sched: Debug nested sleeps
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
126 if (delta < 0)
127 return;
fe44d621
PZ
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
3e51f33f
PZ
130}
131
bf5c91ba
IM
132/*
133 * Debugging: various feature bits
134 */
f00b45c1 135
f00b45c1
PZ
136#define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
bf5c91ba 139const_debug unsigned int sysctl_sched_features =
391e43da 140#include "features.h"
f00b45c1
PZ
141 0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled) \
147 #name ,
148
1292531f 149static const char * const sched_feat_names[] = {
391e43da 150#include "features.h"
f00b45c1
PZ
151};
152
153#undef SCHED_FEAT
154
34f3a814 155static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 156{
f00b45c1
PZ
157 int i;
158
f8b6d1cc 159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 163 }
34f3a814 164 seq_puts(m, "\n");
f00b45c1 165
34f3a814 166 return 0;
f00b45c1
PZ
167}
168
f8b6d1cc
PZ
169#ifdef HAVE_JUMP_LABEL
170
c5905afb
IM
171#define jump_label_key__true STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
173
174#define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
c5905afb 177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
c5905afb
IM
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
187}
188
189static void sched_feat_enable(int i)
190{
c5905afb
IM
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
1a687c2e 199static int sched_feat_set(char *cmp)
f00b45c1 200{
f00b45c1 201 int i;
1a687c2e 202 int neg = 0;
f00b45c1 203
524429c3 204 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
205 neg = 1;
206 cmp += 3;
207 }
208
f8b6d1cc 209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 211 if (neg) {
f00b45c1 212 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
213 sched_feat_disable(i);
214 } else {
f00b45c1 215 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
216 sched_feat_enable(i);
217 }
f00b45c1
PZ
218 break;
219 }
220 }
221
1a687c2e
MG
222 return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228{
229 char buf[64];
230 char *cmp;
231 int i;
5cd08fbf 232 struct inode *inode;
1a687c2e
MG
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
5cd08fbf
JB
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
1a687c2e 246 i = sched_feat_set(cmp);
5cd08fbf 247 mutex_unlock(&inode->i_mutex);
f8b6d1cc 248 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
249 return -EINVAL;
250
42994724 251 *ppos += cnt;
f00b45c1
PZ
252
253 return cnt;
254}
255
34f3a814
LZ
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258 return single_open(filp, sched_feat_show, NULL);
259}
260
828c0950 261static const struct file_operations sched_feat_fops = {
34f3a814
LZ
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
f00b45c1
PZ
267};
268
269static __init int sched_init_debug(void)
270{
f00b45c1
PZ
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275}
276late_initcall(sched_init_debug);
f8b6d1cc 277#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 278
b82d9fdd
PZ
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
e9e9250b
PZ
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
fa85ae24 293/*
9f0c1e56 294 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
295 * default: 1s
296 */
9f0c1e56 297unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 298
029632fb 299__read_mostly int scheduler_running;
6892b75e 300
9f0c1e56
PZ
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
fa85ae24 306
0970d299 307/*
0122ec5b 308 * __task_rq_lock - lock the rq @p resides on.
b29739f9 309 */
70b97a7f 310static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
311 __acquires(rq->lock)
312{
0970d299
PZ
313 struct rq *rq;
314
0122ec5b
PZ
315 lockdep_assert_held(&p->pi_lock);
316
3a5c359a 317 for (;;) {
0970d299 318 rq = task_rq(p);
05fa785c 319 raw_spin_lock(&rq->lock);
cca26e80 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 321 return rq;
05fa785c 322 raw_spin_unlock(&rq->lock);
cca26e80
KT
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
cca26e80 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
1da177e4 349 }
1da177e4
LT
350}
351
a9957449 352static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
353 __releases(rq->lock)
354{
05fa785c 355 raw_spin_unlock(&rq->lock);
b29739f9
IM
356}
357
0122ec5b
PZ
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 360 __releases(rq->lock)
0122ec5b 361 __releases(p->pi_lock)
1da177e4 362{
0122ec5b
PZ
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
365}
366
1da177e4 367/*
cc2a73b5 368 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 369 */
a9957449 370static struct rq *this_rq_lock(void)
1da177e4
LT
371 __acquires(rq->lock)
372{
70b97a7f 373 struct rq *rq;
1da177e4
LT
374
375 local_irq_disable();
376 rq = this_rq();
05fa785c 377 raw_spin_lock(&rq->lock);
1da177e4
LT
378
379 return rq;
380}
381
8f4d37ec
PZ
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 385 */
8f4d37ec 386
8f4d37ec
PZ
387static void hrtick_clear(struct rq *rq)
388{
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391}
392
8f4d37ec
PZ
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
05fa785c 403 raw_spin_lock(&rq->lock);
3e51f33f 404 update_rq_clock(rq);
8f4d37ec 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 406 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
407
408 return HRTIMER_NORESTART;
409}
410
95e904c7 411#ifdef CONFIG_SMP
971ee28c
PZ
412
413static int __hrtick_restart(struct rq *rq)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
31656519
PZ
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
b328ca18 425{
31656519 426 struct rq *rq = arg;
b328ca18 427
05fa785c 428 raw_spin_lock(&rq->lock);
971ee28c 429 __hrtick_restart(rq);
31656519 430 rq->hrtick_csd_pending = 0;
05fa785c 431 raw_spin_unlock(&rq->lock);
b328ca18
PZ
432}
433
31656519
PZ
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
029632fb 439void hrtick_start(struct rq *rq, u64 delay)
b328ca18 440{
31656519 441 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 451
cc584b21 452 hrtimer_set_expires(timer, time);
31656519
PZ
453
454 if (rq == this_rq()) {
971ee28c 455 __hrtick_restart(rq);
31656519 456 } else if (!rq->hrtick_csd_pending) {
c46fff2a 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
458 rq->hrtick_csd_pending = 1;
459 }
b328ca18
PZ
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
31656519 474 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479}
480
fa748203 481static __init void init_hrtick(void)
b328ca18
PZ
482{
483 hotcpu_notifier(hotplug_hrtick, 0);
484}
31656519
PZ
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
029632fb 491void hrtick_start(struct rq *rq, u64 delay)
31656519 492{
7f1e2ca9 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 494 HRTIMER_MODE_REL_PINNED, 0);
31656519 495}
b328ca18 496
006c75f1 497static inline void init_hrtick(void)
8f4d37ec 498{
8f4d37ec 499}
31656519 500#endif /* CONFIG_SMP */
8f4d37ec 501
31656519 502static void init_rq_hrtick(struct rq *rq)
8f4d37ec 503{
31656519
PZ
504#ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
8f4d37ec 506
31656519
PZ
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510#endif
8f4d37ec 511
31656519
PZ
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
8f4d37ec 514}
006c75f1 515#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
8f4d37ec
PZ
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
b328ca18
PZ
524static inline void init_hrtick(void)
525{
526}
006c75f1 527#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 528
fd99f91a
PZ
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val) \
533({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541})
542
e3baac47 543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
e3baac47
PZ
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577}
578
fd99f91a
PZ
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582 set_tsk_need_resched(p);
583 return true;
584}
e3baac47
PZ
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589 return false;
590}
591#endif
fd99f91a
PZ
592#endif
593
c24d20db 594/*
8875125e 595 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
8875125e 601void resched_curr(struct rq *rq)
c24d20db 602{
8875125e 603 struct task_struct *curr = rq->curr;
c24d20db
IM
604 int cpu;
605
8875125e 606 lockdep_assert_held(&rq->lock);
c24d20db 607
8875125e 608 if (test_tsk_need_resched(curr))
c24d20db
IM
609 return;
610
8875125e 611 cpu = cpu_of(rq);
fd99f91a 612
f27dde8d 613 if (cpu == smp_processor_id()) {
8875125e 614 set_tsk_need_resched(curr);
f27dde8d 615 set_preempt_need_resched();
c24d20db 616 return;
f27dde8d 617 }
c24d20db 618
8875125e 619 if (set_nr_and_not_polling(curr))
c24d20db 620 smp_send_reschedule(cpu);
dfc68f29
AL
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
623}
624
029632fb 625void resched_cpu(int cpu)
c24d20db
IM
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
05fa785c 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 631 return;
8875125e 632 resched_curr(rq);
05fa785c 633 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 634}
06d8308c 635
b021fe3e 636#ifdef CONFIG_SMP
3451d024 637#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
6201b4d6 646int get_nohz_timer_target(int pinned)
83cd4fe2
VP
647{
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
6201b4d6
VK
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
057f3fad
PZ
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
83cd4fe2 663 }
057f3fad
PZ
664unlock:
665 rcu_read_unlock();
83cd4fe2
VP
666 return cpu;
667}
06d8308c
TG
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
1c20091e 678static void wake_up_idle_cpu(int cpu)
06d8308c
TG
679{
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
67b9ca70 685 if (set_nr_and_not_polling(rq->idle))
06d8308c 686 smp_send_reschedule(cpu);
dfc68f29
AL
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
689}
690
c5bfece2 691static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 692{
53c5fa16
FW
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
c5bfece2 699 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
53c5fa16 702 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
703 return true;
704 }
705
706 return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
c5bfece2 711 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
712 wake_up_idle_cpu(cpu);
713}
714
ca38062e 715static inline bool got_nohz_idle_kick(void)
45bf76df 716{
1c792db7 717 int cpu = smp_processor_id();
873b4c65
VG
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
45bf76df
IM
731}
732
3451d024 733#else /* CONFIG_NO_HZ_COMMON */
45bf76df 734
ca38062e 735static inline bool got_nohz_idle_kick(void)
2069dd75 736{
ca38062e 737 return false;
2069dd75
PZ
738}
739
3451d024 740#endif /* CONFIG_NO_HZ_COMMON */
d842de87 741
ce831b38
FW
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
3882ec64
FW
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
541b8264
VK
750 if (this_rq()->nr_running > 1)
751 return false;
ce831b38 752
541b8264 753 return true;
ce831b38
FW
754}
755#endif /* CONFIG_NO_HZ_FULL */
d842de87 756
029632fb 757void sched_avg_update(struct rq *rq)
18d95a28 758{
e9e9250b
PZ
759 s64 period = sched_avg_period();
760
78becc27 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
18d95a28
PZ
771}
772
6d6bc0ad 773#endif /* CONFIG_SMP */
18d95a28 774
a790de99
PT
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 777/*
8277434e
PT
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 782 */
029632fb 783int walk_tg_tree_from(struct task_group *from,
8277434e 784 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
785{
786 struct task_group *parent, *child;
eb755805 787 int ret;
c09595f6 788
8277434e
PT
789 parent = from;
790
c09595f6 791down:
eb755805
PZ
792 ret = (*down)(parent, data);
793 if (ret)
8277434e 794 goto out;
c09595f6
PZ
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799up:
800 continue;
801 }
eb755805 802 ret = (*up)(parent, data);
8277434e
PT
803 if (ret || parent == from)
804 goto out;
c09595f6
PZ
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
8277434e 810out:
eb755805 811 return ret;
c09595f6
PZ
812}
813
029632fb 814int tg_nop(struct task_group *tg, void *data)
eb755805 815{
e2b245f8 816 return 0;
eb755805 817}
18d95a28
PZ
818#endif
819
45bf76df
IM
820static void set_load_weight(struct task_struct *p)
821{
f05998d4
NR
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
dd41f596
IM
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
c8b28116 829 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 830 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
831 return;
832 }
71f8bd46 833
c8b28116 834 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 835 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
836}
837
371fd7e7 838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 839{
a64692a3 840 update_rq_clock(rq);
43148951 841 sched_info_queued(rq, p);
371fd7e7 842 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
843}
844
371fd7e7 845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 846{
a64692a3 847 update_rq_clock(rq);
43148951 848 sched_info_dequeued(rq, p);
371fd7e7 849 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
850}
851
029632fb 852void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
371fd7e7 857 enqueue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
029632fb 860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
371fd7e7 865 dequeue_task(rq, p, flags);
1e3c88bd
PZ
866}
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 902 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
095c0aa8 909 rq->prev_steal_time_rq += steal;
095c0aa8
GC
910 delta -= steal;
911 }
912#endif
913
fe44d621
PZ
914 rq->clock_task += delta;
915
095c0aa8 916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
918 sched_rt_avg_update(rq, irq_delta + steal);
919#endif
aa483808
VP
920}
921
34f971f6
PZ
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950}
951
14531189 952/*
dd41f596 953 * __normal_prio - return the priority that is based on the static prio
14531189 954 */
14531189
IM
955static inline int __normal_prio(struct task_struct *p)
956{
dd41f596 957 return p->static_prio;
14531189
IM
958}
959
b29739f9
IM
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
36c8b586 967static inline int normal_prio(struct task_struct *p)
b29739f9
IM
968{
969 int prio;
970
aab03e05
DF
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
b29739f9
IM
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
36c8b586 987static int effective_prio(struct task_struct *p)
b29739f9
IM
988{
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998}
999
1da177e4
LT
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
e69f6186
YB
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1005 */
36c8b586 1006inline int task_curr(const struct task_struct *p)
1da177e4
LT
1007{
1008 return cpu_curr(task_cpu(p)) == p;
1009}
1010
cb469845
SR
1011static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 const struct sched_class *prev_class,
da7a735e 1013 int oldprio)
cb469845
SR
1014{
1015 if (prev_class != p->sched_class) {
1016 if (prev_class->switched_from)
da7a735e
PZ
1017 prev_class->switched_from(rq, p);
1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1045 rq->skip_clock_update = 1;
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
dd41f596 1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1050{
e2912009
PZ
1051#ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
077614ee 1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1057 !p->on_rq);
0122ec5b
PZ
1058
1059#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1065 * see task_group().
6c6c54e1
PZ
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
0122ec5b
PZ
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072#endif
e2912009
PZ
1073#endif
1074
de1d7286 1075 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1076
0c69774e 1077 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1080 p->se.nr_migrations++;
a8b0ca17 1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1082 }
dd41f596
IM
1083
1084 __set_task_cpu(p, new_cpu);
c65cc870
IM
1085}
1086
ac66f547
PZ
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
da0c1e65 1089 if (task_on_rq_queued(p)) {
ac66f547
PZ
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107}
1108
1109struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
74602315
PZ
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
ac66f547
PZ
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143unlock:
1144 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1147
1148 return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
ac66f547
PZ
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
6acce3ef
PZ
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
ac66f547
PZ
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
286549dc 1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
ac66f547
PZ
1186 return ret;
1187}
1188
969c7921 1189struct migration_arg {
36c8b586 1190 struct task_struct *task;
1da177e4 1191 int dest_cpu;
70b97a7f 1192};
1da177e4 1193
969c7921
TH
1194static int migration_cpu_stop(void *data);
1195
1da177e4
LT
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
85ba2d86
RM
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1da177e4
LT
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
85ba2d86 1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1213{
1214 unsigned long flags;
da0c1e65 1215 int running, queued;
85ba2d86 1216 unsigned long ncsw;
70b97a7f 1217 struct rq *rq;
1da177e4 1218
3a5c359a
AK
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
85ba2d86
RM
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
3a5c359a 1242 cpu_relax();
85ba2d86 1243 }
fa490cfd 1244
3a5c359a
AK
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
27a9da65 1251 trace_sched_wait_task(p);
3a5c359a 1252 running = task_running(rq, p);
da0c1e65 1253 queued = task_on_rq_queued(p);
85ba2d86 1254 ncsw = 0;
f31e11d8 1255 if (!match_state || p->state == match_state)
93dcf55f 1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1257 task_rq_unlock(rq, p, &flags);
fa490cfd 1258
85ba2d86
RM
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
3a5c359a
AK
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
fa490cfd 1275
3a5c359a
AK
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
80dd99b3 1281 * So if it was still runnable (but just not actively
3a5c359a
AK
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
da0c1e65 1285 if (unlikely(queued)) {
8eb90c30
TG
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1290 continue;
1291 }
fa490cfd 1292
3a5c359a
AK
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
85ba2d86
RM
1300
1301 return ncsw;
1da177e4
LT
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
25985edc 1311 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
36c8b586 1317void kick_process(struct task_struct *p)
1da177e4
LT
1318{
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326}
b43e3521 1327EXPORT_SYMBOL_GPL(kick_process);
476d139c 1328#endif /* CONFIG_SMP */
1da177e4 1329
970b13ba 1330#ifdef CONFIG_SMP
30da688e 1331/*
013fdb80 1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1333 */
5da9a0fb
PZ
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
aa00d89c
TC
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
5da9a0fb 1340
aa00d89c
TC
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
2baab4e9 1358 }
5da9a0fb 1359
2baab4e9
PZ
1360 for (;;) {
1361 /* Any allowed, online CPU? */
e3831edd 1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
5da9a0fb 1369
2baab4e9
PZ
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
aac74dc4 1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1397 task_pid_nr(p), p->comm, cpu);
1398 }
5da9a0fb
PZ
1399 }
1400
1401 return dest_cpu;
1402}
1403
e2912009 1404/*
013fdb80 1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1406 */
970b13ba 1407static inline
ac66f547 1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1409{
ac66f547 1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1411
1412 /*
1413 * In order not to call set_task_cpu() on a blocking task we need
1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 * cpu.
1416 *
1417 * Since this is common to all placement strategies, this lives here.
1418 *
1419 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 * not worry about this generic constraint ]
1421 */
fa17b507 1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1423 !cpu_online(cpu)))
5da9a0fb 1424 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1425
1426 return cpu;
970b13ba 1427}
09a40af5
MG
1428
1429static void update_avg(u64 *avg, u64 sample)
1430{
1431 s64 diff = sample - *avg;
1432 *avg += diff >> 3;
1433}
970b13ba
PZ
1434#endif
1435
d7c01d27 1436static void
b84cb5df 1437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1438{
d7c01d27 1439#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1440 struct rq *rq = this_rq();
1441
d7c01d27
PZ
1442#ifdef CONFIG_SMP
1443 int this_cpu = smp_processor_id();
1444
1445 if (cpu == this_cpu) {
1446 schedstat_inc(rq, ttwu_local);
1447 schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 } else {
1449 struct sched_domain *sd;
1450
1451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1452 rcu_read_lock();
d7c01d27
PZ
1453 for_each_domain(this_cpu, sd) {
1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 break;
1457 }
1458 }
057f3fad 1459 rcu_read_unlock();
d7c01d27 1460 }
f339b9dc
PZ
1461
1462 if (wake_flags & WF_MIGRATED)
1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
d7c01d27
PZ
1465#endif /* CONFIG_SMP */
1466
1467 schedstat_inc(rq, ttwu_count);
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1469
1470 if (wake_flags & WF_SYNC)
9ed3811a 1471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1472
d7c01d27
PZ
1473#endif /* CONFIG_SCHEDSTATS */
1474}
1475
1476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477{
9ed3811a 1478 activate_task(rq, p, en_flags);
da0c1e65 1479 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1480
1481 /* if a worker is waking up, notify workqueue */
1482 if (p->flags & PF_WQ_WORKER)
1483 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1484}
1485
23f41eeb
PZ
1486/*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
89363381 1489static void
23f41eeb 1490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1491{
9ed3811a 1492 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1493 trace_sched_wakeup(p, true);
9ed3811a
TH
1494
1495 p->state = TASK_RUNNING;
1496#ifdef CONFIG_SMP
1497 if (p->sched_class->task_woken)
1498 p->sched_class->task_woken(rq, p);
1499
e69c6341 1500 if (rq->idle_stamp) {
78becc27 1501 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1502 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1503
abfafa54
JL
1504 update_avg(&rq->avg_idle, delta);
1505
1506 if (rq->avg_idle > max)
9ed3811a 1507 rq->avg_idle = max;
abfafa54 1508
9ed3811a
TH
1509 rq->idle_stamp = 0;
1510 }
1511#endif
1512}
1513
c05fbafb
PZ
1514static void
1515ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516{
1517#ifdef CONFIG_SMP
1518 if (p->sched_contributes_to_load)
1519 rq->nr_uninterruptible--;
1520#endif
1521
1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 ttwu_do_wakeup(rq, p, wake_flags);
1524}
1525
1526/*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532static int ttwu_remote(struct task_struct *p, int wake_flags)
1533{
1534 struct rq *rq;
1535 int ret = 0;
1536
1537 rq = __task_rq_lock(p);
da0c1e65 1538 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1539 /* check_preempt_curr() may use rq clock */
1540 update_rq_clock(rq);
c05fbafb
PZ
1541 ttwu_do_wakeup(rq, p, wake_flags);
1542 ret = 1;
1543 }
1544 __task_rq_unlock(rq);
1545
1546 return ret;
1547}
1548
317f3941 1549#ifdef CONFIG_SMP
e3baac47 1550void sched_ttwu_pending(void)
317f3941
PZ
1551{
1552 struct rq *rq = this_rq();
fa14ff4a
PZ
1553 struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 struct task_struct *p;
e3baac47 1555 unsigned long flags;
317f3941 1556
e3baac47
PZ
1557 if (!llist)
1558 return;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1561
fa14ff4a
PZ
1562 while (llist) {
1563 p = llist_entry(llist, struct task_struct, wake_entry);
1564 llist = llist_next(llist);
317f3941
PZ
1565 ttwu_do_activate(rq, p, 0);
1566 }
1567
e3baac47 1568 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1569}
1570
1571void scheduler_ipi(void)
1572{
f27dde8d
PZ
1573 /*
1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 * this IPI.
1577 */
8cb75e0c 1578 preempt_fold_need_resched();
f27dde8d 1579
fd2ac4f4 1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1581 return;
1582
1583 /*
1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 * traditionally all their work was done from the interrupt return
1586 * path. Now that we actually do some work, we need to make sure
1587 * we do call them.
1588 *
1589 * Some archs already do call them, luckily irq_enter/exit nest
1590 * properly.
1591 *
1592 * Arguably we should visit all archs and update all handlers,
1593 * however a fair share of IPIs are still resched only so this would
1594 * somewhat pessimize the simple resched case.
1595 */
1596 irq_enter();
fa14ff4a 1597 sched_ttwu_pending();
ca38062e
SS
1598
1599 /*
1600 * Check if someone kicked us for doing the nohz idle load balance.
1601 */
873b4c65 1602 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1603 this_rq()->idle_balance = 1;
ca38062e 1604 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1605 }
c5d753a5 1606 irq_exit();
317f3941
PZ
1607}
1608
1609static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610{
e3baac47
PZ
1611 struct rq *rq = cpu_rq(cpu);
1612
1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 if (!set_nr_if_polling(rq->idle))
1615 smp_send_reschedule(cpu);
1616 else
1617 trace_sched_wake_idle_without_ipi(cpu);
1618 }
317f3941 1619}
d6aa8f85 1620
f6be8af1
CL
1621void wake_up_if_idle(int cpu)
1622{
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long flags;
1625
1626 if (!is_idle_task(rq->curr))
1627 return;
1628
1629 if (set_nr_if_polling(rq->idle)) {
1630 trace_sched_wake_idle_without_ipi(cpu);
1631 } else {
1632 raw_spin_lock_irqsave(&rq->lock, flags);
1633 if (is_idle_task(rq->curr))
1634 smp_send_reschedule(cpu);
1635 /* Else cpu is not in idle, do nothing here */
1636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 }
1638}
1639
39be3501 1640bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1641{
1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643}
d6aa8f85 1644#endif /* CONFIG_SMP */
317f3941 1645
c05fbafb
PZ
1646static void ttwu_queue(struct task_struct *p, int cpu)
1647{
1648 struct rq *rq = cpu_rq(cpu);
1649
17d9f311 1650#if defined(CONFIG_SMP)
39be3501 1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1653 ttwu_queue_remote(p, cpu);
1654 return;
1655 }
1656#endif
1657
c05fbafb
PZ
1658 raw_spin_lock(&rq->lock);
1659 ttwu_do_activate(rq, p, 0);
1660 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1661}
1662
1663/**
1da177e4 1664 * try_to_wake_up - wake up a thread
9ed3811a 1665 * @p: the thread to be awakened
1da177e4 1666 * @state: the mask of task states that can be woken
9ed3811a 1667 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
e69f6186 1675 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1676 * or @state didn't match @p's state.
1da177e4 1677 */
e4a52bcb
PZ
1678static int
1679try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1680{
1da177e4 1681 unsigned long flags;
c05fbafb 1682 int cpu, success = 0;
2398f2c6 1683
e0acd0a6
ON
1684 /*
1685 * If we are going to wake up a thread waiting for CONDITION we
1686 * need to ensure that CONDITION=1 done by the caller can not be
1687 * reordered with p->state check below. This pairs with mb() in
1688 * set_current_state() the waiting thread does.
1689 */
1690 smp_mb__before_spinlock();
013fdb80 1691 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1692 if (!(p->state & state))
1da177e4
LT
1693 goto out;
1694
c05fbafb 1695 success = 1; /* we're going to change ->state */
1da177e4 1696 cpu = task_cpu(p);
1da177e4 1697
c05fbafb
PZ
1698 if (p->on_rq && ttwu_remote(p, wake_flags))
1699 goto stat;
1da177e4 1700
1da177e4 1701#ifdef CONFIG_SMP
e9c84311 1702 /*
c05fbafb
PZ
1703 * If the owning (remote) cpu is still in the middle of schedule() with
1704 * this task as prev, wait until its done referencing the task.
e9c84311 1705 */
f3e94786 1706 while (p->on_cpu)
e4a52bcb 1707 cpu_relax();
0970d299 1708 /*
e4a52bcb 1709 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1710 */
e4a52bcb 1711 smp_rmb();
1da177e4 1712
a8e4f2ea 1713 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1714 p->state = TASK_WAKING;
e7693a36 1715
e4a52bcb 1716 if (p->sched_class->task_waking)
74f8e4b2 1717 p->sched_class->task_waking(p);
efbbd05a 1718
ac66f547 1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1720 if (task_cpu(p) != cpu) {
1721 wake_flags |= WF_MIGRATED;
e4a52bcb 1722 set_task_cpu(p, cpu);
f339b9dc 1723 }
1da177e4 1724#endif /* CONFIG_SMP */
1da177e4 1725
c05fbafb
PZ
1726 ttwu_queue(p, cpu);
1727stat:
b84cb5df 1728 ttwu_stat(p, cpu, wake_flags);
1da177e4 1729out:
013fdb80 1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1731
1732 return success;
1733}
1734
21aa9af0
TH
1735/**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
2acca55e 1739 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1741 * the current task.
21aa9af0
TH
1742 */
1743static void try_to_wake_up_local(struct task_struct *p)
1744{
1745 struct rq *rq = task_rq(p);
21aa9af0 1746
383efcd0
TH
1747 if (WARN_ON_ONCE(rq != this_rq()) ||
1748 WARN_ON_ONCE(p == current))
1749 return;
1750
21aa9af0
TH
1751 lockdep_assert_held(&rq->lock);
1752
2acca55e
PZ
1753 if (!raw_spin_trylock(&p->pi_lock)) {
1754 raw_spin_unlock(&rq->lock);
1755 raw_spin_lock(&p->pi_lock);
1756 raw_spin_lock(&rq->lock);
1757 }
1758
21aa9af0 1759 if (!(p->state & TASK_NORMAL))
2acca55e 1760 goto out;
21aa9af0 1761
da0c1e65 1762 if (!task_on_rq_queued(p))
d7c01d27
PZ
1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
23f41eeb 1765 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1766 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1767out:
1768 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1769}
1770
50fa610a
DH
1771/**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
7ad5b3a5 1783int wake_up_process(struct task_struct *p)
1da177e4 1784{
9067ac85
ON
1785 WARN_ON(task_is_stopped_or_traced(p));
1786 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1787}
1da177e4
LT
1788EXPORT_SYMBOL(wake_up_process);
1789
7ad5b3a5 1790int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1791{
1792 return try_to_wake_up(p, state, 0);
1793}
1794
a5e7be3b
JL
1795/*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798void __dl_clear_params(struct task_struct *p)
1799{
1800 struct sched_dl_entity *dl_se = &p->dl;
1801
1802 dl_se->dl_runtime = 0;
1803 dl_se->dl_deadline = 0;
1804 dl_se->dl_period = 0;
1805 dl_se->flags = 0;
1806 dl_se->dl_bw = 0;
1807}
1808
1da177e4
LT
1809/*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
dd41f596
IM
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
5e1576ed 1815static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1816{
fd2f4419
PZ
1817 p->on_rq = 0;
1818
1819 p->se.on_rq = 0;
dd41f596
IM
1820 p->se.exec_start = 0;
1821 p->se.sum_exec_runtime = 0;
f6cf891c 1822 p->se.prev_sum_exec_runtime = 0;
6c594c21 1823 p->se.nr_migrations = 0;
da7a735e 1824 p->se.vruntime = 0;
fd2f4419 1825 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1826
1827#ifdef CONFIG_SCHEDSTATS
41acab88 1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1829#endif
476d139c 1830
aab03e05
DF
1831 RB_CLEAR_NODE(&p->dl.rb_node);
1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1833 __dl_clear_params(p);
aab03e05 1834
fa717060 1835 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1836
e107be36
AK
1837#ifdef CONFIG_PREEMPT_NOTIFIERS
1838 INIT_HLIST_HEAD(&p->preempt_notifiers);
1839#endif
cbee9f88
PZ
1840
1841#ifdef CONFIG_NUMA_BALANCING
1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1844 p->mm->numa_scan_seq = 0;
1845 }
1846
5e1576ed
RR
1847 if (clone_flags & CLONE_VM)
1848 p->numa_preferred_nid = current->numa_preferred_nid;
1849 else
1850 p->numa_preferred_nid = -1;
1851
cbee9f88
PZ
1852 p->node_stamp = 0ULL;
1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1855 p->numa_work.next = &p->numa_work;
ff1df896
RR
1856 p->numa_faults_memory = NULL;
1857 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1858 p->last_task_numa_placement = 0;
1859 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1860
1861 INIT_LIST_HEAD(&p->numa_entry);
1862 p->numa_group = NULL;
cbee9f88 1863#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1864}
1865
1a687c2e 1866#ifdef CONFIG_NUMA_BALANCING
3105b86a 1867#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1868void set_numabalancing_state(bool enabled)
1869{
1870 if (enabled)
1871 sched_feat_set("NUMA");
1872 else
1873 sched_feat_set("NO_NUMA");
1874}
3105b86a
MG
1875#else
1876__read_mostly bool numabalancing_enabled;
1877
1878void set_numabalancing_state(bool enabled)
1879{
1880 numabalancing_enabled = enabled;
dd41f596 1881}
3105b86a 1882#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1883
1884#ifdef CONFIG_PROC_SYSCTL
1885int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 void __user *buffer, size_t *lenp, loff_t *ppos)
1887{
1888 struct ctl_table t;
1889 int err;
1890 int state = numabalancing_enabled;
1891
1892 if (write && !capable(CAP_SYS_ADMIN))
1893 return -EPERM;
1894
1895 t = *table;
1896 t.data = &state;
1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 if (err < 0)
1899 return err;
1900 if (write)
1901 set_numabalancing_state(state);
1902 return err;
1903}
1904#endif
1905#endif
dd41f596
IM
1906
1907/*
1908 * fork()/clone()-time setup:
1909 */
aab03e05 1910int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1911{
0122ec5b 1912 unsigned long flags;
dd41f596
IM
1913 int cpu = get_cpu();
1914
5e1576ed 1915 __sched_fork(clone_flags, p);
06b83b5f 1916 /*
0017d735 1917 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1920 */
0017d735 1921 p->state = TASK_RUNNING;
dd41f596 1922
c350a04e
MG
1923 /*
1924 * Make sure we do not leak PI boosting priority to the child.
1925 */
1926 p->prio = current->normal_prio;
1927
b9dc29e7
MG
1928 /*
1929 * Revert to default priority/policy on fork if requested.
1930 */
1931 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1933 p->policy = SCHED_NORMAL;
6c697bdf 1934 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1935 p->rt_priority = 0;
1936 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 p->static_prio = NICE_TO_PRIO(0);
1938
1939 p->prio = p->normal_prio = __normal_prio(p);
1940 set_load_weight(p);
6c697bdf 1941
b9dc29e7
MG
1942 /*
1943 * We don't need the reset flag anymore after the fork. It has
1944 * fulfilled its duty:
1945 */
1946 p->sched_reset_on_fork = 0;
1947 }
ca94c442 1948
aab03e05
DF
1949 if (dl_prio(p->prio)) {
1950 put_cpu();
1951 return -EAGAIN;
1952 } else if (rt_prio(p->prio)) {
1953 p->sched_class = &rt_sched_class;
1954 } else {
2ddbf952 1955 p->sched_class = &fair_sched_class;
aab03e05 1956 }
b29739f9 1957
cd29fe6f
PZ
1958 if (p->sched_class->task_fork)
1959 p->sched_class->task_fork(p);
1960
86951599
PZ
1961 /*
1962 * The child is not yet in the pid-hash so no cgroup attach races,
1963 * and the cgroup is pinned to this child due to cgroup_fork()
1964 * is ran before sched_fork().
1965 *
1966 * Silence PROVE_RCU.
1967 */
0122ec5b 1968 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1969 set_task_cpu(p, cpu);
0122ec5b 1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1971
52f17b6c 1972#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1973 if (likely(sched_info_on()))
52f17b6c 1974 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1975#endif
3ca7a440
PZ
1976#if defined(CONFIG_SMP)
1977 p->on_cpu = 0;
4866cde0 1978#endif
01028747 1979 init_task_preempt_count(p);
806c09a7 1980#ifdef CONFIG_SMP
917b627d 1981 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1982 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1983#endif
917b627d 1984
476d139c 1985 put_cpu();
aab03e05 1986 return 0;
1da177e4
LT
1987}
1988
332ac17e
DF
1989unsigned long to_ratio(u64 period, u64 runtime)
1990{
1991 if (runtime == RUNTIME_INF)
1992 return 1ULL << 20;
1993
1994 /*
1995 * Doing this here saves a lot of checks in all
1996 * the calling paths, and returning zero seems
1997 * safe for them anyway.
1998 */
1999 if (period == 0)
2000 return 0;
2001
2002 return div64_u64(runtime << 20, period);
2003}
2004
2005#ifdef CONFIG_SMP
2006inline struct dl_bw *dl_bw_of(int i)
2007{
66339c31
KT
2008 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 "sched RCU must be held");
332ac17e
DF
2010 return &cpu_rq(i)->rd->dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e 2014{
de212f18
PZ
2015 struct root_domain *rd = cpu_rq(i)->rd;
2016 int cpus = 0;
2017
66339c31
KT
2018 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 "sched RCU must be held");
de212f18
PZ
2020 for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 cpus++;
2022
2023 return cpus;
332ac17e
DF
2024}
2025#else
2026inline struct dl_bw *dl_bw_of(int i)
2027{
2028 return &cpu_rq(i)->dl.dl_bw;
2029}
2030
de212f18 2031static inline int dl_bw_cpus(int i)
332ac17e
DF
2032{
2033 return 1;
2034}
2035#endif
2036
332ac17e
DF
2037/*
2038 * We must be sure that accepting a new task (or allowing changing the
2039 * parameters of an existing one) is consistent with the bandwidth
2040 * constraints. If yes, this function also accordingly updates the currently
2041 * allocated bandwidth to reflect the new situation.
2042 *
2043 * This function is called while holding p's rq->lock.
2044 */
2045static int dl_overflow(struct task_struct *p, int policy,
2046 const struct sched_attr *attr)
2047{
2048
2049 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2050 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2051 u64 runtime = attr->sched_runtime;
2052 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2053 int cpus, err = -1;
332ac17e
DF
2054
2055 if (new_bw == p->dl.dl_bw)
2056 return 0;
2057
2058 /*
2059 * Either if a task, enters, leave, or stays -deadline but changes
2060 * its parameters, we may need to update accordingly the total
2061 * allocated bandwidth of the container.
2062 */
2063 raw_spin_lock(&dl_b->lock);
de212f18 2064 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2065 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2066 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2067 __dl_add(dl_b, new_bw);
2068 err = 0;
2069 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2070 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2071 __dl_clear(dl_b, p->dl.dl_bw);
2072 __dl_add(dl_b, new_bw);
2073 err = 0;
2074 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2075 __dl_clear(dl_b, p->dl.dl_bw);
2076 err = 0;
2077 }
2078 raw_spin_unlock(&dl_b->lock);
2079
2080 return err;
2081}
2082
2083extern void init_dl_bw(struct dl_bw *dl_b);
2084
1da177e4
LT
2085/*
2086 * wake_up_new_task - wake up a newly created task for the first time.
2087 *
2088 * This function will do some initial scheduler statistics housekeeping
2089 * that must be done for every newly created context, then puts the task
2090 * on the runqueue and wakes it.
2091 */
3e51e3ed 2092void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2093{
2094 unsigned long flags;
dd41f596 2095 struct rq *rq;
fabf318e 2096
ab2515c4 2097 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2098#ifdef CONFIG_SMP
2099 /*
2100 * Fork balancing, do it here and not earlier because:
2101 * - cpus_allowed can change in the fork path
2102 * - any previously selected cpu might disappear through hotplug
fabf318e 2103 */
ac66f547 2104 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2105#endif
2106
a75cdaa9
AS
2107 /* Initialize new task's runnable average */
2108 init_task_runnable_average(p);
ab2515c4 2109 rq = __task_rq_lock(p);
cd29fe6f 2110 activate_task(rq, p, 0);
da0c1e65 2111 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2112 trace_sched_wakeup_new(p, true);
a7558e01 2113 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2114#ifdef CONFIG_SMP
efbbd05a
PZ
2115 if (p->sched_class->task_woken)
2116 p->sched_class->task_woken(rq, p);
9a897c5a 2117#endif
0122ec5b 2118 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2119}
2120
e107be36
AK
2121#ifdef CONFIG_PREEMPT_NOTIFIERS
2122
2123/**
80dd99b3 2124 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2125 * @notifier: notifier struct to register
e107be36
AK
2126 */
2127void preempt_notifier_register(struct preempt_notifier *notifier)
2128{
2129 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2130}
2131EXPORT_SYMBOL_GPL(preempt_notifier_register);
2132
2133/**
2134 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2135 * @notifier: notifier struct to unregister
e107be36
AK
2136 *
2137 * This is safe to call from within a preemption notifier.
2138 */
2139void preempt_notifier_unregister(struct preempt_notifier *notifier)
2140{
2141 hlist_del(&notifier->link);
2142}
2143EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2144
2145static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2146{
2147 struct preempt_notifier *notifier;
e107be36 2148
b67bfe0d 2149 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2150 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2151}
2152
2153static void
2154fire_sched_out_preempt_notifiers(struct task_struct *curr,
2155 struct task_struct *next)
2156{
2157 struct preempt_notifier *notifier;
e107be36 2158
b67bfe0d 2159 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2160 notifier->ops->sched_out(notifier, next);
2161}
2162
6d6bc0ad 2163#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2164
2165static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2166{
2167}
2168
2169static void
2170fire_sched_out_preempt_notifiers(struct task_struct *curr,
2171 struct task_struct *next)
2172{
2173}
2174
6d6bc0ad 2175#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2176
4866cde0
NP
2177/**
2178 * prepare_task_switch - prepare to switch tasks
2179 * @rq: the runqueue preparing to switch
421cee29 2180 * @prev: the current task that is being switched out
4866cde0
NP
2181 * @next: the task we are going to switch to.
2182 *
2183 * This is called with the rq lock held and interrupts off. It must
2184 * be paired with a subsequent finish_task_switch after the context
2185 * switch.
2186 *
2187 * prepare_task_switch sets up locking and calls architecture specific
2188 * hooks.
2189 */
e107be36
AK
2190static inline void
2191prepare_task_switch(struct rq *rq, struct task_struct *prev,
2192 struct task_struct *next)
4866cde0 2193{
895dd92c 2194 trace_sched_switch(prev, next);
43148951 2195 sched_info_switch(rq, prev, next);
fe4b04fa 2196 perf_event_task_sched_out(prev, next);
e107be36 2197 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2198 prepare_lock_switch(rq, next);
2199 prepare_arch_switch(next);
2200}
2201
1da177e4
LT
2202/**
2203 * finish_task_switch - clean up after a task-switch
2204 * @prev: the thread we just switched away from.
2205 *
4866cde0
NP
2206 * finish_task_switch must be called after the context switch, paired
2207 * with a prepare_task_switch call before the context switch.
2208 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2209 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2210 *
2211 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2212 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2213 * with the lock held can cause deadlocks; see schedule() for
2214 * details.)
dfa50b60
ON
2215 *
2216 * The context switch have flipped the stack from under us and restored the
2217 * local variables which were saved when this task called schedule() in the
2218 * past. prev == current is still correct but we need to recalculate this_rq
2219 * because prev may have moved to another CPU.
1da177e4 2220 */
dfa50b60 2221static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2222 __releases(rq->lock)
2223{
dfa50b60 2224 struct rq *rq = this_rq();
1da177e4 2225 struct mm_struct *mm = rq->prev_mm;
55a101f8 2226 long prev_state;
1da177e4
LT
2227
2228 rq->prev_mm = NULL;
2229
2230 /*
2231 * A task struct has one reference for the use as "current".
c394cc9f 2232 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2233 * schedule one last time. The schedule call will never return, and
2234 * the scheduled task must drop that reference.
c394cc9f 2235 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2236 * still held, otherwise prev could be scheduled on another cpu, die
2237 * there before we look at prev->state, and then the reference would
2238 * be dropped twice.
2239 * Manfred Spraul <manfred@colorfullife.com>
2240 */
55a101f8 2241 prev_state = prev->state;
bf9fae9f 2242 vtime_task_switch(prev);
4866cde0 2243 finish_arch_switch(prev);
a8d757ef 2244 perf_event_task_sched_in(prev, current);
4866cde0 2245 finish_lock_switch(rq, prev);
01f23e16 2246 finish_arch_post_lock_switch();
e8fa1362 2247
e107be36 2248 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2249 if (mm)
2250 mmdrop(mm);
c394cc9f 2251 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2252 if (prev->sched_class->task_dead)
2253 prev->sched_class->task_dead(prev);
2254
c6fd91f0 2255 /*
2256 * Remove function-return probe instances associated with this
2257 * task and put them back on the free list.
9761eea8 2258 */
c6fd91f0 2259 kprobe_flush_task(prev);
1da177e4 2260 put_task_struct(prev);
c6fd91f0 2261 }
99e5ada9
FW
2262
2263 tick_nohz_task_switch(current);
dfa50b60 2264 return rq;
1da177e4
LT
2265}
2266
3f029d3c
GH
2267#ifdef CONFIG_SMP
2268
3f029d3c
GH
2269/* rq->lock is NOT held, but preemption is disabled */
2270static inline void post_schedule(struct rq *rq)
2271{
2272 if (rq->post_schedule) {
2273 unsigned long flags;
2274
05fa785c 2275 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2276 if (rq->curr->sched_class->post_schedule)
2277 rq->curr->sched_class->post_schedule(rq);
05fa785c 2278 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2279
2280 rq->post_schedule = 0;
2281 }
2282}
2283
2284#else
da19ab51 2285
3f029d3c
GH
2286static inline void post_schedule(struct rq *rq)
2287{
1da177e4
LT
2288}
2289
3f029d3c
GH
2290#endif
2291
1da177e4
LT
2292/**
2293 * schedule_tail - first thing a freshly forked thread must call.
2294 * @prev: the thread we just switched away from.
2295 */
722a9f92 2296asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2297 __releases(rq->lock)
2298{
1a43a14a 2299 struct rq *rq;
70b97a7f 2300
1a43a14a
ON
2301 /* finish_task_switch() drops rq->lock and enables preemtion */
2302 preempt_disable();
dfa50b60 2303 rq = finish_task_switch(prev);
3f029d3c 2304 post_schedule(rq);
1a43a14a 2305 preempt_enable();
70b97a7f 2306
1da177e4 2307 if (current->set_child_tid)
b488893a 2308 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2309}
2310
2311/*
dfa50b60 2312 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2313 */
dfa50b60 2314static inline struct rq *
70b97a7f 2315context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2316 struct task_struct *next)
1da177e4 2317{
dd41f596 2318 struct mm_struct *mm, *oldmm;
1da177e4 2319
e107be36 2320 prepare_task_switch(rq, prev, next);
fe4b04fa 2321
dd41f596
IM
2322 mm = next->mm;
2323 oldmm = prev->active_mm;
9226d125
ZA
2324 /*
2325 * For paravirt, this is coupled with an exit in switch_to to
2326 * combine the page table reload and the switch backend into
2327 * one hypercall.
2328 */
224101ed 2329 arch_start_context_switch(prev);
9226d125 2330
31915ab4 2331 if (!mm) {
1da177e4
LT
2332 next->active_mm = oldmm;
2333 atomic_inc(&oldmm->mm_count);
2334 enter_lazy_tlb(oldmm, next);
2335 } else
2336 switch_mm(oldmm, mm, next);
2337
31915ab4 2338 if (!prev->mm) {
1da177e4 2339 prev->active_mm = NULL;
1da177e4
LT
2340 rq->prev_mm = oldmm;
2341 }
3a5f5e48
IM
2342 /*
2343 * Since the runqueue lock will be released by the next
2344 * task (which is an invalid locking op but in the case
2345 * of the scheduler it's an obvious special-case), so we
2346 * do an early lockdep release here:
2347 */
8a25d5de 2348 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2349
91d1aa43 2350 context_tracking_task_switch(prev, next);
1da177e4
LT
2351 /* Here we just switch the register state and the stack. */
2352 switch_to(prev, next, prev);
dd41f596 2353 barrier();
dfa50b60
ON
2354
2355 return finish_task_switch(prev);
1da177e4
LT
2356}
2357
2358/*
1c3e8264 2359 * nr_running and nr_context_switches:
1da177e4
LT
2360 *
2361 * externally visible scheduler statistics: current number of runnable
1c3e8264 2362 * threads, total number of context switches performed since bootup.
1da177e4
LT
2363 */
2364unsigned long nr_running(void)
2365{
2366 unsigned long i, sum = 0;
2367
2368 for_each_online_cpu(i)
2369 sum += cpu_rq(i)->nr_running;
2370
2371 return sum;
f711f609 2372}
1da177e4 2373
2ee507c4
TC
2374/*
2375 * Check if only the current task is running on the cpu.
2376 */
2377bool single_task_running(void)
2378{
2379 if (cpu_rq(smp_processor_id())->nr_running == 1)
2380 return true;
2381 else
2382 return false;
2383}
2384EXPORT_SYMBOL(single_task_running);
2385
1da177e4 2386unsigned long long nr_context_switches(void)
46cb4b7c 2387{
cc94abfc
SR
2388 int i;
2389 unsigned long long sum = 0;
46cb4b7c 2390
0a945022 2391 for_each_possible_cpu(i)
1da177e4 2392 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2393
1da177e4
LT
2394 return sum;
2395}
483b4ee6 2396
1da177e4
LT
2397unsigned long nr_iowait(void)
2398{
2399 unsigned long i, sum = 0;
483b4ee6 2400
0a945022 2401 for_each_possible_cpu(i)
1da177e4 2402 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2403
1da177e4
LT
2404 return sum;
2405}
483b4ee6 2406
8c215bd3 2407unsigned long nr_iowait_cpu(int cpu)
69d25870 2408{
8c215bd3 2409 struct rq *this = cpu_rq(cpu);
69d25870
AV
2410 return atomic_read(&this->nr_iowait);
2411}
46cb4b7c 2412
372ba8cb
MG
2413void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2414{
2415 struct rq *this = this_rq();
2416 *nr_waiters = atomic_read(&this->nr_iowait);
2417 *load = this->cpu_load[0];
2418}
2419
dd41f596 2420#ifdef CONFIG_SMP
8a0be9ef 2421
46cb4b7c 2422/*
38022906
PZ
2423 * sched_exec - execve() is a valuable balancing opportunity, because at
2424 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2425 */
38022906 2426void sched_exec(void)
46cb4b7c 2427{
38022906 2428 struct task_struct *p = current;
1da177e4 2429 unsigned long flags;
0017d735 2430 int dest_cpu;
46cb4b7c 2431
8f42ced9 2432 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2433 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2434 if (dest_cpu == smp_processor_id())
2435 goto unlock;
38022906 2436
8f42ced9 2437 if (likely(cpu_active(dest_cpu))) {
969c7921 2438 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2439
8f42ced9
PZ
2440 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2441 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2442 return;
2443 }
0017d735 2444unlock:
8f42ced9 2445 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2446}
dd41f596 2447
1da177e4
LT
2448#endif
2449
1da177e4 2450DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2451DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2452
2453EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2454EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2455
2456/*
c5f8d995 2457 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2458 * @p in case that task is currently running.
c5f8d995
HS
2459 *
2460 * Called with task_rq_lock() held on @rq.
1da177e4 2461 */
c5f8d995
HS
2462static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2463{
2464 u64 ns = 0;
2465
4036ac15
MG
2466 /*
2467 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2468 * project cycles that may never be accounted to this
2469 * thread, breaking clock_gettime().
2470 */
da0c1e65 2471 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2472 update_rq_clock(rq);
78becc27 2473 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2474 if ((s64)ns < 0)
2475 ns = 0;
2476 }
2477
2478 return ns;
2479}
2480
bb34d92f 2481unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2482{
1da177e4 2483 unsigned long flags;
41b86e9c 2484 struct rq *rq;
bb34d92f 2485 u64 ns = 0;
48f24c4d 2486
41b86e9c 2487 rq = task_rq_lock(p, &flags);
c5f8d995 2488 ns = do_task_delta_exec(p, rq);
0122ec5b 2489 task_rq_unlock(rq, p, &flags);
1508487e 2490
c5f8d995
HS
2491 return ns;
2492}
f06febc9 2493
c5f8d995
HS
2494/*
2495 * Return accounted runtime for the task.
2496 * In case the task is currently running, return the runtime plus current's
2497 * pending runtime that have not been accounted yet.
2498 */
2499unsigned long long task_sched_runtime(struct task_struct *p)
2500{
2501 unsigned long flags;
2502 struct rq *rq;
2503 u64 ns = 0;
2504
911b2898
PZ
2505#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2506 /*
2507 * 64-bit doesn't need locks to atomically read a 64bit value.
2508 * So we have a optimization chance when the task's delta_exec is 0.
2509 * Reading ->on_cpu is racy, but this is ok.
2510 *
2511 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2512 * If we race with it entering cpu, unaccounted time is 0. This is
2513 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2514 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2515 * been accounted, so we're correct here as well.
911b2898 2516 */
da0c1e65 2517 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2518 return p->se.sum_exec_runtime;
2519#endif
2520
c5f8d995
HS
2521 rq = task_rq_lock(p, &flags);
2522 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2523 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2524
2525 return ns;
2526}
48f24c4d 2527
7835b98b
CL
2528/*
2529 * This function gets called by the timer code, with HZ frequency.
2530 * We call it with interrupts disabled.
7835b98b
CL
2531 */
2532void scheduler_tick(void)
2533{
7835b98b
CL
2534 int cpu = smp_processor_id();
2535 struct rq *rq = cpu_rq(cpu);
dd41f596 2536 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2537
2538 sched_clock_tick();
dd41f596 2539
05fa785c 2540 raw_spin_lock(&rq->lock);
3e51f33f 2541 update_rq_clock(rq);
fa85ae24 2542 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2543 update_cpu_load_active(rq);
05fa785c 2544 raw_spin_unlock(&rq->lock);
7835b98b 2545
e9d2b064 2546 perf_event_task_tick();
e220d2dc 2547
e418e1c2 2548#ifdef CONFIG_SMP
6eb57e0d 2549 rq->idle_balance = idle_cpu(cpu);
7caff66f 2550 trigger_load_balance(rq);
e418e1c2 2551#endif
265f22a9 2552 rq_last_tick_reset(rq);
1da177e4
LT
2553}
2554
265f22a9
FW
2555#ifdef CONFIG_NO_HZ_FULL
2556/**
2557 * scheduler_tick_max_deferment
2558 *
2559 * Keep at least one tick per second when a single
2560 * active task is running because the scheduler doesn't
2561 * yet completely support full dynticks environment.
2562 *
2563 * This makes sure that uptime, CFS vruntime, load
2564 * balancing, etc... continue to move forward, even
2565 * with a very low granularity.
e69f6186
YB
2566 *
2567 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2568 */
2569u64 scheduler_tick_max_deferment(void)
2570{
2571 struct rq *rq = this_rq();
2572 unsigned long next, now = ACCESS_ONCE(jiffies);
2573
2574 next = rq->last_sched_tick + HZ;
2575
2576 if (time_before_eq(next, now))
2577 return 0;
2578
8fe8ff09 2579 return jiffies_to_nsecs(next - now);
1da177e4 2580}
265f22a9 2581#endif
1da177e4 2582
132380a0 2583notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2584{
2585 if (in_lock_functions(addr)) {
2586 addr = CALLER_ADDR2;
2587 if (in_lock_functions(addr))
2588 addr = CALLER_ADDR3;
2589 }
2590 return addr;
2591}
1da177e4 2592
7e49fcce
SR
2593#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2594 defined(CONFIG_PREEMPT_TRACER))
2595
edafe3a5 2596void preempt_count_add(int val)
1da177e4 2597{
6cd8a4bb 2598#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2599 /*
2600 * Underflow?
2601 */
9a11b49a
IM
2602 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2603 return;
6cd8a4bb 2604#endif
bdb43806 2605 __preempt_count_add(val);
6cd8a4bb 2606#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2607 /*
2608 * Spinlock count overflowing soon?
2609 */
33859f7f
MOS
2610 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2611 PREEMPT_MASK - 10);
6cd8a4bb 2612#endif
8f47b187
TG
2613 if (preempt_count() == val) {
2614 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2615#ifdef CONFIG_DEBUG_PREEMPT
2616 current->preempt_disable_ip = ip;
2617#endif
2618 trace_preempt_off(CALLER_ADDR0, ip);
2619 }
1da177e4 2620}
bdb43806 2621EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2622NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2623
edafe3a5 2624void preempt_count_sub(int val)
1da177e4 2625{
6cd8a4bb 2626#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2627 /*
2628 * Underflow?
2629 */
01e3eb82 2630 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2631 return;
1da177e4
LT
2632 /*
2633 * Is the spinlock portion underflowing?
2634 */
9a11b49a
IM
2635 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2636 !(preempt_count() & PREEMPT_MASK)))
2637 return;
6cd8a4bb 2638#endif
9a11b49a 2639
6cd8a4bb
SR
2640 if (preempt_count() == val)
2641 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2642 __preempt_count_sub(val);
1da177e4 2643}
bdb43806 2644EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2645NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2646
2647#endif
2648
2649/*
dd41f596 2650 * Print scheduling while atomic bug:
1da177e4 2651 */
dd41f596 2652static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2653{
664dfa65
DJ
2654 if (oops_in_progress)
2655 return;
2656
3df0fc5b
PZ
2657 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2658 prev->comm, prev->pid, preempt_count());
838225b4 2659
dd41f596 2660 debug_show_held_locks(prev);
e21f5b15 2661 print_modules();
dd41f596
IM
2662 if (irqs_disabled())
2663 print_irqtrace_events(prev);
8f47b187
TG
2664#ifdef CONFIG_DEBUG_PREEMPT
2665 if (in_atomic_preempt_off()) {
2666 pr_err("Preemption disabled at:");
2667 print_ip_sym(current->preempt_disable_ip);
2668 pr_cont("\n");
2669 }
2670#endif
6135fc1e 2671 dump_stack();
373d4d09 2672 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2673}
1da177e4 2674
dd41f596
IM
2675/*
2676 * Various schedule()-time debugging checks and statistics:
2677 */
2678static inline void schedule_debug(struct task_struct *prev)
2679{
0d9e2632
AT
2680#ifdef CONFIG_SCHED_STACK_END_CHECK
2681 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2682#endif
1da177e4 2683 /*
41a2d6cf 2684 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2685 * schedule() atomically, we ignore that path. Otherwise whine
2686 * if we are scheduling when we should not.
1da177e4 2687 */
192301e7 2688 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2689 __schedule_bug(prev);
b3fbab05 2690 rcu_sleep_check();
dd41f596 2691
1da177e4
LT
2692 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2693
2d72376b 2694 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2695}
2696
2697/*
2698 * Pick up the highest-prio task:
2699 */
2700static inline struct task_struct *
606dba2e 2701pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2702{
37e117c0 2703 const struct sched_class *class = &fair_sched_class;
dd41f596 2704 struct task_struct *p;
1da177e4
LT
2705
2706 /*
dd41f596
IM
2707 * Optimization: we know that if all tasks are in
2708 * the fair class we can call that function directly:
1da177e4 2709 */
37e117c0 2710 if (likely(prev->sched_class == class &&
38033c37 2711 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2712 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2713 if (unlikely(p == RETRY_TASK))
2714 goto again;
2715
2716 /* assumes fair_sched_class->next == idle_sched_class */
2717 if (unlikely(!p))
2718 p = idle_sched_class.pick_next_task(rq, prev);
2719
2720 return p;
1da177e4
LT
2721 }
2722
37e117c0 2723again:
34f971f6 2724 for_each_class(class) {
606dba2e 2725 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2726 if (p) {
2727 if (unlikely(p == RETRY_TASK))
2728 goto again;
dd41f596 2729 return p;
37e117c0 2730 }
dd41f596 2731 }
34f971f6
PZ
2732
2733 BUG(); /* the idle class will always have a runnable task */
dd41f596 2734}
1da177e4 2735
dd41f596 2736/*
c259e01a 2737 * __schedule() is the main scheduler function.
edde96ea
PE
2738 *
2739 * The main means of driving the scheduler and thus entering this function are:
2740 *
2741 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2742 *
2743 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2744 * paths. For example, see arch/x86/entry_64.S.
2745 *
2746 * To drive preemption between tasks, the scheduler sets the flag in timer
2747 * interrupt handler scheduler_tick().
2748 *
2749 * 3. Wakeups don't really cause entry into schedule(). They add a
2750 * task to the run-queue and that's it.
2751 *
2752 * Now, if the new task added to the run-queue preempts the current
2753 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2754 * called on the nearest possible occasion:
2755 *
2756 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2757 *
2758 * - in syscall or exception context, at the next outmost
2759 * preempt_enable(). (this might be as soon as the wake_up()'s
2760 * spin_unlock()!)
2761 *
2762 * - in IRQ context, return from interrupt-handler to
2763 * preemptible context
2764 *
2765 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2766 * then at the next:
2767 *
2768 * - cond_resched() call
2769 * - explicit schedule() call
2770 * - return from syscall or exception to user-space
2771 * - return from interrupt-handler to user-space
dd41f596 2772 */
c259e01a 2773static void __sched __schedule(void)
dd41f596
IM
2774{
2775 struct task_struct *prev, *next;
67ca7bde 2776 unsigned long *switch_count;
dd41f596 2777 struct rq *rq;
31656519 2778 int cpu;
dd41f596 2779
ff743345
PZ
2780need_resched:
2781 preempt_disable();
dd41f596
IM
2782 cpu = smp_processor_id();
2783 rq = cpu_rq(cpu);
25502a6c 2784 rcu_note_context_switch(cpu);
dd41f596 2785 prev = rq->curr;
dd41f596 2786
dd41f596 2787 schedule_debug(prev);
1da177e4 2788
31656519 2789 if (sched_feat(HRTICK))
f333fdc9 2790 hrtick_clear(rq);
8f4d37ec 2791
e0acd0a6
ON
2792 /*
2793 * Make sure that signal_pending_state()->signal_pending() below
2794 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2795 * done by the caller to avoid the race with signal_wake_up().
2796 */
2797 smp_mb__before_spinlock();
05fa785c 2798 raw_spin_lock_irq(&rq->lock);
1da177e4 2799
246d86b5 2800 switch_count = &prev->nivcsw;
1da177e4 2801 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2802 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2803 prev->state = TASK_RUNNING;
21aa9af0 2804 } else {
2acca55e
PZ
2805 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2806 prev->on_rq = 0;
2807
21aa9af0 2808 /*
2acca55e
PZ
2809 * If a worker went to sleep, notify and ask workqueue
2810 * whether it wants to wake up a task to maintain
2811 * concurrency.
21aa9af0
TH
2812 */
2813 if (prev->flags & PF_WQ_WORKER) {
2814 struct task_struct *to_wakeup;
2815
2816 to_wakeup = wq_worker_sleeping(prev, cpu);
2817 if (to_wakeup)
2818 try_to_wake_up_local(to_wakeup);
2819 }
21aa9af0 2820 }
dd41f596 2821 switch_count = &prev->nvcsw;
1da177e4
LT
2822 }
2823
da0c1e65 2824 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2825 update_rq_clock(rq);
2826
2827 next = pick_next_task(rq, prev);
f26f9aff 2828 clear_tsk_need_resched(prev);
f27dde8d 2829 clear_preempt_need_resched();
f26f9aff 2830 rq->skip_clock_update = 0;
1da177e4 2831
1da177e4 2832 if (likely(prev != next)) {
1da177e4
LT
2833 rq->nr_switches++;
2834 rq->curr = next;
2835 ++*switch_count;
2836
dfa50b60
ON
2837 rq = context_switch(rq, prev, next); /* unlocks the rq */
2838 cpu = cpu_of(rq);
1da177e4 2839 } else
05fa785c 2840 raw_spin_unlock_irq(&rq->lock);
1da177e4 2841
3f029d3c 2842 post_schedule(rq);
1da177e4 2843
ba74c144 2844 sched_preempt_enable_no_resched();
ff743345 2845 if (need_resched())
1da177e4
LT
2846 goto need_resched;
2847}
c259e01a 2848
9c40cef2
TG
2849static inline void sched_submit_work(struct task_struct *tsk)
2850{
3c7d5184 2851 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2852 return;
2853 /*
2854 * If we are going to sleep and we have plugged IO queued,
2855 * make sure to submit it to avoid deadlocks.
2856 */
2857 if (blk_needs_flush_plug(tsk))
2858 blk_schedule_flush_plug(tsk);
2859}
2860
722a9f92 2861asmlinkage __visible void __sched schedule(void)
c259e01a 2862{
9c40cef2
TG
2863 struct task_struct *tsk = current;
2864
2865 sched_submit_work(tsk);
c259e01a
TG
2866 __schedule();
2867}
1da177e4
LT
2868EXPORT_SYMBOL(schedule);
2869
91d1aa43 2870#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2871asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2872{
2873 /*
2874 * If we come here after a random call to set_need_resched(),
2875 * or we have been woken up remotely but the IPI has not yet arrived,
2876 * we haven't yet exited the RCU idle mode. Do it here manually until
2877 * we find a better solution.
2878 */
91d1aa43 2879 user_exit();
20ab65e3 2880 schedule();
91d1aa43 2881 user_enter();
20ab65e3
FW
2882}
2883#endif
2884
c5491ea7
TG
2885/**
2886 * schedule_preempt_disabled - called with preemption disabled
2887 *
2888 * Returns with preemption disabled. Note: preempt_count must be 1
2889 */
2890void __sched schedule_preempt_disabled(void)
2891{
ba74c144 2892 sched_preempt_enable_no_resched();
c5491ea7
TG
2893 schedule();
2894 preempt_disable();
2895}
2896
1da177e4
LT
2897#ifdef CONFIG_PREEMPT
2898/*
2ed6e34f 2899 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2900 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2901 * occur there and call schedule directly.
2902 */
722a9f92 2903asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2904{
1da177e4
LT
2905 /*
2906 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2907 * we do not want to preempt the current task. Just return..
1da177e4 2908 */
fbb00b56 2909 if (likely(!preemptible()))
1da177e4
LT
2910 return;
2911
3a5c359a 2912 do {
bdb43806 2913 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2914 __schedule();
bdb43806 2915 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2916
3a5c359a
AK
2917 /*
2918 * Check again in case we missed a preemption opportunity
2919 * between schedule and now.
2920 */
2921 barrier();
5ed0cec0 2922 } while (need_resched());
1da177e4 2923}
376e2424 2924NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2925EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2926
2927#ifdef CONFIG_CONTEXT_TRACKING
2928/**
2929 * preempt_schedule_context - preempt_schedule called by tracing
2930 *
2931 * The tracing infrastructure uses preempt_enable_notrace to prevent
2932 * recursion and tracing preempt enabling caused by the tracing
2933 * infrastructure itself. But as tracing can happen in areas coming
2934 * from userspace or just about to enter userspace, a preempt enable
2935 * can occur before user_exit() is called. This will cause the scheduler
2936 * to be called when the system is still in usermode.
2937 *
2938 * To prevent this, the preempt_enable_notrace will use this function
2939 * instead of preempt_schedule() to exit user context if needed before
2940 * calling the scheduler.
2941 */
2942asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2943{
2944 enum ctx_state prev_ctx;
2945
2946 if (likely(!preemptible()))
2947 return;
2948
2949 do {
2950 __preempt_count_add(PREEMPT_ACTIVE);
2951 /*
2952 * Needs preempt disabled in case user_exit() is traced
2953 * and the tracer calls preempt_enable_notrace() causing
2954 * an infinite recursion.
2955 */
2956 prev_ctx = exception_enter();
2957 __schedule();
2958 exception_exit(prev_ctx);
2959
2960 __preempt_count_sub(PREEMPT_ACTIVE);
2961 barrier();
2962 } while (need_resched());
2963}
2964EXPORT_SYMBOL_GPL(preempt_schedule_context);
2965#endif /* CONFIG_CONTEXT_TRACKING */
2966
32e475d7 2967#endif /* CONFIG_PREEMPT */
1da177e4
LT
2968
2969/*
2ed6e34f 2970 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2971 * off of irq context.
2972 * Note, that this is called and return with irqs disabled. This will
2973 * protect us against recursive calling from irq.
2974 */
722a9f92 2975asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2976{
b22366cd 2977 enum ctx_state prev_state;
6478d880 2978
2ed6e34f 2979 /* Catch callers which need to be fixed */
f27dde8d 2980 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2981
b22366cd
FW
2982 prev_state = exception_enter();
2983
3a5c359a 2984 do {
bdb43806 2985 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2986 local_irq_enable();
c259e01a 2987 __schedule();
3a5c359a 2988 local_irq_disable();
bdb43806 2989 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2990
3a5c359a
AK
2991 /*
2992 * Check again in case we missed a preemption opportunity
2993 * between schedule and now.
2994 */
2995 barrier();
5ed0cec0 2996 } while (need_resched());
b22366cd
FW
2997
2998 exception_exit(prev_state);
1da177e4
LT
2999}
3000
63859d4f 3001int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3002 void *key)
1da177e4 3003{
63859d4f 3004 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3005}
1da177e4
LT
3006EXPORT_SYMBOL(default_wake_function);
3007
b29739f9
IM
3008#ifdef CONFIG_RT_MUTEXES
3009
3010/*
3011 * rt_mutex_setprio - set the current priority of a task
3012 * @p: task
3013 * @prio: prio value (kernel-internal form)
3014 *
3015 * This function changes the 'effective' priority of a task. It does
3016 * not touch ->normal_prio like __setscheduler().
3017 *
c365c292
TG
3018 * Used by the rt_mutex code to implement priority inheritance
3019 * logic. Call site only calls if the priority of the task changed.
b29739f9 3020 */
36c8b586 3021void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3022{
da0c1e65 3023 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3024 struct rq *rq;
83ab0aa0 3025 const struct sched_class *prev_class;
b29739f9 3026
aab03e05 3027 BUG_ON(prio > MAX_PRIO);
b29739f9 3028
0122ec5b 3029 rq = __task_rq_lock(p);
b29739f9 3030
1c4dd99b
TG
3031 /*
3032 * Idle task boosting is a nono in general. There is one
3033 * exception, when PREEMPT_RT and NOHZ is active:
3034 *
3035 * The idle task calls get_next_timer_interrupt() and holds
3036 * the timer wheel base->lock on the CPU and another CPU wants
3037 * to access the timer (probably to cancel it). We can safely
3038 * ignore the boosting request, as the idle CPU runs this code
3039 * with interrupts disabled and will complete the lock
3040 * protected section without being interrupted. So there is no
3041 * real need to boost.
3042 */
3043 if (unlikely(p == rq->idle)) {
3044 WARN_ON(p != rq->curr);
3045 WARN_ON(p->pi_blocked_on);
3046 goto out_unlock;
3047 }
3048
a8027073 3049 trace_sched_pi_setprio(p, prio);
d5f9f942 3050 oldprio = p->prio;
83ab0aa0 3051 prev_class = p->sched_class;
da0c1e65 3052 queued = task_on_rq_queued(p);
051a1d1a 3053 running = task_current(rq, p);
da0c1e65 3054 if (queued)
69be72c1 3055 dequeue_task(rq, p, 0);
0e1f3483 3056 if (running)
f3cd1c4e 3057 put_prev_task(rq, p);
dd41f596 3058
2d3d891d
DF
3059 /*
3060 * Boosting condition are:
3061 * 1. -rt task is running and holds mutex A
3062 * --> -dl task blocks on mutex A
3063 *
3064 * 2. -dl task is running and holds mutex A
3065 * --> -dl task blocks on mutex A and could preempt the
3066 * running task
3067 */
3068 if (dl_prio(prio)) {
466af29b
ON
3069 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3070 if (!dl_prio(p->normal_prio) ||
3071 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3072 p->dl.dl_boosted = 1;
3073 p->dl.dl_throttled = 0;
3074 enqueue_flag = ENQUEUE_REPLENISH;
3075 } else
3076 p->dl.dl_boosted = 0;
aab03e05 3077 p->sched_class = &dl_sched_class;
2d3d891d
DF
3078 } else if (rt_prio(prio)) {
3079 if (dl_prio(oldprio))
3080 p->dl.dl_boosted = 0;
3081 if (oldprio < prio)
3082 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3083 p->sched_class = &rt_sched_class;
2d3d891d
DF
3084 } else {
3085 if (dl_prio(oldprio))
3086 p->dl.dl_boosted = 0;
dd41f596 3087 p->sched_class = &fair_sched_class;
2d3d891d 3088 }
dd41f596 3089
b29739f9
IM
3090 p->prio = prio;
3091
0e1f3483
HS
3092 if (running)
3093 p->sched_class->set_curr_task(rq);
da0c1e65 3094 if (queued)
2d3d891d 3095 enqueue_task(rq, p, enqueue_flag);
cb469845 3096
da7a735e 3097 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3098out_unlock:
0122ec5b 3099 __task_rq_unlock(rq);
b29739f9 3100}
b29739f9 3101#endif
d50dde5a 3102
36c8b586 3103void set_user_nice(struct task_struct *p, long nice)
1da177e4 3104{
da0c1e65 3105 int old_prio, delta, queued;
1da177e4 3106 unsigned long flags;
70b97a7f 3107 struct rq *rq;
1da177e4 3108
75e45d51 3109 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3110 return;
3111 /*
3112 * We have to be careful, if called from sys_setpriority(),
3113 * the task might be in the middle of scheduling on another CPU.
3114 */
3115 rq = task_rq_lock(p, &flags);
3116 /*
3117 * The RT priorities are set via sched_setscheduler(), but we still
3118 * allow the 'normal' nice value to be set - but as expected
3119 * it wont have any effect on scheduling until the task is
aab03e05 3120 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3121 */
aab03e05 3122 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3123 p->static_prio = NICE_TO_PRIO(nice);
3124 goto out_unlock;
3125 }
da0c1e65
KT
3126 queued = task_on_rq_queued(p);
3127 if (queued)
69be72c1 3128 dequeue_task(rq, p, 0);
1da177e4 3129
1da177e4 3130 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3131 set_load_weight(p);
b29739f9
IM
3132 old_prio = p->prio;
3133 p->prio = effective_prio(p);
3134 delta = p->prio - old_prio;
1da177e4 3135
da0c1e65 3136 if (queued) {
371fd7e7 3137 enqueue_task(rq, p, 0);
1da177e4 3138 /*
d5f9f942
AM
3139 * If the task increased its priority or is running and
3140 * lowered its priority, then reschedule its CPU:
1da177e4 3141 */
d5f9f942 3142 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3143 resched_curr(rq);
1da177e4
LT
3144 }
3145out_unlock:
0122ec5b 3146 task_rq_unlock(rq, p, &flags);
1da177e4 3147}
1da177e4
LT
3148EXPORT_SYMBOL(set_user_nice);
3149
e43379f1
MM
3150/*
3151 * can_nice - check if a task can reduce its nice value
3152 * @p: task
3153 * @nice: nice value
3154 */
36c8b586 3155int can_nice(const struct task_struct *p, const int nice)
e43379f1 3156{
024f4747 3157 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3158 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3159
78d7d407 3160 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3161 capable(CAP_SYS_NICE));
3162}
3163
1da177e4
LT
3164#ifdef __ARCH_WANT_SYS_NICE
3165
3166/*
3167 * sys_nice - change the priority of the current process.
3168 * @increment: priority increment
3169 *
3170 * sys_setpriority is a more generic, but much slower function that
3171 * does similar things.
3172 */
5add95d4 3173SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3174{
48f24c4d 3175 long nice, retval;
1da177e4
LT
3176
3177 /*
3178 * Setpriority might change our priority at the same moment.
3179 * We don't have to worry. Conceptually one call occurs first
3180 * and we have a single winner.
3181 */
a9467fa3 3182 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3183 nice = task_nice(current) + increment;
1da177e4 3184
a9467fa3 3185 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3186 if (increment < 0 && !can_nice(current, nice))
3187 return -EPERM;
3188
1da177e4
LT
3189 retval = security_task_setnice(current, nice);
3190 if (retval)
3191 return retval;
3192
3193 set_user_nice(current, nice);
3194 return 0;
3195}
3196
3197#endif
3198
3199/**
3200 * task_prio - return the priority value of a given task.
3201 * @p: the task in question.
3202 *
e69f6186 3203 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3204 * RT tasks are offset by -200. Normal tasks are centered
3205 * around 0, value goes from -16 to +15.
3206 */
36c8b586 3207int task_prio(const struct task_struct *p)
1da177e4
LT
3208{
3209 return p->prio - MAX_RT_PRIO;
3210}
3211
1da177e4
LT
3212/**
3213 * idle_cpu - is a given cpu idle currently?
3214 * @cpu: the processor in question.
e69f6186
YB
3215 *
3216 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3217 */
3218int idle_cpu(int cpu)
3219{
908a3283
TG
3220 struct rq *rq = cpu_rq(cpu);
3221
3222 if (rq->curr != rq->idle)
3223 return 0;
3224
3225 if (rq->nr_running)
3226 return 0;
3227
3228#ifdef CONFIG_SMP
3229 if (!llist_empty(&rq->wake_list))
3230 return 0;
3231#endif
3232
3233 return 1;
1da177e4
LT
3234}
3235
1da177e4
LT
3236/**
3237 * idle_task - return the idle task for a given cpu.
3238 * @cpu: the processor in question.
e69f6186
YB
3239 *
3240 * Return: The idle task for the cpu @cpu.
1da177e4 3241 */
36c8b586 3242struct task_struct *idle_task(int cpu)
1da177e4
LT
3243{
3244 return cpu_rq(cpu)->idle;
3245}
3246
3247/**
3248 * find_process_by_pid - find a process with a matching PID value.
3249 * @pid: the pid in question.
e69f6186
YB
3250 *
3251 * The task of @pid, if found. %NULL otherwise.
1da177e4 3252 */
a9957449 3253static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3254{
228ebcbe 3255 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3256}
3257
aab03e05
DF
3258/*
3259 * This function initializes the sched_dl_entity of a newly becoming
3260 * SCHED_DEADLINE task.
3261 *
3262 * Only the static values are considered here, the actual runtime and the
3263 * absolute deadline will be properly calculated when the task is enqueued
3264 * for the first time with its new policy.
3265 */
3266static void
3267__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3268{
3269 struct sched_dl_entity *dl_se = &p->dl;
3270
3271 init_dl_task_timer(dl_se);
3272 dl_se->dl_runtime = attr->sched_runtime;
3273 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3274 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3275 dl_se->flags = attr->sched_flags;
332ac17e 3276 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3277 dl_se->dl_throttled = 0;
3278 dl_se->dl_new = 1;
5bfd126e 3279 dl_se->dl_yielded = 0;
aab03e05
DF
3280}
3281
c13db6b1
SR
3282/*
3283 * sched_setparam() passes in -1 for its policy, to let the functions
3284 * it calls know not to change it.
3285 */
3286#define SETPARAM_POLICY -1
3287
c365c292
TG
3288static void __setscheduler_params(struct task_struct *p,
3289 const struct sched_attr *attr)
1da177e4 3290{
d50dde5a
DF
3291 int policy = attr->sched_policy;
3292
c13db6b1 3293 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3294 policy = p->policy;
3295
1da177e4 3296 p->policy = policy;
d50dde5a 3297
aab03e05
DF
3298 if (dl_policy(policy))
3299 __setparam_dl(p, attr);
39fd8fd2 3300 else if (fair_policy(policy))
d50dde5a
DF
3301 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3302
39fd8fd2
PZ
3303 /*
3304 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3305 * !rt_policy. Always setting this ensures that things like
3306 * getparam()/getattr() don't report silly values for !rt tasks.
3307 */
3308 p->rt_priority = attr->sched_priority;
383afd09 3309 p->normal_prio = normal_prio(p);
c365c292
TG
3310 set_load_weight(p);
3311}
39fd8fd2 3312
c365c292
TG
3313/* Actually do priority change: must hold pi & rq lock. */
3314static void __setscheduler(struct rq *rq, struct task_struct *p,
3315 const struct sched_attr *attr)
3316{
3317 __setscheduler_params(p, attr);
d50dde5a 3318
383afd09
SR
3319 /*
3320 * If we get here, there was no pi waiters boosting the
3321 * task. It is safe to use the normal prio.
3322 */
3323 p->prio = normal_prio(p);
3324
aab03e05
DF
3325 if (dl_prio(p->prio))
3326 p->sched_class = &dl_sched_class;
3327 else if (rt_prio(p->prio))
ffd44db5
PZ
3328 p->sched_class = &rt_sched_class;
3329 else
3330 p->sched_class = &fair_sched_class;
1da177e4 3331}
aab03e05
DF
3332
3333static void
3334__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3335{
3336 struct sched_dl_entity *dl_se = &p->dl;
3337
3338 attr->sched_priority = p->rt_priority;
3339 attr->sched_runtime = dl_se->dl_runtime;
3340 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3341 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3342 attr->sched_flags = dl_se->flags;
3343}
3344
3345/*
3346 * This function validates the new parameters of a -deadline task.
3347 * We ask for the deadline not being zero, and greater or equal
755378a4 3348 * than the runtime, as well as the period of being zero or
332ac17e 3349 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3350 * user parameters are above the internal resolution of 1us (we
3351 * check sched_runtime only since it is always the smaller one) and
3352 * below 2^63 ns (we have to check both sched_deadline and
3353 * sched_period, as the latter can be zero).
aab03e05
DF
3354 */
3355static bool
3356__checkparam_dl(const struct sched_attr *attr)
3357{
b0827819
JL
3358 /* deadline != 0 */
3359 if (attr->sched_deadline == 0)
3360 return false;
3361
3362 /*
3363 * Since we truncate DL_SCALE bits, make sure we're at least
3364 * that big.
3365 */
3366 if (attr->sched_runtime < (1ULL << DL_SCALE))
3367 return false;
3368
3369 /*
3370 * Since we use the MSB for wrap-around and sign issues, make
3371 * sure it's not set (mind that period can be equal to zero).
3372 */
3373 if (attr->sched_deadline & (1ULL << 63) ||
3374 attr->sched_period & (1ULL << 63))
3375 return false;
3376
3377 /* runtime <= deadline <= period (if period != 0) */
3378 if ((attr->sched_period != 0 &&
3379 attr->sched_period < attr->sched_deadline) ||
3380 attr->sched_deadline < attr->sched_runtime)
3381 return false;
3382
3383 return true;
aab03e05
DF
3384}
3385
c69e8d9c
DH
3386/*
3387 * check the target process has a UID that matches the current process's
3388 */
3389static bool check_same_owner(struct task_struct *p)
3390{
3391 const struct cred *cred = current_cred(), *pcred;
3392 bool match;
3393
3394 rcu_read_lock();
3395 pcred = __task_cred(p);
9c806aa0
EB
3396 match = (uid_eq(cred->euid, pcred->euid) ||
3397 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3398 rcu_read_unlock();
3399 return match;
3400}
3401
d50dde5a
DF
3402static int __sched_setscheduler(struct task_struct *p,
3403 const struct sched_attr *attr,
3404 bool user)
1da177e4 3405{
383afd09
SR
3406 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3407 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3408 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3409 int policy = attr->sched_policy;
1da177e4 3410 unsigned long flags;
83ab0aa0 3411 const struct sched_class *prev_class;
70b97a7f 3412 struct rq *rq;
ca94c442 3413 int reset_on_fork;
1da177e4 3414
66e5393a
SR
3415 /* may grab non-irq protected spin_locks */
3416 BUG_ON(in_interrupt());
1da177e4
LT
3417recheck:
3418 /* double check policy once rq lock held */
ca94c442
LP
3419 if (policy < 0) {
3420 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3421 policy = oldpolicy = p->policy;
ca94c442 3422 } else {
7479f3c9 3423 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3424
aab03e05
DF
3425 if (policy != SCHED_DEADLINE &&
3426 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3427 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3428 policy != SCHED_IDLE)
3429 return -EINVAL;
3430 }
3431
7479f3c9
PZ
3432 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3433 return -EINVAL;
3434
1da177e4
LT
3435 /*
3436 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3437 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3438 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3439 */
0bb040a4 3440 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3441 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3442 return -EINVAL;
aab03e05
DF
3443 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3444 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3445 return -EINVAL;
3446
37e4ab3f
OC
3447 /*
3448 * Allow unprivileged RT tasks to decrease priority:
3449 */
961ccddd 3450 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3451 if (fair_policy(policy)) {
d0ea0268 3452 if (attr->sched_nice < task_nice(p) &&
eaad4513 3453 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3454 return -EPERM;
3455 }
3456
e05606d3 3457 if (rt_policy(policy)) {
a44702e8
ON
3458 unsigned long rlim_rtprio =
3459 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3460
3461 /* can't set/change the rt policy */
3462 if (policy != p->policy && !rlim_rtprio)
3463 return -EPERM;
3464
3465 /* can't increase priority */
d50dde5a
DF
3466 if (attr->sched_priority > p->rt_priority &&
3467 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3468 return -EPERM;
3469 }
c02aa73b 3470
d44753b8
JL
3471 /*
3472 * Can't set/change SCHED_DEADLINE policy at all for now
3473 * (safest behavior); in the future we would like to allow
3474 * unprivileged DL tasks to increase their relative deadline
3475 * or reduce their runtime (both ways reducing utilization)
3476 */
3477 if (dl_policy(policy))
3478 return -EPERM;
3479
dd41f596 3480 /*
c02aa73b
DH
3481 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3482 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3483 */
c02aa73b 3484 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3485 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3486 return -EPERM;
3487 }
5fe1d75f 3488
37e4ab3f 3489 /* can't change other user's priorities */
c69e8d9c 3490 if (!check_same_owner(p))
37e4ab3f 3491 return -EPERM;
ca94c442
LP
3492
3493 /* Normal users shall not reset the sched_reset_on_fork flag */
3494 if (p->sched_reset_on_fork && !reset_on_fork)
3495 return -EPERM;
37e4ab3f 3496 }
1da177e4 3497
725aad24 3498 if (user) {
b0ae1981 3499 retval = security_task_setscheduler(p);
725aad24
JF
3500 if (retval)
3501 return retval;
3502 }
3503
b29739f9
IM
3504 /*
3505 * make sure no PI-waiters arrive (or leave) while we are
3506 * changing the priority of the task:
0122ec5b 3507 *
25985edc 3508 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3509 * runqueue lock must be held.
3510 */
0122ec5b 3511 rq = task_rq_lock(p, &flags);
dc61b1d6 3512
34f971f6
PZ
3513 /*
3514 * Changing the policy of the stop threads its a very bad idea
3515 */
3516 if (p == rq->stop) {
0122ec5b 3517 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3518 return -EINVAL;
3519 }
3520
a51e9198 3521 /*
d6b1e911
TG
3522 * If not changing anything there's no need to proceed further,
3523 * but store a possible modification of reset_on_fork.
a51e9198 3524 */
d50dde5a 3525 if (unlikely(policy == p->policy)) {
d0ea0268 3526 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3527 goto change;
3528 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3529 goto change;
aab03e05
DF
3530 if (dl_policy(policy))
3531 goto change;
d50dde5a 3532
d6b1e911 3533 p->sched_reset_on_fork = reset_on_fork;
45afb173 3534 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3535 return 0;
3536 }
d50dde5a 3537change:
a51e9198 3538
dc61b1d6 3539 if (user) {
332ac17e 3540#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3541 /*
3542 * Do not allow realtime tasks into groups that have no runtime
3543 * assigned.
3544 */
3545 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3546 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3547 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3548 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3549 return -EPERM;
3550 }
dc61b1d6 3551#endif
332ac17e
DF
3552#ifdef CONFIG_SMP
3553 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3554 cpumask_t *span = rq->rd->span;
332ac17e
DF
3555
3556 /*
3557 * Don't allow tasks with an affinity mask smaller than
3558 * the entire root_domain to become SCHED_DEADLINE. We
3559 * will also fail if there's no bandwidth available.
3560 */
e4099a5e
PZ
3561 if (!cpumask_subset(span, &p->cpus_allowed) ||
3562 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3563 task_rq_unlock(rq, p, &flags);
3564 return -EPERM;
3565 }
3566 }
3567#endif
3568 }
dc61b1d6 3569
1da177e4
LT
3570 /* recheck policy now with rq lock held */
3571 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3572 policy = oldpolicy = -1;
0122ec5b 3573 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3574 goto recheck;
3575 }
332ac17e
DF
3576
3577 /*
3578 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3579 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3580 * is available.
3581 */
e4099a5e 3582 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3583 task_rq_unlock(rq, p, &flags);
3584 return -EBUSY;
3585 }
3586
c365c292
TG
3587 p->sched_reset_on_fork = reset_on_fork;
3588 oldprio = p->prio;
3589
3590 /*
3591 * Special case for priority boosted tasks.
3592 *
3593 * If the new priority is lower or equal (user space view)
3594 * than the current (boosted) priority, we just store the new
3595 * normal parameters and do not touch the scheduler class and
3596 * the runqueue. This will be done when the task deboost
3597 * itself.
3598 */
3599 if (rt_mutex_check_prio(p, newprio)) {
3600 __setscheduler_params(p, attr);
3601 task_rq_unlock(rq, p, &flags);
3602 return 0;
3603 }
3604
da0c1e65 3605 queued = task_on_rq_queued(p);
051a1d1a 3606 running = task_current(rq, p);
da0c1e65 3607 if (queued)
4ca9b72b 3608 dequeue_task(rq, p, 0);
0e1f3483 3609 if (running)
f3cd1c4e 3610 put_prev_task(rq, p);
f6b53205 3611
83ab0aa0 3612 prev_class = p->sched_class;
d50dde5a 3613 __setscheduler(rq, p, attr);
f6b53205 3614
0e1f3483
HS
3615 if (running)
3616 p->sched_class->set_curr_task(rq);
da0c1e65 3617 if (queued) {
81a44c54
TG
3618 /*
3619 * We enqueue to tail when the priority of a task is
3620 * increased (user space view).
3621 */
3622 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3623 }
cb469845 3624
da7a735e 3625 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3626 task_rq_unlock(rq, p, &flags);
b29739f9 3627
95e02ca9
TG
3628 rt_mutex_adjust_pi(p);
3629
1da177e4
LT
3630 return 0;
3631}
961ccddd 3632
7479f3c9
PZ
3633static int _sched_setscheduler(struct task_struct *p, int policy,
3634 const struct sched_param *param, bool check)
3635{
3636 struct sched_attr attr = {
3637 .sched_policy = policy,
3638 .sched_priority = param->sched_priority,
3639 .sched_nice = PRIO_TO_NICE(p->static_prio),
3640 };
3641
c13db6b1
SR
3642 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3643 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3644 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3645 policy &= ~SCHED_RESET_ON_FORK;
3646 attr.sched_policy = policy;
3647 }
3648
3649 return __sched_setscheduler(p, &attr, check);
3650}
961ccddd
RR
3651/**
3652 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3653 * @p: the task in question.
3654 * @policy: new policy.
3655 * @param: structure containing the new RT priority.
3656 *
e69f6186
YB
3657 * Return: 0 on success. An error code otherwise.
3658 *
961ccddd
RR
3659 * NOTE that the task may be already dead.
3660 */
3661int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3662 const struct sched_param *param)
961ccddd 3663{
7479f3c9 3664 return _sched_setscheduler(p, policy, param, true);
961ccddd 3665}
1da177e4
LT
3666EXPORT_SYMBOL_GPL(sched_setscheduler);
3667
d50dde5a
DF
3668int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3669{
3670 return __sched_setscheduler(p, attr, true);
3671}
3672EXPORT_SYMBOL_GPL(sched_setattr);
3673
961ccddd
RR
3674/**
3675 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3676 * @p: the task in question.
3677 * @policy: new policy.
3678 * @param: structure containing the new RT priority.
3679 *
3680 * Just like sched_setscheduler, only don't bother checking if the
3681 * current context has permission. For example, this is needed in
3682 * stop_machine(): we create temporary high priority worker threads,
3683 * but our caller might not have that capability.
e69f6186
YB
3684 *
3685 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3686 */
3687int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3688 const struct sched_param *param)
961ccddd 3689{
7479f3c9 3690 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3691}
3692
95cdf3b7
IM
3693static int
3694do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3695{
1da177e4
LT
3696 struct sched_param lparam;
3697 struct task_struct *p;
36c8b586 3698 int retval;
1da177e4
LT
3699
3700 if (!param || pid < 0)
3701 return -EINVAL;
3702 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3703 return -EFAULT;
5fe1d75f
ON
3704
3705 rcu_read_lock();
3706 retval = -ESRCH;
1da177e4 3707 p = find_process_by_pid(pid);
5fe1d75f
ON
3708 if (p != NULL)
3709 retval = sched_setscheduler(p, policy, &lparam);
3710 rcu_read_unlock();
36c8b586 3711
1da177e4
LT
3712 return retval;
3713}
3714
d50dde5a
DF
3715/*
3716 * Mimics kernel/events/core.c perf_copy_attr().
3717 */
3718static int sched_copy_attr(struct sched_attr __user *uattr,
3719 struct sched_attr *attr)
3720{
3721 u32 size;
3722 int ret;
3723
3724 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3725 return -EFAULT;
3726
3727 /*
3728 * zero the full structure, so that a short copy will be nice.
3729 */
3730 memset(attr, 0, sizeof(*attr));
3731
3732 ret = get_user(size, &uattr->size);
3733 if (ret)
3734 return ret;
3735
3736 if (size > PAGE_SIZE) /* silly large */
3737 goto err_size;
3738
3739 if (!size) /* abi compat */
3740 size = SCHED_ATTR_SIZE_VER0;
3741
3742 if (size < SCHED_ATTR_SIZE_VER0)
3743 goto err_size;
3744
3745 /*
3746 * If we're handed a bigger struct than we know of,
3747 * ensure all the unknown bits are 0 - i.e. new
3748 * user-space does not rely on any kernel feature
3749 * extensions we dont know about yet.
3750 */
3751 if (size > sizeof(*attr)) {
3752 unsigned char __user *addr;
3753 unsigned char __user *end;
3754 unsigned char val;
3755
3756 addr = (void __user *)uattr + sizeof(*attr);
3757 end = (void __user *)uattr + size;
3758
3759 for (; addr < end; addr++) {
3760 ret = get_user(val, addr);
3761 if (ret)
3762 return ret;
3763 if (val)
3764 goto err_size;
3765 }
3766 size = sizeof(*attr);
3767 }
3768
3769 ret = copy_from_user(attr, uattr, size);
3770 if (ret)
3771 return -EFAULT;
3772
3773 /*
3774 * XXX: do we want to be lenient like existing syscalls; or do we want
3775 * to be strict and return an error on out-of-bounds values?
3776 */
75e45d51 3777 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3778
e78c7bca 3779 return 0;
d50dde5a
DF
3780
3781err_size:
3782 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3783 return -E2BIG;
d50dde5a
DF
3784}
3785
1da177e4
LT
3786/**
3787 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3788 * @pid: the pid in question.
3789 * @policy: new policy.
3790 * @param: structure containing the new RT priority.
e69f6186
YB
3791 *
3792 * Return: 0 on success. An error code otherwise.
1da177e4 3793 */
5add95d4
HC
3794SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3795 struct sched_param __user *, param)
1da177e4 3796{
c21761f1
JB
3797 /* negative values for policy are not valid */
3798 if (policy < 0)
3799 return -EINVAL;
3800
1da177e4
LT
3801 return do_sched_setscheduler(pid, policy, param);
3802}
3803
3804/**
3805 * sys_sched_setparam - set/change the RT priority of a thread
3806 * @pid: the pid in question.
3807 * @param: structure containing the new RT priority.
e69f6186
YB
3808 *
3809 * Return: 0 on success. An error code otherwise.
1da177e4 3810 */
5add95d4 3811SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3812{
c13db6b1 3813 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3814}
3815
d50dde5a
DF
3816/**
3817 * sys_sched_setattr - same as above, but with extended sched_attr
3818 * @pid: the pid in question.
5778fccf 3819 * @uattr: structure containing the extended parameters.
db66d756 3820 * @flags: for future extension.
d50dde5a 3821 */
6d35ab48
PZ
3822SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3823 unsigned int, flags)
d50dde5a
DF
3824{
3825 struct sched_attr attr;
3826 struct task_struct *p;
3827 int retval;
3828
6d35ab48 3829 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3830 return -EINVAL;
3831
143cf23d
MK
3832 retval = sched_copy_attr(uattr, &attr);
3833 if (retval)
3834 return retval;
d50dde5a 3835
b14ed2c2 3836 if ((int)attr.sched_policy < 0)
dbdb2275 3837 return -EINVAL;
d50dde5a
DF
3838
3839 rcu_read_lock();
3840 retval = -ESRCH;
3841 p = find_process_by_pid(pid);
3842 if (p != NULL)
3843 retval = sched_setattr(p, &attr);
3844 rcu_read_unlock();
3845
3846 return retval;
3847}
3848
1da177e4
LT
3849/**
3850 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3851 * @pid: the pid in question.
e69f6186
YB
3852 *
3853 * Return: On success, the policy of the thread. Otherwise, a negative error
3854 * code.
1da177e4 3855 */
5add95d4 3856SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3857{
36c8b586 3858 struct task_struct *p;
3a5c359a 3859 int retval;
1da177e4
LT
3860
3861 if (pid < 0)
3a5c359a 3862 return -EINVAL;
1da177e4
LT
3863
3864 retval = -ESRCH;
5fe85be0 3865 rcu_read_lock();
1da177e4
LT
3866 p = find_process_by_pid(pid);
3867 if (p) {
3868 retval = security_task_getscheduler(p);
3869 if (!retval)
ca94c442
LP
3870 retval = p->policy
3871 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3872 }
5fe85be0 3873 rcu_read_unlock();
1da177e4
LT
3874 return retval;
3875}
3876
3877/**
ca94c442 3878 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3879 * @pid: the pid in question.
3880 * @param: structure containing the RT priority.
e69f6186
YB
3881 *
3882 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3883 * code.
1da177e4 3884 */
5add95d4 3885SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3886{
ce5f7f82 3887 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3888 struct task_struct *p;
3a5c359a 3889 int retval;
1da177e4
LT
3890
3891 if (!param || pid < 0)
3a5c359a 3892 return -EINVAL;
1da177e4 3893
5fe85be0 3894 rcu_read_lock();
1da177e4
LT
3895 p = find_process_by_pid(pid);
3896 retval = -ESRCH;
3897 if (!p)
3898 goto out_unlock;
3899
3900 retval = security_task_getscheduler(p);
3901 if (retval)
3902 goto out_unlock;
3903
ce5f7f82
PZ
3904 if (task_has_rt_policy(p))
3905 lp.sched_priority = p->rt_priority;
5fe85be0 3906 rcu_read_unlock();
1da177e4
LT
3907
3908 /*
3909 * This one might sleep, we cannot do it with a spinlock held ...
3910 */
3911 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3912
1da177e4
LT
3913 return retval;
3914
3915out_unlock:
5fe85be0 3916 rcu_read_unlock();
1da177e4
LT
3917 return retval;
3918}
3919
d50dde5a
DF
3920static int sched_read_attr(struct sched_attr __user *uattr,
3921 struct sched_attr *attr,
3922 unsigned int usize)
3923{
3924 int ret;
3925
3926 if (!access_ok(VERIFY_WRITE, uattr, usize))
3927 return -EFAULT;
3928
3929 /*
3930 * If we're handed a smaller struct than we know of,
3931 * ensure all the unknown bits are 0 - i.e. old
3932 * user-space does not get uncomplete information.
3933 */
3934 if (usize < sizeof(*attr)) {
3935 unsigned char *addr;
3936 unsigned char *end;
3937
3938 addr = (void *)attr + usize;
3939 end = (void *)attr + sizeof(*attr);
3940
3941 for (; addr < end; addr++) {
3942 if (*addr)
22400674 3943 return -EFBIG;
d50dde5a
DF
3944 }
3945
3946 attr->size = usize;
3947 }
3948
4efbc454 3949 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3950 if (ret)
3951 return -EFAULT;
3952
22400674 3953 return 0;
d50dde5a
DF
3954}
3955
3956/**
aab03e05 3957 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3958 * @pid: the pid in question.
5778fccf 3959 * @uattr: structure containing the extended parameters.
d50dde5a 3960 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3961 * @flags: for future extension.
d50dde5a 3962 */
6d35ab48
PZ
3963SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3964 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3965{
3966 struct sched_attr attr = {
3967 .size = sizeof(struct sched_attr),
3968 };
3969 struct task_struct *p;
3970 int retval;
3971
3972 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3973 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3974 return -EINVAL;
3975
3976 rcu_read_lock();
3977 p = find_process_by_pid(pid);
3978 retval = -ESRCH;
3979 if (!p)
3980 goto out_unlock;
3981
3982 retval = security_task_getscheduler(p);
3983 if (retval)
3984 goto out_unlock;
3985
3986 attr.sched_policy = p->policy;
7479f3c9
PZ
3987 if (p->sched_reset_on_fork)
3988 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3989 if (task_has_dl_policy(p))
3990 __getparam_dl(p, &attr);
3991 else if (task_has_rt_policy(p))
d50dde5a
DF
3992 attr.sched_priority = p->rt_priority;
3993 else
d0ea0268 3994 attr.sched_nice = task_nice(p);
d50dde5a
DF
3995
3996 rcu_read_unlock();
3997
3998 retval = sched_read_attr(uattr, &attr, size);
3999 return retval;
4000
4001out_unlock:
4002 rcu_read_unlock();
4003 return retval;
4004}
4005
96f874e2 4006long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4007{
5a16f3d3 4008 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4009 struct task_struct *p;
4010 int retval;
1da177e4 4011
23f5d142 4012 rcu_read_lock();
1da177e4
LT
4013
4014 p = find_process_by_pid(pid);
4015 if (!p) {
23f5d142 4016 rcu_read_unlock();
1da177e4
LT
4017 return -ESRCH;
4018 }
4019
23f5d142 4020 /* Prevent p going away */
1da177e4 4021 get_task_struct(p);
23f5d142 4022 rcu_read_unlock();
1da177e4 4023
14a40ffc
TH
4024 if (p->flags & PF_NO_SETAFFINITY) {
4025 retval = -EINVAL;
4026 goto out_put_task;
4027 }
5a16f3d3
RR
4028 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4029 retval = -ENOMEM;
4030 goto out_put_task;
4031 }
4032 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4033 retval = -ENOMEM;
4034 goto out_free_cpus_allowed;
4035 }
1da177e4 4036 retval = -EPERM;
4c44aaaf
EB
4037 if (!check_same_owner(p)) {
4038 rcu_read_lock();
4039 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4040 rcu_read_unlock();
16303ab2 4041 goto out_free_new_mask;
4c44aaaf
EB
4042 }
4043 rcu_read_unlock();
4044 }
1da177e4 4045
b0ae1981 4046 retval = security_task_setscheduler(p);
e7834f8f 4047 if (retval)
16303ab2 4048 goto out_free_new_mask;
e7834f8f 4049
e4099a5e
PZ
4050
4051 cpuset_cpus_allowed(p, cpus_allowed);
4052 cpumask_and(new_mask, in_mask, cpus_allowed);
4053
332ac17e
DF
4054 /*
4055 * Since bandwidth control happens on root_domain basis,
4056 * if admission test is enabled, we only admit -deadline
4057 * tasks allowed to run on all the CPUs in the task's
4058 * root_domain.
4059 */
4060#ifdef CONFIG_SMP
f1e3a093
KT
4061 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4062 rcu_read_lock();
4063 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4064 retval = -EBUSY;
f1e3a093 4065 rcu_read_unlock();
16303ab2 4066 goto out_free_new_mask;
332ac17e 4067 }
f1e3a093 4068 rcu_read_unlock();
332ac17e
DF
4069 }
4070#endif
49246274 4071again:
5a16f3d3 4072 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4073
8707d8b8 4074 if (!retval) {
5a16f3d3
RR
4075 cpuset_cpus_allowed(p, cpus_allowed);
4076 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4077 /*
4078 * We must have raced with a concurrent cpuset
4079 * update. Just reset the cpus_allowed to the
4080 * cpuset's cpus_allowed
4081 */
5a16f3d3 4082 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4083 goto again;
4084 }
4085 }
16303ab2 4086out_free_new_mask:
5a16f3d3
RR
4087 free_cpumask_var(new_mask);
4088out_free_cpus_allowed:
4089 free_cpumask_var(cpus_allowed);
4090out_put_task:
1da177e4 4091 put_task_struct(p);
1da177e4
LT
4092 return retval;
4093}
4094
4095static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4096 struct cpumask *new_mask)
1da177e4 4097{
96f874e2
RR
4098 if (len < cpumask_size())
4099 cpumask_clear(new_mask);
4100 else if (len > cpumask_size())
4101 len = cpumask_size();
4102
1da177e4
LT
4103 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4104}
4105
4106/**
4107 * sys_sched_setaffinity - set the cpu affinity of a process
4108 * @pid: pid of the process
4109 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4110 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4111 *
4112 * Return: 0 on success. An error code otherwise.
1da177e4 4113 */
5add95d4
HC
4114SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4115 unsigned long __user *, user_mask_ptr)
1da177e4 4116{
5a16f3d3 4117 cpumask_var_t new_mask;
1da177e4
LT
4118 int retval;
4119
5a16f3d3
RR
4120 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4121 return -ENOMEM;
1da177e4 4122
5a16f3d3
RR
4123 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4124 if (retval == 0)
4125 retval = sched_setaffinity(pid, new_mask);
4126 free_cpumask_var(new_mask);
4127 return retval;
1da177e4
LT
4128}
4129
96f874e2 4130long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4131{
36c8b586 4132 struct task_struct *p;
31605683 4133 unsigned long flags;
1da177e4 4134 int retval;
1da177e4 4135
23f5d142 4136 rcu_read_lock();
1da177e4
LT
4137
4138 retval = -ESRCH;
4139 p = find_process_by_pid(pid);
4140 if (!p)
4141 goto out_unlock;
4142
e7834f8f
DQ
4143 retval = security_task_getscheduler(p);
4144 if (retval)
4145 goto out_unlock;
4146
013fdb80 4147 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4148 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4149 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4150
4151out_unlock:
23f5d142 4152 rcu_read_unlock();
1da177e4 4153
9531b62f 4154 return retval;
1da177e4
LT
4155}
4156
4157/**
4158 * sys_sched_getaffinity - get the cpu affinity of a process
4159 * @pid: pid of the process
4160 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4161 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4162 *
4163 * Return: 0 on success. An error code otherwise.
1da177e4 4164 */
5add95d4
HC
4165SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4166 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4167{
4168 int ret;
f17c8607 4169 cpumask_var_t mask;
1da177e4 4170
84fba5ec 4171 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4172 return -EINVAL;
4173 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4174 return -EINVAL;
4175
f17c8607
RR
4176 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4177 return -ENOMEM;
1da177e4 4178
f17c8607
RR
4179 ret = sched_getaffinity(pid, mask);
4180 if (ret == 0) {
8bc037fb 4181 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4182
4183 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4184 ret = -EFAULT;
4185 else
cd3d8031 4186 ret = retlen;
f17c8607
RR
4187 }
4188 free_cpumask_var(mask);
1da177e4 4189
f17c8607 4190 return ret;
1da177e4
LT
4191}
4192
4193/**
4194 * sys_sched_yield - yield the current processor to other threads.
4195 *
dd41f596
IM
4196 * This function yields the current CPU to other tasks. If there are no
4197 * other threads running on this CPU then this function will return.
e69f6186
YB
4198 *
4199 * Return: 0.
1da177e4 4200 */
5add95d4 4201SYSCALL_DEFINE0(sched_yield)
1da177e4 4202{
70b97a7f 4203 struct rq *rq = this_rq_lock();
1da177e4 4204
2d72376b 4205 schedstat_inc(rq, yld_count);
4530d7ab 4206 current->sched_class->yield_task(rq);
1da177e4
LT
4207
4208 /*
4209 * Since we are going to call schedule() anyway, there's
4210 * no need to preempt or enable interrupts:
4211 */
4212 __release(rq->lock);
8a25d5de 4213 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4214 do_raw_spin_unlock(&rq->lock);
ba74c144 4215 sched_preempt_enable_no_resched();
1da177e4
LT
4216
4217 schedule();
4218
4219 return 0;
4220}
4221
e7b38404 4222static void __cond_resched(void)
1da177e4 4223{
bdb43806 4224 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4225 __schedule();
bdb43806 4226 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4227}
4228
02b67cc3 4229int __sched _cond_resched(void)
1da177e4 4230{
d86ee480 4231 if (should_resched()) {
1da177e4
LT
4232 __cond_resched();
4233 return 1;
4234 }
4235 return 0;
4236}
02b67cc3 4237EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4238
4239/*
613afbf8 4240 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4241 * call schedule, and on return reacquire the lock.
4242 *
41a2d6cf 4243 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4244 * operations here to prevent schedule() from being called twice (once via
4245 * spin_unlock(), once by hand).
4246 */
613afbf8 4247int __cond_resched_lock(spinlock_t *lock)
1da177e4 4248{
d86ee480 4249 int resched = should_resched();
6df3cecb
JK
4250 int ret = 0;
4251
f607c668
PZ
4252 lockdep_assert_held(lock);
4253
4a81e832 4254 if (spin_needbreak(lock) || resched) {
1da177e4 4255 spin_unlock(lock);
d86ee480 4256 if (resched)
95c354fe
NP
4257 __cond_resched();
4258 else
4259 cpu_relax();
6df3cecb 4260 ret = 1;
1da177e4 4261 spin_lock(lock);
1da177e4 4262 }
6df3cecb 4263 return ret;
1da177e4 4264}
613afbf8 4265EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4266
613afbf8 4267int __sched __cond_resched_softirq(void)
1da177e4
LT
4268{
4269 BUG_ON(!in_softirq());
4270
d86ee480 4271 if (should_resched()) {
98d82567 4272 local_bh_enable();
1da177e4
LT
4273 __cond_resched();
4274 local_bh_disable();
4275 return 1;
4276 }
4277 return 0;
4278}
613afbf8 4279EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4280
1da177e4
LT
4281/**
4282 * yield - yield the current processor to other threads.
4283 *
8e3fabfd
PZ
4284 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4285 *
4286 * The scheduler is at all times free to pick the calling task as the most
4287 * eligible task to run, if removing the yield() call from your code breaks
4288 * it, its already broken.
4289 *
4290 * Typical broken usage is:
4291 *
4292 * while (!event)
4293 * yield();
4294 *
4295 * where one assumes that yield() will let 'the other' process run that will
4296 * make event true. If the current task is a SCHED_FIFO task that will never
4297 * happen. Never use yield() as a progress guarantee!!
4298 *
4299 * If you want to use yield() to wait for something, use wait_event().
4300 * If you want to use yield() to be 'nice' for others, use cond_resched().
4301 * If you still want to use yield(), do not!
1da177e4
LT
4302 */
4303void __sched yield(void)
4304{
4305 set_current_state(TASK_RUNNING);
4306 sys_sched_yield();
4307}
1da177e4
LT
4308EXPORT_SYMBOL(yield);
4309
d95f4122
MG
4310/**
4311 * yield_to - yield the current processor to another thread in
4312 * your thread group, or accelerate that thread toward the
4313 * processor it's on.
16addf95
RD
4314 * @p: target task
4315 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4316 *
4317 * It's the caller's job to ensure that the target task struct
4318 * can't go away on us before we can do any checks.
4319 *
e69f6186 4320 * Return:
7b270f60
PZ
4321 * true (>0) if we indeed boosted the target task.
4322 * false (0) if we failed to boost the target.
4323 * -ESRCH if there's no task to yield to.
d95f4122 4324 */
fa93384f 4325int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4326{
4327 struct task_struct *curr = current;
4328 struct rq *rq, *p_rq;
4329 unsigned long flags;
c3c18640 4330 int yielded = 0;
d95f4122
MG
4331
4332 local_irq_save(flags);
4333 rq = this_rq();
4334
4335again:
4336 p_rq = task_rq(p);
7b270f60
PZ
4337 /*
4338 * If we're the only runnable task on the rq and target rq also
4339 * has only one task, there's absolutely no point in yielding.
4340 */
4341 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4342 yielded = -ESRCH;
4343 goto out_irq;
4344 }
4345
d95f4122 4346 double_rq_lock(rq, p_rq);
39e24d8f 4347 if (task_rq(p) != p_rq) {
d95f4122
MG
4348 double_rq_unlock(rq, p_rq);
4349 goto again;
4350 }
4351
4352 if (!curr->sched_class->yield_to_task)
7b270f60 4353 goto out_unlock;
d95f4122
MG
4354
4355 if (curr->sched_class != p->sched_class)
7b270f60 4356 goto out_unlock;
d95f4122
MG
4357
4358 if (task_running(p_rq, p) || p->state)
7b270f60 4359 goto out_unlock;
d95f4122
MG
4360
4361 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4362 if (yielded) {
d95f4122 4363 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4364 /*
4365 * Make p's CPU reschedule; pick_next_entity takes care of
4366 * fairness.
4367 */
4368 if (preempt && rq != p_rq)
8875125e 4369 resched_curr(p_rq);
6d1cafd8 4370 }
d95f4122 4371
7b270f60 4372out_unlock:
d95f4122 4373 double_rq_unlock(rq, p_rq);
7b270f60 4374out_irq:
d95f4122
MG
4375 local_irq_restore(flags);
4376
7b270f60 4377 if (yielded > 0)
d95f4122
MG
4378 schedule();
4379
4380 return yielded;
4381}
4382EXPORT_SYMBOL_GPL(yield_to);
4383
1da177e4 4384/*
41a2d6cf 4385 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4386 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4387 */
4388void __sched io_schedule(void)
4389{
54d35f29 4390 struct rq *rq = raw_rq();
1da177e4 4391
0ff92245 4392 delayacct_blkio_start();
1da177e4 4393 atomic_inc(&rq->nr_iowait);
73c10101 4394 blk_flush_plug(current);
8f0dfc34 4395 current->in_iowait = 1;
1da177e4 4396 schedule();
8f0dfc34 4397 current->in_iowait = 0;
1da177e4 4398 atomic_dec(&rq->nr_iowait);
0ff92245 4399 delayacct_blkio_end();
1da177e4 4400}
1da177e4
LT
4401EXPORT_SYMBOL(io_schedule);
4402
4403long __sched io_schedule_timeout(long timeout)
4404{
54d35f29 4405 struct rq *rq = raw_rq();
1da177e4
LT
4406 long ret;
4407
0ff92245 4408 delayacct_blkio_start();
1da177e4 4409 atomic_inc(&rq->nr_iowait);
73c10101 4410 blk_flush_plug(current);
8f0dfc34 4411 current->in_iowait = 1;
1da177e4 4412 ret = schedule_timeout(timeout);
8f0dfc34 4413 current->in_iowait = 0;
1da177e4 4414 atomic_dec(&rq->nr_iowait);
0ff92245 4415 delayacct_blkio_end();
1da177e4
LT
4416 return ret;
4417}
4418
4419/**
4420 * sys_sched_get_priority_max - return maximum RT priority.
4421 * @policy: scheduling class.
4422 *
e69f6186
YB
4423 * Return: On success, this syscall returns the maximum
4424 * rt_priority that can be used by a given scheduling class.
4425 * On failure, a negative error code is returned.
1da177e4 4426 */
5add95d4 4427SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4428{
4429 int ret = -EINVAL;
4430
4431 switch (policy) {
4432 case SCHED_FIFO:
4433 case SCHED_RR:
4434 ret = MAX_USER_RT_PRIO-1;
4435 break;
aab03e05 4436 case SCHED_DEADLINE:
1da177e4 4437 case SCHED_NORMAL:
b0a9499c 4438 case SCHED_BATCH:
dd41f596 4439 case SCHED_IDLE:
1da177e4
LT
4440 ret = 0;
4441 break;
4442 }
4443 return ret;
4444}
4445
4446/**
4447 * sys_sched_get_priority_min - return minimum RT priority.
4448 * @policy: scheduling class.
4449 *
e69f6186
YB
4450 * Return: On success, this syscall returns the minimum
4451 * rt_priority that can be used by a given scheduling class.
4452 * On failure, a negative error code is returned.
1da177e4 4453 */
5add95d4 4454SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4455{
4456 int ret = -EINVAL;
4457
4458 switch (policy) {
4459 case SCHED_FIFO:
4460 case SCHED_RR:
4461 ret = 1;
4462 break;
aab03e05 4463 case SCHED_DEADLINE:
1da177e4 4464 case SCHED_NORMAL:
b0a9499c 4465 case SCHED_BATCH:
dd41f596 4466 case SCHED_IDLE:
1da177e4
LT
4467 ret = 0;
4468 }
4469 return ret;
4470}
4471
4472/**
4473 * sys_sched_rr_get_interval - return the default timeslice of a process.
4474 * @pid: pid of the process.
4475 * @interval: userspace pointer to the timeslice value.
4476 *
4477 * this syscall writes the default timeslice value of a given process
4478 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4479 *
4480 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4481 * an error code.
1da177e4 4482 */
17da2bd9 4483SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4484 struct timespec __user *, interval)
1da177e4 4485{
36c8b586 4486 struct task_struct *p;
a4ec24b4 4487 unsigned int time_slice;
dba091b9
TG
4488 unsigned long flags;
4489 struct rq *rq;
3a5c359a 4490 int retval;
1da177e4 4491 struct timespec t;
1da177e4
LT
4492
4493 if (pid < 0)
3a5c359a 4494 return -EINVAL;
1da177e4
LT
4495
4496 retval = -ESRCH;
1a551ae7 4497 rcu_read_lock();
1da177e4
LT
4498 p = find_process_by_pid(pid);
4499 if (!p)
4500 goto out_unlock;
4501
4502 retval = security_task_getscheduler(p);
4503 if (retval)
4504 goto out_unlock;
4505
dba091b9 4506 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4507 time_slice = 0;
4508 if (p->sched_class->get_rr_interval)
4509 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4510 task_rq_unlock(rq, p, &flags);
a4ec24b4 4511
1a551ae7 4512 rcu_read_unlock();
a4ec24b4 4513 jiffies_to_timespec(time_slice, &t);
1da177e4 4514 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4515 return retval;
3a5c359a 4516
1da177e4 4517out_unlock:
1a551ae7 4518 rcu_read_unlock();
1da177e4
LT
4519 return retval;
4520}
4521
7c731e0a 4522static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4523
82a1fcb9 4524void sched_show_task(struct task_struct *p)
1da177e4 4525{
1da177e4 4526 unsigned long free = 0;
4e79752c 4527 int ppid;
36c8b586 4528 unsigned state;
1da177e4 4529
1da177e4 4530 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4531 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4532 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4533#if BITS_PER_LONG == 32
1da177e4 4534 if (state == TASK_RUNNING)
3df0fc5b 4535 printk(KERN_CONT " running ");
1da177e4 4536 else
3df0fc5b 4537 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4538#else
4539 if (state == TASK_RUNNING)
3df0fc5b 4540 printk(KERN_CONT " running task ");
1da177e4 4541 else
3df0fc5b 4542 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4543#endif
4544#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4545 free = stack_not_used(p);
1da177e4 4546#endif
4e79752c
PM
4547 rcu_read_lock();
4548 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4549 rcu_read_unlock();
3df0fc5b 4550 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4551 task_pid_nr(p), ppid,
aa47b7e0 4552 (unsigned long)task_thread_info(p)->flags);
1da177e4 4553
3d1cb205 4554 print_worker_info(KERN_INFO, p);
5fb5e6de 4555 show_stack(p, NULL);
1da177e4
LT
4556}
4557
e59e2ae2 4558void show_state_filter(unsigned long state_filter)
1da177e4 4559{
36c8b586 4560 struct task_struct *g, *p;
1da177e4 4561
4bd77321 4562#if BITS_PER_LONG == 32
3df0fc5b
PZ
4563 printk(KERN_INFO
4564 " task PC stack pid father\n");
1da177e4 4565#else
3df0fc5b
PZ
4566 printk(KERN_INFO
4567 " task PC stack pid father\n");
1da177e4 4568#endif
510f5acc 4569 rcu_read_lock();
5d07f420 4570 for_each_process_thread(g, p) {
1da177e4
LT
4571 /*
4572 * reset the NMI-timeout, listing all files on a slow
25985edc 4573 * console might take a lot of time:
1da177e4
LT
4574 */
4575 touch_nmi_watchdog();
39bc89fd 4576 if (!state_filter || (p->state & state_filter))
82a1fcb9 4577 sched_show_task(p);
5d07f420 4578 }
1da177e4 4579
04c9167f
JF
4580 touch_all_softlockup_watchdogs();
4581
dd41f596
IM
4582#ifdef CONFIG_SCHED_DEBUG
4583 sysrq_sched_debug_show();
4584#endif
510f5acc 4585 rcu_read_unlock();
e59e2ae2
IM
4586 /*
4587 * Only show locks if all tasks are dumped:
4588 */
93335a21 4589 if (!state_filter)
e59e2ae2 4590 debug_show_all_locks();
1da177e4
LT
4591}
4592
0db0628d 4593void init_idle_bootup_task(struct task_struct *idle)
1df21055 4594{
dd41f596 4595 idle->sched_class = &idle_sched_class;
1df21055
IM
4596}
4597
f340c0d1
IM
4598/**
4599 * init_idle - set up an idle thread for a given CPU
4600 * @idle: task in question
4601 * @cpu: cpu the idle task belongs to
4602 *
4603 * NOTE: this function does not set the idle thread's NEED_RESCHED
4604 * flag, to make booting more robust.
4605 */
0db0628d 4606void init_idle(struct task_struct *idle, int cpu)
1da177e4 4607{
70b97a7f 4608 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4609 unsigned long flags;
4610
05fa785c 4611 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4612
5e1576ed 4613 __sched_fork(0, idle);
06b83b5f 4614 idle->state = TASK_RUNNING;
dd41f596
IM
4615 idle->se.exec_start = sched_clock();
4616
1e1b6c51 4617 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4618 /*
4619 * We're having a chicken and egg problem, even though we are
4620 * holding rq->lock, the cpu isn't yet set to this cpu so the
4621 * lockdep check in task_group() will fail.
4622 *
4623 * Similar case to sched_fork(). / Alternatively we could
4624 * use task_rq_lock() here and obtain the other rq->lock.
4625 *
4626 * Silence PROVE_RCU
4627 */
4628 rcu_read_lock();
dd41f596 4629 __set_task_cpu(idle, cpu);
6506cf6c 4630 rcu_read_unlock();
1da177e4 4631
1da177e4 4632 rq->curr = rq->idle = idle;
da0c1e65 4633 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4634#if defined(CONFIG_SMP)
4635 idle->on_cpu = 1;
4866cde0 4636#endif
05fa785c 4637 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4638
4639 /* Set the preempt count _outside_ the spinlocks! */
01028747 4640 init_idle_preempt_count(idle, cpu);
55cd5340 4641
dd41f596
IM
4642 /*
4643 * The idle tasks have their own, simple scheduling class:
4644 */
4645 idle->sched_class = &idle_sched_class;
868baf07 4646 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4647 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4648#if defined(CONFIG_SMP)
4649 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4650#endif
19978ca6
IM
4651}
4652
f82f8042
JL
4653int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4654 const struct cpumask *trial)
4655{
4656 int ret = 1, trial_cpus;
4657 struct dl_bw *cur_dl_b;
4658 unsigned long flags;
4659
4660 cur_dl_b = dl_bw_of(cpumask_any(cur));
4661 trial_cpus = cpumask_weight(trial);
4662
4663 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4664 if (cur_dl_b->bw != -1 &&
4665 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4666 ret = 0;
4667 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4668
4669 return ret;
4670}
4671
7f51412a
JL
4672int task_can_attach(struct task_struct *p,
4673 const struct cpumask *cs_cpus_allowed)
4674{
4675 int ret = 0;
4676
4677 /*
4678 * Kthreads which disallow setaffinity shouldn't be moved
4679 * to a new cpuset; we don't want to change their cpu
4680 * affinity and isolating such threads by their set of
4681 * allowed nodes is unnecessary. Thus, cpusets are not
4682 * applicable for such threads. This prevents checking for
4683 * success of set_cpus_allowed_ptr() on all attached tasks
4684 * before cpus_allowed may be changed.
4685 */
4686 if (p->flags & PF_NO_SETAFFINITY) {
4687 ret = -EINVAL;
4688 goto out;
4689 }
4690
4691#ifdef CONFIG_SMP
4692 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4693 cs_cpus_allowed)) {
4694 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4695 cs_cpus_allowed);
4696 struct dl_bw *dl_b = dl_bw_of(dest_cpu);
4697 bool overflow;
4698 int cpus;
4699 unsigned long flags;
4700
4701 raw_spin_lock_irqsave(&dl_b->lock, flags);
4702 cpus = dl_bw_cpus(dest_cpu);
4703 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4704 if (overflow)
4705 ret = -EBUSY;
4706 else {
4707 /*
4708 * We reserve space for this task in the destination
4709 * root_domain, as we can't fail after this point.
4710 * We will free resources in the source root_domain
4711 * later on (see set_cpus_allowed_dl()).
4712 */
4713 __dl_add(dl_b, p->dl.dl_bw);
4714 }
4715 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4716
4717 }
4718#endif
4719out:
4720 return ret;
4721}
4722
1da177e4 4723#ifdef CONFIG_SMP
a15b12ac
KT
4724/*
4725 * move_queued_task - move a queued task to new rq.
4726 *
4727 * Returns (locked) new rq. Old rq's lock is released.
4728 */
4729static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4730{
4731 struct rq *rq = task_rq(p);
4732
4733 lockdep_assert_held(&rq->lock);
4734
4735 dequeue_task(rq, p, 0);
4736 p->on_rq = TASK_ON_RQ_MIGRATING;
4737 set_task_cpu(p, new_cpu);
4738 raw_spin_unlock(&rq->lock);
4739
4740 rq = cpu_rq(new_cpu);
4741
4742 raw_spin_lock(&rq->lock);
4743 BUG_ON(task_cpu(p) != new_cpu);
4744 p->on_rq = TASK_ON_RQ_QUEUED;
4745 enqueue_task(rq, p, 0);
4746 check_preempt_curr(rq, p, 0);
4747
4748 return rq;
4749}
4750
1e1b6c51
KM
4751void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4752{
4753 if (p->sched_class && p->sched_class->set_cpus_allowed)
4754 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4755
4756 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4757 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4758}
4759
1da177e4
LT
4760/*
4761 * This is how migration works:
4762 *
969c7921
TH
4763 * 1) we invoke migration_cpu_stop() on the target CPU using
4764 * stop_one_cpu().
4765 * 2) stopper starts to run (implicitly forcing the migrated thread
4766 * off the CPU)
4767 * 3) it checks whether the migrated task is still in the wrong runqueue.
4768 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4769 * it and puts it into the right queue.
969c7921
TH
4770 * 5) stopper completes and stop_one_cpu() returns and the migration
4771 * is done.
1da177e4
LT
4772 */
4773
4774/*
4775 * Change a given task's CPU affinity. Migrate the thread to a
4776 * proper CPU and schedule it away if the CPU it's executing on
4777 * is removed from the allowed bitmask.
4778 *
4779 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4780 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4781 * call is not atomic; no spinlocks may be held.
4782 */
96f874e2 4783int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4784{
4785 unsigned long flags;
70b97a7f 4786 struct rq *rq;
969c7921 4787 unsigned int dest_cpu;
48f24c4d 4788 int ret = 0;
1da177e4
LT
4789
4790 rq = task_rq_lock(p, &flags);
e2912009 4791
db44fc01
YZ
4792 if (cpumask_equal(&p->cpus_allowed, new_mask))
4793 goto out;
4794
6ad4c188 4795 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4796 ret = -EINVAL;
4797 goto out;
4798 }
4799
1e1b6c51 4800 do_set_cpus_allowed(p, new_mask);
73fe6aae 4801
1da177e4 4802 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4803 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4804 goto out;
4805
969c7921 4806 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4807 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4808 struct migration_arg arg = { p, dest_cpu };
1da177e4 4809 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4810 task_rq_unlock(rq, p, &flags);
969c7921 4811 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4812 tlb_migrate_finish(p->mm);
4813 return 0;
a15b12ac
KT
4814 } else if (task_on_rq_queued(p))
4815 rq = move_queued_task(p, dest_cpu);
1da177e4 4816out:
0122ec5b 4817 task_rq_unlock(rq, p, &flags);
48f24c4d 4818
1da177e4
LT
4819 return ret;
4820}
cd8ba7cd 4821EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4822
4823/*
41a2d6cf 4824 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4825 * this because either it can't run here any more (set_cpus_allowed()
4826 * away from this CPU, or CPU going down), or because we're
4827 * attempting to rebalance this task on exec (sched_exec).
4828 *
4829 * So we race with normal scheduler movements, but that's OK, as long
4830 * as the task is no longer on this CPU.
efc30814
KK
4831 *
4832 * Returns non-zero if task was successfully migrated.
1da177e4 4833 */
efc30814 4834static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4835{
a1e01829 4836 struct rq *rq;
e2912009 4837 int ret = 0;
1da177e4 4838
e761b772 4839 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4840 return ret;
1da177e4 4841
a1e01829 4842 rq = cpu_rq(src_cpu);
1da177e4 4843
0122ec5b 4844 raw_spin_lock(&p->pi_lock);
a1e01829 4845 raw_spin_lock(&rq->lock);
1da177e4
LT
4846 /* Already moved. */
4847 if (task_cpu(p) != src_cpu)
b1e38734 4848 goto done;
a1e01829 4849
1da177e4 4850 /* Affinity changed (again). */
fa17b507 4851 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4852 goto fail;
1da177e4 4853
e2912009
PZ
4854 /*
4855 * If we're not on a rq, the next wake-up will ensure we're
4856 * placed properly.
4857 */
a15b12ac
KT
4858 if (task_on_rq_queued(p))
4859 rq = move_queued_task(p, dest_cpu);
b1e38734 4860done:
efc30814 4861 ret = 1;
b1e38734 4862fail:
a1e01829 4863 raw_spin_unlock(&rq->lock);
0122ec5b 4864 raw_spin_unlock(&p->pi_lock);
efc30814 4865 return ret;
1da177e4
LT
4866}
4867
e6628d5b
MG
4868#ifdef CONFIG_NUMA_BALANCING
4869/* Migrate current task p to target_cpu */
4870int migrate_task_to(struct task_struct *p, int target_cpu)
4871{
4872 struct migration_arg arg = { p, target_cpu };
4873 int curr_cpu = task_cpu(p);
4874
4875 if (curr_cpu == target_cpu)
4876 return 0;
4877
4878 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4879 return -EINVAL;
4880
4881 /* TODO: This is not properly updating schedstats */
4882
286549dc 4883 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4884 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4885}
0ec8aa00
PZ
4886
4887/*
4888 * Requeue a task on a given node and accurately track the number of NUMA
4889 * tasks on the runqueues
4890 */
4891void sched_setnuma(struct task_struct *p, int nid)
4892{
4893 struct rq *rq;
4894 unsigned long flags;
da0c1e65 4895 bool queued, running;
0ec8aa00
PZ
4896
4897 rq = task_rq_lock(p, &flags);
da0c1e65 4898 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4899 running = task_current(rq, p);
4900
da0c1e65 4901 if (queued)
0ec8aa00
PZ
4902 dequeue_task(rq, p, 0);
4903 if (running)
f3cd1c4e 4904 put_prev_task(rq, p);
0ec8aa00
PZ
4905
4906 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4907
4908 if (running)
4909 p->sched_class->set_curr_task(rq);
da0c1e65 4910 if (queued)
0ec8aa00
PZ
4911 enqueue_task(rq, p, 0);
4912 task_rq_unlock(rq, p, &flags);
4913}
e6628d5b
MG
4914#endif
4915
1da177e4 4916/*
969c7921
TH
4917 * migration_cpu_stop - this will be executed by a highprio stopper thread
4918 * and performs thread migration by bumping thread off CPU then
4919 * 'pushing' onto another runqueue.
1da177e4 4920 */
969c7921 4921static int migration_cpu_stop(void *data)
1da177e4 4922{
969c7921 4923 struct migration_arg *arg = data;
f7b4cddc 4924
969c7921
TH
4925 /*
4926 * The original target cpu might have gone down and we might
4927 * be on another cpu but it doesn't matter.
4928 */
f7b4cddc 4929 local_irq_disable();
5cd038f5
LJ
4930 /*
4931 * We need to explicitly wake pending tasks before running
4932 * __migrate_task() such that we will not miss enforcing cpus_allowed
4933 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4934 */
4935 sched_ttwu_pending();
969c7921 4936 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4937 local_irq_enable();
1da177e4 4938 return 0;
f7b4cddc
ON
4939}
4940
1da177e4 4941#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4942
054b9108 4943/*
48c5ccae
PZ
4944 * Ensures that the idle task is using init_mm right before its cpu goes
4945 * offline.
054b9108 4946 */
48c5ccae 4947void idle_task_exit(void)
1da177e4 4948{
48c5ccae 4949 struct mm_struct *mm = current->active_mm;
e76bd8d9 4950
48c5ccae 4951 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4952
a53efe5f 4953 if (mm != &init_mm) {
48c5ccae 4954 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4955 finish_arch_post_lock_switch();
4956 }
48c5ccae 4957 mmdrop(mm);
1da177e4
LT
4958}
4959
4960/*
5d180232
PZ
4961 * Since this CPU is going 'away' for a while, fold any nr_active delta
4962 * we might have. Assumes we're called after migrate_tasks() so that the
4963 * nr_active count is stable.
4964 *
4965 * Also see the comment "Global load-average calculations".
1da177e4 4966 */
5d180232 4967static void calc_load_migrate(struct rq *rq)
1da177e4 4968{
5d180232
PZ
4969 long delta = calc_load_fold_active(rq);
4970 if (delta)
4971 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4972}
4973
3f1d2a31
PZ
4974static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4975{
4976}
4977
4978static const struct sched_class fake_sched_class = {
4979 .put_prev_task = put_prev_task_fake,
4980};
4981
4982static struct task_struct fake_task = {
4983 /*
4984 * Avoid pull_{rt,dl}_task()
4985 */
4986 .prio = MAX_PRIO + 1,
4987 .sched_class = &fake_sched_class,
4988};
4989
48f24c4d 4990/*
48c5ccae
PZ
4991 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4992 * try_to_wake_up()->select_task_rq().
4993 *
4994 * Called with rq->lock held even though we'er in stop_machine() and
4995 * there's no concurrency possible, we hold the required locks anyway
4996 * because of lock validation efforts.
1da177e4 4997 */
48c5ccae 4998static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4999{
70b97a7f 5000 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5001 struct task_struct *next, *stop = rq->stop;
5002 int dest_cpu;
1da177e4
LT
5003
5004 /*
48c5ccae
PZ
5005 * Fudge the rq selection such that the below task selection loop
5006 * doesn't get stuck on the currently eligible stop task.
5007 *
5008 * We're currently inside stop_machine() and the rq is either stuck
5009 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5010 * either way we should never end up calling schedule() until we're
5011 * done here.
1da177e4 5012 */
48c5ccae 5013 rq->stop = NULL;
48f24c4d 5014
77bd3970
FW
5015 /*
5016 * put_prev_task() and pick_next_task() sched
5017 * class method both need to have an up-to-date
5018 * value of rq->clock[_task]
5019 */
5020 update_rq_clock(rq);
5021
dd41f596 5022 for ( ; ; ) {
48c5ccae
PZ
5023 /*
5024 * There's this thread running, bail when that's the only
5025 * remaining thread.
5026 */
5027 if (rq->nr_running == 1)
dd41f596 5028 break;
48c5ccae 5029
3f1d2a31 5030 next = pick_next_task(rq, &fake_task);
48c5ccae 5031 BUG_ON(!next);
79c53799 5032 next->sched_class->put_prev_task(rq, next);
e692ab53 5033
48c5ccae
PZ
5034 /* Find suitable destination for @next, with force if needed. */
5035 dest_cpu = select_fallback_rq(dead_cpu, next);
5036 raw_spin_unlock(&rq->lock);
5037
5038 __migrate_task(next, dead_cpu, dest_cpu);
5039
5040 raw_spin_lock(&rq->lock);
1da177e4 5041 }
dce48a84 5042
48c5ccae 5043 rq->stop = stop;
dce48a84 5044}
48c5ccae 5045
1da177e4
LT
5046#endif /* CONFIG_HOTPLUG_CPU */
5047
e692ab53
NP
5048#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5049
5050static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5051 {
5052 .procname = "sched_domain",
c57baf1e 5053 .mode = 0555,
e0361851 5054 },
56992309 5055 {}
e692ab53
NP
5056};
5057
5058static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5059 {
5060 .procname = "kernel",
c57baf1e 5061 .mode = 0555,
e0361851
AD
5062 .child = sd_ctl_dir,
5063 },
56992309 5064 {}
e692ab53
NP
5065};
5066
5067static struct ctl_table *sd_alloc_ctl_entry(int n)
5068{
5069 struct ctl_table *entry =
5cf9f062 5070 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5071
e692ab53
NP
5072 return entry;
5073}
5074
6382bc90
MM
5075static void sd_free_ctl_entry(struct ctl_table **tablep)
5076{
cd790076 5077 struct ctl_table *entry;
6382bc90 5078
cd790076
MM
5079 /*
5080 * In the intermediate directories, both the child directory and
5081 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5082 * will always be set. In the lowest directory the names are
cd790076
MM
5083 * static strings and all have proc handlers.
5084 */
5085 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5086 if (entry->child)
5087 sd_free_ctl_entry(&entry->child);
cd790076
MM
5088 if (entry->proc_handler == NULL)
5089 kfree(entry->procname);
5090 }
6382bc90
MM
5091
5092 kfree(*tablep);
5093 *tablep = NULL;
5094}
5095
201c373e 5096static int min_load_idx = 0;
fd9b86d3 5097static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5098
e692ab53 5099static void
e0361851 5100set_table_entry(struct ctl_table *entry,
e692ab53 5101 const char *procname, void *data, int maxlen,
201c373e
NK
5102 umode_t mode, proc_handler *proc_handler,
5103 bool load_idx)
e692ab53 5104{
e692ab53
NP
5105 entry->procname = procname;
5106 entry->data = data;
5107 entry->maxlen = maxlen;
5108 entry->mode = mode;
5109 entry->proc_handler = proc_handler;
201c373e
NK
5110
5111 if (load_idx) {
5112 entry->extra1 = &min_load_idx;
5113 entry->extra2 = &max_load_idx;
5114 }
e692ab53
NP
5115}
5116
5117static struct ctl_table *
5118sd_alloc_ctl_domain_table(struct sched_domain *sd)
5119{
37e6bae8 5120 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5121
ad1cdc1d
MM
5122 if (table == NULL)
5123 return NULL;
5124
e0361851 5125 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5126 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5127 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5128 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5129 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5130 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5131 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5132 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5133 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5134 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5135 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5136 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5137 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5138 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5139 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5140 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5141 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5142 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5143 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5144 &sd->cache_nice_tries,
201c373e 5145 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5146 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5147 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5148 set_table_entry(&table[11], "max_newidle_lb_cost",
5149 &sd->max_newidle_lb_cost,
5150 sizeof(long), 0644, proc_doulongvec_minmax, false);
5151 set_table_entry(&table[12], "name", sd->name,
201c373e 5152 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5153 /* &table[13] is terminator */
e692ab53
NP
5154
5155 return table;
5156}
5157
be7002e6 5158static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5159{
5160 struct ctl_table *entry, *table;
5161 struct sched_domain *sd;
5162 int domain_num = 0, i;
5163 char buf[32];
5164
5165 for_each_domain(cpu, sd)
5166 domain_num++;
5167 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5168 if (table == NULL)
5169 return NULL;
e692ab53
NP
5170
5171 i = 0;
5172 for_each_domain(cpu, sd) {
5173 snprintf(buf, 32, "domain%d", i);
e692ab53 5174 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5175 entry->mode = 0555;
e692ab53
NP
5176 entry->child = sd_alloc_ctl_domain_table(sd);
5177 entry++;
5178 i++;
5179 }
5180 return table;
5181}
5182
5183static struct ctl_table_header *sd_sysctl_header;
6382bc90 5184static void register_sched_domain_sysctl(void)
e692ab53 5185{
6ad4c188 5186 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5187 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5188 char buf[32];
5189
7378547f
MM
5190 WARN_ON(sd_ctl_dir[0].child);
5191 sd_ctl_dir[0].child = entry;
5192
ad1cdc1d
MM
5193 if (entry == NULL)
5194 return;
5195
6ad4c188 5196 for_each_possible_cpu(i) {
e692ab53 5197 snprintf(buf, 32, "cpu%d", i);
e692ab53 5198 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5199 entry->mode = 0555;
e692ab53 5200 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5201 entry++;
e692ab53 5202 }
7378547f
MM
5203
5204 WARN_ON(sd_sysctl_header);
e692ab53
NP
5205 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5206}
6382bc90 5207
7378547f 5208/* may be called multiple times per register */
6382bc90
MM
5209static void unregister_sched_domain_sysctl(void)
5210{
7378547f
MM
5211 if (sd_sysctl_header)
5212 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5213 sd_sysctl_header = NULL;
7378547f
MM
5214 if (sd_ctl_dir[0].child)
5215 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5216}
e692ab53 5217#else
6382bc90
MM
5218static void register_sched_domain_sysctl(void)
5219{
5220}
5221static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5222{
5223}
5224#endif
5225
1f11eb6a
GH
5226static void set_rq_online(struct rq *rq)
5227{
5228 if (!rq->online) {
5229 const struct sched_class *class;
5230
c6c4927b 5231 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5232 rq->online = 1;
5233
5234 for_each_class(class) {
5235 if (class->rq_online)
5236 class->rq_online(rq);
5237 }
5238 }
5239}
5240
5241static void set_rq_offline(struct rq *rq)
5242{
5243 if (rq->online) {
5244 const struct sched_class *class;
5245
5246 for_each_class(class) {
5247 if (class->rq_offline)
5248 class->rq_offline(rq);
5249 }
5250
c6c4927b 5251 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5252 rq->online = 0;
5253 }
5254}
5255
1da177e4
LT
5256/*
5257 * migration_call - callback that gets triggered when a CPU is added.
5258 * Here we can start up the necessary migration thread for the new CPU.
5259 */
0db0628d 5260static int
48f24c4d 5261migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5262{
48f24c4d 5263 int cpu = (long)hcpu;
1da177e4 5264 unsigned long flags;
969c7921 5265 struct rq *rq = cpu_rq(cpu);
1da177e4 5266
48c5ccae 5267 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5268
1da177e4 5269 case CPU_UP_PREPARE:
a468d389 5270 rq->calc_load_update = calc_load_update;
1da177e4 5271 break;
48f24c4d 5272
1da177e4 5273 case CPU_ONLINE:
1f94ef59 5274 /* Update our root-domain */
05fa785c 5275 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5276 if (rq->rd) {
c6c4927b 5277 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5278
5279 set_rq_online(rq);
1f94ef59 5280 }
05fa785c 5281 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5282 break;
48f24c4d 5283
1da177e4 5284#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5285 case CPU_DYING:
317f3941 5286 sched_ttwu_pending();
57d885fe 5287 /* Update our root-domain */
05fa785c 5288 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5289 if (rq->rd) {
c6c4927b 5290 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5291 set_rq_offline(rq);
57d885fe 5292 }
48c5ccae
PZ
5293 migrate_tasks(cpu);
5294 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5295 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5296 break;
48c5ccae 5297
5d180232 5298 case CPU_DEAD:
f319da0c 5299 calc_load_migrate(rq);
57d885fe 5300 break;
1da177e4
LT
5301#endif
5302 }
49c022e6
PZ
5303
5304 update_max_interval();
5305
1da177e4
LT
5306 return NOTIFY_OK;
5307}
5308
f38b0820
PM
5309/*
5310 * Register at high priority so that task migration (migrate_all_tasks)
5311 * happens before everything else. This has to be lower priority than
cdd6c482 5312 * the notifier in the perf_event subsystem, though.
1da177e4 5313 */
0db0628d 5314static struct notifier_block migration_notifier = {
1da177e4 5315 .notifier_call = migration_call,
50a323b7 5316 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5317};
5318
a803f026
CM
5319static void __cpuinit set_cpu_rq_start_time(void)
5320{
5321 int cpu = smp_processor_id();
5322 struct rq *rq = cpu_rq(cpu);
5323 rq->age_stamp = sched_clock_cpu(cpu);
5324}
5325
0db0628d 5326static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5327 unsigned long action, void *hcpu)
5328{
5329 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5330 case CPU_STARTING:
5331 set_cpu_rq_start_time();
5332 return NOTIFY_OK;
3a101d05
TH
5333 case CPU_DOWN_FAILED:
5334 set_cpu_active((long)hcpu, true);
5335 return NOTIFY_OK;
5336 default:
5337 return NOTIFY_DONE;
5338 }
5339}
5340
0db0628d 5341static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5342 unsigned long action, void *hcpu)
5343{
de212f18
PZ
5344 unsigned long flags;
5345 long cpu = (long)hcpu;
f10e00f4 5346 struct dl_bw *dl_b;
de212f18 5347
3a101d05
TH
5348 switch (action & ~CPU_TASKS_FROZEN) {
5349 case CPU_DOWN_PREPARE:
de212f18
PZ
5350 set_cpu_active(cpu, false);
5351
5352 /* explicitly allow suspend */
5353 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5354 bool overflow;
5355 int cpus;
5356
f10e00f4
KT
5357 rcu_read_lock_sched();
5358 dl_b = dl_bw_of(cpu);
5359
de212f18
PZ
5360 raw_spin_lock_irqsave(&dl_b->lock, flags);
5361 cpus = dl_bw_cpus(cpu);
5362 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5363 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5364
f10e00f4
KT
5365 rcu_read_unlock_sched();
5366
de212f18
PZ
5367 if (overflow)
5368 return notifier_from_errno(-EBUSY);
5369 }
3a101d05 5370 return NOTIFY_OK;
3a101d05 5371 }
de212f18
PZ
5372
5373 return NOTIFY_DONE;
3a101d05
TH
5374}
5375
7babe8db 5376static int __init migration_init(void)
1da177e4
LT
5377{
5378 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5379 int err;
48f24c4d 5380
3a101d05 5381 /* Initialize migration for the boot CPU */
07dccf33
AM
5382 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5383 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5384 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5385 register_cpu_notifier(&migration_notifier);
7babe8db 5386
3a101d05
TH
5387 /* Register cpu active notifiers */
5388 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5389 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5390
a004cd42 5391 return 0;
1da177e4 5392}
7babe8db 5393early_initcall(migration_init);
1da177e4
LT
5394#endif
5395
5396#ifdef CONFIG_SMP
476f3534 5397
4cb98839
PZ
5398static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5399
3e9830dc 5400#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5401
d039ac60 5402static __read_mostly int sched_debug_enabled;
f6630114 5403
d039ac60 5404static int __init sched_debug_setup(char *str)
f6630114 5405{
d039ac60 5406 sched_debug_enabled = 1;
f6630114
MT
5407
5408 return 0;
5409}
d039ac60
PZ
5410early_param("sched_debug", sched_debug_setup);
5411
5412static inline bool sched_debug(void)
5413{
5414 return sched_debug_enabled;
5415}
f6630114 5416
7c16ec58 5417static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5418 struct cpumask *groupmask)
1da177e4 5419{
4dcf6aff 5420 struct sched_group *group = sd->groups;
434d53b0 5421 char str[256];
1da177e4 5422
968ea6d8 5423 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5424 cpumask_clear(groupmask);
4dcf6aff
IM
5425
5426 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5427
5428 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5429 printk("does not load-balance\n");
4dcf6aff 5430 if (sd->parent)
3df0fc5b
PZ
5431 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5432 " has parent");
4dcf6aff 5433 return -1;
41c7ce9a
NP
5434 }
5435
3df0fc5b 5436 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5437
758b2cdc 5438 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5439 printk(KERN_ERR "ERROR: domain->span does not contain "
5440 "CPU%d\n", cpu);
4dcf6aff 5441 }
758b2cdc 5442 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5443 printk(KERN_ERR "ERROR: domain->groups does not contain"
5444 " CPU%d\n", cpu);
4dcf6aff 5445 }
1da177e4 5446
4dcf6aff 5447 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5448 do {
4dcf6aff 5449 if (!group) {
3df0fc5b
PZ
5450 printk("\n");
5451 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5452 break;
5453 }
5454
c3decf0d 5455 /*
63b2ca30
NP
5456 * Even though we initialize ->capacity to something semi-sane,
5457 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5458 * domain iteration is still funny without causing /0 traps.
5459 */
63b2ca30 5460 if (!group->sgc->capacity_orig) {
3df0fc5b 5461 printk(KERN_CONT "\n");
63b2ca30 5462 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5463 break;
5464 }
1da177e4 5465
758b2cdc 5466 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5467 printk(KERN_CONT "\n");
5468 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5469 break;
5470 }
1da177e4 5471
cb83b629
PZ
5472 if (!(sd->flags & SD_OVERLAP) &&
5473 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5474 printk(KERN_CONT "\n");
5475 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5476 break;
5477 }
1da177e4 5478
758b2cdc 5479 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5480
968ea6d8 5481 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5482
3df0fc5b 5483 printk(KERN_CONT " %s", str);
ca8ce3d0 5484 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5485 printk(KERN_CONT " (cpu_capacity = %d)",
5486 group->sgc->capacity);
381512cf 5487 }
1da177e4 5488
4dcf6aff
IM
5489 group = group->next;
5490 } while (group != sd->groups);
3df0fc5b 5491 printk(KERN_CONT "\n");
1da177e4 5492
758b2cdc 5493 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5494 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5495
758b2cdc
RR
5496 if (sd->parent &&
5497 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5498 printk(KERN_ERR "ERROR: parent span is not a superset "
5499 "of domain->span\n");
4dcf6aff
IM
5500 return 0;
5501}
1da177e4 5502
4dcf6aff
IM
5503static void sched_domain_debug(struct sched_domain *sd, int cpu)
5504{
5505 int level = 0;
1da177e4 5506
d039ac60 5507 if (!sched_debug_enabled)
f6630114
MT
5508 return;
5509
4dcf6aff
IM
5510 if (!sd) {
5511 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5512 return;
5513 }
1da177e4 5514
4dcf6aff
IM
5515 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5516
5517 for (;;) {
4cb98839 5518 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5519 break;
1da177e4
LT
5520 level++;
5521 sd = sd->parent;
33859f7f 5522 if (!sd)
4dcf6aff
IM
5523 break;
5524 }
1da177e4 5525}
6d6bc0ad 5526#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5527# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5528static inline bool sched_debug(void)
5529{
5530 return false;
5531}
6d6bc0ad 5532#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5533
1a20ff27 5534static int sd_degenerate(struct sched_domain *sd)
245af2c7 5535{
758b2cdc 5536 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5537 return 1;
5538
5539 /* Following flags need at least 2 groups */
5540 if (sd->flags & (SD_LOAD_BALANCE |
5541 SD_BALANCE_NEWIDLE |
5542 SD_BALANCE_FORK |
89c4710e 5543 SD_BALANCE_EXEC |
5d4dfddd 5544 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5545 SD_SHARE_PKG_RESOURCES |
5546 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5547 if (sd->groups != sd->groups->next)
5548 return 0;
5549 }
5550
5551 /* Following flags don't use groups */
c88d5910 5552 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5553 return 0;
5554
5555 return 1;
5556}
5557
48f24c4d
IM
5558static int
5559sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5560{
5561 unsigned long cflags = sd->flags, pflags = parent->flags;
5562
5563 if (sd_degenerate(parent))
5564 return 1;
5565
758b2cdc 5566 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5567 return 0;
5568
245af2c7
SS
5569 /* Flags needing groups don't count if only 1 group in parent */
5570 if (parent->groups == parent->groups->next) {
5571 pflags &= ~(SD_LOAD_BALANCE |
5572 SD_BALANCE_NEWIDLE |
5573 SD_BALANCE_FORK |
89c4710e 5574 SD_BALANCE_EXEC |
5d4dfddd 5575 SD_SHARE_CPUCAPACITY |
10866e62 5576 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5577 SD_PREFER_SIBLING |
5578 SD_SHARE_POWERDOMAIN);
5436499e
KC
5579 if (nr_node_ids == 1)
5580 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5581 }
5582 if (~cflags & pflags)
5583 return 0;
5584
5585 return 1;
5586}
5587
dce840a0 5588static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5589{
dce840a0 5590 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5591
68e74568 5592 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5593 cpudl_cleanup(&rd->cpudl);
1baca4ce 5594 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5595 free_cpumask_var(rd->rto_mask);
5596 free_cpumask_var(rd->online);
5597 free_cpumask_var(rd->span);
5598 kfree(rd);
5599}
5600
57d885fe
GH
5601static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5602{
a0490fa3 5603 struct root_domain *old_rd = NULL;
57d885fe 5604 unsigned long flags;
57d885fe 5605
05fa785c 5606 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5607
5608 if (rq->rd) {
a0490fa3 5609 old_rd = rq->rd;
57d885fe 5610
c6c4927b 5611 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5612 set_rq_offline(rq);
57d885fe 5613
c6c4927b 5614 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5615
a0490fa3 5616 /*
0515973f 5617 * If we dont want to free the old_rd yet then
a0490fa3
IM
5618 * set old_rd to NULL to skip the freeing later
5619 * in this function:
5620 */
5621 if (!atomic_dec_and_test(&old_rd->refcount))
5622 old_rd = NULL;
57d885fe
GH
5623 }
5624
5625 atomic_inc(&rd->refcount);
5626 rq->rd = rd;
5627
c6c4927b 5628 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5629 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5630 set_rq_online(rq);
57d885fe 5631
05fa785c 5632 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5633
5634 if (old_rd)
dce840a0 5635 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5636}
5637
68c38fc3 5638static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5639{
5640 memset(rd, 0, sizeof(*rd));
5641
68c38fc3 5642 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5643 goto out;
68c38fc3 5644 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5645 goto free_span;
1baca4ce 5646 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5647 goto free_online;
1baca4ce
JL
5648 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5649 goto free_dlo_mask;
6e0534f2 5650
332ac17e 5651 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5652 if (cpudl_init(&rd->cpudl) != 0)
5653 goto free_dlo_mask;
332ac17e 5654
68c38fc3 5655 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5656 goto free_rto_mask;
c6c4927b 5657 return 0;
6e0534f2 5658
68e74568
RR
5659free_rto_mask:
5660 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5661free_dlo_mask:
5662 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5663free_online:
5664 free_cpumask_var(rd->online);
5665free_span:
5666 free_cpumask_var(rd->span);
0c910d28 5667out:
c6c4927b 5668 return -ENOMEM;
57d885fe
GH
5669}
5670
029632fb
PZ
5671/*
5672 * By default the system creates a single root-domain with all cpus as
5673 * members (mimicking the global state we have today).
5674 */
5675struct root_domain def_root_domain;
5676
57d885fe
GH
5677static void init_defrootdomain(void)
5678{
68c38fc3 5679 init_rootdomain(&def_root_domain);
c6c4927b 5680
57d885fe
GH
5681 atomic_set(&def_root_domain.refcount, 1);
5682}
5683
dc938520 5684static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5685{
5686 struct root_domain *rd;
5687
5688 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5689 if (!rd)
5690 return NULL;
5691
68c38fc3 5692 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5693 kfree(rd);
5694 return NULL;
5695 }
57d885fe
GH
5696
5697 return rd;
5698}
5699
63b2ca30 5700static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5701{
5702 struct sched_group *tmp, *first;
5703
5704 if (!sg)
5705 return;
5706
5707 first = sg;
5708 do {
5709 tmp = sg->next;
5710
63b2ca30
NP
5711 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5712 kfree(sg->sgc);
e3589f6c
PZ
5713
5714 kfree(sg);
5715 sg = tmp;
5716 } while (sg != first);
5717}
5718
dce840a0
PZ
5719static void free_sched_domain(struct rcu_head *rcu)
5720{
5721 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5722
5723 /*
5724 * If its an overlapping domain it has private groups, iterate and
5725 * nuke them all.
5726 */
5727 if (sd->flags & SD_OVERLAP) {
5728 free_sched_groups(sd->groups, 1);
5729 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5730 kfree(sd->groups->sgc);
dce840a0 5731 kfree(sd->groups);
9c3f75cb 5732 }
dce840a0
PZ
5733 kfree(sd);
5734}
5735
5736static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5737{
5738 call_rcu(&sd->rcu, free_sched_domain);
5739}
5740
5741static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5742{
5743 for (; sd; sd = sd->parent)
5744 destroy_sched_domain(sd, cpu);
5745}
5746
518cd623
PZ
5747/*
5748 * Keep a special pointer to the highest sched_domain that has
5749 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5750 * allows us to avoid some pointer chasing select_idle_sibling().
5751 *
5752 * Also keep a unique ID per domain (we use the first cpu number in
5753 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5754 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5755 */
5756DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5757DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5758DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5759DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5760DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5761DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5762
5763static void update_top_cache_domain(int cpu)
5764{
5765 struct sched_domain *sd;
5d4cf996 5766 struct sched_domain *busy_sd = NULL;
518cd623 5767 int id = cpu;
7d9ffa89 5768 int size = 1;
518cd623
PZ
5769
5770 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5771 if (sd) {
518cd623 5772 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5773 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5774 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5775 }
5d4cf996 5776 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5777
5778 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5779 per_cpu(sd_llc_size, cpu) = size;
518cd623 5780 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5781
5782 sd = lowest_flag_domain(cpu, SD_NUMA);
5783 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5784
5785 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5786 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5787}
5788
1da177e4 5789/*
0eab9146 5790 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5791 * hold the hotplug lock.
5792 */
0eab9146
IM
5793static void
5794cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5795{
70b97a7f 5796 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5797 struct sched_domain *tmp;
5798
5799 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5800 for (tmp = sd; tmp; ) {
245af2c7
SS
5801 struct sched_domain *parent = tmp->parent;
5802 if (!parent)
5803 break;
f29c9b1c 5804
1a848870 5805 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5806 tmp->parent = parent->parent;
1a848870
SS
5807 if (parent->parent)
5808 parent->parent->child = tmp;
10866e62
PZ
5809 /*
5810 * Transfer SD_PREFER_SIBLING down in case of a
5811 * degenerate parent; the spans match for this
5812 * so the property transfers.
5813 */
5814 if (parent->flags & SD_PREFER_SIBLING)
5815 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5816 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5817 } else
5818 tmp = tmp->parent;
245af2c7
SS
5819 }
5820
1a848870 5821 if (sd && sd_degenerate(sd)) {
dce840a0 5822 tmp = sd;
245af2c7 5823 sd = sd->parent;
dce840a0 5824 destroy_sched_domain(tmp, cpu);
1a848870
SS
5825 if (sd)
5826 sd->child = NULL;
5827 }
1da177e4 5828
4cb98839 5829 sched_domain_debug(sd, cpu);
1da177e4 5830
57d885fe 5831 rq_attach_root(rq, rd);
dce840a0 5832 tmp = rq->sd;
674311d5 5833 rcu_assign_pointer(rq->sd, sd);
dce840a0 5834 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5835
5836 update_top_cache_domain(cpu);
1da177e4
LT
5837}
5838
5839/* cpus with isolated domains */
dcc30a35 5840static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5841
5842/* Setup the mask of cpus configured for isolated domains */
5843static int __init isolated_cpu_setup(char *str)
5844{
bdddd296 5845 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5846 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5847 return 1;
5848}
5849
8927f494 5850__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5851
49a02c51 5852struct s_data {
21d42ccf 5853 struct sched_domain ** __percpu sd;
49a02c51
AH
5854 struct root_domain *rd;
5855};
5856
2109b99e 5857enum s_alloc {
2109b99e 5858 sa_rootdomain,
21d42ccf 5859 sa_sd,
dce840a0 5860 sa_sd_storage,
2109b99e
AH
5861 sa_none,
5862};
5863
c1174876
PZ
5864/*
5865 * Build an iteration mask that can exclude certain CPUs from the upwards
5866 * domain traversal.
5867 *
5868 * Asymmetric node setups can result in situations where the domain tree is of
5869 * unequal depth, make sure to skip domains that already cover the entire
5870 * range.
5871 *
5872 * In that case build_sched_domains() will have terminated the iteration early
5873 * and our sibling sd spans will be empty. Domains should always include the
5874 * cpu they're built on, so check that.
5875 *
5876 */
5877static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5878{
5879 const struct cpumask *span = sched_domain_span(sd);
5880 struct sd_data *sdd = sd->private;
5881 struct sched_domain *sibling;
5882 int i;
5883
5884 for_each_cpu(i, span) {
5885 sibling = *per_cpu_ptr(sdd->sd, i);
5886 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5887 continue;
5888
5889 cpumask_set_cpu(i, sched_group_mask(sg));
5890 }
5891}
5892
5893/*
5894 * Return the canonical balance cpu for this group, this is the first cpu
5895 * of this group that's also in the iteration mask.
5896 */
5897int group_balance_cpu(struct sched_group *sg)
5898{
5899 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5900}
5901
e3589f6c
PZ
5902static int
5903build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5904{
5905 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5906 const struct cpumask *span = sched_domain_span(sd);
5907 struct cpumask *covered = sched_domains_tmpmask;
5908 struct sd_data *sdd = sd->private;
aaecac4a 5909 struct sched_domain *sibling;
e3589f6c
PZ
5910 int i;
5911
5912 cpumask_clear(covered);
5913
5914 for_each_cpu(i, span) {
5915 struct cpumask *sg_span;
5916
5917 if (cpumask_test_cpu(i, covered))
5918 continue;
5919
aaecac4a 5920 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5921
5922 /* See the comment near build_group_mask(). */
aaecac4a 5923 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5924 continue;
5925
e3589f6c 5926 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5927 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5928
5929 if (!sg)
5930 goto fail;
5931
5932 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5933 if (sibling->child)
5934 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5935 else
e3589f6c
PZ
5936 cpumask_set_cpu(i, sg_span);
5937
5938 cpumask_or(covered, covered, sg_span);
5939
63b2ca30
NP
5940 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5941 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5942 build_group_mask(sd, sg);
5943
c3decf0d 5944 /*
63b2ca30 5945 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5946 * domains and no possible iteration will get us here, we won't
5947 * die on a /0 trap.
5948 */
ca8ce3d0 5949 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5950 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5951
c1174876
PZ
5952 /*
5953 * Make sure the first group of this domain contains the
5954 * canonical balance cpu. Otherwise the sched_domain iteration
5955 * breaks. See update_sg_lb_stats().
5956 */
74a5ce20 5957 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5958 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5959 groups = sg;
5960
5961 if (!first)
5962 first = sg;
5963 if (last)
5964 last->next = sg;
5965 last = sg;
5966 last->next = first;
5967 }
5968 sd->groups = groups;
5969
5970 return 0;
5971
5972fail:
5973 free_sched_groups(first, 0);
5974
5975 return -ENOMEM;
5976}
5977
dce840a0 5978static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5979{
dce840a0
PZ
5980 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5981 struct sched_domain *child = sd->child;
1da177e4 5982
dce840a0
PZ
5983 if (child)
5984 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5985
9c3f75cb 5986 if (sg) {
dce840a0 5987 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5988 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5989 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5990 }
dce840a0
PZ
5991
5992 return cpu;
1e9f28fa 5993}
1e9f28fa 5994
01a08546 5995/*
dce840a0
PZ
5996 * build_sched_groups will build a circular linked list of the groups
5997 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5998 * and ->cpu_capacity to 0.
e3589f6c
PZ
5999 *
6000 * Assumes the sched_domain tree is fully constructed
01a08546 6001 */
e3589f6c
PZ
6002static int
6003build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6004{
dce840a0
PZ
6005 struct sched_group *first = NULL, *last = NULL;
6006 struct sd_data *sdd = sd->private;
6007 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6008 struct cpumask *covered;
dce840a0 6009 int i;
9c1cfda2 6010
e3589f6c
PZ
6011 get_group(cpu, sdd, &sd->groups);
6012 atomic_inc(&sd->groups->ref);
6013
0936629f 6014 if (cpu != cpumask_first(span))
e3589f6c
PZ
6015 return 0;
6016
f96225fd
PZ
6017 lockdep_assert_held(&sched_domains_mutex);
6018 covered = sched_domains_tmpmask;
6019
dce840a0 6020 cpumask_clear(covered);
6711cab4 6021
dce840a0
PZ
6022 for_each_cpu(i, span) {
6023 struct sched_group *sg;
cd08e923 6024 int group, j;
6711cab4 6025
dce840a0
PZ
6026 if (cpumask_test_cpu(i, covered))
6027 continue;
6711cab4 6028
cd08e923 6029 group = get_group(i, sdd, &sg);
c1174876 6030 cpumask_setall(sched_group_mask(sg));
0601a88d 6031
dce840a0
PZ
6032 for_each_cpu(j, span) {
6033 if (get_group(j, sdd, NULL) != group)
6034 continue;
0601a88d 6035
dce840a0
PZ
6036 cpumask_set_cpu(j, covered);
6037 cpumask_set_cpu(j, sched_group_cpus(sg));
6038 }
0601a88d 6039
dce840a0
PZ
6040 if (!first)
6041 first = sg;
6042 if (last)
6043 last->next = sg;
6044 last = sg;
6045 }
6046 last->next = first;
e3589f6c
PZ
6047
6048 return 0;
0601a88d 6049}
51888ca2 6050
89c4710e 6051/*
63b2ca30 6052 * Initialize sched groups cpu_capacity.
89c4710e 6053 *
63b2ca30 6054 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6055 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6056 * Typically cpu_capacity for all the groups in a sched domain will be same
6057 * unless there are asymmetries in the topology. If there are asymmetries,
6058 * group having more cpu_capacity will pickup more load compared to the
6059 * group having less cpu_capacity.
89c4710e 6060 */
63b2ca30 6061static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6062{
e3589f6c 6063 struct sched_group *sg = sd->groups;
89c4710e 6064
94c95ba6 6065 WARN_ON(!sg);
e3589f6c
PZ
6066
6067 do {
6068 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6069 sg = sg->next;
6070 } while (sg != sd->groups);
89c4710e 6071
c1174876 6072 if (cpu != group_balance_cpu(sg))
e3589f6c 6073 return;
aae6d3dd 6074
63b2ca30
NP
6075 update_group_capacity(sd, cpu);
6076 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6077}
6078
7c16ec58
MT
6079/*
6080 * Initializers for schedule domains
6081 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6082 */
6083
1d3504fc 6084static int default_relax_domain_level = -1;
60495e77 6085int sched_domain_level_max;
1d3504fc
HS
6086
6087static int __init setup_relax_domain_level(char *str)
6088{
a841f8ce
DS
6089 if (kstrtoint(str, 0, &default_relax_domain_level))
6090 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6091
1d3504fc
HS
6092 return 1;
6093}
6094__setup("relax_domain_level=", setup_relax_domain_level);
6095
6096static void set_domain_attribute(struct sched_domain *sd,
6097 struct sched_domain_attr *attr)
6098{
6099 int request;
6100
6101 if (!attr || attr->relax_domain_level < 0) {
6102 if (default_relax_domain_level < 0)
6103 return;
6104 else
6105 request = default_relax_domain_level;
6106 } else
6107 request = attr->relax_domain_level;
6108 if (request < sd->level) {
6109 /* turn off idle balance on this domain */
c88d5910 6110 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6111 } else {
6112 /* turn on idle balance on this domain */
c88d5910 6113 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6114 }
6115}
6116
54ab4ff4
PZ
6117static void __sdt_free(const struct cpumask *cpu_map);
6118static int __sdt_alloc(const struct cpumask *cpu_map);
6119
2109b99e
AH
6120static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6121 const struct cpumask *cpu_map)
6122{
6123 switch (what) {
2109b99e 6124 case sa_rootdomain:
822ff793
PZ
6125 if (!atomic_read(&d->rd->refcount))
6126 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6127 case sa_sd:
6128 free_percpu(d->sd); /* fall through */
dce840a0 6129 case sa_sd_storage:
54ab4ff4 6130 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6131 case sa_none:
6132 break;
6133 }
6134}
3404c8d9 6135
2109b99e
AH
6136static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6137 const struct cpumask *cpu_map)
6138{
dce840a0
PZ
6139 memset(d, 0, sizeof(*d));
6140
54ab4ff4
PZ
6141 if (__sdt_alloc(cpu_map))
6142 return sa_sd_storage;
dce840a0
PZ
6143 d->sd = alloc_percpu(struct sched_domain *);
6144 if (!d->sd)
6145 return sa_sd_storage;
2109b99e 6146 d->rd = alloc_rootdomain();
dce840a0 6147 if (!d->rd)
21d42ccf 6148 return sa_sd;
2109b99e
AH
6149 return sa_rootdomain;
6150}
57d885fe 6151
dce840a0
PZ
6152/*
6153 * NULL the sd_data elements we've used to build the sched_domain and
6154 * sched_group structure so that the subsequent __free_domain_allocs()
6155 * will not free the data we're using.
6156 */
6157static void claim_allocations(int cpu, struct sched_domain *sd)
6158{
6159 struct sd_data *sdd = sd->private;
dce840a0
PZ
6160
6161 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6162 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6163
e3589f6c 6164 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6165 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6166
63b2ca30
NP
6167 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6168 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6169}
6170
cb83b629 6171#ifdef CONFIG_NUMA
cb83b629 6172static int sched_domains_numa_levels;
e3fe70b1 6173enum numa_topology_type sched_numa_topology_type;
cb83b629 6174static int *sched_domains_numa_distance;
9942f79b 6175int sched_max_numa_distance;
cb83b629
PZ
6176static struct cpumask ***sched_domains_numa_masks;
6177static int sched_domains_curr_level;
143e1e28 6178#endif
cb83b629 6179
143e1e28
VG
6180/*
6181 * SD_flags allowed in topology descriptions.
6182 *
5d4dfddd 6183 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6184 * SD_SHARE_PKG_RESOURCES - describes shared caches
6185 * SD_NUMA - describes NUMA topologies
d77b3ed5 6186 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6187 *
6188 * Odd one out:
6189 * SD_ASYM_PACKING - describes SMT quirks
6190 */
6191#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6192 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6193 SD_SHARE_PKG_RESOURCES | \
6194 SD_NUMA | \
d77b3ed5
VG
6195 SD_ASYM_PACKING | \
6196 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6197
6198static struct sched_domain *
143e1e28 6199sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6200{
6201 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6202 int sd_weight, sd_flags = 0;
6203
6204#ifdef CONFIG_NUMA
6205 /*
6206 * Ugly hack to pass state to sd_numa_mask()...
6207 */
6208 sched_domains_curr_level = tl->numa_level;
6209#endif
6210
6211 sd_weight = cpumask_weight(tl->mask(cpu));
6212
6213 if (tl->sd_flags)
6214 sd_flags = (*tl->sd_flags)();
6215 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6216 "wrong sd_flags in topology description\n"))
6217 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6218
6219 *sd = (struct sched_domain){
6220 .min_interval = sd_weight,
6221 .max_interval = 2*sd_weight,
6222 .busy_factor = 32,
870a0bb5 6223 .imbalance_pct = 125,
143e1e28
VG
6224
6225 .cache_nice_tries = 0,
6226 .busy_idx = 0,
6227 .idle_idx = 0,
cb83b629
PZ
6228 .newidle_idx = 0,
6229 .wake_idx = 0,
6230 .forkexec_idx = 0,
6231
6232 .flags = 1*SD_LOAD_BALANCE
6233 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6234 | 1*SD_BALANCE_EXEC
6235 | 1*SD_BALANCE_FORK
cb83b629 6236 | 0*SD_BALANCE_WAKE
143e1e28 6237 | 1*SD_WAKE_AFFINE
5d4dfddd 6238 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6239 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6240 | 0*SD_SERIALIZE
cb83b629 6241 | 0*SD_PREFER_SIBLING
143e1e28
VG
6242 | 0*SD_NUMA
6243 | sd_flags
cb83b629 6244 ,
143e1e28 6245
cb83b629
PZ
6246 .last_balance = jiffies,
6247 .balance_interval = sd_weight,
143e1e28 6248 .smt_gain = 0,
2b4cfe64
JL
6249 .max_newidle_lb_cost = 0,
6250 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6251#ifdef CONFIG_SCHED_DEBUG
6252 .name = tl->name,
6253#endif
cb83b629 6254 };
cb83b629
PZ
6255
6256 /*
143e1e28 6257 * Convert topological properties into behaviour.
cb83b629 6258 */
143e1e28 6259
5d4dfddd 6260 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6261 sd->imbalance_pct = 110;
6262 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6263
6264 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6265 sd->imbalance_pct = 117;
6266 sd->cache_nice_tries = 1;
6267 sd->busy_idx = 2;
6268
6269#ifdef CONFIG_NUMA
6270 } else if (sd->flags & SD_NUMA) {
6271 sd->cache_nice_tries = 2;
6272 sd->busy_idx = 3;
6273 sd->idle_idx = 2;
6274
6275 sd->flags |= SD_SERIALIZE;
6276 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6277 sd->flags &= ~(SD_BALANCE_EXEC |
6278 SD_BALANCE_FORK |
6279 SD_WAKE_AFFINE);
6280 }
6281
6282#endif
6283 } else {
6284 sd->flags |= SD_PREFER_SIBLING;
6285 sd->cache_nice_tries = 1;
6286 sd->busy_idx = 2;
6287 sd->idle_idx = 1;
6288 }
6289
6290 sd->private = &tl->data;
cb83b629
PZ
6291
6292 return sd;
6293}
6294
143e1e28
VG
6295/*
6296 * Topology list, bottom-up.
6297 */
6298static struct sched_domain_topology_level default_topology[] = {
6299#ifdef CONFIG_SCHED_SMT
6300 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6301#endif
6302#ifdef CONFIG_SCHED_MC
6303 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6304#endif
6305 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6306 { NULL, },
6307};
6308
6309struct sched_domain_topology_level *sched_domain_topology = default_topology;
6310
6311#define for_each_sd_topology(tl) \
6312 for (tl = sched_domain_topology; tl->mask; tl++)
6313
6314void set_sched_topology(struct sched_domain_topology_level *tl)
6315{
6316 sched_domain_topology = tl;
6317}
6318
6319#ifdef CONFIG_NUMA
6320
cb83b629
PZ
6321static const struct cpumask *sd_numa_mask(int cpu)
6322{
6323 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6324}
6325
d039ac60
PZ
6326static void sched_numa_warn(const char *str)
6327{
6328 static int done = false;
6329 int i,j;
6330
6331 if (done)
6332 return;
6333
6334 done = true;
6335
6336 printk(KERN_WARNING "ERROR: %s\n\n", str);
6337
6338 for (i = 0; i < nr_node_ids; i++) {
6339 printk(KERN_WARNING " ");
6340 for (j = 0; j < nr_node_ids; j++)
6341 printk(KERN_CONT "%02d ", node_distance(i,j));
6342 printk(KERN_CONT "\n");
6343 }
6344 printk(KERN_WARNING "\n");
6345}
6346
9942f79b 6347bool find_numa_distance(int distance)
d039ac60
PZ
6348{
6349 int i;
6350
6351 if (distance == node_distance(0, 0))
6352 return true;
6353
6354 for (i = 0; i < sched_domains_numa_levels; i++) {
6355 if (sched_domains_numa_distance[i] == distance)
6356 return true;
6357 }
6358
6359 return false;
6360}
6361
e3fe70b1
RR
6362/*
6363 * A system can have three types of NUMA topology:
6364 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6365 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6366 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6367 *
6368 * The difference between a glueless mesh topology and a backplane
6369 * topology lies in whether communication between not directly
6370 * connected nodes goes through intermediary nodes (where programs
6371 * could run), or through backplane controllers. This affects
6372 * placement of programs.
6373 *
6374 * The type of topology can be discerned with the following tests:
6375 * - If the maximum distance between any nodes is 1 hop, the system
6376 * is directly connected.
6377 * - If for two nodes A and B, located N > 1 hops away from each other,
6378 * there is an intermediary node C, which is < N hops away from both
6379 * nodes A and B, the system is a glueless mesh.
6380 */
6381static void init_numa_topology_type(void)
6382{
6383 int a, b, c, n;
6384
6385 n = sched_max_numa_distance;
6386
6387 if (n <= 1)
6388 sched_numa_topology_type = NUMA_DIRECT;
6389
6390 for_each_online_node(a) {
6391 for_each_online_node(b) {
6392 /* Find two nodes furthest removed from each other. */
6393 if (node_distance(a, b) < n)
6394 continue;
6395
6396 /* Is there an intermediary node between a and b? */
6397 for_each_online_node(c) {
6398 if (node_distance(a, c) < n &&
6399 node_distance(b, c) < n) {
6400 sched_numa_topology_type =
6401 NUMA_GLUELESS_MESH;
6402 return;
6403 }
6404 }
6405
6406 sched_numa_topology_type = NUMA_BACKPLANE;
6407 return;
6408 }
6409 }
6410}
6411
cb83b629
PZ
6412static void sched_init_numa(void)
6413{
6414 int next_distance, curr_distance = node_distance(0, 0);
6415 struct sched_domain_topology_level *tl;
6416 int level = 0;
6417 int i, j, k;
6418
cb83b629
PZ
6419 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6420 if (!sched_domains_numa_distance)
6421 return;
6422
6423 /*
6424 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6425 * unique distances in the node_distance() table.
6426 *
6427 * Assumes node_distance(0,j) includes all distances in
6428 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6429 */
6430 next_distance = curr_distance;
6431 for (i = 0; i < nr_node_ids; i++) {
6432 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6433 for (k = 0; k < nr_node_ids; k++) {
6434 int distance = node_distance(i, k);
6435
6436 if (distance > curr_distance &&
6437 (distance < next_distance ||
6438 next_distance == curr_distance))
6439 next_distance = distance;
6440
6441 /*
6442 * While not a strong assumption it would be nice to know
6443 * about cases where if node A is connected to B, B is not
6444 * equally connected to A.
6445 */
6446 if (sched_debug() && node_distance(k, i) != distance)
6447 sched_numa_warn("Node-distance not symmetric");
6448
6449 if (sched_debug() && i && !find_numa_distance(distance))
6450 sched_numa_warn("Node-0 not representative");
6451 }
6452 if (next_distance != curr_distance) {
6453 sched_domains_numa_distance[level++] = next_distance;
6454 sched_domains_numa_levels = level;
6455 curr_distance = next_distance;
6456 } else break;
cb83b629 6457 }
d039ac60
PZ
6458
6459 /*
6460 * In case of sched_debug() we verify the above assumption.
6461 */
6462 if (!sched_debug())
6463 break;
cb83b629
PZ
6464 }
6465 /*
6466 * 'level' contains the number of unique distances, excluding the
6467 * identity distance node_distance(i,i).
6468 *
28b4a521 6469 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6470 * numbers.
6471 */
6472
5f7865f3
TC
6473 /*
6474 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6475 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6476 * the array will contain less then 'level' members. This could be
6477 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6478 * in other functions.
6479 *
6480 * We reset it to 'level' at the end of this function.
6481 */
6482 sched_domains_numa_levels = 0;
6483
cb83b629
PZ
6484 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6485 if (!sched_domains_numa_masks)
6486 return;
6487
6488 /*
6489 * Now for each level, construct a mask per node which contains all
6490 * cpus of nodes that are that many hops away from us.
6491 */
6492 for (i = 0; i < level; i++) {
6493 sched_domains_numa_masks[i] =
6494 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6495 if (!sched_domains_numa_masks[i])
6496 return;
6497
6498 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6499 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6500 if (!mask)
6501 return;
6502
6503 sched_domains_numa_masks[i][j] = mask;
6504
6505 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6506 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6507 continue;
6508
6509 cpumask_or(mask, mask, cpumask_of_node(k));
6510 }
6511 }
6512 }
6513
143e1e28
VG
6514 /* Compute default topology size */
6515 for (i = 0; sched_domain_topology[i].mask; i++);
6516
c515db8c 6517 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6518 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6519 if (!tl)
6520 return;
6521
6522 /*
6523 * Copy the default topology bits..
6524 */
143e1e28
VG
6525 for (i = 0; sched_domain_topology[i].mask; i++)
6526 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6527
6528 /*
6529 * .. and append 'j' levels of NUMA goodness.
6530 */
6531 for (j = 0; j < level; i++, j++) {
6532 tl[i] = (struct sched_domain_topology_level){
cb83b629 6533 .mask = sd_numa_mask,
143e1e28 6534 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6535 .flags = SDTL_OVERLAP,
6536 .numa_level = j,
143e1e28 6537 SD_INIT_NAME(NUMA)
cb83b629
PZ
6538 };
6539 }
6540
6541 sched_domain_topology = tl;
5f7865f3
TC
6542
6543 sched_domains_numa_levels = level;
9942f79b 6544 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6545
6546 init_numa_topology_type();
cb83b629 6547}
301a5cba
TC
6548
6549static void sched_domains_numa_masks_set(int cpu)
6550{
6551 int i, j;
6552 int node = cpu_to_node(cpu);
6553
6554 for (i = 0; i < sched_domains_numa_levels; i++) {
6555 for (j = 0; j < nr_node_ids; j++) {
6556 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6557 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6558 }
6559 }
6560}
6561
6562static void sched_domains_numa_masks_clear(int cpu)
6563{
6564 int i, j;
6565 for (i = 0; i < sched_domains_numa_levels; i++) {
6566 for (j = 0; j < nr_node_ids; j++)
6567 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6568 }
6569}
6570
6571/*
6572 * Update sched_domains_numa_masks[level][node] array when new cpus
6573 * are onlined.
6574 */
6575static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6576 unsigned long action,
6577 void *hcpu)
6578{
6579 int cpu = (long)hcpu;
6580
6581 switch (action & ~CPU_TASKS_FROZEN) {
6582 case CPU_ONLINE:
6583 sched_domains_numa_masks_set(cpu);
6584 break;
6585
6586 case CPU_DEAD:
6587 sched_domains_numa_masks_clear(cpu);
6588 break;
6589
6590 default:
6591 return NOTIFY_DONE;
6592 }
6593
6594 return NOTIFY_OK;
cb83b629
PZ
6595}
6596#else
6597static inline void sched_init_numa(void)
6598{
6599}
301a5cba
TC
6600
6601static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6602 unsigned long action,
6603 void *hcpu)
6604{
6605 return 0;
6606}
cb83b629
PZ
6607#endif /* CONFIG_NUMA */
6608
54ab4ff4
PZ
6609static int __sdt_alloc(const struct cpumask *cpu_map)
6610{
6611 struct sched_domain_topology_level *tl;
6612 int j;
6613
27723a68 6614 for_each_sd_topology(tl) {
54ab4ff4
PZ
6615 struct sd_data *sdd = &tl->data;
6616
6617 sdd->sd = alloc_percpu(struct sched_domain *);
6618 if (!sdd->sd)
6619 return -ENOMEM;
6620
6621 sdd->sg = alloc_percpu(struct sched_group *);
6622 if (!sdd->sg)
6623 return -ENOMEM;
6624
63b2ca30
NP
6625 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6626 if (!sdd->sgc)
9c3f75cb
PZ
6627 return -ENOMEM;
6628
54ab4ff4
PZ
6629 for_each_cpu(j, cpu_map) {
6630 struct sched_domain *sd;
6631 struct sched_group *sg;
63b2ca30 6632 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6633
6634 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6635 GFP_KERNEL, cpu_to_node(j));
6636 if (!sd)
6637 return -ENOMEM;
6638
6639 *per_cpu_ptr(sdd->sd, j) = sd;
6640
6641 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6642 GFP_KERNEL, cpu_to_node(j));
6643 if (!sg)
6644 return -ENOMEM;
6645
30b4e9eb
IM
6646 sg->next = sg;
6647
54ab4ff4 6648 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6649
63b2ca30 6650 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6651 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6652 if (!sgc)
9c3f75cb
PZ
6653 return -ENOMEM;
6654
63b2ca30 6655 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6656 }
6657 }
6658
6659 return 0;
6660}
6661
6662static void __sdt_free(const struct cpumask *cpu_map)
6663{
6664 struct sched_domain_topology_level *tl;
6665 int j;
6666
27723a68 6667 for_each_sd_topology(tl) {
54ab4ff4
PZ
6668 struct sd_data *sdd = &tl->data;
6669
6670 for_each_cpu(j, cpu_map) {
fb2cf2c6 6671 struct sched_domain *sd;
6672
6673 if (sdd->sd) {
6674 sd = *per_cpu_ptr(sdd->sd, j);
6675 if (sd && (sd->flags & SD_OVERLAP))
6676 free_sched_groups(sd->groups, 0);
6677 kfree(*per_cpu_ptr(sdd->sd, j));
6678 }
6679
6680 if (sdd->sg)
6681 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6682 if (sdd->sgc)
6683 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6684 }
6685 free_percpu(sdd->sd);
fb2cf2c6 6686 sdd->sd = NULL;
54ab4ff4 6687 free_percpu(sdd->sg);
fb2cf2c6 6688 sdd->sg = NULL;
63b2ca30
NP
6689 free_percpu(sdd->sgc);
6690 sdd->sgc = NULL;
54ab4ff4
PZ
6691 }
6692}
6693
2c402dc3 6694struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6695 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6696 struct sched_domain *child, int cpu)
2c402dc3 6697{
143e1e28 6698 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6699 if (!sd)
d069b916 6700 return child;
2c402dc3 6701
2c402dc3 6702 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6703 if (child) {
6704 sd->level = child->level + 1;
6705 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6706 child->parent = sd;
c75e0128 6707 sd->child = child;
6ae72dff
PZ
6708
6709 if (!cpumask_subset(sched_domain_span(child),
6710 sched_domain_span(sd))) {
6711 pr_err("BUG: arch topology borken\n");
6712#ifdef CONFIG_SCHED_DEBUG
6713 pr_err(" the %s domain not a subset of the %s domain\n",
6714 child->name, sd->name);
6715#endif
6716 /* Fixup, ensure @sd has at least @child cpus. */
6717 cpumask_or(sched_domain_span(sd),
6718 sched_domain_span(sd),
6719 sched_domain_span(child));
6720 }
6721
60495e77 6722 }
a841f8ce 6723 set_domain_attribute(sd, attr);
2c402dc3
PZ
6724
6725 return sd;
6726}
6727
2109b99e
AH
6728/*
6729 * Build sched domains for a given set of cpus and attach the sched domains
6730 * to the individual cpus
6731 */
dce840a0
PZ
6732static int build_sched_domains(const struct cpumask *cpu_map,
6733 struct sched_domain_attr *attr)
2109b99e 6734{
1c632169 6735 enum s_alloc alloc_state;
dce840a0 6736 struct sched_domain *sd;
2109b99e 6737 struct s_data d;
822ff793 6738 int i, ret = -ENOMEM;
9c1cfda2 6739
2109b99e
AH
6740 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6741 if (alloc_state != sa_rootdomain)
6742 goto error;
9c1cfda2 6743
dce840a0 6744 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6745 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6746 struct sched_domain_topology_level *tl;
6747
3bd65a80 6748 sd = NULL;
27723a68 6749 for_each_sd_topology(tl) {
4a850cbe 6750 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6751 if (tl == sched_domain_topology)
6752 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6753 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6754 sd->flags |= SD_OVERLAP;
d110235d
PZ
6755 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6756 break;
e3589f6c 6757 }
dce840a0
PZ
6758 }
6759
6760 /* Build the groups for the domains */
6761 for_each_cpu(i, cpu_map) {
6762 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6763 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6764 if (sd->flags & SD_OVERLAP) {
6765 if (build_overlap_sched_groups(sd, i))
6766 goto error;
6767 } else {
6768 if (build_sched_groups(sd, i))
6769 goto error;
6770 }
1cf51902 6771 }
a06dadbe 6772 }
9c1cfda2 6773
ced549fa 6774 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6775 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6776 if (!cpumask_test_cpu(i, cpu_map))
6777 continue;
9c1cfda2 6778
dce840a0
PZ
6779 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6780 claim_allocations(i, sd);
63b2ca30 6781 init_sched_groups_capacity(i, sd);
dce840a0 6782 }
f712c0c7 6783 }
9c1cfda2 6784
1da177e4 6785 /* Attach the domains */
dce840a0 6786 rcu_read_lock();
abcd083a 6787 for_each_cpu(i, cpu_map) {
21d42ccf 6788 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6789 cpu_attach_domain(sd, d.rd, i);
1da177e4 6790 }
dce840a0 6791 rcu_read_unlock();
51888ca2 6792
822ff793 6793 ret = 0;
51888ca2 6794error:
2109b99e 6795 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6796 return ret;
1da177e4 6797}
029190c5 6798
acc3f5d7 6799static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6800static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6801static struct sched_domain_attr *dattr_cur;
6802 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6803
6804/*
6805 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6806 * cpumask) fails, then fallback to a single sched domain,
6807 * as determined by the single cpumask fallback_doms.
029190c5 6808 */
4212823f 6809static cpumask_var_t fallback_doms;
029190c5 6810
ee79d1bd
HC
6811/*
6812 * arch_update_cpu_topology lets virtualized architectures update the
6813 * cpu core maps. It is supposed to return 1 if the topology changed
6814 * or 0 if it stayed the same.
6815 */
52f5684c 6816int __weak arch_update_cpu_topology(void)
22e52b07 6817{
ee79d1bd 6818 return 0;
22e52b07
HC
6819}
6820
acc3f5d7
RR
6821cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6822{
6823 int i;
6824 cpumask_var_t *doms;
6825
6826 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6827 if (!doms)
6828 return NULL;
6829 for (i = 0; i < ndoms; i++) {
6830 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6831 free_sched_domains(doms, i);
6832 return NULL;
6833 }
6834 }
6835 return doms;
6836}
6837
6838void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6839{
6840 unsigned int i;
6841 for (i = 0; i < ndoms; i++)
6842 free_cpumask_var(doms[i]);
6843 kfree(doms);
6844}
6845
1a20ff27 6846/*
41a2d6cf 6847 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6848 * For now this just excludes isolated cpus, but could be used to
6849 * exclude other special cases in the future.
1a20ff27 6850 */
c4a8849a 6851static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6852{
7378547f
MM
6853 int err;
6854
22e52b07 6855 arch_update_cpu_topology();
029190c5 6856 ndoms_cur = 1;
acc3f5d7 6857 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6858 if (!doms_cur)
acc3f5d7
RR
6859 doms_cur = &fallback_doms;
6860 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6861 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6862 register_sched_domain_sysctl();
7378547f
MM
6863
6864 return err;
1a20ff27
DG
6865}
6866
1a20ff27
DG
6867/*
6868 * Detach sched domains from a group of cpus specified in cpu_map
6869 * These cpus will now be attached to the NULL domain
6870 */
96f874e2 6871static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6872{
6873 int i;
6874
dce840a0 6875 rcu_read_lock();
abcd083a 6876 for_each_cpu(i, cpu_map)
57d885fe 6877 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6878 rcu_read_unlock();
1a20ff27
DG
6879}
6880
1d3504fc
HS
6881/* handle null as "default" */
6882static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6883 struct sched_domain_attr *new, int idx_new)
6884{
6885 struct sched_domain_attr tmp;
6886
6887 /* fast path */
6888 if (!new && !cur)
6889 return 1;
6890
6891 tmp = SD_ATTR_INIT;
6892 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6893 new ? (new + idx_new) : &tmp,
6894 sizeof(struct sched_domain_attr));
6895}
6896
029190c5
PJ
6897/*
6898 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6899 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6900 * doms_new[] to the current sched domain partitioning, doms_cur[].
6901 * It destroys each deleted domain and builds each new domain.
6902 *
acc3f5d7 6903 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6904 * The masks don't intersect (don't overlap.) We should setup one
6905 * sched domain for each mask. CPUs not in any of the cpumasks will
6906 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6907 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6908 * it as it is.
6909 *
acc3f5d7
RR
6910 * The passed in 'doms_new' should be allocated using
6911 * alloc_sched_domains. This routine takes ownership of it and will
6912 * free_sched_domains it when done with it. If the caller failed the
6913 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6914 * and partition_sched_domains() will fallback to the single partition
6915 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6916 *
96f874e2 6917 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6918 * ndoms_new == 0 is a special case for destroying existing domains,
6919 * and it will not create the default domain.
dfb512ec 6920 *
029190c5
PJ
6921 * Call with hotplug lock held
6922 */
acc3f5d7 6923void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6924 struct sched_domain_attr *dattr_new)
029190c5 6925{
dfb512ec 6926 int i, j, n;
d65bd5ec 6927 int new_topology;
029190c5 6928
712555ee 6929 mutex_lock(&sched_domains_mutex);
a1835615 6930
7378547f
MM
6931 /* always unregister in case we don't destroy any domains */
6932 unregister_sched_domain_sysctl();
6933
d65bd5ec
HC
6934 /* Let architecture update cpu core mappings. */
6935 new_topology = arch_update_cpu_topology();
6936
dfb512ec 6937 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6938
6939 /* Destroy deleted domains */
6940 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6941 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6942 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6943 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6944 goto match1;
6945 }
6946 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6947 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6948match1:
6949 ;
6950 }
6951
c8d2d47a 6952 n = ndoms_cur;
e761b772 6953 if (doms_new == NULL) {
c8d2d47a 6954 n = 0;
acc3f5d7 6955 doms_new = &fallback_doms;
6ad4c188 6956 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6957 WARN_ON_ONCE(dattr_new);
e761b772
MK
6958 }
6959
029190c5
PJ
6960 /* Build new domains */
6961 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6962 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6963 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6964 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6965 goto match2;
6966 }
6967 /* no match - add a new doms_new */
dce840a0 6968 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6969match2:
6970 ;
6971 }
6972
6973 /* Remember the new sched domains */
acc3f5d7
RR
6974 if (doms_cur != &fallback_doms)
6975 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6976 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6977 doms_cur = doms_new;
1d3504fc 6978 dattr_cur = dattr_new;
029190c5 6979 ndoms_cur = ndoms_new;
7378547f
MM
6980
6981 register_sched_domain_sysctl();
a1835615 6982
712555ee 6983 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6984}
6985
d35be8ba
SB
6986static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6987
1da177e4 6988/*
3a101d05
TH
6989 * Update cpusets according to cpu_active mask. If cpusets are
6990 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6991 * around partition_sched_domains().
d35be8ba
SB
6992 *
6993 * If we come here as part of a suspend/resume, don't touch cpusets because we
6994 * want to restore it back to its original state upon resume anyway.
1da177e4 6995 */
0b2e918a
TH
6996static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6997 void *hcpu)
e761b772 6998{
d35be8ba
SB
6999 switch (action) {
7000 case CPU_ONLINE_FROZEN:
7001 case CPU_DOWN_FAILED_FROZEN:
7002
7003 /*
7004 * num_cpus_frozen tracks how many CPUs are involved in suspend
7005 * resume sequence. As long as this is not the last online
7006 * operation in the resume sequence, just build a single sched
7007 * domain, ignoring cpusets.
7008 */
7009 num_cpus_frozen--;
7010 if (likely(num_cpus_frozen)) {
7011 partition_sched_domains(1, NULL, NULL);
7012 break;
7013 }
7014
7015 /*
7016 * This is the last CPU online operation. So fall through and
7017 * restore the original sched domains by considering the
7018 * cpuset configurations.
7019 */
7020
e761b772 7021 case CPU_ONLINE:
6ad4c188 7022 case CPU_DOWN_FAILED:
7ddf96b0 7023 cpuset_update_active_cpus(true);
d35be8ba 7024 break;
3a101d05
TH
7025 default:
7026 return NOTIFY_DONE;
7027 }
d35be8ba 7028 return NOTIFY_OK;
3a101d05 7029}
e761b772 7030
0b2e918a
TH
7031static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7032 void *hcpu)
3a101d05 7033{
d35be8ba 7034 switch (action) {
3a101d05 7035 case CPU_DOWN_PREPARE:
7ddf96b0 7036 cpuset_update_active_cpus(false);
d35be8ba
SB
7037 break;
7038 case CPU_DOWN_PREPARE_FROZEN:
7039 num_cpus_frozen++;
7040 partition_sched_domains(1, NULL, NULL);
7041 break;
e761b772
MK
7042 default:
7043 return NOTIFY_DONE;
7044 }
d35be8ba 7045 return NOTIFY_OK;
e761b772 7046}
e761b772 7047
1da177e4
LT
7048void __init sched_init_smp(void)
7049{
dcc30a35
RR
7050 cpumask_var_t non_isolated_cpus;
7051
7052 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7053 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7054
cb83b629
PZ
7055 sched_init_numa();
7056
6acce3ef
PZ
7057 /*
7058 * There's no userspace yet to cause hotplug operations; hence all the
7059 * cpu masks are stable and all blatant races in the below code cannot
7060 * happen.
7061 */
712555ee 7062 mutex_lock(&sched_domains_mutex);
c4a8849a 7063 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7064 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7065 if (cpumask_empty(non_isolated_cpus))
7066 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7067 mutex_unlock(&sched_domains_mutex);
e761b772 7068
301a5cba 7069 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7070 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7071 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7072
b328ca18 7073 init_hrtick();
5c1e1767
NP
7074
7075 /* Move init over to a non-isolated CPU */
dcc30a35 7076 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7077 BUG();
19978ca6 7078 sched_init_granularity();
dcc30a35 7079 free_cpumask_var(non_isolated_cpus);
4212823f 7080
0e3900e6 7081 init_sched_rt_class();
1baca4ce 7082 init_sched_dl_class();
1da177e4
LT
7083}
7084#else
7085void __init sched_init_smp(void)
7086{
19978ca6 7087 sched_init_granularity();
1da177e4
LT
7088}
7089#endif /* CONFIG_SMP */
7090
cd1bb94b
AB
7091const_debug unsigned int sysctl_timer_migration = 1;
7092
1da177e4
LT
7093int in_sched_functions(unsigned long addr)
7094{
1da177e4
LT
7095 return in_lock_functions(addr) ||
7096 (addr >= (unsigned long)__sched_text_start
7097 && addr < (unsigned long)__sched_text_end);
7098}
7099
029632fb 7100#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7101/*
7102 * Default task group.
7103 * Every task in system belongs to this group at bootup.
7104 */
029632fb 7105struct task_group root_task_group;
35cf4e50 7106LIST_HEAD(task_groups);
052f1dc7 7107#endif
6f505b16 7108
e6252c3e 7109DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7110
1da177e4
LT
7111void __init sched_init(void)
7112{
dd41f596 7113 int i, j;
434d53b0
MT
7114 unsigned long alloc_size = 0, ptr;
7115
7116#ifdef CONFIG_FAIR_GROUP_SCHED
7117 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7118#endif
7119#ifdef CONFIG_RT_GROUP_SCHED
7120 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7121#endif
df7c8e84 7122#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7123 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7124#endif
434d53b0 7125 if (alloc_size) {
36b7b6d4 7126 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7127
7128#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7129 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7130 ptr += nr_cpu_ids * sizeof(void **);
7131
07e06b01 7132 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7133 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7134
6d6bc0ad 7135#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7136#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7137 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7138 ptr += nr_cpu_ids * sizeof(void **);
7139
07e06b01 7140 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7141 ptr += nr_cpu_ids * sizeof(void **);
7142
6d6bc0ad 7143#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7144#ifdef CONFIG_CPUMASK_OFFSTACK
7145 for_each_possible_cpu(i) {
e6252c3e 7146 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
7147 ptr += cpumask_size();
7148 }
7149#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7150 }
dd41f596 7151
332ac17e
DF
7152 init_rt_bandwidth(&def_rt_bandwidth,
7153 global_rt_period(), global_rt_runtime());
7154 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7155 global_rt_period(), global_rt_runtime());
332ac17e 7156
57d885fe
GH
7157#ifdef CONFIG_SMP
7158 init_defrootdomain();
7159#endif
7160
d0b27fa7 7161#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7162 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7163 global_rt_period(), global_rt_runtime());
6d6bc0ad 7164#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7165
7c941438 7166#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7167 list_add(&root_task_group.list, &task_groups);
7168 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7169 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7170 autogroup_init(&init_task);
54c707e9 7171
7c941438 7172#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7173
0a945022 7174 for_each_possible_cpu(i) {
70b97a7f 7175 struct rq *rq;
1da177e4
LT
7176
7177 rq = cpu_rq(i);
05fa785c 7178 raw_spin_lock_init(&rq->lock);
7897986b 7179 rq->nr_running = 0;
dce48a84
TG
7180 rq->calc_load_active = 0;
7181 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7182 init_cfs_rq(&rq->cfs);
6f505b16 7183 init_rt_rq(&rq->rt, rq);
aab03e05 7184 init_dl_rq(&rq->dl, rq);
dd41f596 7185#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7186 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7187 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7188 /*
07e06b01 7189 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7190 *
7191 * In case of task-groups formed thr' the cgroup filesystem, it
7192 * gets 100% of the cpu resources in the system. This overall
7193 * system cpu resource is divided among the tasks of
07e06b01 7194 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7195 * based on each entity's (task or task-group's) weight
7196 * (se->load.weight).
7197 *
07e06b01 7198 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7199 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7200 * then A0's share of the cpu resource is:
7201 *
0d905bca 7202 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7203 *
07e06b01
YZ
7204 * We achieve this by letting root_task_group's tasks sit
7205 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7206 */
ab84d31e 7207 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7208 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7209#endif /* CONFIG_FAIR_GROUP_SCHED */
7210
7211 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7212#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7213 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7214#endif
1da177e4 7215
dd41f596
IM
7216 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7217 rq->cpu_load[j] = 0;
fdf3e95d
VP
7218
7219 rq->last_load_update_tick = jiffies;
7220
1da177e4 7221#ifdef CONFIG_SMP
41c7ce9a 7222 rq->sd = NULL;
57d885fe 7223 rq->rd = NULL;
ca8ce3d0 7224 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7225 rq->post_schedule = 0;
1da177e4 7226 rq->active_balance = 0;
dd41f596 7227 rq->next_balance = jiffies;
1da177e4 7228 rq->push_cpu = 0;
0a2966b4 7229 rq->cpu = i;
1f11eb6a 7230 rq->online = 0;
eae0c9df
MG
7231 rq->idle_stamp = 0;
7232 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7233 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7234
7235 INIT_LIST_HEAD(&rq->cfs_tasks);
7236
dc938520 7237 rq_attach_root(rq, &def_root_domain);
3451d024 7238#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7239 rq->nohz_flags = 0;
83cd4fe2 7240#endif
265f22a9
FW
7241#ifdef CONFIG_NO_HZ_FULL
7242 rq->last_sched_tick = 0;
7243#endif
1da177e4 7244#endif
8f4d37ec 7245 init_rq_hrtick(rq);
1da177e4 7246 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7247 }
7248
2dd73a4f 7249 set_load_weight(&init_task);
b50f60ce 7250
e107be36
AK
7251#ifdef CONFIG_PREEMPT_NOTIFIERS
7252 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7253#endif
7254
1da177e4
LT
7255 /*
7256 * The boot idle thread does lazy MMU switching as well:
7257 */
7258 atomic_inc(&init_mm.mm_count);
7259 enter_lazy_tlb(&init_mm, current);
7260
7261 /*
7262 * Make us the idle thread. Technically, schedule() should not be
7263 * called from this thread, however somewhere below it might be,
7264 * but because we are the idle thread, we just pick up running again
7265 * when this runqueue becomes "idle".
7266 */
7267 init_idle(current, smp_processor_id());
dce48a84
TG
7268
7269 calc_load_update = jiffies + LOAD_FREQ;
7270
dd41f596
IM
7271 /*
7272 * During early bootup we pretend to be a normal task:
7273 */
7274 current->sched_class = &fair_sched_class;
6892b75e 7275
bf4d83f6 7276#ifdef CONFIG_SMP
4cb98839 7277 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7278 /* May be allocated at isolcpus cmdline parse time */
7279 if (cpu_isolated_map == NULL)
7280 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7281 idle_thread_set_boot_cpu();
a803f026 7282 set_cpu_rq_start_time();
029632fb
PZ
7283#endif
7284 init_sched_fair_class();
6a7b3dc3 7285
6892b75e 7286 scheduler_running = 1;
1da177e4
LT
7287}
7288
d902db1e 7289#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7290static inline int preempt_count_equals(int preempt_offset)
7291{
234da7bc 7292 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7293
4ba8216c 7294 return (nested == preempt_offset);
e4aafea2
FW
7295}
7296
d894837f 7297void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7298{
1da177e4
LT
7299 static unsigned long prev_jiffy; /* ratelimiting */
7300
8eb23b9f
PZ
7301 /*
7302 * Blocking primitives will set (and therefore destroy) current->state,
7303 * since we will exit with TASK_RUNNING make sure we enter with it,
7304 * otherwise we will destroy state.
7305 */
7306 if (WARN(current->state != TASK_RUNNING,
7307 "do not call blocking ops when !TASK_RUNNING; "
7308 "state=%lx set at [<%p>] %pS\n",
7309 current->state,
7310 (void *)current->task_state_change,
7311 (void *)current->task_state_change))
7312 __set_current_state(TASK_RUNNING);
7313
b3fbab05 7314 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7315 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7316 !is_idle_task(current)) ||
e4aafea2 7317 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7318 return;
7319 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7320 return;
7321 prev_jiffy = jiffies;
7322
3df0fc5b
PZ
7323 printk(KERN_ERR
7324 "BUG: sleeping function called from invalid context at %s:%d\n",
7325 file, line);
7326 printk(KERN_ERR
7327 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7328 in_atomic(), irqs_disabled(),
7329 current->pid, current->comm);
aef745fc
IM
7330
7331 debug_show_held_locks(current);
7332 if (irqs_disabled())
7333 print_irqtrace_events(current);
8f47b187
TG
7334#ifdef CONFIG_DEBUG_PREEMPT
7335 if (!preempt_count_equals(preempt_offset)) {
7336 pr_err("Preemption disabled at:");
7337 print_ip_sym(current->preempt_disable_ip);
7338 pr_cont("\n");
7339 }
7340#endif
aef745fc 7341 dump_stack();
1da177e4
LT
7342}
7343EXPORT_SYMBOL(__might_sleep);
7344#endif
7345
7346#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7347static void normalize_task(struct rq *rq, struct task_struct *p)
7348{
da7a735e 7349 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7350 struct sched_attr attr = {
7351 .sched_policy = SCHED_NORMAL,
7352 };
da7a735e 7353 int old_prio = p->prio;
da0c1e65 7354 int queued;
3e51f33f 7355
da0c1e65
KT
7356 queued = task_on_rq_queued(p);
7357 if (queued)
4ca9b72b 7358 dequeue_task(rq, p, 0);
d50dde5a 7359 __setscheduler(rq, p, &attr);
da0c1e65 7360 if (queued) {
4ca9b72b 7361 enqueue_task(rq, p, 0);
8875125e 7362 resched_curr(rq);
3a5e4dc1 7363 }
da7a735e
PZ
7364
7365 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7366}
7367
1da177e4
LT
7368void normalize_rt_tasks(void)
7369{
a0f98a1c 7370 struct task_struct *g, *p;
1da177e4 7371 unsigned long flags;
70b97a7f 7372 struct rq *rq;
1da177e4 7373
3472eaa1 7374 read_lock(&tasklist_lock);
5d07f420 7375 for_each_process_thread(g, p) {
178be793
IM
7376 /*
7377 * Only normalize user tasks:
7378 */
3472eaa1 7379 if (p->flags & PF_KTHREAD)
178be793
IM
7380 continue;
7381
6cfb0d5d 7382 p->se.exec_start = 0;
6cfb0d5d 7383#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7384 p->se.statistics.wait_start = 0;
7385 p->se.statistics.sleep_start = 0;
7386 p->se.statistics.block_start = 0;
6cfb0d5d 7387#endif
dd41f596 7388
aab03e05 7389 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7390 /*
7391 * Renice negative nice level userspace
7392 * tasks back to 0:
7393 */
3472eaa1 7394 if (task_nice(p) < 0)
dd41f596 7395 set_user_nice(p, 0);
1da177e4 7396 continue;
dd41f596 7397 }
1da177e4 7398
3472eaa1 7399 rq = task_rq_lock(p, &flags);
178be793 7400 normalize_task(rq, p);
3472eaa1 7401 task_rq_unlock(rq, p, &flags);
5d07f420 7402 }
3472eaa1 7403 read_unlock(&tasklist_lock);
1da177e4
LT
7404}
7405
7406#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7407
67fc4e0c 7408#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7409/*
67fc4e0c 7410 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7411 *
7412 * They can only be called when the whole system has been
7413 * stopped - every CPU needs to be quiescent, and no scheduling
7414 * activity can take place. Using them for anything else would
7415 * be a serious bug, and as a result, they aren't even visible
7416 * under any other configuration.
7417 */
7418
7419/**
7420 * curr_task - return the current task for a given cpu.
7421 * @cpu: the processor in question.
7422 *
7423 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7424 *
7425 * Return: The current task for @cpu.
1df5c10a 7426 */
36c8b586 7427struct task_struct *curr_task(int cpu)
1df5c10a
LT
7428{
7429 return cpu_curr(cpu);
7430}
7431
67fc4e0c
JW
7432#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7433
7434#ifdef CONFIG_IA64
1df5c10a
LT
7435/**
7436 * set_curr_task - set the current task for a given cpu.
7437 * @cpu: the processor in question.
7438 * @p: the task pointer to set.
7439 *
7440 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7441 * are serviced on a separate stack. It allows the architecture to switch the
7442 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7443 * must be called with all CPU's synchronized, and interrupts disabled, the
7444 * and caller must save the original value of the current task (see
7445 * curr_task() above) and restore that value before reenabling interrupts and
7446 * re-starting the system.
7447 *
7448 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7449 */
36c8b586 7450void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7451{
7452 cpu_curr(cpu) = p;
7453}
7454
7455#endif
29f59db3 7456
7c941438 7457#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7458/* task_group_lock serializes the addition/removal of task groups */
7459static DEFINE_SPINLOCK(task_group_lock);
7460
bccbe08a
PZ
7461static void free_sched_group(struct task_group *tg)
7462{
7463 free_fair_sched_group(tg);
7464 free_rt_sched_group(tg);
e9aa1dd1 7465 autogroup_free(tg);
bccbe08a
PZ
7466 kfree(tg);
7467}
7468
7469/* allocate runqueue etc for a new task group */
ec7dc8ac 7470struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7471{
7472 struct task_group *tg;
bccbe08a
PZ
7473
7474 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7475 if (!tg)
7476 return ERR_PTR(-ENOMEM);
7477
ec7dc8ac 7478 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7479 goto err;
7480
ec7dc8ac 7481 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7482 goto err;
7483
ace783b9
LZ
7484 return tg;
7485
7486err:
7487 free_sched_group(tg);
7488 return ERR_PTR(-ENOMEM);
7489}
7490
7491void sched_online_group(struct task_group *tg, struct task_group *parent)
7492{
7493 unsigned long flags;
7494
8ed36996 7495 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7496 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7497
7498 WARN_ON(!parent); /* root should already exist */
7499
7500 tg->parent = parent;
f473aa5e 7501 INIT_LIST_HEAD(&tg->children);
09f2724a 7502 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7503 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7504}
7505
9b5b7751 7506/* rcu callback to free various structures associated with a task group */
6f505b16 7507static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7508{
29f59db3 7509 /* now it should be safe to free those cfs_rqs */
6f505b16 7510 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7511}
7512
9b5b7751 7513/* Destroy runqueue etc associated with a task group */
4cf86d77 7514void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7515{
7516 /* wait for possible concurrent references to cfs_rqs complete */
7517 call_rcu(&tg->rcu, free_sched_group_rcu);
7518}
7519
7520void sched_offline_group(struct task_group *tg)
29f59db3 7521{
8ed36996 7522 unsigned long flags;
9b5b7751 7523 int i;
29f59db3 7524
3d4b47b4
PZ
7525 /* end participation in shares distribution */
7526 for_each_possible_cpu(i)
bccbe08a 7527 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7528
7529 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7530 list_del_rcu(&tg->list);
f473aa5e 7531 list_del_rcu(&tg->siblings);
8ed36996 7532 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7533}
7534
9b5b7751 7535/* change task's runqueue when it moves between groups.
3a252015
IM
7536 * The caller of this function should have put the task in its new group
7537 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7538 * reflect its new group.
9b5b7751
SV
7539 */
7540void sched_move_task(struct task_struct *tsk)
29f59db3 7541{
8323f26c 7542 struct task_group *tg;
da0c1e65 7543 int queued, running;
29f59db3
SV
7544 unsigned long flags;
7545 struct rq *rq;
7546
7547 rq = task_rq_lock(tsk, &flags);
7548
051a1d1a 7549 running = task_current(rq, tsk);
da0c1e65 7550 queued = task_on_rq_queued(tsk);
29f59db3 7551
da0c1e65 7552 if (queued)
29f59db3 7553 dequeue_task(rq, tsk, 0);
0e1f3483 7554 if (unlikely(running))
f3cd1c4e 7555 put_prev_task(rq, tsk);
29f59db3 7556
073219e9 7557 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7558 lockdep_is_held(&tsk->sighand->siglock)),
7559 struct task_group, css);
7560 tg = autogroup_task_group(tsk, tg);
7561 tsk->sched_task_group = tg;
7562
810b3817 7563#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7564 if (tsk->sched_class->task_move_group)
da0c1e65 7565 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7566 else
810b3817 7567#endif
b2b5ce02 7568 set_task_rq(tsk, task_cpu(tsk));
810b3817 7569
0e1f3483
HS
7570 if (unlikely(running))
7571 tsk->sched_class->set_curr_task(rq);
da0c1e65 7572 if (queued)
371fd7e7 7573 enqueue_task(rq, tsk, 0);
29f59db3 7574
0122ec5b 7575 task_rq_unlock(rq, tsk, &flags);
29f59db3 7576}
7c941438 7577#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7578
a790de99
PT
7579#ifdef CONFIG_RT_GROUP_SCHED
7580/*
7581 * Ensure that the real time constraints are schedulable.
7582 */
7583static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7584
9a7e0b18
PZ
7585/* Must be called with tasklist_lock held */
7586static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7587{
9a7e0b18 7588 struct task_struct *g, *p;
b40b2e8e 7589
5d07f420 7590 for_each_process_thread(g, p) {
8651c658 7591 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7592 return 1;
5d07f420 7593 }
b40b2e8e 7594
9a7e0b18
PZ
7595 return 0;
7596}
b40b2e8e 7597
9a7e0b18
PZ
7598struct rt_schedulable_data {
7599 struct task_group *tg;
7600 u64 rt_period;
7601 u64 rt_runtime;
7602};
b40b2e8e 7603
a790de99 7604static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7605{
7606 struct rt_schedulable_data *d = data;
7607 struct task_group *child;
7608 unsigned long total, sum = 0;
7609 u64 period, runtime;
b40b2e8e 7610
9a7e0b18
PZ
7611 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7612 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7613
9a7e0b18
PZ
7614 if (tg == d->tg) {
7615 period = d->rt_period;
7616 runtime = d->rt_runtime;
b40b2e8e 7617 }
b40b2e8e 7618
4653f803
PZ
7619 /*
7620 * Cannot have more runtime than the period.
7621 */
7622 if (runtime > period && runtime != RUNTIME_INF)
7623 return -EINVAL;
6f505b16 7624
4653f803
PZ
7625 /*
7626 * Ensure we don't starve existing RT tasks.
7627 */
9a7e0b18
PZ
7628 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7629 return -EBUSY;
6f505b16 7630
9a7e0b18 7631 total = to_ratio(period, runtime);
6f505b16 7632
4653f803
PZ
7633 /*
7634 * Nobody can have more than the global setting allows.
7635 */
7636 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7637 return -EINVAL;
6f505b16 7638
4653f803
PZ
7639 /*
7640 * The sum of our children's runtime should not exceed our own.
7641 */
9a7e0b18
PZ
7642 list_for_each_entry_rcu(child, &tg->children, siblings) {
7643 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7644 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7645
9a7e0b18
PZ
7646 if (child == d->tg) {
7647 period = d->rt_period;
7648 runtime = d->rt_runtime;
7649 }
6f505b16 7650
9a7e0b18 7651 sum += to_ratio(period, runtime);
9f0c1e56 7652 }
6f505b16 7653
9a7e0b18
PZ
7654 if (sum > total)
7655 return -EINVAL;
7656
7657 return 0;
6f505b16
PZ
7658}
7659
9a7e0b18 7660static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7661{
8277434e
PT
7662 int ret;
7663
9a7e0b18
PZ
7664 struct rt_schedulable_data data = {
7665 .tg = tg,
7666 .rt_period = period,
7667 .rt_runtime = runtime,
7668 };
7669
8277434e
PT
7670 rcu_read_lock();
7671 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7672 rcu_read_unlock();
7673
7674 return ret;
521f1a24
DG
7675}
7676
ab84d31e 7677static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7678 u64 rt_period, u64 rt_runtime)
6f505b16 7679{
ac086bc2 7680 int i, err = 0;
9f0c1e56 7681
9f0c1e56 7682 mutex_lock(&rt_constraints_mutex);
521f1a24 7683 read_lock(&tasklist_lock);
9a7e0b18
PZ
7684 err = __rt_schedulable(tg, rt_period, rt_runtime);
7685 if (err)
9f0c1e56 7686 goto unlock;
ac086bc2 7687
0986b11b 7688 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7689 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7690 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7691
7692 for_each_possible_cpu(i) {
7693 struct rt_rq *rt_rq = tg->rt_rq[i];
7694
0986b11b 7695 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7696 rt_rq->rt_runtime = rt_runtime;
0986b11b 7697 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7698 }
0986b11b 7699 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7700unlock:
521f1a24 7701 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7702 mutex_unlock(&rt_constraints_mutex);
7703
7704 return err;
6f505b16
PZ
7705}
7706
25cc7da7 7707static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7708{
7709 u64 rt_runtime, rt_period;
7710
7711 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7712 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7713 if (rt_runtime_us < 0)
7714 rt_runtime = RUNTIME_INF;
7715
ab84d31e 7716 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7717}
7718
25cc7da7 7719static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7720{
7721 u64 rt_runtime_us;
7722
d0b27fa7 7723 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7724 return -1;
7725
d0b27fa7 7726 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7727 do_div(rt_runtime_us, NSEC_PER_USEC);
7728 return rt_runtime_us;
7729}
d0b27fa7 7730
25cc7da7 7731static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7732{
7733 u64 rt_runtime, rt_period;
7734
7735 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7736 rt_runtime = tg->rt_bandwidth.rt_runtime;
7737
619b0488
R
7738 if (rt_period == 0)
7739 return -EINVAL;
7740
ab84d31e 7741 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7742}
7743
25cc7da7 7744static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7745{
7746 u64 rt_period_us;
7747
7748 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7749 do_div(rt_period_us, NSEC_PER_USEC);
7750 return rt_period_us;
7751}
332ac17e 7752#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7753
332ac17e 7754#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7755static int sched_rt_global_constraints(void)
7756{
7757 int ret = 0;
7758
7759 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7760 read_lock(&tasklist_lock);
4653f803 7761 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7762 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7763 mutex_unlock(&rt_constraints_mutex);
7764
7765 return ret;
7766}
54e99124 7767
25cc7da7 7768static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7769{
7770 /* Don't accept realtime tasks when there is no way for them to run */
7771 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7772 return 0;
7773
7774 return 1;
7775}
7776
6d6bc0ad 7777#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7778static int sched_rt_global_constraints(void)
7779{
ac086bc2 7780 unsigned long flags;
332ac17e 7781 int i, ret = 0;
ec5d4989 7782
0986b11b 7783 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7784 for_each_possible_cpu(i) {
7785 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7786
0986b11b 7787 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7788 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7789 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7790 }
0986b11b 7791 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7792
332ac17e 7793 return ret;
d0b27fa7 7794}
6d6bc0ad 7795#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7796
332ac17e
DF
7797static int sched_dl_global_constraints(void)
7798{
1724813d
PZ
7799 u64 runtime = global_rt_runtime();
7800 u64 period = global_rt_period();
332ac17e 7801 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7802 struct dl_bw *dl_b;
1724813d 7803 int cpu, ret = 0;
49516342 7804 unsigned long flags;
332ac17e
DF
7805
7806 /*
7807 * Here we want to check the bandwidth not being set to some
7808 * value smaller than the currently allocated bandwidth in
7809 * any of the root_domains.
7810 *
7811 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7812 * cycling on root_domains... Discussion on different/better
7813 * solutions is welcome!
7814 */
1724813d 7815 for_each_possible_cpu(cpu) {
f10e00f4
KT
7816 rcu_read_lock_sched();
7817 dl_b = dl_bw_of(cpu);
332ac17e 7818
49516342 7819 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7820 if (new_bw < dl_b->total_bw)
7821 ret = -EBUSY;
49516342 7822 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7823
f10e00f4
KT
7824 rcu_read_unlock_sched();
7825
1724813d
PZ
7826 if (ret)
7827 break;
332ac17e
DF
7828 }
7829
1724813d 7830 return ret;
332ac17e
DF
7831}
7832
1724813d 7833static void sched_dl_do_global(void)
ce0dbbbb 7834{
1724813d 7835 u64 new_bw = -1;
f10e00f4 7836 struct dl_bw *dl_b;
1724813d 7837 int cpu;
49516342 7838 unsigned long flags;
ce0dbbbb 7839
1724813d
PZ
7840 def_dl_bandwidth.dl_period = global_rt_period();
7841 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7842
7843 if (global_rt_runtime() != RUNTIME_INF)
7844 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7845
7846 /*
7847 * FIXME: As above...
7848 */
7849 for_each_possible_cpu(cpu) {
f10e00f4
KT
7850 rcu_read_lock_sched();
7851 dl_b = dl_bw_of(cpu);
1724813d 7852
49516342 7853 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7854 dl_b->bw = new_bw;
49516342 7855 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7856
7857 rcu_read_unlock_sched();
ce0dbbbb 7858 }
1724813d
PZ
7859}
7860
7861static int sched_rt_global_validate(void)
7862{
7863 if (sysctl_sched_rt_period <= 0)
7864 return -EINVAL;
7865
e9e7cb38
JL
7866 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7867 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7868 return -EINVAL;
7869
7870 return 0;
7871}
7872
7873static void sched_rt_do_global(void)
7874{
7875 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7876 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7877}
7878
d0b27fa7 7879int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7880 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7881 loff_t *ppos)
7882{
d0b27fa7
PZ
7883 int old_period, old_runtime;
7884 static DEFINE_MUTEX(mutex);
1724813d 7885 int ret;
d0b27fa7
PZ
7886
7887 mutex_lock(&mutex);
7888 old_period = sysctl_sched_rt_period;
7889 old_runtime = sysctl_sched_rt_runtime;
7890
8d65af78 7891 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7892
7893 if (!ret && write) {
1724813d
PZ
7894 ret = sched_rt_global_validate();
7895 if (ret)
7896 goto undo;
7897
d0b27fa7 7898 ret = sched_rt_global_constraints();
1724813d
PZ
7899 if (ret)
7900 goto undo;
7901
7902 ret = sched_dl_global_constraints();
7903 if (ret)
7904 goto undo;
7905
7906 sched_rt_do_global();
7907 sched_dl_do_global();
7908 }
7909 if (0) {
7910undo:
7911 sysctl_sched_rt_period = old_period;
7912 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7913 }
7914 mutex_unlock(&mutex);
7915
7916 return ret;
7917}
68318b8e 7918
1724813d 7919int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7920 void __user *buffer, size_t *lenp,
7921 loff_t *ppos)
7922{
7923 int ret;
332ac17e 7924 static DEFINE_MUTEX(mutex);
332ac17e
DF
7925
7926 mutex_lock(&mutex);
332ac17e 7927 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7928 /* make sure that internally we keep jiffies */
7929 /* also, writing zero resets timeslice to default */
332ac17e 7930 if (!ret && write) {
1724813d
PZ
7931 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7932 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7933 }
7934 mutex_unlock(&mutex);
332ac17e
DF
7935 return ret;
7936}
7937
052f1dc7 7938#ifdef CONFIG_CGROUP_SCHED
68318b8e 7939
a7c6d554 7940static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7941{
a7c6d554 7942 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7943}
7944
eb95419b
TH
7945static struct cgroup_subsys_state *
7946cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7947{
eb95419b
TH
7948 struct task_group *parent = css_tg(parent_css);
7949 struct task_group *tg;
68318b8e 7950
eb95419b 7951 if (!parent) {
68318b8e 7952 /* This is early initialization for the top cgroup */
07e06b01 7953 return &root_task_group.css;
68318b8e
SV
7954 }
7955
ec7dc8ac 7956 tg = sched_create_group(parent);
68318b8e
SV
7957 if (IS_ERR(tg))
7958 return ERR_PTR(-ENOMEM);
7959
68318b8e
SV
7960 return &tg->css;
7961}
7962
eb95419b 7963static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7964{
eb95419b 7965 struct task_group *tg = css_tg(css);
5c9d535b 7966 struct task_group *parent = css_tg(css->parent);
ace783b9 7967
63876986
TH
7968 if (parent)
7969 sched_online_group(tg, parent);
ace783b9
LZ
7970 return 0;
7971}
7972
eb95419b 7973static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7974{
eb95419b 7975 struct task_group *tg = css_tg(css);
68318b8e
SV
7976
7977 sched_destroy_group(tg);
7978}
7979
eb95419b 7980static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7981{
eb95419b 7982 struct task_group *tg = css_tg(css);
ace783b9
LZ
7983
7984 sched_offline_group(tg);
7985}
7986
eeb61e53
KT
7987static void cpu_cgroup_fork(struct task_struct *task)
7988{
7989 sched_move_task(task);
7990}
7991
eb95419b 7992static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7993 struct cgroup_taskset *tset)
68318b8e 7994{
bb9d97b6
TH
7995 struct task_struct *task;
7996
924f0d9a 7997 cgroup_taskset_for_each(task, tset) {
b68aa230 7998#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7999 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8000 return -EINVAL;
b68aa230 8001#else
bb9d97b6
TH
8002 /* We don't support RT-tasks being in separate groups */
8003 if (task->sched_class != &fair_sched_class)
8004 return -EINVAL;
b68aa230 8005#endif
bb9d97b6 8006 }
be367d09
BB
8007 return 0;
8008}
68318b8e 8009
eb95419b 8010static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8011 struct cgroup_taskset *tset)
68318b8e 8012{
bb9d97b6
TH
8013 struct task_struct *task;
8014
924f0d9a 8015 cgroup_taskset_for_each(task, tset)
bb9d97b6 8016 sched_move_task(task);
68318b8e
SV
8017}
8018
eb95419b
TH
8019static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8020 struct cgroup_subsys_state *old_css,
8021 struct task_struct *task)
068c5cc5
PZ
8022{
8023 /*
8024 * cgroup_exit() is called in the copy_process() failure path.
8025 * Ignore this case since the task hasn't ran yet, this avoids
8026 * trying to poke a half freed task state from generic code.
8027 */
8028 if (!(task->flags & PF_EXITING))
8029 return;
8030
8031 sched_move_task(task);
8032}
8033
052f1dc7 8034#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8035static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8036 struct cftype *cftype, u64 shareval)
68318b8e 8037{
182446d0 8038 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8039}
8040
182446d0
TH
8041static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8042 struct cftype *cft)
68318b8e 8043{
182446d0 8044 struct task_group *tg = css_tg(css);
68318b8e 8045
c8b28116 8046 return (u64) scale_load_down(tg->shares);
68318b8e 8047}
ab84d31e
PT
8048
8049#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8050static DEFINE_MUTEX(cfs_constraints_mutex);
8051
ab84d31e
PT
8052const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8053const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8054
a790de99
PT
8055static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8056
ab84d31e
PT
8057static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8058{
56f570e5 8059 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8060 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8061
8062 if (tg == &root_task_group)
8063 return -EINVAL;
8064
8065 /*
8066 * Ensure we have at some amount of bandwidth every period. This is
8067 * to prevent reaching a state of large arrears when throttled via
8068 * entity_tick() resulting in prolonged exit starvation.
8069 */
8070 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8071 return -EINVAL;
8072
8073 /*
8074 * Likewise, bound things on the otherside by preventing insane quota
8075 * periods. This also allows us to normalize in computing quota
8076 * feasibility.
8077 */
8078 if (period > max_cfs_quota_period)
8079 return -EINVAL;
8080
0e59bdae
KT
8081 /*
8082 * Prevent race between setting of cfs_rq->runtime_enabled and
8083 * unthrottle_offline_cfs_rqs().
8084 */
8085 get_online_cpus();
a790de99
PT
8086 mutex_lock(&cfs_constraints_mutex);
8087 ret = __cfs_schedulable(tg, period, quota);
8088 if (ret)
8089 goto out_unlock;
8090
58088ad0 8091 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8092 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8093 /*
8094 * If we need to toggle cfs_bandwidth_used, off->on must occur
8095 * before making related changes, and on->off must occur afterwards
8096 */
8097 if (runtime_enabled && !runtime_was_enabled)
8098 cfs_bandwidth_usage_inc();
ab84d31e
PT
8099 raw_spin_lock_irq(&cfs_b->lock);
8100 cfs_b->period = ns_to_ktime(period);
8101 cfs_b->quota = quota;
58088ad0 8102
a9cf55b2 8103 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8104 /* restart the period timer (if active) to handle new period expiry */
8105 if (runtime_enabled && cfs_b->timer_active) {
8106 /* force a reprogram */
09dc4ab0 8107 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8108 }
ab84d31e
PT
8109 raw_spin_unlock_irq(&cfs_b->lock);
8110
0e59bdae 8111 for_each_online_cpu(i) {
ab84d31e 8112 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8113 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8114
8115 raw_spin_lock_irq(&rq->lock);
58088ad0 8116 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8117 cfs_rq->runtime_remaining = 0;
671fd9da 8118
029632fb 8119 if (cfs_rq->throttled)
671fd9da 8120 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8121 raw_spin_unlock_irq(&rq->lock);
8122 }
1ee14e6c
BS
8123 if (runtime_was_enabled && !runtime_enabled)
8124 cfs_bandwidth_usage_dec();
a790de99
PT
8125out_unlock:
8126 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8127 put_online_cpus();
ab84d31e 8128
a790de99 8129 return ret;
ab84d31e
PT
8130}
8131
8132int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8133{
8134 u64 quota, period;
8135
029632fb 8136 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8137 if (cfs_quota_us < 0)
8138 quota = RUNTIME_INF;
8139 else
8140 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8141
8142 return tg_set_cfs_bandwidth(tg, period, quota);
8143}
8144
8145long tg_get_cfs_quota(struct task_group *tg)
8146{
8147 u64 quota_us;
8148
029632fb 8149 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8150 return -1;
8151
029632fb 8152 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8153 do_div(quota_us, NSEC_PER_USEC);
8154
8155 return quota_us;
8156}
8157
8158int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8159{
8160 u64 quota, period;
8161
8162 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8163 quota = tg->cfs_bandwidth.quota;
ab84d31e 8164
ab84d31e
PT
8165 return tg_set_cfs_bandwidth(tg, period, quota);
8166}
8167
8168long tg_get_cfs_period(struct task_group *tg)
8169{
8170 u64 cfs_period_us;
8171
029632fb 8172 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8173 do_div(cfs_period_us, NSEC_PER_USEC);
8174
8175 return cfs_period_us;
8176}
8177
182446d0
TH
8178static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8179 struct cftype *cft)
ab84d31e 8180{
182446d0 8181 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8182}
8183
182446d0
TH
8184static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8185 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8186{
182446d0 8187 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8188}
8189
182446d0
TH
8190static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8191 struct cftype *cft)
ab84d31e 8192{
182446d0 8193 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8194}
8195
182446d0
TH
8196static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8197 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8198{
182446d0 8199 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8200}
8201
a790de99
PT
8202struct cfs_schedulable_data {
8203 struct task_group *tg;
8204 u64 period, quota;
8205};
8206
8207/*
8208 * normalize group quota/period to be quota/max_period
8209 * note: units are usecs
8210 */
8211static u64 normalize_cfs_quota(struct task_group *tg,
8212 struct cfs_schedulable_data *d)
8213{
8214 u64 quota, period;
8215
8216 if (tg == d->tg) {
8217 period = d->period;
8218 quota = d->quota;
8219 } else {
8220 period = tg_get_cfs_period(tg);
8221 quota = tg_get_cfs_quota(tg);
8222 }
8223
8224 /* note: these should typically be equivalent */
8225 if (quota == RUNTIME_INF || quota == -1)
8226 return RUNTIME_INF;
8227
8228 return to_ratio(period, quota);
8229}
8230
8231static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8232{
8233 struct cfs_schedulable_data *d = data;
029632fb 8234 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8235 s64 quota = 0, parent_quota = -1;
8236
8237 if (!tg->parent) {
8238 quota = RUNTIME_INF;
8239 } else {
029632fb 8240 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8241
8242 quota = normalize_cfs_quota(tg, d);
9c58c79a 8243 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8244
8245 /*
8246 * ensure max(child_quota) <= parent_quota, inherit when no
8247 * limit is set
8248 */
8249 if (quota == RUNTIME_INF)
8250 quota = parent_quota;
8251 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8252 return -EINVAL;
8253 }
9c58c79a 8254 cfs_b->hierarchical_quota = quota;
a790de99
PT
8255
8256 return 0;
8257}
8258
8259static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8260{
8277434e 8261 int ret;
a790de99
PT
8262 struct cfs_schedulable_data data = {
8263 .tg = tg,
8264 .period = period,
8265 .quota = quota,
8266 };
8267
8268 if (quota != RUNTIME_INF) {
8269 do_div(data.period, NSEC_PER_USEC);
8270 do_div(data.quota, NSEC_PER_USEC);
8271 }
8272
8277434e
PT
8273 rcu_read_lock();
8274 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8275 rcu_read_unlock();
8276
8277 return ret;
a790de99 8278}
e8da1b18 8279
2da8ca82 8280static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8281{
2da8ca82 8282 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8283 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8284
44ffc75b
TH
8285 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8286 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8287 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8288
8289 return 0;
8290}
ab84d31e 8291#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8292#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8293
052f1dc7 8294#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8295static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8296 struct cftype *cft, s64 val)
6f505b16 8297{
182446d0 8298 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8299}
8300
182446d0
TH
8301static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8302 struct cftype *cft)
6f505b16 8303{
182446d0 8304 return sched_group_rt_runtime(css_tg(css));
6f505b16 8305}
d0b27fa7 8306
182446d0
TH
8307static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8308 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8309{
182446d0 8310 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8311}
8312
182446d0
TH
8313static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8314 struct cftype *cft)
d0b27fa7 8315{
182446d0 8316 return sched_group_rt_period(css_tg(css));
d0b27fa7 8317}
6d6bc0ad 8318#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8319
fe5c7cc2 8320static struct cftype cpu_files[] = {
052f1dc7 8321#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8322 {
8323 .name = "shares",
f4c753b7
PM
8324 .read_u64 = cpu_shares_read_u64,
8325 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8326 },
052f1dc7 8327#endif
ab84d31e
PT
8328#ifdef CONFIG_CFS_BANDWIDTH
8329 {
8330 .name = "cfs_quota_us",
8331 .read_s64 = cpu_cfs_quota_read_s64,
8332 .write_s64 = cpu_cfs_quota_write_s64,
8333 },
8334 {
8335 .name = "cfs_period_us",
8336 .read_u64 = cpu_cfs_period_read_u64,
8337 .write_u64 = cpu_cfs_period_write_u64,
8338 },
e8da1b18
NR
8339 {
8340 .name = "stat",
2da8ca82 8341 .seq_show = cpu_stats_show,
e8da1b18 8342 },
ab84d31e 8343#endif
052f1dc7 8344#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8345 {
9f0c1e56 8346 .name = "rt_runtime_us",
06ecb27c
PM
8347 .read_s64 = cpu_rt_runtime_read,
8348 .write_s64 = cpu_rt_runtime_write,
6f505b16 8349 },
d0b27fa7
PZ
8350 {
8351 .name = "rt_period_us",
f4c753b7
PM
8352 .read_u64 = cpu_rt_period_read_uint,
8353 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8354 },
052f1dc7 8355#endif
4baf6e33 8356 { } /* terminate */
68318b8e
SV
8357};
8358
073219e9 8359struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8360 .css_alloc = cpu_cgroup_css_alloc,
8361 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8362 .css_online = cpu_cgroup_css_online,
8363 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8364 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8365 .can_attach = cpu_cgroup_can_attach,
8366 .attach = cpu_cgroup_attach,
068c5cc5 8367 .exit = cpu_cgroup_exit,
5577964e 8368 .legacy_cftypes = cpu_files,
68318b8e
SV
8369 .early_init = 1,
8370};
8371
052f1dc7 8372#endif /* CONFIG_CGROUP_SCHED */
d842de87 8373
b637a328
PM
8374void dump_cpu_task(int cpu)
8375{
8376 pr_info("Task dump for CPU %d:\n", cpu);
8377 sched_show_task(cpu_curr(cpu));
8378}
This page took 2.597923 seconds and 5 git commands to generate.