLE) == 0)
1536 return false;
1537 if (HAS_PCH_CPT(dev_priv->dev)) {
1538 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1539 return false;
1540 } else {
1541 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1542 return false;
1543 }
1544 return true;
1545}
1546
291906f1 1547static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1548 enum pipe pipe, int reg, u32 port_sel)
291906f1 1549{
47a05eca 1550 u32 val = I915_READ(reg);
e2c719b7 1551 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1552 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1553 reg, pipe_name(pipe));
de9a35ab 1554
e2c719b7 1555 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1556 && (val & DP_PIPEB_SELECT),
de9a35ab 1557 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1558}
1559
1560static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1561 enum pipe pipe, int reg)
1562{
47a05eca 1563 u32 val = I915_READ(reg);
e2c719b7 1564 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1565 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1566 reg, pipe_name(pipe));
de9a35ab 1567
e2c719b7 1568 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1569 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1570 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1571}
1572
1573static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1574 enum pipe pipe)
1575{
291906f1 1576 u32 val;
291906f1 1577
f0575e92
KP
1578 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1579 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1580 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1581
649636ef 1582 val = I915_READ(PCH_ADPA);
e2c719b7 1583 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1584 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1585 pipe_name(pipe));
291906f1 1586
649636ef 1587 val = I915_READ(PCH_LVDS);
e2c719b7 1588 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1589 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1590 pipe_name(pipe));
291906f1 1591
e2debe91
PZ
1592 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1595}
1596
d288f65f 1597static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1598 const struct intel_crtc_state *pipe_config)
87442f73 1599{
426115cf
DV
1600 struct drm_device *dev = crtc->base.dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 int reg = DPLL(crtc->pipe);
d288f65f 1603 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1604
426115cf 1605 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1606
1607 /* No really, not for ILK+ */
1608 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1609
1610 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1611 if (IS_MOBILE(dev_priv->dev))
426115cf 1612 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1613
426115cf
DV
1614 I915_WRITE(reg, dpll);
1615 POSTING_READ(reg);
1616 udelay(150);
1617
1618 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1619 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1620
d288f65f 1621 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1622 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1623
1624 /* We do this three times for luck */
426115cf 1625 I915_WRITE(reg, dpll);
87442f73
DV
1626 POSTING_READ(reg);
1627 udelay(150); /* wait for warmup */
426115cf 1628 I915_WRITE(reg, dpll);
87442f73
DV
1629 POSTING_READ(reg);
1630 udelay(150); /* wait for warmup */
426115cf 1631 I915_WRITE(reg, dpll);
87442f73
DV
1632 POSTING_READ(reg);
1633 udelay(150); /* wait for warmup */
1634}
1635
d288f65f 1636static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1637 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1638{
1639 struct drm_device *dev = crtc->base.dev;
1640 struct drm_i915_private *dev_priv = dev->dev_private;
1641 int pipe = crtc->pipe;
1642 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1643 u32 tmp;
1644
1645 assert_pipe_disabled(dev_priv, crtc->pipe);
1646
1647 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1648
a580516d 1649 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1650
1651 /* Enable back the 10bit clock to display controller */
1652 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1653 tmp |= DPIO_DCLKP_EN;
1654 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1655
54433e91
VS
1656 mutex_unlock(&dev_priv->sb_lock);
1657
9d556c99
CML
1658 /*
1659 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1660 */
1661 udelay(1);
1662
1663 /* Enable PLL */
d288f65f 1664 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1665
1666 /* Check PLL is locked */
a11b0703 1667 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1668 DRM_ERROR("PLL %d failed to lock\n", pipe);
1669
a11b0703 1670 /* not sure when this should be written */
d288f65f 1671 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703 1672 POSTING_READ(DPLL_MD(pipe));
9d556c99
CML
1673}
1674
1c4e0274
VS
1675static int intel_num_dvo_pipes(struct drm_device *dev)
1676{
1677 struct intel_crtc *crtc;
1678 int count = 0;
1679
1680 for_each_intel_crtc(dev, crtc)
3538b9df 1681 count += crtc->base.state->active &&
409ee761 1682 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1683
1684 return count;
1685}
1686
66e3d5c0 1687static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1688{
66e3d5c0
DV
1689 struct drm_device *dev = crtc->base.dev;
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691 int reg = DPLL(crtc->pipe);
6e3c9717 1692 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1693
66e3d5c0 1694 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1695
63d7bbe9 1696 /* No really, not for ILK+ */
3d13ef2e 1697 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1698
1699 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1700 if (IS_MOBILE(dev) && !IS_I830(dev))
1701 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1702
1c4e0274
VS
1703 /* Enable DVO 2x clock on both PLLs if necessary */
1704 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1705 /*
1706 * It appears to be important that we don't enable this
1707 * for the current pipe before otherwise configuring the
1708 * PLL. No idea how this should be handled if multiple
1709 * DVO outputs are enabled simultaneosly.
1710 */
1711 dpll |= DPLL_DVO_2X_MODE;
1712 I915_WRITE(DPLL(!crtc->pipe),
1713 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1714 }
66e3d5c0 1715
c2b63374
VS
1716 /*
1717 * Apparently we need to have VGA mode enabled prior to changing
1718 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1719 * dividers, even though the register value does change.
1720 */
1721 I915_WRITE(reg, 0);
1722
8e7a65aa
VS
1723 I915_WRITE(reg, dpll);
1724
66e3d5c0
DV
1725 /* Wait for the clocks to stabilize. */
1726 POSTING_READ(reg);
1727 udelay(150);
1728
1729 if (INTEL_INFO(dev)->gen >= 4) {
1730 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1731 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1732 } else {
1733 /* The pixel multiplier can only be updated once the
1734 * DPLL is enabled and the clocks are stable.
1735 *
1736 * So write it again.
1737 */
1738 I915_WRITE(reg, dpll);
1739 }
63d7bbe9
JB
1740
1741 /* We do this three times for luck */
66e3d5c0 1742 I915_WRITE(reg, dpll);
63d7bbe9
JB
1743 POSTING_READ(reg);
1744 udelay(150); /* wait for warmup */
66e3d5c0 1745 I915_WRITE(reg, dpll);
63d7bbe9
JB
1746 POSTING_READ(reg);
1747 udelay(150); /* wait for warmup */
66e3d5c0 1748 I915_WRITE(reg, dpll);
63d7bbe9
JB
1749 POSTING_READ(reg);
1750 udelay(150); /* wait for warmup */
1751}
1752
1753/**
50b44a44 1754 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1755 * @dev_priv: i915 private structure
1756 * @pipe: pipe PLL to disable
1757 *
1758 * Disable the PLL for @pipe, making sure the pipe is off first.
1759 *
1760 * Note! This is for pre-ILK only.
1761 */
1c4e0274 1762static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1763{
1c4e0274
VS
1764 struct drm_device *dev = crtc->base.dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 enum pipe pipe = crtc->pipe;
1767
1768 /* Disable DVO 2x clock on both PLLs if necessary */
1769 if (IS_I830(dev) &&
409ee761 1770 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1771 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1772 I915_WRITE(DPLL(PIPE_B),
1773 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1774 I915_WRITE(DPLL(PIPE_A),
1775 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1776 }
1777
b6b5d049
VS
1778 /* Don't disable pipe or pipe PLLs if needed */
1779 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1780 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1781 return;
1782
1783 /* Make sure the pipe isn't still relying on us */
1784 assert_pipe_disabled(dev_priv, pipe);
1785
b8afb911 1786 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1787 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1788}
1789
f6071166
JB
1790static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1791{
b8afb911 1792 u32 val;
f6071166
JB
1793
1794 /* Make sure the pipe isn't still relying on us */
1795 assert_pipe_disabled(dev_priv, pipe);
1796
e5cbfbfb
ID
1797 /*
1798 * Leave integrated clock source and reference clock enabled for pipe B.
1799 * The latter is needed for VGA hotplug / manual detection.
1800 */
b8afb911 1801 val = DPLL_VGA_MODE_DIS;
f6071166 1802 if (pipe == PIPE_B)
60bfe44f 1803 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
f6071166
JB
1804 I915_WRITE(DPLL(pipe), val);
1805 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1806
1807}
1808
1809static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1810{
d752048d 1811 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1812 u32 val;
1813
a11b0703
VS
1814 /* Make sure the pipe isn't still relying on us */
1815 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1816
a11b0703 1817 /* Set PLL en = 0 */
60bfe44f
VS
1818 val = DPLL_SSC_REF_CLK_CHV |
1819 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1820 if (pipe != PIPE_A)
1821 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1822 I915_WRITE(DPLL(pipe), val);
1823 POSTING_READ(DPLL(pipe));
d752048d 1824
a580516d 1825 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1826
1827 /* Disable 10bit clock to display controller */
1828 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1829 val &= ~DPIO_DCLKP_EN;
1830 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1831
a580516d 1832 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1833}
1834
e4607fcf 1835void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1836 struct intel_digital_port *dport,
1837 unsigned int expected_mask)
89b667f8
JB
1838{
1839 u32 port_mask;
00fc31b7 1840 int dpll_reg;
89b667f8 1841
e4607fcf
CML
1842 switch (dport->port) {
1843 case PORT_B:
89b667f8 1844 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1845 dpll_reg = DPLL(0);
e4607fcf
CML
1846 break;
1847 case PORT_C:
89b667f8 1848 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1849 dpll_reg = DPLL(0);
9b6de0a1 1850 expected_mask <<= 4;
00fc31b7
CML
1851 break;
1852 case PORT_D:
1853 port_mask = DPLL_PORTD_READY_MASK;
1854 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1855 break;
1856 default:
1857 BUG();
1858 }
89b667f8 1859
9b6de0a1
VS
1860 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1861 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1862 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1863}
1864
b14b1055
DV
1865static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1866{
1867 struct drm_device *dev = crtc->base.dev;
1868 struct drm_i915_private *dev_priv = dev->dev_private;
1869 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1870
be19f0ff
CW
1871 if (WARN_ON(pll == NULL))
1872 return;
1873
3e369b76 1874 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1875 if (pll->active == 0) {
1876 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1877 WARN_ON(pll->on);
1878 assert_shared_dpll_disabled(dev_priv, pll);
1879
1880 pll->mode_set(dev_priv, pll);
1881 }
1882}
1883
92f2584a 1884/**
85b3894f 1885 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1886 * @dev_priv: i915 private structure
1887 * @pipe: pipe PLL to enable
1888 *
1889 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1890 * drives the transcoder clock.
1891 */
85b3894f 1892static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1893{
3d13ef2e
DL
1894 struct drm_device *dev = crtc->base.dev;
1895 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1896 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1897
87a875bb 1898 if (WARN_ON(pll == NULL))
48da64a8
CW
1899 return;
1900
3e369b76 1901 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1902 return;
ee7b9f93 1903
74dd6928 1904 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1905 pll->name, pll->active, pll->on,
e2b78267 1906 crtc->base.base.id);
92f2584a 1907
cdbd2316
DV
1908 if (pll->active++) {
1909 WARN_ON(!pll->on);
e9d6944e 1910 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1911 return;
1912 }
f4a091c7 1913 WARN_ON(pll->on);
ee7b9f93 1914
bd2bb1b9
PZ
1915 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1916
46edb027 1917 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1918 pll->enable(dev_priv, pll);
ee7b9f93 1919 pll->on = true;
92f2584a
JB
1920}
1921
f6daaec2 1922static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1923{
3d13ef2e
DL
1924 struct drm_device *dev = crtc->base.dev;
1925 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1926 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1927
92f2584a 1928 /* PCH only available on ILK+ */
80aa9312
JB
1929 if (INTEL_INFO(dev)->gen < 5)
1930 return;
1931
eddfcbcd
ML
1932 if (pll == NULL)
1933 return;
92f2584a 1934
eddfcbcd 1935 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
48da64a8 1936 return;
7a419866 1937
46edb027
DV
1938 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1939 pll->name, pll->active, pll->on,
e2b78267 1940 crtc->base.base.id);
7a419866 1941
48da64a8 1942 if (WARN_ON(pll->active == 0)) {
e9d6944e 1943 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1944 return;
1945 }
1946
e9d6944e 1947 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1948 WARN_ON(!pll->on);
cdbd2316 1949 if (--pll->active)
7a419866 1950 return;
ee7b9f93 1951
46edb027 1952 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1953 pll->disable(dev_priv, pll);
ee7b9f93 1954 pll->on = false;
bd2bb1b9
PZ
1955
1956 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1957}
1958
b8a4f404
PZ
1959static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1960 enum pipe pipe)
040484af 1961{
23670b32 1962 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1963 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1965 uint32_t reg, val, pipeconf_val;
040484af
JB
1966
1967 /* PCH only available on ILK+ */
55522f37 1968 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1969
1970 /* Make sure PCH DPLL is enabled */
e72f9fbf 1971 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1972 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1973
1974 /* FDI must be feeding us bits for PCH ports */
1975 assert_fdi_tx_enabled(dev_priv, pipe);
1976 assert_fdi_rx_enabled(dev_priv, pipe);
1977
23670b32
DV
1978 if (HAS_PCH_CPT(dev)) {
1979 /* Workaround: Set the timing override bit before enabling the
1980 * pch transcoder. */
1981 reg = TRANS_CHICKEN2(pipe);
1982 val = I915_READ(reg);
1983 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1984 I915_WRITE(reg, val);
59c859d6 1985 }
23670b32 1986
ab9412ba 1987 reg = PCH_TRANSCONF(pipe);
040484af 1988 val = I915_READ(reg);
5f7f726d 1989 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1990
1991 if (HAS_PCH_IBX(dev_priv->dev)) {
1992 /*
c5de7c6f
VS
1993 * Make the BPC in transcoder be consistent with
1994 * that in pipeconf reg. For HDMI we must use 8bpc
1995 * here for both 8bpc and 12bpc.
e9bcff5c 1996 */
dfd07d72 1997 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
1998 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1999 val |= PIPECONF_8BPC;
2000 else
2001 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 2002 }
5f7f726d
PZ
2003
2004 val &= ~TRANS_INTERLACE_MASK;
2005 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 2006 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 2007 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
2008 val |= TRANS_LEGACY_INTERLACED_ILK;
2009 else
2010 val |= TRANS_INTERLACED;
5f7f726d
PZ
2011 else
2012 val |= TRANS_PROGRESSIVE;
2013
040484af
JB
2014 I915_WRITE(reg, val | TRANS_ENABLE);
2015 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 2016 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
2017}
2018
8fb033d7 2019static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 2020 enum transcoder cpu_transcoder)
040484af 2021{
8fb033d7 2022 u32 val, pipeconf_val;
8fb033d7
PZ
2023
2024 /* PCH only available on ILK+ */
55522f37 2025 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 2026
8fb033d7 2027 /* FDI must be feeding us bits for PCH ports */
1a240d4d 2028 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 2029 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 2030
223a6fdf 2031 /* Workaround: set timing override bit. */
36c0d0cf 2032 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 2033 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 2034 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 2035
25f3ef11 2036 val = TRANS_ENABLE;
937bb610 2037 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 2038
9a76b1c6
PZ
2039 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2040 PIPECONF_INTERLACED_ILK)
a35f2679 2041 val |= TRANS_INTERLACED;
8fb033d7
PZ
2042 else
2043 val |= TRANS_PROGRESSIVE;
2044
ab9412ba
DV
2045 I915_WRITE(LPT_TRANSCONF, val);
2046 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 2047 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
2048}
2049
b8a4f404
PZ
2050static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2051 enum pipe pipe)
040484af 2052{
23670b32
DV
2053 struct drm_device *dev = dev_priv->dev;
2054 uint32_t reg, val;
040484af
JB
2055
2056 /* FDI relies on the transcoder */
2057 assert_fdi_tx_disabled(dev_priv, pipe);
2058 assert_fdi_rx_disabled(dev_priv, pipe);
2059
291906f1
JB
2060 /* Ports must be off as well */
2061 assert_pch_ports_disabled(dev_priv, pipe);
2062
ab9412ba 2063 reg = PCH_TRANSCONF(pipe);
040484af
JB
2064 val = I915_READ(reg);
2065 val &= ~TRANS_ENABLE;
2066 I915_WRITE(reg, val);
2067 /* wait for PCH transcoder off, transcoder state */
2068 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2069 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2070
2071 if (!HAS_PCH_IBX(dev)) {
2072 /* Workaround: Clear the timing override chicken bit again. */
2073 reg = TRANS_CHICKEN2(pipe);
2074 val = I915_READ(reg);
2075 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2076 I915_WRITE(reg, val);
2077 }
040484af
JB
2078}
2079
ab4d966c 2080static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2081{
8fb033d7
PZ
2082 u32 val;
2083
ab9412ba 2084 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2085 val &= ~TRANS_ENABLE;
ab9412ba 2086 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2087 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2088 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2089 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2090
2091 /* Workaround: clear timing override bit. */
36c0d0cf 2092 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 2093 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 2094 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
2095}
2096
b24e7179 2097/**
309cfea8 2098 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2099 * @crtc: crtc responsible for the pipe
b24e7179 2100 *
0372264a 2101 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2102 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2103 */
e1fdc473 2104static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2105{
0372264a
PZ
2106 struct drm_device *dev = crtc->base.dev;
2107 struct drm_i915_private *dev_priv = dev->dev_private;
2108 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2109 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2110 pipe);
1a240d4d 2111 enum pipe pch_transcoder;
b24e7179
JB
2112 int reg;
2113 u32 val;
2114
9e2ee2dd
VS
2115 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2116
58c6eaa2 2117 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2118 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2119 assert_sprites_disabled(dev_priv, pipe);
2120
681e5811 2121 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2122 pch_transcoder = TRANSCODER_A;
2123 else
2124 pch_transcoder = pipe;
2125
b24e7179
JB
2126 /*
2127 * A pipe without a PLL won't actually be able to drive bits from
2128 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2129 * need the check.
2130 */
50360403 2131 if (HAS_GMCH_DISPLAY(dev_priv->dev))
409ee761 2132 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2133 assert_dsi_pll_enabled(dev_priv);
2134 else
2135 assert_pll_enabled(dev_priv, pipe);
040484af 2136 else {
6e3c9717 2137 if (crtc->config->has_pch_encoder) {
040484af 2138 /* if driving the PCH, we need FDI enabled */
cc391bbb 2139 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2140 assert_fdi_tx_pll_enabled(dev_priv,
2141 (enum pipe) cpu_transcoder);
040484af
JB
2142 }
2143 /* FIXME: assert CPU port conditions for SNB+ */
2144 }
b24e7179 2145
702e7a56 2146 reg = PIPECONF(cpu_transcoder);
b24e7179 2147 val = I915_READ(reg);
7ad25d48 2148 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2149 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2150 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2151 return;
7ad25d48 2152 }
00d70b15
CW
2153
2154 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2155 POSTING_READ(reg);
b24e7179
JB
2156}
2157
2158/**
309cfea8 2159 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2160 * @crtc: crtc whose pipes is to be disabled
b24e7179 2161 *
575f7ab7
VS
2162 * Disable the pipe of @crtc, making sure that various hardware
2163 * specific requirements are met, if applicable, e.g. plane
2164 * disabled, panel fitter off, etc.
b24e7179
JB
2165 *
2166 * Will wait until the pipe has shut down before returning.
2167 */
575f7ab7 2168static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2169{
575f7ab7 2170 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2171 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2172 enum pipe pipe = crtc->pipe;
b24e7179
JB
2173 int reg;
2174 u32 val;
2175
9e2ee2dd
VS
2176 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2177
b24e7179
JB
2178 /*
2179 * Make sure planes won't keep trying to pump pixels to us,
2180 * or we might hang the display.
2181 */
2182 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2183 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2184 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2185
702e7a56 2186 reg = PIPECONF(cpu_transcoder);
b24e7179 2187 val = I915_READ(reg);
00d70b15
CW
2188 if ((val & PIPECONF_ENABLE) == 0)
2189 return;
2190
67adc644
VS
2191 /*
2192 * Double wide has implications for planes
2193 * so best keep it disabled when not needed.
2194 */
6e3c9717 2195 if (crtc->config->double_wide)
67adc644
VS
2196 val &= ~PIPECONF_DOUBLE_WIDE;
2197
2198 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2199 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2200 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2201 val &= ~PIPECONF_ENABLE;
2202
2203 I915_WRITE(reg, val);
2204 if ((val & PIPECONF_ENABLE) == 0)
2205 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2206}
2207
693db184
CW
2208static bool need_vtd_wa(struct drm_device *dev)
2209{
2210#ifdef CONFIG_INTEL_IOMMU
2211 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2212 return true;
2213#endif
2214 return false;
2215}
2216
50470bb0 2217unsigned int
6761dd31 2218intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
fe47ea0c 2219 uint64_t fb_format_modifier, unsigned int plane)
a57ce0b2 2220{
6761dd31
TU
2221 unsigned int tile_height;
2222 uint32_t pixel_bytes;
a57ce0b2 2223
b5d0e9bf
DL
2224 switch (fb_format_modifier) {
2225 case DRM_FORMAT_MOD_NONE:
2226 tile_height = 1;
2227 break;
2228 case I915_FORMAT_MOD_X_TILED:
2229 tile_height = IS_GEN2(dev) ? 16 : 8;
2230 break;
2231 case I915_FORMAT_MOD_Y_TILED:
2232 tile_height = 32;
2233 break;
2234 case I915_FORMAT_MOD_Yf_TILED:
fe47ea0c 2235 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
6761dd31 2236 switch (pixel_bytes) {
b5d0e9bf 2237 default:
6761dd31 2238 case 1:
b5d0e9bf
DL
2239 tile_height = 64;
2240 break;
6761dd31
TU
2241 case 2:
2242 case 4:
b5d0e9bf
DL
2243 tile_height = 32;
2244 break;
6761dd31 2245 case 8:
b5d0e9bf
DL
2246 tile_height = 16;
2247 break;
6761dd31 2248 case 16:
b5d0e9bf
DL
2249 WARN_ONCE(1,
2250 "128-bit pixels are not supported for display!");
2251 tile_height = 16;
2252 break;
2253 }
2254 break;
2255 default:
2256 MISSING_CASE(fb_format_modifier);
2257 tile_height = 1;
2258 break;
2259 }
091df6cb 2260
6761dd31
TU
2261 return tile_height;
2262}
2263
2264unsigned int
2265intel_fb_align_height(struct drm_device *dev, unsigned int height,
2266 uint32_t pixel_format, uint64_t fb_format_modifier)
2267{
2268 return ALIGN(height, intel_tile_height(dev, pixel_format,
fe47ea0c 2269 fb_format_modifier, 0));
a57ce0b2
JB
2270}
2271
f64b98cd
TU
2272static int
2273intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2274 const struct drm_plane_state *plane_state)
2275{
50470bb0 2276 struct intel_rotation_info *info = &view->rotation_info;
84fe03f7 2277 unsigned int tile_height, tile_pitch;
50470bb0 2278
f64b98cd
TU
2279 *view = i915_ggtt_view_normal;
2280
50470bb0
TU
2281 if (!plane_state)
2282 return 0;
2283
121920fa 2284 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2285 return 0;
2286
9abc4648 2287 *view = i915_ggtt_view_rotated;
50470bb0
TU
2288
2289 info->height = fb->height;
2290 info->pixel_format = fb->pixel_format;
2291 info->pitch = fb->pitches[0];
89e3e142 2292 info->uv_offset = fb->offsets[1];
50470bb0
TU
2293 info->fb_modifier = fb->modifier[0];
2294
84fe03f7 2295 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
fe47ea0c 2296 fb->modifier[0], 0);
84fe03f7
TU
2297 tile_pitch = PAGE_SIZE / tile_height;
2298 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2299 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2300 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2301
89e3e142
TU
2302 if (info->pixel_format == DRM_FORMAT_NV12) {
2303 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2304 fb->modifier[0], 1);
2305 tile_pitch = PAGE_SIZE / tile_height;
2306 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2307 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2308 tile_height);
2309 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2310 PAGE_SIZE;
2311 }
2312
f64b98cd
TU
2313 return 0;
2314}
2315
4e9a86b6
VS
2316static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2317{
2318 if (INTEL_INFO(dev_priv)->gen >= 9)
2319 return 256 * 1024;
985b8bb4
VS
2320 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2321 IS_VALLEYVIEW(dev_priv))
4e9a86b6
VS
2322 return 128 * 1024;
2323 else if (INTEL_INFO(dev_priv)->gen >= 4)
2324 return 4 * 1024;
2325 else
44c5905e 2326 return 0;
4e9a86b6
VS
2327}
2328
127bd2ac 2329int
850c4cdc
TU
2330intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2331 struct drm_framebuffer *fb,
82bc3b2d 2332 const struct drm_plane_state *plane_state,
91af127f
JH
2333 struct intel_engine_cs *pipelined,
2334 struct drm_i915_gem_request **pipelined_request)
6b95a207 2335{
850c4cdc 2336 struct drm_device *dev = fb->dev;
ce453d81 2337 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2338 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2339 struct i915_ggtt_view view;
6b95a207
KH
2340 u32 alignment;
2341 int ret;
2342
ebcdd39e
MR
2343 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2344
7b911adc
TU
2345 switch (fb->modifier[0]) {
2346 case DRM_FORMAT_MOD_NONE:
4e9a86b6 2347 alignment = intel_linear_alignment(dev_priv);
6b95a207 2348 break;
7b911adc 2349 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2350 if (INTEL_INFO(dev)->gen >= 9)
2351 alignment = 256 * 1024;
2352 else {
2353 /* pin() will align the object as required by fence */
2354 alignment = 0;
2355 }
6b95a207 2356 break;
7b911adc 2357 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2358 case I915_FORMAT_MOD_Yf_TILED:
2359 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2360 "Y tiling bo slipped through, driver bug!\n"))
2361 return -EINVAL;
2362 alignment = 1 * 1024 * 1024;
2363 break;
6b95a207 2364 default:
7b911adc
TU
2365 MISSING_CASE(fb->modifier[0]);
2366 return -EINVAL;
6b95a207
KH
2367 }
2368
f64b98cd
TU
2369 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2370 if (ret)
2371 return ret;
2372
693db184
CW
2373 /* Note that the w/a also requires 64 PTE of padding following the
2374 * bo. We currently fill all unused PTE with the shadow page and so
2375 * we should always have valid PTE following the scanout preventing
2376 * the VT-d warning.
2377 */
2378 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2379 alignment = 256 * 1024;
2380
d6dd6843
PZ
2381 /*
2382 * Global gtt pte registers are special registers which actually forward
2383 * writes to a chunk of system memory. Which means that there is no risk
2384 * that the register values disappear as soon as we call
2385 * intel_runtime_pm_put(), so it is correct to wrap only the
2386 * pin/unpin/fence and not more.
2387 */
2388 intel_runtime_pm_get(dev_priv);
2389
ce453d81 2390 dev_priv->mm.interruptible = false;
e6617330 2391 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
91af127f 2392 pipelined_request, &view);
48b956c5 2393 if (ret)
ce453d81 2394 goto err_interruptible;
6b95a207
KH
2395
2396 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2397 * fence, whereas 965+ only requires a fence if using
2398 * framebuffer compression. For simplicity, we always install
2399 * a fence as the cost is not that onerous.
2400 */
9807216f
VK
2401 if (view.type == I915_GGTT_VIEW_NORMAL) {
2402 ret = i915_gem_object_get_fence(obj);
2403 if (ret == -EDEADLK) {
2404 /*
2405 * -EDEADLK means there are no free fences
2406 * no pending flips.
2407 *
2408 * This is propagated to atomic, but it uses
2409 * -EDEADLK to force a locking recovery, so
2410 * change the returned error to -EBUSY.
2411 */
2412 ret = -EBUSY;
2413 goto err_unpin;
2414 } else if (ret)
2415 goto err_unpin;
1690e1eb 2416
9807216f
VK
2417 i915_gem_object_pin_fence(obj);
2418 }
6b95a207 2419
ce453d81 2420 dev_priv->mm.interruptible = true;
d6dd6843 2421 intel_runtime_pm_put(dev_priv);
6b95a207 2422 return 0;
48b956c5
CW
2423
2424err_unpin:
f64b98cd 2425 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2426err_interruptible:
2427 dev_priv->mm.interruptible = true;
d6dd6843 2428 intel_runtime_pm_put(dev_priv);
48b956c5 2429 return ret;
6b95a207
KH
2430}
2431
82bc3b2d
TU
2432static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2433 const struct drm_plane_state *plane_state)
1690e1eb 2434{
82bc3b2d 2435 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2436 struct i915_ggtt_view view;
2437 int ret;
82bc3b2d 2438
ebcdd39e
MR
2439 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2440
f64b98cd
TU
2441 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2442 WARN_ONCE(ret, "Couldn't get view from plane state!");
2443
9807216f
VK
2444 if (view.type == I915_GGTT_VIEW_NORMAL)
2445 i915_gem_object_unpin_fence(obj);
2446
f64b98cd 2447 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2448}
2449
c2c75131
DV
2450/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2451 * is assumed to be a power-of-two. */
4e9a86b6
VS
2452unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2453 int *x, int *y,
bc752862
CW
2454 unsigned int tiling_mode,
2455 unsigned int cpp,
2456 unsigned int pitch)
c2c75131 2457{
bc752862
CW
2458 if (tiling_mode != I915_TILING_NONE) {
2459 unsigned int tile_rows, tiles;
c2c75131 2460
bc752862
CW
2461 tile_rows = *y / 8;
2462 *y %= 8;
c2c75131 2463
bc752862
CW
2464 tiles = *x / (512/cpp);
2465 *x %= 512/cpp;
2466
2467 return tile_rows * pitch * 8 + tiles * 4096;
2468 } else {
4e9a86b6 2469 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
bc752862
CW
2470 unsigned int offset;
2471
2472 offset = *y * pitch + *x * cpp;
4e9a86b6
VS
2473 *y = (offset & alignment) / pitch;
2474 *x = ((offset & alignment) - *y * pitch) / cpp;
2475 return offset & ~alignment;
bc752862 2476 }
c2c75131
DV
2477}
2478
b35d63fa 2479static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2480{
2481 switch (format) {
2482 case DISPPLANE_8BPP:
2483 return DRM_FORMAT_C8;
2484 case DISPPLANE_BGRX555:
2485 return DRM_FORMAT_XRGB1555;
2486 case DISPPLANE_BGRX565:
2487 return DRM_FORMAT_RGB565;
2488 default:
2489 case DISPPLANE_BGRX888:
2490 return DRM_FORMAT_XRGB8888;
2491 case DISPPLANE_RGBX888:
2492 return DRM_FORMAT_XBGR8888;
2493 case DISPPLANE_BGRX101010:
2494 return DRM_FORMAT_XRGB2101010;
2495 case DISPPLANE_RGBX101010:
2496 return DRM_FORMAT_XBGR2101010;
2497 }
2498}
2499
bc8d7dff
DL
2500static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2501{
2502 switch (format) {
2503 case PLANE_CTL_FORMAT_RGB_565:
2504 return DRM_FORMAT_RGB565;
2505 default:
2506 case PLANE_CTL_FORMAT_XRGB_8888:
2507 if (rgb_order) {
2508 if (alpha)
2509 return DRM_FORMAT_ABGR8888;
2510 else
2511 return DRM_FORMAT_XBGR8888;
2512 } else {
2513 if (alpha)
2514 return DRM_FORMAT_ARGB8888;
2515 else
2516 return DRM_FORMAT_XRGB8888;
2517 }
2518 case PLANE_CTL_FORMAT_XRGB_2101010:
2519 if (rgb_order)
2520 return DRM_FORMAT_XBGR2101010;
2521 else
2522 return DRM_FORMAT_XRGB2101010;
2523 }
2524}
2525
5724dbd1 2526static bool
f6936e29
DV
2527intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2528 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2529{
2530 struct drm_device *dev = crtc->base.dev;
3badb49f 2531 struct drm_i915_private *dev_priv = to_i915(dev);
46f297fb
JB
2532 struct drm_i915_gem_object *obj = NULL;
2533 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2534 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2535 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2536 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2537 PAGE_SIZE);
2538
2539 size_aligned -= base_aligned;
46f297fb 2540
ff2652ea
CW
2541 if (plane_config->size == 0)
2542 return false;
2543
3badb49f
PZ
2544 /* If the FB is too big, just don't use it since fbdev is not very
2545 * important and we should probably use that space with FBC or other
2546 * features. */
2547 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2548 return false;
2549
f37b5c2b
DV
2550 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2551 base_aligned,
2552 base_aligned,
2553 size_aligned);
46f297fb 2554 if (!obj)
484b41dd 2555 return false;
46f297fb 2556
49af449b
DL
2557 obj->tiling_mode = plane_config->tiling;
2558 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2559 obj->stride = fb->pitches[0];
46f297fb 2560
6bf129df
DL
2561 mode_cmd.pixel_format = fb->pixel_format;
2562 mode_cmd.width = fb->width;
2563 mode_cmd.height = fb->height;
2564 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2565 mode_cmd.modifier[0] = fb->modifier[0];
2566 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2567
2568 mutex_lock(&dev->struct_mutex);
6bf129df 2569 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2570 &mode_cmd, obj)) {
46f297fb
JB
2571 DRM_DEBUG_KMS("intel fb init failed\n");
2572 goto out_unref_obj;
2573 }
46f297fb 2574 mutex_unlock(&dev->struct_mutex);
484b41dd 2575
f6936e29 2576 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2577 return true;
46f297fb
JB
2578
2579out_unref_obj:
2580 drm_gem_object_unreference(&obj->base);
2581 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2582 return false;
2583}
2584
afd65eb4
MR
2585/* Update plane->state->fb to match plane->fb after driver-internal updates */
2586static void
2587update_state_fb(struct drm_plane *plane)
2588{
2589 if (plane->fb == plane->state->fb)
2590 return;
2591
2592 if (plane->state->fb)
2593 drm_framebuffer_unreference(plane->state->fb);
2594 plane->state->fb = plane->fb;
2595 if (plane->state->fb)
2596 drm_framebuffer_reference(plane->state->fb);
2597}
2598
5724dbd1 2599static void
f6936e29
DV
2600intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2601 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2602{
2603 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2604 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2605 struct drm_crtc *c;
2606 struct intel_crtc *i;
2ff8fde1 2607 struct drm_i915_gem_object *obj;
88595ac9 2608 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2609 struct drm_plane_state *plane_state = primary->state;
88595ac9 2610 struct drm_framebuffer *fb;
484b41dd 2611
2d14030b 2612 if (!plane_config->fb)
484b41dd
JB
2613 return;
2614
f6936e29 2615 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2616 fb = &plane_config->fb->base;
2617 goto valid_fb;
f55548b5 2618 }
484b41dd 2619
2d14030b 2620 kfree(plane_config->fb);
484b41dd
JB
2621
2622 /*
2623 * Failed to alloc the obj, check to see if we should share
2624 * an fb with another CRTC instead
2625 */
70e1e0ec 2626 for_each_crtc(dev, c) {
484b41dd
JB
2627 i = to_intel_crtc(c);
2628
2629 if (c == &intel_crtc->base)
2630 continue;
2631
2ff8fde1
MR
2632 if (!i->active)
2633 continue;
2634
88595ac9
DV
2635 fb = c->primary->fb;
2636 if (!fb)
484b41dd
JB
2637 continue;
2638
88595ac9 2639 obj = intel_fb_obj(fb);
2ff8fde1 2640 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2641 drm_framebuffer_reference(fb);
2642 goto valid_fb;
484b41dd
JB
2643 }
2644 }
88595ac9
DV
2645
2646 return;
2647
2648valid_fb:
be5651f2
ML
2649 plane_state->src_x = plane_state->src_y = 0;
2650 plane_state->src_w = fb->width << 16;
2651 plane_state->src_h = fb->height << 16;
2652
2653 plane_state->crtc_x = plane_state->src_y = 0;
2654 plane_state->crtc_w = fb->width;
2655 plane_state->crtc_h = fb->height;
2656
88595ac9
DV
2657 obj = intel_fb_obj(fb);
2658 if (obj->tiling_mode != I915_TILING_NONE)
2659 dev_priv->preserve_bios_swizzle = true;
2660
be5651f2
ML
2661 drm_framebuffer_reference(fb);
2662 primary->fb = primary->state->fb = fb;
36750f28 2663 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2664 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
a9ff8714 2665 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
46f297fb
JB
2666}
2667
29b9bde6
DV
2668static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2669 struct drm_framebuffer *fb,
2670 int x, int y)
81255565
JB
2671{
2672 struct drm_device *dev = crtc->dev;
2673 struct drm_i915_private *dev_priv = dev->dev_private;
2674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2675 struct drm_plane *primary = crtc->primary;
2676 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2677 struct drm_i915_gem_object *obj;
81255565 2678 int plane = intel_crtc->plane;
e506a0c6 2679 unsigned long linear_offset;
81255565 2680 u32 dspcntr;
f45651ba 2681 u32 reg = DSPCNTR(plane);
48404c1e 2682 int pixel_size;
f45651ba 2683
b70709a6 2684 if (!visible || !fb) {
fdd508a6
VS
2685 I915_WRITE(reg, 0);
2686 if (INTEL_INFO(dev)->gen >= 4)
2687 I915_WRITE(DSPSURF(plane), 0);
2688 else
2689 I915_WRITE(DSPADDR(plane), 0);
2690 POSTING_READ(reg);
2691 return;
2692 }
2693
c9ba6fad
VS
2694 obj = intel_fb_obj(fb);
2695 if (WARN_ON(obj == NULL))
2696 return;
2697
2698 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2699
f45651ba
VS
2700 dspcntr = DISPPLANE_GAMMA_ENABLE;
2701
fdd508a6 2702 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2703
2704 if (INTEL_INFO(dev)->gen < 4) {
2705 if (intel_crtc->pipe == PIPE_B)
2706 dspcntr |= DISPPLANE_SEL_PIPE_B;
2707
2708 /* pipesrc and dspsize control the size that is scaled from,
2709 * which should always be the user's requested size.
2710 */
2711 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2712 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2713 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2714 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2715 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2716 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2717 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2718 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2719 I915_WRITE(PRIMPOS(plane), 0);
2720 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2721 }
81255565 2722
57779d06
VS
2723 switch (fb->pixel_format) {
2724 case DRM_FORMAT_C8:
81255565
JB
2725 dspcntr |= DISPPLANE_8BPP;
2726 break;
57779d06 2727 case DRM_FORMAT_XRGB1555:
57779d06 2728 dspcntr |= DISPPLANE_BGRX555;
81255565 2729 break;
57779d06
VS
2730 case DRM_FORMAT_RGB565:
2731 dspcntr |= DISPPLANE_BGRX565;
2732 break;
2733 case DRM_FORMAT_XRGB8888:
57779d06
VS
2734 dspcntr |= DISPPLANE_BGRX888;
2735 break;
2736 case DRM_FORMAT_XBGR8888:
57779d06
VS
2737 dspcntr |= DISPPLANE_RGBX888;
2738 break;
2739 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2740 dspcntr |= DISPPLANE_BGRX101010;
2741 break;
2742 case DRM_FORMAT_XBGR2101010:
57779d06 2743 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2744 break;
2745 default:
baba133a 2746 BUG();
81255565 2747 }
57779d06 2748
f45651ba
VS
2749 if (INTEL_INFO(dev)->gen >= 4 &&
2750 obj->tiling_mode != I915_TILING_NONE)
2751 dspcntr |= DISPPLANE_TILED;
81255565 2752
de1aa629
VS
2753 if (IS_G4X(dev))
2754 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2755
b9897127 2756 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2757
c2c75131
DV
2758 if (INTEL_INFO(dev)->gen >= 4) {
2759 intel_crtc->dspaddr_offset =
4e9a86b6
VS
2760 intel_gen4_compute_page_offset(dev_priv,
2761 &x, &y, obj->tiling_mode,
b9897127 2762 pixel_size,
bc752862 2763 fb->pitches[0]);
c2c75131
DV
2764 linear_offset -= intel_crtc->dspaddr_offset;
2765 } else {
e506a0c6 2766 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2767 }
e506a0c6 2768
8e7d688b 2769 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2770 dspcntr |= DISPPLANE_ROTATE_180;
2771
6e3c9717
ACO
2772 x += (intel_crtc->config->pipe_src_w - 1);
2773 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2774
2775 /* Finding the last pixel of the last line of the display
2776 data and adding to linear_offset*/
2777 linear_offset +=
6e3c9717
ACO
2778 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2779 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2780 }
2781
2db3366b
PZ
2782 intel_crtc->adjusted_x = x;
2783 intel_crtc->adjusted_y = y;
2784
48404c1e
SJ
2785 I915_WRITE(reg, dspcntr);
2786
01f2c773 2787 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2788 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2789 I915_WRITE(DSPSURF(plane),
2790 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2791 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2792 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2793 } else
f343c5f6 2794 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2795 POSTING_READ(reg);
17638cd6
JB
2796}
2797
29b9bde6
DV
2798static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2799 struct drm_framebuffer *fb,
2800 int x, int y)
17638cd6
JB
2801{
2802 struct drm_device *dev = crtc->dev;
2803 struct drm_i915_private *dev_priv = dev->dev_private;
2804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2805 struct drm_plane *primary = crtc->primary;
2806 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2807 struct drm_i915_gem_object *obj;
17638cd6 2808 int plane = intel_crtc->plane;
e506a0c6 2809 unsigned long linear_offset;
17638cd6 2810 u32 dspcntr;
f45651ba 2811 u32 reg = DSPCNTR(plane);
48404c1e 2812 int pixel_size;
f45651ba 2813
b70709a6 2814 if (!visible || !fb) {
fdd508a6
VS
2815 I915_WRITE(reg, 0);
2816 I915_WRITE(DSPSURF(plane), 0);
2817 POSTING_READ(reg);
2818 return;
2819 }
2820
c9ba6fad
VS
2821 obj = intel_fb_obj(fb);
2822 if (WARN_ON(obj == NULL))
2823 return;
2824
2825 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2826
f45651ba
VS
2827 dspcntr = DISPPLANE_GAMMA_ENABLE;
2828
fdd508a6 2829 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2830
2831 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2832 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2833
57779d06
VS
2834 switch (fb->pixel_format) {
2835 case DRM_FORMAT_C8:
17638cd6
JB
2836 dspcntr |= DISPPLANE_8BPP;
2837 break;
57779d06
VS
2838 case DRM_FORMAT_RGB565:
2839 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2840 break;
57779d06 2841 case DRM_FORMAT_XRGB8888:
57779d06
VS
2842 dspcntr |= DISPPLANE_BGRX888;
2843 break;
2844 case DRM_FORMAT_XBGR8888:
57779d06
VS
2845 dspcntr |= DISPPLANE_RGBX888;
2846 break;
2847 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2848 dspcntr |= DISPPLANE_BGRX101010;
2849 break;
2850 case DRM_FORMAT_XBGR2101010:
57779d06 2851 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2852 break;
2853 default:
baba133a 2854 BUG();
17638cd6
JB
2855 }
2856
2857 if (obj->tiling_mode != I915_TILING_NONE)
2858 dspcntr |= DISPPLANE_TILED;
17638cd6 2859
f45651ba 2860 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2861 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2862
b9897127 2863 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2864 intel_crtc->dspaddr_offset =
4e9a86b6
VS
2865 intel_gen4_compute_page_offset(dev_priv,
2866 &x, &y, obj->tiling_mode,
b9897127 2867 pixel_size,
bc752862 2868 fb->pitches[0]);
c2c75131 2869 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2870 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2871 dspcntr |= DISPPLANE_ROTATE_180;
2872
2873 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2874 x += (intel_crtc->config->pipe_src_w - 1);
2875 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2876
2877 /* Finding the last pixel of the last line of the display
2878 data and adding to linear_offset*/
2879 linear_offset +=
6e3c9717
ACO
2880 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2881 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2882 }
2883 }
2884
2db3366b
PZ
2885 intel_crtc->adjusted_x = x;
2886 intel_crtc->adjusted_y = y;
2887
48404c1e 2888 I915_WRITE(reg, dspcntr);
17638cd6 2889
01f2c773 2890 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2891 I915_WRITE(DSPSURF(plane),
2892 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2893 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2894 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2895 } else {
2896 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2897 I915_WRITE(DSPLINOFF(plane), linear_offset);
2898 }
17638cd6 2899 POSTING_READ(reg);
17638cd6
JB
2900}
2901
b321803d
DL
2902u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2903 uint32_t pixel_format)
2904{
2905 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2906
2907 /*
2908 * The stride is either expressed as a multiple of 64 bytes
2909 * chunks for linear buffers or in number of tiles for tiled
2910 * buffers.
2911 */
2912 switch (fb_modifier) {
2913 case DRM_FORMAT_MOD_NONE:
2914 return 64;
2915 case I915_FORMAT_MOD_X_TILED:
2916 if (INTEL_INFO(dev)->gen == 2)
2917 return 128;
2918 return 512;
2919 case I915_FORMAT_MOD_Y_TILED:
2920 /* No need to check for old gens and Y tiling since this is
2921 * about the display engine and those will be blocked before
2922 * we get here.
2923 */
2924 return 128;
2925 case I915_FORMAT_MOD_Yf_TILED:
2926 if (bits_per_pixel == 8)
2927 return 64;
2928 else
2929 return 128;
2930 default:
2931 MISSING_CASE(fb_modifier);
2932 return 64;
2933 }
2934}
2935
121920fa 2936unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
dedf278c
TU
2937 struct drm_i915_gem_object *obj,
2938 unsigned int plane)
121920fa 2939{
9abc4648 2940 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
dedf278c
TU
2941 struct i915_vma *vma;
2942 unsigned char *offset;
121920fa
TU
2943
2944 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
9abc4648 2945 view = &i915_ggtt_view_rotated;
121920fa 2946
dedf278c
TU
2947 vma = i915_gem_obj_to_ggtt_view(obj, view);
2948 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2949 view->type))
2950 return -1;
2951
2952 offset = (unsigned char *)vma->node.start;
2953
2954 if (plane == 1) {
2955 offset += vma->ggtt_view.rotation_info.uv_start_page *
2956 PAGE_SIZE;
2957 }
2958
2959 return (unsigned long)offset;
121920fa
TU
2960}
2961
e435d6e5
ML
2962static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2963{
2964 struct drm_device *dev = intel_crtc->base.dev;
2965 struct drm_i915_private *dev_priv = dev->dev_private;
2966
2967 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2968 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2969 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
2970}
2971
a1b2278e
CK
2972/*
2973 * This function detaches (aka. unbinds) unused scalers in hardware
2974 */
0583236e 2975static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 2976{
a1b2278e
CK
2977 struct intel_crtc_scaler_state *scaler_state;
2978 int i;
2979
a1b2278e
CK
2980 scaler_state = &intel_crtc->config->scaler_state;
2981
2982 /* loop through and disable scalers that aren't in use */
2983 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
2984 if (!scaler_state->scalers[i].in_use)
2985 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
2986 }
2987}
2988
6156a456 2989u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2990{
6156a456 2991 switch (pixel_format) {
d161cf7a 2992 case DRM_FORMAT_C8:
c34ce3d1 2993 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2994 case DRM_FORMAT_RGB565:
c34ce3d1 2995 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2996 case DRM_FORMAT_XBGR8888:
c34ce3d1 2997 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2998 case DRM_FORMAT_XRGB8888:
c34ce3d1 2999 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
3000 /*
3001 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3002 * to be already pre-multiplied. We need to add a knob (or a different
3003 * DRM_FORMAT) for user-space to configure that.
3004 */
f75fb42a 3005 case DRM_FORMAT_ABGR8888:
c34ce3d1 3006 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 3007 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 3008 case DRM_FORMAT_ARGB8888:
c34ce3d1 3009 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 3010 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 3011 case DRM_FORMAT_XRGB2101010:
c34ce3d1 3012 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 3013 case DRM_FORMAT_XBGR2101010:
c34ce3d1 3014 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 3015 case DRM_FORMAT_YUYV:
c34ce3d1 3016 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 3017 case DRM_FORMAT_YVYU:
c34ce3d1 3018 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 3019 case DRM_FORMAT_UYVY:
c34ce3d1 3020 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 3021 case DRM_FORMAT_VYUY:
c34ce3d1 3022 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 3023 default:
4249eeef 3024 MISSING_CASE(pixel_format);
70d21f0e 3025 }
8cfcba41 3026
c34ce3d1 3027 return 0;
6156a456 3028}
70d21f0e 3029
6156a456
CK
3030u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3031{
6156a456 3032 switch (fb_modifier) {
30af77c4 3033 case DRM_FORMAT_MOD_NONE:
70d21f0e 3034 break;
30af77c4 3035 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 3036 return PLANE_CTL_TILED_X;
b321803d 3037 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 3038 return PLANE_CTL_TILED_Y;
b321803d 3039 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 3040 return PLANE_CTL_TILED_YF;
70d21f0e 3041 default:
6156a456 3042 MISSING_CASE(fb_modifier);
70d21f0e 3043 }
8cfcba41 3044
c34ce3d1 3045 return 0;
6156a456 3046}
70d21f0e 3047
6156a456
CK
3048u32 skl_plane_ctl_rotation(unsigned int rotation)
3049{
3b7a5119 3050 switch (rotation) {
6156a456
CK
3051 case BIT(DRM_ROTATE_0):
3052 break;
1e8df167
SJ
3053 /*
3054 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3055 * while i915 HW rotation is clockwise, thats why this swapping.
3056 */
3b7a5119 3057 case BIT(DRM_ROTATE_90):
1e8df167 3058 return PLANE_CTL_ROTATE_270;
3b7a5119 3059 case BIT(DRM_ROTATE_180):
c34ce3d1 3060 return PLANE_CTL_ROTATE_180;
3b7a5119 3061 case BIT(DRM_ROTATE_270):
1e8df167 3062 return PLANE_CTL_ROTATE_90;
6156a456
CK
3063 default:
3064 MISSING_CASE(rotation);
3065 }
3066
c34ce3d1 3067 return 0;
6156a456
CK
3068}
3069
3070static void skylake_update_primary_plane(struct drm_crtc *crtc,
3071 struct drm_framebuffer *fb,
3072 int x, int y)
3073{
3074 struct drm_device *dev = crtc->dev;
3075 struct drm_i915_private *dev_priv = dev->dev_private;
3076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
3077 struct drm_plane *plane = crtc->primary;
3078 bool visible = to_intel_plane_state(plane->state)->visible;
6156a456
CK
3079 struct drm_i915_gem_object *obj;
3080 int pipe = intel_crtc->pipe;
3081 u32 plane_ctl, stride_div, stride;
3082 u32 tile_height, plane_offset, plane_size;
3083 unsigned int rotation;
3084 int x_offset, y_offset;
3085 unsigned long surf_addr;
6156a456
CK
3086 struct intel_crtc_state *crtc_state = intel_crtc->config;
3087 struct intel_plane_state *plane_state;
3088 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3089 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3090 int scaler_id = -1;
3091
6156a456
CK
3092 plane_state = to_intel_plane_state(plane->state);
3093
b70709a6 3094 if (!visible || !fb) {
6156a456
CK
3095 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3096 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3097 POSTING_READ(PLANE_CTL(pipe, 0));
3098 return;
3b7a5119 3099 }
70d21f0e 3100
6156a456
CK
3101 plane_ctl = PLANE_CTL_ENABLE |
3102 PLANE_CTL_PIPE_GAMMA_ENABLE |
3103 PLANE_CTL_PIPE_CSC_ENABLE;
3104
3105 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3106 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3107 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3108
3109 rotation = plane->state->rotation;
3110 plane_ctl |= skl_plane_ctl_rotation(rotation);
3111
b321803d
DL
3112 obj = intel_fb_obj(fb);
3113 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3114 fb->pixel_format);
dedf278c 3115 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3b7a5119 3116
a42e5a23
PZ
3117 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3118
3119 scaler_id = plane_state->scaler_id;
3120 src_x = plane_state->src.x1 >> 16;
3121 src_y = plane_state->src.y1 >> 16;
3122 src_w = drm_rect_width(&plane_state->src) >> 16;
3123 src_h = drm_rect_height(&plane_state->src) >> 16;
3124 dst_x = plane_state->dst.x1;
3125 dst_y = plane_state->dst.y1;
3126 dst_w = drm_rect_width(&plane_state->dst);
3127 dst_h = drm_rect_height(&plane_state->dst);
3128
3129 WARN_ON(x != src_x || y != src_y);
6156a456 3130
3b7a5119
SJ
3131 if (intel_rotation_90_or_270(rotation)) {
3132 /* stride = Surface height in tiles */
2614f17d 3133 tile_height = intel_tile_height(dev, fb->pixel_format,
fe47ea0c 3134 fb->modifier[0], 0);
3b7a5119 3135 stride = DIV_ROUND_UP(fb->height, tile_height);
6156a456 3136 x_offset = stride * tile_height - y - src_h;
3b7a5119 3137 y_offset = x;
6156a456 3138 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3139 } else {
3140 stride = fb->pitches[0] / stride_div;
3141 x_offset = x;
3142 y_offset = y;
6156a456 3143 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3144 }
3145 plane_offset = y_offset << 16 | x_offset;
b321803d 3146
2db3366b
PZ
3147 intel_crtc->adjusted_x = x_offset;
3148 intel_crtc->adjusted_y = y_offset;
3149
70d21f0e 3150 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3151 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3152 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3153 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3154
3155 if (scaler_id >= 0) {
3156 uint32_t ps_ctrl = 0;
3157
3158 WARN_ON(!dst_w || !dst_h);
3159 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3160 crtc_state->scaler_state.scalers[scaler_id].mode;
3161 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3162 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3163 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3164 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3165 I915_WRITE(PLANE_POS(pipe, 0), 0);
3166 } else {
3167 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3168 }
3169
121920fa 3170 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3171
3172 POSTING_READ(PLANE_SURF(pipe, 0));
3173}
3174
17638cd6
JB
3175/* Assume fb object is pinned & idle & fenced and just update base pointers */
3176static int
3177intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3178 int x, int y, enum mode_set_atomic state)
3179{
3180 struct drm_device *dev = crtc->dev;
3181 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3182
ff2a3117 3183 if (dev_priv->fbc.disable_fbc)
7733b49b 3184 dev_priv->fbc.disable_fbc(dev_priv);
81255565 3185
29b9bde6
DV
3186 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3187
3188 return 0;
81255565
JB
3189}
3190
7514747d 3191static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3192{
96a02917
VS
3193 struct drm_crtc *crtc;
3194
70e1e0ec 3195 for_each_crtc(dev, crtc) {
96a02917
VS
3196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3197 enum plane plane = intel_crtc->plane;
3198
3199 intel_prepare_page_flip(dev, plane);
3200 intel_finish_page_flip_plane(dev, plane);
3201 }
7514747d
VS
3202}
3203
3204static void intel_update_primary_planes(struct drm_device *dev)
3205{
7514747d 3206 struct drm_crtc *crtc;
96a02917 3207
70e1e0ec 3208 for_each_crtc(dev, crtc) {
11c22da6
ML
3209 struct intel_plane *plane = to_intel_plane(crtc->primary);
3210 struct intel_plane_state *plane_state;
96a02917 3211
11c22da6
ML
3212 drm_modeset_lock_crtc(crtc, &plane->base);
3213
3214 plane_state = to_intel_plane_state(plane->base.state);
3215
3216 if (plane_state->base.fb)
3217 plane->commit_plane(&plane->base, plane_state);
3218
3219 drm_modeset_unlock_crtc(crtc);
96a02917
VS
3220 }
3221}
3222
7514747d
VS
3223void intel_prepare_reset(struct drm_device *dev)
3224{
3225 /* no reset support for gen2 */
3226 if (IS_GEN2(dev))
3227 return;
3228
3229 /* reset doesn't touch the display */
3230 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3231 return;
3232
3233 drm_modeset_lock_all(dev);
f98ce92f
VS
3234 /*
3235 * Disabling the crtcs gracefully seems nicer. Also the
3236 * g33 docs say we should at least disable all the planes.
3237 */
6b72d486 3238 intel_display_suspend(dev);
7514747d
VS
3239}
3240
3241void intel_finish_reset(struct drm_device *dev)
3242{
3243 struct drm_i915_private *dev_priv = to_i915(dev);
3244
3245 /*
3246 * Flips in the rings will be nuked by the reset,
3247 * so complete all pending flips so that user space
3248 * will get its events and not get stuck.
3249 */
3250 intel_complete_page_flips(dev);
3251
3252 /* no reset support for gen2 */
3253 if (IS_GEN2(dev))
3254 return;
3255
3256 /* reset doesn't touch the display */
3257 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3258 /*
3259 * Flips in the rings have been nuked by the reset,
3260 * so update the base address of all primary
3261 * planes to the the last fb to make sure we're
3262 * showing the correct fb after a reset.
11c22da6
ML
3263 *
3264 * FIXME: Atomic will make this obsolete since we won't schedule
3265 * CS-based flips (which might get lost in gpu resets) any more.
7514747d
VS
3266 */
3267 intel_update_primary_planes(dev);
3268 return;
3269 }
3270
3271 /*
3272 * The display has been reset as well,
3273 * so need a full re-initialization.
3274 */
3275 intel_runtime_pm_disable_interrupts(dev_priv);
3276 intel_runtime_pm_enable_interrupts(dev_priv);
3277
3278 intel_modeset_init_hw(dev);
3279
3280 spin_lock_irq(&dev_priv->irq_lock);
3281 if (dev_priv->display.hpd_irq_setup)
3282 dev_priv->display.hpd_irq_setup(dev);
3283 spin_unlock_irq(&dev_priv->irq_lock);
3284
043e9bda 3285 intel_display_resume(dev);
7514747d
VS
3286
3287 intel_hpd_init(dev_priv);
3288
3289 drm_modeset_unlock_all(dev);
3290}
3291
2e2f351d 3292static void
14667a4b
CW
3293intel_finish_fb(struct drm_framebuffer *old_fb)
3294{
2ff8fde1 3295 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2e2f351d 3296 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14667a4b
CW
3297 bool was_interruptible = dev_priv->mm.interruptible;
3298 int ret;
3299
14667a4b
CW
3300 /* Big Hammer, we also need to ensure that any pending
3301 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3302 * current scanout is retired before unpinning the old
2e2f351d
CW
3303 * framebuffer. Note that we rely on userspace rendering
3304 * into the buffer attached to the pipe they are waiting
3305 * on. If not, userspace generates a GPU hang with IPEHR
3306 * point to the MI_WAIT_FOR_EVENT.
14667a4b
CW
3307 *
3308 * This should only fail upon a hung GPU, in which case we
3309 * can safely continue.
3310 */
3311 dev_priv->mm.interruptible = false;
2e2f351d 3312 ret = i915_gem_object_wait_rendering(obj, true);
14667a4b
CW
3313 dev_priv->mm.interruptible = was_interruptible;
3314
2e2f351d 3315 WARN_ON(ret);
14667a4b
CW
3316}
3317
7d5e3799
CW
3318static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3319{
3320 struct drm_device *dev = crtc->dev;
3321 struct drm_i915_private *dev_priv = dev->dev_private;
3322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3323 bool pending;
3324
3325 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3326 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3327 return false;
3328
5e2d7afc 3329 spin_lock_irq(&dev->event_lock);
7d5e3799 3330 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3331 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3332
3333 return pending;
3334}
3335
bfd16b2a
ML
3336static void intel_update_pipe_config(struct intel_crtc *crtc,
3337 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3338{
3339 struct drm_device *dev = crtc->base.dev;
3340 struct drm_i915_private *dev_priv = dev->dev_private;
bfd16b2a
ML
3341 struct intel_crtc_state *pipe_config =
3342 to_intel_crtc_state(crtc->base.state);
e30e8f75 3343
bfd16b2a
ML
3344 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3345 crtc->base.mode = crtc->base.state->mode;
3346
3347 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3348 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3349 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75 3350
44522d85
ML
3351 if (HAS_DDI(dev))
3352 intel_set_pipe_csc(&crtc->base);
e30e8f75
GP
3353
3354 /*
3355 * Update pipe size and adjust fitter if needed: the reason for this is
3356 * that in compute_mode_changes we check the native mode (not the pfit
3357 * mode) to see if we can flip rather than do a full mode set. In the
3358 * fastboot case, we'll flip, but if we don't update the pipesrc and
3359 * pfit state, we'll end up with a big fb scanned out into the wrong
3360 * sized surface.
e30e8f75
GP
3361 */
3362
e30e8f75 3363 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3364 ((pipe_config->pipe_src_w - 1) << 16) |
3365 (pipe_config->pipe_src_h - 1));
3366
3367 /* on skylake this is done by detaching scalers */
3368 if (INTEL_INFO(dev)->gen >= 9) {
3369 skl_detach_scalers(crtc);
3370
3371 if (pipe_config->pch_pfit.enabled)
3372 skylake_pfit_enable(crtc);
3373 } else if (HAS_PCH_SPLIT(dev)) {
3374 if (pipe_config->pch_pfit.enabled)
3375 ironlake_pfit_enable(crtc);
3376 else if (old_crtc_state->pch_pfit.enabled)
3377 ironlake_pfit_disable(crtc, true);
e30e8f75 3378 }
e30e8f75
GP
3379}
3380
5e84e1a4
ZW
3381static void intel_fdi_normal_train(struct drm_crtc *crtc)
3382{
3383 struct drm_device *dev = crtc->dev;
3384 struct drm_i915_private *dev_priv = dev->dev_private;
3385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386 int pipe = intel_crtc->pipe;
3387 u32 reg, temp;
3388
3389 /* enable normal train */
3390 reg = FDI_TX_CTL(pipe);
3391 temp = I915_READ(reg);
61e499bf 3392 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3393 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3394 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3395 } else {
3396 temp &= ~FDI_LINK_TRAIN_NONE;
3397 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3398 }
5e84e1a4
ZW
3399 I915_WRITE(reg, temp);
3400
3401 reg = FDI_RX_CTL(pipe);
3402 temp = I915_READ(reg);
3403 if (HAS_PCH_CPT(dev)) {
3404 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3405 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3406 } else {
3407 temp &= ~FDI_LINK_TRAIN_NONE;
3408 temp |= FDI_LINK_TRAIN_NONE;
3409 }
3410 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3411
3412 /* wait one idle pattern time */
3413 POSTING_READ(reg);
3414 udelay(1000);
357555c0
JB
3415
3416 /* IVB wants error correction enabled */
3417 if (IS_IVYBRIDGE(dev))
3418 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3419 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3420}
3421
8db9d77b
ZW
3422/* The FDI link training functions for ILK/Ibexpeak. */
3423static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3424{
3425 struct drm_device *dev = crtc->dev;
3426 struct drm_i915_private *dev_priv = dev->dev_private;
3427 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3428 int pipe = intel_crtc->pipe;
5eddb70b 3429 u32 reg, temp, tries;
8db9d77b 3430
1c8562f6 3431 /* FDI needs bits from pipe first */
0fc932b8 3432 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3433
e1a44743
AJ
3434 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3435 for train result */
5eddb70b
CW
3436 reg = FDI_RX_IMR(pipe);
3437 temp = I915_READ(reg);
e1a44743
AJ
3438 temp &= ~FDI_RX_SYMBOL_LOCK;
3439 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3440 I915_WRITE(reg, temp);
3441 I915_READ(reg);
e1a44743
AJ
3442 udelay(150);
3443
8db9d77b 3444 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3445 reg = FDI_TX_CTL(pipe);
3446 temp = I915_READ(reg);
627eb5a3 3447 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3448 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3449 temp &= ~FDI_LINK_TRAIN_NONE;
3450 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3451 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3452
5eddb70b
CW
3453 reg = FDI_RX_CTL(pipe);
3454 temp = I915_READ(reg);
8db9d77b
ZW
3455 temp &= ~FDI_LINK_TRAIN_NONE;
3456 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3457 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3458
3459 POSTING_READ(reg);
8db9d77b
ZW
3460 udelay(150);
3461
5b2adf89 3462 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3463 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3464 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3465 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3466
5eddb70b 3467 reg = FDI_RX_IIR(pipe);
e1a44743 3468 for (tries = 0; tries < 5; tries++) {
5eddb70b 3469 temp = I915_READ(reg);
8db9d77b
ZW
3470 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3471
3472 if ((temp & FDI_RX_BIT_LOCK)) {
3473 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3474 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3475 break;
3476 }
8db9d77b 3477 }
e1a44743 3478 if (tries == 5)
5eddb70b 3479 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3480
3481 /* Train 2 */
5eddb70b
CW
3482 reg = FDI_TX_CTL(pipe);
3483 temp = I915_READ(reg);
8db9d77b
ZW
3484 temp &= ~FDI_LINK_TRAIN_NONE;
3485 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3486 I915_WRITE(reg, temp);
8db9d77b 3487
5eddb70b
CW
3488 reg = FDI_RX_CTL(pipe);
3489 temp = I915_READ(reg);
8db9d77b
ZW
3490 temp &= ~FDI_LINK_TRAIN_NONE;
3491 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3492 I915_WRITE(reg, temp);
8db9d77b 3493
5eddb70b
CW
3494 POSTING_READ(reg);
3495 udelay(150);
8db9d77b 3496
5eddb70b 3497 reg = FDI_RX_IIR(pipe);
e1a44743 3498 for (tries = 0; tries < 5; tries++) {
5eddb70b 3499 temp = I915_READ(reg);
8db9d77b
ZW
3500 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3501
3502 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3503 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3504 DRM_DEBUG_KMS("FDI train 2 done.\n");
3505 break;
3506 }
8db9d77b 3507 }
e1a44743 3508 if (tries == 5)
5eddb70b 3509 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3510
3511 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3512
8db9d77b
ZW
3513}
3514
0206e353 3515static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3516 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3517 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3518 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3519 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3520};
3521
3522/* The FDI link training functions for SNB/Cougarpoint. */
3523static void gen6_fdi_link_train(struct drm_crtc *crtc)
3524{
3525 struct drm_device *dev = crtc->dev;
3526 struct drm_i915_private *dev_priv = dev->dev_private;
3527 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3528 int pipe = intel_crtc->pipe;
fa37d39e 3529 u32 reg, temp, i, retry;
8db9d77b 3530
e1a44743
AJ
3531 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3532 for train result */
5eddb70b
CW
3533 reg = FDI_RX_IMR(pipe);
3534 temp = I915_READ(reg);
e1a44743
AJ
3535 temp &= ~FDI_RX_SYMBOL_LOCK;
3536 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3537 I915_WRITE(reg, temp);
3538
3539 POSTING_READ(reg);
e1a44743
AJ
3540 udelay(150);
3541
8db9d77b 3542 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3543 reg = FDI_TX_CTL(pipe);
3544 temp = I915_READ(reg);
627eb5a3 3545 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3546 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3547 temp &= ~FDI_LINK_TRAIN_NONE;
3548 temp |= FDI_LINK_TRAIN_PATTERN_1;
3549 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3550 /* SNB-B */
3551 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3552 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3553
d74cf324
DV
3554 I915_WRITE(FDI_RX_MISC(pipe),
3555 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3556
5eddb70b
CW
3557 reg = FDI_RX_CTL(pipe);
3558 temp = I915_READ(reg);
8db9d77b
ZW
3559 if (HAS_PCH_CPT(dev)) {
3560 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3561 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3562 } else {
3563 temp &= ~FDI_LINK_TRAIN_NONE;
3564 temp |= FDI_LINK_TRAIN_PATTERN_1;
3565 }
5eddb70b
CW
3566 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3567
3568 POSTING_READ(reg);
8db9d77b
ZW
3569 udelay(150);
3570
0206e353 3571 for (i = 0; i < 4; i++) {
5eddb70b
CW
3572 reg = FDI_TX_CTL(pipe);
3573 temp = I915_READ(reg);
8db9d77b
ZW
3574 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3575 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3576 I915_WRITE(reg, temp);
3577
3578 POSTING_READ(reg);
8db9d77b
ZW
3579 udelay(500);
3580
fa37d39e
SP
3581 for (retry = 0; retry < 5; retry++) {
3582 reg = FDI_RX_IIR(pipe);
3583 temp = I915_READ(reg);
3584 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3585 if (temp & FDI_RX_BIT_LOCK) {
3586 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3587 DRM_DEBUG_KMS("FDI train 1 done.\n");
3588 break;
3589 }
3590 udelay(50);
8db9d77b 3591 }
fa37d39e
SP
3592 if (retry < 5)
3593 break;
8db9d77b
ZW
3594 }
3595 if (i == 4)
5eddb70b 3596 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3597
3598 /* Train 2 */
5eddb70b
CW
3599 reg = FDI_TX_CTL(pipe);
3600 temp = I915_READ(reg);
8db9d77b
ZW
3601 temp &= ~FDI_LINK_TRAIN_NONE;
3602 temp |= FDI_LINK_TRAIN_PATTERN_2;
3603 if (IS_GEN6(dev)) {
3604 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3605 /* SNB-B */
3606 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3607 }
5eddb70b 3608 I915_WRITE(reg, temp);
8db9d77b 3609
5eddb70b
CW
3610 reg = FDI_RX_CTL(pipe);
3611 temp = I915_READ(reg);
8db9d77b
ZW
3612 if (HAS_PCH_CPT(dev)) {
3613 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3614 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3615 } else {
3616 temp &= ~FDI_LINK_TRAIN_NONE;
3617 temp |= FDI_LINK_TRAIN_PATTERN_2;
3618 }
5eddb70b
CW
3619 I915_WRITE(reg, temp);
3620
3621 POSTING_READ(reg);
8db9d77b
ZW
3622 udelay(150);
3623
0206e353 3624 for (i = 0; i < 4; i++) {
5eddb70b
CW
3625 reg = FDI_TX_CTL(pipe);
3626 temp = I915_READ(reg);
8db9d77b
ZW
3627 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3628 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3629 I915_WRITE(reg, temp);
3630
3631 POSTING_READ(reg);
8db9d77b
ZW
3632 udelay(500);
3633
fa37d39e
SP
3634 for (retry = 0; retry < 5; retry++) {
3635 reg = FDI_RX_IIR(pipe);
3636 temp = I915_READ(reg);
3637 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3638 if (temp & FDI_RX_SYMBOL_LOCK) {
3639 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3640 DRM_DEBUG_KMS("FDI train 2 done.\n");
3641 break;
3642 }
3643 udelay(50);
8db9d77b 3644 }
fa37d39e
SP
3645 if (retry < 5)
3646 break;
8db9d77b
ZW
3647 }
3648 if (i == 4)
5eddb70b 3649 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3650
3651 DRM_DEBUG_KMS("FDI train done.\n");
3652}
3653
357555c0
JB
3654/* Manual link training for Ivy Bridge A0 parts */
3655static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3656{
3657 struct drm_device *dev = crtc->dev;
3658 struct drm_i915_private *dev_priv = dev->dev_private;
3659 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3660 int pipe = intel_crtc->pipe;
139ccd3f 3661 u32 reg, temp, i, j;
357555c0
JB
3662
3663 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3664 for train result */
3665 reg = FDI_RX_IMR(pipe);
3666 temp = I915_READ(reg);
3667 temp &= ~FDI_RX_SYMBOL_LOCK;
3668 temp &= ~FDI_RX_BIT_LOCK;
3669 I915_WRITE(reg, temp);
3670
3671 POSTING_READ(reg);
3672 udelay(150);
3673
01a415fd
DV
3674 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3675 I915_READ(FDI_RX_IIR(pipe)));
3676
139ccd3f
JB
3677 /* Try each vswing and preemphasis setting twice before moving on */
3678 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3679 /* disable first in case we need to retry */
3680 reg = FDI_TX_CTL(pipe);
3681 temp = I915_READ(reg);
3682 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3683 temp &= ~FDI_TX_ENABLE;
3684 I915_WRITE(reg, temp);
357555c0 3685
139ccd3f
JB
3686 reg = FDI_RX_CTL(pipe);
3687 temp = I915_READ(reg);
3688 temp &= ~FDI_LINK_TRAIN_AUTO;
3689 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3690 temp &= ~FDI_RX_ENABLE;
3691 I915_WRITE(reg, temp);
357555c0 3692
139ccd3f 3693 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3694 reg = FDI_TX_CTL(pipe);
3695 temp = I915_READ(reg);
139ccd3f 3696 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3697 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3698 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3699 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3700 temp |= snb_b_fdi_train_param[j/2];
3701 temp |= FDI_COMPOSITE_SYNC;
3702 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3703
139ccd3f
JB
3704 I915_WRITE(FDI_RX_MISC(pipe),
3705 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3706
139ccd3f 3707 reg = FDI_RX_CTL(pipe);
357555c0 3708 temp = I915_READ(reg);
139ccd3f
JB
3709 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3710 temp |= FDI_COMPOSITE_SYNC;
3711 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3712
139ccd3f
JB
3713 POSTING_READ(reg);
3714 udelay(1); /* should be 0.5us */
357555c0 3715
139ccd3f
JB
3716 for (i = 0; i < 4; i++) {
3717 reg = FDI_RX_IIR(pipe);
3718 temp = I915_READ(reg);
3719 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3720
139ccd3f
JB
3721 if (temp & FDI_RX_BIT_LOCK ||
3722 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3723 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3724 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3725 i);
3726 break;
3727 }
3728 udelay(1); /* should be 0.5us */
3729 }
3730 if (i == 4) {
3731 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3732 continue;
3733 }
357555c0 3734
139ccd3f 3735 /* Train 2 */
357555c0
JB
3736 reg = FDI_TX_CTL(pipe);
3737 temp = I915_READ(reg);
139ccd3f
JB
3738 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3739 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3740 I915_WRITE(reg, temp);
3741
3742 reg = FDI_RX_CTL(pipe);
3743 temp = I915_READ(reg);
3744 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3745 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3746 I915_WRITE(reg, temp);
3747
3748 POSTING_READ(reg);
139ccd3f 3749 udelay(2); /* should be 1.5us */
357555c0 3750
139ccd3f
JB
3751 for (i = 0; i < 4; i++) {
3752 reg = FDI_RX_IIR(pipe);
3753 temp = I915_READ(reg);
3754 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3755
139ccd3f
JB
3756 if (temp & FDI_RX_SYMBOL_LOCK ||
3757 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3758 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3759 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3760 i);
3761 goto train_done;
3762 }
3763 udelay(2); /* should be 1.5us */
357555c0 3764 }
139ccd3f
JB
3765 if (i == 4)
3766 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3767 }
357555c0 3768
139ccd3f 3769train_done:
357555c0
JB
3770 DRM_DEBUG_KMS("FDI train done.\n");
3771}
3772
88cefb6c 3773static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3774{
88cefb6c 3775 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3776 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3777 int pipe = intel_crtc->pipe;
5eddb70b 3778 u32 reg, temp;
79e53945 3779
c64e311e 3780
c98e9dcf 3781 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3782 reg = FDI_RX_CTL(pipe);
3783 temp = I915_READ(reg);
627eb5a3 3784 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3785 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3786 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3787 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3788
3789 POSTING_READ(reg);
c98e9dcf
JB
3790 udelay(200);
3791
3792 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3793 temp = I915_READ(reg);
3794 I915_WRITE(reg, temp | FDI_PCDCLK);
3795
3796 POSTING_READ(reg);
c98e9dcf
JB
3797 udelay(200);
3798
20749730
PZ
3799 /* Enable CPU FDI TX PLL, always on for Ironlake */
3800 reg = FDI_TX_CTL(pipe);
3801 temp = I915_READ(reg);
3802 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3803 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3804
20749730
PZ
3805 POSTING_READ(reg);
3806 udelay(100);
6be4a607 3807 }
0e23b99d
JB
3808}
3809
88cefb6c
DV
3810static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3811{
3812 struct drm_device *dev = intel_crtc->base.dev;
3813 struct drm_i915_private *dev_priv = dev->dev_private;
3814 int pipe = intel_crtc->pipe;
3815 u32 reg, temp;
3816
3817 /* Switch from PCDclk to Rawclk */
3818 reg = FDI_RX_CTL(pipe);
3819 temp = I915_READ(reg);
3820 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3821
3822 /* Disable CPU FDI TX PLL */
3823 reg = FDI_TX_CTL(pipe);
3824 temp = I915_READ(reg);
3825 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3826
3827 POSTING_READ(reg);
3828 udelay(100);
3829
3830 reg = FDI_RX_CTL(pipe);
3831 temp = I915_READ(reg);
3832 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3833
3834 /* Wait for the clocks to turn off. */
3835 POSTING_READ(reg);
3836 udelay(100);
3837}
3838
0fc932b8
JB
3839static void ironlake_fdi_disable(struct drm_crtc *crtc)
3840{
3841 struct drm_device *dev = crtc->dev;
3842 struct drm_i915_private *dev_priv = dev->dev_private;
3843 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3844 int pipe = intel_crtc->pipe;
3845 u32 reg, temp;
3846
3847 /* disable CPU FDI tx and PCH FDI rx */
3848 reg = FDI_TX_CTL(pipe);
3849 temp = I915_READ(reg);
3850 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3851 POSTING_READ(reg);
3852
3853 reg = FDI_RX_CTL(pipe);
3854 temp = I915_READ(reg);
3855 temp &= ~(0x7 << 16);
dfd07d72 3856 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3857 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3858
3859 POSTING_READ(reg);
3860 udelay(100);
3861
3862 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3863 if (HAS_PCH_IBX(dev))
6f06ce18 3864 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3865
3866 /* still set train pattern 1 */
3867 reg = FDI_TX_CTL(pipe);
3868 temp = I915_READ(reg);
3869 temp &= ~FDI_LINK_TRAIN_NONE;
3870 temp |= FDI_LINK_TRAIN_PATTERN_1;
3871 I915_WRITE(reg, temp);
3872
3873 reg = FDI_RX_CTL(pipe);
3874 temp = I915_READ(reg);
3875 if (HAS_PCH_CPT(dev)) {
3876 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3877 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3878 } else {
3879 temp &= ~FDI_LINK_TRAIN_NONE;
3880 temp |= FDI_LINK_TRAIN_PATTERN_1;
3881 }
3882 /* BPC in FDI rx is consistent with that in PIPECONF */
3883 temp &= ~(0x07 << 16);
dfd07d72 3884 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3885 I915_WRITE(reg, temp);
3886
3887 POSTING_READ(reg);
3888 udelay(100);
3889}
3890
5dce5b93
CW
3891bool intel_has_pending_fb_unpin(struct drm_device *dev)
3892{
3893 struct intel_crtc *crtc;
3894
3895 /* Note that we don't need to be called with mode_config.lock here
3896 * as our list of CRTC objects is static for the lifetime of the
3897 * device and so cannot disappear as we iterate. Similarly, we can
3898 * happily treat the predicates as racy, atomic checks as userspace
3899 * cannot claim and pin a new fb without at least acquring the
3900 * struct_mutex and so serialising with us.
3901 */
d3fcc808 3902 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3903 if (atomic_read(&crtc->unpin_work_count) == 0)
3904 continue;
3905
3906 if (crtc->unpin_work)
3907 intel_wait_for_vblank(dev, crtc->pipe);
3908
3909 return true;
3910 }
3911
3912 return false;
3913}
3914
d6bbafa1
CW
3915static void page_flip_completed(struct intel_crtc *intel_crtc)
3916{
3917 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3918 struct intel_unpin_work *work = intel_crtc->unpin_work;
3919
3920 /* ensure that the unpin work is consistent wrt ->pending. */
3921 smp_rmb();
3922 intel_crtc->unpin_work = NULL;
3923
3924 if (work->event)
3925 drm_send_vblank_event(intel_crtc->base.dev,
3926 intel_crtc->pipe,
3927 work->event);
3928
3929 drm_crtc_vblank_put(&intel_crtc->base);
3930
3931 wake_up_all(&dev_priv->pending_flip_queue);
3932 queue_work(dev_priv->wq, &work->work);
3933
3934 trace_i915_flip_complete(intel_crtc->plane,
3935 work->pending_flip_obj);
3936}
3937
46a55d30 3938void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3939{
0f91128d 3940 struct drm_device *dev = crtc->dev;
5bb61643 3941 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3942
2c10d571 3943 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3944 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3945 !intel_crtc_has_pending_flip(crtc),
3946 60*HZ) == 0)) {
3947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3948
5e2d7afc 3949 spin_lock_irq(&dev->event_lock);
9c787942
CW
3950 if (intel_crtc->unpin_work) {
3951 WARN_ONCE(1, "Removing stuck page flip\n");
3952 page_flip_completed(intel_crtc);
3953 }
5e2d7afc 3954 spin_unlock_irq(&dev->event_lock);
9c787942 3955 }
5bb61643 3956
975d568a
CW
3957 if (crtc->primary->fb) {
3958 mutex_lock(&dev->struct_mutex);
3959 intel_finish_fb(crtc->primary->fb);
3960 mutex_unlock(&dev->struct_mutex);
3961 }
e6c3a2a6
CW
3962}
3963
e615efe4
ED
3964/* Program iCLKIP clock to the desired frequency */
3965static void lpt_program_iclkip(struct drm_crtc *crtc)
3966{
3967 struct drm_device *dev = crtc->dev;
3968 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3969 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3970 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3971 u32 temp;
3972
a580516d 3973 mutex_lock(&dev_priv->sb_lock);
09153000 3974
e615efe4
ED
3975 /* It is necessary to ungate the pixclk gate prior to programming
3976 * the divisors, and gate it back when it is done.
3977 */
3978 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3979
3980 /* Disable SSCCTL */
3981 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3982 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3983 SBI_SSCCTL_DISABLE,
3984 SBI_ICLK);
e615efe4
ED
3985
3986 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3987 if (clock == 20000) {
e615efe4
ED
3988 auxdiv = 1;
3989 divsel = 0x41;
3990 phaseinc = 0x20;
3991 } else {
3992 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3993 * but the adjusted_mode->crtc_clock in in KHz. To get the
3994 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3995 * convert the virtual clock precision to KHz here for higher
3996 * precision.
3997 */
3998 u32 iclk_virtual_root_freq = 172800 * 1000;
3999 u32 iclk_pi_range = 64;
4000 u32 desired_divisor, msb_divisor_value, pi_value;
4001
12d7ceed 4002 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
4003 msb_divisor_value = desired_divisor / iclk_pi_range;
4004 pi_value = desired_divisor % iclk_pi_range;
4005
4006 auxdiv = 0;
4007 divsel = msb_divisor_value - 2;
4008 phaseinc = pi_value;
4009 }
4010
4011 /* This should not happen with any sane values */
4012 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4013 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4014 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4015 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4016
4017 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 4018 clock,
e615efe4
ED
4019 auxdiv,
4020 divsel,
4021 phasedir,
4022 phaseinc);
4023
4024 /* Program SSCDIVINTPHASE6 */
988d6ee8 4025 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
4026 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4027 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4028 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4029 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4030 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4031 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 4032 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
4033
4034 /* Program SSCAUXDIV */
988d6ee8 4035 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
4036 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4037 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 4038 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
4039
4040 /* Enable modulator and associated divider */
988d6ee8 4041 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 4042 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 4043 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
4044
4045 /* Wait for initialization time */
4046 udelay(24);
4047
4048 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000 4049
a580516d 4050 mutex_unlock(&dev_priv->sb_lock);
e615efe4
ED
4051}
4052
275f01b2
DV
4053static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4054 enum pipe pch_transcoder)
4055{
4056 struct drm_device *dev = crtc->base.dev;
4057 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4058 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4059
4060 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4061 I915_READ(HTOTAL(cpu_transcoder)));
4062 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4063 I915_READ(HBLANK(cpu_transcoder)));
4064 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4065 I915_READ(HSYNC(cpu_transcoder)));
4066
4067 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4068 I915_READ(VTOTAL(cpu_transcoder)));
4069 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4070 I915_READ(VBLANK(cpu_transcoder)));
4071 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4072 I915_READ(VSYNC(cpu_transcoder)));
4073 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4074 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4075}
4076
003632d9 4077static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4078{
4079 struct drm_i915_private *dev_priv = dev->dev_private;
4080 uint32_t temp;
4081
4082 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4083 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4084 return;
4085
4086 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4087 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4088
003632d9
ACO
4089 temp &= ~FDI_BC_BIFURCATION_SELECT;
4090 if (enable)
4091 temp |= FDI_BC_BIFURCATION_SELECT;
4092
4093 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4094 I915_WRITE(SOUTH_CHICKEN1, temp);
4095 POSTING_READ(SOUTH_CHICKEN1);
4096}
4097
4098static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4099{
4100 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4101
4102 switch (intel_crtc->pipe) {
4103 case PIPE_A:
4104 break;
4105 case PIPE_B:
6e3c9717 4106 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4107 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4108 else
003632d9 4109 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4110
4111 break;
4112 case PIPE_C:
003632d9 4113 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4114
4115 break;
4116 default:
4117 BUG();
4118 }
4119}
4120
f67a559d
JB
4121/*
4122 * Enable PCH resources required for PCH ports:
4123 * - PCH PLLs
4124 * - FDI training & RX/TX
4125 * - update transcoder timings
4126 * - DP transcoding bits
4127 * - transcoder
4128 */
4129static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4130{
4131 struct drm_device *dev = crtc->dev;
4132 struct drm_i915_private *dev_priv = dev->dev_private;
4133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4134 int pipe = intel_crtc->pipe;
ee7b9f93 4135 u32 reg, temp;
2c07245f 4136
ab9412ba 4137 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4138
1fbc0d78
DV
4139 if (IS_IVYBRIDGE(dev))
4140 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4141
cd986abb
DV
4142 /* Write the TU size bits before fdi link training, so that error
4143 * detection works. */
4144 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4145 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4146
c98e9dcf 4147 /* For PCH output, training FDI link */
674cf967 4148 dev_priv->display.fdi_link_train(crtc);
2c07245f 4149
3ad8a208
DV
4150 /* We need to program the right clock selection before writing the pixel
4151 * mutliplier into the DPLL. */
303b81e0 4152 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4153 u32 sel;
4b645f14 4154
c98e9dcf 4155 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4156 temp |= TRANS_DPLL_ENABLE(pipe);
4157 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4158 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4159 temp |= sel;
4160 else
4161 temp &= ~sel;
c98e9dcf 4162 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4163 }
5eddb70b 4164
3ad8a208
DV
4165 /* XXX: pch pll's can be enabled any time before we enable the PCH
4166 * transcoder, and we actually should do this to not upset any PCH
4167 * transcoder that already use the clock when we share it.
4168 *
4169 * Note that enable_shared_dpll tries to do the right thing, but
4170 * get_shared_dpll unconditionally resets the pll - we need that to have
4171 * the right LVDS enable sequence. */
85b3894f 4172 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4173
d9b6cb56
JB
4174 /* set transcoder timing, panel must allow it */
4175 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4176 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4177
303b81e0 4178 intel_fdi_normal_train(crtc);
5e84e1a4 4179
c98e9dcf 4180 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4181 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4182 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4183 reg = TRANS_DP_CTL(pipe);
4184 temp = I915_READ(reg);
4185 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4186 TRANS_DP_SYNC_MASK |
4187 TRANS_DP_BPC_MASK);
e3ef4479 4188 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4189 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4190
4191 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4192 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4193 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4194 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4195
4196 switch (intel_trans_dp_port_sel(crtc)) {
4197 case PCH_DP_B:
5eddb70b 4198 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4199 break;
4200 case PCH_DP_C:
5eddb70b 4201 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4202 break;
4203 case PCH_DP_D:
5eddb70b 4204 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4205 break;
4206 default:
e95d41e1 4207 BUG();
32f9d658 4208 }
2c07245f 4209
5eddb70b 4210 I915_WRITE(reg, temp);
6be4a607 4211 }
b52eb4dc 4212
b8a4f404 4213 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4214}
4215
1507e5bd
PZ
4216static void lpt_pch_enable(struct drm_crtc *crtc)
4217{
4218 struct drm_device *dev = crtc->dev;
4219 struct drm_i915_private *dev_priv = dev->dev_private;
4220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4221 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4222
ab9412ba 4223 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4224
8c52b5e8 4225 lpt_program_iclkip(crtc);
1507e5bd 4226
0540e488 4227 /* Set transcoder timing. */
275f01b2 4228 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4229
937bb610 4230 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4231}
4232
190f68c5
ACO
4233struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4234 struct intel_crtc_state *crtc_state)
ee7b9f93 4235{
e2b78267 4236 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4237 struct intel_shared_dpll *pll;
de419ab6 4238 struct intel_shared_dpll_config *shared_dpll;
e2b78267 4239 enum intel_dpll_id i;
ee7b9f93 4240
de419ab6
ML
4241 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4242
98b6bd99
DV
4243 if (HAS_PCH_IBX(dev_priv->dev)) {
4244 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4245 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4246 pll = &dev_priv->shared_dplls[i];
98b6bd99 4247
46edb027
DV
4248 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4249 crtc->base.base.id, pll->name);
98b6bd99 4250
de419ab6 4251 WARN_ON(shared_dpll[i].crtc_mask);
f2a69f44 4252
98b6bd99
DV
4253 goto found;
4254 }
4255
bcddf610
S
4256 if (IS_BROXTON(dev_priv->dev)) {
4257 /* PLL is attached to port in bxt */
4258 struct intel_encoder *encoder;
4259 struct intel_digital_port *intel_dig_port;
4260
4261 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4262 if (WARN_ON(!encoder))
4263 return NULL;
4264
4265 intel_dig_port = enc_to_dig_port(&encoder->base);
4266 /* 1:1 mapping between ports and PLLs */
4267 i = (enum intel_dpll_id)intel_dig_port->port;
4268 pll = &dev_priv->shared_dplls[i];
4269 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4270 crtc->base.base.id, pll->name);
de419ab6 4271 WARN_ON(shared_dpll[i].crtc_mask);
bcddf610
S
4272
4273 goto found;
4274 }
4275
e72f9fbf
DV
4276 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4277 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4278
4279 /* Only want to check enabled timings first */
de419ab6 4280 if (shared_dpll[i].crtc_mask == 0)
ee7b9f93
JB
4281 continue;
4282
190f68c5 4283 if (memcmp(&crtc_state->dpll_hw_state,
de419ab6
ML
4284 &shared_dpll[i].hw_state,
4285 sizeof(crtc_state->dpll_hw_state)) == 0) {
8bd31e67 4286 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4287 crtc->base.base.id, pll->name,
de419ab6 4288 shared_dpll[i].crtc_mask,
8bd31e67 4289 pll->active);
ee7b9f93
JB
4290 goto found;
4291 }
4292 }
4293
4294 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4295 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4296 pll = &dev_priv->shared_dplls[i];
de419ab6 4297 if (shared_dpll[i].crtc_mask == 0) {
46edb027
DV
4298 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4299 crtc->base.base.id, pll->name);
ee7b9f93
JB
4300 goto found;
4301 }
4302 }
4303
4304 return NULL;
4305
4306found:
de419ab6
ML
4307 if (shared_dpll[i].crtc_mask == 0)
4308 shared_dpll[i].hw_state =
4309 crtc_state->dpll_hw_state;
f2a69f44 4310
190f68c5 4311 crtc_state->shared_dpll = i;
46edb027
DV
4312 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4313 pipe_name(crtc->pipe));
ee7b9f93 4314
de419ab6 4315 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
e04c7350 4316
ee7b9f93
JB
4317 return pll;
4318}
4319
de419ab6 4320static void intel_shared_dpll_commit(struct drm_atomic_state *state)
8bd31e67 4321{
de419ab6
ML
4322 struct drm_i915_private *dev_priv = to_i915(state->dev);
4323 struct intel_shared_dpll_config *shared_dpll;
8bd31e67
ACO
4324 struct intel_shared_dpll *pll;
4325 enum intel_dpll_id i;
4326
de419ab6
ML
4327 if (!to_intel_atomic_state(state)->dpll_set)
4328 return;
8bd31e67 4329
de419ab6 4330 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
8bd31e67
ACO
4331 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4332 pll = &dev_priv->shared_dplls[i];
de419ab6 4333 pll->config = shared_dpll[i];
8bd31e67
ACO
4334 }
4335}
4336
a1520318 4337static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4338{
4339 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4340 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4341 u32 temp;
4342
4343 temp = I915_READ(dslreg);
4344 udelay(500);
4345 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4346 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4347 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4348 }
4349}
4350
86adf9d7
ML
4351static int
4352skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4353 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4354 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4355{
86adf9d7
ML
4356 struct intel_crtc_scaler_state *scaler_state =
4357 &crtc_state->scaler_state;
4358 struct intel_crtc *intel_crtc =
4359 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4360 int need_scaling;
6156a456
CK
4361
4362 need_scaling = intel_rotation_90_or_270(rotation) ?
4363 (src_h != dst_w || src_w != dst_h):
4364 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4365
4366 /*
4367 * if plane is being disabled or scaler is no more required or force detach
4368 * - free scaler binded to this plane/crtc
4369 * - in order to do this, update crtc->scaler_usage
4370 *
4371 * Here scaler state in crtc_state is set free so that
4372 * scaler can be assigned to other user. Actual register
4373 * update to free the scaler is done in plane/panel-fit programming.
4374 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4375 */
86adf9d7 4376 if (force_detach || !need_scaling) {
a1b2278e 4377 if (*scaler_id >= 0) {
86adf9d7 4378 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4379 scaler_state->scalers[*scaler_id].in_use = 0;
4380
86adf9d7
ML
4381 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4382 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4383 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4384 scaler_state->scaler_users);
4385 *scaler_id = -1;
4386 }
4387 return 0;
4388 }
4389
4390 /* range checks */
4391 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4392 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4393
4394 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4395 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4396 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4397 "size is out of scaler range\n",
86adf9d7 4398 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4399 return -EINVAL;
4400 }
4401
86adf9d7
ML
4402 /* mark this plane as a scaler user in crtc_state */
4403 scaler_state->scaler_users |= (1 << scaler_user);
4404 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4405 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4406 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4407 scaler_state->scaler_users);
4408
4409 return 0;
4410}
4411
4412/**
4413 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4414 *
4415 * @state: crtc's scaler state
86adf9d7
ML
4416 *
4417 * Return
4418 * 0 - scaler_usage updated successfully
4419 * error - requested scaling cannot be supported or other error condition
4420 */
e435d6e5 4421int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4422{
4423 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4424 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7
ML
4425
4426 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4427 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4428
e435d6e5 4429 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
86adf9d7
ML
4430 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4431 state->pipe_src_w, state->pipe_src_h,
aad941d5 4432 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4433}
4434
4435/**
4436 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4437 *
4438 * @state: crtc's scaler state
86adf9d7
ML
4439 * @plane_state: atomic plane state to update
4440 *
4441 * Return
4442 * 0 - scaler_usage updated successfully
4443 * error - requested scaling cannot be supported or other error condition
4444 */
da20eabd
ML
4445static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4446 struct intel_plane_state *plane_state)
86adf9d7
ML
4447{
4448
4449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4450 struct intel_plane *intel_plane =
4451 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4452 struct drm_framebuffer *fb = plane_state->base.fb;
4453 int ret;
4454
4455 bool force_detach = !fb || !plane_state->visible;
4456
4457 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4458 intel_plane->base.base.id, intel_crtc->pipe,
4459 drm_plane_index(&intel_plane->base));
4460
4461 ret = skl_update_scaler(crtc_state, force_detach,
4462 drm_plane_index(&intel_plane->base),
4463 &plane_state->scaler_id,
4464 plane_state->base.rotation,
4465 drm_rect_width(&plane_state->src) >> 16,
4466 drm_rect_height(&plane_state->src) >> 16,
4467 drm_rect_width(&plane_state->dst),
4468 drm_rect_height(&plane_state->dst));
4469
4470 if (ret || plane_state->scaler_id < 0)
4471 return ret;
4472
a1b2278e 4473 /* check colorkey */
818ed961 4474 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
86adf9d7 4475 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
818ed961 4476 intel_plane->base.base.id);
a1b2278e
CK
4477 return -EINVAL;
4478 }
4479
4480 /* Check src format */
86adf9d7
ML
4481 switch (fb->pixel_format) {
4482 case DRM_FORMAT_RGB565:
4483 case DRM_FORMAT_XBGR8888:
4484 case DRM_FORMAT_XRGB8888:
4485 case DRM_FORMAT_ABGR8888:
4486 case DRM_FORMAT_ARGB8888:
4487 case DRM_FORMAT_XRGB2101010:
4488 case DRM_FORMAT_XBGR2101010:
4489 case DRM_FORMAT_YUYV:
4490 case DRM_FORMAT_YVYU:
4491 case DRM_FORMAT_UYVY:
4492 case DRM_FORMAT_VYUY:
4493 break;
4494 default:
4495 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4496 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4497 return -EINVAL;
a1b2278e
CK
4498 }
4499
a1b2278e
CK
4500 return 0;
4501}
4502
e435d6e5
ML
4503static void skylake_scaler_disable(struct intel_crtc *crtc)
4504{
4505 int i;
4506
4507 for (i = 0; i < crtc->num_scalers; i++)
4508 skl_detach_scaler(crtc, i);
4509}
4510
4511static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4512{
4513 struct drm_device *dev = crtc->base.dev;
4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 int pipe = crtc->pipe;
a1b2278e
CK
4516 struct intel_crtc_scaler_state *scaler_state =
4517 &crtc->config->scaler_state;
4518
4519 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4520
6e3c9717 4521 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4522 int id;
4523
4524 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4525 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4526 return;
4527 }
4528
4529 id = scaler_state->scaler_id;
4530 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4531 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4532 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4533 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4534
4535 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4536 }
4537}
4538
b074cec8
JB
4539static void ironlake_pfit_enable(struct intel_crtc *crtc)
4540{
4541 struct drm_device *dev = crtc->base.dev;
4542 struct drm_i915_private *dev_priv = dev->dev_private;
4543 int pipe = crtc->pipe;
4544
6e3c9717 4545 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4546 /* Force use of hard-coded filter coefficients
4547 * as some pre-programmed values are broken,
4548 * e.g. x201.
4549 */
4550 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4551 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4552 PF_PIPE_SEL_IVB(pipe));
4553 else
4554 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4555 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4556 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4557 }
4558}
4559
20bc8673 4560void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4561{
cea165c3
VS
4562 struct drm_device *dev = crtc->base.dev;
4563 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4564
6e3c9717 4565 if (!crtc->config->ips_enabled)
d77e4531
PZ
4566 return;
4567
cea165c3
VS
4568 /* We can only enable IPS after we enable a plane and wait for a vblank */
4569 intel_wait_for_vblank(dev, crtc->pipe);
4570
d77e4531 4571 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4572 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4573 mutex_lock(&dev_priv->rps.hw_lock);
4574 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4575 mutex_unlock(&dev_priv->rps.hw_lock);
4576 /* Quoting Art Runyan: "its not safe to expect any particular
4577 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4578 * mailbox." Moreover, the mailbox may return a bogus state,
4579 * so we need to just enable it and continue on.
2a114cc1
BW
4580 */
4581 } else {
4582 I915_WRITE(IPS_CTL, IPS_ENABLE);
4583 /* The bit only becomes 1 in the next vblank, so this wait here
4584 * is essentially intel_wait_for_vblank. If we don't have this
4585 * and don't wait for vblanks until the end of crtc_enable, then
4586 * the HW state readout code will complain that the expected
4587 * IPS_CTL value is not the one we read. */
4588 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4589 DRM_ERROR("Timed out waiting for IPS enable\n");
4590 }
d77e4531
PZ
4591}
4592
20bc8673 4593void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4594{
4595 struct drm_device *dev = crtc->base.dev;
4596 struct drm_i915_private *dev_priv = dev->dev_private;
4597
6e3c9717 4598 if (!crtc->config->ips_enabled)
d77e4531
PZ
4599 return;
4600
4601 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4602 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4603 mutex_lock(&dev_priv->rps.hw_lock);
4604 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4605 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4606 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4607 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4608 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4609 } else {
2a114cc1 4610 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4611 POSTING_READ(IPS_CTL);
4612 }
d77e4531
PZ
4613
4614 /* We need to wait for a vblank before we can disable the plane. */
4615 intel_wait_for_vblank(dev, crtc->pipe);
4616}
4617
4618/** Loads the palette/gamma unit for the CRTC with the prepared values */
4619static void intel_crtc_load_lut(struct drm_crtc *crtc)
4620{
4621 struct drm_device *dev = crtc->dev;
4622 struct drm_i915_private *dev_priv = dev->dev_private;
4623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4624 enum pipe pipe = intel_crtc->pipe;
d77e4531
PZ
4625 int i;
4626 bool reenable_ips = false;
4627
4628 /* The clocks have to be on to load the palette. */
53d9f4e9 4629 if (!crtc->state->active)
d77e4531
PZ
4630 return;
4631
50360403 4632 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
409ee761 4633 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4634 assert_dsi_pll_enabled(dev_priv);
4635 else
4636 assert_pll_enabled(dev_priv, pipe);
4637 }
4638
d77e4531
PZ
4639 /* Workaround : Do not read or write the pipe palette/gamma data while
4640 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4641 */
6e3c9717 4642 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4643 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4644 GAMMA_MODE_MODE_SPLIT)) {
4645 hsw_disable_ips(intel_crtc);
4646 reenable_ips = true;
4647 }
4648
4649 for (i = 0; i < 256; i++) {
f65a9c5b
VS
4650 u32 palreg;
4651
4652 if (HAS_GMCH_DISPLAY(dev))
4653 palreg = PALETTE(pipe, i);
4654 else
4655 palreg = LGC_PALETTE(pipe, i);
4656
4657 I915_WRITE(palreg,
d77e4531
PZ
4658 (intel_crtc->lut_r[i] << 16) |
4659 (intel_crtc->lut_g[i] << 8) |
4660 intel_crtc->lut_b[i]);
4661 }
4662
4663 if (reenable_ips)
4664 hsw_enable_ips(intel_crtc);
4665}
4666
7cac945f 4667static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4668{
7cac945f 4669 if (intel_crtc->overlay) {
d3eedb1a
VS
4670 struct drm_device *dev = intel_crtc->base.dev;
4671 struct drm_i915_private *dev_priv = dev->dev_private;
4672
4673 mutex_lock(&dev->struct_mutex);
4674 dev_priv->mm.interruptible = false;
4675 (void) intel_overlay_switch_off(intel_crtc->overlay);
4676 dev_priv->mm.interruptible = true;
4677 mutex_unlock(&dev->struct_mutex);
4678 }
4679
4680 /* Let userspace switch the overlay on again. In most cases userspace
4681 * has to recompute where to put it anyway.
4682 */
4683}
4684
87d4300a
ML
4685/**
4686 * intel_post_enable_primary - Perform operations after enabling primary plane
4687 * @crtc: the CRTC whose primary plane was just enabled
4688 *
4689 * Performs potentially sleeping operations that must be done after the primary
4690 * plane is enabled, such as updating FBC and IPS. Note that this may be
4691 * called due to an explicit primary plane update, or due to an implicit
4692 * re-enable that is caused when a sprite plane is updated to no longer
4693 * completely hide the primary plane.
4694 */
4695static void
4696intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4697{
4698 struct drm_device *dev = crtc->dev;
87d4300a 4699 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4701 int pipe = intel_crtc->pipe;
a5c4d7bc 4702
87d4300a
ML
4703 /*
4704 * BDW signals flip done immediately if the plane
4705 * is disabled, even if the plane enable is already
4706 * armed to occur at the next vblank :(
4707 */
4708 if (IS_BROADWELL(dev))
4709 intel_wait_for_vblank(dev, pipe);
a5c4d7bc 4710
87d4300a
ML
4711 /*
4712 * FIXME IPS should be fine as long as one plane is
4713 * enabled, but in practice it seems to have problems
4714 * when going from primary only to sprite only and vice
4715 * versa.
4716 */
a5c4d7bc
VS
4717 hsw_enable_ips(intel_crtc);
4718
f99d7069 4719 /*
87d4300a
ML
4720 * Gen2 reports pipe underruns whenever all planes are disabled.
4721 * So don't enable underrun reporting before at least some planes
4722 * are enabled.
4723 * FIXME: Need to fix the logic to work when we turn off all planes
4724 * but leave the pipe running.
f99d7069 4725 */
87d4300a
ML
4726 if (IS_GEN2(dev))
4727 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4728
4729 /* Underruns don't raise interrupts, so check manually. */
4730 if (HAS_GMCH_DISPLAY(dev))
4731 i9xx_check_fifo_underruns(dev_priv);
a5c4d7bc
VS
4732}
4733
87d4300a
ML
4734/**
4735 * intel_pre_disable_primary - Perform operations before disabling primary plane
4736 * @crtc: the CRTC whose primary plane is to be disabled
4737 *
4738 * Performs potentially sleeping operations that must be done before the
4739 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4740 * be called due to an explicit primary plane update, or due to an implicit
4741 * disable that is caused when a sprite plane completely hides the primary
4742 * plane.
4743 */
4744static void
4745intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4746{
4747 struct drm_device *dev = crtc->dev;
4748 struct drm_i915_private *dev_priv = dev->dev_private;
4749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4750 int pipe = intel_crtc->pipe;
a5c4d7bc 4751
87d4300a
ML
4752 /*
4753 * Gen2 reports pipe underruns whenever all planes are disabled.
4754 * So diasble underrun reporting before all the planes get disabled.
4755 * FIXME: Need to fix the logic to work when we turn off all planes
4756 * but leave the pipe running.
4757 */
4758 if (IS_GEN2(dev))
4759 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4760
87d4300a
ML
4761 /*
4762 * Vblank time updates from the shadow to live plane control register
4763 * are blocked if the memory self-refresh mode is active at that
4764 * moment. So to make sure the plane gets truly disabled, disable
4765 * first the self-refresh mode. The self-refresh enable bit in turn
4766 * will be checked/applied by the HW only at the next frame start
4767 * event which is after the vblank start event, so we need to have a
4768 * wait-for-vblank between disabling the plane and the pipe.
4769 */
262cd2e1 4770 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 4771 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
4772 dev_priv->wm.vlv.cxsr = false;
4773 intel_wait_for_vblank(dev, pipe);
4774 }
87d4300a 4775
87d4300a
ML
4776 /*
4777 * FIXME IPS should be fine as long as one plane is
4778 * enabled, but in practice it seems to have problems
4779 * when going from primary only to sprite only and vice
4780 * versa.
4781 */
a5c4d7bc 4782 hsw_disable_ips(intel_crtc);
87d4300a
ML
4783}
4784
ac21b225
ML
4785static void intel_post_plane_update(struct intel_crtc *crtc)
4786{
4787 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4788 struct drm_device *dev = crtc->base.dev;
7733b49b 4789 struct drm_i915_private *dev_priv = dev->dev_private;
ac21b225
ML
4790 struct drm_plane *plane;
4791
4792 if (atomic->wait_vblank)
4793 intel_wait_for_vblank(dev, crtc->pipe);
4794
4795 intel_frontbuffer_flip(dev, atomic->fb_bits);
4796
852eb00d
VS
4797 if (atomic->disable_cxsr)
4798 crtc->wm.cxsr_allowed = true;
4799
f015c551
VS
4800 if (crtc->atomic.update_wm_post)
4801 intel_update_watermarks(&crtc->base);
4802
c80ac854 4803 if (atomic->update_fbc)
7733b49b 4804 intel_fbc_update(dev_priv);
ac21b225
ML
4805
4806 if (atomic->post_enable_primary)
4807 intel_post_enable_primary(&crtc->base);
4808
4809 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4810 intel_update_sprite_watermarks(plane, &crtc->base,
4811 0, 0, 0, false, false);
4812
4813 memset(atomic, 0, sizeof(*atomic));
4814}
4815
4816static void intel_pre_plane_update(struct intel_crtc *crtc)
4817{
4818 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4819 struct drm_i915_private *dev_priv = dev->dev_private;
ac21b225
ML
4820 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4821 struct drm_plane *p;
4822
4823 /* Track fb's for any planes being disabled */
ac21b225
ML
4824 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4825 struct intel_plane *plane = to_intel_plane(p);
ac21b225
ML
4826
4827 mutex_lock(&dev->struct_mutex);
a9ff8714
VS
4828 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4829 plane->frontbuffer_bit);
ac21b225
ML
4830 mutex_unlock(&dev->struct_mutex);
4831 }
4832
4833 if (atomic->wait_for_flips)
4834 intel_crtc_wait_for_pending_flips(&crtc->base);
4835
c80ac854 4836 if (atomic->disable_fbc)
25ad93fd 4837 intel_fbc_disable_crtc(crtc);
ac21b225 4838
066cf55b
RV
4839 if (crtc->atomic.disable_ips)
4840 hsw_disable_ips(crtc);
4841
ac21b225
ML
4842 if (atomic->pre_disable_primary)
4843 intel_pre_disable_primary(&crtc->base);
852eb00d
VS
4844
4845 if (atomic->disable_cxsr) {
4846 crtc->wm.cxsr_allowed = false;
4847 intel_set_memory_cxsr(dev_priv, false);
4848 }
ac21b225
ML
4849}
4850
d032ffa0 4851static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4852{
4853 struct drm_device *dev = crtc->dev;
4854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4855 struct drm_plane *p;
87d4300a
ML
4856 int pipe = intel_crtc->pipe;
4857
7cac945f 4858 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4859
d032ffa0
ML
4860 drm_for_each_plane_mask(p, dev, plane_mask)
4861 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4862
f99d7069
DV
4863 /*
4864 * FIXME: Once we grow proper nuclear flip support out of this we need
4865 * to compute the mask of flip planes precisely. For the time being
4866 * consider this a flip to a NULL plane.
4867 */
4868 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4869}
4870
f67a559d
JB
4871static void ironlake_crtc_enable(struct drm_crtc *crtc)
4872{
4873 struct drm_device *dev = crtc->dev;
4874 struct drm_i915_private *dev_priv = dev->dev_private;
4875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4876 struct intel_encoder *encoder;
f67a559d 4877 int pipe = intel_crtc->pipe;
f67a559d 4878
53d9f4e9 4879 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4880 return;
4881
6e3c9717 4882 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4883 intel_prepare_shared_dpll(intel_crtc);
4884
6e3c9717 4885 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4886 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4887
4888 intel_set_pipe_timings(intel_crtc);
4889
6e3c9717 4890 if (intel_crtc->config->has_pch_encoder) {
29407aab 4891 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4892 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4893 }
4894
4895 ironlake_set_pipeconf(crtc);
4896
f67a559d 4897 intel_crtc->active = true;
8664281b 4898
a72e4c9f
DV
4899 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4900 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4901
f6736a1a 4902 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4903 if (encoder->pre_enable)
4904 encoder->pre_enable(encoder);
f67a559d 4905
6e3c9717 4906 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4907 /* Note: FDI PLL enabling _must_ be done before we enable the
4908 * cpu pipes, hence this is separate from all the other fdi/pch
4909 * enabling. */
88cefb6c 4910 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4911 } else {
4912 assert_fdi_tx_disabled(dev_priv, pipe);
4913 assert_fdi_rx_disabled(dev_priv, pipe);
4914 }
f67a559d 4915
b074cec8 4916 ironlake_pfit_enable(intel_crtc);
f67a559d 4917
9c54c0dd
JB
4918 /*
4919 * On ILK+ LUT must be loaded before the pipe is running but with
4920 * clocks enabled
4921 */
4922 intel_crtc_load_lut(crtc);
4923
f37fcc2a 4924 intel_update_watermarks(crtc);
e1fdc473 4925 intel_enable_pipe(intel_crtc);
f67a559d 4926
6e3c9717 4927 if (intel_crtc->config->has_pch_encoder)
f67a559d 4928 ironlake_pch_enable(crtc);
c98e9dcf 4929
f9b61ff6
DV
4930 assert_vblank_disabled(crtc);
4931 drm_crtc_vblank_on(crtc);
4932
fa5c73b1
DV
4933 for_each_encoder_on_crtc(dev, crtc, encoder)
4934 encoder->enable(encoder);
61b77ddd
DV
4935
4936 if (HAS_PCH_CPT(dev))
a1520318 4937 cpt_verify_modeset(dev, intel_crtc->pipe);
6be4a607
JB
4938}
4939
42db64ef
PZ
4940/* IPS only exists on ULT machines and is tied to pipe A. */
4941static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4942{
f5adf94e 4943 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4944}
4945
4f771f10
PZ
4946static void haswell_crtc_enable(struct drm_crtc *crtc)
4947{
4948 struct drm_device *dev = crtc->dev;
4949 struct drm_i915_private *dev_priv = dev->dev_private;
4950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4951 struct intel_encoder *encoder;
99d736a2
ML
4952 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4953 struct intel_crtc_state *pipe_config =
4954 to_intel_crtc_state(crtc->state);
7d4aefd0 4955 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4f771f10 4956
53d9f4e9 4957 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4958 return;
4959
df8ad70c
DV
4960 if (intel_crtc_to_shared_dpll(intel_crtc))
4961 intel_enable_shared_dpll(intel_crtc);
4962
6e3c9717 4963 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4964 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4965
4966 intel_set_pipe_timings(intel_crtc);
4967
6e3c9717
ACO
4968 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4969 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4970 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4971 }
4972
6e3c9717 4973 if (intel_crtc->config->has_pch_encoder) {
229fca97 4974 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4975 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4976 }
4977
4978 haswell_set_pipeconf(crtc);
4979
4980 intel_set_pipe_csc(crtc);
4981
4f771f10 4982 intel_crtc->active = true;
8664281b 4983
a72e4c9f 4984 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7d4aefd0
SS
4985 for_each_encoder_on_crtc(dev, crtc, encoder) {
4986 if (encoder->pre_pll_enable)
4987 encoder->pre_pll_enable(encoder);
4f771f10
PZ
4988 if (encoder->pre_enable)
4989 encoder->pre_enable(encoder);
7d4aefd0 4990 }
4f771f10 4991
6e3c9717 4992 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4993 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4994 true);
4fe9467d
ID
4995 dev_priv->display.fdi_link_train(crtc);
4996 }
4997
7d4aefd0
SS
4998 if (!is_dsi)
4999 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 5000
1c132b44 5001 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5002 skylake_pfit_enable(intel_crtc);
ff6d9f55 5003 else
1c132b44 5004 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
5005
5006 /*
5007 * On ILK+ LUT must be loaded before the pipe is running but with
5008 * clocks enabled
5009 */
5010 intel_crtc_load_lut(crtc);
5011
1f544388 5012 intel_ddi_set_pipe_settings(crtc);
7d4aefd0
SS
5013 if (!is_dsi)
5014 intel_ddi_enable_transcoder_func(crtc);
4f771f10 5015
f37fcc2a 5016 intel_update_watermarks(crtc);
e1fdc473 5017 intel_enable_pipe(intel_crtc);
42db64ef 5018
6e3c9717 5019 if (intel_crtc->config->has_pch_encoder)
1507e5bd 5020 lpt_pch_enable(crtc);
4f771f10 5021
7d4aefd0 5022 if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
0e32b39c
DA
5023 intel_ddi_set_vc_payload_alloc(crtc, true);
5024
f9b61ff6
DV
5025 assert_vblank_disabled(crtc);
5026 drm_crtc_vblank_on(crtc);
5027
8807e55b 5028 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 5029 encoder->enable(encoder);
8807e55b
JN
5030 intel_opregion_notify_encoder(encoder, true);
5031 }
4f771f10 5032
e4916946
PZ
5033 /* If we change the relative order between pipe/planes enabling, we need
5034 * to change the workaround. */
99d736a2
ML
5035 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5036 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5037 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5038 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5039 }
4f771f10
PZ
5040}
5041
bfd16b2a 5042static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
5043{
5044 struct drm_device *dev = crtc->base.dev;
5045 struct drm_i915_private *dev_priv = dev->dev_private;
5046 int pipe = crtc->pipe;
5047
5048 /* To avoid upsetting the power well on haswell only disable the pfit if
5049 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 5050 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5051 I915_WRITE(PF_CTL(pipe), 0);
5052 I915_WRITE(PF_WIN_POS(pipe), 0);
5053 I915_WRITE(PF_WIN_SZ(pipe), 0);
5054 }
5055}
5056
6be4a607
JB
5057static void ironlake_crtc_disable(struct drm_crtc *crtc)
5058{
5059 struct drm_device *dev = crtc->dev;
5060 struct drm_i915_private *dev_priv = dev->dev_private;
5061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5062 struct intel_encoder *encoder;
6be4a607 5063 int pipe = intel_crtc->pipe;
5eddb70b 5064 u32 reg, temp;
b52eb4dc 5065
ea9d758d
DV
5066 for_each_encoder_on_crtc(dev, crtc, encoder)
5067 encoder->disable(encoder);
5068
f9b61ff6
DV
5069 drm_crtc_vblank_off(crtc);
5070 assert_vblank_disabled(crtc);
5071
6e3c9717 5072 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 5073 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 5074
575f7ab7 5075 intel_disable_pipe(intel_crtc);
32f9d658 5076
bfd16b2a 5077 ironlake_pfit_disable(intel_crtc, false);
2c07245f 5078
5a74f70a
VS
5079 if (intel_crtc->config->has_pch_encoder)
5080 ironlake_fdi_disable(crtc);
5081
bf49ec8c
DV
5082 for_each_encoder_on_crtc(dev, crtc, encoder)
5083 if (encoder->post_disable)
5084 encoder->post_disable(encoder);
2c07245f 5085
6e3c9717 5086 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5087 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5088
d925c59a
DV
5089 if (HAS_PCH_CPT(dev)) {
5090 /* disable TRANS_DP_CTL */
5091 reg = TRANS_DP_CTL(pipe);
5092 temp = I915_READ(reg);
5093 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5094 TRANS_DP_PORT_SEL_MASK);
5095 temp |= TRANS_DP_PORT_SEL_NONE;
5096 I915_WRITE(reg, temp);
5097
5098 /* disable DPLL_SEL */
5099 temp = I915_READ(PCH_DPLL_SEL);
11887397 5100 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5101 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5102 }
e3421a18 5103
d925c59a
DV
5104 ironlake_fdi_pll_disable(intel_crtc);
5105 }
6be4a607 5106}
1b3c7a47 5107
4f771f10 5108static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5109{
4f771f10
PZ
5110 struct drm_device *dev = crtc->dev;
5111 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5113 struct intel_encoder *encoder;
6e3c9717 5114 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7d4aefd0 5115 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
ee7b9f93 5116
8807e55b
JN
5117 for_each_encoder_on_crtc(dev, crtc, encoder) {
5118 intel_opregion_notify_encoder(encoder, false);
4f771f10 5119 encoder->disable(encoder);
8807e55b 5120 }
4f771f10 5121
f9b61ff6
DV
5122 drm_crtc_vblank_off(crtc);
5123 assert_vblank_disabled(crtc);
5124
6e3c9717 5125 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
5126 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5127 false);
575f7ab7 5128 intel_disable_pipe(intel_crtc);
4f771f10 5129
6e3c9717 5130 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5131 intel_ddi_set_vc_payload_alloc(crtc, false);
5132
7d4aefd0
SS
5133 if (!is_dsi)
5134 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5135
1c132b44 5136 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5137 skylake_scaler_disable(intel_crtc);
ff6d9f55 5138 else
bfd16b2a 5139 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5140
7d4aefd0
SS
5141 if (!is_dsi)
5142 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5143
6e3c9717 5144 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 5145 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 5146 intel_ddi_fdi_disable(crtc);
83616634 5147 }
4f771f10 5148
97b040aa
ID
5149 for_each_encoder_on_crtc(dev, crtc, encoder)
5150 if (encoder->post_disable)
5151 encoder->post_disable(encoder);
4f771f10
PZ
5152}
5153
2dd24552
JB
5154static void i9xx_pfit_enable(struct intel_crtc *crtc)
5155{
5156 struct drm_device *dev = crtc->base.dev;
5157 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5158 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5159
681a8504 5160 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5161 return;
5162
2dd24552 5163 /*
c0b03411
DV
5164 * The panel fitter should only be adjusted whilst the pipe is disabled,
5165 * according to register description and PRM.
2dd24552 5166 */
c0b03411
DV
5167 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5168 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5169
b074cec8
JB
5170 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5171 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5172
5173 /* Border color in case we don't scale up to the full screen. Black by
5174 * default, change to something else for debugging. */
5175 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5176}
5177
d05410f9
DA
5178static enum intel_display_power_domain port_to_power_domain(enum port port)
5179{
5180 switch (port) {
5181 case PORT_A:
5182 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5183 case PORT_B:
5184 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5185 case PORT_C:
5186 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5187 case PORT_D:
5188 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
d8e19f99
XZ
5189 case PORT_E:
5190 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
d05410f9
DA
5191 default:
5192 WARN_ON_ONCE(1);
5193 return POWER_DOMAIN_PORT_OTHER;
5194 }
5195}
5196
77d22dca
ID
5197#define for_each_power_domain(domain, mask) \
5198 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5199 if ((1 << (domain)) & (mask))
5200
319be8ae
ID
5201enum intel_display_power_domain
5202intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5203{
5204 struct drm_device *dev = intel_encoder->base.dev;
5205 struct intel_digital_port *intel_dig_port;
5206
5207 switch (intel_encoder->type) {
5208 case INTEL_OUTPUT_UNKNOWN:
5209 /* Only DDI platforms should ever use this output type */
5210 WARN_ON_ONCE(!HAS_DDI(dev));
5211 case INTEL_OUTPUT_DISPLAYPORT:
5212 case INTEL_OUTPUT_HDMI:
5213 case INTEL_OUTPUT_EDP:
5214 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5215 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5216 case INTEL_OUTPUT_DP_MST:
5217 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5218 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5219 case INTEL_OUTPUT_ANALOG:
5220 return POWER_DOMAIN_PORT_CRT;
5221 case INTEL_OUTPUT_DSI:
5222 return POWER_DOMAIN_PORT_DSI;
5223 default:
5224 return POWER_DOMAIN_PORT_OTHER;
5225 }
5226}
5227
5228static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5229{
319be8ae
ID
5230 struct drm_device *dev = crtc->dev;
5231 struct intel_encoder *intel_encoder;
5232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5233 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
5234 unsigned long mask;
5235 enum transcoder transcoder;
5236
292b990e
ML
5237 if (!crtc->state->active)
5238 return 0;
5239
77d22dca
ID
5240 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5241
5242 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5243 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
5244 if (intel_crtc->config->pch_pfit.enabled ||
5245 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
5246 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5247
319be8ae
ID
5248 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5249 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5250
77d22dca
ID
5251 return mask;
5252}
5253
292b990e 5254static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5255{
292b990e
ML
5256 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5258 enum intel_display_power_domain domain;
5259 unsigned long domains, new_domains, old_domains;
77d22dca 5260
292b990e
ML
5261 old_domains = intel_crtc->enabled_power_domains;
5262 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
77d22dca 5263
292b990e
ML
5264 domains = new_domains & ~old_domains;
5265
5266 for_each_power_domain(domain, domains)
5267 intel_display_power_get(dev_priv, domain);
5268
5269 return old_domains & ~new_domains;
5270}
5271
5272static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5273 unsigned long domains)
5274{
5275 enum intel_display_power_domain domain;
5276
5277 for_each_power_domain(domain, domains)
5278 intel_display_power_put(dev_priv, domain);
5279}
77d22dca 5280
292b990e
ML
5281static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5282{
5283 struct drm_device *dev = state->dev;
5284 struct drm_i915_private *dev_priv = dev->dev_private;
5285 unsigned long put_domains[I915_MAX_PIPES] = {};
5286 struct drm_crtc_state *crtc_state;
5287 struct drm_crtc *crtc;
5288 int i;
77d22dca 5289
292b990e
ML
5290 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5291 if (needs_modeset(crtc->state))
5292 put_domains[to_intel_crtc(crtc)->pipe] =
5293 modeset_get_crtc_power_domains(crtc);
77d22dca
ID
5294 }
5295
27c329ed
ML
5296 if (dev_priv->display.modeset_commit_cdclk) {
5297 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5298
5299 if (cdclk != dev_priv->cdclk_freq &&
5300 !WARN_ON(!state->allow_modeset))
5301 dev_priv->display.modeset_commit_cdclk(state);
5302 }
50f6e502 5303
292b990e
ML
5304 for (i = 0; i < I915_MAX_PIPES; i++)
5305 if (put_domains[i])
5306 modeset_put_power_domains(dev_priv, put_domains[i]);
77d22dca
ID
5307}
5308
adafdc6f
MK
5309static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5310{
5311 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5312
5313 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5314 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5315 return max_cdclk_freq;
5316 else if (IS_CHERRYVIEW(dev_priv))
5317 return max_cdclk_freq*95/100;
5318 else if (INTEL_INFO(dev_priv)->gen < 4)
5319 return 2*max_cdclk_freq*90/100;
5320 else
5321 return max_cdclk_freq*90/100;
5322}
5323
560a7ae4
DL
5324static void intel_update_max_cdclk(struct drm_device *dev)
5325{
5326 struct drm_i915_private *dev_priv = dev->dev_private;
5327
5328 if (IS_SKYLAKE(dev)) {
5329 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5330
5331 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5332 dev_priv->max_cdclk_freq = 675000;
5333 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5334 dev_priv->max_cdclk_freq = 540000;
5335 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5336 dev_priv->max_cdclk_freq = 450000;
5337 else
5338 dev_priv->max_cdclk_freq = 337500;
5339 } else if (IS_BROADWELL(dev)) {
5340 /*
5341 * FIXME with extra cooling we can allow
5342 * 540 MHz for ULX and 675 Mhz for ULT.
5343 * How can we know if extra cooling is
5344 * available? PCI ID, VTB, something else?
5345 */
5346 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5347 dev_priv->max_cdclk_freq = 450000;
5348 else if (IS_BDW_ULX(dev))
5349 dev_priv->max_cdclk_freq = 450000;
5350 else if (IS_BDW_ULT(dev))
5351 dev_priv->max_cdclk_freq = 540000;
5352 else
5353 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5354 } else if (IS_CHERRYVIEW(dev)) {
5355 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5356 } else if (IS_VALLEYVIEW(dev)) {
5357 dev_priv->max_cdclk_freq = 400000;
5358 } else {
5359 /* otherwise assume cdclk is fixed */
5360 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5361 }
5362
adafdc6f
MK
5363 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5364
560a7ae4
DL
5365 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5366 dev_priv->max_cdclk_freq);
adafdc6f
MK
5367
5368 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5369 dev_priv->max_dotclk_freq);
560a7ae4
DL
5370}
5371
5372static void intel_update_cdclk(struct drm_device *dev)
5373{
5374 struct drm_i915_private *dev_priv = dev->dev_private;
5375
5376 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5377 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5378 dev_priv->cdclk_freq);
5379
5380 /*
5381 * Program the gmbus_freq based on the cdclk frequency.
5382 * BSpec erroneously claims we should aim for 4MHz, but
5383 * in fact 1MHz is the correct frequency.
5384 */
5385 if (IS_VALLEYVIEW(dev)) {
5386 /*
5387 * Program the gmbus_freq based on the cdclk frequency.
5388 * BSpec erroneously claims we should aim for 4MHz, but
5389 * in fact 1MHz is the correct frequency.
5390 */
5391 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5392 }
5393
5394 if (dev_priv->max_cdclk_freq == 0)
5395 intel_update_max_cdclk(dev);
5396}
5397
70d0c574 5398static void broxton_set_cdclk(struct drm_device *dev, int frequency)
f8437dd1
VK
5399{
5400 struct drm_i915_private *dev_priv = dev->dev_private;
5401 uint32_t divider;
5402 uint32_t ratio;
5403 uint32_t current_freq;
5404 int ret;
5405
5406 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5407 switch (frequency) {
5408 case 144000:
5409 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5410 ratio = BXT_DE_PLL_RATIO(60);
5411 break;
5412 case 288000:
5413 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5414 ratio = BXT_DE_PLL_RATIO(60);
5415 break;
5416 case 384000:
5417 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5418 ratio = BXT_DE_PLL_RATIO(60);
5419 break;
5420 case 576000:
5421 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5422 ratio = BXT_DE_PLL_RATIO(60);
5423 break;
5424 case 624000:
5425 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5426 ratio = BXT_DE_PLL_RATIO(65);
5427 break;
5428 case 19200:
5429 /*
5430 * Bypass frequency with DE PLL disabled. Init ratio, divider
5431 * to suppress GCC warning.
5432 */
5433 ratio = 0;
5434 divider = 0;
5435 break;
5436 default:
5437 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5438
5439 return;
5440 }
5441
5442 mutex_lock(&dev_priv->rps.hw_lock);
5443 /* Inform power controller of upcoming frequency change */
5444 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5445 0x80000000);
5446 mutex_unlock(&dev_priv->rps.hw_lock);
5447
5448 if (ret) {
5449 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5450 ret, frequency);
5451 return;
5452 }
5453
5454 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5455 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5456 current_freq = current_freq * 500 + 1000;
5457
5458 /*
5459 * DE PLL has to be disabled when
5460 * - setting to 19.2MHz (bypass, PLL isn't used)
5461 * - before setting to 624MHz (PLL needs toggling)
5462 * - before setting to any frequency from 624MHz (PLL needs toggling)
5463 */
5464 if (frequency == 19200 || frequency == 624000 ||
5465 current_freq == 624000) {
5466 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5467 /* Timeout 200us */
5468 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5469 1))
5470 DRM_ERROR("timout waiting for DE PLL unlock\n");
5471 }
5472
5473 if (frequency != 19200) {
5474 uint32_t val;
5475
5476 val = I915_READ(BXT_DE_PLL_CTL);
5477 val &= ~BXT_DE_PLL_RATIO_MASK;
5478 val |= ratio;
5479 I915_WRITE(BXT_DE_PLL_CTL, val);
5480
5481 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5482 /* Timeout 200us */
5483 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5484 DRM_ERROR("timeout waiting for DE PLL lock\n");
5485
5486 val = I915_READ(CDCLK_CTL);
5487 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5488 val |= divider;
5489 /*
5490 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5491 * enable otherwise.
5492 */
5493 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5494 if (frequency >= 500000)
5495 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5496
5497 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5498 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5499 val |= (frequency - 1000) / 500;
5500 I915_WRITE(CDCLK_CTL, val);
5501 }
5502
5503 mutex_lock(&dev_priv->rps.hw_lock);
5504 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5505 DIV_ROUND_UP(frequency, 25000));
5506 mutex_unlock(&dev_priv->rps.hw_lock);
5507
5508 if (ret) {
5509 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5510 ret, frequency);
5511 return;
5512 }
5513
a47871bd 5514 intel_update_cdclk(dev);
f8437dd1
VK
5515}
5516
5517void broxton_init_cdclk(struct drm_device *dev)
5518{
5519 struct drm_i915_private *dev_priv = dev->dev_private;
5520 uint32_t val;
5521
5522 /*
5523 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5524 * or else the reset will hang because there is no PCH to respond.
5525 * Move the handshake programming to initialization sequence.
5526 * Previously was left up to BIOS.
5527 */
5528 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5529 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5530 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5531
5532 /* Enable PG1 for cdclk */
5533 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5534
5535 /* check if cd clock is enabled */
5536 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5537 DRM_DEBUG_KMS("Display already initialized\n");
5538 return;
5539 }
5540
5541 /*
5542 * FIXME:
5543 * - The initial CDCLK needs to be read from VBT.
5544 * Need to make this change after VBT has changes for BXT.
5545 * - check if setting the max (or any) cdclk freq is really necessary
5546 * here, it belongs to modeset time
5547 */
5548 broxton_set_cdclk(dev, 624000);
5549
5550 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5551 POSTING_READ(DBUF_CTL);
5552
f8437dd1
VK
5553 udelay(10);
5554
5555 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5556 DRM_ERROR("DBuf power enable timeout!\n");
5557}
5558
5559void broxton_uninit_cdclk(struct drm_device *dev)
5560{
5561 struct drm_i915_private *dev_priv = dev->dev_private;
5562
5563 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5564 POSTING_READ(DBUF_CTL);
5565
f8437dd1
VK
5566 udelay(10);
5567
5568 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5569 DRM_ERROR("DBuf power disable timeout!\n");
5570
5571 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5572 broxton_set_cdclk(dev, 19200);
5573
5574 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5575}
5576
5d96d8af
DL
5577static const struct skl_cdclk_entry {
5578 unsigned int freq;
5579 unsigned int vco;
5580} skl_cdclk_frequencies[] = {
5581 { .freq = 308570, .vco = 8640 },
5582 { .freq = 337500, .vco = 8100 },
5583 { .freq = 432000, .vco = 8640 },
5584 { .freq = 450000, .vco = 8100 },
5585 { .freq = 540000, .vco = 8100 },
5586 { .freq = 617140, .vco = 8640 },
5587 { .freq = 675000, .vco = 8100 },
5588};
5589
5590static unsigned int skl_cdclk_decimal(unsigned int freq)
5591{
5592 return (freq - 1000) / 500;
5593}
5594
5595static unsigned int skl_cdclk_get_vco(unsigned int freq)
5596{
5597 unsigned int i;
5598
5599 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5600 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5601
5602 if (e->freq == freq)
5603 return e->vco;
5604 }
5605
5606 return 8100;
5607}
5608
5609static void
5610skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5611{
5612 unsigned int min_freq;
5613 u32 val;
5614
5615 /* select the minimum CDCLK before enabling DPLL 0 */
5616 val = I915_READ(CDCLK_CTL);
5617 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5618 val |= CDCLK_FREQ_337_308;
5619
5620 if (required_vco == 8640)
5621 min_freq = 308570;
5622 else
5623 min_freq = 337500;
5624
5625 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5626
5627 I915_WRITE(CDCLK_CTL, val);
5628 POSTING_READ(CDCLK_CTL);
5629
5630 /*
5631 * We always enable DPLL0 with the lowest link rate possible, but still
5632 * taking into account the VCO required to operate the eDP panel at the
5633 * desired frequency. The usual DP link rates operate with a VCO of
5634 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5635 * The modeset code is responsible for the selection of the exact link
5636 * rate later on, with the constraint of choosing a frequency that
5637 * works with required_vco.
5638 */
5639 val = I915_READ(DPLL_CTRL1);
5640
5641 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5642 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5643 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5644 if (required_vco == 8640)
5645 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5646 SKL_DPLL0);
5647 else
5648 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5649 SKL_DPLL0);
5650
5651 I915_WRITE(DPLL_CTRL1, val);
5652 POSTING_READ(DPLL_CTRL1);
5653
5654 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5655
5656 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5657 DRM_ERROR("DPLL0 not locked\n");
5658}
5659
5660static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5661{
5662 int ret;
5663 u32 val;
5664
5665 /* inform PCU we want to change CDCLK */
5666 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5667 mutex_lock(&dev_priv->rps.hw_lock);
5668 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5669 mutex_unlock(&dev_priv->rps.hw_lock);
5670
5671 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5672}
5673
5674static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5675{
5676 unsigned int i;
5677
5678 for (i = 0; i < 15; i++) {
5679 if (skl_cdclk_pcu_ready(dev_priv))
5680 return true;
5681 udelay(10);
5682 }
5683
5684 return false;
5685}
5686
5687static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5688{
560a7ae4 5689 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5690 u32 freq_select, pcu_ack;
5691
5692 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5693
5694 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5695 DRM_ERROR("failed to inform PCU about cdclk change\n");
5696 return;
5697 }
5698
5699 /* set CDCLK_CTL */
5700 switch(freq) {
5701 case 450000:
5702 case 432000:
5703 freq_select = CDCLK_FREQ_450_432;
5704 pcu_ack = 1;
5705 break;
5706 case 540000:
5707 freq_select = CDCLK_FREQ_540;
5708 pcu_ack = 2;
5709 break;
5710 case 308570:
5711 case 337500:
5712 default:
5713 freq_select = CDCLK_FREQ_337_308;
5714 pcu_ack = 0;
5715 break;
5716 case 617140:
5717 case 675000:
5718 freq_select = CDCLK_FREQ_675_617;
5719 pcu_ack = 3;
5720 break;
5721 }
5722
5723 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5724 POSTING_READ(CDCLK_CTL);
5725
5726 /* inform PCU of the change */
5727 mutex_lock(&dev_priv->rps.hw_lock);
5728 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5729 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5730
5731 intel_update_cdclk(dev);
5d96d8af
DL
5732}
5733
5734void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5735{
5736 /* disable DBUF power */
5737 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5738 POSTING_READ(DBUF_CTL);
5739
5740 udelay(10);
5741
5742 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5743 DRM_ERROR("DBuf power disable timeout\n");
5744
4e961e42
AM
5745 /*
5746 * DMC assumes ownership of LCPLL and will get confused if we touch it.
5747 */
5748 if (dev_priv->csr.dmc_payload) {
5749 /* disable DPLL0 */
5750 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5751 ~LCPLL_PLL_ENABLE);
5752 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5753 DRM_ERROR("Couldn't disable DPLL0\n");
5754 }
5d96d8af
DL
5755
5756 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5757}
5758
5759void skl_init_cdclk(struct drm_i915_private *dev_priv)
5760{
5761 u32 val;
5762 unsigned int required_vco;
5763
5764 /* enable PCH reset handshake */
5765 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5766 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5767
5768 /* enable PG1 and Misc I/O */
5769 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5770
39d9b85a
GW
5771 /* DPLL0 not enabled (happens on early BIOS versions) */
5772 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5773 /* enable DPLL0 */
5774 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5775 skl_dpll0_enable(dev_priv, required_vco);
5d96d8af
DL
5776 }
5777
5d96d8af
DL
5778 /* set CDCLK to the frequency the BIOS chose */
5779 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5780
5781 /* enable DBUF power */
5782 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5783 POSTING_READ(DBUF_CTL);
5784
5785 udelay(10);
5786
5787 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5788 DRM_ERROR("DBuf power enable timeout\n");
5789}
5790
30a970c6
JB
5791/* Adjust CDclk dividers to allow high res or save power if possible */
5792static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5793{
5794 struct drm_i915_private *dev_priv = dev->dev_private;
5795 u32 val, cmd;
5796
164dfd28
VK
5797 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5798 != dev_priv->cdclk_freq);
d60c4473 5799
dfcab17e 5800 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5801 cmd = 2;
dfcab17e 5802 else if (cdclk == 266667)
30a970c6
JB
5803 cmd = 1;
5804 else
5805 cmd = 0;
5806
5807 mutex_lock(&dev_priv->rps.hw_lock);
5808 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5809 val &= ~DSPFREQGUAR_MASK;
5810 val |= (cmd << DSPFREQGUAR_SHIFT);
5811 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5812 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5813 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5814 50)) {
5815 DRM_ERROR("timed out waiting for CDclk change\n");
5816 }
5817 mutex_unlock(&dev_priv->rps.hw_lock);
5818
54433e91
VS
5819 mutex_lock(&dev_priv->sb_lock);
5820
dfcab17e 5821 if (cdclk == 400000) {
6bcda4f0 5822 u32 divider;
30a970c6 5823
6bcda4f0 5824 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5825
30a970c6
JB
5826 /* adjust cdclk divider */
5827 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 5828 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
5829 val |= divider;
5830 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5831
5832 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 5833 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
5834 50))
5835 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5836 }
5837
30a970c6
JB
5838 /* adjust self-refresh exit latency value */
5839 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5840 val &= ~0x7f;
5841
5842 /*
5843 * For high bandwidth configs, we set a higher latency in the bunit
5844 * so that the core display fetch happens in time to avoid underruns.
5845 */
dfcab17e 5846 if (cdclk == 400000)
30a970c6
JB
5847 val |= 4500 / 250; /* 4.5 usec */
5848 else
5849 val |= 3000 / 250; /* 3.0 usec */
5850 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5851
a580516d 5852 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5853
b6283055 5854 intel_update_cdclk(dev);
30a970c6
JB
5855}
5856
383c5a6a
VS
5857static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5858{
5859 struct drm_i915_private *dev_priv = dev->dev_private;
5860 u32 val, cmd;
5861
164dfd28
VK
5862 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5863 != dev_priv->cdclk_freq);
383c5a6a
VS
5864
5865 switch (cdclk) {
383c5a6a
VS
5866 case 333333:
5867 case 320000:
383c5a6a 5868 case 266667:
383c5a6a 5869 case 200000:
383c5a6a
VS
5870 break;
5871 default:
5f77eeb0 5872 MISSING_CASE(cdclk);
383c5a6a
VS
5873 return;
5874 }
5875
9d0d3fda
VS
5876 /*
5877 * Specs are full of misinformation, but testing on actual
5878 * hardware has shown that we just need to write the desired
5879 * CCK divider into the Punit register.
5880 */
5881 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5882
383c5a6a
VS
5883 mutex_lock(&dev_priv->rps.hw_lock);
5884 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5885 val &= ~DSPFREQGUAR_MASK_CHV;
5886 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5887 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5888 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5889 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5890 50)) {
5891 DRM_ERROR("timed out waiting for CDclk change\n");
5892 }
5893 mutex_unlock(&dev_priv->rps.hw_lock);
5894
b6283055 5895 intel_update_cdclk(dev);
383c5a6a
VS
5896}
5897
30a970c6
JB
5898static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5899 int max_pixclk)
5900{
6bcda4f0 5901 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5902 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5903
30a970c6
JB
5904 /*
5905 * Really only a few cases to deal with, as only 4 CDclks are supported:
5906 * 200MHz
5907 * 267MHz
29dc7ef3 5908 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5909 * 400MHz (VLV only)
5910 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5911 * of the lower bin and adjust if needed.
e37c67a1
VS
5912 *
5913 * We seem to get an unstable or solid color picture at 200MHz.
5914 * Not sure what's wrong. For now use 200MHz only when all pipes
5915 * are off.
30a970c6 5916 */
6cca3195
VS
5917 if (!IS_CHERRYVIEW(dev_priv) &&
5918 max_pixclk > freq_320*limit/100)
dfcab17e 5919 return 400000;
6cca3195 5920 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5921 return freq_320;
e37c67a1 5922 else if (max_pixclk > 0)
dfcab17e 5923 return 266667;
e37c67a1
VS
5924 else
5925 return 200000;
30a970c6
JB
5926}
5927
f8437dd1
VK
5928static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5929 int max_pixclk)
5930{
5931 /*
5932 * FIXME:
5933 * - remove the guardband, it's not needed on BXT
5934 * - set 19.2MHz bypass frequency if there are no active pipes
5935 */
5936 if (max_pixclk > 576000*9/10)
5937 return 624000;
5938 else if (max_pixclk > 384000*9/10)
5939 return 576000;
5940 else if (max_pixclk > 288000*9/10)
5941 return 384000;
5942 else if (max_pixclk > 144000*9/10)
5943 return 288000;
5944 else
5945 return 144000;
5946}
5947
a821fc46
ACO
5948/* Compute the max pixel clock for new configuration. Uses atomic state if
5949 * that's non-NULL, look at current state otherwise. */
5950static int intel_mode_max_pixclk(struct drm_device *dev,
5951 struct drm_atomic_state *state)
30a970c6 5952{
30a970c6 5953 struct intel_crtc *intel_crtc;
304603f4 5954 struct intel_crtc_state *crtc_state;
30a970c6
JB
5955 int max_pixclk = 0;
5956
d3fcc808 5957 for_each_intel_crtc(dev, intel_crtc) {
27c329ed 5958 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
304603f4
ACO
5959 if (IS_ERR(crtc_state))
5960 return PTR_ERR(crtc_state);
5961
5962 if (!crtc_state->base.enable)
5963 continue;
5964
5965 max_pixclk = max(max_pixclk,
5966 crtc_state->base.adjusted_mode.crtc_clock);
30a970c6
JB
5967 }
5968
5969 return max_pixclk;
5970}
5971
27c329ed 5972static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 5973{
27c329ed
ML
5974 struct drm_device *dev = state->dev;
5975 struct drm_i915_private *dev_priv = dev->dev_private;
5976 int max_pixclk = intel_mode_max_pixclk(dev, state);
30a970c6 5977
304603f4
ACO
5978 if (max_pixclk < 0)
5979 return max_pixclk;
30a970c6 5980
27c329ed
ML
5981 to_intel_atomic_state(state)->cdclk =
5982 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 5983
27c329ed
ML
5984 return 0;
5985}
304603f4 5986
27c329ed
ML
5987static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5988{
5989 struct drm_device *dev = state->dev;
5990 struct drm_i915_private *dev_priv = dev->dev_private;
5991 int max_pixclk = intel_mode_max_pixclk(dev, state);
85a96e7a 5992
27c329ed
ML
5993 if (max_pixclk < 0)
5994 return max_pixclk;
85a96e7a 5995
27c329ed
ML
5996 to_intel_atomic_state(state)->cdclk =
5997 broxton_calc_cdclk(dev_priv, max_pixclk);
85a96e7a 5998
27c329ed 5999 return 0;
30a970c6
JB
6000}
6001
1e69cd74
VS
6002static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6003{
6004 unsigned int credits, default_credits;
6005
6006 if (IS_CHERRYVIEW(dev_priv))
6007 default_credits = PFI_CREDIT(12);
6008 else
6009 default_credits = PFI_CREDIT(8);
6010
bfa7df01 6011 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
6012 /* CHV suggested value is 31 or 63 */
6013 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 6014 credits = PFI_CREDIT_63;
1e69cd74
VS
6015 else
6016 credits = PFI_CREDIT(15);
6017 } else {
6018 credits = default_credits;
6019 }
6020
6021 /*
6022 * WA - write default credits before re-programming
6023 * FIXME: should we also set the resend bit here?
6024 */
6025 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6026 default_credits);
6027
6028 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6029 credits | PFI_CREDIT_RESEND);
6030
6031 /*
6032 * FIXME is this guaranteed to clear
6033 * immediately or should we poll for it?
6034 */
6035 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6036}
6037
27c329ed 6038static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6039{
a821fc46 6040 struct drm_device *dev = old_state->dev;
27c329ed 6041 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
30a970c6 6042 struct drm_i915_private *dev_priv = dev->dev_private;
30a970c6 6043
27c329ed
ML
6044 /*
6045 * FIXME: We can end up here with all power domains off, yet
6046 * with a CDCLK frequency other than the minimum. To account
6047 * for this take the PIPE-A power domain, which covers the HW
6048 * blocks needed for the following programming. This can be
6049 * removed once it's guaranteed that we get here either with
6050 * the minimum CDCLK set, or the required power domains
6051 * enabled.
6052 */
6053 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6054
27c329ed
ML
6055 if (IS_CHERRYVIEW(dev))
6056 cherryview_set_cdclk(dev, req_cdclk);
6057 else
6058 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6059
27c329ed 6060 vlv_program_pfi_credits(dev_priv);
1e69cd74 6061
27c329ed 6062 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6063}
6064
89b667f8
JB
6065static void valleyview_crtc_enable(struct drm_crtc *crtc)
6066{
6067 struct drm_device *dev = crtc->dev;
a72e4c9f 6068 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6070 struct intel_encoder *encoder;
6071 int pipe = intel_crtc->pipe;
23538ef1 6072 bool is_dsi;
89b667f8 6073
53d9f4e9 6074 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6075 return;
6076
409ee761 6077 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 6078
6e3c9717 6079 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6080 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6081
6082 intel_set_pipe_timings(intel_crtc);
6083
c14b0485
VS
6084 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6085 struct drm_i915_private *dev_priv = dev->dev_private;
6086
6087 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6088 I915_WRITE(CHV_CANVAS(pipe), 0);
6089 }
6090
5b18e57c
DV
6091 i9xx_set_pipeconf(intel_crtc);
6092
89b667f8 6093 intel_crtc->active = true;
89b667f8 6094
a72e4c9f 6095 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6096
89b667f8
JB
6097 for_each_encoder_on_crtc(dev, crtc, encoder)
6098 if (encoder->pre_pll_enable)
6099 encoder->pre_pll_enable(encoder);
6100
9d556c99 6101 if (!is_dsi) {
c0b4c660
VS
6102 if (IS_CHERRYVIEW(dev)) {
6103 chv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6104 chv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660
VS
6105 } else {
6106 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6107 vlv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660 6108 }
9d556c99 6109 }
89b667f8
JB
6110
6111 for_each_encoder_on_crtc(dev, crtc, encoder)
6112 if (encoder->pre_enable)
6113 encoder->pre_enable(encoder);
6114
2dd24552
JB
6115 i9xx_pfit_enable(intel_crtc);
6116
63cbb074
VS
6117 intel_crtc_load_lut(crtc);
6118
e1fdc473 6119 intel_enable_pipe(intel_crtc);
be6a6f8e 6120
4b3a9526
VS
6121 assert_vblank_disabled(crtc);
6122 drm_crtc_vblank_on(crtc);
6123
f9b61ff6
DV
6124 for_each_encoder_on_crtc(dev, crtc, encoder)
6125 encoder->enable(encoder);
89b667f8
JB
6126}
6127
f13c2ef3
DV
6128static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6129{
6130 struct drm_device *dev = crtc->base.dev;
6131 struct drm_i915_private *dev_priv = dev->dev_private;
6132
6e3c9717
ACO
6133 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6134 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6135}
6136
0b8765c6 6137static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6138{
6139 struct drm_device *dev = crtc->dev;
a72e4c9f 6140 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6142 struct intel_encoder *encoder;
79e53945 6143 int pipe = intel_crtc->pipe;
79e53945 6144
53d9f4e9 6145 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6146 return;
6147
f13c2ef3
DV
6148 i9xx_set_pll_dividers(intel_crtc);
6149
6e3c9717 6150 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6151 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6152
6153 intel_set_pipe_timings(intel_crtc);
6154
5b18e57c
DV
6155 i9xx_set_pipeconf(intel_crtc);
6156
f7abfe8b 6157 intel_crtc->active = true;
6b383a7f 6158
4a3436e8 6159 if (!IS_GEN2(dev))
a72e4c9f 6160 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6161
9d6d9f19
MK
6162 for_each_encoder_on_crtc(dev, crtc, encoder)
6163 if (encoder->pre_enable)
6164 encoder->pre_enable(encoder);
6165
f6736a1a
DV
6166 i9xx_enable_pll(intel_crtc);
6167
2dd24552
JB
6168 i9xx_pfit_enable(intel_crtc);
6169
63cbb074
VS
6170 intel_crtc_load_lut(crtc);
6171
f37fcc2a 6172 intel_update_watermarks(crtc);
e1fdc473 6173 intel_enable_pipe(intel_crtc);
be6a6f8e 6174
4b3a9526
VS
6175 assert_vblank_disabled(crtc);
6176 drm_crtc_vblank_on(crtc);
6177
f9b61ff6
DV
6178 for_each_encoder_on_crtc(dev, crtc, encoder)
6179 encoder->enable(encoder);
0b8765c6 6180}
79e53945 6181
87476d63
DV
6182static void i9xx_pfit_disable(struct intel_crtc *crtc)
6183{
6184 struct drm_device *dev = crtc->base.dev;
6185 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6186
6e3c9717 6187 if (!crtc->config->gmch_pfit.control)
328d8e82 6188 return;
87476d63 6189
328d8e82 6190 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6191
328d8e82
DV
6192 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6193 I915_READ(PFIT_CONTROL));
6194 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6195}
6196
0b8765c6
JB
6197static void i9xx_crtc_disable(struct drm_crtc *crtc)
6198{
6199 struct drm_device *dev = crtc->dev;
6200 struct drm_i915_private *dev_priv = dev->dev_private;
6201 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6202 struct intel_encoder *encoder;
0b8765c6 6203 int pipe = intel_crtc->pipe;
ef9c3aee 6204
6304cd91
VS
6205 /*
6206 * On gen2 planes are double buffered but the pipe isn't, so we must
6207 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6208 * We also need to wait on all gmch platforms because of the
6209 * self-refresh mode constraint explained above.
6304cd91 6210 */
564ed191 6211 intel_wait_for_vblank(dev, pipe);
6304cd91 6212
4b3a9526
VS
6213 for_each_encoder_on_crtc(dev, crtc, encoder)
6214 encoder->disable(encoder);
6215
f9b61ff6
DV
6216 drm_crtc_vblank_off(crtc);
6217 assert_vblank_disabled(crtc);
6218
575f7ab7 6219 intel_disable_pipe(intel_crtc);
24a1f16d 6220
87476d63 6221 i9xx_pfit_disable(intel_crtc);
24a1f16d 6222
89b667f8
JB
6223 for_each_encoder_on_crtc(dev, crtc, encoder)
6224 if (encoder->post_disable)
6225 encoder->post_disable(encoder);
6226
409ee761 6227 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
6228 if (IS_CHERRYVIEW(dev))
6229 chv_disable_pll(dev_priv, pipe);
6230 else if (IS_VALLEYVIEW(dev))
6231 vlv_disable_pll(dev_priv, pipe);
6232 else
1c4e0274 6233 i9xx_disable_pll(intel_crtc);
076ed3b2 6234 }
0b8765c6 6235
d6db995f
VS
6236 for_each_encoder_on_crtc(dev, crtc, encoder)
6237 if (encoder->post_pll_disable)
6238 encoder->post_pll_disable(encoder);
6239
4a3436e8 6240 if (!IS_GEN2(dev))
a72e4c9f 6241 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
0b8765c6
JB
6242}
6243
b17d48e2
ML
6244static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6245{
6246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6247 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6248 enum intel_display_power_domain domain;
6249 unsigned long domains;
6250
6251 if (!intel_crtc->active)
6252 return;
6253
a539205a
ML
6254 if (to_intel_plane_state(crtc->primary->state)->visible) {
6255 intel_crtc_wait_for_pending_flips(crtc);
6256 intel_pre_disable_primary(crtc);
6257 }
6258
d032ffa0 6259 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
b17d48e2 6260 dev_priv->display.crtc_disable(crtc);
37d9078b
MR
6261 intel_crtc->active = false;
6262 intel_update_watermarks(crtc);
1f7457b1 6263 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6264
6265 domains = intel_crtc->enabled_power_domains;
6266 for_each_power_domain(domain, domains)
6267 intel_display_power_put(dev_priv, domain);
6268 intel_crtc->enabled_power_domains = 0;
6269}
6270
6b72d486
ML
6271/*
6272 * turn all crtc's off, but do not adjust state
6273 * This has to be paired with a call to intel_modeset_setup_hw_state.
6274 */
70e0bd74 6275int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6276{
70e0bd74
ML
6277 struct drm_mode_config *config = &dev->mode_config;
6278 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6279 struct drm_atomic_state *state;
6b72d486 6280 struct drm_crtc *crtc;
70e0bd74
ML
6281 unsigned crtc_mask = 0;
6282 int ret = 0;
6283
6284 if (WARN_ON(!ctx))
6285 return 0;
6286
6287 lockdep_assert_held(&ctx->ww_ctx);
6288 state = drm_atomic_state_alloc(dev);
6289 if (WARN_ON(!state))
6290 return -ENOMEM;
6291
6292 state->acquire_ctx = ctx;
6293 state->allow_modeset = true;
6294
6295 for_each_crtc(dev, crtc) {
6296 struct drm_crtc_state *crtc_state =
6297 drm_atomic_get_crtc_state(state, crtc);
6b72d486 6298
70e0bd74
ML
6299 ret = PTR_ERR_OR_ZERO(crtc_state);
6300 if (ret)
6301 goto free;
6302
6303 if (!crtc_state->active)
6304 continue;
6305
6306 crtc_state->active = false;
6307 crtc_mask |= 1 << drm_crtc_index(crtc);
6308 }
6309
6310 if (crtc_mask) {
74c090b1 6311 ret = drm_atomic_commit(state);
70e0bd74
ML
6312
6313 if (!ret) {
6314 for_each_crtc(dev, crtc)
6315 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6316 crtc->state->active = true;
6317
6318 return ret;
6319 }
6320 }
6321
6322free:
6323 if (ret)
6324 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6325 drm_atomic_state_free(state);
6326 return ret;
ee7b9f93
JB
6327}
6328
ea5b213a 6329void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6330{
4ef69c7a 6331 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6332
ea5b213a
CW
6333 drm_encoder_cleanup(encoder);
6334 kfree(intel_encoder);
7e7d76c3
JB
6335}
6336
0a91ca29
DV
6337/* Cross check the actual hw state with our own modeset state tracking (and it's
6338 * internal consistency). */
b980514c 6339static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6340{
35dd3c64
ML
6341 struct drm_crtc *crtc = connector->base.state->crtc;
6342
6343 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6344 connector->base.base.id,
6345 connector->base.name);
6346
0a91ca29 6347 if (connector->get_hw_state(connector)) {
e85376cb 6348 struct intel_encoder *encoder = connector->encoder;
35dd3c64 6349 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6350
35dd3c64
ML
6351 I915_STATE_WARN(!crtc,
6352 "connector enabled without attached crtc\n");
0a91ca29 6353
35dd3c64 6354 if (!crtc)
0e32b39c
DA
6355 return;
6356
35dd3c64
ML
6357 I915_STATE_WARN(!crtc->state->active,
6358 "connector is active, but attached crtc isn't\n");
36cd7444 6359
e85376cb 6360 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64 6361 return;
0a91ca29 6362
e85376cb 6363 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64 6364 "atomic encoder doesn't match attached encoder\n");
0a91ca29 6365
e85376cb 6366 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6367 "attached encoder crtc differs from connector crtc\n");
6368 } else {
4d688a2a
ML
6369 I915_STATE_WARN(crtc && crtc->state->active,
6370 "attached crtc is active, but connector isn't\n");
35dd3c64
ML
6371 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6372 "best encoder set without crtc!\n");
0a91ca29 6373 }
79e53945
JB
6374}
6375
08d9bc92
ACO
6376int intel_connector_init(struct intel_connector *connector)
6377{
6378 struct drm_connector_state *connector_state;
6379
6380 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6381 if (!connector_state)
6382 return -ENOMEM;
6383
6384 connector->base.state = connector_state;
6385 return 0;
6386}
6387
6388struct intel_connector *intel_connector_alloc(void)
6389{
6390 struct intel_connector *connector;
6391
6392 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6393 if (!connector)
6394 return NULL;
6395
6396 if (intel_connector_init(connector) < 0) {
6397 kfree(connector);
6398 return NULL;
6399 }
6400
6401 return connector;
6402}
6403
f0947c37
DV
6404/* Simple connector->get_hw_state implementation for encoders that support only
6405 * one connector and no cloning and hence the encoder state determines the state
6406 * of the connector. */
6407bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6408{
24929352 6409 enum pipe pipe = 0;
f0947c37 6410 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6411
f0947c37 6412 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6413}
6414
6d293983 6415static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6416{
6d293983
ACO
6417 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6418 return crtc_state->fdi_lanes;
d272ddfa
VS
6419
6420 return 0;
6421}
6422
6d293983 6423static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6424 struct intel_crtc_state *pipe_config)
1857e1da 6425{
6d293983
ACO
6426 struct drm_atomic_state *state = pipe_config->base.state;
6427 struct intel_crtc *other_crtc;
6428 struct intel_crtc_state *other_crtc_state;
6429
1857e1da
DV
6430 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6431 pipe_name(pipe), pipe_config->fdi_lanes);
6432 if (pipe_config->fdi_lanes > 4) {
6433 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6434 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6435 return -EINVAL;
1857e1da
DV
6436 }
6437
bafb6553 6438 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6439 if (pipe_config->fdi_lanes > 2) {
6440 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6441 pipe_config->fdi_lanes);
6d293983 6442 return -EINVAL;
1857e1da 6443 } else {
6d293983 6444 return 0;
1857e1da
DV
6445 }
6446 }
6447
6448 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6449 return 0;
1857e1da
DV
6450
6451 /* Ivybridge 3 pipe is really complicated */
6452 switch (pipe) {
6453 case PIPE_A:
6d293983 6454 return 0;
1857e1da 6455 case PIPE_B:
6d293983
ACO
6456 if (pipe_config->fdi_lanes <= 2)
6457 return 0;
6458
6459 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6460 other_crtc_state =
6461 intel_atomic_get_crtc_state(state, other_crtc);
6462 if (IS_ERR(other_crtc_state))
6463 return PTR_ERR(other_crtc_state);
6464
6465 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6466 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6467 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6468 return -EINVAL;
1857e1da 6469 }
6d293983 6470 return 0;
1857e1da 6471 case PIPE_C:
251cc67c
VS
6472 if (pipe_config->fdi_lanes > 2) {
6473 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6474 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6475 return -EINVAL;
251cc67c 6476 }
6d293983
ACO
6477
6478 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6479 other_crtc_state =
6480 intel_atomic_get_crtc_state(state, other_crtc);
6481 if (IS_ERR(other_crtc_state))
6482 return PTR_ERR(other_crtc_state);
6483
6484 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6485 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6486 return -EINVAL;
1857e1da 6487 }
6d293983 6488 return 0;
1857e1da
DV
6489 default:
6490 BUG();
6491 }
6492}
6493
e29c22c0
DV
6494#define RETRY 1
6495static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6496 struct intel_crtc_state *pipe_config)
877d48d5 6497{
1857e1da 6498 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 6499 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6500 int lane, link_bw, fdi_dotclock, ret;
6501 bool needs_recompute = false;
877d48d5 6502
e29c22c0 6503retry:
877d48d5
DV
6504 /* FDI is a binary signal running at ~2.7GHz, encoding
6505 * each output octet as 10 bits. The actual frequency
6506 * is stored as a divider into a 100MHz clock, and the
6507 * mode pixel clock is stored in units of 1KHz.
6508 * Hence the bw of each lane in terms of the mode signal
6509 * is:
6510 */
6511 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6512
241bfc38 6513 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6514
2bd89a07 6515 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6516 pipe_config->pipe_bpp);
6517
6518 pipe_config->fdi_lanes = lane;
6519
2bd89a07 6520 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6521 link_bw, &pipe_config->fdi_m_n);
1857e1da 6522
6d293983
ACO
6523 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6524 intel_crtc->pipe, pipe_config);
6525 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6526 pipe_config->pipe_bpp -= 2*3;
6527 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6528 pipe_config->pipe_bpp);
6529 needs_recompute = true;
6530 pipe_config->bw_constrained = true;
6531
6532 goto retry;
6533 }
6534
6535 if (needs_recompute)
6536 return RETRY;
6537
6d293983 6538 return ret;
877d48d5
DV
6539}
6540
8cfb3407
VS
6541static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6542 struct intel_crtc_state *pipe_config)
6543{
6544 if (pipe_config->pipe_bpp > 24)
6545 return false;
6546
6547 /* HSW can handle pixel rate up to cdclk? */
6548 if (IS_HASWELL(dev_priv->dev))
6549 return true;
6550
6551 /*
b432e5cf
VS
6552 * We compare against max which means we must take
6553 * the increased cdclk requirement into account when
6554 * calculating the new cdclk.
6555 *
6556 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6557 */
6558 return ilk_pipe_pixel_rate(pipe_config) <=
6559 dev_priv->max_cdclk_freq * 95 / 100;
6560}
6561
42db64ef 6562static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6563 struct intel_crtc_state *pipe_config)
42db64ef 6564{
8cfb3407
VS
6565 struct drm_device *dev = crtc->base.dev;
6566 struct drm_i915_private *dev_priv = dev->dev_private;
6567
d330a953 6568 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6569 hsw_crtc_supports_ips(crtc) &&
6570 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6571}
6572
a43f6e0f 6573static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6574 struct intel_crtc_state *pipe_config)
79e53945 6575{
a43f6e0f 6576 struct drm_device *dev = crtc->base.dev;
8bd31e67 6577 struct drm_i915_private *dev_priv = dev->dev_private;
7c5f93b0 6578 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 6579
ad3a4479 6580 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6581 if (INTEL_INFO(dev)->gen < 4) {
44913155 6582 int clock_limit = dev_priv->max_cdclk_freq;
cf532bb2
VS
6583
6584 /*
6585 * Enable pixel doubling when the dot clock
6586 * is > 90% of the (display) core speed.
6587 *
b397c96b
VS
6588 * GDG double wide on either pipe,
6589 * otherwise pipe A only.
cf532bb2 6590 */
b397c96b 6591 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 6592 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 6593 clock_limit *= 2;
cf532bb2 6594 pipe_config->double_wide = true;
ad3a4479
VS
6595 }
6596
241bfc38 6597 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 6598 return -EINVAL;
2c07245f 6599 }
89749350 6600
1d1d0e27
VS
6601 /*
6602 * Pipe horizontal size must be even in:
6603 * - DVO ganged mode
6604 * - LVDS dual channel mode
6605 * - Double wide pipe
6606 */
a93e255f 6607 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6608 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6609 pipe_config->pipe_src_w &= ~1;
6610
8693a824
DL
6611 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6612 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6613 */
6614 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 6615 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 6616 return -EINVAL;
44f46b42 6617
f5adf94e 6618 if (HAS_IPS(dev))
a43f6e0f
DV
6619 hsw_compute_ips_config(crtc, pipe_config);
6620
877d48d5 6621 if (pipe_config->has_pch_encoder)
a43f6e0f 6622 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6623
cf5a15be 6624 return 0;
79e53945
JB
6625}
6626
1652d19e
VS
6627static int skylake_get_display_clock_speed(struct drm_device *dev)
6628{
6629 struct drm_i915_private *dev_priv = to_i915(dev);
6630 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6631 uint32_t cdctl = I915_READ(CDCLK_CTL);
6632 uint32_t linkrate;
6633
414355a7 6634 if (!(lcpll1 & LCPLL_PLL_ENABLE))
1652d19e 6635 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652d19e
VS
6636
6637 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6638 return 540000;
6639
6640 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6641 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6642
71cd8423
DL
6643 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6644 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6645 /* vco 8640 */
6646 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6647 case CDCLK_FREQ_450_432:
6648 return 432000;
6649 case CDCLK_FREQ_337_308:
6650 return 308570;
6651 case CDCLK_FREQ_675_617:
6652 return 617140;
6653 default:
6654 WARN(1, "Unknown cd freq selection\n");
6655 }
6656 } else {
6657 /* vco 8100 */
6658 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6659 case CDCLK_FREQ_450_432:
6660 return 450000;
6661 case CDCLK_FREQ_337_308:
6662 return 337500;
6663 case CDCLK_FREQ_675_617:
6664 return 675000;
6665 default:
6666 WARN(1, "Unknown cd freq selection\n");
6667 }
6668 }
6669
6670 /* error case, do as if DPLL0 isn't enabled */
6671 return 24000;
6672}
6673
acd3f3d3
BP
6674static int broxton_get_display_clock_speed(struct drm_device *dev)
6675{
6676 struct drm_i915_private *dev_priv = to_i915(dev);
6677 uint32_t cdctl = I915_READ(CDCLK_CTL);
6678 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6679 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6680 int cdclk;
6681
6682 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6683 return 19200;
6684
6685 cdclk = 19200 * pll_ratio / 2;
6686
6687 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6688 case BXT_CDCLK_CD2X_DIV_SEL_1:
6689 return cdclk; /* 576MHz or 624MHz */
6690 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6691 return cdclk * 2 / 3; /* 384MHz */
6692 case BXT_CDCLK_CD2X_DIV_SEL_2:
6693 return cdclk / 2; /* 288MHz */
6694 case BXT_CDCLK_CD2X_DIV_SEL_4:
6695 return cdclk / 4; /* 144MHz */
6696 }
6697
6698 /* error case, do as if DE PLL isn't enabled */
6699 return 19200;
6700}
6701
1652d19e
VS
6702static int broadwell_get_display_clock_speed(struct drm_device *dev)
6703{
6704 struct drm_i915_private *dev_priv = dev->dev_private;
6705 uint32_t lcpll = I915_READ(LCPLL_CTL);
6706 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6707
6708 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6709 return 800000;
6710 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6711 return 450000;
6712 else if (freq == LCPLL_CLK_FREQ_450)
6713 return 450000;
6714 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6715 return 540000;
6716 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6717 return 337500;
6718 else
6719 return 675000;
6720}
6721
6722static int haswell_get_display_clock_speed(struct drm_device *dev)
6723{
6724 struct drm_i915_private *dev_priv = dev->dev_private;
6725 uint32_t lcpll = I915_READ(LCPLL_CTL);
6726 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6727
6728 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6729 return 800000;
6730 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6731 return 450000;
6732 else if (freq == LCPLL_CLK_FREQ_450)
6733 return 450000;
6734 else if (IS_HSW_ULT(dev))
6735 return 337500;
6736 else
6737 return 540000;
79e53945
JB
6738}
6739
25eb05fc
JB
6740static int valleyview_get_display_clock_speed(struct drm_device *dev)
6741{
bfa7df01
VS
6742 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6743 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
6744}
6745
b37a6434
VS
6746static int ilk_get_display_clock_speed(struct drm_device *dev)
6747{
6748 return 450000;
6749}
6750
e70236a8
JB
6751static int i945_get_display_clock_speed(struct drm_device *dev)
6752{
6753 return 400000;
6754}
79e53945 6755
e70236a8 6756static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6757{
e907f170 6758 return 333333;
e70236a8 6759}
79e53945 6760
e70236a8
JB
6761static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6762{
6763 return 200000;
6764}
79e53945 6765
257a7ffc
DV
6766static int pnv_get_display_clock_speed(struct drm_device *dev)
6767{
6768 u16 gcfgc = 0;
6769
6770 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6771
6772 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6773 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6774 return 266667;
257a7ffc 6775 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6776 return 333333;
257a7ffc 6777 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6778 return 444444;
257a7ffc
DV
6779 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6780 return 200000;
6781 default:
6782 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6783 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6784 return 133333;
257a7ffc 6785 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6786 return 166667;
257a7ffc
DV
6787 }
6788}
6789
e70236a8
JB
6790static int i915gm_get_display_clock_speed(struct drm_device *dev)
6791{
6792 u16 gcfgc = 0;
79e53945 6793
e70236a8
JB
6794 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6795
6796 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6797 return 133333;
e70236a8
JB
6798 else {
6799 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6800 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6801 return 333333;
e70236a8
JB
6802 default:
6803 case GC_DISPLAY_CLOCK_190_200_MHZ:
6804 return 190000;
79e53945 6805 }
e70236a8
JB
6806 }
6807}
6808
6809static int i865_get_display_clock_speed(struct drm_device *dev)
6810{
e907f170 6811 return 266667;
e70236a8
JB
6812}
6813
1b1d2716 6814static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6815{
6816 u16 hpllcc = 0;
1b1d2716 6817
65cd2b3f
VS
6818 /*
6819 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6820 * encoding is different :(
6821 * FIXME is this the right way to detect 852GM/852GMV?
6822 */
6823 if (dev->pdev->revision == 0x1)
6824 return 133333;
6825
1b1d2716
VS
6826 pci_bus_read_config_word(dev->pdev->bus,
6827 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6828
e70236a8
JB
6829 /* Assume that the hardware is in the high speed state. This
6830 * should be the default.
6831 */
6832 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6833 case GC_CLOCK_133_200:
1b1d2716 6834 case GC_CLOCK_133_200_2:
e70236a8
JB
6835 case GC_CLOCK_100_200:
6836 return 200000;
6837 case GC_CLOCK_166_250:
6838 return 250000;
6839 case GC_CLOCK_100_133:
e907f170 6840 return 133333;
1b1d2716
VS
6841 case GC_CLOCK_133_266:
6842 case GC_CLOCK_133_266_2:
6843 case GC_CLOCK_166_266:
6844 return 266667;
e70236a8 6845 }
79e53945 6846
e70236a8
JB
6847 /* Shouldn't happen */
6848 return 0;
6849}
79e53945 6850
e70236a8
JB
6851static int i830_get_display_clock_speed(struct drm_device *dev)
6852{
e907f170 6853 return 133333;
79e53945
JB
6854}
6855
34edce2f
VS
6856static unsigned int intel_hpll_vco(struct drm_device *dev)
6857{
6858 struct drm_i915_private *dev_priv = dev->dev_private;
6859 static const unsigned int blb_vco[8] = {
6860 [0] = 3200000,
6861 [1] = 4000000,
6862 [2] = 5333333,
6863 [3] = 4800000,
6864 [4] = 6400000,
6865 };
6866 static const unsigned int pnv_vco[8] = {
6867 [0] = 3200000,
6868 [1] = 4000000,
6869 [2] = 5333333,
6870 [3] = 4800000,
6871 [4] = 2666667,
6872 };
6873 static const unsigned int cl_vco[8] = {
6874 [0] = 3200000,
6875 [1] = 4000000,
6876 [2] = 5333333,
6877 [3] = 6400000,
6878 [4] = 3333333,
6879 [5] = 3566667,
6880 [6] = 4266667,
6881 };
6882 static const unsigned int elk_vco[8] = {
6883 [0] = 3200000,
6884 [1] = 4000000,
6885 [2] = 5333333,
6886 [3] = 4800000,
6887 };
6888 static const unsigned int ctg_vco[8] = {
6889 [0] = 3200000,
6890 [1] = 4000000,
6891 [2] = 5333333,
6892 [3] = 6400000,
6893 [4] = 2666667,
6894 [5] = 4266667,
6895 };
6896 const unsigned int *vco_table;
6897 unsigned int vco;
6898 uint8_t tmp = 0;
6899
6900 /* FIXME other chipsets? */
6901 if (IS_GM45(dev))
6902 vco_table = ctg_vco;
6903 else if (IS_G4X(dev))
6904 vco_table = elk_vco;
6905 else if (IS_CRESTLINE(dev))
6906 vco_table = cl_vco;
6907 else if (IS_PINEVIEW(dev))
6908 vco_table = pnv_vco;
6909 else if (IS_G33(dev))
6910 vco_table = blb_vco;
6911 else
6912 return 0;
6913
6914 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6915
6916 vco = vco_table[tmp & 0x7];
6917 if (vco == 0)
6918 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6919 else
6920 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6921
6922 return vco;
6923}
6924
6925static int gm45_get_display_clock_speed(struct drm_device *dev)
6926{
6927 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6928 uint16_t tmp = 0;
6929
6930 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6931
6932 cdclk_sel = (tmp >> 12) & 0x1;
6933
6934 switch (vco) {
6935 case 2666667:
6936 case 4000000:
6937 case 5333333:
6938 return cdclk_sel ? 333333 : 222222;
6939 case 3200000:
6940 return cdclk_sel ? 320000 : 228571;
6941 default:
6942 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6943 return 222222;
6944 }
6945}
6946
6947static int i965gm_get_display_clock_speed(struct drm_device *dev)
6948{
6949 static const uint8_t div_3200[] = { 16, 10, 8 };
6950 static const uint8_t div_4000[] = { 20, 12, 10 };
6951 static const uint8_t div_5333[] = { 24, 16, 14 };
6952 const uint8_t *div_table;
6953 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6954 uint16_t tmp = 0;
6955
6956 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6957
6958 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6959
6960 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6961 goto fail;
6962
6963 switch (vco) {
6964 case 3200000:
6965 div_table = div_3200;
6966 break;
6967 case 4000000:
6968 div_table = div_4000;
6969 break;
6970 case 5333333:
6971 div_table = div_5333;
6972 break;
6973 default:
6974 goto fail;
6975 }
6976
6977 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6978
caf4e252 6979fail:
34edce2f
VS
6980 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6981 return 200000;
6982}
6983
6984static int g33_get_display_clock_speed(struct drm_device *dev)
6985{
6986 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6987 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6988 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6989 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6990 const uint8_t *div_table;
6991 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6992 uint16_t tmp = 0;
6993
6994 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6995
6996 cdclk_sel = (tmp >> 4) & 0x7;
6997
6998 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6999 goto fail;
7000
7001 switch (vco) {
7002 case 3200000:
7003 div_table = div_3200;
7004 break;
7005 case 4000000:
7006 div_table = div_4000;
7007 break;
7008 case 4800000:
7009 div_table = div_4800;
7010 break;
7011 case 5333333:
7012 div_table = div_5333;
7013 break;
7014 default:
7015 goto fail;
7016 }
7017
7018 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7019
caf4e252 7020fail:
34edce2f
VS
7021 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7022 return 190476;
7023}
7024
2c07245f 7025static void
a65851af 7026intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7027{
a65851af
VS
7028 while (*num > DATA_LINK_M_N_MASK ||
7029 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7030 *num >>= 1;
7031 *den >>= 1;
7032 }
7033}
7034
a65851af
VS
7035static void compute_m_n(unsigned int m, unsigned int n,
7036 uint32_t *ret_m, uint32_t *ret_n)
7037{
7038 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7039 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7040 intel_reduce_m_n_ratio(ret_m, ret_n);
7041}
7042
e69d0bc1
DV
7043void
7044intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7045 int pixel_clock, int link_clock,
7046 struct intel_link_m_n *m_n)
2c07245f 7047{
e69d0bc1 7048 m_n->tu = 64;
a65851af
VS
7049
7050 compute_m_n(bits_per_pixel * pixel_clock,
7051 link_clock * nlanes * 8,
7052 &m_n->gmch_m, &m_n->gmch_n);
7053
7054 compute_m_n(pixel_clock, link_clock,
7055 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7056}
7057
a7615030
CW
7058static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7059{
d330a953
JN
7060 if (i915.panel_use_ssc >= 0)
7061 return i915.panel_use_ssc != 0;
41aa3448 7062 return dev_priv->vbt.lvds_use_ssc
435793df 7063 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7064}
7065
a93e255f
ACO
7066static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7067 int num_connectors)
c65d77d8 7068{
a93e255f 7069 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
7070 struct drm_i915_private *dev_priv = dev->dev_private;
7071 int refclk;
7072
a93e255f
ACO
7073 WARN_ON(!crtc_state->base.state);
7074
5ab7b0b7 7075 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 7076 refclk = 100000;
a93e255f 7077 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 7078 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
7079 refclk = dev_priv->vbt.lvds_ssc_freq;
7080 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
7081 } else if (!IS_GEN2(dev)) {
7082 refclk = 96000;
7083 } else {
7084 refclk = 48000;
7085 }
7086
7087 return refclk;
7088}
7089
7429e9d4 7090static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7091{
7df00d7a 7092 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7093}
f47709a9 7094
7429e9d4
DV
7095static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7096{
7097 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7098}
7099
f47709a9 7100static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7101 struct intel_crtc_state *crtc_state,
a7516a05
JB
7102 intel_clock_t *reduced_clock)
7103{
f47709a9 7104 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7105 u32 fp, fp2 = 0;
7106
7107 if (IS_PINEVIEW(dev)) {
190f68c5 7108 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7109 if (reduced_clock)
7429e9d4 7110 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7111 } else {
190f68c5 7112 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7113 if (reduced_clock)
7429e9d4 7114 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7115 }
7116
190f68c5 7117 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7118
f47709a9 7119 crtc->lowfreq_avail = false;
a93e255f 7120 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7121 reduced_clock) {
190f68c5 7122 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7123 crtc->lowfreq_avail = true;
a7516a05 7124 } else {
190f68c5 7125 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7126 }
7127}
7128
5e69f97f
CML
7129static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7130 pipe)
89b667f8
JB
7131{
7132 u32 reg_val;
7133
7134 /*
7135 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7136 * and set it to a reasonable value instead.
7137 */
ab3c759a 7138 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7139 reg_val &= 0xffffff00;
7140 reg_val |= 0x00000030;
ab3c759a 7141 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7142
ab3c759a 7143 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7144 reg_val &= 0x8cffffff;
7145 reg_val = 0x8c000000;
ab3c759a 7146 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7147
ab3c759a 7148 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7149 reg_val &= 0xffffff00;
ab3c759a 7150 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7151
ab3c759a 7152 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7153 reg_val &= 0x00ffffff;
7154 reg_val |= 0xb0000000;
ab3c759a 7155 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7156}
7157
b551842d
DV
7158static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7159 struct intel_link_m_n *m_n)
7160{
7161 struct drm_device *dev = crtc->base.dev;
7162 struct drm_i915_private *dev_priv = dev->dev_private;
7163 int pipe = crtc->pipe;
7164
e3b95f1e
DV
7165 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7166 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7167 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7168 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7169}
7170
7171static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7172 struct intel_link_m_n *m_n,
7173 struct intel_link_m_n *m2_n2)
b551842d
DV
7174{
7175 struct drm_device *dev = crtc->base.dev;
7176 struct drm_i915_private *dev_priv = dev->dev_private;
7177 int pipe = crtc->pipe;
6e3c9717 7178 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7179
7180 if (INTEL_INFO(dev)->gen >= 5) {
7181 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7182 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7183 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7184 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7185 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7186 * for gen < 8) and if DRRS is supported (to make sure the
7187 * registers are not unnecessarily accessed).
7188 */
44395bfe 7189 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7190 crtc->config->has_drrs) {
f769cd24
VK
7191 I915_WRITE(PIPE_DATA_M2(transcoder),
7192 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7193 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7194 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7195 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7196 }
b551842d 7197 } else {
e3b95f1e
DV
7198 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7199 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7200 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7201 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7202 }
7203}
7204
fe3cd48d 7205void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7206{
fe3cd48d
R
7207 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7208
7209 if (m_n == M1_N1) {
7210 dp_m_n = &crtc->config->dp_m_n;
7211 dp_m2_n2 = &crtc->config->dp_m2_n2;
7212 } else if (m_n == M2_N2) {
7213
7214 /*
7215 * M2_N2 registers are not supported. Hence m2_n2 divider value
7216 * needs to be programmed into M1_N1.
7217 */
7218 dp_m_n = &crtc->config->dp_m2_n2;
7219 } else {
7220 DRM_ERROR("Unsupported divider value\n");
7221 return;
7222 }
7223
6e3c9717
ACO
7224 if (crtc->config->has_pch_encoder)
7225 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7226 else
fe3cd48d 7227 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7228}
7229
251ac862
DV
7230static void vlv_compute_dpll(struct intel_crtc *crtc,
7231 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
7232{
7233 u32 dpll, dpll_md;
7234
7235 /*
7236 * Enable DPIO clock input. We should never disable the reference
7237 * clock for pipe B, since VGA hotplug / manual detection depends
7238 * on it.
7239 */
60bfe44f
VS
7240 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7241 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
bdd4b6a6
DV
7242 /* We should never disable this, set it here for state tracking */
7243 if (crtc->pipe == PIPE_B)
7244 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7245 dpll |= DPLL_VCO_ENABLE;
d288f65f 7246 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 7247
d288f65f 7248 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 7249 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 7250 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
7251}
7252
d288f65f 7253static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7254 const struct intel_crtc_state *pipe_config)
a0c4da24 7255{
f47709a9 7256 struct drm_device *dev = crtc->base.dev;
a0c4da24 7257 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 7258 int pipe = crtc->pipe;
bdd4b6a6 7259 u32 mdiv;
a0c4da24 7260 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7261 u32 coreclk, reg_val;
a0c4da24 7262
a580516d 7263 mutex_lock(&dev_priv->sb_lock);
09153000 7264
d288f65f
VS
7265 bestn = pipe_config->dpll.n;
7266 bestm1 = pipe_config->dpll.m1;
7267 bestm2 = pipe_config->dpll.m2;
7268 bestp1 = pipe_config->dpll.p1;
7269 bestp2 = pipe_config->dpll.p2;
a0c4da24 7270
89b667f8
JB
7271 /* See eDP HDMI DPIO driver vbios notes doc */
7272
7273 /* PLL B needs special handling */
bdd4b6a6 7274 if (pipe == PIPE_B)
5e69f97f 7275 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7276
7277 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7278 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7279
7280 /* Disable target IRef on PLL */
ab3c759a 7281 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7282 reg_val &= 0x00ffffff;
ab3c759a 7283 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7284
7285 /* Disable fast lock */
ab3c759a 7286 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7287
7288 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7289 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7290 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7291 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7292 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7293
7294 /*
7295 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7296 * but we don't support that).
7297 * Note: don't use the DAC post divider as it seems unstable.
7298 */
7299 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7300 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7301
a0c4da24 7302 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7303 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7304
89b667f8 7305 /* Set HBR and RBR LPF coefficients */
d288f65f 7306 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7307 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7308 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7309 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7310 0x009f0003);
89b667f8 7311 else
ab3c759a 7312 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7313 0x00d0000f);
7314
681a8504 7315 if (pipe_config->has_dp_encoder) {
89b667f8 7316 /* Use SSC source */
bdd4b6a6 7317 if (pipe == PIPE_A)
ab3c759a 7318 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7319 0x0df40000);
7320 else
ab3c759a 7321 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7322 0x0df70000);
7323 } else { /* HDMI or VGA */
7324 /* Use bend source */
bdd4b6a6 7325 if (pipe == PIPE_A)
ab3c759a 7326 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7327 0x0df70000);
7328 else
ab3c759a 7329 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7330 0x0df40000);
7331 }
a0c4da24 7332
ab3c759a 7333 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7334 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7335 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7336 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7337 coreclk |= 0x01000000;
ab3c759a 7338 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7339
ab3c759a 7340 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7341 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7342}
7343
251ac862
DV
7344static void chv_compute_dpll(struct intel_crtc *crtc,
7345 struct intel_crtc_state *pipe_config)
1ae0d137 7346{
60bfe44f
VS
7347 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7348 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
1ae0d137
VS
7349 DPLL_VCO_ENABLE;
7350 if (crtc->pipe != PIPE_A)
d288f65f 7351 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7352
d288f65f
VS
7353 pipe_config->dpll_hw_state.dpll_md =
7354 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7355}
7356
d288f65f 7357static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7358 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7359{
7360 struct drm_device *dev = crtc->base.dev;
7361 struct drm_i915_private *dev_priv = dev->dev_private;
7362 int pipe = crtc->pipe;
7363 int dpll_reg = DPLL(crtc->pipe);
7364 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7365 u32 loopfilter, tribuf_calcntr;
9d556c99 7366 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7367 u32 dpio_val;
9cbe40c1 7368 int vco;
9d556c99 7369
d288f65f
VS
7370 bestn = pipe_config->dpll.n;
7371 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7372 bestm1 = pipe_config->dpll.m1;
7373 bestm2 = pipe_config->dpll.m2 >> 22;
7374 bestp1 = pipe_config->dpll.p1;
7375 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7376 vco = pipe_config->dpll.vco;
a945ce7e 7377 dpio_val = 0;
9cbe40c1 7378 loopfilter = 0;
9d556c99
CML
7379
7380 /*
7381 * Enable Refclk and SSC
7382 */
a11b0703 7383 I915_WRITE(dpll_reg,
d288f65f 7384 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703 7385
a580516d 7386 mutex_lock(&dev_priv->sb_lock);
9d556c99 7387
9d556c99
CML
7388 /* p1 and p2 divider */
7389 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7390 5 << DPIO_CHV_S1_DIV_SHIFT |
7391 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7392 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7393 1 << DPIO_CHV_K_DIV_SHIFT);
7394
7395 /* Feedback post-divider - m2 */
7396 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7397
7398 /* Feedback refclk divider - n and m1 */
7399 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7400 DPIO_CHV_M1_DIV_BY_2 |
7401 1 << DPIO_CHV_N_DIV_SHIFT);
7402
7403 /* M2 fraction division */
25a25dfc 7404 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7405
7406 /* M2 fraction division enable */
a945ce7e
VP
7407 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7408 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7409 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7410 if (bestm2_frac)
7411 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7412 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7413
de3a0fde
VP
7414 /* Program digital lock detect threshold */
7415 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7416 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7417 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7418 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7419 if (!bestm2_frac)
7420 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7421 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7422
9d556c99 7423 /* Loop filter */
9cbe40c1
VP
7424 if (vco == 5400000) {
7425 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7426 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7427 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7428 tribuf_calcntr = 0x9;
7429 } else if (vco <= 6200000) {
7430 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7431 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7432 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7433 tribuf_calcntr = 0x9;
7434 } else if (vco <= 6480000) {
7435 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7436 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7437 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7438 tribuf_calcntr = 0x8;
7439 } else {
7440 /* Not supported. Apply the same limits as in the max case */
7441 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7442 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7443 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7444 tribuf_calcntr = 0;
7445 }
9d556c99
CML
7446 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7447
968040b2 7448 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7449 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7450 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7451 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7452
9d556c99
CML
7453 /* AFC Recal */
7454 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7455 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7456 DPIO_AFC_RECAL);
7457
a580516d 7458 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7459}
7460
d288f65f
VS
7461/**
7462 * vlv_force_pll_on - forcibly enable just the PLL
7463 * @dev_priv: i915 private structure
7464 * @pipe: pipe PLL to enable
7465 * @dpll: PLL configuration
7466 *
7467 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7468 * in cases where we need the PLL enabled even when @pipe is not going to
7469 * be enabled.
7470 */
7471void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7472 const struct dpll *dpll)
7473{
7474 struct intel_crtc *crtc =
7475 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 7476 struct intel_crtc_state pipe_config = {
a93e255f 7477 .base.crtc = &crtc->base,
d288f65f
VS
7478 .pixel_multiplier = 1,
7479 .dpll = *dpll,
7480 };
7481
7482 if (IS_CHERRYVIEW(dev)) {
251ac862 7483 chv_compute_dpll(crtc, &pipe_config);
d288f65f
VS
7484 chv_prepare_pll(crtc, &pipe_config);
7485 chv_enable_pll(crtc, &pipe_config);
7486 } else {
251ac862 7487 vlv_compute_dpll(crtc, &pipe_config);
d288f65f
VS
7488 vlv_prepare_pll(crtc, &pipe_config);
7489 vlv_enable_pll(crtc, &pipe_config);
7490 }
7491}
7492
7493/**
7494 * vlv_force_pll_off - forcibly disable just the PLL
7495 * @dev_priv: i915 private structure
7496 * @pipe: pipe PLL to disable
7497 *
7498 * Disable the PLL for @pipe. To be used in cases where we need
7499 * the PLL enabled even when @pipe is not going to be enabled.
7500 */
7501void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7502{
7503 if (IS_CHERRYVIEW(dev))
7504 chv_disable_pll(to_i915(dev), pipe);
7505 else
7506 vlv_disable_pll(to_i915(dev), pipe);
7507}
7508
251ac862
DV
7509static void i9xx_compute_dpll(struct intel_crtc *crtc,
7510 struct intel_crtc_state *crtc_state,
7511 intel_clock_t *reduced_clock,
7512 int num_connectors)
eb1cbe48 7513{
f47709a9 7514 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7515 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7516 u32 dpll;
7517 bool is_sdvo;
190f68c5 7518 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7519
190f68c5 7520 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7521
a93e255f
ACO
7522 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7523 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7524
7525 dpll = DPLL_VGA_MODE_DIS;
7526
a93e255f 7527 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7528 dpll |= DPLLB_MODE_LVDS;
7529 else
7530 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7531
ef1b460d 7532 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7533 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7534 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7535 }
198a037f
DV
7536
7537 if (is_sdvo)
4a33e48d 7538 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7539
190f68c5 7540 if (crtc_state->has_dp_encoder)
4a33e48d 7541 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7542
7543 /* compute bitmask from p1 value */
7544 if (IS_PINEVIEW(dev))
7545 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7546 else {
7547 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7548 if (IS_G4X(dev) && reduced_clock)
7549 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7550 }
7551 switch (clock->p2) {
7552 case 5:
7553 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7554 break;
7555 case 7:
7556 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7557 break;
7558 case 10:
7559 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7560 break;
7561 case 14:
7562 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7563 break;
7564 }
7565 if (INTEL_INFO(dev)->gen >= 4)
7566 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7567
190f68c5 7568 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7569 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7570 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7571 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7572 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7573 else
7574 dpll |= PLL_REF_INPUT_DREFCLK;
7575
7576 dpll |= DPLL_VCO_ENABLE;
190f68c5 7577 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7578
eb1cbe48 7579 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7580 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7581 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7582 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7583 }
7584}
7585
251ac862
DV
7586static void i8xx_compute_dpll(struct intel_crtc *crtc,
7587 struct intel_crtc_state *crtc_state,
7588 intel_clock_t *reduced_clock,
7589 int num_connectors)
eb1cbe48 7590{
f47709a9 7591 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7592 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7593 u32 dpll;
190f68c5 7594 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7595
190f68c5 7596 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7597
eb1cbe48
DV
7598 dpll = DPLL_VGA_MODE_DIS;
7599
a93e255f 7600 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7601 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7602 } else {
7603 if (clock->p1 == 2)
7604 dpll |= PLL_P1_DIVIDE_BY_TWO;
7605 else
7606 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7607 if (clock->p2 == 4)
7608 dpll |= PLL_P2_DIVIDE_BY_4;
7609 }
7610
a93e255f 7611 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7612 dpll |= DPLL_DVO_2X_MODE;
7613
a93e255f 7614 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7615 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7616 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7617 else
7618 dpll |= PLL_REF_INPUT_DREFCLK;
7619
7620 dpll |= DPLL_VCO_ENABLE;
190f68c5 7621 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7622}
7623
8a654f3b 7624static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7625{
7626 struct drm_device *dev = intel_crtc->base.dev;
7627 struct drm_i915_private *dev_priv = dev->dev_private;
7628 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7629 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 7630 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7631 uint32_t crtc_vtotal, crtc_vblank_end;
7632 int vsyncshift = 0;
4d8a62ea
DV
7633
7634 /* We need to be careful not to changed the adjusted mode, for otherwise
7635 * the hw state checker will get angry at the mismatch. */
7636 crtc_vtotal = adjusted_mode->crtc_vtotal;
7637 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7638
609aeaca 7639 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7640 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7641 crtc_vtotal -= 1;
7642 crtc_vblank_end -= 1;
609aeaca 7643
409ee761 7644 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7645 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7646 else
7647 vsyncshift = adjusted_mode->crtc_hsync_start -
7648 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7649 if (vsyncshift < 0)
7650 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7651 }
7652
7653 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7654 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7655
fe2b8f9d 7656 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7657 (adjusted_mode->crtc_hdisplay - 1) |
7658 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7659 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7660 (adjusted_mode->crtc_hblank_start - 1) |
7661 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7662 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7663 (adjusted_mode->crtc_hsync_start - 1) |
7664 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7665
fe2b8f9d 7666 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7667 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7668 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7669 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7670 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7671 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7672 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7673 (adjusted_mode->crtc_vsync_start - 1) |
7674 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7675
b5e508d4
PZ
7676 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7677 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7678 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7679 * bits. */
7680 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7681 (pipe == PIPE_B || pipe == PIPE_C))
7682 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7683
b0e77b9c
PZ
7684 /* pipesrc controls the size that is scaled from, which should
7685 * always be the user's requested size.
7686 */
7687 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7688 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7689 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7690}
7691
1bd1bd80 7692static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7693 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7694{
7695 struct drm_device *dev = crtc->base.dev;
7696 struct drm_i915_private *dev_priv = dev->dev_private;
7697 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7698 uint32_t tmp;
7699
7700 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7701 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7702 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7703 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7704 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7705 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7706 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7707 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7708 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7709
7710 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7711 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7712 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7713 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7714 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7715 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7716 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7717 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7718 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7719
7720 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7721 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7722 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7723 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7724 }
7725
7726 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7727 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7728 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7729
2d112de7
ACO
7730 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7731 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7732}
7733
f6a83288 7734void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7735 struct intel_crtc_state *pipe_config)
babea61d 7736{
2d112de7
ACO
7737 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7738 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7739 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7740 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7741
2d112de7
ACO
7742 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7743 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7744 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7745 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7746
2d112de7 7747 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 7748 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 7749
2d112de7
ACO
7750 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7751 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
7752
7753 mode->hsync = drm_mode_hsync(mode);
7754 mode->vrefresh = drm_mode_vrefresh(mode);
7755 drm_mode_set_name(mode);
babea61d
JB
7756}
7757
84b046f3
DV
7758static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7759{
7760 struct drm_device *dev = intel_crtc->base.dev;
7761 struct drm_i915_private *dev_priv = dev->dev_private;
7762 uint32_t pipeconf;
7763
9f11a9e4 7764 pipeconf = 0;
84b046f3 7765
b6b5d049
VS
7766 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7767 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7768 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7769
6e3c9717 7770 if (intel_crtc->config->double_wide)
cf532bb2 7771 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7772
ff9ce46e
DV
7773 /* only g4x and later have fancy bpc/dither controls */
7774 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 7775 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7776 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7777 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7778 PIPECONF_DITHER_TYPE_SP;
84b046f3 7779
6e3c9717 7780 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7781 case 18:
7782 pipeconf |= PIPECONF_6BPC;
7783 break;
7784 case 24:
7785 pipeconf |= PIPECONF_8BPC;
7786 break;
7787 case 30:
7788 pipeconf |= PIPECONF_10BPC;
7789 break;
7790 default:
7791 /* Case prevented by intel_choose_pipe_bpp_dither. */
7792 BUG();
84b046f3
DV
7793 }
7794 }
7795
7796 if (HAS_PIPE_CXSR(dev)) {
7797 if (intel_crtc->lowfreq_avail) {
7798 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7799 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7800 } else {
7801 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7802 }
7803 }
7804
6e3c9717 7805 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7806 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7807 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7808 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7809 else
7810 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7811 } else
84b046f3
DV
7812 pipeconf |= PIPECONF_PROGRESSIVE;
7813
6e3c9717 7814 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 7815 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7816
84b046f3
DV
7817 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7818 POSTING_READ(PIPECONF(intel_crtc->pipe));
7819}
7820
190f68c5
ACO
7821static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7822 struct intel_crtc_state *crtc_state)
79e53945 7823{
c7653199 7824 struct drm_device *dev = crtc->base.dev;
79e53945 7825 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7826 int refclk, num_connectors = 0;
c329a4ec
DV
7827 intel_clock_t clock;
7828 bool ok;
7829 bool is_dsi = false;
5eddb70b 7830 struct intel_encoder *encoder;
d4906093 7831 const intel_limit_t *limit;
55bb9992 7832 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7833 struct drm_connector *connector;
55bb9992
ACO
7834 struct drm_connector_state *connector_state;
7835 int i;
79e53945 7836
dd3cd74a
ACO
7837 memset(&crtc_state->dpll_hw_state, 0,
7838 sizeof(crtc_state->dpll_hw_state));
7839
da3ced29 7840 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
7841 if (connector_state->crtc != &crtc->base)
7842 continue;
7843
7844 encoder = to_intel_encoder(connector_state->best_encoder);
7845
5eddb70b 7846 switch (encoder->type) {
e9fd1c02
JN
7847 case INTEL_OUTPUT_DSI:
7848 is_dsi = true;
7849 break;
6847d71b
PZ
7850 default:
7851 break;
79e53945 7852 }
43565a06 7853
c751ce4f 7854 num_connectors++;
79e53945
JB
7855 }
7856
f2335330 7857 if (is_dsi)
5b18e57c 7858 return 0;
f2335330 7859
190f68c5 7860 if (!crtc_state->clock_set) {
a93e255f 7861 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7862
e9fd1c02
JN
7863 /*
7864 * Returns a set of divisors for the desired target clock with
7865 * the given refclk, or FALSE. The returned values represent
7866 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7867 * 2) / p1 / p2.
7868 */
a93e255f
ACO
7869 limit = intel_limit(crtc_state, refclk);
7870 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7871 crtc_state->port_clock,
e9fd1c02 7872 refclk, NULL, &clock);
f2335330 7873 if (!ok) {
e9fd1c02
JN
7874 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7875 return -EINVAL;
7876 }
79e53945 7877
f2335330 7878 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7879 crtc_state->dpll.n = clock.n;
7880 crtc_state->dpll.m1 = clock.m1;
7881 crtc_state->dpll.m2 = clock.m2;
7882 crtc_state->dpll.p1 = clock.p1;
7883 crtc_state->dpll.p2 = clock.p2;
f47709a9 7884 }
7026d4ac 7885
e9fd1c02 7886 if (IS_GEN2(dev)) {
c329a4ec 7887 i8xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7888 num_connectors);
9d556c99 7889 } else if (IS_CHERRYVIEW(dev)) {
251ac862 7890 chv_compute_dpll(crtc, crtc_state);
e9fd1c02 7891 } else if (IS_VALLEYVIEW(dev)) {
251ac862 7892 vlv_compute_dpll(crtc, crtc_state);
e9fd1c02 7893 } else {
c329a4ec 7894 i9xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7895 num_connectors);
e9fd1c02 7896 }
79e53945 7897
c8f7a0db 7898 return 0;
f564048e
EA
7899}
7900
2fa2fe9a 7901static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7902 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7903{
7904 struct drm_device *dev = crtc->base.dev;
7905 struct drm_i915_private *dev_priv = dev->dev_private;
7906 uint32_t tmp;
7907
dc9e7dec
VS
7908 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7909 return;
7910
2fa2fe9a 7911 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7912 if (!(tmp & PFIT_ENABLE))
7913 return;
2fa2fe9a 7914
06922821 7915 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
7916 if (INTEL_INFO(dev)->gen < 4) {
7917 if (crtc->pipe != PIPE_B)
7918 return;
2fa2fe9a
DV
7919 } else {
7920 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7921 return;
7922 }
7923
06922821 7924 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
7925 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7926 if (INTEL_INFO(dev)->gen < 5)
7927 pipe_config->gmch_pfit.lvds_border_bits =
7928 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7929}
7930
acbec814 7931static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7932 struct intel_crtc_state *pipe_config)
acbec814
JB
7933{
7934 struct drm_device *dev = crtc->base.dev;
7935 struct drm_i915_private *dev_priv = dev->dev_private;
7936 int pipe = pipe_config->cpu_transcoder;
7937 intel_clock_t clock;
7938 u32 mdiv;
662c6ecb 7939 int refclk = 100000;
acbec814 7940
f573de5a
SK
7941 /* In case of MIPI DPLL will not even be used */
7942 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7943 return;
7944
a580516d 7945 mutex_lock(&dev_priv->sb_lock);
ab3c759a 7946 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 7947 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
7948
7949 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7950 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7951 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7952 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7953 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7954
dccbea3b 7955 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
7956}
7957
5724dbd1
DL
7958static void
7959i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7960 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
7961{
7962 struct drm_device *dev = crtc->base.dev;
7963 struct drm_i915_private *dev_priv = dev->dev_private;
7964 u32 val, base, offset;
7965 int pipe = crtc->pipe, plane = crtc->plane;
7966 int fourcc, pixel_format;
6761dd31 7967 unsigned int aligned_height;
b113d5ee 7968 struct drm_framebuffer *fb;
1b842c89 7969 struct intel_framebuffer *intel_fb;
1ad292b5 7970
42a7b088
DL
7971 val = I915_READ(DSPCNTR(plane));
7972 if (!(val & DISPLAY_PLANE_ENABLE))
7973 return;
7974
d9806c9f 7975 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7976 if (!intel_fb) {
1ad292b5
JB
7977 DRM_DEBUG_KMS("failed to alloc fb\n");
7978 return;
7979 }
7980
1b842c89
DL
7981 fb = &intel_fb->base;
7982
18c5247e
DV
7983 if (INTEL_INFO(dev)->gen >= 4) {
7984 if (val & DISPPLANE_TILED) {
49af449b 7985 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7986 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7987 }
7988 }
1ad292b5
JB
7989
7990 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7991 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7992 fb->pixel_format = fourcc;
7993 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
7994
7995 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 7996 if (plane_config->tiling)
1ad292b5
JB
7997 offset = I915_READ(DSPTILEOFF(plane));
7998 else
7999 offset = I915_READ(DSPLINOFF(plane));
8000 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8001 } else {
8002 base = I915_READ(DSPADDR(plane));
8003 }
8004 plane_config->base = base;
8005
8006 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8007 fb->width = ((val >> 16) & 0xfff) + 1;
8008 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8009
8010 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8011 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8012
b113d5ee 8013 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8014 fb->pixel_format,
8015 fb->modifier[0]);
1ad292b5 8016
f37b5c2b 8017 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8018
2844a921
DL
8019 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8020 pipe_name(pipe), plane, fb->width, fb->height,
8021 fb->bits_per_pixel, base, fb->pitches[0],
8022 plane_config->size);
1ad292b5 8023
2d14030b 8024 plane_config->fb = intel_fb;
1ad292b5
JB
8025}
8026
70b23a98 8027static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8028 struct intel_crtc_state *pipe_config)
70b23a98
VS
8029{
8030 struct drm_device *dev = crtc->base.dev;
8031 struct drm_i915_private *dev_priv = dev->dev_private;
8032 int pipe = pipe_config->cpu_transcoder;
8033 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8034 intel_clock_t clock;
0d7b6b11 8035 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8036 int refclk = 100000;
8037
a580516d 8038 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8039 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8040 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8041 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8042 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8043 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8044 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8045
8046 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8047 clock.m2 = (pll_dw0 & 0xff) << 22;
8048 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8049 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8050 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8051 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8052 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8053
dccbea3b 8054 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8055}
8056
0e8ffe1b 8057static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8058 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8059{
8060 struct drm_device *dev = crtc->base.dev;
8061 struct drm_i915_private *dev_priv = dev->dev_private;
8062 uint32_t tmp;
8063
f458ebbc
DV
8064 if (!intel_display_power_is_enabled(dev_priv,
8065 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
8066 return false;
8067
e143a21c 8068 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8069 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8070
0e8ffe1b
DV
8071 tmp = I915_READ(PIPECONF(crtc->pipe));
8072 if (!(tmp & PIPECONF_ENABLE))
8073 return false;
8074
42571aef
VS
8075 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8076 switch (tmp & PIPECONF_BPC_MASK) {
8077 case PIPECONF_6BPC:
8078 pipe_config->pipe_bpp = 18;
8079 break;
8080 case PIPECONF_8BPC:
8081 pipe_config->pipe_bpp = 24;
8082 break;
8083 case PIPECONF_10BPC:
8084 pipe_config->pipe_bpp = 30;
8085 break;
8086 default:
8087 break;
8088 }
8089 }
8090
b5a9fa09
DV
8091 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8092 pipe_config->limited_color_range = true;
8093
282740f7
VS
8094 if (INTEL_INFO(dev)->gen < 4)
8095 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8096
1bd1bd80
DV
8097 intel_get_pipe_timings(crtc, pipe_config);
8098
2fa2fe9a
DV
8099 i9xx_get_pfit_config(crtc, pipe_config);
8100
6c49f241
DV
8101 if (INTEL_INFO(dev)->gen >= 4) {
8102 tmp = I915_READ(DPLL_MD(crtc->pipe));
8103 pipe_config->pixel_multiplier =
8104 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8105 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8106 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8107 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8108 tmp = I915_READ(DPLL(crtc->pipe));
8109 pipe_config->pixel_multiplier =
8110 ((tmp & SDVO_MULTIPLIER_MASK)
8111 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8112 } else {
8113 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8114 * port and will be fixed up in the encoder->get_config
8115 * function. */
8116 pipe_config->pixel_multiplier = 1;
8117 }
8bcc2795
DV
8118 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8119 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
8120 /*
8121 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8122 * on 830. Filter it out here so that we don't
8123 * report errors due to that.
8124 */
8125 if (IS_I830(dev))
8126 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8127
8bcc2795
DV
8128 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8129 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8130 } else {
8131 /* Mask out read-only status bits. */
8132 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8133 DPLL_PORTC_READY_MASK |
8134 DPLL_PORTB_READY_MASK);
8bcc2795 8135 }
6c49f241 8136
70b23a98
VS
8137 if (IS_CHERRYVIEW(dev))
8138 chv_crtc_clock_get(crtc, pipe_config);
8139 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8140 vlv_crtc_clock_get(crtc, pipe_config);
8141 else
8142 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8143
0f64614d
VS
8144 /*
8145 * Normally the dotclock is filled in by the encoder .get_config()
8146 * but in case the pipe is enabled w/o any ports we need a sane
8147 * default.
8148 */
8149 pipe_config->base.adjusted_mode.crtc_clock =
8150 pipe_config->port_clock / pipe_config->pixel_multiplier;
8151
0e8ffe1b
DV
8152 return true;
8153}
8154
dde86e2d 8155static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8156{
8157 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8158 struct intel_encoder *encoder;
74cfd7ac 8159 u32 val, final;
13d83a67 8160 bool has_lvds = false;
199e5d79 8161 bool has_cpu_edp = false;
199e5d79 8162 bool has_panel = false;
99eb6a01
KP
8163 bool has_ck505 = false;
8164 bool can_ssc = false;
13d83a67
JB
8165
8166 /* We need to take the global config into account */
b2784e15 8167 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8168 switch (encoder->type) {
8169 case INTEL_OUTPUT_LVDS:
8170 has_panel = true;
8171 has_lvds = true;
8172 break;
8173 case INTEL_OUTPUT_EDP:
8174 has_panel = true;
2de6905f 8175 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8176 has_cpu_edp = true;
8177 break;
6847d71b
PZ
8178 default:
8179 break;
13d83a67
JB
8180 }
8181 }
8182
99eb6a01 8183 if (HAS_PCH_IBX(dev)) {
41aa3448 8184 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8185 can_ssc = has_ck505;
8186 } else {
8187 has_ck505 = false;
8188 can_ssc = true;
8189 }
8190
2de6905f
ID
8191 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8192 has_panel, has_lvds, has_ck505);
13d83a67
JB
8193
8194 /* Ironlake: try to setup display ref clock before DPLL
8195 * enabling. This is only under driver's control after
8196 * PCH B stepping, previous chipset stepping should be
8197 * ignoring this setting.
8198 */
74cfd7ac
CW
8199 val = I915_READ(PCH_DREF_CONTROL);
8200
8201 /* As we must carefully and slowly disable/enable each source in turn,
8202 * compute the final state we want first and check if we need to
8203 * make any changes at all.
8204 */
8205 final = val;
8206 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8207 if (has_ck505)
8208 final |= DREF_NONSPREAD_CK505_ENABLE;
8209 else
8210 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8211
8212 final &= ~DREF_SSC_SOURCE_MASK;
8213 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8214 final &= ~DREF_SSC1_ENABLE;
8215
8216 if (has_panel) {
8217 final |= DREF_SSC_SOURCE_ENABLE;
8218
8219 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8220 final |= DREF_SSC1_ENABLE;
8221
8222 if (has_cpu_edp) {
8223 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8224 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8225 else
8226 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8227 } else
8228 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8229 } else {
8230 final |= DREF_SSC_SOURCE_DISABLE;
8231 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8232 }
8233
8234 if (final == val)
8235 return;
8236
13d83a67 8237 /* Always enable nonspread source */
74cfd7ac 8238 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8239
99eb6a01 8240 if (has_ck505)
74cfd7ac 8241 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8242 else
74cfd7ac 8243 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8244
199e5d79 8245 if (has_panel) {
74cfd7ac
CW
8246 val &= ~DREF_SSC_SOURCE_MASK;
8247 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8248
199e5d79 8249 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8250 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8251 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8252 val |= DREF_SSC1_ENABLE;
e77166b5 8253 } else
74cfd7ac 8254 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8255
8256 /* Get SSC going before enabling the outputs */
74cfd7ac 8257 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8258 POSTING_READ(PCH_DREF_CONTROL);
8259 udelay(200);
8260
74cfd7ac 8261 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8262
8263 /* Enable CPU source on CPU attached eDP */
199e5d79 8264 if (has_cpu_edp) {
99eb6a01 8265 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8266 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8267 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8268 } else
74cfd7ac 8269 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8270 } else
74cfd7ac 8271 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8272
74cfd7ac 8273 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8274 POSTING_READ(PCH_DREF_CONTROL);
8275 udelay(200);
8276 } else {
8277 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8278
74cfd7ac 8279 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8280
8281 /* Turn off CPU output */
74cfd7ac 8282 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8283
74cfd7ac 8284 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8285 POSTING_READ(PCH_DREF_CONTROL);
8286 udelay(200);
8287
8288 /* Turn off the SSC source */
74cfd7ac
CW
8289 val &= ~DREF_SSC_SOURCE_MASK;
8290 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8291
8292 /* Turn off SSC1 */
74cfd7ac 8293 val &= ~DREF_SSC1_ENABLE;
199e5d79 8294
74cfd7ac 8295 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8296 POSTING_READ(PCH_DREF_CONTROL);
8297 udelay(200);
8298 }
74cfd7ac
CW
8299
8300 BUG_ON(val != final);
13d83a67
JB
8301}
8302
f31f2d55 8303static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8304{
f31f2d55 8305 uint32_t tmp;
dde86e2d 8306
0ff066a9
PZ
8307 tmp = I915_READ(SOUTH_CHICKEN2);
8308 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8309 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8310
0ff066a9
PZ
8311 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8312 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8313 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8314
0ff066a9
PZ
8315 tmp = I915_READ(SOUTH_CHICKEN2);
8316 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8317 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8318
0ff066a9
PZ
8319 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8320 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8321 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8322}
8323
8324/* WaMPhyProgramming:hsw */
8325static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8326{
8327 uint32_t tmp;
dde86e2d
PZ
8328
8329 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8330 tmp &= ~(0xFF << 24);
8331 tmp |= (0x12 << 24);
8332 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8333
dde86e2d
PZ
8334 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8335 tmp |= (1 << 11);
8336 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8337
8338 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8339 tmp |= (1 << 11);
8340 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8341
dde86e2d
PZ
8342 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8343 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8344 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8345
8346 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8347 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8348 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8349
0ff066a9
PZ
8350 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8351 tmp &= ~(7 << 13);
8352 tmp |= (5 << 13);
8353 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8354
0ff066a9
PZ
8355 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8356 tmp &= ~(7 << 13);
8357 tmp |= (5 << 13);
8358 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8359
8360 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8361 tmp &= ~0xFF;
8362 tmp |= 0x1C;
8363 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8364
8365 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8366 tmp &= ~0xFF;
8367 tmp |= 0x1C;
8368 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8369
8370 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8371 tmp &= ~(0xFF << 16);
8372 tmp |= (0x1C << 16);
8373 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8374
8375 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8376 tmp &= ~(0xFF << 16);
8377 tmp |= (0x1C << 16);
8378 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8379
0ff066a9
PZ
8380 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8381 tmp |= (1 << 27);
8382 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8383
0ff066a9
PZ
8384 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8385 tmp |= (1 << 27);
8386 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8387
0ff066a9
PZ
8388 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8389 tmp &= ~(0xF << 28);
8390 tmp |= (4 << 28);
8391 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8392
0ff066a9
PZ
8393 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8394 tmp &= ~(0xF << 28);
8395 tmp |= (4 << 28);
8396 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8397}
8398
2fa86a1f
PZ
8399/* Implements 3 different sequences from BSpec chapter "Display iCLK
8400 * Programming" based on the parameters passed:
8401 * - Sequence to enable CLKOUT_DP
8402 * - Sequence to enable CLKOUT_DP without spread
8403 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8404 */
8405static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8406 bool with_fdi)
f31f2d55
PZ
8407{
8408 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8409 uint32_t reg, tmp;
8410
8411 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8412 with_spread = true;
c2699524 8413 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 8414 with_fdi = false;
f31f2d55 8415
a580516d 8416 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8417
8418 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8419 tmp &= ~SBI_SSCCTL_DISABLE;
8420 tmp |= SBI_SSCCTL_PATHALT;
8421 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8422
8423 udelay(24);
8424
2fa86a1f
PZ
8425 if (with_spread) {
8426 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8427 tmp &= ~SBI_SSCCTL_PATHALT;
8428 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8429
2fa86a1f
PZ
8430 if (with_fdi) {
8431 lpt_reset_fdi_mphy(dev_priv);
8432 lpt_program_fdi_mphy(dev_priv);
8433 }
8434 }
dde86e2d 8435
c2699524 8436 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
8437 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8438 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8439 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8440
a580516d 8441 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8442}
8443
47701c3b
PZ
8444/* Sequence to disable CLKOUT_DP */
8445static void lpt_disable_clkout_dp(struct drm_device *dev)
8446{
8447 struct drm_i915_private *dev_priv = dev->dev_private;
8448 uint32_t reg, tmp;
8449
a580516d 8450 mutex_lock(&dev_priv->sb_lock);
47701c3b 8451
c2699524 8452 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
8453 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8454 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8455 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8456
8457 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8458 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8459 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8460 tmp |= SBI_SSCCTL_PATHALT;
8461 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8462 udelay(32);
8463 }
8464 tmp |= SBI_SSCCTL_DISABLE;
8465 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8466 }
8467
a580516d 8468 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8469}
8470
bf8fa3d3
PZ
8471static void lpt_init_pch_refclk(struct drm_device *dev)
8472{
bf8fa3d3
PZ
8473 struct intel_encoder *encoder;
8474 bool has_vga = false;
8475
b2784e15 8476 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8477 switch (encoder->type) {
8478 case INTEL_OUTPUT_ANALOG:
8479 has_vga = true;
8480 break;
6847d71b
PZ
8481 default:
8482 break;
bf8fa3d3
PZ
8483 }
8484 }
8485
47701c3b
PZ
8486 if (has_vga)
8487 lpt_enable_clkout_dp(dev, true, true);
8488 else
8489 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
8490}
8491
dde86e2d
PZ
8492/*
8493 * Initialize reference clocks when the driver loads
8494 */
8495void intel_init_pch_refclk(struct drm_device *dev)
8496{
8497 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8498 ironlake_init_pch_refclk(dev);
8499 else if (HAS_PCH_LPT(dev))
8500 lpt_init_pch_refclk(dev);
8501}
8502
55bb9992 8503static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8504{
55bb9992 8505 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8506 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8507 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8508 struct drm_connector *connector;
55bb9992 8509 struct drm_connector_state *connector_state;
d9d444cb 8510 struct intel_encoder *encoder;
55bb9992 8511 int num_connectors = 0, i;
d9d444cb
JB
8512 bool is_lvds = false;
8513
da3ced29 8514 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8515 if (connector_state->crtc != crtc_state->base.crtc)
8516 continue;
8517
8518 encoder = to_intel_encoder(connector_state->best_encoder);
8519
d9d444cb
JB
8520 switch (encoder->type) {
8521 case INTEL_OUTPUT_LVDS:
8522 is_lvds = true;
8523 break;
6847d71b
PZ
8524 default:
8525 break;
d9d444cb
JB
8526 }
8527 num_connectors++;
8528 }
8529
8530 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8531 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8532 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8533 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8534 }
8535
8536 return 120000;
8537}
8538
6ff93609 8539static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8540{
c8203565 8541 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8542 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8543 int pipe = intel_crtc->pipe;
c8203565
PZ
8544 uint32_t val;
8545
78114071 8546 val = 0;
c8203565 8547
6e3c9717 8548 switch (intel_crtc->config->pipe_bpp) {
c8203565 8549 case 18:
dfd07d72 8550 val |= PIPECONF_6BPC;
c8203565
PZ
8551 break;
8552 case 24:
dfd07d72 8553 val |= PIPECONF_8BPC;
c8203565
PZ
8554 break;
8555 case 30:
dfd07d72 8556 val |= PIPECONF_10BPC;
c8203565
PZ
8557 break;
8558 case 36:
dfd07d72 8559 val |= PIPECONF_12BPC;
c8203565
PZ
8560 break;
8561 default:
cc769b62
PZ
8562 /* Case prevented by intel_choose_pipe_bpp_dither. */
8563 BUG();
c8203565
PZ
8564 }
8565
6e3c9717 8566 if (intel_crtc->config->dither)
c8203565
PZ
8567 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8568
6e3c9717 8569 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8570 val |= PIPECONF_INTERLACED_ILK;
8571 else
8572 val |= PIPECONF_PROGRESSIVE;
8573
6e3c9717 8574 if (intel_crtc->config->limited_color_range)
3685a8f3 8575 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8576
c8203565
PZ
8577 I915_WRITE(PIPECONF(pipe), val);
8578 POSTING_READ(PIPECONF(pipe));
8579}
8580
86d3efce
VS
8581/*
8582 * Set up the pipe CSC unit.
8583 *
8584 * Currently only full range RGB to limited range RGB conversion
8585 * is supported, but eventually this should handle various
8586 * RGB<->YCbCr scenarios as well.
8587 */
50f3b016 8588static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8589{
8590 struct drm_device *dev = crtc->dev;
8591 struct drm_i915_private *dev_priv = dev->dev_private;
8592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8593 int pipe = intel_crtc->pipe;
8594 uint16_t coeff = 0x7800; /* 1.0 */
8595
8596 /*
8597 * TODO: Check what kind of values actually come out of the pipe
8598 * with these coeff/postoff values and adjust to get the best
8599 * accuracy. Perhaps we even need to take the bpc value into
8600 * consideration.
8601 */
8602
6e3c9717 8603 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8604 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8605
8606 /*
8607 * GY/GU and RY/RU should be the other way around according
8608 * to BSpec, but reality doesn't agree. Just set them up in
8609 * a way that results in the correct picture.
8610 */
8611 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8612 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8613
8614 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8615 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8616
8617 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8618 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8619
8620 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8621 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8622 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8623
8624 if (INTEL_INFO(dev)->gen > 6) {
8625 uint16_t postoff = 0;
8626
6e3c9717 8627 if (intel_crtc->config->limited_color_range)
32cf0cb0 8628 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8629
8630 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8631 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8632 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8633
8634 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8635 } else {
8636 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8637
6e3c9717 8638 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8639 mode |= CSC_BLACK_SCREEN_OFFSET;
8640
8641 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8642 }
8643}
8644
6ff93609 8645static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8646{
756f85cf
PZ
8647 struct drm_device *dev = crtc->dev;
8648 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8650 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8651 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8652 uint32_t val;
8653
3eff4faa 8654 val = 0;
ee2b0b38 8655
6e3c9717 8656 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8657 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8658
6e3c9717 8659 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8660 val |= PIPECONF_INTERLACED_ILK;
8661 else
8662 val |= PIPECONF_PROGRESSIVE;
8663
702e7a56
PZ
8664 I915_WRITE(PIPECONF(cpu_transcoder), val);
8665 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8666
8667 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8668 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8669
3cdf122c 8670 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8671 val = 0;
8672
6e3c9717 8673 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8674 case 18:
8675 val |= PIPEMISC_DITHER_6_BPC;
8676 break;
8677 case 24:
8678 val |= PIPEMISC_DITHER_8_BPC;
8679 break;
8680 case 30:
8681 val |= PIPEMISC_DITHER_10_BPC;
8682 break;
8683 case 36:
8684 val |= PIPEMISC_DITHER_12_BPC;
8685 break;
8686 default:
8687 /* Case prevented by pipe_config_set_bpp. */
8688 BUG();
8689 }
8690
6e3c9717 8691 if (intel_crtc->config->dither)
756f85cf
PZ
8692 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8693
8694 I915_WRITE(PIPEMISC(pipe), val);
8695 }
ee2b0b38
PZ
8696}
8697
6591c6e4 8698static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8699 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8700 intel_clock_t *clock,
8701 bool *has_reduced_clock,
8702 intel_clock_t *reduced_clock)
8703{
8704 struct drm_device *dev = crtc->dev;
8705 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8706 int refclk;
d4906093 8707 const intel_limit_t *limit;
c329a4ec 8708 bool ret;
79e53945 8709
55bb9992 8710 refclk = ironlake_get_refclk(crtc_state);
79e53945 8711
d4906093
ML
8712 /*
8713 * Returns a set of divisors for the desired target clock with the given
8714 * refclk, or FALSE. The returned values represent the clock equation:
8715 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8716 */
a93e255f
ACO
8717 limit = intel_limit(crtc_state, refclk);
8718 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8719 crtc_state->port_clock,
ee9300bb 8720 refclk, NULL, clock);
6591c6e4
PZ
8721 if (!ret)
8722 return false;
cda4b7d3 8723
6591c6e4
PZ
8724 return true;
8725}
8726
d4b1931c
PZ
8727int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8728{
8729 /*
8730 * Account for spread spectrum to avoid
8731 * oversubscribing the link. Max center spread
8732 * is 2.5%; use 5% for safety's sake.
8733 */
8734 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8735 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8736}
8737
7429e9d4 8738static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8739{
7429e9d4 8740 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8741}
8742
de13a2e3 8743static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8744 struct intel_crtc_state *crtc_state,
7429e9d4 8745 u32 *fp,
9a7c7890 8746 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8747{
de13a2e3 8748 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8749 struct drm_device *dev = crtc->dev;
8750 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8751 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8752 struct drm_connector *connector;
55bb9992
ACO
8753 struct drm_connector_state *connector_state;
8754 struct intel_encoder *encoder;
de13a2e3 8755 uint32_t dpll;
55bb9992 8756 int factor, num_connectors = 0, i;
09ede541 8757 bool is_lvds = false, is_sdvo = false;
79e53945 8758
da3ced29 8759 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8760 if (connector_state->crtc != crtc_state->base.crtc)
8761 continue;
8762
8763 encoder = to_intel_encoder(connector_state->best_encoder);
8764
8765 switch (encoder->type) {
79e53945
JB
8766 case INTEL_OUTPUT_LVDS:
8767 is_lvds = true;
8768 break;
8769 case INTEL_OUTPUT_SDVO:
7d57382e 8770 case INTEL_OUTPUT_HDMI:
79e53945 8771 is_sdvo = true;
79e53945 8772 break;
6847d71b
PZ
8773 default:
8774 break;
79e53945 8775 }
43565a06 8776
c751ce4f 8777 num_connectors++;
79e53945 8778 }
79e53945 8779
c1858123 8780 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8781 factor = 21;
8782 if (is_lvds) {
8783 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8784 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8785 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8786 factor = 25;
190f68c5 8787 } else if (crtc_state->sdvo_tv_clock)
8febb297 8788 factor = 20;
c1858123 8789
190f68c5 8790 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8791 *fp |= FP_CB_TUNE;
2c07245f 8792
9a7c7890
DV
8793 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8794 *fp2 |= FP_CB_TUNE;
8795
5eddb70b 8796 dpll = 0;
2c07245f 8797
a07d6787
EA
8798 if (is_lvds)
8799 dpll |= DPLLB_MODE_LVDS;
8800 else
8801 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8802
190f68c5 8803 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8804 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8805
8806 if (is_sdvo)
4a33e48d 8807 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8808 if (crtc_state->has_dp_encoder)
4a33e48d 8809 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8810
a07d6787 8811 /* compute bitmask from p1 value */
190f68c5 8812 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8813 /* also FPA1 */
190f68c5 8814 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8815
190f68c5 8816 switch (crtc_state->dpll.p2) {
a07d6787
EA
8817 case 5:
8818 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8819 break;
8820 case 7:
8821 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8822 break;
8823 case 10:
8824 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8825 break;
8826 case 14:
8827 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8828 break;
79e53945
JB
8829 }
8830
b4c09f3b 8831 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8832 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8833 else
8834 dpll |= PLL_REF_INPUT_DREFCLK;
8835
959e16d6 8836 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8837}
8838
190f68c5
ACO
8839static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8840 struct intel_crtc_state *crtc_state)
de13a2e3 8841{
c7653199 8842 struct drm_device *dev = crtc->base.dev;
de13a2e3 8843 intel_clock_t clock, reduced_clock;
cbbab5bd 8844 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8845 bool ok, has_reduced_clock = false;
8b47047b 8846 bool is_lvds = false;
e2b78267 8847 struct intel_shared_dpll *pll;
de13a2e3 8848
dd3cd74a
ACO
8849 memset(&crtc_state->dpll_hw_state, 0,
8850 sizeof(crtc_state->dpll_hw_state));
8851
409ee761 8852 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 8853
5dc5298b
PZ
8854 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8855 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8856
190f68c5 8857 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8858 &has_reduced_clock, &reduced_clock);
190f68c5 8859 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8860 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8861 return -EINVAL;
79e53945 8862 }
f47709a9 8863 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8864 if (!crtc_state->clock_set) {
8865 crtc_state->dpll.n = clock.n;
8866 crtc_state->dpll.m1 = clock.m1;
8867 crtc_state->dpll.m2 = clock.m2;
8868 crtc_state->dpll.p1 = clock.p1;
8869 crtc_state->dpll.p2 = clock.p2;
f47709a9 8870 }
79e53945 8871
5dc5298b 8872 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8873 if (crtc_state->has_pch_encoder) {
8874 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8875 if (has_reduced_clock)
7429e9d4 8876 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8877
190f68c5 8878 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8879 &fp, &reduced_clock,
8880 has_reduced_clock ? &fp2 : NULL);
8881
190f68c5
ACO
8882 crtc_state->dpll_hw_state.dpll = dpll;
8883 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8884 if (has_reduced_clock)
190f68c5 8885 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8886 else
190f68c5 8887 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8888
190f68c5 8889 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 8890 if (pll == NULL) {
84f44ce7 8891 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8892 pipe_name(crtc->pipe));
4b645f14
JB
8893 return -EINVAL;
8894 }
3fb37703 8895 }
79e53945 8896
ab585dea 8897 if (is_lvds && has_reduced_clock)
c7653199 8898 crtc->lowfreq_avail = true;
bcd644e0 8899 else
c7653199 8900 crtc->lowfreq_avail = false;
e2b78267 8901
c8f7a0db 8902 return 0;
79e53945
JB
8903}
8904
eb14cb74
VS
8905static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8906 struct intel_link_m_n *m_n)
8907{
8908 struct drm_device *dev = crtc->base.dev;
8909 struct drm_i915_private *dev_priv = dev->dev_private;
8910 enum pipe pipe = crtc->pipe;
8911
8912 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8913 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8914 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8915 & ~TU_SIZE_MASK;
8916 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8917 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8918 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8919}
8920
8921static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8922 enum transcoder transcoder,
b95af8be
VK
8923 struct intel_link_m_n *m_n,
8924 struct intel_link_m_n *m2_n2)
72419203
DV
8925{
8926 struct drm_device *dev = crtc->base.dev;
8927 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 8928 enum pipe pipe = crtc->pipe;
72419203 8929
eb14cb74
VS
8930 if (INTEL_INFO(dev)->gen >= 5) {
8931 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8932 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8933 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8934 & ~TU_SIZE_MASK;
8935 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8936 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8937 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
8938 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8939 * gen < 8) and if DRRS is supported (to make sure the
8940 * registers are not unnecessarily read).
8941 */
8942 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 8943 crtc->config->has_drrs) {
b95af8be
VK
8944 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8945 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8946 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8947 & ~TU_SIZE_MASK;
8948 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8949 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8950 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8951 }
eb14cb74
VS
8952 } else {
8953 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8954 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8955 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8956 & ~TU_SIZE_MASK;
8957 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8958 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8959 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8960 }
8961}
8962
8963void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 8964 struct intel_crtc_state *pipe_config)
eb14cb74 8965{
681a8504 8966 if (pipe_config->has_pch_encoder)
eb14cb74
VS
8967 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8968 else
8969 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
8970 &pipe_config->dp_m_n,
8971 &pipe_config->dp_m2_n2);
eb14cb74 8972}
72419203 8973
eb14cb74 8974static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 8975 struct intel_crtc_state *pipe_config)
eb14cb74
VS
8976{
8977 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 8978 &pipe_config->fdi_m_n, NULL);
72419203
DV
8979}
8980
bd2e244f 8981static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8982 struct intel_crtc_state *pipe_config)
bd2e244f
JB
8983{
8984 struct drm_device *dev = crtc->base.dev;
8985 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
8986 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8987 uint32_t ps_ctrl = 0;
8988 int id = -1;
8989 int i;
bd2e244f 8990
a1b2278e
CK
8991 /* find scaler attached to this pipe */
8992 for (i = 0; i < crtc->num_scalers; i++) {
8993 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8994 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8995 id = i;
8996 pipe_config->pch_pfit.enabled = true;
8997 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8998 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8999 break;
9000 }
9001 }
bd2e244f 9002
a1b2278e
CK
9003 scaler_state->scaler_id = id;
9004 if (id >= 0) {
9005 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9006 } else {
9007 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9008 }
9009}
9010
5724dbd1
DL
9011static void
9012skylake_get_initial_plane_config(struct intel_crtc *crtc,
9013 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9014{
9015 struct drm_device *dev = crtc->base.dev;
9016 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9017 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9018 int pipe = crtc->pipe;
9019 int fourcc, pixel_format;
6761dd31 9020 unsigned int aligned_height;
bc8d7dff 9021 struct drm_framebuffer *fb;
1b842c89 9022 struct intel_framebuffer *intel_fb;
bc8d7dff 9023
d9806c9f 9024 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9025 if (!intel_fb) {
bc8d7dff
DL
9026 DRM_DEBUG_KMS("failed to alloc fb\n");
9027 return;
9028 }
9029
1b842c89
DL
9030 fb = &intel_fb->base;
9031
bc8d7dff 9032 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9033 if (!(val & PLANE_CTL_ENABLE))
9034 goto error;
9035
bc8d7dff
DL
9036 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9037 fourcc = skl_format_to_fourcc(pixel_format,
9038 val & PLANE_CTL_ORDER_RGBX,
9039 val & PLANE_CTL_ALPHA_MASK);
9040 fb->pixel_format = fourcc;
9041 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9042
40f46283
DL
9043 tiling = val & PLANE_CTL_TILED_MASK;
9044 switch (tiling) {
9045 case PLANE_CTL_TILED_LINEAR:
9046 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9047 break;
9048 case PLANE_CTL_TILED_X:
9049 plane_config->tiling = I915_TILING_X;
9050 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9051 break;
9052 case PLANE_CTL_TILED_Y:
9053 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9054 break;
9055 case PLANE_CTL_TILED_YF:
9056 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9057 break;
9058 default:
9059 MISSING_CASE(tiling);
9060 goto error;
9061 }
9062
bc8d7dff
DL
9063 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9064 plane_config->base = base;
9065
9066 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9067
9068 val = I915_READ(PLANE_SIZE(pipe, 0));
9069 fb->height = ((val >> 16) & 0xfff) + 1;
9070 fb->width = ((val >> 0) & 0x1fff) + 1;
9071
9072 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
9073 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9074 fb->pixel_format);
bc8d7dff
DL
9075 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9076
9077 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9078 fb->pixel_format,
9079 fb->modifier[0]);
bc8d7dff 9080
f37b5c2b 9081 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9082
9083 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9084 pipe_name(pipe), fb->width, fb->height,
9085 fb->bits_per_pixel, base, fb->pitches[0],
9086 plane_config->size);
9087
2d14030b 9088 plane_config->fb = intel_fb;
bc8d7dff
DL
9089 return;
9090
9091error:
9092 kfree(fb);
9093}
9094
2fa2fe9a 9095static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9096 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9097{
9098 struct drm_device *dev = crtc->base.dev;
9099 struct drm_i915_private *dev_priv = dev->dev_private;
9100 uint32_t tmp;
9101
9102 tmp = I915_READ(PF_CTL(crtc->pipe));
9103
9104 if (tmp & PF_ENABLE) {
fd4daa9c 9105 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9106 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9107 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9108
9109 /* We currently do not free assignements of panel fitters on
9110 * ivb/hsw (since we don't use the higher upscaling modes which
9111 * differentiates them) so just WARN about this case for now. */
9112 if (IS_GEN7(dev)) {
9113 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9114 PF_PIPE_SEL_IVB(crtc->pipe));
9115 }
2fa2fe9a 9116 }
79e53945
JB
9117}
9118
5724dbd1
DL
9119static void
9120ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9121 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9122{
9123 struct drm_device *dev = crtc->base.dev;
9124 struct drm_i915_private *dev_priv = dev->dev_private;
9125 u32 val, base, offset;
aeee5a49 9126 int pipe = crtc->pipe;
4c6baa59 9127 int fourcc, pixel_format;
6761dd31 9128 unsigned int aligned_height;
b113d5ee 9129 struct drm_framebuffer *fb;
1b842c89 9130 struct intel_framebuffer *intel_fb;
4c6baa59 9131
42a7b088
DL
9132 val = I915_READ(DSPCNTR(pipe));
9133 if (!(val & DISPLAY_PLANE_ENABLE))
9134 return;
9135
d9806c9f 9136 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9137 if (!intel_fb) {
4c6baa59
JB
9138 DRM_DEBUG_KMS("failed to alloc fb\n");
9139 return;
9140 }
9141
1b842c89
DL
9142 fb = &intel_fb->base;
9143
18c5247e
DV
9144 if (INTEL_INFO(dev)->gen >= 4) {
9145 if (val & DISPPLANE_TILED) {
49af449b 9146 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9147 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9148 }
9149 }
4c6baa59
JB
9150
9151 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9152 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9153 fb->pixel_format = fourcc;
9154 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9155
aeee5a49 9156 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9157 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9158 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9159 } else {
49af449b 9160 if (plane_config->tiling)
aeee5a49 9161 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9162 else
aeee5a49 9163 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9164 }
9165 plane_config->base = base;
9166
9167 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9168 fb->width = ((val >> 16) & 0xfff) + 1;
9169 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9170
9171 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9172 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9173
b113d5ee 9174 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9175 fb->pixel_format,
9176 fb->modifier[0]);
4c6baa59 9177
f37b5c2b 9178 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9179
2844a921
DL
9180 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9181 pipe_name(pipe), fb->width, fb->height,
9182 fb->bits_per_pixel, base, fb->pitches[0],
9183 plane_config->size);
b113d5ee 9184
2d14030b 9185 plane_config->fb = intel_fb;
4c6baa59
JB
9186}
9187
0e8ffe1b 9188static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9189 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9190{
9191 struct drm_device *dev = crtc->base.dev;
9192 struct drm_i915_private *dev_priv = dev->dev_private;
9193 uint32_t tmp;
9194
f458ebbc
DV
9195 if (!intel_display_power_is_enabled(dev_priv,
9196 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
9197 return false;
9198
e143a21c 9199 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 9200 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 9201
0e8ffe1b
DV
9202 tmp = I915_READ(PIPECONF(crtc->pipe));
9203 if (!(tmp & PIPECONF_ENABLE))
9204 return false;
9205
42571aef
VS
9206 switch (tmp & PIPECONF_BPC_MASK) {
9207 case PIPECONF_6BPC:
9208 pipe_config->pipe_bpp = 18;
9209 break;
9210 case PIPECONF_8BPC:
9211 pipe_config->pipe_bpp = 24;
9212 break;
9213 case PIPECONF_10BPC:
9214 pipe_config->pipe_bpp = 30;
9215 break;
9216 case PIPECONF_12BPC:
9217 pipe_config->pipe_bpp = 36;
9218 break;
9219 default:
9220 break;
9221 }
9222
b5a9fa09
DV
9223 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9224 pipe_config->limited_color_range = true;
9225
ab9412ba 9226 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
9227 struct intel_shared_dpll *pll;
9228
88adfff1
DV
9229 pipe_config->has_pch_encoder = true;
9230
627eb5a3
DV
9231 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9232 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9233 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9234
9235 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9236
c0d43d62 9237 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
9238 pipe_config->shared_dpll =
9239 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9240 } else {
9241 tmp = I915_READ(PCH_DPLL_SEL);
9242 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9243 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9244 else
9245 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9246 }
66e985c0
DV
9247
9248 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9249
9250 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9251 &pipe_config->dpll_hw_state));
c93f54cf
DV
9252
9253 tmp = pipe_config->dpll_hw_state.dpll;
9254 pipe_config->pixel_multiplier =
9255 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9256 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9257
9258 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9259 } else {
9260 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9261 }
9262
1bd1bd80
DV
9263 intel_get_pipe_timings(crtc, pipe_config);
9264
2fa2fe9a
DV
9265 ironlake_get_pfit_config(crtc, pipe_config);
9266
0e8ffe1b
DV
9267 return true;
9268}
9269
be256dc7
PZ
9270static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9271{
9272 struct drm_device *dev = dev_priv->dev;
be256dc7 9273 struct intel_crtc *crtc;
be256dc7 9274
d3fcc808 9275 for_each_intel_crtc(dev, crtc)
e2c719b7 9276 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9277 pipe_name(crtc->pipe));
9278
e2c719b7
RC
9279 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9280 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9281 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9282 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9283 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9284 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9285 "CPU PWM1 enabled\n");
c5107b87 9286 if (IS_HASWELL(dev))
e2c719b7 9287 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9288 "CPU PWM2 enabled\n");
e2c719b7 9289 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9290 "PCH PWM1 enabled\n");
e2c719b7 9291 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9292 "Utility pin enabled\n");
e2c719b7 9293 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9294
9926ada1
PZ
9295 /*
9296 * In theory we can still leave IRQs enabled, as long as only the HPD
9297 * interrupts remain enabled. We used to check for that, but since it's
9298 * gen-specific and since we only disable LCPLL after we fully disable
9299 * the interrupts, the check below should be enough.
9300 */
e2c719b7 9301 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9302}
9303
9ccd5aeb
PZ
9304static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9305{
9306 struct drm_device *dev = dev_priv->dev;
9307
9308 if (IS_HASWELL(dev))
9309 return I915_READ(D_COMP_HSW);
9310 else
9311 return I915_READ(D_COMP_BDW);
9312}
9313
3c4c9b81
PZ
9314static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9315{
9316 struct drm_device *dev = dev_priv->dev;
9317
9318 if (IS_HASWELL(dev)) {
9319 mutex_lock(&dev_priv->rps.hw_lock);
9320 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9321 val))
f475dadf 9322 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9323 mutex_unlock(&dev_priv->rps.hw_lock);
9324 } else {
9ccd5aeb
PZ
9325 I915_WRITE(D_COMP_BDW, val);
9326 POSTING_READ(D_COMP_BDW);
3c4c9b81 9327 }
be256dc7
PZ
9328}
9329
9330/*
9331 * This function implements pieces of two sequences from BSpec:
9332 * - Sequence for display software to disable LCPLL
9333 * - Sequence for display software to allow package C8+
9334 * The steps implemented here are just the steps that actually touch the LCPLL
9335 * register. Callers should take care of disabling all the display engine
9336 * functions, doing the mode unset, fixing interrupts, etc.
9337 */
6ff58d53
PZ
9338static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9339 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9340{
9341 uint32_t val;
9342
9343 assert_can_disable_lcpll(dev_priv);
9344
9345 val = I915_READ(LCPLL_CTL);
9346
9347 if (switch_to_fclk) {
9348 val |= LCPLL_CD_SOURCE_FCLK;
9349 I915_WRITE(LCPLL_CTL, val);
9350
9351 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9352 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9353 DRM_ERROR("Switching to FCLK failed\n");
9354
9355 val = I915_READ(LCPLL_CTL);
9356 }
9357
9358 val |= LCPLL_PLL_DISABLE;
9359 I915_WRITE(LCPLL_CTL, val);
9360 POSTING_READ(LCPLL_CTL);
9361
9362 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9363 DRM_ERROR("LCPLL still locked\n");
9364
9ccd5aeb 9365 val = hsw_read_dcomp(dev_priv);
be256dc7 9366 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9367 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9368 ndelay(100);
9369
9ccd5aeb
PZ
9370 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9371 1))
be256dc7
PZ
9372 DRM_ERROR("D_COMP RCOMP still in progress\n");
9373
9374 if (allow_power_down) {
9375 val = I915_READ(LCPLL_CTL);
9376 val |= LCPLL_POWER_DOWN_ALLOW;
9377 I915_WRITE(LCPLL_CTL, val);
9378 POSTING_READ(LCPLL_CTL);
9379 }
9380}
9381
9382/*
9383 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9384 * source.
9385 */
6ff58d53 9386static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9387{
9388 uint32_t val;
9389
9390 val = I915_READ(LCPLL_CTL);
9391
9392 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9393 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9394 return;
9395
a8a8bd54
PZ
9396 /*
9397 * Make sure we're not on PC8 state before disabling PC8, otherwise
9398 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9399 */
59bad947 9400 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9401
be256dc7
PZ
9402 if (val & LCPLL_POWER_DOWN_ALLOW) {
9403 val &= ~LCPLL_POWER_DOWN_ALLOW;
9404 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9405 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9406 }
9407
9ccd5aeb 9408 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9409 val |= D_COMP_COMP_FORCE;
9410 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9411 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9412
9413 val = I915_READ(LCPLL_CTL);
9414 val &= ~LCPLL_PLL_DISABLE;
9415 I915_WRITE(LCPLL_CTL, val);
9416
9417 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9418 DRM_ERROR("LCPLL not locked yet\n");
9419
9420 if (val & LCPLL_CD_SOURCE_FCLK) {
9421 val = I915_READ(LCPLL_CTL);
9422 val &= ~LCPLL_CD_SOURCE_FCLK;
9423 I915_WRITE(LCPLL_CTL, val);
9424
9425 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9426 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9427 DRM_ERROR("Switching back to LCPLL failed\n");
9428 }
215733fa 9429
59bad947 9430 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9431 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9432}
9433
765dab67
PZ
9434/*
9435 * Package states C8 and deeper are really deep PC states that can only be
9436 * reached when all the devices on the system allow it, so even if the graphics
9437 * device allows PC8+, it doesn't mean the system will actually get to these
9438 * states. Our driver only allows PC8+ when going into runtime PM.
9439 *
9440 * The requirements for PC8+ are that all the outputs are disabled, the power
9441 * well is disabled and most interrupts are disabled, and these are also
9442 * requirements for runtime PM. When these conditions are met, we manually do
9443 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9444 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9445 * hang the machine.
9446 *
9447 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9448 * the state of some registers, so when we come back from PC8+ we need to
9449 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9450 * need to take care of the registers kept by RC6. Notice that this happens even
9451 * if we don't put the device in PCI D3 state (which is what currently happens
9452 * because of the runtime PM support).
9453 *
9454 * For more, read "Display Sequences for Package C8" on the hardware
9455 * documentation.
9456 */
a14cb6fc 9457void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9458{
c67a470b
PZ
9459 struct drm_device *dev = dev_priv->dev;
9460 uint32_t val;
9461
c67a470b
PZ
9462 DRM_DEBUG_KMS("Enabling package C8+\n");
9463
c2699524 9464 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9465 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9466 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9467 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9468 }
9469
9470 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9471 hsw_disable_lcpll(dev_priv, true, true);
9472}
9473
a14cb6fc 9474void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9475{
9476 struct drm_device *dev = dev_priv->dev;
9477 uint32_t val;
9478
c67a470b
PZ
9479 DRM_DEBUG_KMS("Disabling package C8+\n");
9480
9481 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9482 lpt_init_pch_refclk(dev);
9483
c2699524 9484 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9485 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9486 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9487 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9488 }
9489
9490 intel_prepare_ddi(dev);
c67a470b
PZ
9491}
9492
27c329ed 9493static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9494{
a821fc46 9495 struct drm_device *dev = old_state->dev;
27c329ed 9496 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
f8437dd1 9497
27c329ed 9498 broxton_set_cdclk(dev, req_cdclk);
f8437dd1
VK
9499}
9500
b432e5cf 9501/* compute the max rate for new configuration */
27c329ed 9502static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9503{
b432e5cf 9504 struct intel_crtc *intel_crtc;
27c329ed 9505 struct intel_crtc_state *crtc_state;
b432e5cf 9506 int max_pixel_rate = 0;
b432e5cf 9507
27c329ed
ML
9508 for_each_intel_crtc(state->dev, intel_crtc) {
9509 int pixel_rate;
9510
9511 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9512 if (IS_ERR(crtc_state))
9513 return PTR_ERR(crtc_state);
9514
9515 if (!crtc_state->base.enable)
b432e5cf
VS
9516 continue;
9517
27c329ed 9518 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9519
9520 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
27c329ed 9521 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
b432e5cf
VS
9522 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9523
9524 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9525 }
9526
9527 return max_pixel_rate;
9528}
9529
9530static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9531{
9532 struct drm_i915_private *dev_priv = dev->dev_private;
9533 uint32_t val, data;
9534 int ret;
9535
9536 if (WARN((I915_READ(LCPLL_CTL) &
9537 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9538 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9539 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9540 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9541 "trying to change cdclk frequency with cdclk not enabled\n"))
9542 return;
9543
9544 mutex_lock(&dev_priv->rps.hw_lock);
9545 ret = sandybridge_pcode_write(dev_priv,
9546 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9547 mutex_unlock(&dev_priv->rps.hw_lock);
9548 if (ret) {
9549 DRM_ERROR("failed to inform pcode about cdclk change\n");
9550 return;
9551 }
9552
9553 val = I915_READ(LCPLL_CTL);
9554 val |= LCPLL_CD_SOURCE_FCLK;
9555 I915_WRITE(LCPLL_CTL, val);
9556
9557 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9558 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9559 DRM_ERROR("Switching to FCLK failed\n");
9560
9561 val = I915_READ(LCPLL_CTL);
9562 val &= ~LCPLL_CLK_FREQ_MASK;
9563
9564 switch (cdclk) {
9565 case 450000:
9566 val |= LCPLL_CLK_FREQ_450;
9567 data = 0;
9568 break;
9569 case 540000:
9570 val |= LCPLL_CLK_FREQ_54O_BDW;
9571 data = 1;
9572 break;
9573 case 337500:
9574 val |= LCPLL_CLK_FREQ_337_5_BDW;
9575 data = 2;
9576 break;
9577 case 675000:
9578 val |= LCPLL_CLK_FREQ_675_BDW;
9579 data = 3;
9580 break;
9581 default:
9582 WARN(1, "invalid cdclk frequency\n");
9583 return;
9584 }
9585
9586 I915_WRITE(LCPLL_CTL, val);
9587
9588 val = I915_READ(LCPLL_CTL);
9589 val &= ~LCPLL_CD_SOURCE_FCLK;
9590 I915_WRITE(LCPLL_CTL, val);
9591
9592 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9593 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9594 DRM_ERROR("Switching back to LCPLL failed\n");
9595
9596 mutex_lock(&dev_priv->rps.hw_lock);
9597 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9598 mutex_unlock(&dev_priv->rps.hw_lock);
9599
9600 intel_update_cdclk(dev);
9601
9602 WARN(cdclk != dev_priv->cdclk_freq,
9603 "cdclk requested %d kHz but got %d kHz\n",
9604 cdclk, dev_priv->cdclk_freq);
9605}
9606
27c329ed 9607static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9608{
27c329ed
ML
9609 struct drm_i915_private *dev_priv = to_i915(state->dev);
9610 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9611 int cdclk;
9612
9613 /*
9614 * FIXME should also account for plane ratio
9615 * once 64bpp pixel formats are supported.
9616 */
27c329ed 9617 if (max_pixclk > 540000)
b432e5cf 9618 cdclk = 675000;
27c329ed 9619 else if (max_pixclk > 450000)
b432e5cf 9620 cdclk = 540000;
27c329ed 9621 else if (max_pixclk > 337500)
b432e5cf
VS
9622 cdclk = 450000;
9623 else
9624 cdclk = 337500;
9625
9626 /*
9627 * FIXME move the cdclk caclulation to
9628 * compute_config() so we can fail gracegully.
9629 */
9630 if (cdclk > dev_priv->max_cdclk_freq) {
9631 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9632 cdclk, dev_priv->max_cdclk_freq);
9633 cdclk = dev_priv->max_cdclk_freq;
9634 }
9635
27c329ed 9636 to_intel_atomic_state(state)->cdclk = cdclk;
b432e5cf
VS
9637
9638 return 0;
9639}
9640
27c329ed 9641static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9642{
27c329ed
ML
9643 struct drm_device *dev = old_state->dev;
9644 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
b432e5cf 9645
27c329ed 9646 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9647}
9648
190f68c5
ACO
9649static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9650 struct intel_crtc_state *crtc_state)
09b4ddf9 9651{
190f68c5 9652 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 9653 return -EINVAL;
716c2e55 9654
c7653199 9655 crtc->lowfreq_avail = false;
644cef34 9656
c8f7a0db 9657 return 0;
79e53945
JB
9658}
9659
3760b59c
S
9660static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9661 enum port port,
9662 struct intel_crtc_state *pipe_config)
9663{
9664 switch (port) {
9665 case PORT_A:
9666 pipe_config->ddi_pll_sel = SKL_DPLL0;
9667 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9668 break;
9669 case PORT_B:
9670 pipe_config->ddi_pll_sel = SKL_DPLL1;
9671 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9672 break;
9673 case PORT_C:
9674 pipe_config->ddi_pll_sel = SKL_DPLL2;
9675 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9676 break;
9677 default:
9678 DRM_ERROR("Incorrect port type\n");
9679 }
9680}
9681
96b7dfb7
S
9682static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9683 enum port port,
5cec258b 9684 struct intel_crtc_state *pipe_config)
96b7dfb7 9685{
3148ade7 9686 u32 temp, dpll_ctl1;
96b7dfb7
S
9687
9688 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9689 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9690
9691 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
9692 case SKL_DPLL0:
9693 /*
9694 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9695 * of the shared DPLL framework and thus needs to be read out
9696 * separately
9697 */
9698 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9699 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9700 break;
96b7dfb7
S
9701 case SKL_DPLL1:
9702 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9703 break;
9704 case SKL_DPLL2:
9705 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9706 break;
9707 case SKL_DPLL3:
9708 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9709 break;
96b7dfb7
S
9710 }
9711}
9712
7d2c8175
DL
9713static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9714 enum port port,
5cec258b 9715 struct intel_crtc_state *pipe_config)
7d2c8175
DL
9716{
9717 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9718
9719 switch (pipe_config->ddi_pll_sel) {
9720 case PORT_CLK_SEL_WRPLL1:
9721 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9722 break;
9723 case PORT_CLK_SEL_WRPLL2:
9724 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9725 break;
9726 }
9727}
9728
26804afd 9729static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9730 struct intel_crtc_state *pipe_config)
26804afd
DV
9731{
9732 struct drm_device *dev = crtc->base.dev;
9733 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9734 struct intel_shared_dpll *pll;
26804afd
DV
9735 enum port port;
9736 uint32_t tmp;
9737
9738 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9739
9740 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9741
96b7dfb7
S
9742 if (IS_SKYLAKE(dev))
9743 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9744 else if (IS_BROXTON(dev))
9745 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9746 else
9747 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9748
d452c5b6
DV
9749 if (pipe_config->shared_dpll >= 0) {
9750 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9751
9752 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9753 &pipe_config->dpll_hw_state));
9754 }
9755
26804afd
DV
9756 /*
9757 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9758 * DDI E. So just check whether this pipe is wired to DDI E and whether
9759 * the PCH transcoder is on.
9760 */
ca370455
DL
9761 if (INTEL_INFO(dev)->gen < 9 &&
9762 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9763 pipe_config->has_pch_encoder = true;
9764
9765 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9766 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9767 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9768
9769 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9770 }
9771}
9772
0e8ffe1b 9773static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9774 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9775{
9776 struct drm_device *dev = crtc->base.dev;
9777 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 9778 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
9779 uint32_t tmp;
9780
f458ebbc 9781 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
9782 POWER_DOMAIN_PIPE(crtc->pipe)))
9783 return false;
9784
e143a21c 9785 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
9786 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9787
eccb140b
DV
9788 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9789 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9790 enum pipe trans_edp_pipe;
9791 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9792 default:
9793 WARN(1, "unknown pipe linked to edp transcoder\n");
9794 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9795 case TRANS_DDI_EDP_INPUT_A_ON:
9796 trans_edp_pipe = PIPE_A;
9797 break;
9798 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9799 trans_edp_pipe = PIPE_B;
9800 break;
9801 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9802 trans_edp_pipe = PIPE_C;
9803 break;
9804 }
9805
9806 if (trans_edp_pipe == crtc->pipe)
9807 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9808 }
9809
f458ebbc 9810 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 9811 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
9812 return false;
9813
eccb140b 9814 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
9815 if (!(tmp & PIPECONF_ENABLE))
9816 return false;
9817
26804afd 9818 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9819
1bd1bd80
DV
9820 intel_get_pipe_timings(crtc, pipe_config);
9821
a1b2278e
CK
9822 if (INTEL_INFO(dev)->gen >= 9) {
9823 skl_init_scalers(dev, crtc, pipe_config);
9824 }
9825
2fa2fe9a 9826 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
af99ceda
CK
9827
9828 if (INTEL_INFO(dev)->gen >= 9) {
9829 pipe_config->scaler_state.scaler_id = -1;
9830 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9831 }
9832
bd2e244f 9833 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
1c132b44 9834 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 9835 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9836 else
1c132b44 9837 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 9838 }
88adfff1 9839
e59150dc
JB
9840 if (IS_HASWELL(dev))
9841 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9842 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9843
ebb69c95
CT
9844 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9845 pipe_config->pixel_multiplier =
9846 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9847 } else {
9848 pipe_config->pixel_multiplier = 1;
9849 }
6c49f241 9850
0e8ffe1b
DV
9851 return true;
9852}
9853
560b85bb
CW
9854static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9855{
9856 struct drm_device *dev = crtc->dev;
9857 struct drm_i915_private *dev_priv = dev->dev_private;
9858 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9859 uint32_t cntl = 0, size = 0;
560b85bb 9860
dc41c154 9861 if (base) {
3dd512fb
MR
9862 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9863 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
9864 unsigned int stride = roundup_pow_of_two(width) * 4;
9865
9866 switch (stride) {
9867 default:
9868 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9869 width, stride);
9870 stride = 256;
9871 /* fallthrough */
9872 case 256:
9873 case 512:
9874 case 1024:
9875 case 2048:
9876 break;
4b0e333e
CW
9877 }
9878
dc41c154
VS
9879 cntl |= CURSOR_ENABLE |
9880 CURSOR_GAMMA_ENABLE |
9881 CURSOR_FORMAT_ARGB |
9882 CURSOR_STRIDE(stride);
9883
9884 size = (height << 12) | width;
4b0e333e 9885 }
560b85bb 9886
dc41c154
VS
9887 if (intel_crtc->cursor_cntl != 0 &&
9888 (intel_crtc->cursor_base != base ||
9889 intel_crtc->cursor_size != size ||
9890 intel_crtc->cursor_cntl != cntl)) {
9891 /* On these chipsets we can only modify the base/size/stride
9892 * whilst the cursor is disabled.
9893 */
0b87c24e
VS
9894 I915_WRITE(CURCNTR(PIPE_A), 0);
9895 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 9896 intel_crtc->cursor_cntl = 0;
4b0e333e 9897 }
560b85bb 9898
99d1f387 9899 if (intel_crtc->cursor_base != base) {
0b87c24e 9900 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
9901 intel_crtc->cursor_base = base;
9902 }
4726e0b0 9903
dc41c154
VS
9904 if (intel_crtc->cursor_size != size) {
9905 I915_WRITE(CURSIZE, size);
9906 intel_crtc->cursor_size = size;
4b0e333e 9907 }
560b85bb 9908
4b0e333e 9909 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
9910 I915_WRITE(CURCNTR(PIPE_A), cntl);
9911 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 9912 intel_crtc->cursor_cntl = cntl;
560b85bb 9913 }
560b85bb
CW
9914}
9915
560b85bb 9916static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
9917{
9918 struct drm_device *dev = crtc->dev;
9919 struct drm_i915_private *dev_priv = dev->dev_private;
9920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9921 int pipe = intel_crtc->pipe;
4b0e333e
CW
9922 uint32_t cntl;
9923
9924 cntl = 0;
9925 if (base) {
9926 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 9927 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
9928 case 64:
9929 cntl |= CURSOR_MODE_64_ARGB_AX;
9930 break;
9931 case 128:
9932 cntl |= CURSOR_MODE_128_ARGB_AX;
9933 break;
9934 case 256:
9935 cntl |= CURSOR_MODE_256_ARGB_AX;
9936 break;
9937 default:
3dd512fb 9938 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 9939 return;
65a21cd6 9940 }
4b0e333e 9941 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 9942
fc6f93bc 9943 if (HAS_DDI(dev))
47bf17a7 9944 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 9945 }
65a21cd6 9946
8e7d688b 9947 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
9948 cntl |= CURSOR_ROTATE_180;
9949
4b0e333e
CW
9950 if (intel_crtc->cursor_cntl != cntl) {
9951 I915_WRITE(CURCNTR(pipe), cntl);
9952 POSTING_READ(CURCNTR(pipe));
9953 intel_crtc->cursor_cntl = cntl;
65a21cd6 9954 }
4b0e333e 9955
65a21cd6 9956 /* and commit changes on next vblank */
5efb3e28
VS
9957 I915_WRITE(CURBASE(pipe), base);
9958 POSTING_READ(CURBASE(pipe));
99d1f387
VS
9959
9960 intel_crtc->cursor_base = base;
65a21cd6
JB
9961}
9962
cda4b7d3 9963/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
9964static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9965 bool on)
cda4b7d3
CW
9966{
9967 struct drm_device *dev = crtc->dev;
9968 struct drm_i915_private *dev_priv = dev->dev_private;
9969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9970 int pipe = intel_crtc->pipe;
9b4101be
ML
9971 struct drm_plane_state *cursor_state = crtc->cursor->state;
9972 int x = cursor_state->crtc_x;
9973 int y = cursor_state->crtc_y;
d6e4db15 9974 u32 base = 0, pos = 0;
cda4b7d3 9975
d6e4db15 9976 if (on)
cda4b7d3 9977 base = intel_crtc->cursor_addr;
cda4b7d3 9978
6e3c9717 9979 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
9980 base = 0;
9981
6e3c9717 9982 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
9983 base = 0;
9984
9985 if (x < 0) {
9b4101be 9986 if (x + cursor_state->crtc_w <= 0)
cda4b7d3
CW
9987 base = 0;
9988
9989 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9990 x = -x;
9991 }
9992 pos |= x << CURSOR_X_SHIFT;
9993
9994 if (y < 0) {
9b4101be 9995 if (y + cursor_state->crtc_h <= 0)
cda4b7d3
CW
9996 base = 0;
9997
9998 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9999 y = -y;
10000 }
10001 pos |= y << CURSOR_Y_SHIFT;
10002
4b0e333e 10003 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
10004 return;
10005
5efb3e28
VS
10006 I915_WRITE(CURPOS(pipe), pos);
10007
4398ad45
VS
10008 /* ILK+ do this automagically */
10009 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 10010 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9b4101be
ML
10011 base += (cursor_state->crtc_h *
10012 cursor_state->crtc_w - 1) * 4;
4398ad45
VS
10013 }
10014
8ac54669 10015 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
10016 i845_update_cursor(crtc, base);
10017 else
10018 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
10019}
10020
dc41c154
VS
10021static bool cursor_size_ok(struct drm_device *dev,
10022 uint32_t width, uint32_t height)
10023{
10024 if (width == 0 || height == 0)
10025 return false;
10026
10027 /*
10028 * 845g/865g are special in that they are only limited by
10029 * the width of their cursors, the height is arbitrary up to
10030 * the precision of the register. Everything else requires
10031 * square cursors, limited to a few power-of-two sizes.
10032 */
10033 if (IS_845G(dev) || IS_I865G(dev)) {
10034 if ((width & 63) != 0)
10035 return false;
10036
10037 if (width > (IS_845G(dev) ? 64 : 512))
10038 return false;
10039
10040 if (height > 1023)
10041 return false;
10042 } else {
10043 switch (width | height) {
10044 case 256:
10045 case 128:
10046 if (IS_GEN2(dev))
10047 return false;
10048 case 64:
10049 break;
10050 default:
10051 return false;
10052 }
10053 }
10054
10055 return true;
10056}
10057
79e53945 10058static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 10059 u16 *blue, uint32_t start, uint32_t size)
79e53945 10060{
7203425a 10061 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 10062 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 10063
7203425a 10064 for (i = start; i < end; i++) {
79e53945
JB
10065 intel_crtc->lut_r[i] = red[i] >> 8;
10066 intel_crtc->lut_g[i] = green[i] >> 8;
10067 intel_crtc->lut_b[i] = blue[i] >> 8;
10068 }
10069
10070 intel_crtc_load_lut(crtc);
10071}
10072
79e53945
JB
10073/* VESA 640x480x72Hz mode to set on the pipe */
10074static struct drm_display_mode load_detect_mode = {
10075 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10076 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10077};
10078
a8bb6818
DV
10079struct drm_framebuffer *
10080__intel_framebuffer_create(struct drm_device *dev,
10081 struct drm_mode_fb_cmd2 *mode_cmd,
10082 struct drm_i915_gem_object *obj)
d2dff872
CW
10083{
10084 struct intel_framebuffer *intel_fb;
10085 int ret;
10086
10087 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10088 if (!intel_fb) {
6ccb81f2 10089 drm_gem_object_unreference(&obj->base);
d2dff872
CW
10090 return ERR_PTR(-ENOMEM);
10091 }
10092
10093 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10094 if (ret)
10095 goto err;
d2dff872
CW
10096
10097 return &intel_fb->base;
dd4916c5 10098err:
6ccb81f2 10099 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
10100 kfree(intel_fb);
10101
10102 return ERR_PTR(ret);
d2dff872
CW
10103}
10104
b5ea642a 10105static struct drm_framebuffer *
a8bb6818
DV
10106intel_framebuffer_create(struct drm_device *dev,
10107 struct drm_mode_fb_cmd2 *mode_cmd,
10108 struct drm_i915_gem_object *obj)
10109{
10110 struct drm_framebuffer *fb;
10111 int ret;
10112
10113 ret = i915_mutex_lock_interruptible(dev);
10114 if (ret)
10115 return ERR_PTR(ret);
10116 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10117 mutex_unlock(&dev->struct_mutex);
10118
10119 return fb;
10120}
10121
d2dff872
CW
10122static u32
10123intel_framebuffer_pitch_for_width(int width, int bpp)
10124{
10125 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10126 return ALIGN(pitch, 64);
10127}
10128
10129static u32
10130intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10131{
10132 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10133 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10134}
10135
10136static struct drm_framebuffer *
10137intel_framebuffer_create_for_mode(struct drm_device *dev,
10138 struct drm_display_mode *mode,
10139 int depth, int bpp)
10140{
10141 struct drm_i915_gem_object *obj;
0fed39bd 10142 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
10143
10144 obj = i915_gem_alloc_object(dev,
10145 intel_framebuffer_size_for_mode(mode, bpp));
10146 if (obj == NULL)
10147 return ERR_PTR(-ENOMEM);
10148
10149 mode_cmd.width = mode->hdisplay;
10150 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10151 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10152 bpp);
5ca0c34a 10153 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
10154
10155 return intel_framebuffer_create(dev, &mode_cmd, obj);
10156}
10157
10158static struct drm_framebuffer *
10159mode_fits_in_fbdev(struct drm_device *dev,
10160 struct drm_display_mode *mode)
10161{
0695726e 10162#ifdef CONFIG_DRM_FBDEV_EMULATION
d2dff872
CW
10163 struct drm_i915_private *dev_priv = dev->dev_private;
10164 struct drm_i915_gem_object *obj;
10165 struct drm_framebuffer *fb;
10166
4c0e5528 10167 if (!dev_priv->fbdev)
d2dff872
CW
10168 return NULL;
10169
4c0e5528 10170 if (!dev_priv->fbdev->fb)
d2dff872
CW
10171 return NULL;
10172
4c0e5528
DV
10173 obj = dev_priv->fbdev->fb->obj;
10174 BUG_ON(!obj);
10175
8bcd4553 10176 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10177 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10178 fb->bits_per_pixel))
d2dff872
CW
10179 return NULL;
10180
01f2c773 10181 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10182 return NULL;
10183
10184 return fb;
4520f53a
DV
10185#else
10186 return NULL;
10187#endif
d2dff872
CW
10188}
10189
d3a40d1b
ACO
10190static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10191 struct drm_crtc *crtc,
10192 struct drm_display_mode *mode,
10193 struct drm_framebuffer *fb,
10194 int x, int y)
10195{
10196 struct drm_plane_state *plane_state;
10197 int hdisplay, vdisplay;
10198 int ret;
10199
10200 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10201 if (IS_ERR(plane_state))
10202 return PTR_ERR(plane_state);
10203
10204 if (mode)
10205 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10206 else
10207 hdisplay = vdisplay = 0;
10208
10209 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10210 if (ret)
10211 return ret;
10212 drm_atomic_set_fb_for_plane(plane_state, fb);
10213 plane_state->crtc_x = 0;
10214 plane_state->crtc_y = 0;
10215 plane_state->crtc_w = hdisplay;
10216 plane_state->crtc_h = vdisplay;
10217 plane_state->src_x = x << 16;
10218 plane_state->src_y = y << 16;
10219 plane_state->src_w = hdisplay << 16;
10220 plane_state->src_h = vdisplay << 16;
10221
10222 return 0;
10223}
10224
d2434ab7 10225bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10226 struct drm_display_mode *mode,
51fd371b
RC
10227 struct intel_load_detect_pipe *old,
10228 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10229{
10230 struct intel_crtc *intel_crtc;
d2434ab7
DV
10231 struct intel_encoder *intel_encoder =
10232 intel_attached_encoder(connector);
79e53945 10233 struct drm_crtc *possible_crtc;
4ef69c7a 10234 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10235 struct drm_crtc *crtc = NULL;
10236 struct drm_device *dev = encoder->dev;
94352cf9 10237 struct drm_framebuffer *fb;
51fd371b 10238 struct drm_mode_config *config = &dev->mode_config;
83a57153 10239 struct drm_atomic_state *state = NULL;
944b0c76 10240 struct drm_connector_state *connector_state;
4be07317 10241 struct intel_crtc_state *crtc_state;
51fd371b 10242 int ret, i = -1;
79e53945 10243
d2dff872 10244 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10245 connector->base.id, connector->name,
8e329a03 10246 encoder->base.id, encoder->name);
d2dff872 10247
51fd371b
RC
10248retry:
10249 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10250 if (ret)
ad3c558f 10251 goto fail;
6e9f798d 10252
79e53945
JB
10253 /*
10254 * Algorithm gets a little messy:
7a5e4805 10255 *
79e53945
JB
10256 * - if the connector already has an assigned crtc, use it (but make
10257 * sure it's on first)
7a5e4805 10258 *
79e53945
JB
10259 * - try to find the first unused crtc that can drive this connector,
10260 * and use that if we find one
79e53945
JB
10261 */
10262
10263 /* See if we already have a CRTC for this connector */
10264 if (encoder->crtc) {
10265 crtc = encoder->crtc;
8261b191 10266
51fd371b 10267 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 10268 if (ret)
ad3c558f 10269 goto fail;
4d02e2de 10270 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b 10271 if (ret)
ad3c558f 10272 goto fail;
7b24056b 10273
24218aac 10274 old->dpms_mode = connector->dpms;
8261b191
CW
10275 old->load_detect_temp = false;
10276
10277 /* Make sure the crtc and connector are running */
24218aac
DV
10278 if (connector->dpms != DRM_MODE_DPMS_ON)
10279 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 10280
7173188d 10281 return true;
79e53945
JB
10282 }
10283
10284 /* Find an unused one (if possible) */
70e1e0ec 10285 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10286 i++;
10287 if (!(encoder->possible_crtcs & (1 << i)))
10288 continue;
83d65738 10289 if (possible_crtc->state->enable)
a459249c 10290 continue;
a459249c
VS
10291
10292 crtc = possible_crtc;
10293 break;
79e53945
JB
10294 }
10295
10296 /*
10297 * If we didn't find an unused CRTC, don't use any.
10298 */
10299 if (!crtc) {
7173188d 10300 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 10301 goto fail;
79e53945
JB
10302 }
10303
51fd371b
RC
10304 ret = drm_modeset_lock(&crtc->mutex, ctx);
10305 if (ret)
ad3c558f 10306 goto fail;
4d02e2de
DV
10307 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10308 if (ret)
ad3c558f 10309 goto fail;
79e53945
JB
10310
10311 intel_crtc = to_intel_crtc(crtc);
24218aac 10312 old->dpms_mode = connector->dpms;
8261b191 10313 old->load_detect_temp = true;
d2dff872 10314 old->release_fb = NULL;
79e53945 10315
83a57153
ACO
10316 state = drm_atomic_state_alloc(dev);
10317 if (!state)
10318 return false;
10319
10320 state->acquire_ctx = ctx;
10321
944b0c76
ACO
10322 connector_state = drm_atomic_get_connector_state(state, connector);
10323 if (IS_ERR(connector_state)) {
10324 ret = PTR_ERR(connector_state);
10325 goto fail;
10326 }
10327
10328 connector_state->crtc = crtc;
10329 connector_state->best_encoder = &intel_encoder->base;
10330
4be07317
ACO
10331 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10332 if (IS_ERR(crtc_state)) {
10333 ret = PTR_ERR(crtc_state);
10334 goto fail;
10335 }
10336
49d6fa21 10337 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10338
6492711d
CW
10339 if (!mode)
10340 mode = &load_detect_mode;
79e53945 10341
d2dff872
CW
10342 /* We need a framebuffer large enough to accommodate all accesses
10343 * that the plane may generate whilst we perform load detection.
10344 * We can not rely on the fbcon either being present (we get called
10345 * during its initialisation to detect all boot displays, or it may
10346 * not even exist) or that it is large enough to satisfy the
10347 * requested mode.
10348 */
94352cf9
DV
10349 fb = mode_fits_in_fbdev(dev, mode);
10350 if (fb == NULL) {
d2dff872 10351 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
10352 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10353 old->release_fb = fb;
d2dff872
CW
10354 } else
10355 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10356 if (IS_ERR(fb)) {
d2dff872 10357 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10358 goto fail;
79e53945 10359 }
79e53945 10360
d3a40d1b
ACO
10361 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10362 if (ret)
10363 goto fail;
10364
8c7b5ccb
ACO
10365 drm_mode_copy(&crtc_state->base.mode, mode);
10366
74c090b1 10367 if (drm_atomic_commit(state)) {
6492711d 10368 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
10369 if (old->release_fb)
10370 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 10371 goto fail;
79e53945 10372 }
9128b040 10373 crtc->primary->crtc = crtc;
7173188d 10374
79e53945 10375 /* let the connector get through one full cycle before testing */
9d0498a2 10376 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10377 return true;
412b61d8 10378
ad3c558f 10379fail:
e5d958ef
ACO
10380 drm_atomic_state_free(state);
10381 state = NULL;
83a57153 10382
51fd371b
RC
10383 if (ret == -EDEADLK) {
10384 drm_modeset_backoff(ctx);
10385 goto retry;
10386 }
10387
412b61d8 10388 return false;
79e53945
JB
10389}
10390
d2434ab7 10391void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10392 struct intel_load_detect_pipe *old,
10393 struct drm_modeset_acquire_ctx *ctx)
79e53945 10394{
83a57153 10395 struct drm_device *dev = connector->dev;
d2434ab7
DV
10396 struct intel_encoder *intel_encoder =
10397 intel_attached_encoder(connector);
4ef69c7a 10398 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 10399 struct drm_crtc *crtc = encoder->crtc;
412b61d8 10400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 10401 struct drm_atomic_state *state;
944b0c76 10402 struct drm_connector_state *connector_state;
4be07317 10403 struct intel_crtc_state *crtc_state;
d3a40d1b 10404 int ret;
79e53945 10405
d2dff872 10406 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10407 connector->base.id, connector->name,
8e329a03 10408 encoder->base.id, encoder->name);
d2dff872 10409
8261b191 10410 if (old->load_detect_temp) {
83a57153 10411 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
10412 if (!state)
10413 goto fail;
83a57153
ACO
10414
10415 state->acquire_ctx = ctx;
10416
944b0c76
ACO
10417 connector_state = drm_atomic_get_connector_state(state, connector);
10418 if (IS_ERR(connector_state))
10419 goto fail;
10420
4be07317
ACO
10421 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10422 if (IS_ERR(crtc_state))
10423 goto fail;
10424
944b0c76
ACO
10425 connector_state->best_encoder = NULL;
10426 connector_state->crtc = NULL;
10427
49d6fa21 10428 crtc_state->base.enable = crtc_state->base.active = false;
4be07317 10429
d3a40d1b
ACO
10430 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10431 0, 0);
10432 if (ret)
10433 goto fail;
10434
74c090b1 10435 ret = drm_atomic_commit(state);
2bfb4627
ACO
10436 if (ret)
10437 goto fail;
d2dff872 10438
36206361
DV
10439 if (old->release_fb) {
10440 drm_framebuffer_unregister_private(old->release_fb);
10441 drm_framebuffer_unreference(old->release_fb);
10442 }
d2dff872 10443
0622a53c 10444 return;
79e53945
JB
10445 }
10446
c751ce4f 10447 /* Switch crtc and encoder back off if necessary */
24218aac
DV
10448 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10449 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
10450
10451 return;
10452fail:
10453 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10454 drm_atomic_state_free(state);
79e53945
JB
10455}
10456
da4a1efa 10457static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10458 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10459{
10460 struct drm_i915_private *dev_priv = dev->dev_private;
10461 u32 dpll = pipe_config->dpll_hw_state.dpll;
10462
10463 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10464 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10465 else if (HAS_PCH_SPLIT(dev))
10466 return 120000;
10467 else if (!IS_GEN2(dev))
10468 return 96000;
10469 else
10470 return 48000;
10471}
10472
79e53945 10473/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10474static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10475 struct intel_crtc_state *pipe_config)
79e53945 10476{
f1f644dc 10477 struct drm_device *dev = crtc->base.dev;
79e53945 10478 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10479 int pipe = pipe_config->cpu_transcoder;
293623f7 10480 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10481 u32 fp;
10482 intel_clock_t clock;
dccbea3b 10483 int port_clock;
da4a1efa 10484 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10485
10486 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10487 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10488 else
293623f7 10489 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10490
10491 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10492 if (IS_PINEVIEW(dev)) {
10493 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10494 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10495 } else {
10496 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10497 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10498 }
10499
a6c45cf0 10500 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10501 if (IS_PINEVIEW(dev))
10502 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10503 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10504 else
10505 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10506 DPLL_FPA01_P1_POST_DIV_SHIFT);
10507
10508 switch (dpll & DPLL_MODE_MASK) {
10509 case DPLLB_MODE_DAC_SERIAL:
10510 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10511 5 : 10;
10512 break;
10513 case DPLLB_MODE_LVDS:
10514 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10515 7 : 14;
10516 break;
10517 default:
28c97730 10518 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10519 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10520 return;
79e53945
JB
10521 }
10522
ac58c3f0 10523 if (IS_PINEVIEW(dev))
dccbea3b 10524 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 10525 else
dccbea3b 10526 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 10527 } else {
0fb58223 10528 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10529 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10530
10531 if (is_lvds) {
10532 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10533 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10534
10535 if (lvds & LVDS_CLKB_POWER_UP)
10536 clock.p2 = 7;
10537 else
10538 clock.p2 = 14;
79e53945
JB
10539 } else {
10540 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10541 clock.p1 = 2;
10542 else {
10543 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10544 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10545 }
10546 if (dpll & PLL_P2_DIVIDE_BY_4)
10547 clock.p2 = 4;
10548 else
10549 clock.p2 = 2;
79e53945 10550 }
da4a1efa 10551
dccbea3b 10552 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
10553 }
10554
18442d08
VS
10555 /*
10556 * This value includes pixel_multiplier. We will use
241bfc38 10557 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10558 * encoder's get_config() function.
10559 */
dccbea3b 10560 pipe_config->port_clock = port_clock;
f1f644dc
JB
10561}
10562
6878da05
VS
10563int intel_dotclock_calculate(int link_freq,
10564 const struct intel_link_m_n *m_n)
f1f644dc 10565{
f1f644dc
JB
10566 /*
10567 * The calculation for the data clock is:
1041a02f 10568 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10569 * But we want to avoid losing precison if possible, so:
1041a02f 10570 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10571 *
10572 * and the link clock is simpler:
1041a02f 10573 * link_clock = (m * link_clock) / n
f1f644dc
JB
10574 */
10575
6878da05
VS
10576 if (!m_n->link_n)
10577 return 0;
f1f644dc 10578
6878da05
VS
10579 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10580}
f1f644dc 10581
18442d08 10582static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10583 struct intel_crtc_state *pipe_config)
6878da05
VS
10584{
10585 struct drm_device *dev = crtc->base.dev;
79e53945 10586
18442d08
VS
10587 /* read out port_clock from the DPLL */
10588 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10589
f1f644dc 10590 /*
18442d08 10591 * This value does not include pixel_multiplier.
241bfc38 10592 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
10593 * agree once we know their relationship in the encoder's
10594 * get_config() function.
79e53945 10595 */
2d112de7 10596 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
10597 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10598 &pipe_config->fdi_m_n);
79e53945
JB
10599}
10600
10601/** Returns the currently programmed mode of the given pipe. */
10602struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10603 struct drm_crtc *crtc)
10604{
548f245b 10605 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10607 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10608 struct drm_display_mode *mode;
5cec258b 10609 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
10610 int htot = I915_READ(HTOTAL(cpu_transcoder));
10611 int hsync = I915_READ(HSYNC(cpu_transcoder));
10612 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10613 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10614 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10615
10616 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10617 if (!mode)
10618 return NULL;
10619
f1f644dc
JB
10620 /*
10621 * Construct a pipe_config sufficient for getting the clock info
10622 * back out of crtc_clock_get.
10623 *
10624 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10625 * to use a real value here instead.
10626 */
293623f7 10627 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 10628 pipe_config.pixel_multiplier = 1;
293623f7
VS
10629 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10630 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10631 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
10632 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10633
773ae034 10634 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
10635 mode->hdisplay = (htot & 0xffff) + 1;
10636 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10637 mode->hsync_start = (hsync & 0xffff) + 1;
10638 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10639 mode->vdisplay = (vtot & 0xffff) + 1;
10640 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10641 mode->vsync_start = (vsync & 0xffff) + 1;
10642 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10643
10644 drm_mode_set_name(mode);
79e53945
JB
10645
10646 return mode;
10647}
10648
f047e395
CW
10649void intel_mark_busy(struct drm_device *dev)
10650{
c67a470b
PZ
10651 struct drm_i915_private *dev_priv = dev->dev_private;
10652
f62a0076
CW
10653 if (dev_priv->mm.busy)
10654 return;
10655
43694d69 10656 intel_runtime_pm_get(dev_priv);
c67a470b 10657 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10658 if (INTEL_INFO(dev)->gen >= 6)
10659 gen6_rps_busy(dev_priv);
f62a0076 10660 dev_priv->mm.busy = true;
f047e395
CW
10661}
10662
10663void intel_mark_idle(struct drm_device *dev)
652c393a 10664{
c67a470b 10665 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10666
f62a0076
CW
10667 if (!dev_priv->mm.busy)
10668 return;
10669
10670 dev_priv->mm.busy = false;
10671
3d13ef2e 10672 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10673 gen6_rps_idle(dev->dev_private);
bb4cdd53 10674
43694d69 10675 intel_runtime_pm_put(dev_priv);
652c393a
JB
10676}
10677
79e53945
JB
10678static void intel_crtc_destroy(struct drm_crtc *crtc)
10679{
10680 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10681 struct drm_device *dev = crtc->dev;
10682 struct intel_unpin_work *work;
67e77c5a 10683
5e2d7afc 10684 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10685 work = intel_crtc->unpin_work;
10686 intel_crtc->unpin_work = NULL;
5e2d7afc 10687 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10688
10689 if (work) {
10690 cancel_work_sync(&work->work);
10691 kfree(work);
10692 }
79e53945
JB
10693
10694 drm_crtc_cleanup(crtc);
67e77c5a 10695
79e53945
JB
10696 kfree(intel_crtc);
10697}
10698
6b95a207
KH
10699static void intel_unpin_work_fn(struct work_struct *__work)
10700{
10701 struct intel_unpin_work *work =
10702 container_of(__work, struct intel_unpin_work, work);
a9ff8714
VS
10703 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10704 struct drm_device *dev = crtc->base.dev;
10705 struct drm_plane *primary = crtc->base.primary;
6b95a207 10706
b4a98e57 10707 mutex_lock(&dev->struct_mutex);
a9ff8714 10708 intel_unpin_fb_obj(work->old_fb, primary->state);
05394f39 10709 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10710
f06cc1b9 10711 if (work->flip_queued_req)
146d84f0 10712 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10713 mutex_unlock(&dev->struct_mutex);
10714
a9ff8714 10715 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
89ed88ba 10716 drm_framebuffer_unreference(work->old_fb);
f99d7069 10717
a9ff8714
VS
10718 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10719 atomic_dec(&crtc->unpin_work_count);
b4a98e57 10720
6b95a207
KH
10721 kfree(work);
10722}
10723
1afe3e9d 10724static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10725 struct drm_crtc *crtc)
6b95a207 10726{
6b95a207
KH
10727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10728 struct intel_unpin_work *work;
6b95a207
KH
10729 unsigned long flags;
10730
10731 /* Ignore early vblank irqs */
10732 if (intel_crtc == NULL)
10733 return;
10734
f326038a
DV
10735 /*
10736 * This is called both by irq handlers and the reset code (to complete
10737 * lost pageflips) so needs the full irqsave spinlocks.
10738 */
6b95a207
KH
10739 spin_lock_irqsave(&dev->event_lock, flags);
10740 work = intel_crtc->unpin_work;
e7d841ca
CW
10741
10742 /* Ensure we don't miss a work->pending update ... */
10743 smp_rmb();
10744
10745 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10746 spin_unlock_irqrestore(&dev->event_lock, flags);
10747 return;
10748 }
10749
d6bbafa1 10750 page_flip_completed(intel_crtc);
0af7e4df 10751
6b95a207 10752 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10753}
10754
1afe3e9d
JB
10755void intel_finish_page_flip(struct drm_device *dev, int pipe)
10756{
fbee40df 10757 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10758 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10759
49b14a5c 10760 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10761}
10762
10763void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10764{
fbee40df 10765 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10766 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10767
49b14a5c 10768 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10769}
10770
75f7f3ec
VS
10771/* Is 'a' after or equal to 'b'? */
10772static bool g4x_flip_count_after_eq(u32 a, u32 b)
10773{
10774 return !((a - b) & 0x80000000);
10775}
10776
10777static bool page_flip_finished(struct intel_crtc *crtc)
10778{
10779 struct drm_device *dev = crtc->base.dev;
10780 struct drm_i915_private *dev_priv = dev->dev_private;
10781
bdfa7542
VS
10782 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10783 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10784 return true;
10785
75f7f3ec
VS
10786 /*
10787 * The relevant registers doen't exist on pre-ctg.
10788 * As the flip done interrupt doesn't trigger for mmio
10789 * flips on gmch platforms, a flip count check isn't
10790 * really needed there. But since ctg has the registers,
10791 * include it in the check anyway.
10792 */
10793 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10794 return true;
10795
10796 /*
10797 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10798 * used the same base address. In that case the mmio flip might
10799 * have completed, but the CS hasn't even executed the flip yet.
10800 *
10801 * A flip count check isn't enough as the CS might have updated
10802 * the base address just after start of vblank, but before we
10803 * managed to process the interrupt. This means we'd complete the
10804 * CS flip too soon.
10805 *
10806 * Combining both checks should get us a good enough result. It may
10807 * still happen that the CS flip has been executed, but has not
10808 * yet actually completed. But in case the base address is the same
10809 * anyway, we don't really care.
10810 */
10811 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10812 crtc->unpin_work->gtt_offset &&
fd8f507c 10813 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
75f7f3ec
VS
10814 crtc->unpin_work->flip_count);
10815}
10816
6b95a207
KH
10817void intel_prepare_page_flip(struct drm_device *dev, int plane)
10818{
fbee40df 10819 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10820 struct intel_crtc *intel_crtc =
10821 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10822 unsigned long flags;
10823
f326038a
DV
10824
10825 /*
10826 * This is called both by irq handlers and the reset code (to complete
10827 * lost pageflips) so needs the full irqsave spinlocks.
10828 *
10829 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10830 * generate a page-flip completion irq, i.e. every modeset
10831 * is also accompanied by a spurious intel_prepare_page_flip().
10832 */
6b95a207 10833 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10834 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10835 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10836 spin_unlock_irqrestore(&dev->event_lock, flags);
10837}
10838
6042639c 10839static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
e7d841ca
CW
10840{
10841 /* Ensure that the work item is consistent when activating it ... */
10842 smp_wmb();
6042639c 10843 atomic_set(&work->pending, INTEL_FLIP_PENDING);
e7d841ca
CW
10844 /* and that it is marked active as soon as the irq could fire. */
10845 smp_wmb();
10846}
10847
8c9f3aaf
JB
10848static int intel_gen2_queue_flip(struct drm_device *dev,
10849 struct drm_crtc *crtc,
10850 struct drm_framebuffer *fb,
ed8d1975 10851 struct drm_i915_gem_object *obj,
6258fbe2 10852 struct drm_i915_gem_request *req,
ed8d1975 10853 uint32_t flags)
8c9f3aaf 10854{
6258fbe2 10855 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10857 u32 flip_mask;
10858 int ret;
10859
5fb9de1a 10860 ret = intel_ring_begin(req, 6);
8c9f3aaf 10861 if (ret)
4fa62c89 10862 return ret;
8c9f3aaf
JB
10863
10864 /* Can't queue multiple flips, so wait for the previous
10865 * one to finish before executing the next.
10866 */
10867 if (intel_crtc->plane)
10868 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10869 else
10870 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10871 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10872 intel_ring_emit(ring, MI_NOOP);
10873 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10874 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10875 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10876 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 10877 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca 10878
6042639c 10879 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 10880 return 0;
8c9f3aaf
JB
10881}
10882
10883static int intel_gen3_queue_flip(struct drm_device *dev,
10884 struct drm_crtc *crtc,
10885 struct drm_framebuffer *fb,
ed8d1975 10886 struct drm_i915_gem_object *obj,
6258fbe2 10887 struct drm_i915_gem_request *req,
ed8d1975 10888 uint32_t flags)
8c9f3aaf 10889{
6258fbe2 10890 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10891 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10892 u32 flip_mask;
10893 int ret;
10894
5fb9de1a 10895 ret = intel_ring_begin(req, 6);
8c9f3aaf 10896 if (ret)
4fa62c89 10897 return ret;
8c9f3aaf
JB
10898
10899 if (intel_crtc->plane)
10900 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10901 else
10902 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10903 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10904 intel_ring_emit(ring, MI_NOOP);
10905 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10906 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10907 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10908 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
10909 intel_ring_emit(ring, MI_NOOP);
10910
6042639c 10911 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 10912 return 0;
8c9f3aaf
JB
10913}
10914
10915static int intel_gen4_queue_flip(struct drm_device *dev,
10916 struct drm_crtc *crtc,
10917 struct drm_framebuffer *fb,
ed8d1975 10918 struct drm_i915_gem_object *obj,
6258fbe2 10919 struct drm_i915_gem_request *req,
ed8d1975 10920 uint32_t flags)
8c9f3aaf 10921{
6258fbe2 10922 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
10923 struct drm_i915_private *dev_priv = dev->dev_private;
10924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10925 uint32_t pf, pipesrc;
10926 int ret;
10927
5fb9de1a 10928 ret = intel_ring_begin(req, 4);
8c9f3aaf 10929 if (ret)
4fa62c89 10930 return ret;
8c9f3aaf
JB
10931
10932 /* i965+ uses the linear or tiled offsets from the
10933 * Display Registers (which do not change across a page-flip)
10934 * so we need only reprogram the base address.
10935 */
6d90c952
DV
10936 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10937 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10938 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10939 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 10940 obj->tiling_mode);
8c9f3aaf
JB
10941
10942 /* XXX Enabling the panel-fitter across page-flip is so far
10943 * untested on non-native modes, so ignore it for now.
10944 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10945 */
10946 pf = 0;
10947 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 10948 intel_ring_emit(ring, pf | pipesrc);
e7d841ca 10949
6042639c 10950 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 10951 return 0;
8c9f3aaf
JB
10952}
10953
10954static int intel_gen6_queue_flip(struct drm_device *dev,
10955 struct drm_crtc *crtc,
10956 struct drm_framebuffer *fb,
ed8d1975 10957 struct drm_i915_gem_object *obj,
6258fbe2 10958 struct drm_i915_gem_request *req,
ed8d1975 10959 uint32_t flags)
8c9f3aaf 10960{
6258fbe2 10961 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
10962 struct drm_i915_private *dev_priv = dev->dev_private;
10963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10964 uint32_t pf, pipesrc;
10965 int ret;
10966
5fb9de1a 10967 ret = intel_ring_begin(req, 4);
8c9f3aaf 10968 if (ret)
4fa62c89 10969 return ret;
8c9f3aaf 10970
6d90c952
DV
10971 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10972 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10973 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 10974 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 10975
dc257cf1
DV
10976 /* Contrary to the suggestions in the documentation,
10977 * "Enable Panel Fitter" does not seem to be required when page
10978 * flipping with a non-native mode, and worse causes a normal
10979 * modeset to fail.
10980 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10981 */
10982 pf = 0;
8c9f3aaf 10983 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 10984 intel_ring_emit(ring, pf | pipesrc);
e7d841ca 10985
6042639c 10986 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 10987 return 0;
8c9f3aaf
JB
10988}
10989
7c9017e5
JB
10990static int intel_gen7_queue_flip(struct drm_device *dev,
10991 struct drm_crtc *crtc,
10992 struct drm_framebuffer *fb,
ed8d1975 10993 struct drm_i915_gem_object *obj,
6258fbe2 10994 struct drm_i915_gem_request *req,
ed8d1975 10995 uint32_t flags)
7c9017e5 10996{
6258fbe2 10997 struct intel_engine_cs *ring = req->ring;
7c9017e5 10998 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 10999 uint32_t plane_bit = 0;
ffe74d75
CW
11000 int len, ret;
11001
eba905b2 11002 switch (intel_crtc->plane) {
cb05d8de
DV
11003 case PLANE_A:
11004 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11005 break;
11006 case PLANE_B:
11007 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11008 break;
11009 case PLANE_C:
11010 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11011 break;
11012 default:
11013 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 11014 return -ENODEV;
cb05d8de
DV
11015 }
11016
ffe74d75 11017 len = 4;
f476828a 11018 if (ring->id == RCS) {
ffe74d75 11019 len += 6;
f476828a
DL
11020 /*
11021 * On Gen 8, SRM is now taking an extra dword to accommodate
11022 * 48bits addresses, and we need a NOOP for the batch size to
11023 * stay even.
11024 */
11025 if (IS_GEN8(dev))
11026 len += 2;
11027 }
ffe74d75 11028
f66fab8e
VS
11029 /*
11030 * BSpec MI_DISPLAY_FLIP for IVB:
11031 * "The full packet must be contained within the same cache line."
11032 *
11033 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11034 * cacheline, if we ever start emitting more commands before
11035 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11036 * then do the cacheline alignment, and finally emit the
11037 * MI_DISPLAY_FLIP.
11038 */
bba09b12 11039 ret = intel_ring_cacheline_align(req);
f66fab8e 11040 if (ret)
4fa62c89 11041 return ret;
f66fab8e 11042
5fb9de1a 11043 ret = intel_ring_begin(req, len);
7c9017e5 11044 if (ret)
4fa62c89 11045 return ret;
7c9017e5 11046
ffe74d75
CW
11047 /* Unmask the flip-done completion message. Note that the bspec says that
11048 * we should do this for both the BCS and RCS, and that we must not unmask
11049 * more than one flip event at any time (or ensure that one flip message
11050 * can be sent by waiting for flip-done prior to queueing new flips).
11051 * Experimentation says that BCS works despite DERRMR masking all
11052 * flip-done completion events and that unmasking all planes at once
11053 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11054 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11055 */
11056 if (ring->id == RCS) {
11057 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11058 intel_ring_emit(ring, DERRMR);
11059 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11060 DERRMR_PIPEB_PRI_FLIP_DONE |
11061 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a 11062 if (IS_GEN8(dev))
f1afe24f 11063 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
f476828a
DL
11064 MI_SRM_LRM_GLOBAL_GTT);
11065 else
f1afe24f 11066 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
f476828a 11067 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
11068 intel_ring_emit(ring, DERRMR);
11069 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
11070 if (IS_GEN8(dev)) {
11071 intel_ring_emit(ring, 0);
11072 intel_ring_emit(ring, MI_NOOP);
11073 }
ffe74d75
CW
11074 }
11075
cb05d8de 11076 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 11077 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 11078 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 11079 intel_ring_emit(ring, (MI_NOOP));
e7d841ca 11080
6042639c 11081 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11082 return 0;
7c9017e5
JB
11083}
11084
84c33a64
SG
11085static bool use_mmio_flip(struct intel_engine_cs *ring,
11086 struct drm_i915_gem_object *obj)
11087{
11088 /*
11089 * This is not being used for older platforms, because
11090 * non-availability of flip done interrupt forces us to use
11091 * CS flips. Older platforms derive flip done using some clever
11092 * tricks involving the flip_pending status bits and vblank irqs.
11093 * So using MMIO flips there would disrupt this mechanism.
11094 */
11095
8e09bf83
CW
11096 if (ring == NULL)
11097 return true;
11098
84c33a64
SG
11099 if (INTEL_INFO(ring->dev)->gen < 5)
11100 return false;
11101
11102 if (i915.use_mmio_flip < 0)
11103 return false;
11104 else if (i915.use_mmio_flip > 0)
11105 return true;
14bf993e
OM
11106 else if (i915.enable_execlists)
11107 return true;
84c33a64 11108 else
b4716185 11109 return ring != i915_gem_request_get_ring(obj->last_write_req);
84c33a64
SG
11110}
11111
6042639c
CW
11112static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11113 struct intel_unpin_work *work)
ff944564
DL
11114{
11115 struct drm_device *dev = intel_crtc->base.dev;
11116 struct drm_i915_private *dev_priv = dev->dev_private;
11117 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564
DL
11118 const enum pipe pipe = intel_crtc->pipe;
11119 u32 ctl, stride;
11120
11121 ctl = I915_READ(PLANE_CTL(pipe, 0));
11122 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
11123 switch (fb->modifier[0]) {
11124 case DRM_FORMAT_MOD_NONE:
11125 break;
11126 case I915_FORMAT_MOD_X_TILED:
ff944564 11127 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
11128 break;
11129 case I915_FORMAT_MOD_Y_TILED:
11130 ctl |= PLANE_CTL_TILED_Y;
11131 break;
11132 case I915_FORMAT_MOD_Yf_TILED:
11133 ctl |= PLANE_CTL_TILED_YF;
11134 break;
11135 default:
11136 MISSING_CASE(fb->modifier[0]);
11137 }
ff944564
DL
11138
11139 /*
11140 * The stride is either expressed as a multiple of 64 bytes chunks for
11141 * linear buffers or in number of tiles for tiled buffers.
11142 */
2ebef630
TU
11143 stride = fb->pitches[0] /
11144 intel_fb_stride_alignment(dev, fb->modifier[0],
11145 fb->pixel_format);
ff944564
DL
11146
11147 /*
11148 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11149 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11150 */
11151 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11152 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11153
6042639c 11154 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
ff944564
DL
11155 POSTING_READ(PLANE_SURF(pipe, 0));
11156}
11157
6042639c
CW
11158static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11159 struct intel_unpin_work *work)
84c33a64
SG
11160{
11161 struct drm_device *dev = intel_crtc->base.dev;
11162 struct drm_i915_private *dev_priv = dev->dev_private;
11163 struct intel_framebuffer *intel_fb =
11164 to_intel_framebuffer(intel_crtc->base.primary->fb);
11165 struct drm_i915_gem_object *obj = intel_fb->obj;
11166 u32 dspcntr;
11167 u32 reg;
11168
84c33a64
SG
11169 reg = DSPCNTR(intel_crtc->plane);
11170 dspcntr = I915_READ(reg);
11171
c5d97472
DL
11172 if (obj->tiling_mode != I915_TILING_NONE)
11173 dspcntr |= DISPPLANE_TILED;
11174 else
11175 dspcntr &= ~DISPPLANE_TILED;
11176
84c33a64
SG
11177 I915_WRITE(reg, dspcntr);
11178
6042639c 11179 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
84c33a64 11180 POSTING_READ(DSPSURF(intel_crtc->plane));
ff944564
DL
11181}
11182
11183/*
11184 * XXX: This is the temporary way to update the plane registers until we get
11185 * around to using the usual plane update functions for MMIO flips
11186 */
6042639c 11187static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
ff944564 11188{
6042639c
CW
11189 struct intel_crtc *crtc = mmio_flip->crtc;
11190 struct intel_unpin_work *work;
ff944564 11191
6042639c
CW
11192 spin_lock_irq(&crtc->base.dev->event_lock);
11193 work = crtc->unpin_work;
11194 spin_unlock_irq(&crtc->base.dev->event_lock);
11195 if (work == NULL)
11196 return;
ff944564 11197
6042639c 11198 intel_mark_page_flip_active(work);
ff944564 11199
6042639c 11200 intel_pipe_update_start(crtc);
ff944564 11201
6042639c
CW
11202 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11203 skl_do_mmio_flip(crtc, work);
ff944564
DL
11204 else
11205 /* use_mmio_flip() retricts MMIO flips to ilk+ */
6042639c 11206 ilk_do_mmio_flip(crtc, work);
ff944564 11207
6042639c 11208 intel_pipe_update_end(crtc);
84c33a64
SG
11209}
11210
9362c7c5 11211static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 11212{
b2cfe0ab
CW
11213 struct intel_mmio_flip *mmio_flip =
11214 container_of(work, struct intel_mmio_flip, work);
84c33a64 11215
6042639c 11216 if (mmio_flip->req) {
eed29a5b 11217 WARN_ON(__i915_wait_request(mmio_flip->req,
b2cfe0ab 11218 mmio_flip->crtc->reset_counter,
bcafc4e3
CW
11219 false, NULL,
11220 &mmio_flip->i915->rps.mmioflips));
6042639c
CW
11221 i915_gem_request_unreference__unlocked(mmio_flip->req);
11222 }
84c33a64 11223
6042639c 11224 intel_do_mmio_flip(mmio_flip);
b2cfe0ab 11225 kfree(mmio_flip);
84c33a64
SG
11226}
11227
11228static int intel_queue_mmio_flip(struct drm_device *dev,
11229 struct drm_crtc *crtc,
11230 struct drm_framebuffer *fb,
11231 struct drm_i915_gem_object *obj,
11232 struct intel_engine_cs *ring,
11233 uint32_t flags)
11234{
b2cfe0ab
CW
11235 struct intel_mmio_flip *mmio_flip;
11236
11237 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11238 if (mmio_flip == NULL)
11239 return -ENOMEM;
84c33a64 11240
bcafc4e3 11241 mmio_flip->i915 = to_i915(dev);
eed29a5b 11242 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11243 mmio_flip->crtc = to_intel_crtc(crtc);
536f5b5e 11244
b2cfe0ab
CW
11245 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11246 schedule_work(&mmio_flip->work);
84c33a64 11247
84c33a64
SG
11248 return 0;
11249}
11250
8c9f3aaf
JB
11251static int intel_default_queue_flip(struct drm_device *dev,
11252 struct drm_crtc *crtc,
11253 struct drm_framebuffer *fb,
ed8d1975 11254 struct drm_i915_gem_object *obj,
6258fbe2 11255 struct drm_i915_gem_request *req,
ed8d1975 11256 uint32_t flags)
8c9f3aaf
JB
11257{
11258 return -ENODEV;
11259}
11260
d6bbafa1
CW
11261static bool __intel_pageflip_stall_check(struct drm_device *dev,
11262 struct drm_crtc *crtc)
11263{
11264 struct drm_i915_private *dev_priv = dev->dev_private;
11265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11266 struct intel_unpin_work *work = intel_crtc->unpin_work;
11267 u32 addr;
11268
11269 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11270 return true;
11271
908565c2
CW
11272 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11273 return false;
11274
d6bbafa1
CW
11275 if (!work->enable_stall_check)
11276 return false;
11277
11278 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11279 if (work->flip_queued_req &&
11280 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11281 return false;
11282
1e3feefd 11283 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11284 }
11285
1e3feefd 11286 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11287 return false;
11288
11289 /* Potential stall - if we see that the flip has happened,
11290 * assume a missed interrupt. */
11291 if (INTEL_INFO(dev)->gen >= 4)
11292 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11293 else
11294 addr = I915_READ(DSPADDR(intel_crtc->plane));
11295
11296 /* There is a potential issue here with a false positive after a flip
11297 * to the same address. We could address this by checking for a
11298 * non-incrementing frame counter.
11299 */
11300 return addr == work->gtt_offset;
11301}
11302
11303void intel_check_page_flip(struct drm_device *dev, int pipe)
11304{
11305 struct drm_i915_private *dev_priv = dev->dev_private;
11306 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11307 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11308 struct intel_unpin_work *work;
f326038a 11309
6c51d46f 11310 WARN_ON(!in_interrupt());
d6bbafa1
CW
11311
11312 if (crtc == NULL)
11313 return;
11314
f326038a 11315 spin_lock(&dev->event_lock);
6ad790c0
CW
11316 work = intel_crtc->unpin_work;
11317 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11318 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11319 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11320 page_flip_completed(intel_crtc);
6ad790c0 11321 work = NULL;
d6bbafa1 11322 }
6ad790c0
CW
11323 if (work != NULL &&
11324 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11325 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 11326 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11327}
11328
6b95a207
KH
11329static int intel_crtc_page_flip(struct drm_crtc *crtc,
11330 struct drm_framebuffer *fb,
ed8d1975
KP
11331 struct drm_pending_vblank_event *event,
11332 uint32_t page_flip_flags)
6b95a207
KH
11333{
11334 struct drm_device *dev = crtc->dev;
11335 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11336 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11337 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11338 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11339 struct drm_plane *primary = crtc->primary;
a071fa00 11340 enum pipe pipe = intel_crtc->pipe;
6b95a207 11341 struct intel_unpin_work *work;
a4872ba6 11342 struct intel_engine_cs *ring;
cf5d8a46 11343 bool mmio_flip;
91af127f 11344 struct drm_i915_gem_request *request = NULL;
52e68630 11345 int ret;
6b95a207 11346
2ff8fde1
MR
11347 /*
11348 * drm_mode_page_flip_ioctl() should already catch this, but double
11349 * check to be safe. In the future we may enable pageflipping from
11350 * a disabled primary plane.
11351 */
11352 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11353 return -EBUSY;
11354
e6a595d2 11355 /* Can't change pixel format via MI display flips. */
f4510a27 11356 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11357 return -EINVAL;
11358
11359 /*
11360 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11361 * Note that pitch changes could also affect these register.
11362 */
11363 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11364 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11365 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11366 return -EINVAL;
11367
f900db47
CW
11368 if (i915_terminally_wedged(&dev_priv->gpu_error))
11369 goto out_hang;
11370
b14c5679 11371 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11372 if (work == NULL)
11373 return -ENOMEM;
11374
6b95a207 11375 work->event = event;
b4a98e57 11376 work->crtc = crtc;
ab8d6675 11377 work->old_fb = old_fb;
6b95a207
KH
11378 INIT_WORK(&work->work, intel_unpin_work_fn);
11379
87b6b101 11380 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11381 if (ret)
11382 goto free_work;
11383
6b95a207 11384 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11385 spin_lock_irq(&dev->event_lock);
6b95a207 11386 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11387 /* Before declaring the flip queue wedged, check if
11388 * the hardware completed the operation behind our backs.
11389 */
11390 if (__intel_pageflip_stall_check(dev, crtc)) {
11391 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11392 page_flip_completed(intel_crtc);
11393 } else {
11394 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11395 spin_unlock_irq(&dev->event_lock);
468f0b44 11396
d6bbafa1
CW
11397 drm_crtc_vblank_put(crtc);
11398 kfree(work);
11399 return -EBUSY;
11400 }
6b95a207
KH
11401 }
11402 intel_crtc->unpin_work = work;
5e2d7afc 11403 spin_unlock_irq(&dev->event_lock);
6b95a207 11404
b4a98e57
CW
11405 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11406 flush_workqueue(dev_priv->wq);
11407
75dfca80 11408 /* Reference the objects for the scheduled work. */
ab8d6675 11409 drm_framebuffer_reference(work->old_fb);
05394f39 11410 drm_gem_object_reference(&obj->base);
6b95a207 11411
f4510a27 11412 crtc->primary->fb = fb;
afd65eb4 11413 update_state_fb(crtc->primary);
1ed1f968 11414
e1f99ce6 11415 work->pending_flip_obj = obj;
e1f99ce6 11416
89ed88ba
CW
11417 ret = i915_mutex_lock_interruptible(dev);
11418 if (ret)
11419 goto cleanup;
11420
b4a98e57 11421 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11422 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11423
75f7f3ec 11424 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
fd8f507c 11425 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
75f7f3ec 11426
4fa62c89
VS
11427 if (IS_VALLEYVIEW(dev)) {
11428 ring = &dev_priv->ring[BCS];
ab8d6675 11429 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
11430 /* vlv: DISPLAY_FLIP fails to change tiling */
11431 ring = NULL;
48bf5b2d 11432 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 11433 ring = &dev_priv->ring[BCS];
4fa62c89 11434 } else if (INTEL_INFO(dev)->gen >= 7) {
b4716185 11435 ring = i915_gem_request_get_ring(obj->last_write_req);
4fa62c89
VS
11436 if (ring == NULL || ring->id != RCS)
11437 ring = &dev_priv->ring[BCS];
11438 } else {
11439 ring = &dev_priv->ring[RCS];
11440 }
11441
cf5d8a46
CW
11442 mmio_flip = use_mmio_flip(ring, obj);
11443
11444 /* When using CS flips, we want to emit semaphores between rings.
11445 * However, when using mmio flips we will create a task to do the
11446 * synchronisation, so all we want here is to pin the framebuffer
11447 * into the display plane and skip any waits.
11448 */
82bc3b2d 11449 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
cf5d8a46 11450 crtc->primary->state,
91af127f 11451 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
8c9f3aaf
JB
11452 if (ret)
11453 goto cleanup_pending;
6b95a207 11454
dedf278c
TU
11455 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11456 obj, 0);
11457 work->gtt_offset += intel_crtc->dspaddr_offset;
4fa62c89 11458
cf5d8a46 11459 if (mmio_flip) {
84c33a64
SG
11460 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11461 page_flip_flags);
d6bbafa1
CW
11462 if (ret)
11463 goto cleanup_unpin;
11464
f06cc1b9
JH
11465 i915_gem_request_assign(&work->flip_queued_req,
11466 obj->last_write_req);
d6bbafa1 11467 } else {
6258fbe2
JH
11468 if (!request) {
11469 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11470 if (ret)
11471 goto cleanup_unpin;
11472 }
11473
11474 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
d6bbafa1
CW
11475 page_flip_flags);
11476 if (ret)
11477 goto cleanup_unpin;
11478
6258fbe2 11479 i915_gem_request_assign(&work->flip_queued_req, request);
d6bbafa1
CW
11480 }
11481
91af127f 11482 if (request)
75289874 11483 i915_add_request_no_flush(request);
91af127f 11484
1e3feefd 11485 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11486 work->enable_stall_check = true;
4fa62c89 11487
ab8d6675 11488 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a9ff8714 11489 to_intel_plane(primary)->frontbuffer_bit);
c80ac854 11490 mutex_unlock(&dev->struct_mutex);
a071fa00 11491
4e1e26f1 11492 intel_fbc_disable_crtc(intel_crtc);
a9ff8714
VS
11493 intel_frontbuffer_flip_prepare(dev,
11494 to_intel_plane(primary)->frontbuffer_bit);
6b95a207 11495
e5510fac
JB
11496 trace_i915_flip_request(intel_crtc->plane, obj);
11497
6b95a207 11498 return 0;
96b099fd 11499
4fa62c89 11500cleanup_unpin:
82bc3b2d 11501 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 11502cleanup_pending:
91af127f
JH
11503 if (request)
11504 i915_gem_request_cancel(request);
b4a98e57 11505 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11506 mutex_unlock(&dev->struct_mutex);
11507cleanup:
f4510a27 11508 crtc->primary->fb = old_fb;
afd65eb4 11509 update_state_fb(crtc->primary);
89ed88ba
CW
11510
11511 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11512 drm_framebuffer_unreference(work->old_fb);
96b099fd 11513
5e2d7afc 11514 spin_lock_irq(&dev->event_lock);
96b099fd 11515 intel_crtc->unpin_work = NULL;
5e2d7afc 11516 spin_unlock_irq(&dev->event_lock);
96b099fd 11517
87b6b101 11518 drm_crtc_vblank_put(crtc);
7317c75e 11519free_work:
96b099fd
CW
11520 kfree(work);
11521
f900db47 11522 if (ret == -EIO) {
02e0efb5
ML
11523 struct drm_atomic_state *state;
11524 struct drm_plane_state *plane_state;
11525
f900db47 11526out_hang:
02e0efb5
ML
11527 state = drm_atomic_state_alloc(dev);
11528 if (!state)
11529 return -ENOMEM;
11530 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11531
11532retry:
11533 plane_state = drm_atomic_get_plane_state(state, primary);
11534 ret = PTR_ERR_OR_ZERO(plane_state);
11535 if (!ret) {
11536 drm_atomic_set_fb_for_plane(plane_state, fb);
11537
11538 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11539 if (!ret)
11540 ret = drm_atomic_commit(state);
11541 }
11542
11543 if (ret == -EDEADLK) {
11544 drm_modeset_backoff(state->acquire_ctx);
11545 drm_atomic_state_clear(state);
11546 goto retry;
11547 }
11548
11549 if (ret)
11550 drm_atomic_state_free(state);
11551
f0d3dad3 11552 if (ret == 0 && event) {
5e2d7afc 11553 spin_lock_irq(&dev->event_lock);
a071fa00 11554 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11555 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11556 }
f900db47 11557 }
96b099fd 11558 return ret;
6b95a207
KH
11559}
11560
da20eabd
ML
11561
11562/**
11563 * intel_wm_need_update - Check whether watermarks need updating
11564 * @plane: drm plane
11565 * @state: new plane state
11566 *
11567 * Check current plane state versus the new one to determine whether
11568 * watermarks need to be recalculated.
11569 *
11570 * Returns true or false.
11571 */
11572static bool intel_wm_need_update(struct drm_plane *plane,
11573 struct drm_plane_state *state)
11574{
11575 /* Update watermarks on tiling changes. */
11576 if (!plane->state->fb || !state->fb ||
11577 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11578 plane->state->rotation != state->rotation)
11579 return true;
11580
11581 if (plane->state->crtc_w != state->crtc_w)
11582 return true;
11583
11584 return false;
11585}
11586
11587int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11588 struct drm_plane_state *plane_state)
11589{
11590 struct drm_crtc *crtc = crtc_state->crtc;
11591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11592 struct drm_plane *plane = plane_state->plane;
11593 struct drm_device *dev = crtc->dev;
11594 struct drm_i915_private *dev_priv = dev->dev_private;
11595 struct intel_plane_state *old_plane_state =
11596 to_intel_plane_state(plane->state);
11597 int idx = intel_crtc->base.base.id, ret;
11598 int i = drm_plane_index(plane);
11599 bool mode_changed = needs_modeset(crtc_state);
11600 bool was_crtc_enabled = crtc->state->active;
11601 bool is_crtc_enabled = crtc_state->active;
11602
11603 bool turn_off, turn_on, visible, was_visible;
11604 struct drm_framebuffer *fb = plane_state->fb;
11605
11606 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11607 plane->type != DRM_PLANE_TYPE_CURSOR) {
11608 ret = skl_update_scaler_plane(
11609 to_intel_crtc_state(crtc_state),
11610 to_intel_plane_state(plane_state));
11611 if (ret)
11612 return ret;
11613 }
11614
11615 /*
11616 * Disabling a plane is always okay; we just need to update
11617 * fb tracking in a special way since cleanup_fb() won't
11618 * get called by the plane helpers.
11619 */
11620 if (old_plane_state->base.fb && !fb)
11621 intel_crtc->atomic.disabled_planes |= 1 << i;
11622
da20eabd
ML
11623 was_visible = old_plane_state->visible;
11624 visible = to_intel_plane_state(plane_state)->visible;
11625
11626 if (!was_crtc_enabled && WARN_ON(was_visible))
11627 was_visible = false;
11628
11629 if (!is_crtc_enabled && WARN_ON(visible))
11630 visible = false;
11631
11632 if (!was_visible && !visible)
11633 return 0;
11634
11635 turn_off = was_visible && (!visible || mode_changed);
11636 turn_on = visible && (!was_visible || mode_changed);
11637
11638 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11639 plane->base.id, fb ? fb->base.id : -1);
11640
11641 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11642 plane->base.id, was_visible, visible,
11643 turn_off, turn_on, mode_changed);
11644
852eb00d 11645 if (turn_on) {
f015c551 11646 intel_crtc->atomic.update_wm_pre = true;
852eb00d
VS
11647 /* must disable cxsr around plane enable/disable */
11648 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11649 intel_crtc->atomic.disable_cxsr = true;
11650 /* to potentially re-enable cxsr */
11651 intel_crtc->atomic.wait_vblank = true;
11652 intel_crtc->atomic.update_wm_post = true;
11653 }
11654 } else if (turn_off) {
f015c551 11655 intel_crtc->atomic.update_wm_post = true;
852eb00d
VS
11656 /* must disable cxsr around plane enable/disable */
11657 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11658 if (is_crtc_enabled)
11659 intel_crtc->atomic.wait_vblank = true;
11660 intel_crtc->atomic.disable_cxsr = true;
11661 }
11662 } else if (intel_wm_need_update(plane, plane_state)) {
f015c551 11663 intel_crtc->atomic.update_wm_pre = true;
852eb00d 11664 }
da20eabd 11665
8be6ca85 11666 if (visible || was_visible)
a9ff8714
VS
11667 intel_crtc->atomic.fb_bits |=
11668 to_intel_plane(plane)->frontbuffer_bit;
11669
da20eabd
ML
11670 switch (plane->type) {
11671 case DRM_PLANE_TYPE_PRIMARY:
da20eabd
ML
11672 intel_crtc->atomic.wait_for_flips = true;
11673 intel_crtc->atomic.pre_disable_primary = turn_off;
11674 intel_crtc->atomic.post_enable_primary = turn_on;
11675
066cf55b
RV
11676 if (turn_off) {
11677 /*
11678 * FIXME: Actually if we will still have any other
11679 * plane enabled on the pipe we could let IPS enabled
11680 * still, but for now lets consider that when we make
11681 * primary invisible by setting DSPCNTR to 0 on
11682 * update_primary_plane function IPS needs to be
11683 * disable.
11684 */
11685 intel_crtc->atomic.disable_ips = true;
11686
da20eabd 11687 intel_crtc->atomic.disable_fbc = true;
066cf55b 11688 }
da20eabd
ML
11689
11690 /*
11691 * FBC does not work on some platforms for rotated
11692 * planes, so disable it when rotation is not 0 and
11693 * update it when rotation is set back to 0.
11694 *
11695 * FIXME: This is redundant with the fbc update done in
11696 * the primary plane enable function except that that
11697 * one is done too late. We eventually need to unify
11698 * this.
11699 */
11700
11701 if (visible &&
11702 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11703 dev_priv->fbc.crtc == intel_crtc &&
11704 plane_state->rotation != BIT(DRM_ROTATE_0))
11705 intel_crtc->atomic.disable_fbc = true;
11706
11707 /*
11708 * BDW signals flip done immediately if the plane
11709 * is disabled, even if the plane enable is already
11710 * armed to occur at the next vblank :(
11711 */
11712 if (turn_on && IS_BROADWELL(dev))
11713 intel_crtc->atomic.wait_vblank = true;
11714
11715 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11716 break;
11717 case DRM_PLANE_TYPE_CURSOR:
da20eabd
ML
11718 break;
11719 case DRM_PLANE_TYPE_OVERLAY:
d032ffa0 11720 if (turn_off && !mode_changed) {
da20eabd
ML
11721 intel_crtc->atomic.wait_vblank = true;
11722 intel_crtc->atomic.update_sprite_watermarks |=
11723 1 << i;
11724 }
da20eabd
ML
11725 }
11726 return 0;
11727}
11728
6d3a1ce7
ML
11729static bool encoders_cloneable(const struct intel_encoder *a,
11730 const struct intel_encoder *b)
11731{
11732 /* masks could be asymmetric, so check both ways */
11733 return a == b || (a->cloneable & (1 << b->type) &&
11734 b->cloneable & (1 << a->type));
11735}
11736
11737static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11738 struct intel_crtc *crtc,
11739 struct intel_encoder *encoder)
11740{
11741 struct intel_encoder *source_encoder;
11742 struct drm_connector *connector;
11743 struct drm_connector_state *connector_state;
11744 int i;
11745
11746 for_each_connector_in_state(state, connector, connector_state, i) {
11747 if (connector_state->crtc != &crtc->base)
11748 continue;
11749
11750 source_encoder =
11751 to_intel_encoder(connector_state->best_encoder);
11752 if (!encoders_cloneable(encoder, source_encoder))
11753 return false;
11754 }
11755
11756 return true;
11757}
11758
11759static bool check_encoder_cloning(struct drm_atomic_state *state,
11760 struct intel_crtc *crtc)
11761{
11762 struct intel_encoder *encoder;
11763 struct drm_connector *connector;
11764 struct drm_connector_state *connector_state;
11765 int i;
11766
11767 for_each_connector_in_state(state, connector, connector_state, i) {
11768 if (connector_state->crtc != &crtc->base)
11769 continue;
11770
11771 encoder = to_intel_encoder(connector_state->best_encoder);
11772 if (!check_single_encoder_cloning(state, crtc, encoder))
11773 return false;
11774 }
11775
11776 return true;
11777}
11778
11779static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11780 struct drm_crtc_state *crtc_state)
11781{
cf5a15be 11782 struct drm_device *dev = crtc->dev;
ad421372 11783 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 11784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
11785 struct intel_crtc_state *pipe_config =
11786 to_intel_crtc_state(crtc_state);
6d3a1ce7 11787 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 11788 int ret;
6d3a1ce7
ML
11789 bool mode_changed = needs_modeset(crtc_state);
11790
11791 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11792 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11793 return -EINVAL;
11794 }
11795
852eb00d
VS
11796 if (mode_changed && !crtc_state->active)
11797 intel_crtc->atomic.update_wm_post = true;
eddfcbcd 11798
ad421372
ML
11799 if (mode_changed && crtc_state->enable &&
11800 dev_priv->display.crtc_compute_clock &&
11801 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11802 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11803 pipe_config);
11804 if (ret)
11805 return ret;
11806 }
11807
e435d6e5
ML
11808 ret = 0;
11809 if (INTEL_INFO(dev)->gen >= 9) {
11810 if (mode_changed)
11811 ret = skl_update_scaler_crtc(pipe_config);
11812
11813 if (!ret)
11814 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11815 pipe_config);
11816 }
11817
11818 return ret;
6d3a1ce7
ML
11819}
11820
65b38e0d 11821static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11822 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11823 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11824 .atomic_begin = intel_begin_crtc_commit,
11825 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 11826 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
11827};
11828
d29b2f9d
ACO
11829static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11830{
11831 struct intel_connector *connector;
11832
11833 for_each_intel_connector(dev, connector) {
11834 if (connector->base.encoder) {
11835 connector->base.state->best_encoder =
11836 connector->base.encoder;
11837 connector->base.state->crtc =
11838 connector->base.encoder->crtc;
11839 } else {
11840 connector->base.state->best_encoder = NULL;
11841 connector->base.state->crtc = NULL;
11842 }
11843 }
11844}
11845
050f7aeb 11846static void
eba905b2 11847connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 11848 struct intel_crtc_state *pipe_config)
050f7aeb
DV
11849{
11850 int bpp = pipe_config->pipe_bpp;
11851
11852 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11853 connector->base.base.id,
c23cc417 11854 connector->base.name);
050f7aeb
DV
11855
11856 /* Don't use an invalid EDID bpc value */
11857 if (connector->base.display_info.bpc &&
11858 connector->base.display_info.bpc * 3 < bpp) {
11859 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11860 bpp, connector->base.display_info.bpc*3);
11861 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11862 }
11863
11864 /* Clamp bpp to 8 on screens without EDID 1.4 */
11865 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11866 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11867 bpp);
11868 pipe_config->pipe_bpp = 24;
11869 }
11870}
11871
4e53c2e0 11872static int
050f7aeb 11873compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 11874 struct intel_crtc_state *pipe_config)
4e53c2e0 11875{
050f7aeb 11876 struct drm_device *dev = crtc->base.dev;
1486017f 11877 struct drm_atomic_state *state;
da3ced29
ACO
11878 struct drm_connector *connector;
11879 struct drm_connector_state *connector_state;
1486017f 11880 int bpp, i;
4e53c2e0 11881
d328c9d7 11882 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
4e53c2e0 11883 bpp = 10*3;
d328c9d7
DV
11884 else if (INTEL_INFO(dev)->gen >= 5)
11885 bpp = 12*3;
11886 else
11887 bpp = 8*3;
11888
4e53c2e0 11889
4e53c2e0
DV
11890 pipe_config->pipe_bpp = bpp;
11891
1486017f
ACO
11892 state = pipe_config->base.state;
11893
4e53c2e0 11894 /* Clamp display bpp to EDID value */
da3ced29
ACO
11895 for_each_connector_in_state(state, connector, connector_state, i) {
11896 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
11897 continue;
11898
da3ced29
ACO
11899 connected_sink_compute_bpp(to_intel_connector(connector),
11900 pipe_config);
4e53c2e0
DV
11901 }
11902
11903 return bpp;
11904}
11905
644db711
DV
11906static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11907{
11908 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11909 "type: 0x%x flags: 0x%x\n",
1342830c 11910 mode->crtc_clock,
644db711
DV
11911 mode->crtc_hdisplay, mode->crtc_hsync_start,
11912 mode->crtc_hsync_end, mode->crtc_htotal,
11913 mode->crtc_vdisplay, mode->crtc_vsync_start,
11914 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11915}
11916
c0b03411 11917static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 11918 struct intel_crtc_state *pipe_config,
c0b03411
DV
11919 const char *context)
11920{
6a60cd87
CK
11921 struct drm_device *dev = crtc->base.dev;
11922 struct drm_plane *plane;
11923 struct intel_plane *intel_plane;
11924 struct intel_plane_state *state;
11925 struct drm_framebuffer *fb;
11926
11927 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11928 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
11929
11930 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11931 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11932 pipe_config->pipe_bpp, pipe_config->dither);
11933 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11934 pipe_config->has_pch_encoder,
11935 pipe_config->fdi_lanes,
11936 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11937 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11938 pipe_config->fdi_m_n.tu);
90a6b7b0 11939 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
eb14cb74 11940 pipe_config->has_dp_encoder,
90a6b7b0 11941 pipe_config->lane_count,
eb14cb74
VS
11942 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11943 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11944 pipe_config->dp_m_n.tu);
b95af8be 11945
90a6b7b0 11946 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
b95af8be 11947 pipe_config->has_dp_encoder,
90a6b7b0 11948 pipe_config->lane_count,
b95af8be
VK
11949 pipe_config->dp_m2_n2.gmch_m,
11950 pipe_config->dp_m2_n2.gmch_n,
11951 pipe_config->dp_m2_n2.link_m,
11952 pipe_config->dp_m2_n2.link_n,
11953 pipe_config->dp_m2_n2.tu);
11954
55072d19
DV
11955 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11956 pipe_config->has_audio,
11957 pipe_config->has_infoframe);
11958
c0b03411 11959 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 11960 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 11961 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
11962 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11963 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 11964 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
11965 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11966 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
11967 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11968 crtc->num_scalers,
11969 pipe_config->scaler_state.scaler_users,
11970 pipe_config->scaler_state.scaler_id);
c0b03411
DV
11971 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11972 pipe_config->gmch_pfit.control,
11973 pipe_config->gmch_pfit.pgm_ratios,
11974 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 11975 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 11976 pipe_config->pch_pfit.pos,
fd4daa9c
CW
11977 pipe_config->pch_pfit.size,
11978 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 11979 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 11980 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 11981
415ff0f6 11982 if (IS_BROXTON(dev)) {
05712c15 11983 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 11984 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 11985 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6
TU
11986 pipe_config->ddi_pll_sel,
11987 pipe_config->dpll_hw_state.ebb0,
05712c15 11988 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
11989 pipe_config->dpll_hw_state.pll0,
11990 pipe_config->dpll_hw_state.pll1,
11991 pipe_config->dpll_hw_state.pll2,
11992 pipe_config->dpll_hw_state.pll3,
11993 pipe_config->dpll_hw_state.pll6,
11994 pipe_config->dpll_hw_state.pll8,
05712c15 11995 pipe_config->dpll_hw_state.pll9,
c8453338 11996 pipe_config->dpll_hw_state.pll10,
415ff0f6
TU
11997 pipe_config->dpll_hw_state.pcsdw12);
11998 } else if (IS_SKYLAKE(dev)) {
11999 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12000 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12001 pipe_config->ddi_pll_sel,
12002 pipe_config->dpll_hw_state.ctrl1,
12003 pipe_config->dpll_hw_state.cfgcr1,
12004 pipe_config->dpll_hw_state.cfgcr2);
12005 } else if (HAS_DDI(dev)) {
12006 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12007 pipe_config->ddi_pll_sel,
12008 pipe_config->dpll_hw_state.wrpll);
12009 } else {
12010 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12011 "fp0: 0x%x, fp1: 0x%x\n",
12012 pipe_config->dpll_hw_state.dpll,
12013 pipe_config->dpll_hw_state.dpll_md,
12014 pipe_config->dpll_hw_state.fp0,
12015 pipe_config->dpll_hw_state.fp1);
12016 }
12017
6a60cd87
CK
12018 DRM_DEBUG_KMS("planes on this crtc\n");
12019 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12020 intel_plane = to_intel_plane(plane);
12021 if (intel_plane->pipe != crtc->pipe)
12022 continue;
12023
12024 state = to_intel_plane_state(plane->state);
12025 fb = state->base.fb;
12026 if (!fb) {
12027 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12028 "disabled, scaler_id = %d\n",
12029 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12030 plane->base.id, intel_plane->pipe,
12031 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12032 drm_plane_index(plane), state->scaler_id);
12033 continue;
12034 }
12035
12036 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12037 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12038 plane->base.id, intel_plane->pipe,
12039 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12040 drm_plane_index(plane));
12041 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12042 fb->base.id, fb->width, fb->height, fb->pixel_format);
12043 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12044 state->scaler_id,
12045 state->src.x1 >> 16, state->src.y1 >> 16,
12046 drm_rect_width(&state->src) >> 16,
12047 drm_rect_height(&state->src) >> 16,
12048 state->dst.x1, state->dst.y1,
12049 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12050 }
c0b03411
DV
12051}
12052
5448a00d 12053static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12054{
5448a00d
ACO
12055 struct drm_device *dev = state->dev;
12056 struct intel_encoder *encoder;
da3ced29 12057 struct drm_connector *connector;
5448a00d 12058 struct drm_connector_state *connector_state;
00f0b378 12059 unsigned int used_ports = 0;
5448a00d 12060 int i;
00f0b378
VS
12061
12062 /*
12063 * Walk the connector list instead of the encoder
12064 * list to detect the problem on ddi platforms
12065 * where there's just one encoder per digital port.
12066 */
da3ced29 12067 for_each_connector_in_state(state, connector, connector_state, i) {
5448a00d 12068 if (!connector_state->best_encoder)
00f0b378
VS
12069 continue;
12070
5448a00d
ACO
12071 encoder = to_intel_encoder(connector_state->best_encoder);
12072
12073 WARN_ON(!connector_state->crtc);
00f0b378
VS
12074
12075 switch (encoder->type) {
12076 unsigned int port_mask;
12077 case INTEL_OUTPUT_UNKNOWN:
12078 if (WARN_ON(!HAS_DDI(dev)))
12079 break;
12080 case INTEL_OUTPUT_DISPLAYPORT:
12081 case INTEL_OUTPUT_HDMI:
12082 case INTEL_OUTPUT_EDP:
12083 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12084
12085 /* the same port mustn't appear more than once */
12086 if (used_ports & port_mask)
12087 return false;
12088
12089 used_ports |= port_mask;
12090 default:
12091 break;
12092 }
12093 }
12094
12095 return true;
12096}
12097
83a57153
ACO
12098static void
12099clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12100{
12101 struct drm_crtc_state tmp_state;
663a3640 12102 struct intel_crtc_scaler_state scaler_state;
4978cc93
ACO
12103 struct intel_dpll_hw_state dpll_hw_state;
12104 enum intel_dpll_id shared_dpll;
8504c74c 12105 uint32_t ddi_pll_sel;
c4e2d043 12106 bool force_thru;
83a57153 12107
7546a384
ACO
12108 /* FIXME: before the switch to atomic started, a new pipe_config was
12109 * kzalloc'd. Code that depends on any field being zero should be
12110 * fixed, so that the crtc_state can be safely duplicated. For now,
12111 * only fields that are know to not cause problems are preserved. */
12112
83a57153 12113 tmp_state = crtc_state->base;
663a3640 12114 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12115 shared_dpll = crtc_state->shared_dpll;
12116 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12117 ddi_pll_sel = crtc_state->ddi_pll_sel;
c4e2d043 12118 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12119
83a57153 12120 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12121
83a57153 12122 crtc_state->base = tmp_state;
663a3640 12123 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12124 crtc_state->shared_dpll = shared_dpll;
12125 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12126 crtc_state->ddi_pll_sel = ddi_pll_sel;
c4e2d043 12127 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12128}
12129
548ee15b 12130static int
b8cecdf5 12131intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12132 struct intel_crtc_state *pipe_config)
ee7b9f93 12133{
b359283a 12134 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12135 struct intel_encoder *encoder;
da3ced29 12136 struct drm_connector *connector;
0b901879 12137 struct drm_connector_state *connector_state;
d328c9d7 12138 int base_bpp, ret = -EINVAL;
0b901879 12139 int i;
e29c22c0 12140 bool retry = true;
ee7b9f93 12141
83a57153 12142 clear_intel_crtc_state(pipe_config);
7758a113 12143
e143a21c
DV
12144 pipe_config->cpu_transcoder =
12145 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12146
2960bc9c
ID
12147 /*
12148 * Sanitize sync polarity flags based on requested ones. If neither
12149 * positive or negative polarity is requested, treat this as meaning
12150 * negative polarity.
12151 */
2d112de7 12152 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12153 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12154 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12155
2d112de7 12156 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12157 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12158 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12159
d328c9d7
DV
12160 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12161 pipe_config);
12162 if (base_bpp < 0)
4e53c2e0
DV
12163 goto fail;
12164
e41a56be
VS
12165 /*
12166 * Determine the real pipe dimensions. Note that stereo modes can
12167 * increase the actual pipe size due to the frame doubling and
12168 * insertion of additional space for blanks between the frame. This
12169 * is stored in the crtc timings. We use the requested mode to do this
12170 * computation to clearly distinguish it from the adjusted mode, which
12171 * can be changed by the connectors in the below retry loop.
12172 */
2d112de7 12173 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12174 &pipe_config->pipe_src_w,
12175 &pipe_config->pipe_src_h);
e41a56be 12176
e29c22c0 12177encoder_retry:
ef1b460d 12178 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12179 pipe_config->port_clock = 0;
ef1b460d 12180 pipe_config->pixel_multiplier = 1;
ff9a6750 12181
135c81b8 12182 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12183 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12184 CRTC_STEREO_DOUBLE);
135c81b8 12185
7758a113
DV
12186 /* Pass our mode to the connectors and the CRTC to give them a chance to
12187 * adjust it according to limitations or connector properties, and also
12188 * a chance to reject the mode entirely.
47f1c6c9 12189 */
da3ced29 12190 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12191 if (connector_state->crtc != crtc)
7758a113 12192 continue;
7ae89233 12193
0b901879
ACO
12194 encoder = to_intel_encoder(connector_state->best_encoder);
12195
efea6e8e
DV
12196 if (!(encoder->compute_config(encoder, pipe_config))) {
12197 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12198 goto fail;
12199 }
ee7b9f93 12200 }
47f1c6c9 12201
ff9a6750
DV
12202 /* Set default port clock if not overwritten by the encoder. Needs to be
12203 * done afterwards in case the encoder adjusts the mode. */
12204 if (!pipe_config->port_clock)
2d112de7 12205 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12206 * pipe_config->pixel_multiplier;
ff9a6750 12207
a43f6e0f 12208 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12209 if (ret < 0) {
7758a113
DV
12210 DRM_DEBUG_KMS("CRTC fixup failed\n");
12211 goto fail;
ee7b9f93 12212 }
e29c22c0
DV
12213
12214 if (ret == RETRY) {
12215 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12216 ret = -EINVAL;
12217 goto fail;
12218 }
12219
12220 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12221 retry = false;
12222 goto encoder_retry;
12223 }
12224
e8fa4270
DV
12225 /* Dithering seems to not pass-through bits correctly when it should, so
12226 * only enable it on 6bpc panels. */
12227 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 12228 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12229 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12230
7758a113 12231fail:
548ee15b 12232 return ret;
ee7b9f93 12233}
47f1c6c9 12234
ea9d758d 12235static void
4740b0f2 12236intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 12237{
0a9ab303
ACO
12238 struct drm_crtc *crtc;
12239 struct drm_crtc_state *crtc_state;
8a75d157 12240 int i;
ea9d758d 12241
7668851f 12242 /* Double check state. */
8a75d157 12243 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 12244 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12245
12246 /* Update hwmode for vblank functions */
12247 if (crtc->state->active)
12248 crtc->hwmode = crtc->state->adjusted_mode;
12249 else
12250 crtc->hwmode.crtc_clock = 0;
ea9d758d 12251 }
ea9d758d
DV
12252}
12253
3bd26263 12254static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12255{
3bd26263 12256 int diff;
f1f644dc
JB
12257
12258 if (clock1 == clock2)
12259 return true;
12260
12261 if (!clock1 || !clock2)
12262 return false;
12263
12264 diff = abs(clock1 - clock2);
12265
12266 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12267 return true;
12268
12269 return false;
12270}
12271
25c5b266
DV
12272#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12273 list_for_each_entry((intel_crtc), \
12274 &(dev)->mode_config.crtc_list, \
12275 base.head) \
0973f18f 12276 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12277
cfb23ed6
ML
12278static bool
12279intel_compare_m_n(unsigned int m, unsigned int n,
12280 unsigned int m2, unsigned int n2,
12281 bool exact)
12282{
12283 if (m == m2 && n == n2)
12284 return true;
12285
12286 if (exact || !m || !n || !m2 || !n2)
12287 return false;
12288
12289 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12290
12291 if (m > m2) {
12292 while (m > m2) {
12293 m2 <<= 1;
12294 n2 <<= 1;
12295 }
12296 } else if (m < m2) {
12297 while (m < m2) {
12298 m <<= 1;
12299 n <<= 1;
12300 }
12301 }
12302
12303 return m == m2 && n == n2;
12304}
12305
12306static bool
12307intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12308 struct intel_link_m_n *m2_n2,
12309 bool adjust)
12310{
12311 if (m_n->tu == m2_n2->tu &&
12312 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12313 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12314 intel_compare_m_n(m_n->link_m, m_n->link_n,
12315 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12316 if (adjust)
12317 *m2_n2 = *m_n;
12318
12319 return true;
12320 }
12321
12322 return false;
12323}
12324
0e8ffe1b 12325static bool
2fa2fe9a 12326intel_pipe_config_compare(struct drm_device *dev,
5cec258b 12327 struct intel_crtc_state *current_config,
cfb23ed6
ML
12328 struct intel_crtc_state *pipe_config,
12329 bool adjust)
0e8ffe1b 12330{
cfb23ed6
ML
12331 bool ret = true;
12332
12333#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12334 do { \
12335 if (!adjust) \
12336 DRM_ERROR(fmt, ##__VA_ARGS__); \
12337 else \
12338 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12339 } while (0)
12340
66e985c0
DV
12341#define PIPE_CONF_CHECK_X(name) \
12342 if (current_config->name != pipe_config->name) { \
cfb23ed6 12343 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
12344 "(expected 0x%08x, found 0x%08x)\n", \
12345 current_config->name, \
12346 pipe_config->name); \
cfb23ed6 12347 ret = false; \
66e985c0
DV
12348 }
12349
08a24034
DV
12350#define PIPE_CONF_CHECK_I(name) \
12351 if (current_config->name != pipe_config->name) { \
cfb23ed6 12352 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
12353 "(expected %i, found %i)\n", \
12354 current_config->name, \
12355 pipe_config->name); \
cfb23ed6
ML
12356 ret = false; \
12357 }
12358
12359#define PIPE_CONF_CHECK_M_N(name) \
12360 if (!intel_compare_link_m_n(&current_config->name, \
12361 &pipe_config->name,\
12362 adjust)) { \
12363 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12364 "(expected tu %i gmch %i/%i link %i/%i, " \
12365 "found tu %i, gmch %i/%i link %i/%i)\n", \
12366 current_config->name.tu, \
12367 current_config->name.gmch_m, \
12368 current_config->name.gmch_n, \
12369 current_config->name.link_m, \
12370 current_config->name.link_n, \
12371 pipe_config->name.tu, \
12372 pipe_config->name.gmch_m, \
12373 pipe_config->name.gmch_n, \
12374 pipe_config->name.link_m, \
12375 pipe_config->name.link_n); \
12376 ret = false; \
12377 }
12378
12379#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12380 if (!intel_compare_link_m_n(&current_config->name, \
12381 &pipe_config->name, adjust) && \
12382 !intel_compare_link_m_n(&current_config->alt_name, \
12383 &pipe_config->name, adjust)) { \
12384 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12385 "(expected tu %i gmch %i/%i link %i/%i, " \
12386 "or tu %i gmch %i/%i link %i/%i, " \
12387 "found tu %i, gmch %i/%i link %i/%i)\n", \
12388 current_config->name.tu, \
12389 current_config->name.gmch_m, \
12390 current_config->name.gmch_n, \
12391 current_config->name.link_m, \
12392 current_config->name.link_n, \
12393 current_config->alt_name.tu, \
12394 current_config->alt_name.gmch_m, \
12395 current_config->alt_name.gmch_n, \
12396 current_config->alt_name.link_m, \
12397 current_config->alt_name.link_n, \
12398 pipe_config->name.tu, \
12399 pipe_config->name.gmch_m, \
12400 pipe_config->name.gmch_n, \
12401 pipe_config->name.link_m, \
12402 pipe_config->name.link_n); \
12403 ret = false; \
88adfff1
DV
12404 }
12405
b95af8be
VK
12406/* This is required for BDW+ where there is only one set of registers for
12407 * switching between high and low RR.
12408 * This macro can be used whenever a comparison has to be made between one
12409 * hw state and multiple sw state variables.
12410 */
12411#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12412 if ((current_config->name != pipe_config->name) && \
12413 (current_config->alt_name != pipe_config->name)) { \
cfb23ed6 12414 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
b95af8be
VK
12415 "(expected %i or %i, found %i)\n", \
12416 current_config->name, \
12417 current_config->alt_name, \
12418 pipe_config->name); \
cfb23ed6 12419 ret = false; \
b95af8be
VK
12420 }
12421
1bd1bd80
DV
12422#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12423 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 12424 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12425 "(expected %i, found %i)\n", \
12426 current_config->name & (mask), \
12427 pipe_config->name & (mask)); \
cfb23ed6 12428 ret = false; \
1bd1bd80
DV
12429 }
12430
5e550656
VS
12431#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12432 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 12433 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
12434 "(expected %i, found %i)\n", \
12435 current_config->name, \
12436 pipe_config->name); \
cfb23ed6 12437 ret = false; \
5e550656
VS
12438 }
12439
bb760063
DV
12440#define PIPE_CONF_QUIRK(quirk) \
12441 ((current_config->quirks | pipe_config->quirks) & (quirk))
12442
eccb140b
DV
12443 PIPE_CONF_CHECK_I(cpu_transcoder);
12444
08a24034
DV
12445 PIPE_CONF_CHECK_I(has_pch_encoder);
12446 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 12447 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 12448
eb14cb74 12449 PIPE_CONF_CHECK_I(has_dp_encoder);
90a6b7b0 12450 PIPE_CONF_CHECK_I(lane_count);
b95af8be
VK
12451
12452 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
12453 PIPE_CONF_CHECK_M_N(dp_m_n);
12454
12455 PIPE_CONF_CHECK_I(has_drrs);
12456 if (current_config->has_drrs)
12457 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12458 } else
12459 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 12460
2d112de7
ACO
12461 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12462 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12463 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12464 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12465 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12466 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12467
2d112de7
ACO
12468 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12469 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12470 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12471 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12472 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12473 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12474
c93f54cf 12475 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12476 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
12477 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12478 IS_VALLEYVIEW(dev))
12479 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12480 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12481
9ed109a7
DV
12482 PIPE_CONF_CHECK_I(has_audio);
12483
2d112de7 12484 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12485 DRM_MODE_FLAG_INTERLACE);
12486
bb760063 12487 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12488 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12489 DRM_MODE_FLAG_PHSYNC);
2d112de7 12490 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12491 DRM_MODE_FLAG_NHSYNC);
2d112de7 12492 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12493 DRM_MODE_FLAG_PVSYNC);
2d112de7 12494 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12495 DRM_MODE_FLAG_NVSYNC);
12496 }
045ac3b5 12497
333b8ca8 12498 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
12499 /* pfit ratios are autocomputed by the hw on gen4+ */
12500 if (INTEL_INFO(dev)->gen < 4)
12501 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
333b8ca8 12502 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 12503
bfd16b2a
ML
12504 if (!adjust) {
12505 PIPE_CONF_CHECK_I(pipe_src_w);
12506 PIPE_CONF_CHECK_I(pipe_src_h);
12507
12508 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12509 if (current_config->pch_pfit.enabled) {
12510 PIPE_CONF_CHECK_X(pch_pfit.pos);
12511 PIPE_CONF_CHECK_X(pch_pfit.size);
12512 }
2fa2fe9a 12513
7aefe2b5
ML
12514 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12515 }
a1b2278e 12516
e59150dc
JB
12517 /* BDW+ don't expose a synchronous way to read the state */
12518 if (IS_HASWELL(dev))
12519 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12520
282740f7
VS
12521 PIPE_CONF_CHECK_I(double_wide);
12522
26804afd
DV
12523 PIPE_CONF_CHECK_X(ddi_pll_sel);
12524
c0d43d62 12525 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 12526 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12527 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12528 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12529 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12530 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
12531 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12532 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12533 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12534
42571aef
VS
12535 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12536 PIPE_CONF_CHECK_I(pipe_bpp);
12537
2d112de7 12538 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12539 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12540
66e985c0 12541#undef PIPE_CONF_CHECK_X
08a24034 12542#undef PIPE_CONF_CHECK_I
b95af8be 12543#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 12544#undef PIPE_CONF_CHECK_FLAGS
5e550656 12545#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12546#undef PIPE_CONF_QUIRK
cfb23ed6 12547#undef INTEL_ERR_OR_DBG_KMS
88adfff1 12548
cfb23ed6 12549 return ret;
0e8ffe1b
DV
12550}
12551
08db6652
DL
12552static void check_wm_state(struct drm_device *dev)
12553{
12554 struct drm_i915_private *dev_priv = dev->dev_private;
12555 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12556 struct intel_crtc *intel_crtc;
12557 int plane;
12558
12559 if (INTEL_INFO(dev)->gen < 9)
12560 return;
12561
12562 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12563 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12564
12565 for_each_intel_crtc(dev, intel_crtc) {
12566 struct skl_ddb_entry *hw_entry, *sw_entry;
12567 const enum pipe pipe = intel_crtc->pipe;
12568
12569 if (!intel_crtc->active)
12570 continue;
12571
12572 /* planes */
dd740780 12573 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
12574 hw_entry = &hw_ddb.plane[pipe][plane];
12575 sw_entry = &sw_ddb->plane[pipe][plane];
12576
12577 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12578 continue;
12579
12580 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12581 "(expected (%u,%u), found (%u,%u))\n",
12582 pipe_name(pipe), plane + 1,
12583 sw_entry->start, sw_entry->end,
12584 hw_entry->start, hw_entry->end);
12585 }
12586
12587 /* cursor */
4969d33e
MR
12588 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12589 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
08db6652
DL
12590
12591 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12592 continue;
12593
12594 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12595 "(expected (%u,%u), found (%u,%u))\n",
12596 pipe_name(pipe),
12597 sw_entry->start, sw_entry->end,
12598 hw_entry->start, hw_entry->end);
12599 }
12600}
12601
91d1b4bd 12602static void
35dd3c64
ML
12603check_connector_state(struct drm_device *dev,
12604 struct drm_atomic_state *old_state)
8af6cf88 12605{
35dd3c64
ML
12606 struct drm_connector_state *old_conn_state;
12607 struct drm_connector *connector;
12608 int i;
8af6cf88 12609
35dd3c64
ML
12610 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12611 struct drm_encoder *encoder = connector->encoder;
12612 struct drm_connector_state *state = connector->state;
ad3c558f 12613
8af6cf88
DV
12614 /* This also checks the encoder/connector hw state with the
12615 * ->get_hw_state callbacks. */
35dd3c64 12616 intel_connector_check_state(to_intel_connector(connector));
8af6cf88 12617
ad3c558f 12618 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 12619 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 12620 }
91d1b4bd
DV
12621}
12622
12623static void
12624check_encoder_state(struct drm_device *dev)
12625{
12626 struct intel_encoder *encoder;
12627 struct intel_connector *connector;
8af6cf88 12628
b2784e15 12629 for_each_intel_encoder(dev, encoder) {
8af6cf88 12630 bool enabled = false;
4d20cd86 12631 enum pipe pipe;
8af6cf88
DV
12632
12633 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12634 encoder->base.base.id,
8e329a03 12635 encoder->base.name);
8af6cf88 12636
3a3371ff 12637 for_each_intel_connector(dev, connector) {
4d20cd86 12638 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
12639 continue;
12640 enabled = true;
ad3c558f
ML
12641
12642 I915_STATE_WARN(connector->base.state->crtc !=
12643 encoder->base.crtc,
12644 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 12645 }
0e32b39c 12646
e2c719b7 12647 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12648 "encoder's enabled state mismatch "
12649 "(expected %i, found %i)\n",
12650 !!encoder->base.crtc, enabled);
8af6cf88 12651
7c60d198 12652 if (!encoder->base.crtc) {
4d20cd86 12653 bool active;
8af6cf88 12654
4d20cd86
ML
12655 active = encoder->get_hw_state(encoder, &pipe);
12656 I915_STATE_WARN(active,
12657 "encoder detached but still enabled on pipe %c.\n",
12658 pipe_name(pipe));
7c60d198 12659 }
8af6cf88 12660 }
91d1b4bd
DV
12661}
12662
12663static void
4d20cd86 12664check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
91d1b4bd 12665{
fbee40df 12666 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd 12667 struct intel_encoder *encoder;
4d20cd86
ML
12668 struct drm_crtc_state *old_crtc_state;
12669 struct drm_crtc *crtc;
12670 int i;
8af6cf88 12671
4d20cd86
ML
12672 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12674 struct intel_crtc_state *pipe_config, *sw_config;
7b89b8de 12675 bool active;
8af6cf88 12676
bfd16b2a
ML
12677 if (!needs_modeset(crtc->state) &&
12678 !to_intel_crtc_state(crtc->state)->update_pipe)
4d20cd86 12679 continue;
045ac3b5 12680
4d20cd86
ML
12681 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12682 pipe_config = to_intel_crtc_state(old_crtc_state);
12683 memset(pipe_config, 0, sizeof(*pipe_config));
12684 pipe_config->base.crtc = crtc;
12685 pipe_config->base.state = old_state;
8af6cf88 12686
4d20cd86
ML
12687 DRM_DEBUG_KMS("[CRTC:%d]\n",
12688 crtc->base.id);
8af6cf88 12689
4d20cd86
ML
12690 active = dev_priv->display.get_pipe_config(intel_crtc,
12691 pipe_config);
6c49f241 12692
b6b5d049 12693 /* hw state is inconsistent with the pipe quirk */
4d20cd86
ML
12694 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12695 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12696 active = crtc->state->active;
8af6cf88 12697
4d20cd86 12698 I915_STATE_WARN(crtc->state->active != active,
0e8ffe1b 12699 "crtc active state doesn't match with hw state "
4d20cd86 12700 "(expected %i, found %i)\n", crtc->state->active, active);
d62cf62a 12701
4d20cd86 12702 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
53d9f4e9 12703 "transitional active state does not match atomic hw state "
4d20cd86 12704 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
d62cf62a 12705
4d20cd86 12706 for_each_encoder_on_crtc(dev, crtc, encoder) {
3eaba51c 12707 enum pipe pipe;
6c49f241 12708
4d20cd86
ML
12709 active = encoder->get_hw_state(encoder, &pipe);
12710 I915_STATE_WARN(active != crtc->state->active,
12711 "[ENCODER:%i] active %i with crtc active %i\n",
12712 encoder->base.base.id, active, crtc->state->active);
0e8ffe1b 12713
4d20cd86
ML
12714 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12715 "Encoder connected to wrong pipe %c\n",
12716 pipe_name(pipe));
53d9f4e9 12717
4d20cd86
ML
12718 if (active)
12719 encoder->get_config(encoder, pipe_config);
12720 }
53d9f4e9 12721
4d20cd86 12722 if (!crtc->state->active)
cfb23ed6
ML
12723 continue;
12724
4d20cd86
ML
12725 sw_config = to_intel_crtc_state(crtc->state);
12726 if (!intel_pipe_config_compare(dev, sw_config,
12727 pipe_config, false)) {
e2c719b7 12728 I915_STATE_WARN(1, "pipe state doesn't match!\n");
4d20cd86 12729 intel_dump_pipe_config(intel_crtc, pipe_config,
c0b03411 12730 "[hw state]");
4d20cd86 12731 intel_dump_pipe_config(intel_crtc, sw_config,
c0b03411
DV
12732 "[sw state]");
12733 }
8af6cf88
DV
12734 }
12735}
12736
91d1b4bd
DV
12737static void
12738check_shared_dpll_state(struct drm_device *dev)
12739{
fbee40df 12740 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12741 struct intel_crtc *crtc;
12742 struct intel_dpll_hw_state dpll_hw_state;
12743 int i;
5358901f
DV
12744
12745 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12746 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12747 int enabled_crtcs = 0, active_crtcs = 0;
12748 bool active;
12749
12750 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12751
12752 DRM_DEBUG_KMS("%s\n", pll->name);
12753
12754 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12755
e2c719b7 12756 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12757 "more active pll users than references: %i vs %i\n",
3e369b76 12758 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12759 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12760 "pll in active use but not on in sw tracking\n");
e2c719b7 12761 I915_STATE_WARN(pll->on && !pll->active,
35c95375 12762 "pll in on but not on in use in sw tracking\n");
e2c719b7 12763 I915_STATE_WARN(pll->on != active,
5358901f
DV
12764 "pll on state mismatch (expected %i, found %i)\n",
12765 pll->on, active);
12766
d3fcc808 12767 for_each_intel_crtc(dev, crtc) {
83d65738 12768 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
12769 enabled_crtcs++;
12770 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12771 active_crtcs++;
12772 }
e2c719b7 12773 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12774 "pll active crtcs mismatch (expected %i, found %i)\n",
12775 pll->active, active_crtcs);
e2c719b7 12776 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12777 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12778 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 12779
e2c719b7 12780 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
12781 sizeof(dpll_hw_state)),
12782 "pll hw state mismatch\n");
5358901f 12783 }
8af6cf88
DV
12784}
12785
ee165b1a
ML
12786static void
12787intel_modeset_check_state(struct drm_device *dev,
12788 struct drm_atomic_state *old_state)
91d1b4bd 12789{
08db6652 12790 check_wm_state(dev);
35dd3c64 12791 check_connector_state(dev, old_state);
91d1b4bd 12792 check_encoder_state(dev);
4d20cd86 12793 check_crtc_state(dev, old_state);
91d1b4bd
DV
12794 check_shared_dpll_state(dev);
12795}
12796
5cec258b 12797void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
12798 int dotclock)
12799{
12800 /*
12801 * FDI already provided one idea for the dotclock.
12802 * Yell if the encoder disagrees.
12803 */
2d112de7 12804 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 12805 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 12806 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
12807}
12808
80715b2f
VS
12809static void update_scanline_offset(struct intel_crtc *crtc)
12810{
12811 struct drm_device *dev = crtc->base.dev;
12812
12813 /*
12814 * The scanline counter increments at the leading edge of hsync.
12815 *
12816 * On most platforms it starts counting from vtotal-1 on the
12817 * first active line. That means the scanline counter value is
12818 * always one less than what we would expect. Ie. just after
12819 * start of vblank, which also occurs at start of hsync (on the
12820 * last active line), the scanline counter will read vblank_start-1.
12821 *
12822 * On gen2 the scanline counter starts counting from 1 instead
12823 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12824 * to keep the value positive), instead of adding one.
12825 *
12826 * On HSW+ the behaviour of the scanline counter depends on the output
12827 * type. For DP ports it behaves like most other platforms, but on HDMI
12828 * there's an extra 1 line difference. So we need to add two instead of
12829 * one to the value.
12830 */
12831 if (IS_GEN2(dev)) {
124abe07 12832 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
12833 int vtotal;
12834
124abe07
VS
12835 vtotal = adjusted_mode->crtc_vtotal;
12836 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
12837 vtotal /= 2;
12838
12839 crtc->scanline_offset = vtotal - 1;
12840 } else if (HAS_DDI(dev) &&
409ee761 12841 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
12842 crtc->scanline_offset = 2;
12843 } else
12844 crtc->scanline_offset = 1;
12845}
12846
ad421372 12847static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 12848{
225da59b 12849 struct drm_device *dev = state->dev;
ed6739ef 12850 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 12851 struct intel_shared_dpll_config *shared_dpll = NULL;
ed6739ef 12852 struct intel_crtc *intel_crtc;
0a9ab303
ACO
12853 struct intel_crtc_state *intel_crtc_state;
12854 struct drm_crtc *crtc;
12855 struct drm_crtc_state *crtc_state;
0a9ab303 12856 int i;
ed6739ef
ACO
12857
12858 if (!dev_priv->display.crtc_compute_clock)
ad421372 12859 return;
ed6739ef 12860
0a9ab303 12861 for_each_crtc_in_state(state, crtc, crtc_state, i) {
ad421372
ML
12862 int dpll;
12863
0a9ab303 12864 intel_crtc = to_intel_crtc(crtc);
4978cc93 12865 intel_crtc_state = to_intel_crtc_state(crtc_state);
ad421372 12866 dpll = intel_crtc_state->shared_dpll;
0a9ab303 12867
ad421372 12868 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
225da59b
ACO
12869 continue;
12870
ad421372 12871 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
0a9ab303 12872
ad421372
ML
12873 if (!shared_dpll)
12874 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 12875
ad421372
ML
12876 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12877 }
ed6739ef
ACO
12878}
12879
99d736a2
ML
12880/*
12881 * This implements the workaround described in the "notes" section of the mode
12882 * set sequence documentation. When going from no pipes or single pipe to
12883 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12884 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12885 */
12886static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12887{
12888 struct drm_crtc_state *crtc_state;
12889 struct intel_crtc *intel_crtc;
12890 struct drm_crtc *crtc;
12891 struct intel_crtc_state *first_crtc_state = NULL;
12892 struct intel_crtc_state *other_crtc_state = NULL;
12893 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12894 int i;
12895
12896 /* look at all crtc's that are going to be enabled in during modeset */
12897 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12898 intel_crtc = to_intel_crtc(crtc);
12899
12900 if (!crtc_state->active || !needs_modeset(crtc_state))
12901 continue;
12902
12903 if (first_crtc_state) {
12904 other_crtc_state = to_intel_crtc_state(crtc_state);
12905 break;
12906 } else {
12907 first_crtc_state = to_intel_crtc_state(crtc_state);
12908 first_pipe = intel_crtc->pipe;
12909 }
12910 }
12911
12912 /* No workaround needed? */
12913 if (!first_crtc_state)
12914 return 0;
12915
12916 /* w/a possibly needed, check how many crtc's are already enabled. */
12917 for_each_intel_crtc(state->dev, intel_crtc) {
12918 struct intel_crtc_state *pipe_config;
12919
12920 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12921 if (IS_ERR(pipe_config))
12922 return PTR_ERR(pipe_config);
12923
12924 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12925
12926 if (!pipe_config->base.active ||
12927 needs_modeset(&pipe_config->base))
12928 continue;
12929
12930 /* 2 or more enabled crtcs means no need for w/a */
12931 if (enabled_pipe != INVALID_PIPE)
12932 return 0;
12933
12934 enabled_pipe = intel_crtc->pipe;
12935 }
12936
12937 if (enabled_pipe != INVALID_PIPE)
12938 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12939 else if (other_crtc_state)
12940 other_crtc_state->hsw_workaround_pipe = first_pipe;
12941
12942 return 0;
12943}
12944
27c329ed
ML
12945static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12946{
12947 struct drm_crtc *crtc;
12948 struct drm_crtc_state *crtc_state;
12949 int ret = 0;
12950
12951 /* add all active pipes to the state */
12952 for_each_crtc(state->dev, crtc) {
12953 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12954 if (IS_ERR(crtc_state))
12955 return PTR_ERR(crtc_state);
12956
12957 if (!crtc_state->active || needs_modeset(crtc_state))
12958 continue;
12959
12960 crtc_state->mode_changed = true;
12961
12962 ret = drm_atomic_add_affected_connectors(state, crtc);
12963 if (ret)
12964 break;
12965
12966 ret = drm_atomic_add_affected_planes(state, crtc);
12967 if (ret)
12968 break;
12969 }
12970
12971 return ret;
12972}
12973
c347a676 12974static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd
ACO
12975{
12976 struct drm_device *dev = state->dev;
27c329ed 12977 struct drm_i915_private *dev_priv = dev->dev_private;
054518dd
ACO
12978 int ret;
12979
b359283a
ML
12980 if (!check_digital_port_conflicts(state)) {
12981 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12982 return -EINVAL;
12983 }
12984
054518dd
ACO
12985 /*
12986 * See if the config requires any additional preparation, e.g.
12987 * to adjust global state with pipes off. We need to do this
12988 * here so we can get the modeset_pipe updated config for the new
12989 * mode set on this crtc. For other crtcs we need to use the
12990 * adjusted_mode bits in the crtc directly.
12991 */
27c329ed
ML
12992 if (dev_priv->display.modeset_calc_cdclk) {
12993 unsigned int cdclk;
b432e5cf 12994
27c329ed
ML
12995 ret = dev_priv->display.modeset_calc_cdclk(state);
12996
12997 cdclk = to_intel_atomic_state(state)->cdclk;
12998 if (!ret && cdclk != dev_priv->cdclk_freq)
12999 ret = intel_modeset_all_pipes(state);
13000
13001 if (ret < 0)
054518dd 13002 return ret;
27c329ed
ML
13003 } else
13004 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
054518dd 13005
ad421372 13006 intel_modeset_clear_plls(state);
054518dd 13007
99d736a2 13008 if (IS_HASWELL(dev))
ad421372 13009 return haswell_mode_set_planes_workaround(state);
99d736a2 13010
ad421372 13011 return 0;
c347a676
ACO
13012}
13013
74c090b1
ML
13014/**
13015 * intel_atomic_check - validate state object
13016 * @dev: drm device
13017 * @state: state to validate
13018 */
13019static int intel_atomic_check(struct drm_device *dev,
13020 struct drm_atomic_state *state)
c347a676
ACO
13021{
13022 struct drm_crtc *crtc;
13023 struct drm_crtc_state *crtc_state;
13024 int ret, i;
61333b60 13025 bool any_ms = false;
c347a676 13026
74c090b1 13027 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13028 if (ret)
13029 return ret;
13030
c347a676 13031 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13032 struct intel_crtc_state *pipe_config =
13033 to_intel_crtc_state(crtc_state);
1ed51de9
DV
13034
13035 /* Catch I915_MODE_FLAG_INHERITED */
13036 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13037 crtc_state->mode_changed = true;
cfb23ed6 13038
61333b60
ML
13039 if (!crtc_state->enable) {
13040 if (needs_modeset(crtc_state))
13041 any_ms = true;
c347a676 13042 continue;
61333b60 13043 }
c347a676 13044
26495481 13045 if (!needs_modeset(crtc_state))
cfb23ed6
ML
13046 continue;
13047
26495481
DV
13048 /* FIXME: For only active_changed we shouldn't need to do any
13049 * state recomputation at all. */
13050
1ed51de9
DV
13051 ret = drm_atomic_add_affected_connectors(state, crtc);
13052 if (ret)
13053 return ret;
b359283a 13054
cfb23ed6 13055 ret = intel_modeset_pipe_config(crtc, pipe_config);
c347a676
ACO
13056 if (ret)
13057 return ret;
13058
6764e9f8 13059 if (intel_pipe_config_compare(state->dev,
cfb23ed6 13060 to_intel_crtc_state(crtc->state),
1ed51de9 13061 pipe_config, true)) {
26495481 13062 crtc_state->mode_changed = false;
bfd16b2a 13063 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
13064 }
13065
13066 if (needs_modeset(crtc_state)) {
13067 any_ms = true;
cfb23ed6
ML
13068
13069 ret = drm_atomic_add_affected_planes(state, crtc);
13070 if (ret)
13071 return ret;
13072 }
61333b60 13073
26495481
DV
13074 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13075 needs_modeset(crtc_state) ?
13076 "[modeset]" : "[fastset]");
c347a676
ACO
13077 }
13078
61333b60
ML
13079 if (any_ms) {
13080 ret = intel_modeset_checks(state);
13081
13082 if (ret)
13083 return ret;
27c329ed
ML
13084 } else
13085 to_intel_atomic_state(state)->cdclk =
13086 to_i915(state->dev)->cdclk_freq;
c347a676
ACO
13087
13088 return drm_atomic_helper_check_planes(state->dev, state);
054518dd
ACO
13089}
13090
74c090b1
ML
13091/**
13092 * intel_atomic_commit - commit validated state object
13093 * @dev: DRM device
13094 * @state: the top-level driver state object
13095 * @async: asynchronous commit
13096 *
13097 * This function commits a top-level state object that has been validated
13098 * with drm_atomic_helper_check().
13099 *
13100 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13101 * we can only handle plane-related operations and do not yet support
13102 * asynchronous commit.
13103 *
13104 * RETURNS
13105 * Zero for success or -errno.
13106 */
13107static int intel_atomic_commit(struct drm_device *dev,
13108 struct drm_atomic_state *state,
13109 bool async)
a6778b3c 13110{
fbee40df 13111 struct drm_i915_private *dev_priv = dev->dev_private;
0a9ab303
ACO
13112 struct drm_crtc *crtc;
13113 struct drm_crtc_state *crtc_state;
c0c36b94 13114 int ret = 0;
0a9ab303 13115 int i;
61333b60 13116 bool any_ms = false;
a6778b3c 13117
74c090b1
ML
13118 if (async) {
13119 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13120 return -EINVAL;
13121 }
13122
d4afb8cc
ACO
13123 ret = drm_atomic_helper_prepare_planes(dev, state);
13124 if (ret)
13125 return ret;
13126
1c5e19f8
ML
13127 drm_atomic_helper_swap_state(dev, state);
13128
0a9ab303 13129 for_each_crtc_in_state(state, crtc, crtc_state, i) {
a539205a
ML
13130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13131
61333b60
ML
13132 if (!needs_modeset(crtc->state))
13133 continue;
13134
13135 any_ms = true;
a539205a 13136 intel_pre_plane_update(intel_crtc);
460da916 13137
a539205a
ML
13138 if (crtc_state->active) {
13139 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13140 dev_priv->display.crtc_disable(crtc);
eddfcbcd
ML
13141 intel_crtc->active = false;
13142 intel_disable_shared_dpll(intel_crtc);
a539205a 13143 }
b8cecdf5 13144 }
7758a113 13145
ea9d758d
DV
13146 /* Only after disabling all output pipelines that will be changed can we
13147 * update the the output configuration. */
4740b0f2 13148 intel_modeset_update_crtc_state(state);
f6e5b160 13149
4740b0f2
ML
13150 if (any_ms) {
13151 intel_shared_dpll_commit(state);
13152
13153 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
61333b60 13154 modeset_update_crtc_power_domains(state);
4740b0f2 13155 }
47fab737 13156
a6778b3c 13157 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
0a9ab303 13158 for_each_crtc_in_state(state, crtc, crtc_state, i) {
f6ac4b2a
ML
13159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13160 bool modeset = needs_modeset(crtc->state);
bfd16b2a
ML
13161 bool update_pipe = !modeset &&
13162 to_intel_crtc_state(crtc->state)->update_pipe;
13163 unsigned long put_domains = 0;
f6ac4b2a
ML
13164
13165 if (modeset && crtc->state->active) {
a539205a
ML
13166 update_scanline_offset(to_intel_crtc(crtc));
13167 dev_priv->display.crtc_enable(crtc);
13168 }
80715b2f 13169
bfd16b2a
ML
13170 if (update_pipe) {
13171 put_domains = modeset_get_crtc_power_domains(crtc);
13172
13173 /* make sure intel_modeset_check_state runs */
13174 any_ms = true;
13175 }
13176
f6ac4b2a
ML
13177 if (!modeset)
13178 intel_pre_plane_update(intel_crtc);
13179
a539205a 13180 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
bfd16b2a
ML
13181
13182 if (put_domains)
13183 modeset_put_power_domains(dev_priv, put_domains);
13184
f6ac4b2a 13185 intel_post_plane_update(intel_crtc);
80715b2f 13186 }
a6778b3c 13187
a6778b3c 13188 /* FIXME: add subpixel order */
83a57153 13189
74c090b1 13190 drm_atomic_helper_wait_for_vblanks(dev, state);
d4afb8cc 13191 drm_atomic_helper_cleanup_planes(dev, state);
2bfb4627 13192
74c090b1 13193 if (any_ms)
ee165b1a
ML
13194 intel_modeset_check_state(dev, state);
13195
13196 drm_atomic_state_free(state);
f30da187 13197
74c090b1 13198 return 0;
7f27126e
JB
13199}
13200
c0c36b94
CW
13201void intel_crtc_restore_mode(struct drm_crtc *crtc)
13202{
83a57153
ACO
13203 struct drm_device *dev = crtc->dev;
13204 struct drm_atomic_state *state;
e694eb02 13205 struct drm_crtc_state *crtc_state;
2bfb4627 13206 int ret;
83a57153
ACO
13207
13208 state = drm_atomic_state_alloc(dev);
13209 if (!state) {
e694eb02 13210 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
83a57153
ACO
13211 crtc->base.id);
13212 return;
13213 }
13214
e694eb02 13215 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 13216
e694eb02
ML
13217retry:
13218 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13219 ret = PTR_ERR_OR_ZERO(crtc_state);
13220 if (!ret) {
13221 if (!crtc_state->active)
13222 goto out;
83a57153 13223
e694eb02 13224 crtc_state->mode_changed = true;
74c090b1 13225 ret = drm_atomic_commit(state);
83a57153
ACO
13226 }
13227
e694eb02
ML
13228 if (ret == -EDEADLK) {
13229 drm_atomic_state_clear(state);
13230 drm_modeset_backoff(state->acquire_ctx);
13231 goto retry;
4ed9fb37 13232 }
4be07317 13233
2bfb4627 13234 if (ret)
e694eb02 13235out:
2bfb4627 13236 drm_atomic_state_free(state);
c0c36b94
CW
13237}
13238
25c5b266
DV
13239#undef for_each_intel_crtc_masked
13240
f6e5b160 13241static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 13242 .gamma_set = intel_crtc_gamma_set,
74c090b1 13243 .set_config = drm_atomic_helper_set_config,
f6e5b160
CW
13244 .destroy = intel_crtc_destroy,
13245 .page_flip = intel_crtc_page_flip,
1356837e
MR
13246 .atomic_duplicate_state = intel_crtc_duplicate_state,
13247 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
13248};
13249
5358901f
DV
13250static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13251 struct intel_shared_dpll *pll,
13252 struct intel_dpll_hw_state *hw_state)
ee7b9f93 13253{
5358901f 13254 uint32_t val;
ee7b9f93 13255
f458ebbc 13256 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
13257 return false;
13258
5358901f 13259 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
13260 hw_state->dpll = val;
13261 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13262 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
13263
13264 return val & DPLL_VCO_ENABLE;
13265}
13266
15bdd4cf
DV
13267static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13268 struct intel_shared_dpll *pll)
13269{
3e369b76
ACO
13270 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13271 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
13272}
13273
e7b903d2
DV
13274static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13275 struct intel_shared_dpll *pll)
13276{
e7b903d2 13277 /* PCH refclock must be enabled first */
89eff4be 13278 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 13279
3e369b76 13280 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
13281
13282 /* Wait for the clocks to stabilize. */
13283 POSTING_READ(PCH_DPLL(pll->id));
13284 udelay(150);
13285
13286 /* The pixel multiplier can only be updated once the
13287 * DPLL is enabled and the clocks are stable.
13288 *
13289 * So write it again.
13290 */
3e369b76 13291 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 13292 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13293 udelay(200);
13294}
13295
13296static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13297 struct intel_shared_dpll *pll)
13298{
13299 struct drm_device *dev = dev_priv->dev;
13300 struct intel_crtc *crtc;
e7b903d2
DV
13301
13302 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 13303 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
13304 if (intel_crtc_to_shared_dpll(crtc) == pll)
13305 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
13306 }
13307
15bdd4cf
DV
13308 I915_WRITE(PCH_DPLL(pll->id), 0);
13309 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13310 udelay(200);
13311}
13312
46edb027
DV
13313static char *ibx_pch_dpll_names[] = {
13314 "PCH DPLL A",
13315 "PCH DPLL B",
13316};
13317
7c74ade1 13318static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 13319{
e7b903d2 13320 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
13321 int i;
13322
7c74ade1 13323 dev_priv->num_shared_dpll = 2;
ee7b9f93 13324
e72f9fbf 13325 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
13326 dev_priv->shared_dplls[i].id = i;
13327 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 13328 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
13329 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13330 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
13331 dev_priv->shared_dplls[i].get_hw_state =
13332 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
13333 }
13334}
13335
7c74ade1
DV
13336static void intel_shared_dpll_init(struct drm_device *dev)
13337{
e7b903d2 13338 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 13339
9cd86933
DV
13340 if (HAS_DDI(dev))
13341 intel_ddi_pll_init(dev);
13342 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
13343 ibx_pch_dpll_init(dev);
13344 else
13345 dev_priv->num_shared_dpll = 0;
13346
13347 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
13348}
13349
6beb8c23
MR
13350/**
13351 * intel_prepare_plane_fb - Prepare fb for usage on plane
13352 * @plane: drm plane to prepare for
13353 * @fb: framebuffer to prepare for presentation
13354 *
13355 * Prepares a framebuffer for usage on a display plane. Generally this
13356 * involves pinning the underlying object and updating the frontbuffer tracking
13357 * bits. Some older platforms need special physical address handling for
13358 * cursor planes.
13359 *
13360 * Returns 0 on success, negative error code on failure.
13361 */
13362int
13363intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee 13364 const struct drm_plane_state *new_state)
465c120c
MR
13365{
13366 struct drm_device *dev = plane->dev;
844f9111 13367 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 13368 struct intel_plane *intel_plane = to_intel_plane(plane);
6beb8c23
MR
13369 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13370 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
6beb8c23 13371 int ret = 0;
465c120c 13372
ea2c67bb 13373 if (!obj)
465c120c
MR
13374 return 0;
13375
6beb8c23 13376 mutex_lock(&dev->struct_mutex);
465c120c 13377
6beb8c23
MR
13378 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13379 INTEL_INFO(dev)->cursor_needs_physical) {
13380 int align = IS_I830(dev) ? 16 * 1024 : 256;
13381 ret = i915_gem_object_attach_phys(obj, align);
13382 if (ret)
13383 DRM_DEBUG_KMS("failed to attach phys object\n");
13384 } else {
91af127f 13385 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
6beb8c23 13386 }
465c120c 13387
6beb8c23 13388 if (ret == 0)
a9ff8714 13389 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
fdd508a6 13390
4c34574f 13391 mutex_unlock(&dev->struct_mutex);
465c120c 13392
6beb8c23
MR
13393 return ret;
13394}
13395
38f3ce3a
MR
13396/**
13397 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13398 * @plane: drm plane to clean up for
13399 * @fb: old framebuffer that was on plane
13400 *
13401 * Cleans up a framebuffer that has just been removed from a plane.
13402 */
13403void
13404intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee 13405 const struct drm_plane_state *old_state)
38f3ce3a
MR
13406{
13407 struct drm_device *dev = plane->dev;
844f9111 13408 struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
38f3ce3a 13409
844f9111 13410 if (!obj)
38f3ce3a
MR
13411 return;
13412
13413 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13414 !INTEL_INFO(dev)->cursor_needs_physical) {
13415 mutex_lock(&dev->struct_mutex);
844f9111 13416 intel_unpin_fb_obj(old_state->fb, old_state);
38f3ce3a
MR
13417 mutex_unlock(&dev->struct_mutex);
13418 }
465c120c
MR
13419}
13420
6156a456
CK
13421int
13422skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13423{
13424 int max_scale;
13425 struct drm_device *dev;
13426 struct drm_i915_private *dev_priv;
13427 int crtc_clock, cdclk;
13428
13429 if (!intel_crtc || !crtc_state)
13430 return DRM_PLANE_HELPER_NO_SCALING;
13431
13432 dev = intel_crtc->base.dev;
13433 dev_priv = dev->dev_private;
13434 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 13435 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456
CK
13436
13437 if (!crtc_clock || !cdclk)
13438 return DRM_PLANE_HELPER_NO_SCALING;
13439
13440 /*
13441 * skl max scale is lower of:
13442 * close to 3 but not 3, -1 is for that purpose
13443 * or
13444 * cdclk/crtc_clock
13445 */
13446 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13447
13448 return max_scale;
13449}
13450
465c120c 13451static int
3c692a41 13452intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 13453 struct intel_crtc_state *crtc_state,
3c692a41
GP
13454 struct intel_plane_state *state)
13455{
2b875c22
MR
13456 struct drm_crtc *crtc = state->base.crtc;
13457 struct drm_framebuffer *fb = state->base.fb;
6156a456 13458 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
13459 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13460 bool can_position = false;
465c120c 13461
061e4b8d
ML
13462 /* use scaler when colorkey is not required */
13463 if (INTEL_INFO(plane->dev)->gen >= 9 &&
818ed961 13464 state->ckey.flags == I915_SET_COLORKEY_NONE) {
061e4b8d
ML
13465 min_scale = 1;
13466 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
d8106366 13467 can_position = true;
6156a456 13468 }
d8106366 13469
061e4b8d
ML
13470 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13471 &state->dst, &state->clip,
da20eabd
ML
13472 min_scale, max_scale,
13473 can_position, true,
13474 &state->visible);
14af293f
GP
13475}
13476
13477static void
13478intel_commit_primary_plane(struct drm_plane *plane,
13479 struct intel_plane_state *state)
13480{
2b875c22
MR
13481 struct drm_crtc *crtc = state->base.crtc;
13482 struct drm_framebuffer *fb = state->base.fb;
13483 struct drm_device *dev = plane->dev;
14af293f 13484 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 13485 struct intel_crtc *intel_crtc;
14af293f
GP
13486 struct drm_rect *src = &state->src;
13487
ea2c67bb
MR
13488 crtc = crtc ? crtc : plane->crtc;
13489 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
13490
13491 plane->fb = fb;
9dc806fc
MR
13492 crtc->x = src->x1 >> 16;
13493 crtc->y = src->y1 >> 16;
ccc759dc 13494
a539205a 13495 if (!crtc->state->active)
302d19ac 13496 return;
465c120c 13497
d4b08630
ML
13498 dev_priv->display.update_primary_plane(crtc, fb,
13499 state->src.x1 >> 16,
13500 state->src.y1 >> 16);
465c120c
MR
13501}
13502
a8ad0d8e
ML
13503static void
13504intel_disable_primary_plane(struct drm_plane *plane,
7fabf5ef 13505 struct drm_crtc *crtc)
a8ad0d8e
ML
13506{
13507 struct drm_device *dev = plane->dev;
13508 struct drm_i915_private *dev_priv = dev->dev_private;
13509
a8ad0d8e
ML
13510 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13511}
13512
613d2b27
ML
13513static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13514 struct drm_crtc_state *old_crtc_state)
3c692a41 13515{
32b7eeec 13516 struct drm_device *dev = crtc->dev;
3c692a41 13517 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bfd16b2a
ML
13518 struct intel_crtc_state *old_intel_state =
13519 to_intel_crtc_state(old_crtc_state);
13520 bool modeset = needs_modeset(crtc->state);
3c692a41 13521
f015c551 13522 if (intel_crtc->atomic.update_wm_pre)
32b7eeec 13523 intel_update_watermarks(crtc);
3c692a41 13524
c34c9ee4 13525 /* Perform vblank evasion around commit operation */
a539205a 13526 if (crtc->state->active)
34e0adbb 13527 intel_pipe_update_start(intel_crtc);
0583236e 13528
bfd16b2a
ML
13529 if (modeset)
13530 return;
0583236e 13531
bfd16b2a
ML
13532 if (to_intel_crtc_state(crtc->state)->update_pipe)
13533 intel_update_pipe_config(intel_crtc, old_intel_state);
13534 else if (INTEL_INFO(dev)->gen >= 9)
0583236e 13535 skl_detach_scalers(intel_crtc);
32b7eeec
MR
13536}
13537
613d2b27
ML
13538static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13539 struct drm_crtc_state *old_crtc_state)
32b7eeec 13540{
32b7eeec 13541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
32b7eeec 13542
8f539a83 13543 if (crtc->state->active)
34e0adbb 13544 intel_pipe_update_end(intel_crtc);
3c692a41
GP
13545}
13546
cf4c7c12 13547/**
4a3b8769
MR
13548 * intel_plane_destroy - destroy a plane
13549 * @plane: plane to destroy
cf4c7c12 13550 *
4a3b8769
MR
13551 * Common destruction function for all types of planes (primary, cursor,
13552 * sprite).
cf4c7c12 13553 */
4a3b8769 13554void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13555{
13556 struct intel_plane *intel_plane = to_intel_plane(plane);
13557 drm_plane_cleanup(plane);
13558 kfree(intel_plane);
13559}
13560
65a3fea0 13561const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13562 .update_plane = drm_atomic_helper_update_plane,
13563 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13564 .destroy = intel_plane_destroy,
c196e1d6 13565 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13566 .atomic_get_property = intel_plane_atomic_get_property,
13567 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13568 .atomic_duplicate_state = intel_plane_duplicate_state,
13569 .atomic_destroy_state = intel_plane_destroy_state,
13570
465c120c
MR
13571};
13572
13573static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13574 int pipe)
13575{
13576 struct intel_plane *primary;
8e7d688b 13577 struct intel_plane_state *state;
465c120c 13578 const uint32_t *intel_primary_formats;
45e3743a 13579 unsigned int num_formats;
465c120c
MR
13580
13581 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13582 if (primary == NULL)
13583 return NULL;
13584
8e7d688b
MR
13585 state = intel_create_plane_state(&primary->base);
13586 if (!state) {
ea2c67bb
MR
13587 kfree(primary);
13588 return NULL;
13589 }
8e7d688b 13590 primary->base.state = &state->base;
ea2c67bb 13591
465c120c
MR
13592 primary->can_scale = false;
13593 primary->max_downscale = 1;
6156a456
CK
13594 if (INTEL_INFO(dev)->gen >= 9) {
13595 primary->can_scale = true;
af99ceda 13596 state->scaler_id = -1;
6156a456 13597 }
465c120c
MR
13598 primary->pipe = pipe;
13599 primary->plane = pipe;
a9ff8714 13600 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179
MR
13601 primary->check_plane = intel_check_primary_plane;
13602 primary->commit_plane = intel_commit_primary_plane;
a8ad0d8e 13603 primary->disable_plane = intel_disable_primary_plane;
465c120c
MR
13604 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13605 primary->plane = !pipe;
13606
6c0fd451
DL
13607 if (INTEL_INFO(dev)->gen >= 9) {
13608 intel_primary_formats = skl_primary_formats;
13609 num_formats = ARRAY_SIZE(skl_primary_formats);
13610 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
13611 intel_primary_formats = i965_primary_formats;
13612 num_formats = ARRAY_SIZE(i965_primary_formats);
6c0fd451
DL
13613 } else {
13614 intel_primary_formats = i8xx_primary_formats;
13615 num_formats = ARRAY_SIZE(i8xx_primary_formats);
465c120c
MR
13616 }
13617
13618 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 13619 &intel_plane_funcs,
465c120c
MR
13620 intel_primary_formats, num_formats,
13621 DRM_PLANE_TYPE_PRIMARY);
48404c1e 13622
3b7a5119
SJ
13623 if (INTEL_INFO(dev)->gen >= 4)
13624 intel_create_rotation_property(dev, primary);
48404c1e 13625
ea2c67bb
MR
13626 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13627
465c120c
MR
13628 return &primary->base;
13629}
13630
3b7a5119
SJ
13631void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13632{
13633 if (!dev->mode_config.rotation_property) {
13634 unsigned long flags = BIT(DRM_ROTATE_0) |
13635 BIT(DRM_ROTATE_180);
13636
13637 if (INTEL_INFO(dev)->gen >= 9)
13638 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13639
13640 dev->mode_config.rotation_property =
13641 drm_mode_create_rotation_property(dev, flags);
13642 }
13643 if (dev->mode_config.rotation_property)
13644 drm_object_attach_property(&plane->base.base,
13645 dev->mode_config.rotation_property,
13646 plane->base.state->rotation);
13647}
13648
3d7d6510 13649static int
852e787c 13650intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 13651 struct intel_crtc_state *crtc_state,
852e787c 13652 struct intel_plane_state *state)
3d7d6510 13653{
061e4b8d 13654 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 13655 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 13656 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
757f9a3e
GP
13657 unsigned stride;
13658 int ret;
3d7d6510 13659
061e4b8d
ML
13660 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13661 &state->dst, &state->clip,
3d7d6510
MR
13662 DRM_PLANE_HELPER_NO_SCALING,
13663 DRM_PLANE_HELPER_NO_SCALING,
852e787c 13664 true, true, &state->visible);
757f9a3e
GP
13665 if (ret)
13666 return ret;
13667
757f9a3e
GP
13668 /* if we want to turn off the cursor ignore width and height */
13669 if (!obj)
da20eabd 13670 return 0;
757f9a3e 13671
757f9a3e 13672 /* Check for which cursor types we support */
061e4b8d 13673 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
13674 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13675 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
13676 return -EINVAL;
13677 }
13678
ea2c67bb
MR
13679 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13680 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
13681 DRM_DEBUG_KMS("buffer is too small\n");
13682 return -ENOMEM;
13683 }
13684
3a656b54 13685 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 13686 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 13687 return -EINVAL;
32b7eeec
MR
13688 }
13689
da20eabd 13690 return 0;
852e787c 13691}
3d7d6510 13692
a8ad0d8e
ML
13693static void
13694intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 13695 struct drm_crtc *crtc)
a8ad0d8e 13696{
a8ad0d8e
ML
13697 intel_crtc_update_cursor(crtc, false);
13698}
13699
f4a2cf29 13700static void
852e787c
GP
13701intel_commit_cursor_plane(struct drm_plane *plane,
13702 struct intel_plane_state *state)
13703{
2b875c22 13704 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
13705 struct drm_device *dev = plane->dev;
13706 struct intel_crtc *intel_crtc;
2b875c22 13707 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 13708 uint32_t addr;
852e787c 13709
ea2c67bb
MR
13710 crtc = crtc ? crtc : plane->crtc;
13711 intel_crtc = to_intel_crtc(crtc);
13712
a912f12f
GP
13713 if (intel_crtc->cursor_bo == obj)
13714 goto update;
4ed91096 13715
f4a2cf29 13716 if (!obj)
a912f12f 13717 addr = 0;
f4a2cf29 13718 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 13719 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 13720 else
a912f12f 13721 addr = obj->phys_handle->busaddr;
852e787c 13722
a912f12f
GP
13723 intel_crtc->cursor_addr = addr;
13724 intel_crtc->cursor_bo = obj;
852e787c 13725
302d19ac 13726update:
a539205a 13727 if (crtc->state->active)
a912f12f 13728 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
13729}
13730
3d7d6510
MR
13731static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13732 int pipe)
13733{
13734 struct intel_plane *cursor;
8e7d688b 13735 struct intel_plane_state *state;
3d7d6510
MR
13736
13737 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13738 if (cursor == NULL)
13739 return NULL;
13740
8e7d688b
MR
13741 state = intel_create_plane_state(&cursor->base);
13742 if (!state) {
ea2c67bb
MR
13743 kfree(cursor);
13744 return NULL;
13745 }
8e7d688b 13746 cursor->base.state = &state->base;
ea2c67bb 13747
3d7d6510
MR
13748 cursor->can_scale = false;
13749 cursor->max_downscale = 1;
13750 cursor->pipe = pipe;
13751 cursor->plane = pipe;
a9ff8714 13752 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179
MR
13753 cursor->check_plane = intel_check_cursor_plane;
13754 cursor->commit_plane = intel_commit_cursor_plane;
a8ad0d8e 13755 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
13756
13757 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 13758 &intel_plane_funcs,
3d7d6510
MR
13759 intel_cursor_formats,
13760 ARRAY_SIZE(intel_cursor_formats),
13761 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
13762
13763 if (INTEL_INFO(dev)->gen >= 4) {
13764 if (!dev->mode_config.rotation_property)
13765 dev->mode_config.rotation_property =
13766 drm_mode_create_rotation_property(dev,
13767 BIT(DRM_ROTATE_0) |
13768 BIT(DRM_ROTATE_180));
13769 if (dev->mode_config.rotation_property)
13770 drm_object_attach_property(&cursor->base.base,
13771 dev->mode_config.rotation_property,
8e7d688b 13772 state->base.rotation);
4398ad45
VS
13773 }
13774
af99ceda
CK
13775 if (INTEL_INFO(dev)->gen >=9)
13776 state->scaler_id = -1;
13777
ea2c67bb
MR
13778 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13779
3d7d6510
MR
13780 return &cursor->base;
13781}
13782
549e2bfb
CK
13783static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13784 struct intel_crtc_state *crtc_state)
13785{
13786 int i;
13787 struct intel_scaler *intel_scaler;
13788 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13789
13790 for (i = 0; i < intel_crtc->num_scalers; i++) {
13791 intel_scaler = &scaler_state->scalers[i];
13792 intel_scaler->in_use = 0;
549e2bfb
CK
13793 intel_scaler->mode = PS_SCALER_MODE_DYN;
13794 }
13795
13796 scaler_state->scaler_id = -1;
13797}
13798
b358d0a6 13799static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 13800{
fbee40df 13801 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 13802 struct intel_crtc *intel_crtc;
f5de6e07 13803 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
13804 struct drm_plane *primary = NULL;
13805 struct drm_plane *cursor = NULL;
465c120c 13806 int i, ret;
79e53945 13807
955382f3 13808 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
13809 if (intel_crtc == NULL)
13810 return;
13811
f5de6e07
ACO
13812 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13813 if (!crtc_state)
13814 goto fail;
550acefd
ACO
13815 intel_crtc->config = crtc_state;
13816 intel_crtc->base.state = &crtc_state->base;
07878248 13817 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 13818
549e2bfb
CK
13819 /* initialize shared scalers */
13820 if (INTEL_INFO(dev)->gen >= 9) {
13821 if (pipe == PIPE_C)
13822 intel_crtc->num_scalers = 1;
13823 else
13824 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13825
13826 skl_init_scalers(dev, intel_crtc, crtc_state);
13827 }
13828
465c120c 13829 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
13830 if (!primary)
13831 goto fail;
13832
13833 cursor = intel_cursor_plane_create(dev, pipe);
13834 if (!cursor)
13835 goto fail;
13836
465c120c 13837 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
13838 cursor, &intel_crtc_funcs);
13839 if (ret)
13840 goto fail;
79e53945
JB
13841
13842 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
13843 for (i = 0; i < 256; i++) {
13844 intel_crtc->lut_r[i] = i;
13845 intel_crtc->lut_g[i] = i;
13846 intel_crtc->lut_b[i] = i;
13847 }
13848
1f1c2e24
VS
13849 /*
13850 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 13851 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 13852 */
80824003
JB
13853 intel_crtc->pipe = pipe;
13854 intel_crtc->plane = pipe;
3a77c4c4 13855 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 13856 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 13857 intel_crtc->plane = !pipe;
80824003
JB
13858 }
13859
4b0e333e
CW
13860 intel_crtc->cursor_base = ~0;
13861 intel_crtc->cursor_cntl = ~0;
dc41c154 13862 intel_crtc->cursor_size = ~0;
8d7849db 13863
852eb00d
VS
13864 intel_crtc->wm.cxsr_allowed = true;
13865
22fd0fab
JB
13866 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13867 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13868 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13869 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13870
79e53945 13871 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
13872
13873 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
13874 return;
13875
13876fail:
13877 if (primary)
13878 drm_plane_cleanup(primary);
13879 if (cursor)
13880 drm_plane_cleanup(cursor);
f5de6e07 13881 kfree(crtc_state);
3d7d6510 13882 kfree(intel_crtc);
79e53945
JB
13883}
13884
752aa88a
JB
13885enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13886{
13887 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 13888 struct drm_device *dev = connector->base.dev;
752aa88a 13889
51fd371b 13890 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 13891
d3babd3f 13892 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
13893 return INVALID_PIPE;
13894
13895 return to_intel_crtc(encoder->crtc)->pipe;
13896}
13897
08d7b3d1 13898int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 13899 struct drm_file *file)
08d7b3d1 13900{
08d7b3d1 13901 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 13902 struct drm_crtc *drmmode_crtc;
c05422d5 13903 struct intel_crtc *crtc;
08d7b3d1 13904
7707e653 13905 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 13906
7707e653 13907 if (!drmmode_crtc) {
08d7b3d1 13908 DRM_ERROR("no such CRTC id\n");
3f2c2057 13909 return -ENOENT;
08d7b3d1
CW
13910 }
13911
7707e653 13912 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 13913 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 13914
c05422d5 13915 return 0;
08d7b3d1
CW
13916}
13917
66a9278e 13918static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 13919{
66a9278e
DV
13920 struct drm_device *dev = encoder->base.dev;
13921 struct intel_encoder *source_encoder;
79e53945 13922 int index_mask = 0;
79e53945
JB
13923 int entry = 0;
13924
b2784e15 13925 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 13926 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
13927 index_mask |= (1 << entry);
13928
79e53945
JB
13929 entry++;
13930 }
4ef69c7a 13931
79e53945
JB
13932 return index_mask;
13933}
13934
4d302442
CW
13935static bool has_edp_a(struct drm_device *dev)
13936{
13937 struct drm_i915_private *dev_priv = dev->dev_private;
13938
13939 if (!IS_MOBILE(dev))
13940 return false;
13941
13942 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13943 return false;
13944
e3589908 13945 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
13946 return false;
13947
13948 return true;
13949}
13950
84b4e042
JB
13951static bool intel_crt_present(struct drm_device *dev)
13952{
13953 struct drm_i915_private *dev_priv = dev->dev_private;
13954
884497ed
DL
13955 if (INTEL_INFO(dev)->gen >= 9)
13956 return false;
13957
cf404ce4 13958 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
13959 return false;
13960
13961 if (IS_CHERRYVIEW(dev))
13962 return false;
13963
13964 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13965 return false;
13966
13967 return true;
13968}
13969
79e53945
JB
13970static void intel_setup_outputs(struct drm_device *dev)
13971{
725e30ad 13972 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 13973 struct intel_encoder *encoder;
cb0953d7 13974 bool dpd_is_edp = false;
79e53945 13975
c9093354 13976 intel_lvds_init(dev);
79e53945 13977
84b4e042 13978 if (intel_crt_present(dev))
79935fca 13979 intel_crt_init(dev);
cb0953d7 13980
c776eb2e
VK
13981 if (IS_BROXTON(dev)) {
13982 /*
13983 * FIXME: Broxton doesn't support port detection via the
13984 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13985 * detect the ports.
13986 */
13987 intel_ddi_init(dev, PORT_A);
13988 intel_ddi_init(dev, PORT_B);
13989 intel_ddi_init(dev, PORT_C);
13990 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
13991 int found;
13992
de31facd
JB
13993 /*
13994 * Haswell uses DDI functions to detect digital outputs.
13995 * On SKL pre-D0 the strap isn't connected, so we assume
13996 * it's there.
13997 */
77179400 13998 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 13999 /* WaIgnoreDDIAStrap: skl */
5a2376d1 14000 if (found || IS_SKYLAKE(dev))
0e72a5b5
ED
14001 intel_ddi_init(dev, PORT_A);
14002
14003 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14004 * register */
14005 found = I915_READ(SFUSE_STRAP);
14006
14007 if (found & SFUSE_STRAP_DDIB_DETECTED)
14008 intel_ddi_init(dev, PORT_B);
14009 if (found & SFUSE_STRAP_DDIC_DETECTED)
14010 intel_ddi_init(dev, PORT_C);
14011 if (found & SFUSE_STRAP_DDID_DETECTED)
14012 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
14013 /*
14014 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14015 */
14016 if (IS_SKYLAKE(dev) &&
14017 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14018 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14019 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14020 intel_ddi_init(dev, PORT_E);
14021
0e72a5b5 14022 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14023 int found;
5d8a7752 14024 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14025
14026 if (has_edp_a(dev))
14027 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14028
dc0fa718 14029 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14030 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 14031 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 14032 if (!found)
e2debe91 14033 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14034 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14035 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14036 }
14037
dc0fa718 14038 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14039 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14040
dc0fa718 14041 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14042 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14043
5eb08b69 14044 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14045 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14046
270b3042 14047 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14048 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 14049 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
14050 /*
14051 * The DP_DETECTED bit is the latched state of the DDC
14052 * SDA pin at boot. However since eDP doesn't require DDC
14053 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14054 * eDP ports may have been muxed to an alternate function.
14055 * Thus we can't rely on the DP_DETECTED bit alone to detect
14056 * eDP ports. Consult the VBT as well as DP_DETECTED to
14057 * detect eDP ports.
14058 */
e66eb81d 14059 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
d2182a66 14060 !intel_dp_is_edp(dev, PORT_B))
e66eb81d
VS
14061 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14062 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
e17ac6db 14063 intel_dp_is_edp(dev, PORT_B))
e66eb81d 14064 intel_dp_init(dev, VLV_DP_B, PORT_B);
585a94b8 14065
e66eb81d 14066 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
d2182a66 14067 !intel_dp_is_edp(dev, PORT_C))
e66eb81d
VS
14068 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14069 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
e17ac6db 14070 intel_dp_is_edp(dev, PORT_C))
e66eb81d 14071 intel_dp_init(dev, VLV_DP_C, PORT_C);
19c03924 14072
9418c1f1 14073 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14074 /* eDP not supported on port D, so don't check VBT */
e66eb81d
VS
14075 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14076 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14077 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14078 intel_dp_init(dev, CHV_DP_D, PORT_D);
9418c1f1
VS
14079 }
14080
3cfca973 14081 intel_dsi_init(dev);
09da55dc 14082 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 14083 bool found = false;
7d57382e 14084
e2debe91 14085 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14086 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 14087 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
3fec3d2f 14088 if (!found && IS_G4X(dev)) {
b01f2c3a 14089 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14090 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14091 }
27185ae1 14092
3fec3d2f 14093 if (!found && IS_G4X(dev))
ab9d7c30 14094 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14095 }
13520b05
KH
14096
14097 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14098
e2debe91 14099 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14100 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 14101 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 14102 }
27185ae1 14103
e2debe91 14104 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14105
3fec3d2f 14106 if (IS_G4X(dev)) {
b01f2c3a 14107 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14108 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14109 }
3fec3d2f 14110 if (IS_G4X(dev))
ab9d7c30 14111 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14112 }
27185ae1 14113
3fec3d2f 14114 if (IS_G4X(dev) &&
e7281eab 14115 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14116 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14117 } else if (IS_GEN2(dev))
79e53945
JB
14118 intel_dvo_init(dev);
14119
103a196f 14120 if (SUPPORTS_TV(dev))
79e53945
JB
14121 intel_tv_init(dev);
14122
0bc12bcb 14123 intel_psr_init(dev);
7c8f8a70 14124
b2784e15 14125 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14126 encoder->base.possible_crtcs = encoder->crtc_mask;
14127 encoder->base.possible_clones =
66a9278e 14128 intel_encoder_clones(encoder);
79e53945 14129 }
47356eb6 14130
dde86e2d 14131 intel_init_pch_refclk(dev);
270b3042
DV
14132
14133 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14134}
14135
14136static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14137{
60a5ca01 14138 struct drm_device *dev = fb->dev;
79e53945 14139 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14140
ef2d633e 14141 drm_framebuffer_cleanup(fb);
60a5ca01 14142 mutex_lock(&dev->struct_mutex);
ef2d633e 14143 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14144 drm_gem_object_unreference(&intel_fb->obj->base);
14145 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14146 kfree(intel_fb);
14147}
14148
14149static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14150 struct drm_file *file,
79e53945
JB
14151 unsigned int *handle)
14152{
14153 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14154 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14155
cc917ab4
CW
14156 if (obj->userptr.mm) {
14157 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14158 return -EINVAL;
14159 }
14160
05394f39 14161 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14162}
14163
86c98588
RV
14164static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14165 struct drm_file *file,
14166 unsigned flags, unsigned color,
14167 struct drm_clip_rect *clips,
14168 unsigned num_clips)
14169{
14170 struct drm_device *dev = fb->dev;
14171 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14172 struct drm_i915_gem_object *obj = intel_fb->obj;
14173
14174 mutex_lock(&dev->struct_mutex);
74b4ea1e 14175 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
14176 mutex_unlock(&dev->struct_mutex);
14177
14178 return 0;
14179}
14180
79e53945
JB
14181static const struct drm_framebuffer_funcs intel_fb_funcs = {
14182 .destroy = intel_user_framebuffer_destroy,
14183 .create_handle = intel_user_framebuffer_create_handle,
86c98588 14184 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
14185};
14186
b321803d
DL
14187static
14188u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14189 uint32_t pixel_format)
14190{
14191 u32 gen = INTEL_INFO(dev)->gen;
14192
14193 if (gen >= 9) {
14194 /* "The stride in bytes must not exceed the of the size of 8K
14195 * pixels and 32K bytes."
14196 */
14197 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14198 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14199 return 32*1024;
14200 } else if (gen >= 4) {
14201 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14202 return 16*1024;
14203 else
14204 return 32*1024;
14205 } else if (gen >= 3) {
14206 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14207 return 8*1024;
14208 else
14209 return 16*1024;
14210 } else {
14211 /* XXX DSPC is limited to 4k tiled */
14212 return 8*1024;
14213 }
14214}
14215
b5ea642a
DV
14216static int intel_framebuffer_init(struct drm_device *dev,
14217 struct intel_framebuffer *intel_fb,
14218 struct drm_mode_fb_cmd2 *mode_cmd,
14219 struct drm_i915_gem_object *obj)
79e53945 14220{
6761dd31 14221 unsigned int aligned_height;
79e53945 14222 int ret;
b321803d 14223 u32 pitch_limit, stride_alignment;
79e53945 14224
dd4916c5
DV
14225 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14226
2a80eada
DV
14227 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14228 /* Enforce that fb modifier and tiling mode match, but only for
14229 * X-tiled. This is needed for FBC. */
14230 if (!!(obj->tiling_mode == I915_TILING_X) !=
14231 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14232 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14233 return -EINVAL;
14234 }
14235 } else {
14236 if (obj->tiling_mode == I915_TILING_X)
14237 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14238 else if (obj->tiling_mode == I915_TILING_Y) {
14239 DRM_DEBUG("No Y tiling for legacy addfb\n");
14240 return -EINVAL;
14241 }
14242 }
14243
9a8f0a12
TU
14244 /* Passed in modifier sanity checking. */
14245 switch (mode_cmd->modifier[0]) {
14246 case I915_FORMAT_MOD_Y_TILED:
14247 case I915_FORMAT_MOD_Yf_TILED:
14248 if (INTEL_INFO(dev)->gen < 9) {
14249 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14250 mode_cmd->modifier[0]);
14251 return -EINVAL;
14252 }
14253 case DRM_FORMAT_MOD_NONE:
14254 case I915_FORMAT_MOD_X_TILED:
14255 break;
14256 default:
c0f40428
JB
14257 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14258 mode_cmd->modifier[0]);
57cd6508 14259 return -EINVAL;
c16ed4be 14260 }
57cd6508 14261
b321803d
DL
14262 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14263 mode_cmd->pixel_format);
14264 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14265 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14266 mode_cmd->pitches[0], stride_alignment);
57cd6508 14267 return -EINVAL;
c16ed4be 14268 }
57cd6508 14269
b321803d
DL
14270 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14271 mode_cmd->pixel_format);
a35cdaa0 14272 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14273 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14274 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14275 "tiled" : "linear",
a35cdaa0 14276 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14277 return -EINVAL;
c16ed4be 14278 }
5d7bd705 14279
2a80eada 14280 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14281 mode_cmd->pitches[0] != obj->stride) {
14282 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14283 mode_cmd->pitches[0], obj->stride);
5d7bd705 14284 return -EINVAL;
c16ed4be 14285 }
5d7bd705 14286
57779d06 14287 /* Reject formats not supported by any plane early. */
308e5bcb 14288 switch (mode_cmd->pixel_format) {
57779d06 14289 case DRM_FORMAT_C8:
04b3924d
VS
14290 case DRM_FORMAT_RGB565:
14291 case DRM_FORMAT_XRGB8888:
14292 case DRM_FORMAT_ARGB8888:
57779d06
VS
14293 break;
14294 case DRM_FORMAT_XRGB1555:
c16ed4be 14295 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14296 DRM_DEBUG("unsupported pixel format: %s\n",
14297 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14298 return -EINVAL;
c16ed4be 14299 }
57779d06 14300 break;
57779d06 14301 case DRM_FORMAT_ABGR8888:
6c0fd451
DL
14302 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14303 DRM_DEBUG("unsupported pixel format: %s\n",
14304 drm_get_format_name(mode_cmd->pixel_format));
14305 return -EINVAL;
14306 }
14307 break;
14308 case DRM_FORMAT_XBGR8888:
04b3924d 14309 case DRM_FORMAT_XRGB2101010:
57779d06 14310 case DRM_FORMAT_XBGR2101010:
c16ed4be 14311 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14312 DRM_DEBUG("unsupported pixel format: %s\n",
14313 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14314 return -EINVAL;
c16ed4be 14315 }
b5626747 14316 break;
7531208b
DL
14317 case DRM_FORMAT_ABGR2101010:
14318 if (!IS_VALLEYVIEW(dev)) {
14319 DRM_DEBUG("unsupported pixel format: %s\n",
14320 drm_get_format_name(mode_cmd->pixel_format));
14321 return -EINVAL;
14322 }
14323 break;
04b3924d
VS
14324 case DRM_FORMAT_YUYV:
14325 case DRM_FORMAT_UYVY:
14326 case DRM_FORMAT_YVYU:
14327 case DRM_FORMAT_VYUY:
c16ed4be 14328 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14329 DRM_DEBUG("unsupported pixel format: %s\n",
14330 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14331 return -EINVAL;
c16ed4be 14332 }
57cd6508
CW
14333 break;
14334 default:
4ee62c76
VS
14335 DRM_DEBUG("unsupported pixel format: %s\n",
14336 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14337 return -EINVAL;
14338 }
14339
90f9a336
VS
14340 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14341 if (mode_cmd->offsets[0] != 0)
14342 return -EINVAL;
14343
ec2c981e 14344 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14345 mode_cmd->pixel_format,
14346 mode_cmd->modifier[0]);
53155c0a
DV
14347 /* FIXME drm helper for size checks (especially planar formats)? */
14348 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14349 return -EINVAL;
14350
c7d73f6a
DV
14351 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14352 intel_fb->obj = obj;
80075d49 14353 intel_fb->obj->framebuffer_references++;
c7d73f6a 14354
79e53945
JB
14355 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14356 if (ret) {
14357 DRM_ERROR("framebuffer init failed %d\n", ret);
14358 return ret;
14359 }
14360
79e53945
JB
14361 return 0;
14362}
14363
79e53945
JB
14364static struct drm_framebuffer *
14365intel_user_framebuffer_create(struct drm_device *dev,
14366 struct drm_file *filp,
308e5bcb 14367 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 14368{
05394f39 14369 struct drm_i915_gem_object *obj;
79e53945 14370
308e5bcb
JB
14371 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14372 mode_cmd->handles[0]));
c8725226 14373 if (&obj->base == NULL)
cce13ff7 14374 return ERR_PTR(-ENOENT);
79e53945 14375
d2dff872 14376 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
14377}
14378
0695726e 14379#ifndef CONFIG_DRM_FBDEV_EMULATION
0632fef6 14380static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14381{
14382}
14383#endif
14384
79e53945 14385static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14386 .fb_create = intel_user_framebuffer_create,
0632fef6 14387 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14388 .atomic_check = intel_atomic_check,
14389 .atomic_commit = intel_atomic_commit,
de419ab6
ML
14390 .atomic_state_alloc = intel_atomic_state_alloc,
14391 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
14392};
14393
e70236a8
JB
14394/* Set up chip specific display functions */
14395static void intel_init_display(struct drm_device *dev)
14396{
14397 struct drm_i915_private *dev_priv = dev->dev_private;
14398
ee9300bb
DV
14399 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14400 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14401 else if (IS_CHERRYVIEW(dev))
14402 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14403 else if (IS_VALLEYVIEW(dev))
14404 dev_priv->display.find_dpll = vlv_find_best_dpll;
14405 else if (IS_PINEVIEW(dev))
14406 dev_priv->display.find_dpll = pnv_find_best_dpll;
14407 else
14408 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14409
bc8d7dff
DL
14410 if (INTEL_INFO(dev)->gen >= 9) {
14411 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14412 dev_priv->display.get_initial_plane_config =
14413 skylake_get_initial_plane_config;
bc8d7dff
DL
14414 dev_priv->display.crtc_compute_clock =
14415 haswell_crtc_compute_clock;
14416 dev_priv->display.crtc_enable = haswell_crtc_enable;
14417 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff
DL
14418 dev_priv->display.update_primary_plane =
14419 skylake_update_primary_plane;
14420 } else if (HAS_DDI(dev)) {
0e8ffe1b 14421 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14422 dev_priv->display.get_initial_plane_config =
14423 ironlake_get_initial_plane_config;
797d0259
ACO
14424 dev_priv->display.crtc_compute_clock =
14425 haswell_crtc_compute_clock;
4f771f10
PZ
14426 dev_priv->display.crtc_enable = haswell_crtc_enable;
14427 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff
DL
14428 dev_priv->display.update_primary_plane =
14429 ironlake_update_primary_plane;
09b4ddf9 14430 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14431 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14432 dev_priv->display.get_initial_plane_config =
14433 ironlake_get_initial_plane_config;
3fb37703
ACO
14434 dev_priv->display.crtc_compute_clock =
14435 ironlake_crtc_compute_clock;
76e5a89c
DV
14436 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14437 dev_priv->display.crtc_disable = ironlake_crtc_disable;
262ca2b0
MR
14438 dev_priv->display.update_primary_plane =
14439 ironlake_update_primary_plane;
89b667f8
JB
14440 } else if (IS_VALLEYVIEW(dev)) {
14441 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14442 dev_priv->display.get_initial_plane_config =
14443 i9xx_get_initial_plane_config;
d6dfee7a 14444 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14445 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14446 dev_priv->display.crtc_disable = i9xx_crtc_disable;
262ca2b0
MR
14447 dev_priv->display.update_primary_plane =
14448 i9xx_update_primary_plane;
f564048e 14449 } else {
0e8ffe1b 14450 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14451 dev_priv->display.get_initial_plane_config =
14452 i9xx_get_initial_plane_config;
d6dfee7a 14453 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14454 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14455 dev_priv->display.crtc_disable = i9xx_crtc_disable;
262ca2b0
MR
14456 dev_priv->display.update_primary_plane =
14457 i9xx_update_primary_plane;
f564048e 14458 }
e70236a8 14459
e70236a8 14460 /* Returns the core display clock speed */
1652d19e
VS
14461 if (IS_SKYLAKE(dev))
14462 dev_priv->display.get_display_clock_speed =
14463 skylake_get_display_clock_speed;
acd3f3d3
BP
14464 else if (IS_BROXTON(dev))
14465 dev_priv->display.get_display_clock_speed =
14466 broxton_get_display_clock_speed;
1652d19e
VS
14467 else if (IS_BROADWELL(dev))
14468 dev_priv->display.get_display_clock_speed =
14469 broadwell_get_display_clock_speed;
14470 else if (IS_HASWELL(dev))
14471 dev_priv->display.get_display_clock_speed =
14472 haswell_get_display_clock_speed;
14473 else if (IS_VALLEYVIEW(dev))
25eb05fc
JB
14474 dev_priv->display.get_display_clock_speed =
14475 valleyview_get_display_clock_speed;
b37a6434
VS
14476 else if (IS_GEN5(dev))
14477 dev_priv->display.get_display_clock_speed =
14478 ilk_get_display_clock_speed;
a7c66cd8 14479 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
34edce2f 14480 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
e70236a8
JB
14481 dev_priv->display.get_display_clock_speed =
14482 i945_get_display_clock_speed;
34edce2f
VS
14483 else if (IS_GM45(dev))
14484 dev_priv->display.get_display_clock_speed =
14485 gm45_get_display_clock_speed;
14486 else if (IS_CRESTLINE(dev))
14487 dev_priv->display.get_display_clock_speed =
14488 i965gm_get_display_clock_speed;
14489 else if (IS_PINEVIEW(dev))
14490 dev_priv->display.get_display_clock_speed =
14491 pnv_get_display_clock_speed;
14492 else if (IS_G33(dev) || IS_G4X(dev))
14493 dev_priv->display.get_display_clock_speed =
14494 g33_get_display_clock_speed;
e70236a8
JB
14495 else if (IS_I915G(dev))
14496 dev_priv->display.get_display_clock_speed =
14497 i915_get_display_clock_speed;
257a7ffc 14498 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14499 dev_priv->display.get_display_clock_speed =
14500 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
14501 else if (IS_PINEVIEW(dev))
14502 dev_priv->display.get_display_clock_speed =
14503 pnv_get_display_clock_speed;
e70236a8
JB
14504 else if (IS_I915GM(dev))
14505 dev_priv->display.get_display_clock_speed =
14506 i915gm_get_display_clock_speed;
14507 else if (IS_I865G(dev))
14508 dev_priv->display.get_display_clock_speed =
14509 i865_get_display_clock_speed;
f0f8a9ce 14510 else if (IS_I85X(dev))
e70236a8 14511 dev_priv->display.get_display_clock_speed =
1b1d2716 14512 i85x_get_display_clock_speed;
623e01e5
VS
14513 else { /* 830 */
14514 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
14515 dev_priv->display.get_display_clock_speed =
14516 i830_get_display_clock_speed;
623e01e5 14517 }
e70236a8 14518
7c10a2b5 14519 if (IS_GEN5(dev)) {
3bb11b53 14520 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14521 } else if (IS_GEN6(dev)) {
14522 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14523 } else if (IS_IVYBRIDGE(dev)) {
14524 /* FIXME: detect B0+ stepping and use auto training */
14525 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14526 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14527 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
27c329ed
ML
14528 if (IS_BROADWELL(dev)) {
14529 dev_priv->display.modeset_commit_cdclk =
14530 broadwell_modeset_commit_cdclk;
14531 dev_priv->display.modeset_calc_cdclk =
14532 broadwell_modeset_calc_cdclk;
14533 }
30a970c6 14534 } else if (IS_VALLEYVIEW(dev)) {
27c329ed
ML
14535 dev_priv->display.modeset_commit_cdclk =
14536 valleyview_modeset_commit_cdclk;
14537 dev_priv->display.modeset_calc_cdclk =
14538 valleyview_modeset_calc_cdclk;
f8437dd1 14539 } else if (IS_BROXTON(dev)) {
27c329ed
ML
14540 dev_priv->display.modeset_commit_cdclk =
14541 broxton_modeset_commit_cdclk;
14542 dev_priv->display.modeset_calc_cdclk =
14543 broxton_modeset_calc_cdclk;
e70236a8 14544 }
8c9f3aaf 14545
8c9f3aaf
JB
14546 switch (INTEL_INFO(dev)->gen) {
14547 case 2:
14548 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14549 break;
14550
14551 case 3:
14552 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14553 break;
14554
14555 case 4:
14556 case 5:
14557 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14558 break;
14559
14560 case 6:
14561 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14562 break;
7c9017e5 14563 case 7:
4e0bbc31 14564 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14565 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14566 break;
830c81db 14567 case 9:
ba343e02
TU
14568 /* Drop through - unsupported since execlist only. */
14569 default:
14570 /* Default just returns -ENODEV to indicate unsupported */
14571 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14572 }
7bd688cd 14573
e39b999a 14574 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14575}
14576
b690e96c
JB
14577/*
14578 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14579 * resume, or other times. This quirk makes sure that's the case for
14580 * affected systems.
14581 */
0206e353 14582static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14583{
14584 struct drm_i915_private *dev_priv = dev->dev_private;
14585
14586 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14587 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14588}
14589
b6b5d049
VS
14590static void quirk_pipeb_force(struct drm_device *dev)
14591{
14592 struct drm_i915_private *dev_priv = dev->dev_private;
14593
14594 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14595 DRM_INFO("applying pipe b force quirk\n");
14596}
14597
435793df
KP
14598/*
14599 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14600 */
14601static void quirk_ssc_force_disable(struct drm_device *dev)
14602{
14603 struct drm_i915_private *dev_priv = dev->dev_private;
14604 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 14605 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
14606}
14607
4dca20ef 14608/*
5a15ab5b
CE
14609 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14610 * brightness value
4dca20ef
CE
14611 */
14612static void quirk_invert_brightness(struct drm_device *dev)
14613{
14614 struct drm_i915_private *dev_priv = dev->dev_private;
14615 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 14616 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
14617}
14618
9c72cc6f
SD
14619/* Some VBT's incorrectly indicate no backlight is present */
14620static void quirk_backlight_present(struct drm_device *dev)
14621{
14622 struct drm_i915_private *dev_priv = dev->dev_private;
14623 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14624 DRM_INFO("applying backlight present quirk\n");
14625}
14626
b690e96c
JB
14627struct intel_quirk {
14628 int device;
14629 int subsystem_vendor;
14630 int subsystem_device;
14631 void (*hook)(struct drm_device *dev);
14632};
14633
5f85f176
EE
14634/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14635struct intel_dmi_quirk {
14636 void (*hook)(struct drm_device *dev);
14637 const struct dmi_system_id (*dmi_id_list)[];
14638};
14639
14640static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14641{
14642 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14643 return 1;
14644}
14645
14646static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14647 {
14648 .dmi_id_list = &(const struct dmi_system_id[]) {
14649 {
14650 .callback = intel_dmi_reverse_brightness,
14651 .ident = "NCR Corporation",
14652 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14653 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14654 },
14655 },
14656 { } /* terminating entry */
14657 },
14658 .hook = quirk_invert_brightness,
14659 },
14660};
14661
c43b5634 14662static struct intel_quirk intel_quirks[] = {
b690e96c
JB
14663 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14664 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14665
b690e96c
JB
14666 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14667 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14668
5f080c0f
VS
14669 /* 830 needs to leave pipe A & dpll A up */
14670 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14671
b6b5d049
VS
14672 /* 830 needs to leave pipe B & dpll B up */
14673 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14674
435793df
KP
14675 /* Lenovo U160 cannot use SSC on LVDS */
14676 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
14677
14678 /* Sony Vaio Y cannot use SSC on LVDS */
14679 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 14680
be505f64
AH
14681 /* Acer Aspire 5734Z must invert backlight brightness */
14682 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14683
14684 /* Acer/eMachines G725 */
14685 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14686
14687 /* Acer/eMachines e725 */
14688 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14689
14690 /* Acer/Packard Bell NCL20 */
14691 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14692
14693 /* Acer Aspire 4736Z */
14694 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
14695
14696 /* Acer Aspire 5336 */
14697 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
14698
14699 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14700 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 14701
dfb3d47b
SD
14702 /* Acer C720 Chromebook (Core i3 4005U) */
14703 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14704
b2a9601c 14705 /* Apple Macbook 2,1 (Core 2 T7400) */
14706 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14707
d4967d8c
SD
14708 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14709 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
14710
14711 /* HP Chromebook 14 (Celeron 2955U) */
14712 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
14713
14714 /* Dell Chromebook 11 */
14715 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
14716
14717 /* Dell Chromebook 11 (2015 version) */
14718 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
14719};
14720
14721static void intel_init_quirks(struct drm_device *dev)
14722{
14723 struct pci_dev *d = dev->pdev;
14724 int i;
14725
14726 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14727 struct intel_quirk *q = &intel_quirks[i];
14728
14729 if (d->device == q->device &&
14730 (d->subsystem_vendor == q->subsystem_vendor ||
14731 q->subsystem_vendor == PCI_ANY_ID) &&
14732 (d->subsystem_device == q->subsystem_device ||
14733 q->subsystem_device == PCI_ANY_ID))
14734 q->hook(dev);
14735 }
5f85f176
EE
14736 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14737 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14738 intel_dmi_quirks[i].hook(dev);
14739 }
b690e96c
JB
14740}
14741
9cce37f4
JB
14742/* Disable the VGA plane that we never use */
14743static void i915_disable_vga(struct drm_device *dev)
14744{
14745 struct drm_i915_private *dev_priv = dev->dev_private;
14746 u8 sr1;
766aa1c4 14747 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 14748
2b37c616 14749 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 14750 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 14751 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
14752 sr1 = inb(VGA_SR_DATA);
14753 outb(sr1 | 1<<5, VGA_SR_DATA);
14754 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14755 udelay(300);
14756
01f5a626 14757 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
14758 POSTING_READ(vga_reg);
14759}
14760
f817586c
DV
14761void intel_modeset_init_hw(struct drm_device *dev)
14762{
b6283055 14763 intel_update_cdclk(dev);
a8f78b58 14764 intel_prepare_ddi(dev);
f817586c 14765 intel_init_clock_gating(dev);
8090c6b9 14766 intel_enable_gt_powersave(dev);
f817586c
DV
14767}
14768
79e53945
JB
14769void intel_modeset_init(struct drm_device *dev)
14770{
652c393a 14771 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 14772 int sprite, ret;
8cc87b75 14773 enum pipe pipe;
46f297fb 14774 struct intel_crtc *crtc;
79e53945
JB
14775
14776 drm_mode_config_init(dev);
14777
14778 dev->mode_config.min_width = 0;
14779 dev->mode_config.min_height = 0;
14780
019d96cb
DA
14781 dev->mode_config.preferred_depth = 24;
14782 dev->mode_config.prefer_shadow = 1;
14783
25bab385
TU
14784 dev->mode_config.allow_fb_modifiers = true;
14785
e6ecefaa 14786 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 14787
b690e96c
JB
14788 intel_init_quirks(dev);
14789
1fa61106
ED
14790 intel_init_pm(dev);
14791
e3c74757
BW
14792 if (INTEL_INFO(dev)->num_pipes == 0)
14793 return;
14794
69f92f67
LW
14795 /*
14796 * There may be no VBT; and if the BIOS enabled SSC we can
14797 * just keep using it to avoid unnecessary flicker. Whereas if the
14798 * BIOS isn't using it, don't assume it will work even if the VBT
14799 * indicates as much.
14800 */
14801 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14802 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14803 DREF_SSC1_ENABLE);
14804
14805 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14806 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14807 bios_lvds_use_ssc ? "en" : "dis",
14808 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14809 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14810 }
14811 }
14812
e70236a8 14813 intel_init_display(dev);
7c10a2b5 14814 intel_init_audio(dev);
e70236a8 14815
a6c45cf0
CW
14816 if (IS_GEN2(dev)) {
14817 dev->mode_config.max_width = 2048;
14818 dev->mode_config.max_height = 2048;
14819 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
14820 dev->mode_config.max_width = 4096;
14821 dev->mode_config.max_height = 4096;
79e53945 14822 } else {
a6c45cf0
CW
14823 dev->mode_config.max_width = 8192;
14824 dev->mode_config.max_height = 8192;
79e53945 14825 }
068be561 14826
dc41c154
VS
14827 if (IS_845G(dev) || IS_I865G(dev)) {
14828 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14829 dev->mode_config.cursor_height = 1023;
14830 } else if (IS_GEN2(dev)) {
068be561
DL
14831 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14832 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14833 } else {
14834 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14835 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14836 }
14837
5d4545ae 14838 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 14839
28c97730 14840 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
14841 INTEL_INFO(dev)->num_pipes,
14842 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 14843
055e393f 14844 for_each_pipe(dev_priv, pipe) {
8cc87b75 14845 intel_crtc_init(dev, pipe);
3bdcfc0c 14846 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 14847 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 14848 if (ret)
06da8da2 14849 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 14850 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 14851 }
79e53945
JB
14852 }
14853
bfa7df01
VS
14854 intel_update_czclk(dev_priv);
14855 intel_update_cdclk(dev);
f42bb70d 14856
e72f9fbf 14857 intel_shared_dpll_init(dev);
ee7b9f93 14858
9cce37f4
JB
14859 /* Just disable it once at startup */
14860 i915_disable_vga(dev);
79e53945 14861 intel_setup_outputs(dev);
11be49eb
CW
14862
14863 /* Just in case the BIOS is doing something questionable. */
7733b49b 14864 intel_fbc_disable(dev_priv);
fa9fa083 14865
6e9f798d 14866 drm_modeset_lock_all(dev);
043e9bda 14867 intel_modeset_setup_hw_state(dev);
6e9f798d 14868 drm_modeset_unlock_all(dev);
46f297fb 14869
d3fcc808 14870 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
14871 struct intel_initial_plane_config plane_config = {};
14872
46f297fb
JB
14873 if (!crtc->active)
14874 continue;
14875
46f297fb 14876 /*
46f297fb
JB
14877 * Note that reserving the BIOS fb up front prevents us
14878 * from stuffing other stolen allocations like the ring
14879 * on top. This prevents some ugliness at boot time, and
14880 * can even allow for smooth boot transitions if the BIOS
14881 * fb is large enough for the active pipe configuration.
14882 */
eeebeac5
ML
14883 dev_priv->display.get_initial_plane_config(crtc,
14884 &plane_config);
14885
14886 /*
14887 * If the fb is shared between multiple heads, we'll
14888 * just get the first one.
14889 */
14890 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 14891 }
2c7111db
CW
14892}
14893
7fad798e
DV
14894static void intel_enable_pipe_a(struct drm_device *dev)
14895{
14896 struct intel_connector *connector;
14897 struct drm_connector *crt = NULL;
14898 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 14899 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
14900
14901 /* We can't just switch on the pipe A, we need to set things up with a
14902 * proper mode and output configuration. As a gross hack, enable pipe A
14903 * by enabling the load detect pipe once. */
3a3371ff 14904 for_each_intel_connector(dev, connector) {
7fad798e
DV
14905 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14906 crt = &connector->base;
14907 break;
14908 }
14909 }
14910
14911 if (!crt)
14912 return;
14913
208bf9fd 14914 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 14915 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
14916}
14917
fa555837
DV
14918static bool
14919intel_check_plane_mapping(struct intel_crtc *crtc)
14920{
7eb552ae
BW
14921 struct drm_device *dev = crtc->base.dev;
14922 struct drm_i915_private *dev_priv = dev->dev_private;
649636ef 14923 u32 val;
fa555837 14924
7eb552ae 14925 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
14926 return true;
14927
649636ef 14928 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
14929
14930 if ((val & DISPLAY_PLANE_ENABLE) &&
14931 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14932 return false;
14933
14934 return true;
14935}
14936
02e93c35
VS
14937static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14938{
14939 struct drm_device *dev = crtc->base.dev;
14940 struct intel_encoder *encoder;
14941
14942 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14943 return true;
14944
14945 return false;
14946}
14947
24929352
DV
14948static void intel_sanitize_crtc(struct intel_crtc *crtc)
14949{
14950 struct drm_device *dev = crtc->base.dev;
14951 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 14952 u32 reg;
24929352 14953
24929352 14954 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 14955 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
14956 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14957
d3eaf884 14958 /* restore vblank interrupts to correct state */
9625604c 14959 drm_crtc_vblank_reset(&crtc->base);
d297e103 14960 if (crtc->active) {
0836e6d8
VS
14961 struct intel_plane *plane;
14962
9625604c 14963 drm_crtc_vblank_on(&crtc->base);
0836e6d8
VS
14964
14965 /* Disable everything but the primary plane */
14966 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14967 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
14968 continue;
14969
14970 plane->disable_plane(&plane->base, &crtc->base);
14971 }
9625604c 14972 }
d3eaf884 14973
24929352 14974 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
14975 * disable the crtc (and hence change the state) if it is wrong. Note
14976 * that gen4+ has a fixed plane -> pipe mapping. */
14977 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
14978 bool plane;
14979
24929352
DV
14980 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14981 crtc->base.base.id);
14982
14983 /* Pipe has the wrong plane attached and the plane is active.
14984 * Temporarily change the plane mapping and disable everything
14985 * ... */
14986 plane = crtc->plane;
b70709a6 14987 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 14988 crtc->plane = !plane;
b17d48e2 14989 intel_crtc_disable_noatomic(&crtc->base);
24929352 14990 crtc->plane = plane;
24929352 14991 }
24929352 14992
7fad798e
DV
14993 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14994 crtc->pipe == PIPE_A && !crtc->active) {
14995 /* BIOS forgot to enable pipe A, this mostly happens after
14996 * resume. Force-enable the pipe to fix this, the update_dpms
14997 * call below we restore the pipe to the right state, but leave
14998 * the required bits on. */
14999 intel_enable_pipe_a(dev);
15000 }
15001
24929352
DV
15002 /* Adjust the state of the output pipe according to whether we
15003 * have active connectors/encoders. */
02e93c35 15004 if (!intel_crtc_has_encoders(crtc))
b17d48e2 15005 intel_crtc_disable_noatomic(&crtc->base);
24929352 15006
53d9f4e9 15007 if (crtc->active != crtc->base.state->active) {
02e93c35 15008 struct intel_encoder *encoder;
24929352
DV
15009
15010 /* This can happen either due to bugs in the get_hw_state
b17d48e2
ML
15011 * functions or because of calls to intel_crtc_disable_noatomic,
15012 * or because the pipe is force-enabled due to the
24929352
DV
15013 * pipe A quirk. */
15014 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15015 crtc->base.base.id,
83d65738 15016 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
15017 crtc->active ? "enabled" : "disabled");
15018
4be40c98 15019 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
49d6fa21 15020 crtc->base.state->active = crtc->active;
24929352
DV
15021 crtc->base.enabled = crtc->active;
15022
15023 /* Because we only establish the connector -> encoder ->
15024 * crtc links if something is active, this means the
15025 * crtc is now deactivated. Break the links. connector
15026 * -> encoder links are only establish when things are
15027 * actually up, hence no need to break them. */
15028 WARN_ON(crtc->active);
15029
2d406bb0 15030 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
24929352 15031 encoder->base.crtc = NULL;
24929352 15032 }
c5ab3bc0 15033
a3ed6aad 15034 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15035 /*
15036 * We start out with underrun reporting disabled to avoid races.
15037 * For correct bookkeeping mark this on active crtcs.
15038 *
c5ab3bc0
DV
15039 * Also on gmch platforms we dont have any hardware bits to
15040 * disable the underrun reporting. Which means we need to start
15041 * out with underrun reporting disabled also on inactive pipes,
15042 * since otherwise we'll complain about the garbage we read when
15043 * e.g. coming up after runtime pm.
15044 *
4cc31489
DV
15045 * No protection against concurrent access is required - at
15046 * worst a fifo underrun happens which also sets this to false.
15047 */
15048 crtc->cpu_fifo_underrun_disabled = true;
15049 crtc->pch_fifo_underrun_disabled = true;
15050 }
24929352
DV
15051}
15052
15053static void intel_sanitize_encoder(struct intel_encoder *encoder)
15054{
15055 struct intel_connector *connector;
15056 struct drm_device *dev = encoder->base.dev;
873ffe69 15057 bool active = false;
24929352
DV
15058
15059 /* We need to check both for a crtc link (meaning that the
15060 * encoder is active and trying to read from a pipe) and the
15061 * pipe itself being active. */
15062 bool has_active_crtc = encoder->base.crtc &&
15063 to_intel_crtc(encoder->base.crtc)->active;
15064
873ffe69
ML
15065 for_each_intel_connector(dev, connector) {
15066 if (connector->base.encoder != &encoder->base)
15067 continue;
15068
15069 active = true;
15070 break;
15071 }
15072
15073 if (active && !has_active_crtc) {
24929352
DV
15074 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15075 encoder->base.base.id,
8e329a03 15076 encoder->base.name);
24929352
DV
15077
15078 /* Connector is active, but has no active pipe. This is
15079 * fallout from our resume register restoring. Disable
15080 * the encoder manually again. */
15081 if (encoder->base.crtc) {
15082 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15083 encoder->base.base.id,
8e329a03 15084 encoder->base.name);
24929352 15085 encoder->disable(encoder);
a62d1497
VS
15086 if (encoder->post_disable)
15087 encoder->post_disable(encoder);
24929352 15088 }
7f1950fb 15089 encoder->base.crtc = NULL;
24929352
DV
15090
15091 /* Inconsistent output/port/pipe state happens presumably due to
15092 * a bug in one of the get_hw_state functions. Or someplace else
15093 * in our code, like the register restore mess on resume. Clamp
15094 * things to off as a safer default. */
3a3371ff 15095 for_each_intel_connector(dev, connector) {
24929352
DV
15096 if (connector->encoder != encoder)
15097 continue;
7f1950fb
EE
15098 connector->base.dpms = DRM_MODE_DPMS_OFF;
15099 connector->base.encoder = NULL;
24929352
DV
15100 }
15101 }
15102 /* Enabled encoders without active connectors will be fixed in
15103 * the crtc fixup. */
15104}
15105
04098753 15106void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15107{
15108 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 15109 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15110
04098753
ID
15111 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15112 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15113 i915_disable_vga(dev);
15114 }
15115}
15116
15117void i915_redisable_vga(struct drm_device *dev)
15118{
15119 struct drm_i915_private *dev_priv = dev->dev_private;
15120
8dc8a27c
PZ
15121 /* This function can be called both from intel_modeset_setup_hw_state or
15122 * at a very early point in our resume sequence, where the power well
15123 * structures are not yet restored. Since this function is at a very
15124 * paranoid "someone might have enabled VGA while we were not looking"
15125 * level, just check if the power well is enabled instead of trying to
15126 * follow the "don't touch the power well if we don't need it" policy
15127 * the rest of the driver uses. */
f458ebbc 15128 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15129 return;
15130
04098753 15131 i915_redisable_vga_power_on(dev);
0fde901f
KM
15132}
15133
0836e6d8 15134static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 15135{
0836e6d8 15136 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 15137
0836e6d8 15138 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
15139}
15140
0836e6d8
VS
15141/* FIXME read out full plane state for all planes */
15142static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 15143{
18e9345b 15144 struct drm_plane *primary = crtc->base.primary;
0836e6d8 15145 struct intel_plane_state *plane_state =
18e9345b 15146 to_intel_plane_state(primary->state);
d032ffa0 15147
0836e6d8 15148 plane_state->visible =
18e9345b
ML
15149 primary_get_hw_state(to_intel_plane(primary));
15150
15151 if (plane_state->visible)
15152 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
15153}
15154
30e984df 15155static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15156{
15157 struct drm_i915_private *dev_priv = dev->dev_private;
15158 enum pipe pipe;
24929352
DV
15159 struct intel_crtc *crtc;
15160 struct intel_encoder *encoder;
15161 struct intel_connector *connector;
5358901f 15162 int i;
24929352 15163
d3fcc808 15164 for_each_intel_crtc(dev, crtc) {
b06f8b0d 15165 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
6e3c9717 15166 memset(crtc->config, 0, sizeof(*crtc->config));
f7217905 15167 crtc->config->base.crtc = &crtc->base;
3b117c8f 15168
0e8ffe1b 15169 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 15170 crtc->config);
24929352 15171
49d6fa21 15172 crtc->base.state->active = crtc->active;
24929352 15173 crtc->base.enabled = crtc->active;
b70709a6 15174
0836e6d8 15175 readout_plane_state(crtc);
24929352
DV
15176
15177 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15178 crtc->base.base.id,
15179 crtc->active ? "enabled" : "disabled");
15180 }
15181
5358901f
DV
15182 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15183 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15184
3e369b76
ACO
15185 pll->on = pll->get_hw_state(dev_priv, pll,
15186 &pll->config.hw_state);
5358901f 15187 pll->active = 0;
3e369b76 15188 pll->config.crtc_mask = 0;
d3fcc808 15189 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 15190 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 15191 pll->active++;
3e369b76 15192 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 15193 }
5358901f 15194 }
5358901f 15195
1e6f2ddc 15196 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15197 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 15198
3e369b76 15199 if (pll->config.crtc_mask)
bd2bb1b9 15200 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
15201 }
15202
b2784e15 15203 for_each_intel_encoder(dev, encoder) {
24929352
DV
15204 pipe = 0;
15205
15206 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15207 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15208 encoder->base.crtc = &crtc->base;
6e3c9717 15209 encoder->get_config(encoder, crtc->config);
24929352
DV
15210 } else {
15211 encoder->base.crtc = NULL;
15212 }
15213
6f2bcceb 15214 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15215 encoder->base.base.id,
8e329a03 15216 encoder->base.name,
24929352 15217 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15218 pipe_name(pipe));
24929352
DV
15219 }
15220
3a3371ff 15221 for_each_intel_connector(dev, connector) {
24929352
DV
15222 if (connector->get_hw_state(connector)) {
15223 connector->base.dpms = DRM_MODE_DPMS_ON;
24929352
DV
15224 connector->base.encoder = &connector->encoder->base;
15225 } else {
15226 connector->base.dpms = DRM_MODE_DPMS_OFF;
15227 connector->base.encoder = NULL;
15228 }
15229 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15230 connector->base.base.id,
c23cc417 15231 connector->base.name,
24929352
DV
15232 connector->base.encoder ? "enabled" : "disabled");
15233 }
c4816c73
VS
15234
15235 for_each_intel_crtc(dev, crtc) {
15236 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15237
15238 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15239 if (crtc->base.state->active) {
15240 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15241 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15242 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15243
15244 /*
15245 * The initial mode needs to be set in order to keep
15246 * the atomic core happy. It wants a valid mode if the
15247 * crtc's enabled, so we do the above call.
15248 *
15249 * At this point some state updated by the connectors
15250 * in their ->detect() callback has not run yet, so
15251 * no recalculation can be done yet.
15252 *
15253 * Even if we could do a recalculation and modeset
15254 * right now it would cause a double modeset if
15255 * fbdev or userspace chooses a different initial mode.
15256 *
15257 * If that happens, someone indicated they wanted a
15258 * mode change, which means it's safe to do a full
15259 * recalculation.
15260 */
15261 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
15262
15263 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15264 update_scanline_offset(crtc);
c4816c73
VS
15265 }
15266 }
30e984df
DV
15267}
15268
043e9bda
ML
15269/* Scan out the current hw modeset state,
15270 * and sanitizes it to the current state
15271 */
15272static void
15273intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df
DV
15274{
15275 struct drm_i915_private *dev_priv = dev->dev_private;
15276 enum pipe pipe;
30e984df
DV
15277 struct intel_crtc *crtc;
15278 struct intel_encoder *encoder;
35c95375 15279 int i;
30e984df
DV
15280
15281 intel_modeset_readout_hw_state(dev);
24929352
DV
15282
15283 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15284 for_each_intel_encoder(dev, encoder) {
24929352
DV
15285 intel_sanitize_encoder(encoder);
15286 }
15287
055e393f 15288 for_each_pipe(dev_priv, pipe) {
24929352
DV
15289 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15290 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15291 intel_dump_pipe_config(crtc, crtc->config,
15292 "[setup_hw_state]");
24929352 15293 }
9a935856 15294
d29b2f9d
ACO
15295 intel_modeset_update_connector_atomic_state(dev);
15296
35c95375
DV
15297 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15298 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15299
15300 if (!pll->on || pll->active)
15301 continue;
15302
15303 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15304
15305 pll->disable(dev_priv, pll);
15306 pll->on = false;
15307 }
15308
26e1fe4f 15309 if (IS_VALLEYVIEW(dev))
6eb1a681
VS
15310 vlv_wm_get_hw_state(dev);
15311 else if (IS_GEN9(dev))
3078999f
PB
15312 skl_wm_get_hw_state(dev);
15313 else if (HAS_PCH_SPLIT(dev))
243e6a44 15314 ilk_wm_get_hw_state(dev);
292b990e
ML
15315
15316 for_each_intel_crtc(dev, crtc) {
15317 unsigned long put_domains;
15318
15319 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15320 if (WARN_ON(put_domains))
15321 modeset_put_power_domains(dev_priv, put_domains);
15322 }
15323 intel_display_set_init_power(dev_priv, false);
043e9bda 15324}
7d0bc1ea 15325
043e9bda
ML
15326void intel_display_resume(struct drm_device *dev)
15327{
15328 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15329 struct intel_connector *conn;
15330 struct intel_plane *plane;
15331 struct drm_crtc *crtc;
15332 int ret;
f30da187 15333
043e9bda
ML
15334 if (!state)
15335 return;
15336
15337 state->acquire_ctx = dev->mode_config.acquire_ctx;
15338
15339 /* preserve complete old state, including dpll */
15340 intel_atomic_get_shared_dpll_state(state);
15341
15342 for_each_crtc(dev, crtc) {
15343 struct drm_crtc_state *crtc_state =
15344 drm_atomic_get_crtc_state(state, crtc);
15345
15346 ret = PTR_ERR_OR_ZERO(crtc_state);
15347 if (ret)
15348 goto err;
15349
15350 /* force a restore */
15351 crtc_state->mode_changed = true;
45e2b5f6 15352 }
8af6cf88 15353
043e9bda
ML
15354 for_each_intel_plane(dev, plane) {
15355 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15356 if (ret)
15357 goto err;
15358 }
15359
15360 for_each_intel_connector(dev, conn) {
15361 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15362 if (ret)
15363 goto err;
15364 }
15365
15366 intel_modeset_setup_hw_state(dev);
15367
15368 i915_redisable_vga(dev);
74c090b1 15369 ret = drm_atomic_commit(state);
043e9bda
ML
15370 if (!ret)
15371 return;
15372
15373err:
15374 DRM_ERROR("Restoring old state failed with %i\n", ret);
15375 drm_atomic_state_free(state);
2c7111db
CW
15376}
15377
15378void intel_modeset_gem_init(struct drm_device *dev)
15379{
484b41dd 15380 struct drm_crtc *c;
2ff8fde1 15381 struct drm_i915_gem_object *obj;
e0d6149b 15382 int ret;
484b41dd 15383
ae48434c
ID
15384 mutex_lock(&dev->struct_mutex);
15385 intel_init_gt_powersave(dev);
15386 mutex_unlock(&dev->struct_mutex);
15387
1833b134 15388 intel_modeset_init_hw(dev);
02e792fb
DV
15389
15390 intel_setup_overlay(dev);
484b41dd
JB
15391
15392 /*
15393 * Make sure any fbs we allocated at startup are properly
15394 * pinned & fenced. When we do the allocation it's too early
15395 * for this.
15396 */
70e1e0ec 15397 for_each_crtc(dev, c) {
2ff8fde1
MR
15398 obj = intel_fb_obj(c->primary->fb);
15399 if (obj == NULL)
484b41dd
JB
15400 continue;
15401
e0d6149b
TU
15402 mutex_lock(&dev->struct_mutex);
15403 ret = intel_pin_and_fence_fb_obj(c->primary,
15404 c->primary->fb,
15405 c->primary->state,
91af127f 15406 NULL, NULL);
e0d6149b
TU
15407 mutex_unlock(&dev->struct_mutex);
15408 if (ret) {
484b41dd
JB
15409 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15410 to_intel_crtc(c)->pipe);
66e514c1
DA
15411 drm_framebuffer_unreference(c->primary->fb);
15412 c->primary->fb = NULL;
36750f28 15413 c->primary->crtc = c->primary->state->crtc = NULL;
afd65eb4 15414 update_state_fb(c->primary);
36750f28 15415 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
15416 }
15417 }
0962c3c9
VS
15418
15419 intel_backlight_register(dev);
79e53945
JB
15420}
15421
4932e2c3
ID
15422void intel_connector_unregister(struct intel_connector *intel_connector)
15423{
15424 struct drm_connector *connector = &intel_connector->base;
15425
15426 intel_panel_destroy_backlight(connector);
34ea3d38 15427 drm_connector_unregister(connector);
4932e2c3
ID
15428}
15429
79e53945
JB
15430void intel_modeset_cleanup(struct drm_device *dev)
15431{
652c393a 15432 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 15433 struct drm_connector *connector;
652c393a 15434
2eb5252e
ID
15435 intel_disable_gt_powersave(dev);
15436
0962c3c9
VS
15437 intel_backlight_unregister(dev);
15438
fd0c0642
DV
15439 /*
15440 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15441 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15442 * experience fancy races otherwise.
15443 */
2aeb7d3a 15444 intel_irq_uninstall(dev_priv);
eb21b92b 15445
fd0c0642
DV
15446 /*
15447 * Due to the hpd irq storm handling the hotplug work can re-arm the
15448 * poll handlers. Hence disable polling after hpd handling is shut down.
15449 */
f87ea761 15450 drm_kms_helper_poll_fini(dev);
fd0c0642 15451
723bfd70
JB
15452 intel_unregister_dsm_handler();
15453
7733b49b 15454 intel_fbc_disable(dev_priv);
69341a5e 15455
1630fe75
CW
15456 /* flush any delayed tasks or pending work */
15457 flush_scheduled_work();
15458
db31af1d
JN
15459 /* destroy the backlight and sysfs files before encoders/connectors */
15460 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
15461 struct intel_connector *intel_connector;
15462
15463 intel_connector = to_intel_connector(connector);
15464 intel_connector->unregister(intel_connector);
db31af1d 15465 }
d9255d57 15466
79e53945 15467 drm_mode_config_cleanup(dev);
4d7bb011
DV
15468
15469 intel_cleanup_overlay(dev);
ae48434c
ID
15470
15471 mutex_lock(&dev->struct_mutex);
15472 intel_cleanup_gt_powersave(dev);
15473 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15474}
15475
f1c79df3
ZW
15476/*
15477 * Return which encoder is currently attached for connector.
15478 */
df0e9248 15479struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 15480{
df0e9248
CW
15481 return &intel_attached_encoder(connector)->base;
15482}
f1c79df3 15483
df0e9248
CW
15484void intel_connector_attach_encoder(struct intel_connector *connector,
15485 struct intel_encoder *encoder)
15486{
15487 connector->encoder = encoder;
15488 drm_mode_connector_attach_encoder(&connector->base,
15489 &encoder->base);
79e53945 15490}
28d52043
DA
15491
15492/*
15493 * set vga decode state - true == enable VGA decode
15494 */
15495int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15496{
15497 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 15498 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
15499 u16 gmch_ctrl;
15500
75fa041d
CW
15501 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15502 DRM_ERROR("failed to read control word\n");
15503 return -EIO;
15504 }
15505
c0cc8a55
CW
15506 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15507 return 0;
15508
28d52043
DA
15509 if (state)
15510 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15511 else
15512 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
15513
15514 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15515 DRM_ERROR("failed to write control word\n");
15516 return -EIO;
15517 }
15518
28d52043
DA
15519 return 0;
15520}
c4a1d9e4 15521
c4a1d9e4 15522struct intel_display_error_state {
ff57f1b0
PZ
15523
15524 u32 power_well_driver;
15525
63b66e5b
CW
15526 int num_transcoders;
15527
c4a1d9e4
CW
15528 struct intel_cursor_error_state {
15529 u32 control;
15530 u32 position;
15531 u32 base;
15532 u32 size;
52331309 15533 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
15534
15535 struct intel_pipe_error_state {
ddf9c536 15536 bool power_domain_on;
c4a1d9e4 15537 u32 source;
f301b1e1 15538 u32 stat;
52331309 15539 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
15540
15541 struct intel_plane_error_state {
15542 u32 control;
15543 u32 stride;
15544 u32 size;
15545 u32 pos;
15546 u32 addr;
15547 u32 surface;
15548 u32 tile_offset;
52331309 15549 } plane[I915_MAX_PIPES];
63b66e5b
CW
15550
15551 struct intel_transcoder_error_state {
ddf9c536 15552 bool power_domain_on;
63b66e5b
CW
15553 enum transcoder cpu_transcoder;
15554
15555 u32 conf;
15556
15557 u32 htotal;
15558 u32 hblank;
15559 u32 hsync;
15560 u32 vtotal;
15561 u32 vblank;
15562 u32 vsync;
15563 } transcoder[4];
c4a1d9e4
CW
15564};
15565
15566struct intel_display_error_state *
15567intel_display_capture_error_state(struct drm_device *dev)
15568{
fbee40df 15569 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 15570 struct intel_display_error_state *error;
63b66e5b
CW
15571 int transcoders[] = {
15572 TRANSCODER_A,
15573 TRANSCODER_B,
15574 TRANSCODER_C,
15575 TRANSCODER_EDP,
15576 };
c4a1d9e4
CW
15577 int i;
15578
63b66e5b
CW
15579 if (INTEL_INFO(dev)->num_pipes == 0)
15580 return NULL;
15581
9d1cb914 15582 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
15583 if (error == NULL)
15584 return NULL;
15585
190be112 15586 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
15587 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15588
055e393f 15589 for_each_pipe(dev_priv, i) {
ddf9c536 15590 error->pipe[i].power_domain_on =
f458ebbc
DV
15591 __intel_display_power_is_enabled(dev_priv,
15592 POWER_DOMAIN_PIPE(i));
ddf9c536 15593 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
15594 continue;
15595
5efb3e28
VS
15596 error->cursor[i].control = I915_READ(CURCNTR(i));
15597 error->cursor[i].position = I915_READ(CURPOS(i));
15598 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
15599
15600 error->plane[i].control = I915_READ(DSPCNTR(i));
15601 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 15602 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 15603 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
15604 error->plane[i].pos = I915_READ(DSPPOS(i));
15605 }
ca291363
PZ
15606 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15607 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
15608 if (INTEL_INFO(dev)->gen >= 4) {
15609 error->plane[i].surface = I915_READ(DSPSURF(i));
15610 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15611 }
15612
c4a1d9e4 15613 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 15614
3abfce77 15615 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 15616 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
15617 }
15618
15619 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15620 if (HAS_DDI(dev_priv->dev))
15621 error->num_transcoders++; /* Account for eDP. */
15622
15623 for (i = 0; i < error->num_transcoders; i++) {
15624 enum transcoder cpu_transcoder = transcoders[i];
15625
ddf9c536 15626 error->transcoder[i].power_domain_on =
f458ebbc 15627 __intel_display_power_is_enabled(dev_priv,
38cc1daf 15628 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 15629 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
15630 continue;
15631
63b66e5b
CW
15632 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15633
15634 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15635 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15636 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15637 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15638 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15639 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15640 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
15641 }
15642
15643 return error;
15644}
15645
edc3d884
MK
15646#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15647
c4a1d9e4 15648void
edc3d884 15649intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
15650 struct drm_device *dev,
15651 struct intel_display_error_state *error)
15652{
055e393f 15653 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
15654 int i;
15655
63b66e5b
CW
15656 if (!error)
15657 return;
15658
edc3d884 15659 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 15660 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 15661 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 15662 error->power_well_driver);
055e393f 15663 for_each_pipe(dev_priv, i) {
edc3d884 15664 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
15665 err_printf(m, " Power: %s\n",
15666 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 15667 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 15668 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
15669
15670 err_printf(m, "Plane [%d]:\n", i);
15671 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15672 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 15673 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
15674 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15675 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 15676 }
4b71a570 15677 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 15678 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 15679 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
15680 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15681 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
15682 }
15683
edc3d884
MK
15684 err_printf(m, "Cursor [%d]:\n", i);
15685 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15686 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15687 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 15688 }
63b66e5b
CW
15689
15690 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 15691 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 15692 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
15693 err_printf(m, " Power: %s\n",
15694 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
15695 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15696 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15697 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15698 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15699 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15700 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15701 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15702 }
c4a1d9e4 15703}
e2fcdaa9
VS
15704
15705void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15706{
15707 struct intel_crtc *crtc;
15708
15709 for_each_intel_crtc(dev, crtc) {
15710 struct intel_unpin_work *work;
e2fcdaa9 15711
5e2d7afc 15712 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
15713
15714 work = crtc->unpin_work;
15715
15716 if (work && work->event &&
15717 work->event->base.file_priv == file) {
15718 kfree(work->event);
15719 work->event = NULL;
15720 }
15721
5e2d7afc 15722 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
15723 }
15724}
This page took 5.883501 seconds and 5 git commands to generate.