Merge tag 'pinctrl-v3.18-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
126 if (delta < 0)
127 return;
fe44d621
PZ
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
3e51f33f
PZ
130}
131
bf5c91ba
IM
132/*
133 * Debugging: various feature bits
134 */
f00b45c1 135
f00b45c1
PZ
136#define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
bf5c91ba 139const_debug unsigned int sysctl_sched_features =
391e43da 140#include "features.h"
f00b45c1
PZ
141 0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled) \
147 #name ,
148
1292531f 149static const char * const sched_feat_names[] = {
391e43da 150#include "features.h"
f00b45c1
PZ
151};
152
153#undef SCHED_FEAT
154
34f3a814 155static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 156{
f00b45c1
PZ
157 int i;
158
f8b6d1cc 159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 163 }
34f3a814 164 seq_puts(m, "\n");
f00b45c1 165
34f3a814 166 return 0;
f00b45c1
PZ
167}
168
f8b6d1cc
PZ
169#ifdef HAVE_JUMP_LABEL
170
c5905afb
IM
171#define jump_label_key__true STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
173
174#define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
c5905afb 177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
c5905afb
IM
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
187}
188
189static void sched_feat_enable(int i)
190{
c5905afb
IM
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
1a687c2e 199static int sched_feat_set(char *cmp)
f00b45c1 200{
f00b45c1 201 int i;
1a687c2e 202 int neg = 0;
f00b45c1 203
524429c3 204 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
205 neg = 1;
206 cmp += 3;
207 }
208
f8b6d1cc 209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 211 if (neg) {
f00b45c1 212 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
213 sched_feat_disable(i);
214 } else {
f00b45c1 215 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
216 sched_feat_enable(i);
217 }
f00b45c1
PZ
218 break;
219 }
220 }
221
1a687c2e
MG
222 return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228{
229 char buf[64];
230 char *cmp;
231 int i;
5cd08fbf 232 struct inode *inode;
1a687c2e
MG
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
5cd08fbf
JB
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
1a687c2e 246 i = sched_feat_set(cmp);
5cd08fbf 247 mutex_unlock(&inode->i_mutex);
f8b6d1cc 248 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
249 return -EINVAL;
250
42994724 251 *ppos += cnt;
f00b45c1
PZ
252
253 return cnt;
254}
255
34f3a814
LZ
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258 return single_open(filp, sched_feat_show, NULL);
259}
260
828c0950 261static const struct file_operations sched_feat_fops = {
34f3a814
LZ
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
f00b45c1
PZ
267};
268
269static __init int sched_init_debug(void)
270{
f00b45c1
PZ
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275}
276late_initcall(sched_init_debug);
f8b6d1cc 277#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 278
b82d9fdd
PZ
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
e9e9250b
PZ
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
fa85ae24 293/*
9f0c1e56 294 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
295 * default: 1s
296 */
9f0c1e56 297unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 298
029632fb 299__read_mostly int scheduler_running;
6892b75e 300
9f0c1e56
PZ
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
fa85ae24 306
0970d299 307/*
0122ec5b 308 * __task_rq_lock - lock the rq @p resides on.
b29739f9 309 */
70b97a7f 310static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
311 __acquires(rq->lock)
312{
0970d299
PZ
313 struct rq *rq;
314
0122ec5b
PZ
315 lockdep_assert_held(&p->pi_lock);
316
3a5c359a 317 for (;;) {
0970d299 318 rq = task_rq(p);
05fa785c 319 raw_spin_lock(&rq->lock);
cca26e80 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 321 return rq;
05fa785c 322 raw_spin_unlock(&rq->lock);
cca26e80
KT
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
cca26e80 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
1da177e4 349 }
1da177e4
LT
350}
351
a9957449 352static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
353 __releases(rq->lock)
354{
05fa785c 355 raw_spin_unlock(&rq->lock);
b29739f9
IM
356}
357
0122ec5b
PZ
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 360 __releases(rq->lock)
0122ec5b 361 __releases(p->pi_lock)
1da177e4 362{
0122ec5b
PZ
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
365}
366
1da177e4 367/*
cc2a73b5 368 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 369 */
a9957449 370static struct rq *this_rq_lock(void)
1da177e4
LT
371 __acquires(rq->lock)
372{
70b97a7f 373 struct rq *rq;
1da177e4
LT
374
375 local_irq_disable();
376 rq = this_rq();
05fa785c 377 raw_spin_lock(&rq->lock);
1da177e4
LT
378
379 return rq;
380}
381
8f4d37ec
PZ
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 385 */
8f4d37ec 386
8f4d37ec
PZ
387static void hrtick_clear(struct rq *rq)
388{
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391}
392
8f4d37ec
PZ
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
05fa785c 403 raw_spin_lock(&rq->lock);
3e51f33f 404 update_rq_clock(rq);
8f4d37ec 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 406 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
407
408 return HRTIMER_NORESTART;
409}
410
95e904c7 411#ifdef CONFIG_SMP
971ee28c
PZ
412
413static int __hrtick_restart(struct rq *rq)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
31656519
PZ
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
b328ca18 425{
31656519 426 struct rq *rq = arg;
b328ca18 427
05fa785c 428 raw_spin_lock(&rq->lock);
971ee28c 429 __hrtick_restart(rq);
31656519 430 rq->hrtick_csd_pending = 0;
05fa785c 431 raw_spin_unlock(&rq->lock);
b328ca18
PZ
432}
433
31656519
PZ
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
029632fb 439void hrtick_start(struct rq *rq, u64 delay)
b328ca18 440{
31656519 441 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 451
cc584b21 452 hrtimer_set_expires(timer, time);
31656519
PZ
453
454 if (rq == this_rq()) {
971ee28c 455 __hrtick_restart(rq);
31656519 456 } else if (!rq->hrtick_csd_pending) {
c46fff2a 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
458 rq->hrtick_csd_pending = 1;
459 }
b328ca18
PZ
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
31656519 474 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479}
480
fa748203 481static __init void init_hrtick(void)
b328ca18
PZ
482{
483 hotcpu_notifier(hotplug_hrtick, 0);
484}
31656519
PZ
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
029632fb 491void hrtick_start(struct rq *rq, u64 delay)
31656519 492{
7f1e2ca9 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 494 HRTIMER_MODE_REL_PINNED, 0);
31656519 495}
b328ca18 496
006c75f1 497static inline void init_hrtick(void)
8f4d37ec 498{
8f4d37ec 499}
31656519 500#endif /* CONFIG_SMP */
8f4d37ec 501
31656519 502static void init_rq_hrtick(struct rq *rq)
8f4d37ec 503{
31656519
PZ
504#ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
8f4d37ec 506
31656519
PZ
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510#endif
8f4d37ec 511
31656519
PZ
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
8f4d37ec 514}
006c75f1 515#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
8f4d37ec
PZ
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
b328ca18
PZ
524static inline void init_hrtick(void)
525{
526}
006c75f1 527#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 528
fd99f91a
PZ
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val) \
533({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541})
542
e3baac47 543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
e3baac47
PZ
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577}
578
fd99f91a
PZ
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582 set_tsk_need_resched(p);
583 return true;
584}
e3baac47
PZ
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589 return false;
590}
591#endif
fd99f91a
PZ
592#endif
593
c24d20db 594/*
8875125e 595 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
8875125e 601void resched_curr(struct rq *rq)
c24d20db 602{
8875125e 603 struct task_struct *curr = rq->curr;
c24d20db
IM
604 int cpu;
605
8875125e 606 lockdep_assert_held(&rq->lock);
c24d20db 607
8875125e 608 if (test_tsk_need_resched(curr))
c24d20db
IM
609 return;
610
8875125e 611 cpu = cpu_of(rq);
fd99f91a 612
f27dde8d 613 if (cpu == smp_processor_id()) {
8875125e 614 set_tsk_need_resched(curr);
f27dde8d 615 set_preempt_need_resched();
c24d20db 616 return;
f27dde8d 617 }
c24d20db 618
8875125e 619 if (set_nr_and_not_polling(curr))
c24d20db 620 smp_send_reschedule(cpu);
dfc68f29
AL
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
623}
624
029632fb 625void resched_cpu(int cpu)
c24d20db
IM
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
05fa785c 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 631 return;
8875125e 632 resched_curr(rq);
05fa785c 633 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 634}
06d8308c 635
b021fe3e 636#ifdef CONFIG_SMP
3451d024 637#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
6201b4d6 646int get_nohz_timer_target(int pinned)
83cd4fe2
VP
647{
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
6201b4d6
VK
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
057f3fad
PZ
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
83cd4fe2 663 }
057f3fad
PZ
664unlock:
665 rcu_read_unlock();
83cd4fe2
VP
666 return cpu;
667}
06d8308c
TG
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
1c20091e 678static void wake_up_idle_cpu(int cpu)
06d8308c
TG
679{
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
67b9ca70 685 if (set_nr_and_not_polling(rq->idle))
06d8308c 686 smp_send_reschedule(cpu);
dfc68f29
AL
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
689}
690
c5bfece2 691static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 692{
53c5fa16
FW
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
c5bfece2 699 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
53c5fa16 702 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
703 return true;
704 }
705
706 return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
c5bfece2 711 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
712 wake_up_idle_cpu(cpu);
713}
714
ca38062e 715static inline bool got_nohz_idle_kick(void)
45bf76df 716{
1c792db7 717 int cpu = smp_processor_id();
873b4c65
VG
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
45bf76df
IM
731}
732
3451d024 733#else /* CONFIG_NO_HZ_COMMON */
45bf76df 734
ca38062e 735static inline bool got_nohz_idle_kick(void)
2069dd75 736{
ca38062e 737 return false;
2069dd75
PZ
738}
739
3451d024 740#endif /* CONFIG_NO_HZ_COMMON */
d842de87 741
ce831b38
FW
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
3882ec64
FW
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
541b8264
VK
750 if (this_rq()->nr_running > 1)
751 return false;
ce831b38 752
541b8264 753 return true;
ce831b38
FW
754}
755#endif /* CONFIG_NO_HZ_FULL */
d842de87 756
029632fb 757void sched_avg_update(struct rq *rq)
18d95a28 758{
e9e9250b
PZ
759 s64 period = sched_avg_period();
760
78becc27 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
18d95a28
PZ
771}
772
6d6bc0ad 773#endif /* CONFIG_SMP */
18d95a28 774
a790de99
PT
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 777/*
8277434e
PT
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 782 */
029632fb 783int walk_tg_tree_from(struct task_group *from,
8277434e 784 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
785{
786 struct task_group *parent, *child;
eb755805 787 int ret;
c09595f6 788
8277434e
PT
789 parent = from;
790
c09595f6 791down:
eb755805
PZ
792 ret = (*down)(parent, data);
793 if (ret)
8277434e 794 goto out;
c09595f6
PZ
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799up:
800 continue;
801 }
eb755805 802 ret = (*up)(parent, data);
8277434e
PT
803 if (ret || parent == from)
804 goto out;
c09595f6
PZ
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
8277434e 810out:
eb755805 811 return ret;
c09595f6
PZ
812}
813
029632fb 814int tg_nop(struct task_group *tg, void *data)
eb755805 815{
e2b245f8 816 return 0;
eb755805 817}
18d95a28
PZ
818#endif
819
45bf76df
IM
820static void set_load_weight(struct task_struct *p)
821{
f05998d4
NR
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
dd41f596
IM
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
c8b28116 829 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 830 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
831 return;
832 }
71f8bd46 833
c8b28116 834 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 835 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
836}
837
371fd7e7 838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 839{
a64692a3 840 update_rq_clock(rq);
43148951 841 sched_info_queued(rq, p);
371fd7e7 842 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
843}
844
371fd7e7 845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 846{
a64692a3 847 update_rq_clock(rq);
43148951 848 sched_info_dequeued(rq, p);
371fd7e7 849 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
850}
851
029632fb 852void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
371fd7e7 857 enqueue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
029632fb 860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
371fd7e7 865 dequeue_task(rq, p, flags);
1e3c88bd
PZ
866}
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 902 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
095c0aa8 909 rq->prev_steal_time_rq += steal;
095c0aa8
GC
910 delta -= steal;
911 }
912#endif
913
fe44d621
PZ
914 rq->clock_task += delta;
915
095c0aa8 916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
918 sched_rt_avg_update(rq, irq_delta + steal);
919#endif
aa483808
VP
920}
921
34f971f6
PZ
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950}
951
14531189 952/*
dd41f596 953 * __normal_prio - return the priority that is based on the static prio
14531189 954 */
14531189
IM
955static inline int __normal_prio(struct task_struct *p)
956{
dd41f596 957 return p->static_prio;
14531189
IM
958}
959
b29739f9
IM
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
36c8b586 967static inline int normal_prio(struct task_struct *p)
b29739f9
IM
968{
969 int prio;
970
aab03e05
DF
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
b29739f9
IM
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
36c8b586 987static int effective_prio(struct task_struct *p)
b29739f9
IM
988{
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998}
999
1da177e4
LT
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
e69f6186
YB
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1005 */
36c8b586 1006inline int task_curr(const struct task_struct *p)
1da177e4
LT
1007{
1008 return cpu_curr(task_cpu(p)) == p;
1009}
1010
cb469845
SR
1011static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 const struct sched_class *prev_class,
da7a735e 1013 int oldprio)
cb469845
SR
1014{
1015 if (prev_class != p->sched_class) {
1016 if (prev_class->switched_from)
da7a735e
PZ
1017 prev_class->switched_from(rq, p);
1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1045 rq->skip_clock_update = 1;
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
dd41f596 1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1050{
e2912009
PZ
1051#ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
077614ee 1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1057 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1058
1059#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1065 * see task_group().
6c6c54e1
PZ
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
0122ec5b
PZ
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072#endif
e2912009
PZ
1073#endif
1074
de1d7286 1075 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1076
0c69774e 1077 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1080 p->se.nr_migrations++;
a8b0ca17 1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1082 }
dd41f596
IM
1083
1084 __set_task_cpu(p, new_cpu);
c65cc870
IM
1085}
1086
ac66f547
PZ
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
da0c1e65 1089 if (task_on_rq_queued(p)) {
ac66f547
PZ
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107}
1108
1109struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
74602315
PZ
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
ac66f547
PZ
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143unlock:
1144 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1147
1148 return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
ac66f547
PZ
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
6acce3ef
PZ
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
ac66f547
PZ
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
286549dc 1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
ac66f547
PZ
1186 return ret;
1187}
1188
969c7921 1189struct migration_arg {
36c8b586 1190 struct task_struct *task;
1da177e4 1191 int dest_cpu;
70b97a7f 1192};
1da177e4 1193
969c7921
TH
1194static int migration_cpu_stop(void *data);
1195
1da177e4
LT
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
85ba2d86
RM
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1da177e4
LT
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
85ba2d86 1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1213{
1214 unsigned long flags;
da0c1e65 1215 int running, queued;
85ba2d86 1216 unsigned long ncsw;
70b97a7f 1217 struct rq *rq;
1da177e4 1218
3a5c359a
AK
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
85ba2d86
RM
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
3a5c359a 1242 cpu_relax();
85ba2d86 1243 }
fa490cfd 1244
3a5c359a
AK
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
27a9da65 1251 trace_sched_wait_task(p);
3a5c359a 1252 running = task_running(rq, p);
da0c1e65 1253 queued = task_on_rq_queued(p);
85ba2d86 1254 ncsw = 0;
f31e11d8 1255 if (!match_state || p->state == match_state)
93dcf55f 1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1257 task_rq_unlock(rq, p, &flags);
fa490cfd 1258
85ba2d86
RM
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
3a5c359a
AK
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
fa490cfd 1275
3a5c359a
AK
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
80dd99b3 1281 * So if it was still runnable (but just not actively
3a5c359a
AK
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
da0c1e65 1285 if (unlikely(queued)) {
8eb90c30
TG
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1290 continue;
1291 }
fa490cfd 1292
3a5c359a
AK
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
85ba2d86
RM
1300
1301 return ncsw;
1da177e4
LT
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
25985edc 1311 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
36c8b586 1317void kick_process(struct task_struct *p)
1da177e4
LT
1318{
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326}
b43e3521 1327EXPORT_SYMBOL_GPL(kick_process);
476d139c 1328#endif /* CONFIG_SMP */
1da177e4 1329
970b13ba 1330#ifdef CONFIG_SMP
30da688e 1331/*
013fdb80 1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1333 */
5da9a0fb
PZ
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
aa00d89c
TC
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
5da9a0fb 1340
aa00d89c
TC
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
2baab4e9 1358 }
5da9a0fb 1359
2baab4e9
PZ
1360 for (;;) {
1361 /* Any allowed, online CPU? */
e3831edd 1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
5da9a0fb 1369
2baab4e9
PZ
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
aac74dc4 1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1397 task_pid_nr(p), p->comm, cpu);
1398 }
5da9a0fb
PZ
1399 }
1400
1401 return dest_cpu;
1402}
1403
e2912009 1404/*
013fdb80 1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1406 */
970b13ba 1407static inline
ac66f547 1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1409{
ac66f547 1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1411
1412 /*
1413 * In order not to call set_task_cpu() on a blocking task we need
1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 * cpu.
1416 *
1417 * Since this is common to all placement strategies, this lives here.
1418 *
1419 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 * not worry about this generic constraint ]
1421 */
fa17b507 1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1423 !cpu_online(cpu)))
5da9a0fb 1424 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1425
1426 return cpu;
970b13ba 1427}
09a40af5
MG
1428
1429static void update_avg(u64 *avg, u64 sample)
1430{
1431 s64 diff = sample - *avg;
1432 *avg += diff >> 3;
1433}
970b13ba
PZ
1434#endif
1435
d7c01d27 1436static void
b84cb5df 1437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1438{
d7c01d27 1439#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1440 struct rq *rq = this_rq();
1441
d7c01d27
PZ
1442#ifdef CONFIG_SMP
1443 int this_cpu = smp_processor_id();
1444
1445 if (cpu == this_cpu) {
1446 schedstat_inc(rq, ttwu_local);
1447 schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 } else {
1449 struct sched_domain *sd;
1450
1451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1452 rcu_read_lock();
d7c01d27
PZ
1453 for_each_domain(this_cpu, sd) {
1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 break;
1457 }
1458 }
057f3fad 1459 rcu_read_unlock();
d7c01d27 1460 }
f339b9dc
PZ
1461
1462 if (wake_flags & WF_MIGRATED)
1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
d7c01d27
PZ
1465#endif /* CONFIG_SMP */
1466
1467 schedstat_inc(rq, ttwu_count);
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1469
1470 if (wake_flags & WF_SYNC)
9ed3811a 1471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1472
d7c01d27
PZ
1473#endif /* CONFIG_SCHEDSTATS */
1474}
1475
1476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477{
9ed3811a 1478 activate_task(rq, p, en_flags);
da0c1e65 1479 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1480
1481 /* if a worker is waking up, notify workqueue */
1482 if (p->flags & PF_WQ_WORKER)
1483 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1484}
1485
23f41eeb
PZ
1486/*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
89363381 1489static void
23f41eeb 1490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1491{
9ed3811a 1492 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1493 trace_sched_wakeup(p, true);
9ed3811a
TH
1494
1495 p->state = TASK_RUNNING;
1496#ifdef CONFIG_SMP
1497 if (p->sched_class->task_woken)
1498 p->sched_class->task_woken(rq, p);
1499
e69c6341 1500 if (rq->idle_stamp) {
78becc27 1501 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1502 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1503
abfafa54
JL
1504 update_avg(&rq->avg_idle, delta);
1505
1506 if (rq->avg_idle > max)
9ed3811a 1507 rq->avg_idle = max;
abfafa54 1508
9ed3811a
TH
1509 rq->idle_stamp = 0;
1510 }
1511#endif
1512}
1513
c05fbafb
PZ
1514static void
1515ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516{
1517#ifdef CONFIG_SMP
1518 if (p->sched_contributes_to_load)
1519 rq->nr_uninterruptible--;
1520#endif
1521
1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 ttwu_do_wakeup(rq, p, wake_flags);
1524}
1525
1526/*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532static int ttwu_remote(struct task_struct *p, int wake_flags)
1533{
1534 struct rq *rq;
1535 int ret = 0;
1536
1537 rq = __task_rq_lock(p);
da0c1e65 1538 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1539 /* check_preempt_curr() may use rq clock */
1540 update_rq_clock(rq);
c05fbafb
PZ
1541 ttwu_do_wakeup(rq, p, wake_flags);
1542 ret = 1;
1543 }
1544 __task_rq_unlock(rq);
1545
1546 return ret;
1547}
1548
317f3941 1549#ifdef CONFIG_SMP
e3baac47 1550void sched_ttwu_pending(void)
317f3941
PZ
1551{
1552 struct rq *rq = this_rq();
fa14ff4a
PZ
1553 struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 struct task_struct *p;
e3baac47 1555 unsigned long flags;
317f3941 1556
e3baac47
PZ
1557 if (!llist)
1558 return;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1561
fa14ff4a
PZ
1562 while (llist) {
1563 p = llist_entry(llist, struct task_struct, wake_entry);
1564 llist = llist_next(llist);
317f3941
PZ
1565 ttwu_do_activate(rq, p, 0);
1566 }
1567
e3baac47 1568 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1569}
1570
1571void scheduler_ipi(void)
1572{
f27dde8d
PZ
1573 /*
1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 * this IPI.
1577 */
8cb75e0c 1578 preempt_fold_need_resched();
f27dde8d 1579
fd2ac4f4 1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1581 return;
1582
1583 /*
1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 * traditionally all their work was done from the interrupt return
1586 * path. Now that we actually do some work, we need to make sure
1587 * we do call them.
1588 *
1589 * Some archs already do call them, luckily irq_enter/exit nest
1590 * properly.
1591 *
1592 * Arguably we should visit all archs and update all handlers,
1593 * however a fair share of IPIs are still resched only so this would
1594 * somewhat pessimize the simple resched case.
1595 */
1596 irq_enter();
fa14ff4a 1597 sched_ttwu_pending();
ca38062e
SS
1598
1599 /*
1600 * Check if someone kicked us for doing the nohz idle load balance.
1601 */
873b4c65 1602 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1603 this_rq()->idle_balance = 1;
ca38062e 1604 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1605 }
c5d753a5 1606 irq_exit();
317f3941
PZ
1607}
1608
1609static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610{
e3baac47
PZ
1611 struct rq *rq = cpu_rq(cpu);
1612
1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 if (!set_nr_if_polling(rq->idle))
1615 smp_send_reschedule(cpu);
1616 else
1617 trace_sched_wake_idle_without_ipi(cpu);
1618 }
317f3941 1619}
d6aa8f85 1620
f6be8af1
CL
1621void wake_up_if_idle(int cpu)
1622{
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long flags;
1625
1626 if (!is_idle_task(rq->curr))
1627 return;
1628
1629 if (set_nr_if_polling(rq->idle)) {
1630 trace_sched_wake_idle_without_ipi(cpu);
1631 } else {
1632 raw_spin_lock_irqsave(&rq->lock, flags);
1633 if (is_idle_task(rq->curr))
1634 smp_send_reschedule(cpu);
1635 /* Else cpu is not in idle, do nothing here */
1636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 }
1638}
1639
39be3501 1640bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1641{
1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643}
d6aa8f85 1644#endif /* CONFIG_SMP */
317f3941 1645
c05fbafb
PZ
1646static void ttwu_queue(struct task_struct *p, int cpu)
1647{
1648 struct rq *rq = cpu_rq(cpu);
1649
17d9f311 1650#if defined(CONFIG_SMP)
39be3501 1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1653 ttwu_queue_remote(p, cpu);
1654 return;
1655 }
1656#endif
1657
c05fbafb
PZ
1658 raw_spin_lock(&rq->lock);
1659 ttwu_do_activate(rq, p, 0);
1660 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1661}
1662
1663/**
1da177e4 1664 * try_to_wake_up - wake up a thread
9ed3811a 1665 * @p: the thread to be awakened
1da177e4 1666 * @state: the mask of task states that can be woken
9ed3811a 1667 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
e69f6186 1675 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1676 * or @state didn't match @p's state.
1da177e4 1677 */
e4a52bcb
PZ
1678static int
1679try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1680{
1da177e4 1681 unsigned long flags;
c05fbafb 1682 int cpu, success = 0;
2398f2c6 1683
e0acd0a6
ON
1684 /*
1685 * If we are going to wake up a thread waiting for CONDITION we
1686 * need to ensure that CONDITION=1 done by the caller can not be
1687 * reordered with p->state check below. This pairs with mb() in
1688 * set_current_state() the waiting thread does.
1689 */
1690 smp_mb__before_spinlock();
013fdb80 1691 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1692 if (!(p->state & state))
1da177e4
LT
1693 goto out;
1694
c05fbafb 1695 success = 1; /* we're going to change ->state */
1da177e4 1696 cpu = task_cpu(p);
1da177e4 1697
c05fbafb
PZ
1698 if (p->on_rq && ttwu_remote(p, wake_flags))
1699 goto stat;
1da177e4 1700
1da177e4 1701#ifdef CONFIG_SMP
e9c84311 1702 /*
c05fbafb
PZ
1703 * If the owning (remote) cpu is still in the middle of schedule() with
1704 * this task as prev, wait until its done referencing the task.
e9c84311 1705 */
f3e94786 1706 while (p->on_cpu)
e4a52bcb 1707 cpu_relax();
0970d299 1708 /*
e4a52bcb 1709 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1710 */
e4a52bcb 1711 smp_rmb();
1da177e4 1712
a8e4f2ea 1713 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1714 p->state = TASK_WAKING;
e7693a36 1715
e4a52bcb 1716 if (p->sched_class->task_waking)
74f8e4b2 1717 p->sched_class->task_waking(p);
efbbd05a 1718
ac66f547 1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1720 if (task_cpu(p) != cpu) {
1721 wake_flags |= WF_MIGRATED;
e4a52bcb 1722 set_task_cpu(p, cpu);
f339b9dc 1723 }
1da177e4 1724#endif /* CONFIG_SMP */
1da177e4 1725
c05fbafb
PZ
1726 ttwu_queue(p, cpu);
1727stat:
b84cb5df 1728 ttwu_stat(p, cpu, wake_flags);
1da177e4 1729out:
013fdb80 1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1731
1732 return success;
1733}
1734
21aa9af0
TH
1735/**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
2acca55e 1739 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1741 * the current task.
21aa9af0
TH
1742 */
1743static void try_to_wake_up_local(struct task_struct *p)
1744{
1745 struct rq *rq = task_rq(p);
21aa9af0 1746
383efcd0
TH
1747 if (WARN_ON_ONCE(rq != this_rq()) ||
1748 WARN_ON_ONCE(p == current))
1749 return;
1750
21aa9af0
TH
1751 lockdep_assert_held(&rq->lock);
1752
2acca55e
PZ
1753 if (!raw_spin_trylock(&p->pi_lock)) {
1754 raw_spin_unlock(&rq->lock);
1755 raw_spin_lock(&p->pi_lock);
1756 raw_spin_lock(&rq->lock);
1757 }
1758
21aa9af0 1759 if (!(p->state & TASK_NORMAL))
2acca55e 1760 goto out;
21aa9af0 1761
da0c1e65 1762 if (!task_on_rq_queued(p))
d7c01d27
PZ
1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
23f41eeb 1765 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1766 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1767out:
1768 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1769}
1770
50fa610a
DH
1771/**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
7ad5b3a5 1783int wake_up_process(struct task_struct *p)
1da177e4 1784{
9067ac85
ON
1785 WARN_ON(task_is_stopped_or_traced(p));
1786 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1787}
1da177e4
LT
1788EXPORT_SYMBOL(wake_up_process);
1789
7ad5b3a5 1790int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1791{
1792 return try_to_wake_up(p, state, 0);
1793}
1794
a5e7be3b
JL
1795/*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798void __dl_clear_params(struct task_struct *p)
1799{
1800 struct sched_dl_entity *dl_se = &p->dl;
1801
1802 dl_se->dl_runtime = 0;
1803 dl_se->dl_deadline = 0;
1804 dl_se->dl_period = 0;
1805 dl_se->flags = 0;
1806 dl_se->dl_bw = 0;
1807}
1808
1da177e4
LT
1809/*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
dd41f596
IM
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
5e1576ed 1815static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1816{
fd2f4419
PZ
1817 p->on_rq = 0;
1818
1819 p->se.on_rq = 0;
dd41f596
IM
1820 p->se.exec_start = 0;
1821 p->se.sum_exec_runtime = 0;
f6cf891c 1822 p->se.prev_sum_exec_runtime = 0;
6c594c21 1823 p->se.nr_migrations = 0;
da7a735e 1824 p->se.vruntime = 0;
fd2f4419 1825 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1826
1827#ifdef CONFIG_SCHEDSTATS
41acab88 1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1829#endif
476d139c 1830
aab03e05
DF
1831 RB_CLEAR_NODE(&p->dl.rb_node);
1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1833 __dl_clear_params(p);
aab03e05 1834
fa717060 1835 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1836
e107be36
AK
1837#ifdef CONFIG_PREEMPT_NOTIFIERS
1838 INIT_HLIST_HEAD(&p->preempt_notifiers);
1839#endif
cbee9f88
PZ
1840
1841#ifdef CONFIG_NUMA_BALANCING
1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1844 p->mm->numa_scan_seq = 0;
1845 }
1846
5e1576ed
RR
1847 if (clone_flags & CLONE_VM)
1848 p->numa_preferred_nid = current->numa_preferred_nid;
1849 else
1850 p->numa_preferred_nid = -1;
1851
cbee9f88
PZ
1852 p->node_stamp = 0ULL;
1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1855 p->numa_work.next = &p->numa_work;
ff1df896
RR
1856 p->numa_faults_memory = NULL;
1857 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1858 p->last_task_numa_placement = 0;
1859 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1860
1861 INIT_LIST_HEAD(&p->numa_entry);
1862 p->numa_group = NULL;
cbee9f88 1863#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1864}
1865
1a687c2e 1866#ifdef CONFIG_NUMA_BALANCING
3105b86a 1867#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1868void set_numabalancing_state(bool enabled)
1869{
1870 if (enabled)
1871 sched_feat_set("NUMA");
1872 else
1873 sched_feat_set("NO_NUMA");
1874}
3105b86a
MG
1875#else
1876__read_mostly bool numabalancing_enabled;
1877
1878void set_numabalancing_state(bool enabled)
1879{
1880 numabalancing_enabled = enabled;
dd41f596 1881}
3105b86a 1882#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1883
1884#ifdef CONFIG_PROC_SYSCTL
1885int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 void __user *buffer, size_t *lenp, loff_t *ppos)
1887{
1888 struct ctl_table t;
1889 int err;
1890 int state = numabalancing_enabled;
1891
1892 if (write && !capable(CAP_SYS_ADMIN))
1893 return -EPERM;
1894
1895 t = *table;
1896 t.data = &state;
1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 if (err < 0)
1899 return err;
1900 if (write)
1901 set_numabalancing_state(state);
1902 return err;
1903}
1904#endif
1905#endif
dd41f596
IM
1906
1907/*
1908 * fork()/clone()-time setup:
1909 */
aab03e05 1910int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1911{
0122ec5b 1912 unsigned long flags;
dd41f596
IM
1913 int cpu = get_cpu();
1914
5e1576ed 1915 __sched_fork(clone_flags, p);
06b83b5f 1916 /*
0017d735 1917 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1920 */
0017d735 1921 p->state = TASK_RUNNING;
dd41f596 1922
c350a04e
MG
1923 /*
1924 * Make sure we do not leak PI boosting priority to the child.
1925 */
1926 p->prio = current->normal_prio;
1927
b9dc29e7
MG
1928 /*
1929 * Revert to default priority/policy on fork if requested.
1930 */
1931 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1933 p->policy = SCHED_NORMAL;
6c697bdf 1934 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1935 p->rt_priority = 0;
1936 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 p->static_prio = NICE_TO_PRIO(0);
1938
1939 p->prio = p->normal_prio = __normal_prio(p);
1940 set_load_weight(p);
6c697bdf 1941
b9dc29e7
MG
1942 /*
1943 * We don't need the reset flag anymore after the fork. It has
1944 * fulfilled its duty:
1945 */
1946 p->sched_reset_on_fork = 0;
1947 }
ca94c442 1948
aab03e05
DF
1949 if (dl_prio(p->prio)) {
1950 put_cpu();
1951 return -EAGAIN;
1952 } else if (rt_prio(p->prio)) {
1953 p->sched_class = &rt_sched_class;
1954 } else {
2ddbf952 1955 p->sched_class = &fair_sched_class;
aab03e05 1956 }
b29739f9 1957
cd29fe6f
PZ
1958 if (p->sched_class->task_fork)
1959 p->sched_class->task_fork(p);
1960
86951599
PZ
1961 /*
1962 * The child is not yet in the pid-hash so no cgroup attach races,
1963 * and the cgroup is pinned to this child due to cgroup_fork()
1964 * is ran before sched_fork().
1965 *
1966 * Silence PROVE_RCU.
1967 */
0122ec5b 1968 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1969 set_task_cpu(p, cpu);
0122ec5b 1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1971
52f17b6c 1972#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1973 if (likely(sched_info_on()))
52f17b6c 1974 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1975#endif
3ca7a440
PZ
1976#if defined(CONFIG_SMP)
1977 p->on_cpu = 0;
4866cde0 1978#endif
01028747 1979 init_task_preempt_count(p);
806c09a7 1980#ifdef CONFIG_SMP
917b627d 1981 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1982 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1983#endif
917b627d 1984
476d139c 1985 put_cpu();
aab03e05 1986 return 0;
1da177e4
LT
1987}
1988
332ac17e
DF
1989unsigned long to_ratio(u64 period, u64 runtime)
1990{
1991 if (runtime == RUNTIME_INF)
1992 return 1ULL << 20;
1993
1994 /*
1995 * Doing this here saves a lot of checks in all
1996 * the calling paths, and returning zero seems
1997 * safe for them anyway.
1998 */
1999 if (period == 0)
2000 return 0;
2001
2002 return div64_u64(runtime << 20, period);
2003}
2004
2005#ifdef CONFIG_SMP
2006inline struct dl_bw *dl_bw_of(int i)
2007{
66339c31
KT
2008 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 "sched RCU must be held");
332ac17e
DF
2010 return &cpu_rq(i)->rd->dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e 2014{
de212f18
PZ
2015 struct root_domain *rd = cpu_rq(i)->rd;
2016 int cpus = 0;
2017
66339c31
KT
2018 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 "sched RCU must be held");
de212f18
PZ
2020 for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 cpus++;
2022
2023 return cpus;
332ac17e
DF
2024}
2025#else
2026inline struct dl_bw *dl_bw_of(int i)
2027{
2028 return &cpu_rq(i)->dl.dl_bw;
2029}
2030
de212f18 2031static inline int dl_bw_cpus(int i)
332ac17e
DF
2032{
2033 return 1;
2034}
2035#endif
2036
2037static inline
2038void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039{
2040 dl_b->total_bw -= tsk_bw;
2041}
2042
2043static inline
2044void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045{
2046 dl_b->total_bw += tsk_bw;
2047}
2048
2049static inline
2050bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051{
2052 return dl_b->bw != -1 &&
2053 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054}
2055
2056/*
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2061 *
2062 * This function is called while holding p's rq->lock.
2063 */
2064static int dl_overflow(struct task_struct *p, int policy,
2065 const struct sched_attr *attr)
2066{
2067
2068 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2069 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2070 u64 runtime = attr->sched_runtime;
2071 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2072 int cpus, err = -1;
332ac17e
DF
2073
2074 if (new_bw == p->dl.dl_bw)
2075 return 0;
2076
2077 /*
2078 * Either if a task, enters, leave, or stays -deadline but changes
2079 * its parameters, we may need to update accordingly the total
2080 * allocated bandwidth of the container.
2081 */
2082 raw_spin_lock(&dl_b->lock);
de212f18 2083 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2084 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 __dl_add(dl_b, new_bw);
2087 err = 0;
2088 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 __dl_clear(dl_b, p->dl.dl_bw);
2091 __dl_add(dl_b, new_bw);
2092 err = 0;
2093 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 __dl_clear(dl_b, p->dl.dl_bw);
2095 err = 0;
2096 }
2097 raw_spin_unlock(&dl_b->lock);
2098
2099 return err;
2100}
2101
2102extern void init_dl_bw(struct dl_bw *dl_b);
2103
1da177e4
LT
2104/*
2105 * wake_up_new_task - wake up a newly created task for the first time.
2106 *
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2110 */
3e51e3ed 2111void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2112{
2113 unsigned long flags;
dd41f596 2114 struct rq *rq;
fabf318e 2115
ab2515c4 2116 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2117#ifdef CONFIG_SMP
2118 /*
2119 * Fork balancing, do it here and not earlier because:
2120 * - cpus_allowed can change in the fork path
2121 * - any previously selected cpu might disappear through hotplug
fabf318e 2122 */
ac66f547 2123 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2124#endif
2125
a75cdaa9
AS
2126 /* Initialize new task's runnable average */
2127 init_task_runnable_average(p);
ab2515c4 2128 rq = __task_rq_lock(p);
cd29fe6f 2129 activate_task(rq, p, 0);
da0c1e65 2130 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2131 trace_sched_wakeup_new(p, true);
a7558e01 2132 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2133#ifdef CONFIG_SMP
efbbd05a
PZ
2134 if (p->sched_class->task_woken)
2135 p->sched_class->task_woken(rq, p);
9a897c5a 2136#endif
0122ec5b 2137 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2138}
2139
e107be36
AK
2140#ifdef CONFIG_PREEMPT_NOTIFIERS
2141
2142/**
80dd99b3 2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2144 * @notifier: notifier struct to register
e107be36
AK
2145 */
2146void preempt_notifier_register(struct preempt_notifier *notifier)
2147{
2148 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149}
2150EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151
2152/**
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2154 * @notifier: notifier struct to unregister
e107be36
AK
2155 *
2156 * This is safe to call from within a preemption notifier.
2157 */
2158void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159{
2160 hlist_del(&notifier->link);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163
2164static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165{
2166 struct preempt_notifier *notifier;
e107be36 2167
b67bfe0d 2168 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2169 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170}
2171
2172static void
2173fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 struct task_struct *next)
2175{
2176 struct preempt_notifier *notifier;
e107be36 2177
b67bfe0d 2178 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2179 notifier->ops->sched_out(notifier, next);
2180}
2181
6d6bc0ad 2182#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2183
2184static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185{
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 struct task_struct *next)
2191{
2192}
2193
6d6bc0ad 2194#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2195
4866cde0
NP
2196/**
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
421cee29 2199 * @prev: the current task that is being switched out
4866cde0
NP
2200 * @next: the task we are going to switch to.
2201 *
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2204 * switch.
2205 *
2206 * prepare_task_switch sets up locking and calls architecture specific
2207 * hooks.
2208 */
e107be36
AK
2209static inline void
2210prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 struct task_struct *next)
4866cde0 2212{
895dd92c 2213 trace_sched_switch(prev, next);
43148951 2214 sched_info_switch(rq, prev, next);
fe4b04fa 2215 perf_event_task_sched_out(prev, next);
e107be36 2216 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2217 prepare_lock_switch(rq, next);
2218 prepare_arch_switch(next);
2219}
2220
1da177e4
LT
2221/**
2222 * finish_task_switch - clean up after a task-switch
344babaa 2223 * @rq: runqueue associated with task-switch
1da177e4
LT
2224 * @prev: the thread we just switched away from.
2225 *
4866cde0
NP
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2230 *
2231 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2232 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2233 * with the lock held can cause deadlocks; see schedule() for
2234 * details.)
2235 */
a9957449 2236static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2237 __releases(rq->lock)
2238{
1da177e4 2239 struct mm_struct *mm = rq->prev_mm;
55a101f8 2240 long prev_state;
1da177e4
LT
2241
2242 rq->prev_mm = NULL;
2243
2244 /*
2245 * A task struct has one reference for the use as "current".
c394cc9f 2246 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2247 * schedule one last time. The schedule call will never return, and
2248 * the scheduled task must drop that reference.
c394cc9f 2249 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2250 * still held, otherwise prev could be scheduled on another cpu, die
2251 * there before we look at prev->state, and then the reference would
2252 * be dropped twice.
2253 * Manfred Spraul <manfred@colorfullife.com>
2254 */
55a101f8 2255 prev_state = prev->state;
bf9fae9f 2256 vtime_task_switch(prev);
4866cde0 2257 finish_arch_switch(prev);
a8d757ef 2258 perf_event_task_sched_in(prev, current);
4866cde0 2259 finish_lock_switch(rq, prev);
01f23e16 2260 finish_arch_post_lock_switch();
e8fa1362 2261
e107be36 2262 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2263 if (mm)
2264 mmdrop(mm);
c394cc9f 2265 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2266 if (prev->sched_class->task_dead)
2267 prev->sched_class->task_dead(prev);
2268
c6fd91f0 2269 /*
2270 * Remove function-return probe instances associated with this
2271 * task and put them back on the free list.
9761eea8 2272 */
c6fd91f0 2273 kprobe_flush_task(prev);
1da177e4 2274 put_task_struct(prev);
c6fd91f0 2275 }
99e5ada9
FW
2276
2277 tick_nohz_task_switch(current);
1da177e4
LT
2278}
2279
3f029d3c
GH
2280#ifdef CONFIG_SMP
2281
3f029d3c
GH
2282/* rq->lock is NOT held, but preemption is disabled */
2283static inline void post_schedule(struct rq *rq)
2284{
2285 if (rq->post_schedule) {
2286 unsigned long flags;
2287
05fa785c 2288 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2289 if (rq->curr->sched_class->post_schedule)
2290 rq->curr->sched_class->post_schedule(rq);
05fa785c 2291 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2292
2293 rq->post_schedule = 0;
2294 }
2295}
2296
2297#else
da19ab51 2298
3f029d3c
GH
2299static inline void post_schedule(struct rq *rq)
2300{
1da177e4
LT
2301}
2302
3f029d3c
GH
2303#endif
2304
1da177e4
LT
2305/**
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2308 */
722a9f92 2309asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2310 __releases(rq->lock)
2311{
70b97a7f
IM
2312 struct rq *rq = this_rq();
2313
4866cde0 2314 finish_task_switch(rq, prev);
da19ab51 2315
3f029d3c
GH
2316 /*
2317 * FIXME: do we need to worry about rq being invalidated by the
2318 * task_switch?
2319 */
2320 post_schedule(rq);
70b97a7f 2321
1da177e4 2322 if (current->set_child_tid)
b488893a 2323 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2324}
2325
2326/*
2327 * context_switch - switch to the new MM and the new
2328 * thread's register state.
2329 */
dd41f596 2330static inline void
70b97a7f 2331context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2332 struct task_struct *next)
1da177e4 2333{
dd41f596 2334 struct mm_struct *mm, *oldmm;
1da177e4 2335
e107be36 2336 prepare_task_switch(rq, prev, next);
fe4b04fa 2337
dd41f596
IM
2338 mm = next->mm;
2339 oldmm = prev->active_mm;
9226d125
ZA
2340 /*
2341 * For paravirt, this is coupled with an exit in switch_to to
2342 * combine the page table reload and the switch backend into
2343 * one hypercall.
2344 */
224101ed 2345 arch_start_context_switch(prev);
9226d125 2346
31915ab4 2347 if (!mm) {
1da177e4
LT
2348 next->active_mm = oldmm;
2349 atomic_inc(&oldmm->mm_count);
2350 enter_lazy_tlb(oldmm, next);
2351 } else
2352 switch_mm(oldmm, mm, next);
2353
31915ab4 2354 if (!prev->mm) {
1da177e4 2355 prev->active_mm = NULL;
1da177e4
LT
2356 rq->prev_mm = oldmm;
2357 }
3a5f5e48
IM
2358 /*
2359 * Since the runqueue lock will be released by the next
2360 * task (which is an invalid locking op but in the case
2361 * of the scheduler it's an obvious special-case), so we
2362 * do an early lockdep release here:
2363 */
8a25d5de 2364 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2365
91d1aa43 2366 context_tracking_task_switch(prev, next);
1da177e4
LT
2367 /* Here we just switch the register state and the stack. */
2368 switch_to(prev, next, prev);
2369
dd41f596
IM
2370 barrier();
2371 /*
2372 * this_rq must be evaluated again because prev may have moved
2373 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 * frame will be invalid.
2375 */
2376 finish_task_switch(this_rq(), prev);
1da177e4
LT
2377}
2378
2379/*
1c3e8264 2380 * nr_running and nr_context_switches:
1da177e4
LT
2381 *
2382 * externally visible scheduler statistics: current number of runnable
1c3e8264 2383 * threads, total number of context switches performed since bootup.
1da177e4
LT
2384 */
2385unsigned long nr_running(void)
2386{
2387 unsigned long i, sum = 0;
2388
2389 for_each_online_cpu(i)
2390 sum += cpu_rq(i)->nr_running;
2391
2392 return sum;
f711f609 2393}
1da177e4 2394
2ee507c4
TC
2395/*
2396 * Check if only the current task is running on the cpu.
2397 */
2398bool single_task_running(void)
2399{
2400 if (cpu_rq(smp_processor_id())->nr_running == 1)
2401 return true;
2402 else
2403 return false;
2404}
2405EXPORT_SYMBOL(single_task_running);
2406
1da177e4 2407unsigned long long nr_context_switches(void)
46cb4b7c 2408{
cc94abfc
SR
2409 int i;
2410 unsigned long long sum = 0;
46cb4b7c 2411
0a945022 2412 for_each_possible_cpu(i)
1da177e4 2413 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2414
1da177e4
LT
2415 return sum;
2416}
483b4ee6 2417
1da177e4
LT
2418unsigned long nr_iowait(void)
2419{
2420 unsigned long i, sum = 0;
483b4ee6 2421
0a945022 2422 for_each_possible_cpu(i)
1da177e4 2423 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2424
1da177e4
LT
2425 return sum;
2426}
483b4ee6 2427
8c215bd3 2428unsigned long nr_iowait_cpu(int cpu)
69d25870 2429{
8c215bd3 2430 struct rq *this = cpu_rq(cpu);
69d25870
AV
2431 return atomic_read(&this->nr_iowait);
2432}
46cb4b7c 2433
372ba8cb
MG
2434void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435{
2436 struct rq *this = this_rq();
2437 *nr_waiters = atomic_read(&this->nr_iowait);
2438 *load = this->cpu_load[0];
2439}
2440
dd41f596 2441#ifdef CONFIG_SMP
8a0be9ef 2442
46cb4b7c 2443/*
38022906
PZ
2444 * sched_exec - execve() is a valuable balancing opportunity, because at
2445 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2446 */
38022906 2447void sched_exec(void)
46cb4b7c 2448{
38022906 2449 struct task_struct *p = current;
1da177e4 2450 unsigned long flags;
0017d735 2451 int dest_cpu;
46cb4b7c 2452
8f42ced9 2453 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2454 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2455 if (dest_cpu == smp_processor_id())
2456 goto unlock;
38022906 2457
8f42ced9 2458 if (likely(cpu_active(dest_cpu))) {
969c7921 2459 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2460
8f42ced9
PZ
2461 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2463 return;
2464 }
0017d735 2465unlock:
8f42ced9 2466 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2467}
dd41f596 2468
1da177e4
LT
2469#endif
2470
1da177e4 2471DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2472DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2473
2474EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2475EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2476
2477/*
c5f8d995 2478 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2479 * @p in case that task is currently running.
c5f8d995
HS
2480 *
2481 * Called with task_rq_lock() held on @rq.
1da177e4 2482 */
c5f8d995
HS
2483static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2484{
2485 u64 ns = 0;
2486
4036ac15
MG
2487 /*
2488 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2489 * project cycles that may never be accounted to this
2490 * thread, breaking clock_gettime().
2491 */
da0c1e65 2492 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2493 update_rq_clock(rq);
78becc27 2494 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2495 if ((s64)ns < 0)
2496 ns = 0;
2497 }
2498
2499 return ns;
2500}
2501
bb34d92f 2502unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2503{
1da177e4 2504 unsigned long flags;
41b86e9c 2505 struct rq *rq;
bb34d92f 2506 u64 ns = 0;
48f24c4d 2507
41b86e9c 2508 rq = task_rq_lock(p, &flags);
c5f8d995 2509 ns = do_task_delta_exec(p, rq);
0122ec5b 2510 task_rq_unlock(rq, p, &flags);
1508487e 2511
c5f8d995
HS
2512 return ns;
2513}
f06febc9 2514
c5f8d995
HS
2515/*
2516 * Return accounted runtime for the task.
2517 * In case the task is currently running, return the runtime plus current's
2518 * pending runtime that have not been accounted yet.
2519 */
2520unsigned long long task_sched_runtime(struct task_struct *p)
2521{
2522 unsigned long flags;
2523 struct rq *rq;
2524 u64 ns = 0;
2525
911b2898
PZ
2526#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2527 /*
2528 * 64-bit doesn't need locks to atomically read a 64bit value.
2529 * So we have a optimization chance when the task's delta_exec is 0.
2530 * Reading ->on_cpu is racy, but this is ok.
2531 *
2532 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2533 * If we race with it entering cpu, unaccounted time is 0. This is
2534 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2535 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2536 * been accounted, so we're correct here as well.
911b2898 2537 */
da0c1e65 2538 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2539 return p->se.sum_exec_runtime;
2540#endif
2541
c5f8d995
HS
2542 rq = task_rq_lock(p, &flags);
2543 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2544 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2545
2546 return ns;
2547}
48f24c4d 2548
7835b98b
CL
2549/*
2550 * This function gets called by the timer code, with HZ frequency.
2551 * We call it with interrupts disabled.
7835b98b
CL
2552 */
2553void scheduler_tick(void)
2554{
7835b98b
CL
2555 int cpu = smp_processor_id();
2556 struct rq *rq = cpu_rq(cpu);
dd41f596 2557 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2558
2559 sched_clock_tick();
dd41f596 2560
05fa785c 2561 raw_spin_lock(&rq->lock);
3e51f33f 2562 update_rq_clock(rq);
fa85ae24 2563 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2564 update_cpu_load_active(rq);
05fa785c 2565 raw_spin_unlock(&rq->lock);
7835b98b 2566
e9d2b064 2567 perf_event_task_tick();
e220d2dc 2568
e418e1c2 2569#ifdef CONFIG_SMP
6eb57e0d 2570 rq->idle_balance = idle_cpu(cpu);
7caff66f 2571 trigger_load_balance(rq);
e418e1c2 2572#endif
265f22a9 2573 rq_last_tick_reset(rq);
1da177e4
LT
2574}
2575
265f22a9
FW
2576#ifdef CONFIG_NO_HZ_FULL
2577/**
2578 * scheduler_tick_max_deferment
2579 *
2580 * Keep at least one tick per second when a single
2581 * active task is running because the scheduler doesn't
2582 * yet completely support full dynticks environment.
2583 *
2584 * This makes sure that uptime, CFS vruntime, load
2585 * balancing, etc... continue to move forward, even
2586 * with a very low granularity.
e69f6186
YB
2587 *
2588 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2589 */
2590u64 scheduler_tick_max_deferment(void)
2591{
2592 struct rq *rq = this_rq();
2593 unsigned long next, now = ACCESS_ONCE(jiffies);
2594
2595 next = rq->last_sched_tick + HZ;
2596
2597 if (time_before_eq(next, now))
2598 return 0;
2599
8fe8ff09 2600 return jiffies_to_nsecs(next - now);
1da177e4 2601}
265f22a9 2602#endif
1da177e4 2603
132380a0 2604notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2605{
2606 if (in_lock_functions(addr)) {
2607 addr = CALLER_ADDR2;
2608 if (in_lock_functions(addr))
2609 addr = CALLER_ADDR3;
2610 }
2611 return addr;
2612}
1da177e4 2613
7e49fcce
SR
2614#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2615 defined(CONFIG_PREEMPT_TRACER))
2616
edafe3a5 2617void preempt_count_add(int val)
1da177e4 2618{
6cd8a4bb 2619#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2620 /*
2621 * Underflow?
2622 */
9a11b49a
IM
2623 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2624 return;
6cd8a4bb 2625#endif
bdb43806 2626 __preempt_count_add(val);
6cd8a4bb 2627#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2628 /*
2629 * Spinlock count overflowing soon?
2630 */
33859f7f
MOS
2631 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2632 PREEMPT_MASK - 10);
6cd8a4bb 2633#endif
8f47b187
TG
2634 if (preempt_count() == val) {
2635 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2636#ifdef CONFIG_DEBUG_PREEMPT
2637 current->preempt_disable_ip = ip;
2638#endif
2639 trace_preempt_off(CALLER_ADDR0, ip);
2640 }
1da177e4 2641}
bdb43806 2642EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2643NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2644
edafe3a5 2645void preempt_count_sub(int val)
1da177e4 2646{
6cd8a4bb 2647#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2648 /*
2649 * Underflow?
2650 */
01e3eb82 2651 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2652 return;
1da177e4
LT
2653 /*
2654 * Is the spinlock portion underflowing?
2655 */
9a11b49a
IM
2656 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2657 !(preempt_count() & PREEMPT_MASK)))
2658 return;
6cd8a4bb 2659#endif
9a11b49a 2660
6cd8a4bb
SR
2661 if (preempt_count() == val)
2662 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2663 __preempt_count_sub(val);
1da177e4 2664}
bdb43806 2665EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2666NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2667
2668#endif
2669
2670/*
dd41f596 2671 * Print scheduling while atomic bug:
1da177e4 2672 */
dd41f596 2673static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2674{
664dfa65
DJ
2675 if (oops_in_progress)
2676 return;
2677
3df0fc5b
PZ
2678 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2679 prev->comm, prev->pid, preempt_count());
838225b4 2680
dd41f596 2681 debug_show_held_locks(prev);
e21f5b15 2682 print_modules();
dd41f596
IM
2683 if (irqs_disabled())
2684 print_irqtrace_events(prev);
8f47b187
TG
2685#ifdef CONFIG_DEBUG_PREEMPT
2686 if (in_atomic_preempt_off()) {
2687 pr_err("Preemption disabled at:");
2688 print_ip_sym(current->preempt_disable_ip);
2689 pr_cont("\n");
2690 }
2691#endif
6135fc1e 2692 dump_stack();
373d4d09 2693 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2694}
1da177e4 2695
dd41f596
IM
2696/*
2697 * Various schedule()-time debugging checks and statistics:
2698 */
2699static inline void schedule_debug(struct task_struct *prev)
2700{
0d9e2632
AT
2701#ifdef CONFIG_SCHED_STACK_END_CHECK
2702 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2703#endif
1da177e4 2704 /*
41a2d6cf 2705 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2706 * schedule() atomically, we ignore that path. Otherwise whine
2707 * if we are scheduling when we should not.
1da177e4 2708 */
192301e7 2709 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2710 __schedule_bug(prev);
b3fbab05 2711 rcu_sleep_check();
dd41f596 2712
1da177e4
LT
2713 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2714
2d72376b 2715 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2716}
2717
2718/*
2719 * Pick up the highest-prio task:
2720 */
2721static inline struct task_struct *
606dba2e 2722pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2723{
37e117c0 2724 const struct sched_class *class = &fair_sched_class;
dd41f596 2725 struct task_struct *p;
1da177e4
LT
2726
2727 /*
dd41f596
IM
2728 * Optimization: we know that if all tasks are in
2729 * the fair class we can call that function directly:
1da177e4 2730 */
37e117c0 2731 if (likely(prev->sched_class == class &&
38033c37 2732 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2733 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2734 if (unlikely(p == RETRY_TASK))
2735 goto again;
2736
2737 /* assumes fair_sched_class->next == idle_sched_class */
2738 if (unlikely(!p))
2739 p = idle_sched_class.pick_next_task(rq, prev);
2740
2741 return p;
1da177e4
LT
2742 }
2743
37e117c0 2744again:
34f971f6 2745 for_each_class(class) {
606dba2e 2746 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2747 if (p) {
2748 if (unlikely(p == RETRY_TASK))
2749 goto again;
dd41f596 2750 return p;
37e117c0 2751 }
dd41f596 2752 }
34f971f6
PZ
2753
2754 BUG(); /* the idle class will always have a runnable task */
dd41f596 2755}
1da177e4 2756
dd41f596 2757/*
c259e01a 2758 * __schedule() is the main scheduler function.
edde96ea
PE
2759 *
2760 * The main means of driving the scheduler and thus entering this function are:
2761 *
2762 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2763 *
2764 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2765 * paths. For example, see arch/x86/entry_64.S.
2766 *
2767 * To drive preemption between tasks, the scheduler sets the flag in timer
2768 * interrupt handler scheduler_tick().
2769 *
2770 * 3. Wakeups don't really cause entry into schedule(). They add a
2771 * task to the run-queue and that's it.
2772 *
2773 * Now, if the new task added to the run-queue preempts the current
2774 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2775 * called on the nearest possible occasion:
2776 *
2777 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2778 *
2779 * - in syscall or exception context, at the next outmost
2780 * preempt_enable(). (this might be as soon as the wake_up()'s
2781 * spin_unlock()!)
2782 *
2783 * - in IRQ context, return from interrupt-handler to
2784 * preemptible context
2785 *
2786 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2787 * then at the next:
2788 *
2789 * - cond_resched() call
2790 * - explicit schedule() call
2791 * - return from syscall or exception to user-space
2792 * - return from interrupt-handler to user-space
dd41f596 2793 */
c259e01a 2794static void __sched __schedule(void)
dd41f596
IM
2795{
2796 struct task_struct *prev, *next;
67ca7bde 2797 unsigned long *switch_count;
dd41f596 2798 struct rq *rq;
31656519 2799 int cpu;
dd41f596 2800
ff743345
PZ
2801need_resched:
2802 preempt_disable();
dd41f596
IM
2803 cpu = smp_processor_id();
2804 rq = cpu_rq(cpu);
25502a6c 2805 rcu_note_context_switch(cpu);
dd41f596 2806 prev = rq->curr;
dd41f596 2807
dd41f596 2808 schedule_debug(prev);
1da177e4 2809
31656519 2810 if (sched_feat(HRTICK))
f333fdc9 2811 hrtick_clear(rq);
8f4d37ec 2812
e0acd0a6
ON
2813 /*
2814 * Make sure that signal_pending_state()->signal_pending() below
2815 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2816 * done by the caller to avoid the race with signal_wake_up().
2817 */
2818 smp_mb__before_spinlock();
05fa785c 2819 raw_spin_lock_irq(&rq->lock);
1da177e4 2820
246d86b5 2821 switch_count = &prev->nivcsw;
1da177e4 2822 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2823 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2824 prev->state = TASK_RUNNING;
21aa9af0 2825 } else {
2acca55e
PZ
2826 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2827 prev->on_rq = 0;
2828
21aa9af0 2829 /*
2acca55e
PZ
2830 * If a worker went to sleep, notify and ask workqueue
2831 * whether it wants to wake up a task to maintain
2832 * concurrency.
21aa9af0
TH
2833 */
2834 if (prev->flags & PF_WQ_WORKER) {
2835 struct task_struct *to_wakeup;
2836
2837 to_wakeup = wq_worker_sleeping(prev, cpu);
2838 if (to_wakeup)
2839 try_to_wake_up_local(to_wakeup);
2840 }
21aa9af0 2841 }
dd41f596 2842 switch_count = &prev->nvcsw;
1da177e4
LT
2843 }
2844
da0c1e65 2845 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2846 update_rq_clock(rq);
2847
2848 next = pick_next_task(rq, prev);
f26f9aff 2849 clear_tsk_need_resched(prev);
f27dde8d 2850 clear_preempt_need_resched();
f26f9aff 2851 rq->skip_clock_update = 0;
1da177e4 2852
1da177e4 2853 if (likely(prev != next)) {
1da177e4
LT
2854 rq->nr_switches++;
2855 rq->curr = next;
2856 ++*switch_count;
2857
dd41f596 2858 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2859 /*
246d86b5
ON
2860 * The context switch have flipped the stack from under us
2861 * and restored the local variables which were saved when
2862 * this task called schedule() in the past. prev == current
2863 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2864 */
2865 cpu = smp_processor_id();
2866 rq = cpu_rq(cpu);
1da177e4 2867 } else
05fa785c 2868 raw_spin_unlock_irq(&rq->lock);
1da177e4 2869
3f029d3c 2870 post_schedule(rq);
1da177e4 2871
ba74c144 2872 sched_preempt_enable_no_resched();
ff743345 2873 if (need_resched())
1da177e4
LT
2874 goto need_resched;
2875}
c259e01a 2876
9c40cef2
TG
2877static inline void sched_submit_work(struct task_struct *tsk)
2878{
3c7d5184 2879 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2880 return;
2881 /*
2882 * If we are going to sleep and we have plugged IO queued,
2883 * make sure to submit it to avoid deadlocks.
2884 */
2885 if (blk_needs_flush_plug(tsk))
2886 blk_schedule_flush_plug(tsk);
2887}
2888
722a9f92 2889asmlinkage __visible void __sched schedule(void)
c259e01a 2890{
9c40cef2
TG
2891 struct task_struct *tsk = current;
2892
2893 sched_submit_work(tsk);
c259e01a
TG
2894 __schedule();
2895}
1da177e4
LT
2896EXPORT_SYMBOL(schedule);
2897
91d1aa43 2898#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2899asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2900{
2901 /*
2902 * If we come here after a random call to set_need_resched(),
2903 * or we have been woken up remotely but the IPI has not yet arrived,
2904 * we haven't yet exited the RCU idle mode. Do it here manually until
2905 * we find a better solution.
2906 */
91d1aa43 2907 user_exit();
20ab65e3 2908 schedule();
91d1aa43 2909 user_enter();
20ab65e3
FW
2910}
2911#endif
2912
c5491ea7
TG
2913/**
2914 * schedule_preempt_disabled - called with preemption disabled
2915 *
2916 * Returns with preemption disabled. Note: preempt_count must be 1
2917 */
2918void __sched schedule_preempt_disabled(void)
2919{
ba74c144 2920 sched_preempt_enable_no_resched();
c5491ea7
TG
2921 schedule();
2922 preempt_disable();
2923}
2924
1da177e4
LT
2925#ifdef CONFIG_PREEMPT
2926/*
2ed6e34f 2927 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2928 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2929 * occur there and call schedule directly.
2930 */
722a9f92 2931asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2932{
1da177e4
LT
2933 /*
2934 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2935 * we do not want to preempt the current task. Just return..
1da177e4 2936 */
fbb00b56 2937 if (likely(!preemptible()))
1da177e4
LT
2938 return;
2939
3a5c359a 2940 do {
bdb43806 2941 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2942 __schedule();
bdb43806 2943 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2944
3a5c359a
AK
2945 /*
2946 * Check again in case we missed a preemption opportunity
2947 * between schedule and now.
2948 */
2949 barrier();
5ed0cec0 2950 } while (need_resched());
1da177e4 2951}
376e2424 2952NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2953EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2954
2955#ifdef CONFIG_CONTEXT_TRACKING
2956/**
2957 * preempt_schedule_context - preempt_schedule called by tracing
2958 *
2959 * The tracing infrastructure uses preempt_enable_notrace to prevent
2960 * recursion and tracing preempt enabling caused by the tracing
2961 * infrastructure itself. But as tracing can happen in areas coming
2962 * from userspace or just about to enter userspace, a preempt enable
2963 * can occur before user_exit() is called. This will cause the scheduler
2964 * to be called when the system is still in usermode.
2965 *
2966 * To prevent this, the preempt_enable_notrace will use this function
2967 * instead of preempt_schedule() to exit user context if needed before
2968 * calling the scheduler.
2969 */
2970asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2971{
2972 enum ctx_state prev_ctx;
2973
2974 if (likely(!preemptible()))
2975 return;
2976
2977 do {
2978 __preempt_count_add(PREEMPT_ACTIVE);
2979 /*
2980 * Needs preempt disabled in case user_exit() is traced
2981 * and the tracer calls preempt_enable_notrace() causing
2982 * an infinite recursion.
2983 */
2984 prev_ctx = exception_enter();
2985 __schedule();
2986 exception_exit(prev_ctx);
2987
2988 __preempt_count_sub(PREEMPT_ACTIVE);
2989 barrier();
2990 } while (need_resched());
2991}
2992EXPORT_SYMBOL_GPL(preempt_schedule_context);
2993#endif /* CONFIG_CONTEXT_TRACKING */
2994
32e475d7 2995#endif /* CONFIG_PREEMPT */
1da177e4
LT
2996
2997/*
2ed6e34f 2998 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2999 * off of irq context.
3000 * Note, that this is called and return with irqs disabled. This will
3001 * protect us against recursive calling from irq.
3002 */
722a9f92 3003asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3004{
b22366cd 3005 enum ctx_state prev_state;
6478d880 3006
2ed6e34f 3007 /* Catch callers which need to be fixed */
f27dde8d 3008 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3009
b22366cd
FW
3010 prev_state = exception_enter();
3011
3a5c359a 3012 do {
bdb43806 3013 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 3014 local_irq_enable();
c259e01a 3015 __schedule();
3a5c359a 3016 local_irq_disable();
bdb43806 3017 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 3018
3a5c359a
AK
3019 /*
3020 * Check again in case we missed a preemption opportunity
3021 * between schedule and now.
3022 */
3023 barrier();
5ed0cec0 3024 } while (need_resched());
b22366cd
FW
3025
3026 exception_exit(prev_state);
1da177e4
LT
3027}
3028
63859d4f 3029int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3030 void *key)
1da177e4 3031{
63859d4f 3032 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3033}
1da177e4
LT
3034EXPORT_SYMBOL(default_wake_function);
3035
b29739f9
IM
3036#ifdef CONFIG_RT_MUTEXES
3037
3038/*
3039 * rt_mutex_setprio - set the current priority of a task
3040 * @p: task
3041 * @prio: prio value (kernel-internal form)
3042 *
3043 * This function changes the 'effective' priority of a task. It does
3044 * not touch ->normal_prio like __setscheduler().
3045 *
c365c292
TG
3046 * Used by the rt_mutex code to implement priority inheritance
3047 * logic. Call site only calls if the priority of the task changed.
b29739f9 3048 */
36c8b586 3049void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3050{
da0c1e65 3051 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3052 struct rq *rq;
83ab0aa0 3053 const struct sched_class *prev_class;
b29739f9 3054
aab03e05 3055 BUG_ON(prio > MAX_PRIO);
b29739f9 3056
0122ec5b 3057 rq = __task_rq_lock(p);
b29739f9 3058
1c4dd99b
TG
3059 /*
3060 * Idle task boosting is a nono in general. There is one
3061 * exception, when PREEMPT_RT and NOHZ is active:
3062 *
3063 * The idle task calls get_next_timer_interrupt() and holds
3064 * the timer wheel base->lock on the CPU and another CPU wants
3065 * to access the timer (probably to cancel it). We can safely
3066 * ignore the boosting request, as the idle CPU runs this code
3067 * with interrupts disabled and will complete the lock
3068 * protected section without being interrupted. So there is no
3069 * real need to boost.
3070 */
3071 if (unlikely(p == rq->idle)) {
3072 WARN_ON(p != rq->curr);
3073 WARN_ON(p->pi_blocked_on);
3074 goto out_unlock;
3075 }
3076
a8027073 3077 trace_sched_pi_setprio(p, prio);
d5f9f942 3078 oldprio = p->prio;
83ab0aa0 3079 prev_class = p->sched_class;
da0c1e65 3080 queued = task_on_rq_queued(p);
051a1d1a 3081 running = task_current(rq, p);
da0c1e65 3082 if (queued)
69be72c1 3083 dequeue_task(rq, p, 0);
0e1f3483 3084 if (running)
f3cd1c4e 3085 put_prev_task(rq, p);
dd41f596 3086
2d3d891d
DF
3087 /*
3088 * Boosting condition are:
3089 * 1. -rt task is running and holds mutex A
3090 * --> -dl task blocks on mutex A
3091 *
3092 * 2. -dl task is running and holds mutex A
3093 * --> -dl task blocks on mutex A and could preempt the
3094 * running task
3095 */
3096 if (dl_prio(prio)) {
466af29b
ON
3097 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3098 if (!dl_prio(p->normal_prio) ||
3099 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3100 p->dl.dl_boosted = 1;
3101 p->dl.dl_throttled = 0;
3102 enqueue_flag = ENQUEUE_REPLENISH;
3103 } else
3104 p->dl.dl_boosted = 0;
aab03e05 3105 p->sched_class = &dl_sched_class;
2d3d891d
DF
3106 } else if (rt_prio(prio)) {
3107 if (dl_prio(oldprio))
3108 p->dl.dl_boosted = 0;
3109 if (oldprio < prio)
3110 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3111 p->sched_class = &rt_sched_class;
2d3d891d
DF
3112 } else {
3113 if (dl_prio(oldprio))
3114 p->dl.dl_boosted = 0;
dd41f596 3115 p->sched_class = &fair_sched_class;
2d3d891d 3116 }
dd41f596 3117
b29739f9
IM
3118 p->prio = prio;
3119
0e1f3483
HS
3120 if (running)
3121 p->sched_class->set_curr_task(rq);
da0c1e65 3122 if (queued)
2d3d891d 3123 enqueue_task(rq, p, enqueue_flag);
cb469845 3124
da7a735e 3125 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3126out_unlock:
0122ec5b 3127 __task_rq_unlock(rq);
b29739f9 3128}
b29739f9 3129#endif
d50dde5a 3130
36c8b586 3131void set_user_nice(struct task_struct *p, long nice)
1da177e4 3132{
da0c1e65 3133 int old_prio, delta, queued;
1da177e4 3134 unsigned long flags;
70b97a7f 3135 struct rq *rq;
1da177e4 3136
75e45d51 3137 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3138 return;
3139 /*
3140 * We have to be careful, if called from sys_setpriority(),
3141 * the task might be in the middle of scheduling on another CPU.
3142 */
3143 rq = task_rq_lock(p, &flags);
3144 /*
3145 * The RT priorities are set via sched_setscheduler(), but we still
3146 * allow the 'normal' nice value to be set - but as expected
3147 * it wont have any effect on scheduling until the task is
aab03e05 3148 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3149 */
aab03e05 3150 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3151 p->static_prio = NICE_TO_PRIO(nice);
3152 goto out_unlock;
3153 }
da0c1e65
KT
3154 queued = task_on_rq_queued(p);
3155 if (queued)
69be72c1 3156 dequeue_task(rq, p, 0);
1da177e4 3157
1da177e4 3158 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3159 set_load_weight(p);
b29739f9
IM
3160 old_prio = p->prio;
3161 p->prio = effective_prio(p);
3162 delta = p->prio - old_prio;
1da177e4 3163
da0c1e65 3164 if (queued) {
371fd7e7 3165 enqueue_task(rq, p, 0);
1da177e4 3166 /*
d5f9f942
AM
3167 * If the task increased its priority or is running and
3168 * lowered its priority, then reschedule its CPU:
1da177e4 3169 */
d5f9f942 3170 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3171 resched_curr(rq);
1da177e4
LT
3172 }
3173out_unlock:
0122ec5b 3174 task_rq_unlock(rq, p, &flags);
1da177e4 3175}
1da177e4
LT
3176EXPORT_SYMBOL(set_user_nice);
3177
e43379f1
MM
3178/*
3179 * can_nice - check if a task can reduce its nice value
3180 * @p: task
3181 * @nice: nice value
3182 */
36c8b586 3183int can_nice(const struct task_struct *p, const int nice)
e43379f1 3184{
024f4747 3185 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3186 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3187
78d7d407 3188 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3189 capable(CAP_SYS_NICE));
3190}
3191
1da177e4
LT
3192#ifdef __ARCH_WANT_SYS_NICE
3193
3194/*
3195 * sys_nice - change the priority of the current process.
3196 * @increment: priority increment
3197 *
3198 * sys_setpriority is a more generic, but much slower function that
3199 * does similar things.
3200 */
5add95d4 3201SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3202{
48f24c4d 3203 long nice, retval;
1da177e4
LT
3204
3205 /*
3206 * Setpriority might change our priority at the same moment.
3207 * We don't have to worry. Conceptually one call occurs first
3208 * and we have a single winner.
3209 */
a9467fa3 3210 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3211 nice = task_nice(current) + increment;
1da177e4 3212
a9467fa3 3213 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3214 if (increment < 0 && !can_nice(current, nice))
3215 return -EPERM;
3216
1da177e4
LT
3217 retval = security_task_setnice(current, nice);
3218 if (retval)
3219 return retval;
3220
3221 set_user_nice(current, nice);
3222 return 0;
3223}
3224
3225#endif
3226
3227/**
3228 * task_prio - return the priority value of a given task.
3229 * @p: the task in question.
3230 *
e69f6186 3231 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3232 * RT tasks are offset by -200. Normal tasks are centered
3233 * around 0, value goes from -16 to +15.
3234 */
36c8b586 3235int task_prio(const struct task_struct *p)
1da177e4
LT
3236{
3237 return p->prio - MAX_RT_PRIO;
3238}
3239
1da177e4
LT
3240/**
3241 * idle_cpu - is a given cpu idle currently?
3242 * @cpu: the processor in question.
e69f6186
YB
3243 *
3244 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3245 */
3246int idle_cpu(int cpu)
3247{
908a3283
TG
3248 struct rq *rq = cpu_rq(cpu);
3249
3250 if (rq->curr != rq->idle)
3251 return 0;
3252
3253 if (rq->nr_running)
3254 return 0;
3255
3256#ifdef CONFIG_SMP
3257 if (!llist_empty(&rq->wake_list))
3258 return 0;
3259#endif
3260
3261 return 1;
1da177e4
LT
3262}
3263
1da177e4
LT
3264/**
3265 * idle_task - return the idle task for a given cpu.
3266 * @cpu: the processor in question.
e69f6186
YB
3267 *
3268 * Return: The idle task for the cpu @cpu.
1da177e4 3269 */
36c8b586 3270struct task_struct *idle_task(int cpu)
1da177e4
LT
3271{
3272 return cpu_rq(cpu)->idle;
3273}
3274
3275/**
3276 * find_process_by_pid - find a process with a matching PID value.
3277 * @pid: the pid in question.
e69f6186
YB
3278 *
3279 * The task of @pid, if found. %NULL otherwise.
1da177e4 3280 */
a9957449 3281static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3282{
228ebcbe 3283 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3284}
3285
aab03e05
DF
3286/*
3287 * This function initializes the sched_dl_entity of a newly becoming
3288 * SCHED_DEADLINE task.
3289 *
3290 * Only the static values are considered here, the actual runtime and the
3291 * absolute deadline will be properly calculated when the task is enqueued
3292 * for the first time with its new policy.
3293 */
3294static void
3295__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3296{
3297 struct sched_dl_entity *dl_se = &p->dl;
3298
3299 init_dl_task_timer(dl_se);
3300 dl_se->dl_runtime = attr->sched_runtime;
3301 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3302 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3303 dl_se->flags = attr->sched_flags;
332ac17e 3304 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3305 dl_se->dl_throttled = 0;
3306 dl_se->dl_new = 1;
5bfd126e 3307 dl_se->dl_yielded = 0;
aab03e05
DF
3308}
3309
c13db6b1
SR
3310/*
3311 * sched_setparam() passes in -1 for its policy, to let the functions
3312 * it calls know not to change it.
3313 */
3314#define SETPARAM_POLICY -1
3315
c365c292
TG
3316static void __setscheduler_params(struct task_struct *p,
3317 const struct sched_attr *attr)
1da177e4 3318{
d50dde5a
DF
3319 int policy = attr->sched_policy;
3320
c13db6b1 3321 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3322 policy = p->policy;
3323
1da177e4 3324 p->policy = policy;
d50dde5a 3325
aab03e05
DF
3326 if (dl_policy(policy))
3327 __setparam_dl(p, attr);
39fd8fd2 3328 else if (fair_policy(policy))
d50dde5a
DF
3329 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3330
39fd8fd2
PZ
3331 /*
3332 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3333 * !rt_policy. Always setting this ensures that things like
3334 * getparam()/getattr() don't report silly values for !rt tasks.
3335 */
3336 p->rt_priority = attr->sched_priority;
383afd09 3337 p->normal_prio = normal_prio(p);
c365c292
TG
3338 set_load_weight(p);
3339}
39fd8fd2 3340
c365c292
TG
3341/* Actually do priority change: must hold pi & rq lock. */
3342static void __setscheduler(struct rq *rq, struct task_struct *p,
3343 const struct sched_attr *attr)
3344{
3345 __setscheduler_params(p, attr);
d50dde5a 3346
383afd09
SR
3347 /*
3348 * If we get here, there was no pi waiters boosting the
3349 * task. It is safe to use the normal prio.
3350 */
3351 p->prio = normal_prio(p);
3352
aab03e05
DF
3353 if (dl_prio(p->prio))
3354 p->sched_class = &dl_sched_class;
3355 else if (rt_prio(p->prio))
ffd44db5
PZ
3356 p->sched_class = &rt_sched_class;
3357 else
3358 p->sched_class = &fair_sched_class;
1da177e4 3359}
aab03e05
DF
3360
3361static void
3362__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3363{
3364 struct sched_dl_entity *dl_se = &p->dl;
3365
3366 attr->sched_priority = p->rt_priority;
3367 attr->sched_runtime = dl_se->dl_runtime;
3368 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3369 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3370 attr->sched_flags = dl_se->flags;
3371}
3372
3373/*
3374 * This function validates the new parameters of a -deadline task.
3375 * We ask for the deadline not being zero, and greater or equal
755378a4 3376 * than the runtime, as well as the period of being zero or
332ac17e 3377 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3378 * user parameters are above the internal resolution of 1us (we
3379 * check sched_runtime only since it is always the smaller one) and
3380 * below 2^63 ns (we have to check both sched_deadline and
3381 * sched_period, as the latter can be zero).
aab03e05
DF
3382 */
3383static bool
3384__checkparam_dl(const struct sched_attr *attr)
3385{
b0827819
JL
3386 /* deadline != 0 */
3387 if (attr->sched_deadline == 0)
3388 return false;
3389
3390 /*
3391 * Since we truncate DL_SCALE bits, make sure we're at least
3392 * that big.
3393 */
3394 if (attr->sched_runtime < (1ULL << DL_SCALE))
3395 return false;
3396
3397 /*
3398 * Since we use the MSB for wrap-around and sign issues, make
3399 * sure it's not set (mind that period can be equal to zero).
3400 */
3401 if (attr->sched_deadline & (1ULL << 63) ||
3402 attr->sched_period & (1ULL << 63))
3403 return false;
3404
3405 /* runtime <= deadline <= period (if period != 0) */
3406 if ((attr->sched_period != 0 &&
3407 attr->sched_period < attr->sched_deadline) ||
3408 attr->sched_deadline < attr->sched_runtime)
3409 return false;
3410
3411 return true;
aab03e05
DF
3412}
3413
c69e8d9c
DH
3414/*
3415 * check the target process has a UID that matches the current process's
3416 */
3417static bool check_same_owner(struct task_struct *p)
3418{
3419 const struct cred *cred = current_cred(), *pcred;
3420 bool match;
3421
3422 rcu_read_lock();
3423 pcred = __task_cred(p);
9c806aa0
EB
3424 match = (uid_eq(cred->euid, pcred->euid) ||
3425 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3426 rcu_read_unlock();
3427 return match;
3428}
3429
d50dde5a
DF
3430static int __sched_setscheduler(struct task_struct *p,
3431 const struct sched_attr *attr,
3432 bool user)
1da177e4 3433{
383afd09
SR
3434 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3435 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3436 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3437 int policy = attr->sched_policy;
1da177e4 3438 unsigned long flags;
83ab0aa0 3439 const struct sched_class *prev_class;
70b97a7f 3440 struct rq *rq;
ca94c442 3441 int reset_on_fork;
1da177e4 3442
66e5393a
SR
3443 /* may grab non-irq protected spin_locks */
3444 BUG_ON(in_interrupt());
1da177e4
LT
3445recheck:
3446 /* double check policy once rq lock held */
ca94c442
LP
3447 if (policy < 0) {
3448 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3449 policy = oldpolicy = p->policy;
ca94c442 3450 } else {
7479f3c9 3451 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3452
aab03e05
DF
3453 if (policy != SCHED_DEADLINE &&
3454 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3455 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3456 policy != SCHED_IDLE)
3457 return -EINVAL;
3458 }
3459
7479f3c9
PZ
3460 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3461 return -EINVAL;
3462
1da177e4
LT
3463 /*
3464 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3465 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3466 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3467 */
0bb040a4 3468 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3469 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3470 return -EINVAL;
aab03e05
DF
3471 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3472 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3473 return -EINVAL;
3474
37e4ab3f
OC
3475 /*
3476 * Allow unprivileged RT tasks to decrease priority:
3477 */
961ccddd 3478 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3479 if (fair_policy(policy)) {
d0ea0268 3480 if (attr->sched_nice < task_nice(p) &&
eaad4513 3481 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3482 return -EPERM;
3483 }
3484
e05606d3 3485 if (rt_policy(policy)) {
a44702e8
ON
3486 unsigned long rlim_rtprio =
3487 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3488
3489 /* can't set/change the rt policy */
3490 if (policy != p->policy && !rlim_rtprio)
3491 return -EPERM;
3492
3493 /* can't increase priority */
d50dde5a
DF
3494 if (attr->sched_priority > p->rt_priority &&
3495 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3496 return -EPERM;
3497 }
c02aa73b 3498
d44753b8
JL
3499 /*
3500 * Can't set/change SCHED_DEADLINE policy at all for now
3501 * (safest behavior); in the future we would like to allow
3502 * unprivileged DL tasks to increase their relative deadline
3503 * or reduce their runtime (both ways reducing utilization)
3504 */
3505 if (dl_policy(policy))
3506 return -EPERM;
3507
dd41f596 3508 /*
c02aa73b
DH
3509 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3510 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3511 */
c02aa73b 3512 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3513 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3514 return -EPERM;
3515 }
5fe1d75f 3516
37e4ab3f 3517 /* can't change other user's priorities */
c69e8d9c 3518 if (!check_same_owner(p))
37e4ab3f 3519 return -EPERM;
ca94c442
LP
3520
3521 /* Normal users shall not reset the sched_reset_on_fork flag */
3522 if (p->sched_reset_on_fork && !reset_on_fork)
3523 return -EPERM;
37e4ab3f 3524 }
1da177e4 3525
725aad24 3526 if (user) {
b0ae1981 3527 retval = security_task_setscheduler(p);
725aad24
JF
3528 if (retval)
3529 return retval;
3530 }
3531
b29739f9
IM
3532 /*
3533 * make sure no PI-waiters arrive (or leave) while we are
3534 * changing the priority of the task:
0122ec5b 3535 *
25985edc 3536 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3537 * runqueue lock must be held.
3538 */
0122ec5b 3539 rq = task_rq_lock(p, &flags);
dc61b1d6 3540
34f971f6
PZ
3541 /*
3542 * Changing the policy of the stop threads its a very bad idea
3543 */
3544 if (p == rq->stop) {
0122ec5b 3545 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3546 return -EINVAL;
3547 }
3548
a51e9198 3549 /*
d6b1e911
TG
3550 * If not changing anything there's no need to proceed further,
3551 * but store a possible modification of reset_on_fork.
a51e9198 3552 */
d50dde5a 3553 if (unlikely(policy == p->policy)) {
d0ea0268 3554 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3555 goto change;
3556 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3557 goto change;
aab03e05
DF
3558 if (dl_policy(policy))
3559 goto change;
d50dde5a 3560
d6b1e911 3561 p->sched_reset_on_fork = reset_on_fork;
45afb173 3562 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3563 return 0;
3564 }
d50dde5a 3565change:
a51e9198 3566
dc61b1d6 3567 if (user) {
332ac17e 3568#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3569 /*
3570 * Do not allow realtime tasks into groups that have no runtime
3571 * assigned.
3572 */
3573 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3574 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3575 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3576 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3577 return -EPERM;
3578 }
dc61b1d6 3579#endif
332ac17e
DF
3580#ifdef CONFIG_SMP
3581 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3582 cpumask_t *span = rq->rd->span;
332ac17e
DF
3583
3584 /*
3585 * Don't allow tasks with an affinity mask smaller than
3586 * the entire root_domain to become SCHED_DEADLINE. We
3587 * will also fail if there's no bandwidth available.
3588 */
e4099a5e
PZ
3589 if (!cpumask_subset(span, &p->cpus_allowed) ||
3590 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3591 task_rq_unlock(rq, p, &flags);
3592 return -EPERM;
3593 }
3594 }
3595#endif
3596 }
dc61b1d6 3597
1da177e4
LT
3598 /* recheck policy now with rq lock held */
3599 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3600 policy = oldpolicy = -1;
0122ec5b 3601 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3602 goto recheck;
3603 }
332ac17e
DF
3604
3605 /*
3606 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3607 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3608 * is available.
3609 */
e4099a5e 3610 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3611 task_rq_unlock(rq, p, &flags);
3612 return -EBUSY;
3613 }
3614
c365c292
TG
3615 p->sched_reset_on_fork = reset_on_fork;
3616 oldprio = p->prio;
3617
3618 /*
3619 * Special case for priority boosted tasks.
3620 *
3621 * If the new priority is lower or equal (user space view)
3622 * than the current (boosted) priority, we just store the new
3623 * normal parameters and do not touch the scheduler class and
3624 * the runqueue. This will be done when the task deboost
3625 * itself.
3626 */
3627 if (rt_mutex_check_prio(p, newprio)) {
3628 __setscheduler_params(p, attr);
3629 task_rq_unlock(rq, p, &flags);
3630 return 0;
3631 }
3632
da0c1e65 3633 queued = task_on_rq_queued(p);
051a1d1a 3634 running = task_current(rq, p);
da0c1e65 3635 if (queued)
4ca9b72b 3636 dequeue_task(rq, p, 0);
0e1f3483 3637 if (running)
f3cd1c4e 3638 put_prev_task(rq, p);
f6b53205 3639
83ab0aa0 3640 prev_class = p->sched_class;
d50dde5a 3641 __setscheduler(rq, p, attr);
f6b53205 3642
0e1f3483
HS
3643 if (running)
3644 p->sched_class->set_curr_task(rq);
da0c1e65 3645 if (queued) {
81a44c54
TG
3646 /*
3647 * We enqueue to tail when the priority of a task is
3648 * increased (user space view).
3649 */
3650 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3651 }
cb469845 3652
da7a735e 3653 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3654 task_rq_unlock(rq, p, &flags);
b29739f9 3655
95e02ca9
TG
3656 rt_mutex_adjust_pi(p);
3657
1da177e4
LT
3658 return 0;
3659}
961ccddd 3660
7479f3c9
PZ
3661static int _sched_setscheduler(struct task_struct *p, int policy,
3662 const struct sched_param *param, bool check)
3663{
3664 struct sched_attr attr = {
3665 .sched_policy = policy,
3666 .sched_priority = param->sched_priority,
3667 .sched_nice = PRIO_TO_NICE(p->static_prio),
3668 };
3669
c13db6b1
SR
3670 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3671 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3672 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3673 policy &= ~SCHED_RESET_ON_FORK;
3674 attr.sched_policy = policy;
3675 }
3676
3677 return __sched_setscheduler(p, &attr, check);
3678}
961ccddd
RR
3679/**
3680 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3681 * @p: the task in question.
3682 * @policy: new policy.
3683 * @param: structure containing the new RT priority.
3684 *
e69f6186
YB
3685 * Return: 0 on success. An error code otherwise.
3686 *
961ccddd
RR
3687 * NOTE that the task may be already dead.
3688 */
3689int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3690 const struct sched_param *param)
961ccddd 3691{
7479f3c9 3692 return _sched_setscheduler(p, policy, param, true);
961ccddd 3693}
1da177e4
LT
3694EXPORT_SYMBOL_GPL(sched_setscheduler);
3695
d50dde5a
DF
3696int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3697{
3698 return __sched_setscheduler(p, attr, true);
3699}
3700EXPORT_SYMBOL_GPL(sched_setattr);
3701
961ccddd
RR
3702/**
3703 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3704 * @p: the task in question.
3705 * @policy: new policy.
3706 * @param: structure containing the new RT priority.
3707 *
3708 * Just like sched_setscheduler, only don't bother checking if the
3709 * current context has permission. For example, this is needed in
3710 * stop_machine(): we create temporary high priority worker threads,
3711 * but our caller might not have that capability.
e69f6186
YB
3712 *
3713 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3714 */
3715int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3716 const struct sched_param *param)
961ccddd 3717{
7479f3c9 3718 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3719}
3720
95cdf3b7
IM
3721static int
3722do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3723{
1da177e4
LT
3724 struct sched_param lparam;
3725 struct task_struct *p;
36c8b586 3726 int retval;
1da177e4
LT
3727
3728 if (!param || pid < 0)
3729 return -EINVAL;
3730 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3731 return -EFAULT;
5fe1d75f
ON
3732
3733 rcu_read_lock();
3734 retval = -ESRCH;
1da177e4 3735 p = find_process_by_pid(pid);
5fe1d75f
ON
3736 if (p != NULL)
3737 retval = sched_setscheduler(p, policy, &lparam);
3738 rcu_read_unlock();
36c8b586 3739
1da177e4
LT
3740 return retval;
3741}
3742
d50dde5a
DF
3743/*
3744 * Mimics kernel/events/core.c perf_copy_attr().
3745 */
3746static int sched_copy_attr(struct sched_attr __user *uattr,
3747 struct sched_attr *attr)
3748{
3749 u32 size;
3750 int ret;
3751
3752 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3753 return -EFAULT;
3754
3755 /*
3756 * zero the full structure, so that a short copy will be nice.
3757 */
3758 memset(attr, 0, sizeof(*attr));
3759
3760 ret = get_user(size, &uattr->size);
3761 if (ret)
3762 return ret;
3763
3764 if (size > PAGE_SIZE) /* silly large */
3765 goto err_size;
3766
3767 if (!size) /* abi compat */
3768 size = SCHED_ATTR_SIZE_VER0;
3769
3770 if (size < SCHED_ATTR_SIZE_VER0)
3771 goto err_size;
3772
3773 /*
3774 * If we're handed a bigger struct than we know of,
3775 * ensure all the unknown bits are 0 - i.e. new
3776 * user-space does not rely on any kernel feature
3777 * extensions we dont know about yet.
3778 */
3779 if (size > sizeof(*attr)) {
3780 unsigned char __user *addr;
3781 unsigned char __user *end;
3782 unsigned char val;
3783
3784 addr = (void __user *)uattr + sizeof(*attr);
3785 end = (void __user *)uattr + size;
3786
3787 for (; addr < end; addr++) {
3788 ret = get_user(val, addr);
3789 if (ret)
3790 return ret;
3791 if (val)
3792 goto err_size;
3793 }
3794 size = sizeof(*attr);
3795 }
3796
3797 ret = copy_from_user(attr, uattr, size);
3798 if (ret)
3799 return -EFAULT;
3800
3801 /*
3802 * XXX: do we want to be lenient like existing syscalls; or do we want
3803 * to be strict and return an error on out-of-bounds values?
3804 */
75e45d51 3805 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3806
e78c7bca 3807 return 0;
d50dde5a
DF
3808
3809err_size:
3810 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3811 return -E2BIG;
d50dde5a
DF
3812}
3813
1da177e4
LT
3814/**
3815 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3816 * @pid: the pid in question.
3817 * @policy: new policy.
3818 * @param: structure containing the new RT priority.
e69f6186
YB
3819 *
3820 * Return: 0 on success. An error code otherwise.
1da177e4 3821 */
5add95d4
HC
3822SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3823 struct sched_param __user *, param)
1da177e4 3824{
c21761f1
JB
3825 /* negative values for policy are not valid */
3826 if (policy < 0)
3827 return -EINVAL;
3828
1da177e4
LT
3829 return do_sched_setscheduler(pid, policy, param);
3830}
3831
3832/**
3833 * sys_sched_setparam - set/change the RT priority of a thread
3834 * @pid: the pid in question.
3835 * @param: structure containing the new RT priority.
e69f6186
YB
3836 *
3837 * Return: 0 on success. An error code otherwise.
1da177e4 3838 */
5add95d4 3839SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3840{
c13db6b1 3841 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3842}
3843
d50dde5a
DF
3844/**
3845 * sys_sched_setattr - same as above, but with extended sched_attr
3846 * @pid: the pid in question.
5778fccf 3847 * @uattr: structure containing the extended parameters.
db66d756 3848 * @flags: for future extension.
d50dde5a 3849 */
6d35ab48
PZ
3850SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3851 unsigned int, flags)
d50dde5a
DF
3852{
3853 struct sched_attr attr;
3854 struct task_struct *p;
3855 int retval;
3856
6d35ab48 3857 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3858 return -EINVAL;
3859
143cf23d
MK
3860 retval = sched_copy_attr(uattr, &attr);
3861 if (retval)
3862 return retval;
d50dde5a 3863
b14ed2c2 3864 if ((int)attr.sched_policy < 0)
dbdb2275 3865 return -EINVAL;
d50dde5a
DF
3866
3867 rcu_read_lock();
3868 retval = -ESRCH;
3869 p = find_process_by_pid(pid);
3870 if (p != NULL)
3871 retval = sched_setattr(p, &attr);
3872 rcu_read_unlock();
3873
3874 return retval;
3875}
3876
1da177e4
LT
3877/**
3878 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3879 * @pid: the pid in question.
e69f6186
YB
3880 *
3881 * Return: On success, the policy of the thread. Otherwise, a negative error
3882 * code.
1da177e4 3883 */
5add95d4 3884SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3885{
36c8b586 3886 struct task_struct *p;
3a5c359a 3887 int retval;
1da177e4
LT
3888
3889 if (pid < 0)
3a5c359a 3890 return -EINVAL;
1da177e4
LT
3891
3892 retval = -ESRCH;
5fe85be0 3893 rcu_read_lock();
1da177e4
LT
3894 p = find_process_by_pid(pid);
3895 if (p) {
3896 retval = security_task_getscheduler(p);
3897 if (!retval)
ca94c442
LP
3898 retval = p->policy
3899 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3900 }
5fe85be0 3901 rcu_read_unlock();
1da177e4
LT
3902 return retval;
3903}
3904
3905/**
ca94c442 3906 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3907 * @pid: the pid in question.
3908 * @param: structure containing the RT priority.
e69f6186
YB
3909 *
3910 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3911 * code.
1da177e4 3912 */
5add95d4 3913SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3914{
ce5f7f82 3915 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3916 struct task_struct *p;
3a5c359a 3917 int retval;
1da177e4
LT
3918
3919 if (!param || pid < 0)
3a5c359a 3920 return -EINVAL;
1da177e4 3921
5fe85be0 3922 rcu_read_lock();
1da177e4
LT
3923 p = find_process_by_pid(pid);
3924 retval = -ESRCH;
3925 if (!p)
3926 goto out_unlock;
3927
3928 retval = security_task_getscheduler(p);
3929 if (retval)
3930 goto out_unlock;
3931
ce5f7f82
PZ
3932 if (task_has_rt_policy(p))
3933 lp.sched_priority = p->rt_priority;
5fe85be0 3934 rcu_read_unlock();
1da177e4
LT
3935
3936 /*
3937 * This one might sleep, we cannot do it with a spinlock held ...
3938 */
3939 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3940
1da177e4
LT
3941 return retval;
3942
3943out_unlock:
5fe85be0 3944 rcu_read_unlock();
1da177e4
LT
3945 return retval;
3946}
3947
d50dde5a
DF
3948static int sched_read_attr(struct sched_attr __user *uattr,
3949 struct sched_attr *attr,
3950 unsigned int usize)
3951{
3952 int ret;
3953
3954 if (!access_ok(VERIFY_WRITE, uattr, usize))
3955 return -EFAULT;
3956
3957 /*
3958 * If we're handed a smaller struct than we know of,
3959 * ensure all the unknown bits are 0 - i.e. old
3960 * user-space does not get uncomplete information.
3961 */
3962 if (usize < sizeof(*attr)) {
3963 unsigned char *addr;
3964 unsigned char *end;
3965
3966 addr = (void *)attr + usize;
3967 end = (void *)attr + sizeof(*attr);
3968
3969 for (; addr < end; addr++) {
3970 if (*addr)
22400674 3971 return -EFBIG;
d50dde5a
DF
3972 }
3973
3974 attr->size = usize;
3975 }
3976
4efbc454 3977 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3978 if (ret)
3979 return -EFAULT;
3980
22400674 3981 return 0;
d50dde5a
DF
3982}
3983
3984/**
aab03e05 3985 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3986 * @pid: the pid in question.
5778fccf 3987 * @uattr: structure containing the extended parameters.
d50dde5a 3988 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3989 * @flags: for future extension.
d50dde5a 3990 */
6d35ab48
PZ
3991SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3992 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3993{
3994 struct sched_attr attr = {
3995 .size = sizeof(struct sched_attr),
3996 };
3997 struct task_struct *p;
3998 int retval;
3999
4000 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4001 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4002 return -EINVAL;
4003
4004 rcu_read_lock();
4005 p = find_process_by_pid(pid);
4006 retval = -ESRCH;
4007 if (!p)
4008 goto out_unlock;
4009
4010 retval = security_task_getscheduler(p);
4011 if (retval)
4012 goto out_unlock;
4013
4014 attr.sched_policy = p->policy;
7479f3c9
PZ
4015 if (p->sched_reset_on_fork)
4016 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4017 if (task_has_dl_policy(p))
4018 __getparam_dl(p, &attr);
4019 else if (task_has_rt_policy(p))
d50dde5a
DF
4020 attr.sched_priority = p->rt_priority;
4021 else
d0ea0268 4022 attr.sched_nice = task_nice(p);
d50dde5a
DF
4023
4024 rcu_read_unlock();
4025
4026 retval = sched_read_attr(uattr, &attr, size);
4027 return retval;
4028
4029out_unlock:
4030 rcu_read_unlock();
4031 return retval;
4032}
4033
96f874e2 4034long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4035{
5a16f3d3 4036 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4037 struct task_struct *p;
4038 int retval;
1da177e4 4039
23f5d142 4040 rcu_read_lock();
1da177e4
LT
4041
4042 p = find_process_by_pid(pid);
4043 if (!p) {
23f5d142 4044 rcu_read_unlock();
1da177e4
LT
4045 return -ESRCH;
4046 }
4047
23f5d142 4048 /* Prevent p going away */
1da177e4 4049 get_task_struct(p);
23f5d142 4050 rcu_read_unlock();
1da177e4 4051
14a40ffc
TH
4052 if (p->flags & PF_NO_SETAFFINITY) {
4053 retval = -EINVAL;
4054 goto out_put_task;
4055 }
5a16f3d3
RR
4056 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4057 retval = -ENOMEM;
4058 goto out_put_task;
4059 }
4060 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4061 retval = -ENOMEM;
4062 goto out_free_cpus_allowed;
4063 }
1da177e4 4064 retval = -EPERM;
4c44aaaf
EB
4065 if (!check_same_owner(p)) {
4066 rcu_read_lock();
4067 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4068 rcu_read_unlock();
16303ab2 4069 goto out_free_new_mask;
4c44aaaf
EB
4070 }
4071 rcu_read_unlock();
4072 }
1da177e4 4073
b0ae1981 4074 retval = security_task_setscheduler(p);
e7834f8f 4075 if (retval)
16303ab2 4076 goto out_free_new_mask;
e7834f8f 4077
e4099a5e
PZ
4078
4079 cpuset_cpus_allowed(p, cpus_allowed);
4080 cpumask_and(new_mask, in_mask, cpus_allowed);
4081
332ac17e
DF
4082 /*
4083 * Since bandwidth control happens on root_domain basis,
4084 * if admission test is enabled, we only admit -deadline
4085 * tasks allowed to run on all the CPUs in the task's
4086 * root_domain.
4087 */
4088#ifdef CONFIG_SMP
f1e3a093
KT
4089 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4090 rcu_read_lock();
4091 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4092 retval = -EBUSY;
f1e3a093 4093 rcu_read_unlock();
16303ab2 4094 goto out_free_new_mask;
332ac17e 4095 }
f1e3a093 4096 rcu_read_unlock();
332ac17e
DF
4097 }
4098#endif
49246274 4099again:
5a16f3d3 4100 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4101
8707d8b8 4102 if (!retval) {
5a16f3d3
RR
4103 cpuset_cpus_allowed(p, cpus_allowed);
4104 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4105 /*
4106 * We must have raced with a concurrent cpuset
4107 * update. Just reset the cpus_allowed to the
4108 * cpuset's cpus_allowed
4109 */
5a16f3d3 4110 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4111 goto again;
4112 }
4113 }
16303ab2 4114out_free_new_mask:
5a16f3d3
RR
4115 free_cpumask_var(new_mask);
4116out_free_cpus_allowed:
4117 free_cpumask_var(cpus_allowed);
4118out_put_task:
1da177e4 4119 put_task_struct(p);
1da177e4
LT
4120 return retval;
4121}
4122
4123static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4124 struct cpumask *new_mask)
1da177e4 4125{
96f874e2
RR
4126 if (len < cpumask_size())
4127 cpumask_clear(new_mask);
4128 else if (len > cpumask_size())
4129 len = cpumask_size();
4130
1da177e4
LT
4131 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4132}
4133
4134/**
4135 * sys_sched_setaffinity - set the cpu affinity of a process
4136 * @pid: pid of the process
4137 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4138 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4139 *
4140 * Return: 0 on success. An error code otherwise.
1da177e4 4141 */
5add95d4
HC
4142SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4143 unsigned long __user *, user_mask_ptr)
1da177e4 4144{
5a16f3d3 4145 cpumask_var_t new_mask;
1da177e4
LT
4146 int retval;
4147
5a16f3d3
RR
4148 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4149 return -ENOMEM;
1da177e4 4150
5a16f3d3
RR
4151 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4152 if (retval == 0)
4153 retval = sched_setaffinity(pid, new_mask);
4154 free_cpumask_var(new_mask);
4155 return retval;
1da177e4
LT
4156}
4157
96f874e2 4158long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4159{
36c8b586 4160 struct task_struct *p;
31605683 4161 unsigned long flags;
1da177e4 4162 int retval;
1da177e4 4163
23f5d142 4164 rcu_read_lock();
1da177e4
LT
4165
4166 retval = -ESRCH;
4167 p = find_process_by_pid(pid);
4168 if (!p)
4169 goto out_unlock;
4170
e7834f8f
DQ
4171 retval = security_task_getscheduler(p);
4172 if (retval)
4173 goto out_unlock;
4174
013fdb80 4175 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4176 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4177 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4178
4179out_unlock:
23f5d142 4180 rcu_read_unlock();
1da177e4 4181
9531b62f 4182 return retval;
1da177e4
LT
4183}
4184
4185/**
4186 * sys_sched_getaffinity - get the cpu affinity of a process
4187 * @pid: pid of the process
4188 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4189 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4190 *
4191 * Return: 0 on success. An error code otherwise.
1da177e4 4192 */
5add95d4
HC
4193SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4194 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4195{
4196 int ret;
f17c8607 4197 cpumask_var_t mask;
1da177e4 4198
84fba5ec 4199 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4200 return -EINVAL;
4201 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4202 return -EINVAL;
4203
f17c8607
RR
4204 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4205 return -ENOMEM;
1da177e4 4206
f17c8607
RR
4207 ret = sched_getaffinity(pid, mask);
4208 if (ret == 0) {
8bc037fb 4209 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4210
4211 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4212 ret = -EFAULT;
4213 else
cd3d8031 4214 ret = retlen;
f17c8607
RR
4215 }
4216 free_cpumask_var(mask);
1da177e4 4217
f17c8607 4218 return ret;
1da177e4
LT
4219}
4220
4221/**
4222 * sys_sched_yield - yield the current processor to other threads.
4223 *
dd41f596
IM
4224 * This function yields the current CPU to other tasks. If there are no
4225 * other threads running on this CPU then this function will return.
e69f6186
YB
4226 *
4227 * Return: 0.
1da177e4 4228 */
5add95d4 4229SYSCALL_DEFINE0(sched_yield)
1da177e4 4230{
70b97a7f 4231 struct rq *rq = this_rq_lock();
1da177e4 4232
2d72376b 4233 schedstat_inc(rq, yld_count);
4530d7ab 4234 current->sched_class->yield_task(rq);
1da177e4
LT
4235
4236 /*
4237 * Since we are going to call schedule() anyway, there's
4238 * no need to preempt or enable interrupts:
4239 */
4240 __release(rq->lock);
8a25d5de 4241 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4242 do_raw_spin_unlock(&rq->lock);
ba74c144 4243 sched_preempt_enable_no_resched();
1da177e4
LT
4244
4245 schedule();
4246
4247 return 0;
4248}
4249
e7b38404 4250static void __cond_resched(void)
1da177e4 4251{
bdb43806 4252 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4253 __schedule();
bdb43806 4254 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4255}
4256
02b67cc3 4257int __sched _cond_resched(void)
1da177e4 4258{
d86ee480 4259 if (should_resched()) {
1da177e4
LT
4260 __cond_resched();
4261 return 1;
4262 }
4263 return 0;
4264}
02b67cc3 4265EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4266
4267/*
613afbf8 4268 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4269 * call schedule, and on return reacquire the lock.
4270 *
41a2d6cf 4271 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4272 * operations here to prevent schedule() from being called twice (once via
4273 * spin_unlock(), once by hand).
4274 */
613afbf8 4275int __cond_resched_lock(spinlock_t *lock)
1da177e4 4276{
d86ee480 4277 int resched = should_resched();
6df3cecb
JK
4278 int ret = 0;
4279
f607c668
PZ
4280 lockdep_assert_held(lock);
4281
4a81e832 4282 if (spin_needbreak(lock) || resched) {
1da177e4 4283 spin_unlock(lock);
d86ee480 4284 if (resched)
95c354fe
NP
4285 __cond_resched();
4286 else
4287 cpu_relax();
6df3cecb 4288 ret = 1;
1da177e4 4289 spin_lock(lock);
1da177e4 4290 }
6df3cecb 4291 return ret;
1da177e4 4292}
613afbf8 4293EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4294
613afbf8 4295int __sched __cond_resched_softirq(void)
1da177e4
LT
4296{
4297 BUG_ON(!in_softirq());
4298
d86ee480 4299 if (should_resched()) {
98d82567 4300 local_bh_enable();
1da177e4
LT
4301 __cond_resched();
4302 local_bh_disable();
4303 return 1;
4304 }
4305 return 0;
4306}
613afbf8 4307EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4308
1da177e4
LT
4309/**
4310 * yield - yield the current processor to other threads.
4311 *
8e3fabfd
PZ
4312 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4313 *
4314 * The scheduler is at all times free to pick the calling task as the most
4315 * eligible task to run, if removing the yield() call from your code breaks
4316 * it, its already broken.
4317 *
4318 * Typical broken usage is:
4319 *
4320 * while (!event)
4321 * yield();
4322 *
4323 * where one assumes that yield() will let 'the other' process run that will
4324 * make event true. If the current task is a SCHED_FIFO task that will never
4325 * happen. Never use yield() as a progress guarantee!!
4326 *
4327 * If you want to use yield() to wait for something, use wait_event().
4328 * If you want to use yield() to be 'nice' for others, use cond_resched().
4329 * If you still want to use yield(), do not!
1da177e4
LT
4330 */
4331void __sched yield(void)
4332{
4333 set_current_state(TASK_RUNNING);
4334 sys_sched_yield();
4335}
1da177e4
LT
4336EXPORT_SYMBOL(yield);
4337
d95f4122
MG
4338/**
4339 * yield_to - yield the current processor to another thread in
4340 * your thread group, or accelerate that thread toward the
4341 * processor it's on.
16addf95
RD
4342 * @p: target task
4343 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4344 *
4345 * It's the caller's job to ensure that the target task struct
4346 * can't go away on us before we can do any checks.
4347 *
e69f6186 4348 * Return:
7b270f60
PZ
4349 * true (>0) if we indeed boosted the target task.
4350 * false (0) if we failed to boost the target.
4351 * -ESRCH if there's no task to yield to.
d95f4122 4352 */
fa93384f 4353int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4354{
4355 struct task_struct *curr = current;
4356 struct rq *rq, *p_rq;
4357 unsigned long flags;
c3c18640 4358 int yielded = 0;
d95f4122
MG
4359
4360 local_irq_save(flags);
4361 rq = this_rq();
4362
4363again:
4364 p_rq = task_rq(p);
7b270f60
PZ
4365 /*
4366 * If we're the only runnable task on the rq and target rq also
4367 * has only one task, there's absolutely no point in yielding.
4368 */
4369 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4370 yielded = -ESRCH;
4371 goto out_irq;
4372 }
4373
d95f4122 4374 double_rq_lock(rq, p_rq);
39e24d8f 4375 if (task_rq(p) != p_rq) {
d95f4122
MG
4376 double_rq_unlock(rq, p_rq);
4377 goto again;
4378 }
4379
4380 if (!curr->sched_class->yield_to_task)
7b270f60 4381 goto out_unlock;
d95f4122
MG
4382
4383 if (curr->sched_class != p->sched_class)
7b270f60 4384 goto out_unlock;
d95f4122
MG
4385
4386 if (task_running(p_rq, p) || p->state)
7b270f60 4387 goto out_unlock;
d95f4122
MG
4388
4389 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4390 if (yielded) {
d95f4122 4391 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4392 /*
4393 * Make p's CPU reschedule; pick_next_entity takes care of
4394 * fairness.
4395 */
4396 if (preempt && rq != p_rq)
8875125e 4397 resched_curr(p_rq);
6d1cafd8 4398 }
d95f4122 4399
7b270f60 4400out_unlock:
d95f4122 4401 double_rq_unlock(rq, p_rq);
7b270f60 4402out_irq:
d95f4122
MG
4403 local_irq_restore(flags);
4404
7b270f60 4405 if (yielded > 0)
d95f4122
MG
4406 schedule();
4407
4408 return yielded;
4409}
4410EXPORT_SYMBOL_GPL(yield_to);
4411
1da177e4 4412/*
41a2d6cf 4413 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4414 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4415 */
4416void __sched io_schedule(void)
4417{
54d35f29 4418 struct rq *rq = raw_rq();
1da177e4 4419
0ff92245 4420 delayacct_blkio_start();
1da177e4 4421 atomic_inc(&rq->nr_iowait);
73c10101 4422 blk_flush_plug(current);
8f0dfc34 4423 current->in_iowait = 1;
1da177e4 4424 schedule();
8f0dfc34 4425 current->in_iowait = 0;
1da177e4 4426 atomic_dec(&rq->nr_iowait);
0ff92245 4427 delayacct_blkio_end();
1da177e4 4428}
1da177e4
LT
4429EXPORT_SYMBOL(io_schedule);
4430
4431long __sched io_schedule_timeout(long timeout)
4432{
54d35f29 4433 struct rq *rq = raw_rq();
1da177e4
LT
4434 long ret;
4435
0ff92245 4436 delayacct_blkio_start();
1da177e4 4437 atomic_inc(&rq->nr_iowait);
73c10101 4438 blk_flush_plug(current);
8f0dfc34 4439 current->in_iowait = 1;
1da177e4 4440 ret = schedule_timeout(timeout);
8f0dfc34 4441 current->in_iowait = 0;
1da177e4 4442 atomic_dec(&rq->nr_iowait);
0ff92245 4443 delayacct_blkio_end();
1da177e4
LT
4444 return ret;
4445}
4446
4447/**
4448 * sys_sched_get_priority_max - return maximum RT priority.
4449 * @policy: scheduling class.
4450 *
e69f6186
YB
4451 * Return: On success, this syscall returns the maximum
4452 * rt_priority that can be used by a given scheduling class.
4453 * On failure, a negative error code is returned.
1da177e4 4454 */
5add95d4 4455SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4456{
4457 int ret = -EINVAL;
4458
4459 switch (policy) {
4460 case SCHED_FIFO:
4461 case SCHED_RR:
4462 ret = MAX_USER_RT_PRIO-1;
4463 break;
aab03e05 4464 case SCHED_DEADLINE:
1da177e4 4465 case SCHED_NORMAL:
b0a9499c 4466 case SCHED_BATCH:
dd41f596 4467 case SCHED_IDLE:
1da177e4
LT
4468 ret = 0;
4469 break;
4470 }
4471 return ret;
4472}
4473
4474/**
4475 * sys_sched_get_priority_min - return minimum RT priority.
4476 * @policy: scheduling class.
4477 *
e69f6186
YB
4478 * Return: On success, this syscall returns the minimum
4479 * rt_priority that can be used by a given scheduling class.
4480 * On failure, a negative error code is returned.
1da177e4 4481 */
5add95d4 4482SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4483{
4484 int ret = -EINVAL;
4485
4486 switch (policy) {
4487 case SCHED_FIFO:
4488 case SCHED_RR:
4489 ret = 1;
4490 break;
aab03e05 4491 case SCHED_DEADLINE:
1da177e4 4492 case SCHED_NORMAL:
b0a9499c 4493 case SCHED_BATCH:
dd41f596 4494 case SCHED_IDLE:
1da177e4
LT
4495 ret = 0;
4496 }
4497 return ret;
4498}
4499
4500/**
4501 * sys_sched_rr_get_interval - return the default timeslice of a process.
4502 * @pid: pid of the process.
4503 * @interval: userspace pointer to the timeslice value.
4504 *
4505 * this syscall writes the default timeslice value of a given process
4506 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4507 *
4508 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4509 * an error code.
1da177e4 4510 */
17da2bd9 4511SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4512 struct timespec __user *, interval)
1da177e4 4513{
36c8b586 4514 struct task_struct *p;
a4ec24b4 4515 unsigned int time_slice;
dba091b9
TG
4516 unsigned long flags;
4517 struct rq *rq;
3a5c359a 4518 int retval;
1da177e4 4519 struct timespec t;
1da177e4
LT
4520
4521 if (pid < 0)
3a5c359a 4522 return -EINVAL;
1da177e4
LT
4523
4524 retval = -ESRCH;
1a551ae7 4525 rcu_read_lock();
1da177e4
LT
4526 p = find_process_by_pid(pid);
4527 if (!p)
4528 goto out_unlock;
4529
4530 retval = security_task_getscheduler(p);
4531 if (retval)
4532 goto out_unlock;
4533
dba091b9 4534 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4535 time_slice = 0;
4536 if (p->sched_class->get_rr_interval)
4537 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4538 task_rq_unlock(rq, p, &flags);
a4ec24b4 4539
1a551ae7 4540 rcu_read_unlock();
a4ec24b4 4541 jiffies_to_timespec(time_slice, &t);
1da177e4 4542 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4543 return retval;
3a5c359a 4544
1da177e4 4545out_unlock:
1a551ae7 4546 rcu_read_unlock();
1da177e4
LT
4547 return retval;
4548}
4549
7c731e0a 4550static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4551
82a1fcb9 4552void sched_show_task(struct task_struct *p)
1da177e4 4553{
1da177e4 4554 unsigned long free = 0;
4e79752c 4555 int ppid;
36c8b586 4556 unsigned state;
1da177e4 4557
1da177e4 4558 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4559 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4560 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4561#if BITS_PER_LONG == 32
1da177e4 4562 if (state == TASK_RUNNING)
3df0fc5b 4563 printk(KERN_CONT " running ");
1da177e4 4564 else
3df0fc5b 4565 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4566#else
4567 if (state == TASK_RUNNING)
3df0fc5b 4568 printk(KERN_CONT " running task ");
1da177e4 4569 else
3df0fc5b 4570 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4571#endif
4572#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4573 free = stack_not_used(p);
1da177e4 4574#endif
4e79752c
PM
4575 rcu_read_lock();
4576 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4577 rcu_read_unlock();
3df0fc5b 4578 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4579 task_pid_nr(p), ppid,
aa47b7e0 4580 (unsigned long)task_thread_info(p)->flags);
1da177e4 4581
3d1cb205 4582 print_worker_info(KERN_INFO, p);
5fb5e6de 4583 show_stack(p, NULL);
1da177e4
LT
4584}
4585
e59e2ae2 4586void show_state_filter(unsigned long state_filter)
1da177e4 4587{
36c8b586 4588 struct task_struct *g, *p;
1da177e4 4589
4bd77321 4590#if BITS_PER_LONG == 32
3df0fc5b
PZ
4591 printk(KERN_INFO
4592 " task PC stack pid father\n");
1da177e4 4593#else
3df0fc5b
PZ
4594 printk(KERN_INFO
4595 " task PC stack pid father\n");
1da177e4 4596#endif
510f5acc 4597 rcu_read_lock();
5d07f420 4598 for_each_process_thread(g, p) {
1da177e4
LT
4599 /*
4600 * reset the NMI-timeout, listing all files on a slow
25985edc 4601 * console might take a lot of time:
1da177e4
LT
4602 */
4603 touch_nmi_watchdog();
39bc89fd 4604 if (!state_filter || (p->state & state_filter))
82a1fcb9 4605 sched_show_task(p);
5d07f420 4606 }
1da177e4 4607
04c9167f
JF
4608 touch_all_softlockup_watchdogs();
4609
dd41f596
IM
4610#ifdef CONFIG_SCHED_DEBUG
4611 sysrq_sched_debug_show();
4612#endif
510f5acc 4613 rcu_read_unlock();
e59e2ae2
IM
4614 /*
4615 * Only show locks if all tasks are dumped:
4616 */
93335a21 4617 if (!state_filter)
e59e2ae2 4618 debug_show_all_locks();
1da177e4
LT
4619}
4620
0db0628d 4621void init_idle_bootup_task(struct task_struct *idle)
1df21055 4622{
dd41f596 4623 idle->sched_class = &idle_sched_class;
1df21055
IM
4624}
4625
f340c0d1
IM
4626/**
4627 * init_idle - set up an idle thread for a given CPU
4628 * @idle: task in question
4629 * @cpu: cpu the idle task belongs to
4630 *
4631 * NOTE: this function does not set the idle thread's NEED_RESCHED
4632 * flag, to make booting more robust.
4633 */
0db0628d 4634void init_idle(struct task_struct *idle, int cpu)
1da177e4 4635{
70b97a7f 4636 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4637 unsigned long flags;
4638
05fa785c 4639 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4640
5e1576ed 4641 __sched_fork(0, idle);
06b83b5f 4642 idle->state = TASK_RUNNING;
dd41f596
IM
4643 idle->se.exec_start = sched_clock();
4644
1e1b6c51 4645 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4646 /*
4647 * We're having a chicken and egg problem, even though we are
4648 * holding rq->lock, the cpu isn't yet set to this cpu so the
4649 * lockdep check in task_group() will fail.
4650 *
4651 * Similar case to sched_fork(). / Alternatively we could
4652 * use task_rq_lock() here and obtain the other rq->lock.
4653 *
4654 * Silence PROVE_RCU
4655 */
4656 rcu_read_lock();
dd41f596 4657 __set_task_cpu(idle, cpu);
6506cf6c 4658 rcu_read_unlock();
1da177e4 4659
1da177e4 4660 rq->curr = rq->idle = idle;
da0c1e65 4661 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4662#if defined(CONFIG_SMP)
4663 idle->on_cpu = 1;
4866cde0 4664#endif
05fa785c 4665 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4666
4667 /* Set the preempt count _outside_ the spinlocks! */
01028747 4668 init_idle_preempt_count(idle, cpu);
55cd5340 4669
dd41f596
IM
4670 /*
4671 * The idle tasks have their own, simple scheduling class:
4672 */
4673 idle->sched_class = &idle_sched_class;
868baf07 4674 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4675 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4676#if defined(CONFIG_SMP)
4677 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4678#endif
19978ca6
IM
4679}
4680
1da177e4 4681#ifdef CONFIG_SMP
a15b12ac
KT
4682/*
4683 * move_queued_task - move a queued task to new rq.
4684 *
4685 * Returns (locked) new rq. Old rq's lock is released.
4686 */
4687static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4688{
4689 struct rq *rq = task_rq(p);
4690
4691 lockdep_assert_held(&rq->lock);
4692
4693 dequeue_task(rq, p, 0);
4694 p->on_rq = TASK_ON_RQ_MIGRATING;
4695 set_task_cpu(p, new_cpu);
4696 raw_spin_unlock(&rq->lock);
4697
4698 rq = cpu_rq(new_cpu);
4699
4700 raw_spin_lock(&rq->lock);
4701 BUG_ON(task_cpu(p) != new_cpu);
4702 p->on_rq = TASK_ON_RQ_QUEUED;
4703 enqueue_task(rq, p, 0);
4704 check_preempt_curr(rq, p, 0);
4705
4706 return rq;
4707}
4708
1e1b6c51
KM
4709void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4710{
4711 if (p->sched_class && p->sched_class->set_cpus_allowed)
4712 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4713
4714 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4715 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4716}
4717
1da177e4
LT
4718/*
4719 * This is how migration works:
4720 *
969c7921
TH
4721 * 1) we invoke migration_cpu_stop() on the target CPU using
4722 * stop_one_cpu().
4723 * 2) stopper starts to run (implicitly forcing the migrated thread
4724 * off the CPU)
4725 * 3) it checks whether the migrated task is still in the wrong runqueue.
4726 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4727 * it and puts it into the right queue.
969c7921
TH
4728 * 5) stopper completes and stop_one_cpu() returns and the migration
4729 * is done.
1da177e4
LT
4730 */
4731
4732/*
4733 * Change a given task's CPU affinity. Migrate the thread to a
4734 * proper CPU and schedule it away if the CPU it's executing on
4735 * is removed from the allowed bitmask.
4736 *
4737 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4738 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4739 * call is not atomic; no spinlocks may be held.
4740 */
96f874e2 4741int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4742{
4743 unsigned long flags;
70b97a7f 4744 struct rq *rq;
969c7921 4745 unsigned int dest_cpu;
48f24c4d 4746 int ret = 0;
1da177e4
LT
4747
4748 rq = task_rq_lock(p, &flags);
e2912009 4749
db44fc01
YZ
4750 if (cpumask_equal(&p->cpus_allowed, new_mask))
4751 goto out;
4752
6ad4c188 4753 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4754 ret = -EINVAL;
4755 goto out;
4756 }
4757
1e1b6c51 4758 do_set_cpus_allowed(p, new_mask);
73fe6aae 4759
1da177e4 4760 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4761 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4762 goto out;
4763
969c7921 4764 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4765 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4766 struct migration_arg arg = { p, dest_cpu };
1da177e4 4767 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4768 task_rq_unlock(rq, p, &flags);
969c7921 4769 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4770 tlb_migrate_finish(p->mm);
4771 return 0;
a15b12ac
KT
4772 } else if (task_on_rq_queued(p))
4773 rq = move_queued_task(p, dest_cpu);
1da177e4 4774out:
0122ec5b 4775 task_rq_unlock(rq, p, &flags);
48f24c4d 4776
1da177e4
LT
4777 return ret;
4778}
cd8ba7cd 4779EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4780
4781/*
41a2d6cf 4782 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4783 * this because either it can't run here any more (set_cpus_allowed()
4784 * away from this CPU, or CPU going down), or because we're
4785 * attempting to rebalance this task on exec (sched_exec).
4786 *
4787 * So we race with normal scheduler movements, but that's OK, as long
4788 * as the task is no longer on this CPU.
efc30814
KK
4789 *
4790 * Returns non-zero if task was successfully migrated.
1da177e4 4791 */
efc30814 4792static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4793{
a1e01829 4794 struct rq *rq;
e2912009 4795 int ret = 0;
1da177e4 4796
e761b772 4797 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4798 return ret;
1da177e4 4799
a1e01829 4800 rq = cpu_rq(src_cpu);
1da177e4 4801
0122ec5b 4802 raw_spin_lock(&p->pi_lock);
a1e01829 4803 raw_spin_lock(&rq->lock);
1da177e4
LT
4804 /* Already moved. */
4805 if (task_cpu(p) != src_cpu)
b1e38734 4806 goto done;
a1e01829 4807
1da177e4 4808 /* Affinity changed (again). */
fa17b507 4809 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4810 goto fail;
1da177e4 4811
e2912009
PZ
4812 /*
4813 * If we're not on a rq, the next wake-up will ensure we're
4814 * placed properly.
4815 */
a15b12ac
KT
4816 if (task_on_rq_queued(p))
4817 rq = move_queued_task(p, dest_cpu);
b1e38734 4818done:
efc30814 4819 ret = 1;
b1e38734 4820fail:
a1e01829 4821 raw_spin_unlock(&rq->lock);
0122ec5b 4822 raw_spin_unlock(&p->pi_lock);
efc30814 4823 return ret;
1da177e4
LT
4824}
4825
e6628d5b
MG
4826#ifdef CONFIG_NUMA_BALANCING
4827/* Migrate current task p to target_cpu */
4828int migrate_task_to(struct task_struct *p, int target_cpu)
4829{
4830 struct migration_arg arg = { p, target_cpu };
4831 int curr_cpu = task_cpu(p);
4832
4833 if (curr_cpu == target_cpu)
4834 return 0;
4835
4836 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4837 return -EINVAL;
4838
4839 /* TODO: This is not properly updating schedstats */
4840
286549dc 4841 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4842 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4843}
0ec8aa00
PZ
4844
4845/*
4846 * Requeue a task on a given node and accurately track the number of NUMA
4847 * tasks on the runqueues
4848 */
4849void sched_setnuma(struct task_struct *p, int nid)
4850{
4851 struct rq *rq;
4852 unsigned long flags;
da0c1e65 4853 bool queued, running;
0ec8aa00
PZ
4854
4855 rq = task_rq_lock(p, &flags);
da0c1e65 4856 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4857 running = task_current(rq, p);
4858
da0c1e65 4859 if (queued)
0ec8aa00
PZ
4860 dequeue_task(rq, p, 0);
4861 if (running)
f3cd1c4e 4862 put_prev_task(rq, p);
0ec8aa00
PZ
4863
4864 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4865
4866 if (running)
4867 p->sched_class->set_curr_task(rq);
da0c1e65 4868 if (queued)
0ec8aa00
PZ
4869 enqueue_task(rq, p, 0);
4870 task_rq_unlock(rq, p, &flags);
4871}
e6628d5b
MG
4872#endif
4873
1da177e4 4874/*
969c7921
TH
4875 * migration_cpu_stop - this will be executed by a highprio stopper thread
4876 * and performs thread migration by bumping thread off CPU then
4877 * 'pushing' onto another runqueue.
1da177e4 4878 */
969c7921 4879static int migration_cpu_stop(void *data)
1da177e4 4880{
969c7921 4881 struct migration_arg *arg = data;
f7b4cddc 4882
969c7921
TH
4883 /*
4884 * The original target cpu might have gone down and we might
4885 * be on another cpu but it doesn't matter.
4886 */
f7b4cddc 4887 local_irq_disable();
5cd038f5
LJ
4888 /*
4889 * We need to explicitly wake pending tasks before running
4890 * __migrate_task() such that we will not miss enforcing cpus_allowed
4891 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4892 */
4893 sched_ttwu_pending();
969c7921 4894 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4895 local_irq_enable();
1da177e4 4896 return 0;
f7b4cddc
ON
4897}
4898
1da177e4 4899#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4900
054b9108 4901/*
48c5ccae
PZ
4902 * Ensures that the idle task is using init_mm right before its cpu goes
4903 * offline.
054b9108 4904 */
48c5ccae 4905void idle_task_exit(void)
1da177e4 4906{
48c5ccae 4907 struct mm_struct *mm = current->active_mm;
e76bd8d9 4908
48c5ccae 4909 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4910
a53efe5f 4911 if (mm != &init_mm) {
48c5ccae 4912 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4913 finish_arch_post_lock_switch();
4914 }
48c5ccae 4915 mmdrop(mm);
1da177e4
LT
4916}
4917
4918/*
5d180232
PZ
4919 * Since this CPU is going 'away' for a while, fold any nr_active delta
4920 * we might have. Assumes we're called after migrate_tasks() so that the
4921 * nr_active count is stable.
4922 *
4923 * Also see the comment "Global load-average calculations".
1da177e4 4924 */
5d180232 4925static void calc_load_migrate(struct rq *rq)
1da177e4 4926{
5d180232
PZ
4927 long delta = calc_load_fold_active(rq);
4928 if (delta)
4929 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4930}
4931
3f1d2a31
PZ
4932static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4933{
4934}
4935
4936static const struct sched_class fake_sched_class = {
4937 .put_prev_task = put_prev_task_fake,
4938};
4939
4940static struct task_struct fake_task = {
4941 /*
4942 * Avoid pull_{rt,dl}_task()
4943 */
4944 .prio = MAX_PRIO + 1,
4945 .sched_class = &fake_sched_class,
4946};
4947
48f24c4d 4948/*
48c5ccae
PZ
4949 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4950 * try_to_wake_up()->select_task_rq().
4951 *
4952 * Called with rq->lock held even though we'er in stop_machine() and
4953 * there's no concurrency possible, we hold the required locks anyway
4954 * because of lock validation efforts.
1da177e4 4955 */
48c5ccae 4956static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4957{
70b97a7f 4958 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4959 struct task_struct *next, *stop = rq->stop;
4960 int dest_cpu;
1da177e4
LT
4961
4962 /*
48c5ccae
PZ
4963 * Fudge the rq selection such that the below task selection loop
4964 * doesn't get stuck on the currently eligible stop task.
4965 *
4966 * We're currently inside stop_machine() and the rq is either stuck
4967 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4968 * either way we should never end up calling schedule() until we're
4969 * done here.
1da177e4 4970 */
48c5ccae 4971 rq->stop = NULL;
48f24c4d 4972
77bd3970
FW
4973 /*
4974 * put_prev_task() and pick_next_task() sched
4975 * class method both need to have an up-to-date
4976 * value of rq->clock[_task]
4977 */
4978 update_rq_clock(rq);
4979
dd41f596 4980 for ( ; ; ) {
48c5ccae
PZ
4981 /*
4982 * There's this thread running, bail when that's the only
4983 * remaining thread.
4984 */
4985 if (rq->nr_running == 1)
dd41f596 4986 break;
48c5ccae 4987
3f1d2a31 4988 next = pick_next_task(rq, &fake_task);
48c5ccae 4989 BUG_ON(!next);
79c53799 4990 next->sched_class->put_prev_task(rq, next);
e692ab53 4991
48c5ccae
PZ
4992 /* Find suitable destination for @next, with force if needed. */
4993 dest_cpu = select_fallback_rq(dead_cpu, next);
4994 raw_spin_unlock(&rq->lock);
4995
4996 __migrate_task(next, dead_cpu, dest_cpu);
4997
4998 raw_spin_lock(&rq->lock);
1da177e4 4999 }
dce48a84 5000
48c5ccae 5001 rq->stop = stop;
dce48a84 5002}
48c5ccae 5003
1da177e4
LT
5004#endif /* CONFIG_HOTPLUG_CPU */
5005
e692ab53
NP
5006#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5007
5008static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5009 {
5010 .procname = "sched_domain",
c57baf1e 5011 .mode = 0555,
e0361851 5012 },
56992309 5013 {}
e692ab53
NP
5014};
5015
5016static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5017 {
5018 .procname = "kernel",
c57baf1e 5019 .mode = 0555,
e0361851
AD
5020 .child = sd_ctl_dir,
5021 },
56992309 5022 {}
e692ab53
NP
5023};
5024
5025static struct ctl_table *sd_alloc_ctl_entry(int n)
5026{
5027 struct ctl_table *entry =
5cf9f062 5028 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5029
e692ab53
NP
5030 return entry;
5031}
5032
6382bc90
MM
5033static void sd_free_ctl_entry(struct ctl_table **tablep)
5034{
cd790076 5035 struct ctl_table *entry;
6382bc90 5036
cd790076
MM
5037 /*
5038 * In the intermediate directories, both the child directory and
5039 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5040 * will always be set. In the lowest directory the names are
cd790076
MM
5041 * static strings and all have proc handlers.
5042 */
5043 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5044 if (entry->child)
5045 sd_free_ctl_entry(&entry->child);
cd790076
MM
5046 if (entry->proc_handler == NULL)
5047 kfree(entry->procname);
5048 }
6382bc90
MM
5049
5050 kfree(*tablep);
5051 *tablep = NULL;
5052}
5053
201c373e 5054static int min_load_idx = 0;
fd9b86d3 5055static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5056
e692ab53 5057static void
e0361851 5058set_table_entry(struct ctl_table *entry,
e692ab53 5059 const char *procname, void *data, int maxlen,
201c373e
NK
5060 umode_t mode, proc_handler *proc_handler,
5061 bool load_idx)
e692ab53 5062{
e692ab53
NP
5063 entry->procname = procname;
5064 entry->data = data;
5065 entry->maxlen = maxlen;
5066 entry->mode = mode;
5067 entry->proc_handler = proc_handler;
201c373e
NK
5068
5069 if (load_idx) {
5070 entry->extra1 = &min_load_idx;
5071 entry->extra2 = &max_load_idx;
5072 }
e692ab53
NP
5073}
5074
5075static struct ctl_table *
5076sd_alloc_ctl_domain_table(struct sched_domain *sd)
5077{
37e6bae8 5078 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5079
ad1cdc1d
MM
5080 if (table == NULL)
5081 return NULL;
5082
e0361851 5083 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5084 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5085 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5086 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5087 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5088 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5089 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5090 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5091 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5092 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5093 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5094 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5095 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5096 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5097 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5098 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5099 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5100 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5101 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5102 &sd->cache_nice_tries,
201c373e 5103 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5104 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5105 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5106 set_table_entry(&table[11], "max_newidle_lb_cost",
5107 &sd->max_newidle_lb_cost,
5108 sizeof(long), 0644, proc_doulongvec_minmax, false);
5109 set_table_entry(&table[12], "name", sd->name,
201c373e 5110 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5111 /* &table[13] is terminator */
e692ab53
NP
5112
5113 return table;
5114}
5115
be7002e6 5116static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5117{
5118 struct ctl_table *entry, *table;
5119 struct sched_domain *sd;
5120 int domain_num = 0, i;
5121 char buf[32];
5122
5123 for_each_domain(cpu, sd)
5124 domain_num++;
5125 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5126 if (table == NULL)
5127 return NULL;
e692ab53
NP
5128
5129 i = 0;
5130 for_each_domain(cpu, sd) {
5131 snprintf(buf, 32, "domain%d", i);
e692ab53 5132 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5133 entry->mode = 0555;
e692ab53
NP
5134 entry->child = sd_alloc_ctl_domain_table(sd);
5135 entry++;
5136 i++;
5137 }
5138 return table;
5139}
5140
5141static struct ctl_table_header *sd_sysctl_header;
6382bc90 5142static void register_sched_domain_sysctl(void)
e692ab53 5143{
6ad4c188 5144 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5145 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5146 char buf[32];
5147
7378547f
MM
5148 WARN_ON(sd_ctl_dir[0].child);
5149 sd_ctl_dir[0].child = entry;
5150
ad1cdc1d
MM
5151 if (entry == NULL)
5152 return;
5153
6ad4c188 5154 for_each_possible_cpu(i) {
e692ab53 5155 snprintf(buf, 32, "cpu%d", i);
e692ab53 5156 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5157 entry->mode = 0555;
e692ab53 5158 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5159 entry++;
e692ab53 5160 }
7378547f
MM
5161
5162 WARN_ON(sd_sysctl_header);
e692ab53
NP
5163 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5164}
6382bc90 5165
7378547f 5166/* may be called multiple times per register */
6382bc90
MM
5167static void unregister_sched_domain_sysctl(void)
5168{
7378547f
MM
5169 if (sd_sysctl_header)
5170 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5171 sd_sysctl_header = NULL;
7378547f
MM
5172 if (sd_ctl_dir[0].child)
5173 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5174}
e692ab53 5175#else
6382bc90
MM
5176static void register_sched_domain_sysctl(void)
5177{
5178}
5179static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5180{
5181}
5182#endif
5183
1f11eb6a
GH
5184static void set_rq_online(struct rq *rq)
5185{
5186 if (!rq->online) {
5187 const struct sched_class *class;
5188
c6c4927b 5189 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5190 rq->online = 1;
5191
5192 for_each_class(class) {
5193 if (class->rq_online)
5194 class->rq_online(rq);
5195 }
5196 }
5197}
5198
5199static void set_rq_offline(struct rq *rq)
5200{
5201 if (rq->online) {
5202 const struct sched_class *class;
5203
5204 for_each_class(class) {
5205 if (class->rq_offline)
5206 class->rq_offline(rq);
5207 }
5208
c6c4927b 5209 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5210 rq->online = 0;
5211 }
5212}
5213
1da177e4
LT
5214/*
5215 * migration_call - callback that gets triggered when a CPU is added.
5216 * Here we can start up the necessary migration thread for the new CPU.
5217 */
0db0628d 5218static int
48f24c4d 5219migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5220{
48f24c4d 5221 int cpu = (long)hcpu;
1da177e4 5222 unsigned long flags;
969c7921 5223 struct rq *rq = cpu_rq(cpu);
1da177e4 5224
48c5ccae 5225 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5226
1da177e4 5227 case CPU_UP_PREPARE:
a468d389 5228 rq->calc_load_update = calc_load_update;
1da177e4 5229 break;
48f24c4d 5230
1da177e4 5231 case CPU_ONLINE:
1f94ef59 5232 /* Update our root-domain */
05fa785c 5233 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5234 if (rq->rd) {
c6c4927b 5235 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5236
5237 set_rq_online(rq);
1f94ef59 5238 }
05fa785c 5239 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5240 break;
48f24c4d 5241
1da177e4 5242#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5243 case CPU_DYING:
317f3941 5244 sched_ttwu_pending();
57d885fe 5245 /* Update our root-domain */
05fa785c 5246 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5247 if (rq->rd) {
c6c4927b 5248 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5249 set_rq_offline(rq);
57d885fe 5250 }
48c5ccae
PZ
5251 migrate_tasks(cpu);
5252 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5253 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5254 break;
48c5ccae 5255
5d180232 5256 case CPU_DEAD:
f319da0c 5257 calc_load_migrate(rq);
57d885fe 5258 break;
1da177e4
LT
5259#endif
5260 }
49c022e6
PZ
5261
5262 update_max_interval();
5263
1da177e4
LT
5264 return NOTIFY_OK;
5265}
5266
f38b0820
PM
5267/*
5268 * Register at high priority so that task migration (migrate_all_tasks)
5269 * happens before everything else. This has to be lower priority than
cdd6c482 5270 * the notifier in the perf_event subsystem, though.
1da177e4 5271 */
0db0628d 5272static struct notifier_block migration_notifier = {
1da177e4 5273 .notifier_call = migration_call,
50a323b7 5274 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5275};
5276
a803f026
CM
5277static void __cpuinit set_cpu_rq_start_time(void)
5278{
5279 int cpu = smp_processor_id();
5280 struct rq *rq = cpu_rq(cpu);
5281 rq->age_stamp = sched_clock_cpu(cpu);
5282}
5283
0db0628d 5284static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5285 unsigned long action, void *hcpu)
5286{
5287 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5288 case CPU_STARTING:
5289 set_cpu_rq_start_time();
5290 return NOTIFY_OK;
3a101d05
TH
5291 case CPU_DOWN_FAILED:
5292 set_cpu_active((long)hcpu, true);
5293 return NOTIFY_OK;
5294 default:
5295 return NOTIFY_DONE;
5296 }
5297}
5298
0db0628d 5299static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5300 unsigned long action, void *hcpu)
5301{
de212f18
PZ
5302 unsigned long flags;
5303 long cpu = (long)hcpu;
f10e00f4 5304 struct dl_bw *dl_b;
de212f18 5305
3a101d05
TH
5306 switch (action & ~CPU_TASKS_FROZEN) {
5307 case CPU_DOWN_PREPARE:
de212f18
PZ
5308 set_cpu_active(cpu, false);
5309
5310 /* explicitly allow suspend */
5311 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5312 bool overflow;
5313 int cpus;
5314
f10e00f4
KT
5315 rcu_read_lock_sched();
5316 dl_b = dl_bw_of(cpu);
5317
de212f18
PZ
5318 raw_spin_lock_irqsave(&dl_b->lock, flags);
5319 cpus = dl_bw_cpus(cpu);
5320 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5321 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5322
f10e00f4
KT
5323 rcu_read_unlock_sched();
5324
de212f18
PZ
5325 if (overflow)
5326 return notifier_from_errno(-EBUSY);
5327 }
3a101d05 5328 return NOTIFY_OK;
3a101d05 5329 }
de212f18
PZ
5330
5331 return NOTIFY_DONE;
3a101d05
TH
5332}
5333
7babe8db 5334static int __init migration_init(void)
1da177e4
LT
5335{
5336 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5337 int err;
48f24c4d 5338
3a101d05 5339 /* Initialize migration for the boot CPU */
07dccf33
AM
5340 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5341 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5342 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5343 register_cpu_notifier(&migration_notifier);
7babe8db 5344
3a101d05
TH
5345 /* Register cpu active notifiers */
5346 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5347 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5348
a004cd42 5349 return 0;
1da177e4 5350}
7babe8db 5351early_initcall(migration_init);
1da177e4
LT
5352#endif
5353
5354#ifdef CONFIG_SMP
476f3534 5355
4cb98839
PZ
5356static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5357
3e9830dc 5358#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5359
d039ac60 5360static __read_mostly int sched_debug_enabled;
f6630114 5361
d039ac60 5362static int __init sched_debug_setup(char *str)
f6630114 5363{
d039ac60 5364 sched_debug_enabled = 1;
f6630114
MT
5365
5366 return 0;
5367}
d039ac60
PZ
5368early_param("sched_debug", sched_debug_setup);
5369
5370static inline bool sched_debug(void)
5371{
5372 return sched_debug_enabled;
5373}
f6630114 5374
7c16ec58 5375static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5376 struct cpumask *groupmask)
1da177e4 5377{
4dcf6aff 5378 struct sched_group *group = sd->groups;
434d53b0 5379 char str[256];
1da177e4 5380
968ea6d8 5381 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5382 cpumask_clear(groupmask);
4dcf6aff
IM
5383
5384 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5385
5386 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5387 printk("does not load-balance\n");
4dcf6aff 5388 if (sd->parent)
3df0fc5b
PZ
5389 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5390 " has parent");
4dcf6aff 5391 return -1;
41c7ce9a
NP
5392 }
5393
3df0fc5b 5394 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5395
758b2cdc 5396 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5397 printk(KERN_ERR "ERROR: domain->span does not contain "
5398 "CPU%d\n", cpu);
4dcf6aff 5399 }
758b2cdc 5400 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5401 printk(KERN_ERR "ERROR: domain->groups does not contain"
5402 " CPU%d\n", cpu);
4dcf6aff 5403 }
1da177e4 5404
4dcf6aff 5405 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5406 do {
4dcf6aff 5407 if (!group) {
3df0fc5b
PZ
5408 printk("\n");
5409 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5410 break;
5411 }
5412
c3decf0d 5413 /*
63b2ca30
NP
5414 * Even though we initialize ->capacity to something semi-sane,
5415 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5416 * domain iteration is still funny without causing /0 traps.
5417 */
63b2ca30 5418 if (!group->sgc->capacity_orig) {
3df0fc5b 5419 printk(KERN_CONT "\n");
63b2ca30 5420 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5421 break;
5422 }
1da177e4 5423
758b2cdc 5424 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5425 printk(KERN_CONT "\n");
5426 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5427 break;
5428 }
1da177e4 5429
cb83b629
PZ
5430 if (!(sd->flags & SD_OVERLAP) &&
5431 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5432 printk(KERN_CONT "\n");
5433 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5434 break;
5435 }
1da177e4 5436
758b2cdc 5437 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5438
968ea6d8 5439 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5440
3df0fc5b 5441 printk(KERN_CONT " %s", str);
ca8ce3d0 5442 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5443 printk(KERN_CONT " (cpu_capacity = %d)",
5444 group->sgc->capacity);
381512cf 5445 }
1da177e4 5446
4dcf6aff
IM
5447 group = group->next;
5448 } while (group != sd->groups);
3df0fc5b 5449 printk(KERN_CONT "\n");
1da177e4 5450
758b2cdc 5451 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5452 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5453
758b2cdc
RR
5454 if (sd->parent &&
5455 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5456 printk(KERN_ERR "ERROR: parent span is not a superset "
5457 "of domain->span\n");
4dcf6aff
IM
5458 return 0;
5459}
1da177e4 5460
4dcf6aff
IM
5461static void sched_domain_debug(struct sched_domain *sd, int cpu)
5462{
5463 int level = 0;
1da177e4 5464
d039ac60 5465 if (!sched_debug_enabled)
f6630114
MT
5466 return;
5467
4dcf6aff
IM
5468 if (!sd) {
5469 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5470 return;
5471 }
1da177e4 5472
4dcf6aff
IM
5473 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5474
5475 for (;;) {
4cb98839 5476 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5477 break;
1da177e4
LT
5478 level++;
5479 sd = sd->parent;
33859f7f 5480 if (!sd)
4dcf6aff
IM
5481 break;
5482 }
1da177e4 5483}
6d6bc0ad 5484#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5485# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5486static inline bool sched_debug(void)
5487{
5488 return false;
5489}
6d6bc0ad 5490#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5491
1a20ff27 5492static int sd_degenerate(struct sched_domain *sd)
245af2c7 5493{
758b2cdc 5494 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5495 return 1;
5496
5497 /* Following flags need at least 2 groups */
5498 if (sd->flags & (SD_LOAD_BALANCE |
5499 SD_BALANCE_NEWIDLE |
5500 SD_BALANCE_FORK |
89c4710e 5501 SD_BALANCE_EXEC |
5d4dfddd 5502 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5503 SD_SHARE_PKG_RESOURCES |
5504 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5505 if (sd->groups != sd->groups->next)
5506 return 0;
5507 }
5508
5509 /* Following flags don't use groups */
c88d5910 5510 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5511 return 0;
5512
5513 return 1;
5514}
5515
48f24c4d
IM
5516static int
5517sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5518{
5519 unsigned long cflags = sd->flags, pflags = parent->flags;
5520
5521 if (sd_degenerate(parent))
5522 return 1;
5523
758b2cdc 5524 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5525 return 0;
5526
245af2c7
SS
5527 /* Flags needing groups don't count if only 1 group in parent */
5528 if (parent->groups == parent->groups->next) {
5529 pflags &= ~(SD_LOAD_BALANCE |
5530 SD_BALANCE_NEWIDLE |
5531 SD_BALANCE_FORK |
89c4710e 5532 SD_BALANCE_EXEC |
5d4dfddd 5533 SD_SHARE_CPUCAPACITY |
10866e62 5534 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5535 SD_PREFER_SIBLING |
5536 SD_SHARE_POWERDOMAIN);
5436499e
KC
5537 if (nr_node_ids == 1)
5538 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5539 }
5540 if (~cflags & pflags)
5541 return 0;
5542
5543 return 1;
5544}
5545
dce840a0 5546static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5547{
dce840a0 5548 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5549
68e74568 5550 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5551 cpudl_cleanup(&rd->cpudl);
1baca4ce 5552 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5553 free_cpumask_var(rd->rto_mask);
5554 free_cpumask_var(rd->online);
5555 free_cpumask_var(rd->span);
5556 kfree(rd);
5557}
5558
57d885fe
GH
5559static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5560{
a0490fa3 5561 struct root_domain *old_rd = NULL;
57d885fe 5562 unsigned long flags;
57d885fe 5563
05fa785c 5564 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5565
5566 if (rq->rd) {
a0490fa3 5567 old_rd = rq->rd;
57d885fe 5568
c6c4927b 5569 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5570 set_rq_offline(rq);
57d885fe 5571
c6c4927b 5572 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5573
a0490fa3 5574 /*
0515973f 5575 * If we dont want to free the old_rd yet then
a0490fa3
IM
5576 * set old_rd to NULL to skip the freeing later
5577 * in this function:
5578 */
5579 if (!atomic_dec_and_test(&old_rd->refcount))
5580 old_rd = NULL;
57d885fe
GH
5581 }
5582
5583 atomic_inc(&rd->refcount);
5584 rq->rd = rd;
5585
c6c4927b 5586 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5587 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5588 set_rq_online(rq);
57d885fe 5589
05fa785c 5590 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5591
5592 if (old_rd)
dce840a0 5593 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5594}
5595
68c38fc3 5596static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5597{
5598 memset(rd, 0, sizeof(*rd));
5599
68c38fc3 5600 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5601 goto out;
68c38fc3 5602 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5603 goto free_span;
1baca4ce 5604 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5605 goto free_online;
1baca4ce
JL
5606 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5607 goto free_dlo_mask;
6e0534f2 5608
332ac17e 5609 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5610 if (cpudl_init(&rd->cpudl) != 0)
5611 goto free_dlo_mask;
332ac17e 5612
68c38fc3 5613 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5614 goto free_rto_mask;
c6c4927b 5615 return 0;
6e0534f2 5616
68e74568
RR
5617free_rto_mask:
5618 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5619free_dlo_mask:
5620 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5621free_online:
5622 free_cpumask_var(rd->online);
5623free_span:
5624 free_cpumask_var(rd->span);
0c910d28 5625out:
c6c4927b 5626 return -ENOMEM;
57d885fe
GH
5627}
5628
029632fb
PZ
5629/*
5630 * By default the system creates a single root-domain with all cpus as
5631 * members (mimicking the global state we have today).
5632 */
5633struct root_domain def_root_domain;
5634
57d885fe
GH
5635static void init_defrootdomain(void)
5636{
68c38fc3 5637 init_rootdomain(&def_root_domain);
c6c4927b 5638
57d885fe
GH
5639 atomic_set(&def_root_domain.refcount, 1);
5640}
5641
dc938520 5642static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5643{
5644 struct root_domain *rd;
5645
5646 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5647 if (!rd)
5648 return NULL;
5649
68c38fc3 5650 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5651 kfree(rd);
5652 return NULL;
5653 }
57d885fe
GH
5654
5655 return rd;
5656}
5657
63b2ca30 5658static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5659{
5660 struct sched_group *tmp, *first;
5661
5662 if (!sg)
5663 return;
5664
5665 first = sg;
5666 do {
5667 tmp = sg->next;
5668
63b2ca30
NP
5669 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5670 kfree(sg->sgc);
e3589f6c
PZ
5671
5672 kfree(sg);
5673 sg = tmp;
5674 } while (sg != first);
5675}
5676
dce840a0
PZ
5677static void free_sched_domain(struct rcu_head *rcu)
5678{
5679 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5680
5681 /*
5682 * If its an overlapping domain it has private groups, iterate and
5683 * nuke them all.
5684 */
5685 if (sd->flags & SD_OVERLAP) {
5686 free_sched_groups(sd->groups, 1);
5687 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5688 kfree(sd->groups->sgc);
dce840a0 5689 kfree(sd->groups);
9c3f75cb 5690 }
dce840a0
PZ
5691 kfree(sd);
5692}
5693
5694static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5695{
5696 call_rcu(&sd->rcu, free_sched_domain);
5697}
5698
5699static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5700{
5701 for (; sd; sd = sd->parent)
5702 destroy_sched_domain(sd, cpu);
5703}
5704
518cd623
PZ
5705/*
5706 * Keep a special pointer to the highest sched_domain that has
5707 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5708 * allows us to avoid some pointer chasing select_idle_sibling().
5709 *
5710 * Also keep a unique ID per domain (we use the first cpu number in
5711 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5712 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5713 */
5714DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5715DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5716DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5717DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5718DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5719DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5720
5721static void update_top_cache_domain(int cpu)
5722{
5723 struct sched_domain *sd;
5d4cf996 5724 struct sched_domain *busy_sd = NULL;
518cd623 5725 int id = cpu;
7d9ffa89 5726 int size = 1;
518cd623
PZ
5727
5728 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5729 if (sd) {
518cd623 5730 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5731 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5732 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5733 }
5d4cf996 5734 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5735
5736 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5737 per_cpu(sd_llc_size, cpu) = size;
518cd623 5738 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5739
5740 sd = lowest_flag_domain(cpu, SD_NUMA);
5741 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5742
5743 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5744 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5745}
5746
1da177e4 5747/*
0eab9146 5748 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5749 * hold the hotplug lock.
5750 */
0eab9146
IM
5751static void
5752cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5753{
70b97a7f 5754 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5755 struct sched_domain *tmp;
5756
5757 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5758 for (tmp = sd; tmp; ) {
245af2c7
SS
5759 struct sched_domain *parent = tmp->parent;
5760 if (!parent)
5761 break;
f29c9b1c 5762
1a848870 5763 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5764 tmp->parent = parent->parent;
1a848870
SS
5765 if (parent->parent)
5766 parent->parent->child = tmp;
10866e62
PZ
5767 /*
5768 * Transfer SD_PREFER_SIBLING down in case of a
5769 * degenerate parent; the spans match for this
5770 * so the property transfers.
5771 */
5772 if (parent->flags & SD_PREFER_SIBLING)
5773 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5774 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5775 } else
5776 tmp = tmp->parent;
245af2c7
SS
5777 }
5778
1a848870 5779 if (sd && sd_degenerate(sd)) {
dce840a0 5780 tmp = sd;
245af2c7 5781 sd = sd->parent;
dce840a0 5782 destroy_sched_domain(tmp, cpu);
1a848870
SS
5783 if (sd)
5784 sd->child = NULL;
5785 }
1da177e4 5786
4cb98839 5787 sched_domain_debug(sd, cpu);
1da177e4 5788
57d885fe 5789 rq_attach_root(rq, rd);
dce840a0 5790 tmp = rq->sd;
674311d5 5791 rcu_assign_pointer(rq->sd, sd);
dce840a0 5792 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5793
5794 update_top_cache_domain(cpu);
1da177e4
LT
5795}
5796
5797/* cpus with isolated domains */
dcc30a35 5798static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5799
5800/* Setup the mask of cpus configured for isolated domains */
5801static int __init isolated_cpu_setup(char *str)
5802{
bdddd296 5803 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5804 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5805 return 1;
5806}
5807
8927f494 5808__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5809
49a02c51 5810struct s_data {
21d42ccf 5811 struct sched_domain ** __percpu sd;
49a02c51
AH
5812 struct root_domain *rd;
5813};
5814
2109b99e 5815enum s_alloc {
2109b99e 5816 sa_rootdomain,
21d42ccf 5817 sa_sd,
dce840a0 5818 sa_sd_storage,
2109b99e
AH
5819 sa_none,
5820};
5821
c1174876
PZ
5822/*
5823 * Build an iteration mask that can exclude certain CPUs from the upwards
5824 * domain traversal.
5825 *
5826 * Asymmetric node setups can result in situations where the domain tree is of
5827 * unequal depth, make sure to skip domains that already cover the entire
5828 * range.
5829 *
5830 * In that case build_sched_domains() will have terminated the iteration early
5831 * and our sibling sd spans will be empty. Domains should always include the
5832 * cpu they're built on, so check that.
5833 *
5834 */
5835static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5836{
5837 const struct cpumask *span = sched_domain_span(sd);
5838 struct sd_data *sdd = sd->private;
5839 struct sched_domain *sibling;
5840 int i;
5841
5842 for_each_cpu(i, span) {
5843 sibling = *per_cpu_ptr(sdd->sd, i);
5844 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5845 continue;
5846
5847 cpumask_set_cpu(i, sched_group_mask(sg));
5848 }
5849}
5850
5851/*
5852 * Return the canonical balance cpu for this group, this is the first cpu
5853 * of this group that's also in the iteration mask.
5854 */
5855int group_balance_cpu(struct sched_group *sg)
5856{
5857 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5858}
5859
e3589f6c
PZ
5860static int
5861build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5862{
5863 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5864 const struct cpumask *span = sched_domain_span(sd);
5865 struct cpumask *covered = sched_domains_tmpmask;
5866 struct sd_data *sdd = sd->private;
aaecac4a 5867 struct sched_domain *sibling;
e3589f6c
PZ
5868 int i;
5869
5870 cpumask_clear(covered);
5871
5872 for_each_cpu(i, span) {
5873 struct cpumask *sg_span;
5874
5875 if (cpumask_test_cpu(i, covered))
5876 continue;
5877
aaecac4a 5878 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5879
5880 /* See the comment near build_group_mask(). */
aaecac4a 5881 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5882 continue;
5883
e3589f6c 5884 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5885 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5886
5887 if (!sg)
5888 goto fail;
5889
5890 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5891 if (sibling->child)
5892 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5893 else
e3589f6c
PZ
5894 cpumask_set_cpu(i, sg_span);
5895
5896 cpumask_or(covered, covered, sg_span);
5897
63b2ca30
NP
5898 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5899 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5900 build_group_mask(sd, sg);
5901
c3decf0d 5902 /*
63b2ca30 5903 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5904 * domains and no possible iteration will get us here, we won't
5905 * die on a /0 trap.
5906 */
ca8ce3d0 5907 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5908 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5909
c1174876
PZ
5910 /*
5911 * Make sure the first group of this domain contains the
5912 * canonical balance cpu. Otherwise the sched_domain iteration
5913 * breaks. See update_sg_lb_stats().
5914 */
74a5ce20 5915 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5916 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5917 groups = sg;
5918
5919 if (!first)
5920 first = sg;
5921 if (last)
5922 last->next = sg;
5923 last = sg;
5924 last->next = first;
5925 }
5926 sd->groups = groups;
5927
5928 return 0;
5929
5930fail:
5931 free_sched_groups(first, 0);
5932
5933 return -ENOMEM;
5934}
5935
dce840a0 5936static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5937{
dce840a0
PZ
5938 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5939 struct sched_domain *child = sd->child;
1da177e4 5940
dce840a0
PZ
5941 if (child)
5942 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5943
9c3f75cb 5944 if (sg) {
dce840a0 5945 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5946 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5947 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5948 }
dce840a0
PZ
5949
5950 return cpu;
1e9f28fa 5951}
1e9f28fa 5952
01a08546 5953/*
dce840a0
PZ
5954 * build_sched_groups will build a circular linked list of the groups
5955 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5956 * and ->cpu_capacity to 0.
e3589f6c
PZ
5957 *
5958 * Assumes the sched_domain tree is fully constructed
01a08546 5959 */
e3589f6c
PZ
5960static int
5961build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5962{
dce840a0
PZ
5963 struct sched_group *first = NULL, *last = NULL;
5964 struct sd_data *sdd = sd->private;
5965 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5966 struct cpumask *covered;
dce840a0 5967 int i;
9c1cfda2 5968
e3589f6c
PZ
5969 get_group(cpu, sdd, &sd->groups);
5970 atomic_inc(&sd->groups->ref);
5971
0936629f 5972 if (cpu != cpumask_first(span))
e3589f6c
PZ
5973 return 0;
5974
f96225fd
PZ
5975 lockdep_assert_held(&sched_domains_mutex);
5976 covered = sched_domains_tmpmask;
5977
dce840a0 5978 cpumask_clear(covered);
6711cab4 5979
dce840a0
PZ
5980 for_each_cpu(i, span) {
5981 struct sched_group *sg;
cd08e923 5982 int group, j;
6711cab4 5983
dce840a0
PZ
5984 if (cpumask_test_cpu(i, covered))
5985 continue;
6711cab4 5986
cd08e923 5987 group = get_group(i, sdd, &sg);
c1174876 5988 cpumask_setall(sched_group_mask(sg));
0601a88d 5989
dce840a0
PZ
5990 for_each_cpu(j, span) {
5991 if (get_group(j, sdd, NULL) != group)
5992 continue;
0601a88d 5993
dce840a0
PZ
5994 cpumask_set_cpu(j, covered);
5995 cpumask_set_cpu(j, sched_group_cpus(sg));
5996 }
0601a88d 5997
dce840a0
PZ
5998 if (!first)
5999 first = sg;
6000 if (last)
6001 last->next = sg;
6002 last = sg;
6003 }
6004 last->next = first;
e3589f6c
PZ
6005
6006 return 0;
0601a88d 6007}
51888ca2 6008
89c4710e 6009/*
63b2ca30 6010 * Initialize sched groups cpu_capacity.
89c4710e 6011 *
63b2ca30 6012 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6013 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6014 * Typically cpu_capacity for all the groups in a sched domain will be same
6015 * unless there are asymmetries in the topology. If there are asymmetries,
6016 * group having more cpu_capacity will pickup more load compared to the
6017 * group having less cpu_capacity.
89c4710e 6018 */
63b2ca30 6019static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6020{
e3589f6c 6021 struct sched_group *sg = sd->groups;
89c4710e 6022
94c95ba6 6023 WARN_ON(!sg);
e3589f6c
PZ
6024
6025 do {
6026 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6027 sg = sg->next;
6028 } while (sg != sd->groups);
89c4710e 6029
c1174876 6030 if (cpu != group_balance_cpu(sg))
e3589f6c 6031 return;
aae6d3dd 6032
63b2ca30
NP
6033 update_group_capacity(sd, cpu);
6034 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6035}
6036
7c16ec58
MT
6037/*
6038 * Initializers for schedule domains
6039 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6040 */
6041
1d3504fc 6042static int default_relax_domain_level = -1;
60495e77 6043int sched_domain_level_max;
1d3504fc
HS
6044
6045static int __init setup_relax_domain_level(char *str)
6046{
a841f8ce
DS
6047 if (kstrtoint(str, 0, &default_relax_domain_level))
6048 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6049
1d3504fc
HS
6050 return 1;
6051}
6052__setup("relax_domain_level=", setup_relax_domain_level);
6053
6054static void set_domain_attribute(struct sched_domain *sd,
6055 struct sched_domain_attr *attr)
6056{
6057 int request;
6058
6059 if (!attr || attr->relax_domain_level < 0) {
6060 if (default_relax_domain_level < 0)
6061 return;
6062 else
6063 request = default_relax_domain_level;
6064 } else
6065 request = attr->relax_domain_level;
6066 if (request < sd->level) {
6067 /* turn off idle balance on this domain */
c88d5910 6068 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6069 } else {
6070 /* turn on idle balance on this domain */
c88d5910 6071 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6072 }
6073}
6074
54ab4ff4
PZ
6075static void __sdt_free(const struct cpumask *cpu_map);
6076static int __sdt_alloc(const struct cpumask *cpu_map);
6077
2109b99e
AH
6078static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6079 const struct cpumask *cpu_map)
6080{
6081 switch (what) {
2109b99e 6082 case sa_rootdomain:
822ff793
PZ
6083 if (!atomic_read(&d->rd->refcount))
6084 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6085 case sa_sd:
6086 free_percpu(d->sd); /* fall through */
dce840a0 6087 case sa_sd_storage:
54ab4ff4 6088 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6089 case sa_none:
6090 break;
6091 }
6092}
3404c8d9 6093
2109b99e
AH
6094static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6095 const struct cpumask *cpu_map)
6096{
dce840a0
PZ
6097 memset(d, 0, sizeof(*d));
6098
54ab4ff4
PZ
6099 if (__sdt_alloc(cpu_map))
6100 return sa_sd_storage;
dce840a0
PZ
6101 d->sd = alloc_percpu(struct sched_domain *);
6102 if (!d->sd)
6103 return sa_sd_storage;
2109b99e 6104 d->rd = alloc_rootdomain();
dce840a0 6105 if (!d->rd)
21d42ccf 6106 return sa_sd;
2109b99e
AH
6107 return sa_rootdomain;
6108}
57d885fe 6109
dce840a0
PZ
6110/*
6111 * NULL the sd_data elements we've used to build the sched_domain and
6112 * sched_group structure so that the subsequent __free_domain_allocs()
6113 * will not free the data we're using.
6114 */
6115static void claim_allocations(int cpu, struct sched_domain *sd)
6116{
6117 struct sd_data *sdd = sd->private;
dce840a0
PZ
6118
6119 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6120 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6121
e3589f6c 6122 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6123 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6124
63b2ca30
NP
6125 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6126 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6127}
6128
cb83b629 6129#ifdef CONFIG_NUMA
cb83b629 6130static int sched_domains_numa_levels;
cb83b629
PZ
6131static int *sched_domains_numa_distance;
6132static struct cpumask ***sched_domains_numa_masks;
6133static int sched_domains_curr_level;
143e1e28 6134#endif
cb83b629 6135
143e1e28
VG
6136/*
6137 * SD_flags allowed in topology descriptions.
6138 *
5d4dfddd 6139 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6140 * SD_SHARE_PKG_RESOURCES - describes shared caches
6141 * SD_NUMA - describes NUMA topologies
d77b3ed5 6142 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6143 *
6144 * Odd one out:
6145 * SD_ASYM_PACKING - describes SMT quirks
6146 */
6147#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6148 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6149 SD_SHARE_PKG_RESOURCES | \
6150 SD_NUMA | \
d77b3ed5
VG
6151 SD_ASYM_PACKING | \
6152 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6153
6154static struct sched_domain *
143e1e28 6155sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6156{
6157 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6158 int sd_weight, sd_flags = 0;
6159
6160#ifdef CONFIG_NUMA
6161 /*
6162 * Ugly hack to pass state to sd_numa_mask()...
6163 */
6164 sched_domains_curr_level = tl->numa_level;
6165#endif
6166
6167 sd_weight = cpumask_weight(tl->mask(cpu));
6168
6169 if (tl->sd_flags)
6170 sd_flags = (*tl->sd_flags)();
6171 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6172 "wrong sd_flags in topology description\n"))
6173 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6174
6175 *sd = (struct sched_domain){
6176 .min_interval = sd_weight,
6177 .max_interval = 2*sd_weight,
6178 .busy_factor = 32,
870a0bb5 6179 .imbalance_pct = 125,
143e1e28
VG
6180
6181 .cache_nice_tries = 0,
6182 .busy_idx = 0,
6183 .idle_idx = 0,
cb83b629
PZ
6184 .newidle_idx = 0,
6185 .wake_idx = 0,
6186 .forkexec_idx = 0,
6187
6188 .flags = 1*SD_LOAD_BALANCE
6189 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6190 | 1*SD_BALANCE_EXEC
6191 | 1*SD_BALANCE_FORK
cb83b629 6192 | 0*SD_BALANCE_WAKE
143e1e28 6193 | 1*SD_WAKE_AFFINE
5d4dfddd 6194 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6195 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6196 | 0*SD_SERIALIZE
cb83b629 6197 | 0*SD_PREFER_SIBLING
143e1e28
VG
6198 | 0*SD_NUMA
6199 | sd_flags
cb83b629 6200 ,
143e1e28 6201
cb83b629
PZ
6202 .last_balance = jiffies,
6203 .balance_interval = sd_weight,
143e1e28 6204 .smt_gain = 0,
2b4cfe64
JL
6205 .max_newidle_lb_cost = 0,
6206 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6207#ifdef CONFIG_SCHED_DEBUG
6208 .name = tl->name,
6209#endif
cb83b629 6210 };
cb83b629
PZ
6211
6212 /*
143e1e28 6213 * Convert topological properties into behaviour.
cb83b629 6214 */
143e1e28 6215
5d4dfddd 6216 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6217 sd->imbalance_pct = 110;
6218 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6219
6220 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6221 sd->imbalance_pct = 117;
6222 sd->cache_nice_tries = 1;
6223 sd->busy_idx = 2;
6224
6225#ifdef CONFIG_NUMA
6226 } else if (sd->flags & SD_NUMA) {
6227 sd->cache_nice_tries = 2;
6228 sd->busy_idx = 3;
6229 sd->idle_idx = 2;
6230
6231 sd->flags |= SD_SERIALIZE;
6232 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6233 sd->flags &= ~(SD_BALANCE_EXEC |
6234 SD_BALANCE_FORK |
6235 SD_WAKE_AFFINE);
6236 }
6237
6238#endif
6239 } else {
6240 sd->flags |= SD_PREFER_SIBLING;
6241 sd->cache_nice_tries = 1;
6242 sd->busy_idx = 2;
6243 sd->idle_idx = 1;
6244 }
6245
6246 sd->private = &tl->data;
cb83b629
PZ
6247
6248 return sd;
6249}
6250
143e1e28
VG
6251/*
6252 * Topology list, bottom-up.
6253 */
6254static struct sched_domain_topology_level default_topology[] = {
6255#ifdef CONFIG_SCHED_SMT
6256 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6257#endif
6258#ifdef CONFIG_SCHED_MC
6259 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6260#endif
6261 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6262 { NULL, },
6263};
6264
6265struct sched_domain_topology_level *sched_domain_topology = default_topology;
6266
6267#define for_each_sd_topology(tl) \
6268 for (tl = sched_domain_topology; tl->mask; tl++)
6269
6270void set_sched_topology(struct sched_domain_topology_level *tl)
6271{
6272 sched_domain_topology = tl;
6273}
6274
6275#ifdef CONFIG_NUMA
6276
cb83b629
PZ
6277static const struct cpumask *sd_numa_mask(int cpu)
6278{
6279 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6280}
6281
d039ac60
PZ
6282static void sched_numa_warn(const char *str)
6283{
6284 static int done = false;
6285 int i,j;
6286
6287 if (done)
6288 return;
6289
6290 done = true;
6291
6292 printk(KERN_WARNING "ERROR: %s\n\n", str);
6293
6294 for (i = 0; i < nr_node_ids; i++) {
6295 printk(KERN_WARNING " ");
6296 for (j = 0; j < nr_node_ids; j++)
6297 printk(KERN_CONT "%02d ", node_distance(i,j));
6298 printk(KERN_CONT "\n");
6299 }
6300 printk(KERN_WARNING "\n");
6301}
6302
6303static bool find_numa_distance(int distance)
6304{
6305 int i;
6306
6307 if (distance == node_distance(0, 0))
6308 return true;
6309
6310 for (i = 0; i < sched_domains_numa_levels; i++) {
6311 if (sched_domains_numa_distance[i] == distance)
6312 return true;
6313 }
6314
6315 return false;
6316}
6317
cb83b629
PZ
6318static void sched_init_numa(void)
6319{
6320 int next_distance, curr_distance = node_distance(0, 0);
6321 struct sched_domain_topology_level *tl;
6322 int level = 0;
6323 int i, j, k;
6324
cb83b629
PZ
6325 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6326 if (!sched_domains_numa_distance)
6327 return;
6328
6329 /*
6330 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6331 * unique distances in the node_distance() table.
6332 *
6333 * Assumes node_distance(0,j) includes all distances in
6334 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6335 */
6336 next_distance = curr_distance;
6337 for (i = 0; i < nr_node_ids; i++) {
6338 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6339 for (k = 0; k < nr_node_ids; k++) {
6340 int distance = node_distance(i, k);
6341
6342 if (distance > curr_distance &&
6343 (distance < next_distance ||
6344 next_distance == curr_distance))
6345 next_distance = distance;
6346
6347 /*
6348 * While not a strong assumption it would be nice to know
6349 * about cases where if node A is connected to B, B is not
6350 * equally connected to A.
6351 */
6352 if (sched_debug() && node_distance(k, i) != distance)
6353 sched_numa_warn("Node-distance not symmetric");
6354
6355 if (sched_debug() && i && !find_numa_distance(distance))
6356 sched_numa_warn("Node-0 not representative");
6357 }
6358 if (next_distance != curr_distance) {
6359 sched_domains_numa_distance[level++] = next_distance;
6360 sched_domains_numa_levels = level;
6361 curr_distance = next_distance;
6362 } else break;
cb83b629 6363 }
d039ac60
PZ
6364
6365 /*
6366 * In case of sched_debug() we verify the above assumption.
6367 */
6368 if (!sched_debug())
6369 break;
cb83b629
PZ
6370 }
6371 /*
6372 * 'level' contains the number of unique distances, excluding the
6373 * identity distance node_distance(i,i).
6374 *
28b4a521 6375 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6376 * numbers.
6377 */
6378
5f7865f3
TC
6379 /*
6380 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6381 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6382 * the array will contain less then 'level' members. This could be
6383 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6384 * in other functions.
6385 *
6386 * We reset it to 'level' at the end of this function.
6387 */
6388 sched_domains_numa_levels = 0;
6389
cb83b629
PZ
6390 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6391 if (!sched_domains_numa_masks)
6392 return;
6393
6394 /*
6395 * Now for each level, construct a mask per node which contains all
6396 * cpus of nodes that are that many hops away from us.
6397 */
6398 for (i = 0; i < level; i++) {
6399 sched_domains_numa_masks[i] =
6400 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6401 if (!sched_domains_numa_masks[i])
6402 return;
6403
6404 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6405 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6406 if (!mask)
6407 return;
6408
6409 sched_domains_numa_masks[i][j] = mask;
6410
6411 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6412 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6413 continue;
6414
6415 cpumask_or(mask, mask, cpumask_of_node(k));
6416 }
6417 }
6418 }
6419
143e1e28
VG
6420 /* Compute default topology size */
6421 for (i = 0; sched_domain_topology[i].mask; i++);
6422
c515db8c 6423 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6424 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6425 if (!tl)
6426 return;
6427
6428 /*
6429 * Copy the default topology bits..
6430 */
143e1e28
VG
6431 for (i = 0; sched_domain_topology[i].mask; i++)
6432 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6433
6434 /*
6435 * .. and append 'j' levels of NUMA goodness.
6436 */
6437 for (j = 0; j < level; i++, j++) {
6438 tl[i] = (struct sched_domain_topology_level){
cb83b629 6439 .mask = sd_numa_mask,
143e1e28 6440 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6441 .flags = SDTL_OVERLAP,
6442 .numa_level = j,
143e1e28 6443 SD_INIT_NAME(NUMA)
cb83b629
PZ
6444 };
6445 }
6446
6447 sched_domain_topology = tl;
5f7865f3
TC
6448
6449 sched_domains_numa_levels = level;
cb83b629 6450}
301a5cba
TC
6451
6452static void sched_domains_numa_masks_set(int cpu)
6453{
6454 int i, j;
6455 int node = cpu_to_node(cpu);
6456
6457 for (i = 0; i < sched_domains_numa_levels; i++) {
6458 for (j = 0; j < nr_node_ids; j++) {
6459 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6460 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6461 }
6462 }
6463}
6464
6465static void sched_domains_numa_masks_clear(int cpu)
6466{
6467 int i, j;
6468 for (i = 0; i < sched_domains_numa_levels; i++) {
6469 for (j = 0; j < nr_node_ids; j++)
6470 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6471 }
6472}
6473
6474/*
6475 * Update sched_domains_numa_masks[level][node] array when new cpus
6476 * are onlined.
6477 */
6478static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6479 unsigned long action,
6480 void *hcpu)
6481{
6482 int cpu = (long)hcpu;
6483
6484 switch (action & ~CPU_TASKS_FROZEN) {
6485 case CPU_ONLINE:
6486 sched_domains_numa_masks_set(cpu);
6487 break;
6488
6489 case CPU_DEAD:
6490 sched_domains_numa_masks_clear(cpu);
6491 break;
6492
6493 default:
6494 return NOTIFY_DONE;
6495 }
6496
6497 return NOTIFY_OK;
cb83b629
PZ
6498}
6499#else
6500static inline void sched_init_numa(void)
6501{
6502}
301a5cba
TC
6503
6504static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6505 unsigned long action,
6506 void *hcpu)
6507{
6508 return 0;
6509}
cb83b629
PZ
6510#endif /* CONFIG_NUMA */
6511
54ab4ff4
PZ
6512static int __sdt_alloc(const struct cpumask *cpu_map)
6513{
6514 struct sched_domain_topology_level *tl;
6515 int j;
6516
27723a68 6517 for_each_sd_topology(tl) {
54ab4ff4
PZ
6518 struct sd_data *sdd = &tl->data;
6519
6520 sdd->sd = alloc_percpu(struct sched_domain *);
6521 if (!sdd->sd)
6522 return -ENOMEM;
6523
6524 sdd->sg = alloc_percpu(struct sched_group *);
6525 if (!sdd->sg)
6526 return -ENOMEM;
6527
63b2ca30
NP
6528 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6529 if (!sdd->sgc)
9c3f75cb
PZ
6530 return -ENOMEM;
6531
54ab4ff4
PZ
6532 for_each_cpu(j, cpu_map) {
6533 struct sched_domain *sd;
6534 struct sched_group *sg;
63b2ca30 6535 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6536
6537 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6538 GFP_KERNEL, cpu_to_node(j));
6539 if (!sd)
6540 return -ENOMEM;
6541
6542 *per_cpu_ptr(sdd->sd, j) = sd;
6543
6544 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6545 GFP_KERNEL, cpu_to_node(j));
6546 if (!sg)
6547 return -ENOMEM;
6548
30b4e9eb
IM
6549 sg->next = sg;
6550
54ab4ff4 6551 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6552
63b2ca30 6553 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6554 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6555 if (!sgc)
9c3f75cb
PZ
6556 return -ENOMEM;
6557
63b2ca30 6558 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6559 }
6560 }
6561
6562 return 0;
6563}
6564
6565static void __sdt_free(const struct cpumask *cpu_map)
6566{
6567 struct sched_domain_topology_level *tl;
6568 int j;
6569
27723a68 6570 for_each_sd_topology(tl) {
54ab4ff4
PZ
6571 struct sd_data *sdd = &tl->data;
6572
6573 for_each_cpu(j, cpu_map) {
fb2cf2c6 6574 struct sched_domain *sd;
6575
6576 if (sdd->sd) {
6577 sd = *per_cpu_ptr(sdd->sd, j);
6578 if (sd && (sd->flags & SD_OVERLAP))
6579 free_sched_groups(sd->groups, 0);
6580 kfree(*per_cpu_ptr(sdd->sd, j));
6581 }
6582
6583 if (sdd->sg)
6584 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6585 if (sdd->sgc)
6586 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6587 }
6588 free_percpu(sdd->sd);
fb2cf2c6 6589 sdd->sd = NULL;
54ab4ff4 6590 free_percpu(sdd->sg);
fb2cf2c6 6591 sdd->sg = NULL;
63b2ca30
NP
6592 free_percpu(sdd->sgc);
6593 sdd->sgc = NULL;
54ab4ff4
PZ
6594 }
6595}
6596
2c402dc3 6597struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6598 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6599 struct sched_domain *child, int cpu)
2c402dc3 6600{
143e1e28 6601 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6602 if (!sd)
d069b916 6603 return child;
2c402dc3 6604
2c402dc3 6605 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6606 if (child) {
6607 sd->level = child->level + 1;
6608 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6609 child->parent = sd;
c75e0128 6610 sd->child = child;
6ae72dff
PZ
6611
6612 if (!cpumask_subset(sched_domain_span(child),
6613 sched_domain_span(sd))) {
6614 pr_err("BUG: arch topology borken\n");
6615#ifdef CONFIG_SCHED_DEBUG
6616 pr_err(" the %s domain not a subset of the %s domain\n",
6617 child->name, sd->name);
6618#endif
6619 /* Fixup, ensure @sd has at least @child cpus. */
6620 cpumask_or(sched_domain_span(sd),
6621 sched_domain_span(sd),
6622 sched_domain_span(child));
6623 }
6624
60495e77 6625 }
a841f8ce 6626 set_domain_attribute(sd, attr);
2c402dc3
PZ
6627
6628 return sd;
6629}
6630
2109b99e
AH
6631/*
6632 * Build sched domains for a given set of cpus and attach the sched domains
6633 * to the individual cpus
6634 */
dce840a0
PZ
6635static int build_sched_domains(const struct cpumask *cpu_map,
6636 struct sched_domain_attr *attr)
2109b99e 6637{
1c632169 6638 enum s_alloc alloc_state;
dce840a0 6639 struct sched_domain *sd;
2109b99e 6640 struct s_data d;
822ff793 6641 int i, ret = -ENOMEM;
9c1cfda2 6642
2109b99e
AH
6643 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6644 if (alloc_state != sa_rootdomain)
6645 goto error;
9c1cfda2 6646
dce840a0 6647 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6648 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6649 struct sched_domain_topology_level *tl;
6650
3bd65a80 6651 sd = NULL;
27723a68 6652 for_each_sd_topology(tl) {
4a850cbe 6653 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6654 if (tl == sched_domain_topology)
6655 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6656 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6657 sd->flags |= SD_OVERLAP;
d110235d
PZ
6658 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6659 break;
e3589f6c 6660 }
dce840a0
PZ
6661 }
6662
6663 /* Build the groups for the domains */
6664 for_each_cpu(i, cpu_map) {
6665 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6666 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6667 if (sd->flags & SD_OVERLAP) {
6668 if (build_overlap_sched_groups(sd, i))
6669 goto error;
6670 } else {
6671 if (build_sched_groups(sd, i))
6672 goto error;
6673 }
1cf51902 6674 }
a06dadbe 6675 }
9c1cfda2 6676
ced549fa 6677 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6678 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6679 if (!cpumask_test_cpu(i, cpu_map))
6680 continue;
9c1cfda2 6681
dce840a0
PZ
6682 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6683 claim_allocations(i, sd);
63b2ca30 6684 init_sched_groups_capacity(i, sd);
dce840a0 6685 }
f712c0c7 6686 }
9c1cfda2 6687
1da177e4 6688 /* Attach the domains */
dce840a0 6689 rcu_read_lock();
abcd083a 6690 for_each_cpu(i, cpu_map) {
21d42ccf 6691 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6692 cpu_attach_domain(sd, d.rd, i);
1da177e4 6693 }
dce840a0 6694 rcu_read_unlock();
51888ca2 6695
822ff793 6696 ret = 0;
51888ca2 6697error:
2109b99e 6698 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6699 return ret;
1da177e4 6700}
029190c5 6701
acc3f5d7 6702static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6703static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6704static struct sched_domain_attr *dattr_cur;
6705 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6706
6707/*
6708 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6709 * cpumask) fails, then fallback to a single sched domain,
6710 * as determined by the single cpumask fallback_doms.
029190c5 6711 */
4212823f 6712static cpumask_var_t fallback_doms;
029190c5 6713
ee79d1bd
HC
6714/*
6715 * arch_update_cpu_topology lets virtualized architectures update the
6716 * cpu core maps. It is supposed to return 1 if the topology changed
6717 * or 0 if it stayed the same.
6718 */
52f5684c 6719int __weak arch_update_cpu_topology(void)
22e52b07 6720{
ee79d1bd 6721 return 0;
22e52b07
HC
6722}
6723
acc3f5d7
RR
6724cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6725{
6726 int i;
6727 cpumask_var_t *doms;
6728
6729 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6730 if (!doms)
6731 return NULL;
6732 for (i = 0; i < ndoms; i++) {
6733 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6734 free_sched_domains(doms, i);
6735 return NULL;
6736 }
6737 }
6738 return doms;
6739}
6740
6741void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6742{
6743 unsigned int i;
6744 for (i = 0; i < ndoms; i++)
6745 free_cpumask_var(doms[i]);
6746 kfree(doms);
6747}
6748
1a20ff27 6749/*
41a2d6cf 6750 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6751 * For now this just excludes isolated cpus, but could be used to
6752 * exclude other special cases in the future.
1a20ff27 6753 */
c4a8849a 6754static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6755{
7378547f
MM
6756 int err;
6757
22e52b07 6758 arch_update_cpu_topology();
029190c5 6759 ndoms_cur = 1;
acc3f5d7 6760 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6761 if (!doms_cur)
acc3f5d7
RR
6762 doms_cur = &fallback_doms;
6763 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6764 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6765 register_sched_domain_sysctl();
7378547f
MM
6766
6767 return err;
1a20ff27
DG
6768}
6769
1a20ff27
DG
6770/*
6771 * Detach sched domains from a group of cpus specified in cpu_map
6772 * These cpus will now be attached to the NULL domain
6773 */
96f874e2 6774static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6775{
6776 int i;
6777
dce840a0 6778 rcu_read_lock();
abcd083a 6779 for_each_cpu(i, cpu_map)
57d885fe 6780 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6781 rcu_read_unlock();
1a20ff27
DG
6782}
6783
1d3504fc
HS
6784/* handle null as "default" */
6785static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6786 struct sched_domain_attr *new, int idx_new)
6787{
6788 struct sched_domain_attr tmp;
6789
6790 /* fast path */
6791 if (!new && !cur)
6792 return 1;
6793
6794 tmp = SD_ATTR_INIT;
6795 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6796 new ? (new + idx_new) : &tmp,
6797 sizeof(struct sched_domain_attr));
6798}
6799
029190c5
PJ
6800/*
6801 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6802 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6803 * doms_new[] to the current sched domain partitioning, doms_cur[].
6804 * It destroys each deleted domain and builds each new domain.
6805 *
acc3f5d7 6806 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6807 * The masks don't intersect (don't overlap.) We should setup one
6808 * sched domain for each mask. CPUs not in any of the cpumasks will
6809 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6810 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6811 * it as it is.
6812 *
acc3f5d7
RR
6813 * The passed in 'doms_new' should be allocated using
6814 * alloc_sched_domains. This routine takes ownership of it and will
6815 * free_sched_domains it when done with it. If the caller failed the
6816 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6817 * and partition_sched_domains() will fallback to the single partition
6818 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6819 *
96f874e2 6820 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6821 * ndoms_new == 0 is a special case for destroying existing domains,
6822 * and it will not create the default domain.
dfb512ec 6823 *
029190c5
PJ
6824 * Call with hotplug lock held
6825 */
acc3f5d7 6826void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6827 struct sched_domain_attr *dattr_new)
029190c5 6828{
dfb512ec 6829 int i, j, n;
d65bd5ec 6830 int new_topology;
029190c5 6831
712555ee 6832 mutex_lock(&sched_domains_mutex);
a1835615 6833
7378547f
MM
6834 /* always unregister in case we don't destroy any domains */
6835 unregister_sched_domain_sysctl();
6836
d65bd5ec
HC
6837 /* Let architecture update cpu core mappings. */
6838 new_topology = arch_update_cpu_topology();
6839
dfb512ec 6840 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6841
6842 /* Destroy deleted domains */
6843 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6844 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6845 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6846 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6847 goto match1;
6848 }
6849 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6850 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6851match1:
6852 ;
6853 }
6854
c8d2d47a 6855 n = ndoms_cur;
e761b772 6856 if (doms_new == NULL) {
c8d2d47a 6857 n = 0;
acc3f5d7 6858 doms_new = &fallback_doms;
6ad4c188 6859 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6860 WARN_ON_ONCE(dattr_new);
e761b772
MK
6861 }
6862
029190c5
PJ
6863 /* Build new domains */
6864 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6865 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6866 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6867 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6868 goto match2;
6869 }
6870 /* no match - add a new doms_new */
dce840a0 6871 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6872match2:
6873 ;
6874 }
6875
6876 /* Remember the new sched domains */
acc3f5d7
RR
6877 if (doms_cur != &fallback_doms)
6878 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6879 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6880 doms_cur = doms_new;
1d3504fc 6881 dattr_cur = dattr_new;
029190c5 6882 ndoms_cur = ndoms_new;
7378547f
MM
6883
6884 register_sched_domain_sysctl();
a1835615 6885
712555ee 6886 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6887}
6888
d35be8ba
SB
6889static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6890
1da177e4 6891/*
3a101d05
TH
6892 * Update cpusets according to cpu_active mask. If cpusets are
6893 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6894 * around partition_sched_domains().
d35be8ba
SB
6895 *
6896 * If we come here as part of a suspend/resume, don't touch cpusets because we
6897 * want to restore it back to its original state upon resume anyway.
1da177e4 6898 */
0b2e918a
TH
6899static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6900 void *hcpu)
e761b772 6901{
d35be8ba
SB
6902 switch (action) {
6903 case CPU_ONLINE_FROZEN:
6904 case CPU_DOWN_FAILED_FROZEN:
6905
6906 /*
6907 * num_cpus_frozen tracks how many CPUs are involved in suspend
6908 * resume sequence. As long as this is not the last online
6909 * operation in the resume sequence, just build a single sched
6910 * domain, ignoring cpusets.
6911 */
6912 num_cpus_frozen--;
6913 if (likely(num_cpus_frozen)) {
6914 partition_sched_domains(1, NULL, NULL);
6915 break;
6916 }
6917
6918 /*
6919 * This is the last CPU online operation. So fall through and
6920 * restore the original sched domains by considering the
6921 * cpuset configurations.
6922 */
6923
e761b772 6924 case CPU_ONLINE:
6ad4c188 6925 case CPU_DOWN_FAILED:
7ddf96b0 6926 cpuset_update_active_cpus(true);
d35be8ba 6927 break;
3a101d05
TH
6928 default:
6929 return NOTIFY_DONE;
6930 }
d35be8ba 6931 return NOTIFY_OK;
3a101d05 6932}
e761b772 6933
0b2e918a
TH
6934static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6935 void *hcpu)
3a101d05 6936{
d35be8ba 6937 switch (action) {
3a101d05 6938 case CPU_DOWN_PREPARE:
7ddf96b0 6939 cpuset_update_active_cpus(false);
d35be8ba
SB
6940 break;
6941 case CPU_DOWN_PREPARE_FROZEN:
6942 num_cpus_frozen++;
6943 partition_sched_domains(1, NULL, NULL);
6944 break;
e761b772
MK
6945 default:
6946 return NOTIFY_DONE;
6947 }
d35be8ba 6948 return NOTIFY_OK;
e761b772 6949}
e761b772 6950
1da177e4
LT
6951void __init sched_init_smp(void)
6952{
dcc30a35
RR
6953 cpumask_var_t non_isolated_cpus;
6954
6955 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6956 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6957
cb83b629
PZ
6958 sched_init_numa();
6959
6acce3ef
PZ
6960 /*
6961 * There's no userspace yet to cause hotplug operations; hence all the
6962 * cpu masks are stable and all blatant races in the below code cannot
6963 * happen.
6964 */
712555ee 6965 mutex_lock(&sched_domains_mutex);
c4a8849a 6966 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6967 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6968 if (cpumask_empty(non_isolated_cpus))
6969 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6970 mutex_unlock(&sched_domains_mutex);
e761b772 6971
301a5cba 6972 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6973 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6974 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6975
b328ca18 6976 init_hrtick();
5c1e1767
NP
6977
6978 /* Move init over to a non-isolated CPU */
dcc30a35 6979 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6980 BUG();
19978ca6 6981 sched_init_granularity();
dcc30a35 6982 free_cpumask_var(non_isolated_cpus);
4212823f 6983
0e3900e6 6984 init_sched_rt_class();
1baca4ce 6985 init_sched_dl_class();
1da177e4
LT
6986}
6987#else
6988void __init sched_init_smp(void)
6989{
19978ca6 6990 sched_init_granularity();
1da177e4
LT
6991}
6992#endif /* CONFIG_SMP */
6993
cd1bb94b
AB
6994const_debug unsigned int sysctl_timer_migration = 1;
6995
1da177e4
LT
6996int in_sched_functions(unsigned long addr)
6997{
1da177e4
LT
6998 return in_lock_functions(addr) ||
6999 (addr >= (unsigned long)__sched_text_start
7000 && addr < (unsigned long)__sched_text_end);
7001}
7002
029632fb 7003#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7004/*
7005 * Default task group.
7006 * Every task in system belongs to this group at bootup.
7007 */
029632fb 7008struct task_group root_task_group;
35cf4e50 7009LIST_HEAD(task_groups);
052f1dc7 7010#endif
6f505b16 7011
e6252c3e 7012DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7013
1da177e4
LT
7014void __init sched_init(void)
7015{
dd41f596 7016 int i, j;
434d53b0
MT
7017 unsigned long alloc_size = 0, ptr;
7018
7019#ifdef CONFIG_FAIR_GROUP_SCHED
7020 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7021#endif
7022#ifdef CONFIG_RT_GROUP_SCHED
7023 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7024#endif
df7c8e84 7025#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7026 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7027#endif
434d53b0 7028 if (alloc_size) {
36b7b6d4 7029 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7030
7031#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7032 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7033 ptr += nr_cpu_ids * sizeof(void **);
7034
07e06b01 7035 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7036 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7037
6d6bc0ad 7038#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7039#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7040 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7041 ptr += nr_cpu_ids * sizeof(void **);
7042
07e06b01 7043 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7044 ptr += nr_cpu_ids * sizeof(void **);
7045
6d6bc0ad 7046#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7047#ifdef CONFIG_CPUMASK_OFFSTACK
7048 for_each_possible_cpu(i) {
e6252c3e 7049 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
7050 ptr += cpumask_size();
7051 }
7052#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7053 }
dd41f596 7054
332ac17e
DF
7055 init_rt_bandwidth(&def_rt_bandwidth,
7056 global_rt_period(), global_rt_runtime());
7057 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7058 global_rt_period(), global_rt_runtime());
332ac17e 7059
57d885fe
GH
7060#ifdef CONFIG_SMP
7061 init_defrootdomain();
7062#endif
7063
d0b27fa7 7064#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7065 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7066 global_rt_period(), global_rt_runtime());
6d6bc0ad 7067#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7068
7c941438 7069#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7070 list_add(&root_task_group.list, &task_groups);
7071 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7072 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7073 autogroup_init(&init_task);
54c707e9 7074
7c941438 7075#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7076
0a945022 7077 for_each_possible_cpu(i) {
70b97a7f 7078 struct rq *rq;
1da177e4
LT
7079
7080 rq = cpu_rq(i);
05fa785c 7081 raw_spin_lock_init(&rq->lock);
7897986b 7082 rq->nr_running = 0;
dce48a84
TG
7083 rq->calc_load_active = 0;
7084 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7085 init_cfs_rq(&rq->cfs);
6f505b16 7086 init_rt_rq(&rq->rt, rq);
aab03e05 7087 init_dl_rq(&rq->dl, rq);
dd41f596 7088#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7089 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7090 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7091 /*
07e06b01 7092 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7093 *
7094 * In case of task-groups formed thr' the cgroup filesystem, it
7095 * gets 100% of the cpu resources in the system. This overall
7096 * system cpu resource is divided among the tasks of
07e06b01 7097 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7098 * based on each entity's (task or task-group's) weight
7099 * (se->load.weight).
7100 *
07e06b01 7101 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7102 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7103 * then A0's share of the cpu resource is:
7104 *
0d905bca 7105 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7106 *
07e06b01
YZ
7107 * We achieve this by letting root_task_group's tasks sit
7108 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7109 */
ab84d31e 7110 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7111 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7112#endif /* CONFIG_FAIR_GROUP_SCHED */
7113
7114 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7115#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7116 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7117#endif
1da177e4 7118
dd41f596
IM
7119 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7120 rq->cpu_load[j] = 0;
fdf3e95d
VP
7121
7122 rq->last_load_update_tick = jiffies;
7123
1da177e4 7124#ifdef CONFIG_SMP
41c7ce9a 7125 rq->sd = NULL;
57d885fe 7126 rq->rd = NULL;
ca8ce3d0 7127 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7128 rq->post_schedule = 0;
1da177e4 7129 rq->active_balance = 0;
dd41f596 7130 rq->next_balance = jiffies;
1da177e4 7131 rq->push_cpu = 0;
0a2966b4 7132 rq->cpu = i;
1f11eb6a 7133 rq->online = 0;
eae0c9df
MG
7134 rq->idle_stamp = 0;
7135 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7136 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7137
7138 INIT_LIST_HEAD(&rq->cfs_tasks);
7139
dc938520 7140 rq_attach_root(rq, &def_root_domain);
3451d024 7141#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7142 rq->nohz_flags = 0;
83cd4fe2 7143#endif
265f22a9
FW
7144#ifdef CONFIG_NO_HZ_FULL
7145 rq->last_sched_tick = 0;
7146#endif
1da177e4 7147#endif
8f4d37ec 7148 init_rq_hrtick(rq);
1da177e4 7149 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7150 }
7151
2dd73a4f 7152 set_load_weight(&init_task);
b50f60ce 7153
e107be36
AK
7154#ifdef CONFIG_PREEMPT_NOTIFIERS
7155 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7156#endif
7157
1da177e4
LT
7158 /*
7159 * The boot idle thread does lazy MMU switching as well:
7160 */
7161 atomic_inc(&init_mm.mm_count);
7162 enter_lazy_tlb(&init_mm, current);
7163
7164 /*
7165 * Make us the idle thread. Technically, schedule() should not be
7166 * called from this thread, however somewhere below it might be,
7167 * but because we are the idle thread, we just pick up running again
7168 * when this runqueue becomes "idle".
7169 */
7170 init_idle(current, smp_processor_id());
dce48a84
TG
7171
7172 calc_load_update = jiffies + LOAD_FREQ;
7173
dd41f596
IM
7174 /*
7175 * During early bootup we pretend to be a normal task:
7176 */
7177 current->sched_class = &fair_sched_class;
6892b75e 7178
bf4d83f6 7179#ifdef CONFIG_SMP
4cb98839 7180 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7181 /* May be allocated at isolcpus cmdline parse time */
7182 if (cpu_isolated_map == NULL)
7183 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7184 idle_thread_set_boot_cpu();
a803f026 7185 set_cpu_rq_start_time();
029632fb
PZ
7186#endif
7187 init_sched_fair_class();
6a7b3dc3 7188
6892b75e 7189 scheduler_running = 1;
1da177e4
LT
7190}
7191
d902db1e 7192#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7193static inline int preempt_count_equals(int preempt_offset)
7194{
234da7bc 7195 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7196
4ba8216c 7197 return (nested == preempt_offset);
e4aafea2
FW
7198}
7199
d894837f 7200void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7201{
1da177e4
LT
7202 static unsigned long prev_jiffy; /* ratelimiting */
7203
b3fbab05 7204 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7205 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7206 !is_idle_task(current)) ||
e4aafea2 7207 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7208 return;
7209 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7210 return;
7211 prev_jiffy = jiffies;
7212
3df0fc5b
PZ
7213 printk(KERN_ERR
7214 "BUG: sleeping function called from invalid context at %s:%d\n",
7215 file, line);
7216 printk(KERN_ERR
7217 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7218 in_atomic(), irqs_disabled(),
7219 current->pid, current->comm);
aef745fc
IM
7220
7221 debug_show_held_locks(current);
7222 if (irqs_disabled())
7223 print_irqtrace_events(current);
8f47b187
TG
7224#ifdef CONFIG_DEBUG_PREEMPT
7225 if (!preempt_count_equals(preempt_offset)) {
7226 pr_err("Preemption disabled at:");
7227 print_ip_sym(current->preempt_disable_ip);
7228 pr_cont("\n");
7229 }
7230#endif
aef745fc 7231 dump_stack();
1da177e4
LT
7232}
7233EXPORT_SYMBOL(__might_sleep);
7234#endif
7235
7236#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7237static void normalize_task(struct rq *rq, struct task_struct *p)
7238{
da7a735e 7239 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7240 struct sched_attr attr = {
7241 .sched_policy = SCHED_NORMAL,
7242 };
da7a735e 7243 int old_prio = p->prio;
da0c1e65 7244 int queued;
3e51f33f 7245
da0c1e65
KT
7246 queued = task_on_rq_queued(p);
7247 if (queued)
4ca9b72b 7248 dequeue_task(rq, p, 0);
d50dde5a 7249 __setscheduler(rq, p, &attr);
da0c1e65 7250 if (queued) {
4ca9b72b 7251 enqueue_task(rq, p, 0);
8875125e 7252 resched_curr(rq);
3a5e4dc1 7253 }
da7a735e
PZ
7254
7255 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7256}
7257
1da177e4
LT
7258void normalize_rt_tasks(void)
7259{
a0f98a1c 7260 struct task_struct *g, *p;
1da177e4 7261 unsigned long flags;
70b97a7f 7262 struct rq *rq;
1da177e4 7263
3472eaa1 7264 read_lock(&tasklist_lock);
5d07f420 7265 for_each_process_thread(g, p) {
178be793
IM
7266 /*
7267 * Only normalize user tasks:
7268 */
3472eaa1 7269 if (p->flags & PF_KTHREAD)
178be793
IM
7270 continue;
7271
6cfb0d5d 7272 p->se.exec_start = 0;
6cfb0d5d 7273#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7274 p->se.statistics.wait_start = 0;
7275 p->se.statistics.sleep_start = 0;
7276 p->se.statistics.block_start = 0;
6cfb0d5d 7277#endif
dd41f596 7278
aab03e05 7279 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7280 /*
7281 * Renice negative nice level userspace
7282 * tasks back to 0:
7283 */
3472eaa1 7284 if (task_nice(p) < 0)
dd41f596 7285 set_user_nice(p, 0);
1da177e4 7286 continue;
dd41f596 7287 }
1da177e4 7288
3472eaa1 7289 rq = task_rq_lock(p, &flags);
178be793 7290 normalize_task(rq, p);
3472eaa1 7291 task_rq_unlock(rq, p, &flags);
5d07f420 7292 }
3472eaa1 7293 read_unlock(&tasklist_lock);
1da177e4
LT
7294}
7295
7296#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7297
67fc4e0c 7298#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7299/*
67fc4e0c 7300 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7301 *
7302 * They can only be called when the whole system has been
7303 * stopped - every CPU needs to be quiescent, and no scheduling
7304 * activity can take place. Using them for anything else would
7305 * be a serious bug, and as a result, they aren't even visible
7306 * under any other configuration.
7307 */
7308
7309/**
7310 * curr_task - return the current task for a given cpu.
7311 * @cpu: the processor in question.
7312 *
7313 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7314 *
7315 * Return: The current task for @cpu.
1df5c10a 7316 */
36c8b586 7317struct task_struct *curr_task(int cpu)
1df5c10a
LT
7318{
7319 return cpu_curr(cpu);
7320}
7321
67fc4e0c
JW
7322#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7323
7324#ifdef CONFIG_IA64
1df5c10a
LT
7325/**
7326 * set_curr_task - set the current task for a given cpu.
7327 * @cpu: the processor in question.
7328 * @p: the task pointer to set.
7329 *
7330 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7331 * are serviced on a separate stack. It allows the architecture to switch the
7332 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7333 * must be called with all CPU's synchronized, and interrupts disabled, the
7334 * and caller must save the original value of the current task (see
7335 * curr_task() above) and restore that value before reenabling interrupts and
7336 * re-starting the system.
7337 *
7338 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7339 */
36c8b586 7340void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7341{
7342 cpu_curr(cpu) = p;
7343}
7344
7345#endif
29f59db3 7346
7c941438 7347#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7348/* task_group_lock serializes the addition/removal of task groups */
7349static DEFINE_SPINLOCK(task_group_lock);
7350
bccbe08a
PZ
7351static void free_sched_group(struct task_group *tg)
7352{
7353 free_fair_sched_group(tg);
7354 free_rt_sched_group(tg);
e9aa1dd1 7355 autogroup_free(tg);
bccbe08a
PZ
7356 kfree(tg);
7357}
7358
7359/* allocate runqueue etc for a new task group */
ec7dc8ac 7360struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7361{
7362 struct task_group *tg;
bccbe08a
PZ
7363
7364 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7365 if (!tg)
7366 return ERR_PTR(-ENOMEM);
7367
ec7dc8ac 7368 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7369 goto err;
7370
ec7dc8ac 7371 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7372 goto err;
7373
ace783b9
LZ
7374 return tg;
7375
7376err:
7377 free_sched_group(tg);
7378 return ERR_PTR(-ENOMEM);
7379}
7380
7381void sched_online_group(struct task_group *tg, struct task_group *parent)
7382{
7383 unsigned long flags;
7384
8ed36996 7385 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7386 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7387
7388 WARN_ON(!parent); /* root should already exist */
7389
7390 tg->parent = parent;
f473aa5e 7391 INIT_LIST_HEAD(&tg->children);
09f2724a 7392 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7393 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7394}
7395
9b5b7751 7396/* rcu callback to free various structures associated with a task group */
6f505b16 7397static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7398{
29f59db3 7399 /* now it should be safe to free those cfs_rqs */
6f505b16 7400 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7401}
7402
9b5b7751 7403/* Destroy runqueue etc associated with a task group */
4cf86d77 7404void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7405{
7406 /* wait for possible concurrent references to cfs_rqs complete */
7407 call_rcu(&tg->rcu, free_sched_group_rcu);
7408}
7409
7410void sched_offline_group(struct task_group *tg)
29f59db3 7411{
8ed36996 7412 unsigned long flags;
9b5b7751 7413 int i;
29f59db3 7414
3d4b47b4
PZ
7415 /* end participation in shares distribution */
7416 for_each_possible_cpu(i)
bccbe08a 7417 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7418
7419 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7420 list_del_rcu(&tg->list);
f473aa5e 7421 list_del_rcu(&tg->siblings);
8ed36996 7422 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7423}
7424
9b5b7751 7425/* change task's runqueue when it moves between groups.
3a252015
IM
7426 * The caller of this function should have put the task in its new group
7427 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7428 * reflect its new group.
9b5b7751
SV
7429 */
7430void sched_move_task(struct task_struct *tsk)
29f59db3 7431{
8323f26c 7432 struct task_group *tg;
da0c1e65 7433 int queued, running;
29f59db3
SV
7434 unsigned long flags;
7435 struct rq *rq;
7436
7437 rq = task_rq_lock(tsk, &flags);
7438
051a1d1a 7439 running = task_current(rq, tsk);
da0c1e65 7440 queued = task_on_rq_queued(tsk);
29f59db3 7441
da0c1e65 7442 if (queued)
29f59db3 7443 dequeue_task(rq, tsk, 0);
0e1f3483 7444 if (unlikely(running))
f3cd1c4e 7445 put_prev_task(rq, tsk);
29f59db3 7446
073219e9 7447 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7448 lockdep_is_held(&tsk->sighand->siglock)),
7449 struct task_group, css);
7450 tg = autogroup_task_group(tsk, tg);
7451 tsk->sched_task_group = tg;
7452
810b3817 7453#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7454 if (tsk->sched_class->task_move_group)
da0c1e65 7455 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7456 else
810b3817 7457#endif
b2b5ce02 7458 set_task_rq(tsk, task_cpu(tsk));
810b3817 7459
0e1f3483
HS
7460 if (unlikely(running))
7461 tsk->sched_class->set_curr_task(rq);
da0c1e65 7462 if (queued)
371fd7e7 7463 enqueue_task(rq, tsk, 0);
29f59db3 7464
0122ec5b 7465 task_rq_unlock(rq, tsk, &flags);
29f59db3 7466}
7c941438 7467#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7468
a790de99
PT
7469#ifdef CONFIG_RT_GROUP_SCHED
7470/*
7471 * Ensure that the real time constraints are schedulable.
7472 */
7473static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7474
9a7e0b18
PZ
7475/* Must be called with tasklist_lock held */
7476static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7477{
9a7e0b18 7478 struct task_struct *g, *p;
b40b2e8e 7479
5d07f420 7480 for_each_process_thread(g, p) {
8651c658 7481 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7482 return 1;
5d07f420 7483 }
b40b2e8e 7484
9a7e0b18
PZ
7485 return 0;
7486}
b40b2e8e 7487
9a7e0b18
PZ
7488struct rt_schedulable_data {
7489 struct task_group *tg;
7490 u64 rt_period;
7491 u64 rt_runtime;
7492};
b40b2e8e 7493
a790de99 7494static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7495{
7496 struct rt_schedulable_data *d = data;
7497 struct task_group *child;
7498 unsigned long total, sum = 0;
7499 u64 period, runtime;
b40b2e8e 7500
9a7e0b18
PZ
7501 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7502 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7503
9a7e0b18
PZ
7504 if (tg == d->tg) {
7505 period = d->rt_period;
7506 runtime = d->rt_runtime;
b40b2e8e 7507 }
b40b2e8e 7508
4653f803
PZ
7509 /*
7510 * Cannot have more runtime than the period.
7511 */
7512 if (runtime > period && runtime != RUNTIME_INF)
7513 return -EINVAL;
6f505b16 7514
4653f803
PZ
7515 /*
7516 * Ensure we don't starve existing RT tasks.
7517 */
9a7e0b18
PZ
7518 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7519 return -EBUSY;
6f505b16 7520
9a7e0b18 7521 total = to_ratio(period, runtime);
6f505b16 7522
4653f803
PZ
7523 /*
7524 * Nobody can have more than the global setting allows.
7525 */
7526 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7527 return -EINVAL;
6f505b16 7528
4653f803
PZ
7529 /*
7530 * The sum of our children's runtime should not exceed our own.
7531 */
9a7e0b18
PZ
7532 list_for_each_entry_rcu(child, &tg->children, siblings) {
7533 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7534 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7535
9a7e0b18
PZ
7536 if (child == d->tg) {
7537 period = d->rt_period;
7538 runtime = d->rt_runtime;
7539 }
6f505b16 7540
9a7e0b18 7541 sum += to_ratio(period, runtime);
9f0c1e56 7542 }
6f505b16 7543
9a7e0b18
PZ
7544 if (sum > total)
7545 return -EINVAL;
7546
7547 return 0;
6f505b16
PZ
7548}
7549
9a7e0b18 7550static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7551{
8277434e
PT
7552 int ret;
7553
9a7e0b18
PZ
7554 struct rt_schedulable_data data = {
7555 .tg = tg,
7556 .rt_period = period,
7557 .rt_runtime = runtime,
7558 };
7559
8277434e
PT
7560 rcu_read_lock();
7561 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7562 rcu_read_unlock();
7563
7564 return ret;
521f1a24
DG
7565}
7566
ab84d31e 7567static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7568 u64 rt_period, u64 rt_runtime)
6f505b16 7569{
ac086bc2 7570 int i, err = 0;
9f0c1e56 7571
9f0c1e56 7572 mutex_lock(&rt_constraints_mutex);
521f1a24 7573 read_lock(&tasklist_lock);
9a7e0b18
PZ
7574 err = __rt_schedulable(tg, rt_period, rt_runtime);
7575 if (err)
9f0c1e56 7576 goto unlock;
ac086bc2 7577
0986b11b 7578 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7579 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7580 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7581
7582 for_each_possible_cpu(i) {
7583 struct rt_rq *rt_rq = tg->rt_rq[i];
7584
0986b11b 7585 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7586 rt_rq->rt_runtime = rt_runtime;
0986b11b 7587 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7588 }
0986b11b 7589 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7590unlock:
521f1a24 7591 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7592 mutex_unlock(&rt_constraints_mutex);
7593
7594 return err;
6f505b16
PZ
7595}
7596
25cc7da7 7597static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7598{
7599 u64 rt_runtime, rt_period;
7600
7601 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7602 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7603 if (rt_runtime_us < 0)
7604 rt_runtime = RUNTIME_INF;
7605
ab84d31e 7606 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7607}
7608
25cc7da7 7609static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7610{
7611 u64 rt_runtime_us;
7612
d0b27fa7 7613 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7614 return -1;
7615
d0b27fa7 7616 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7617 do_div(rt_runtime_us, NSEC_PER_USEC);
7618 return rt_runtime_us;
7619}
d0b27fa7 7620
25cc7da7 7621static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7622{
7623 u64 rt_runtime, rt_period;
7624
7625 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7626 rt_runtime = tg->rt_bandwidth.rt_runtime;
7627
619b0488
R
7628 if (rt_period == 0)
7629 return -EINVAL;
7630
ab84d31e 7631 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7632}
7633
25cc7da7 7634static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7635{
7636 u64 rt_period_us;
7637
7638 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7639 do_div(rt_period_us, NSEC_PER_USEC);
7640 return rt_period_us;
7641}
332ac17e 7642#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7643
332ac17e 7644#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7645static int sched_rt_global_constraints(void)
7646{
7647 int ret = 0;
7648
7649 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7650 read_lock(&tasklist_lock);
4653f803 7651 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7652 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7653 mutex_unlock(&rt_constraints_mutex);
7654
7655 return ret;
7656}
54e99124 7657
25cc7da7 7658static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7659{
7660 /* Don't accept realtime tasks when there is no way for them to run */
7661 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7662 return 0;
7663
7664 return 1;
7665}
7666
6d6bc0ad 7667#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7668static int sched_rt_global_constraints(void)
7669{
ac086bc2 7670 unsigned long flags;
332ac17e 7671 int i, ret = 0;
ec5d4989 7672
0986b11b 7673 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7674 for_each_possible_cpu(i) {
7675 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7676
0986b11b 7677 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7678 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7679 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7680 }
0986b11b 7681 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7682
332ac17e 7683 return ret;
d0b27fa7 7684}
6d6bc0ad 7685#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7686
332ac17e
DF
7687static int sched_dl_global_constraints(void)
7688{
1724813d
PZ
7689 u64 runtime = global_rt_runtime();
7690 u64 period = global_rt_period();
332ac17e 7691 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7692 struct dl_bw *dl_b;
1724813d 7693 int cpu, ret = 0;
49516342 7694 unsigned long flags;
332ac17e
DF
7695
7696 /*
7697 * Here we want to check the bandwidth not being set to some
7698 * value smaller than the currently allocated bandwidth in
7699 * any of the root_domains.
7700 *
7701 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7702 * cycling on root_domains... Discussion on different/better
7703 * solutions is welcome!
7704 */
1724813d 7705 for_each_possible_cpu(cpu) {
f10e00f4
KT
7706 rcu_read_lock_sched();
7707 dl_b = dl_bw_of(cpu);
332ac17e 7708
49516342 7709 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7710 if (new_bw < dl_b->total_bw)
7711 ret = -EBUSY;
49516342 7712 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7713
f10e00f4
KT
7714 rcu_read_unlock_sched();
7715
1724813d
PZ
7716 if (ret)
7717 break;
332ac17e
DF
7718 }
7719
1724813d 7720 return ret;
332ac17e
DF
7721}
7722
1724813d 7723static void sched_dl_do_global(void)
ce0dbbbb 7724{
1724813d 7725 u64 new_bw = -1;
f10e00f4 7726 struct dl_bw *dl_b;
1724813d 7727 int cpu;
49516342 7728 unsigned long flags;
ce0dbbbb 7729
1724813d
PZ
7730 def_dl_bandwidth.dl_period = global_rt_period();
7731 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7732
7733 if (global_rt_runtime() != RUNTIME_INF)
7734 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7735
7736 /*
7737 * FIXME: As above...
7738 */
7739 for_each_possible_cpu(cpu) {
f10e00f4
KT
7740 rcu_read_lock_sched();
7741 dl_b = dl_bw_of(cpu);
1724813d 7742
49516342 7743 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7744 dl_b->bw = new_bw;
49516342 7745 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7746
7747 rcu_read_unlock_sched();
ce0dbbbb 7748 }
1724813d
PZ
7749}
7750
7751static int sched_rt_global_validate(void)
7752{
7753 if (sysctl_sched_rt_period <= 0)
7754 return -EINVAL;
7755
e9e7cb38
JL
7756 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7757 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7758 return -EINVAL;
7759
7760 return 0;
7761}
7762
7763static void sched_rt_do_global(void)
7764{
7765 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7766 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7767}
7768
d0b27fa7 7769int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7770 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7771 loff_t *ppos)
7772{
d0b27fa7
PZ
7773 int old_period, old_runtime;
7774 static DEFINE_MUTEX(mutex);
1724813d 7775 int ret;
d0b27fa7
PZ
7776
7777 mutex_lock(&mutex);
7778 old_period = sysctl_sched_rt_period;
7779 old_runtime = sysctl_sched_rt_runtime;
7780
8d65af78 7781 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7782
7783 if (!ret && write) {
1724813d
PZ
7784 ret = sched_rt_global_validate();
7785 if (ret)
7786 goto undo;
7787
d0b27fa7 7788 ret = sched_rt_global_constraints();
1724813d
PZ
7789 if (ret)
7790 goto undo;
7791
7792 ret = sched_dl_global_constraints();
7793 if (ret)
7794 goto undo;
7795
7796 sched_rt_do_global();
7797 sched_dl_do_global();
7798 }
7799 if (0) {
7800undo:
7801 sysctl_sched_rt_period = old_period;
7802 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7803 }
7804 mutex_unlock(&mutex);
7805
7806 return ret;
7807}
68318b8e 7808
1724813d 7809int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7810 void __user *buffer, size_t *lenp,
7811 loff_t *ppos)
7812{
7813 int ret;
332ac17e 7814 static DEFINE_MUTEX(mutex);
332ac17e
DF
7815
7816 mutex_lock(&mutex);
332ac17e 7817 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7818 /* make sure that internally we keep jiffies */
7819 /* also, writing zero resets timeslice to default */
332ac17e 7820 if (!ret && write) {
1724813d
PZ
7821 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7822 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7823 }
7824 mutex_unlock(&mutex);
332ac17e
DF
7825 return ret;
7826}
7827
052f1dc7 7828#ifdef CONFIG_CGROUP_SCHED
68318b8e 7829
a7c6d554 7830static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7831{
a7c6d554 7832 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7833}
7834
eb95419b
TH
7835static struct cgroup_subsys_state *
7836cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7837{
eb95419b
TH
7838 struct task_group *parent = css_tg(parent_css);
7839 struct task_group *tg;
68318b8e 7840
eb95419b 7841 if (!parent) {
68318b8e 7842 /* This is early initialization for the top cgroup */
07e06b01 7843 return &root_task_group.css;
68318b8e
SV
7844 }
7845
ec7dc8ac 7846 tg = sched_create_group(parent);
68318b8e
SV
7847 if (IS_ERR(tg))
7848 return ERR_PTR(-ENOMEM);
7849
68318b8e
SV
7850 return &tg->css;
7851}
7852
eb95419b 7853static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7854{
eb95419b 7855 struct task_group *tg = css_tg(css);
5c9d535b 7856 struct task_group *parent = css_tg(css->parent);
ace783b9 7857
63876986
TH
7858 if (parent)
7859 sched_online_group(tg, parent);
ace783b9
LZ
7860 return 0;
7861}
7862
eb95419b 7863static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7864{
eb95419b 7865 struct task_group *tg = css_tg(css);
68318b8e
SV
7866
7867 sched_destroy_group(tg);
7868}
7869
eb95419b 7870static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7871{
eb95419b 7872 struct task_group *tg = css_tg(css);
ace783b9
LZ
7873
7874 sched_offline_group(tg);
7875}
7876
eeb61e53
KT
7877static void cpu_cgroup_fork(struct task_struct *task)
7878{
7879 sched_move_task(task);
7880}
7881
eb95419b 7882static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7883 struct cgroup_taskset *tset)
68318b8e 7884{
bb9d97b6
TH
7885 struct task_struct *task;
7886
924f0d9a 7887 cgroup_taskset_for_each(task, tset) {
b68aa230 7888#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7889 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7890 return -EINVAL;
b68aa230 7891#else
bb9d97b6
TH
7892 /* We don't support RT-tasks being in separate groups */
7893 if (task->sched_class != &fair_sched_class)
7894 return -EINVAL;
b68aa230 7895#endif
bb9d97b6 7896 }
be367d09
BB
7897 return 0;
7898}
68318b8e 7899
eb95419b 7900static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7901 struct cgroup_taskset *tset)
68318b8e 7902{
bb9d97b6
TH
7903 struct task_struct *task;
7904
924f0d9a 7905 cgroup_taskset_for_each(task, tset)
bb9d97b6 7906 sched_move_task(task);
68318b8e
SV
7907}
7908
eb95419b
TH
7909static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7910 struct cgroup_subsys_state *old_css,
7911 struct task_struct *task)
068c5cc5
PZ
7912{
7913 /*
7914 * cgroup_exit() is called in the copy_process() failure path.
7915 * Ignore this case since the task hasn't ran yet, this avoids
7916 * trying to poke a half freed task state from generic code.
7917 */
7918 if (!(task->flags & PF_EXITING))
7919 return;
7920
7921 sched_move_task(task);
7922}
7923
052f1dc7 7924#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7925static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7926 struct cftype *cftype, u64 shareval)
68318b8e 7927{
182446d0 7928 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7929}
7930
182446d0
TH
7931static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7932 struct cftype *cft)
68318b8e 7933{
182446d0 7934 struct task_group *tg = css_tg(css);
68318b8e 7935
c8b28116 7936 return (u64) scale_load_down(tg->shares);
68318b8e 7937}
ab84d31e
PT
7938
7939#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7940static DEFINE_MUTEX(cfs_constraints_mutex);
7941
ab84d31e
PT
7942const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7943const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7944
a790de99
PT
7945static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7946
ab84d31e
PT
7947static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7948{
56f570e5 7949 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7950 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7951
7952 if (tg == &root_task_group)
7953 return -EINVAL;
7954
7955 /*
7956 * Ensure we have at some amount of bandwidth every period. This is
7957 * to prevent reaching a state of large arrears when throttled via
7958 * entity_tick() resulting in prolonged exit starvation.
7959 */
7960 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7961 return -EINVAL;
7962
7963 /*
7964 * Likewise, bound things on the otherside by preventing insane quota
7965 * periods. This also allows us to normalize in computing quota
7966 * feasibility.
7967 */
7968 if (period > max_cfs_quota_period)
7969 return -EINVAL;
7970
0e59bdae
KT
7971 /*
7972 * Prevent race between setting of cfs_rq->runtime_enabled and
7973 * unthrottle_offline_cfs_rqs().
7974 */
7975 get_online_cpus();
a790de99
PT
7976 mutex_lock(&cfs_constraints_mutex);
7977 ret = __cfs_schedulable(tg, period, quota);
7978 if (ret)
7979 goto out_unlock;
7980
58088ad0 7981 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7982 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7983 /*
7984 * If we need to toggle cfs_bandwidth_used, off->on must occur
7985 * before making related changes, and on->off must occur afterwards
7986 */
7987 if (runtime_enabled && !runtime_was_enabled)
7988 cfs_bandwidth_usage_inc();
ab84d31e
PT
7989 raw_spin_lock_irq(&cfs_b->lock);
7990 cfs_b->period = ns_to_ktime(period);
7991 cfs_b->quota = quota;
58088ad0 7992
a9cf55b2 7993 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7994 /* restart the period timer (if active) to handle new period expiry */
7995 if (runtime_enabled && cfs_b->timer_active) {
7996 /* force a reprogram */
09dc4ab0 7997 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7998 }
ab84d31e
PT
7999 raw_spin_unlock_irq(&cfs_b->lock);
8000
0e59bdae 8001 for_each_online_cpu(i) {
ab84d31e 8002 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8003 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8004
8005 raw_spin_lock_irq(&rq->lock);
58088ad0 8006 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8007 cfs_rq->runtime_remaining = 0;
671fd9da 8008
029632fb 8009 if (cfs_rq->throttled)
671fd9da 8010 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8011 raw_spin_unlock_irq(&rq->lock);
8012 }
1ee14e6c
BS
8013 if (runtime_was_enabled && !runtime_enabled)
8014 cfs_bandwidth_usage_dec();
a790de99
PT
8015out_unlock:
8016 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8017 put_online_cpus();
ab84d31e 8018
a790de99 8019 return ret;
ab84d31e
PT
8020}
8021
8022int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8023{
8024 u64 quota, period;
8025
029632fb 8026 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8027 if (cfs_quota_us < 0)
8028 quota = RUNTIME_INF;
8029 else
8030 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8031
8032 return tg_set_cfs_bandwidth(tg, period, quota);
8033}
8034
8035long tg_get_cfs_quota(struct task_group *tg)
8036{
8037 u64 quota_us;
8038
029632fb 8039 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8040 return -1;
8041
029632fb 8042 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8043 do_div(quota_us, NSEC_PER_USEC);
8044
8045 return quota_us;
8046}
8047
8048int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8049{
8050 u64 quota, period;
8051
8052 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8053 quota = tg->cfs_bandwidth.quota;
ab84d31e 8054
ab84d31e
PT
8055 return tg_set_cfs_bandwidth(tg, period, quota);
8056}
8057
8058long tg_get_cfs_period(struct task_group *tg)
8059{
8060 u64 cfs_period_us;
8061
029632fb 8062 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8063 do_div(cfs_period_us, NSEC_PER_USEC);
8064
8065 return cfs_period_us;
8066}
8067
182446d0
TH
8068static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8069 struct cftype *cft)
ab84d31e 8070{
182446d0 8071 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8072}
8073
182446d0
TH
8074static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8075 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8076{
182446d0 8077 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8078}
8079
182446d0
TH
8080static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8081 struct cftype *cft)
ab84d31e 8082{
182446d0 8083 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8084}
8085
182446d0
TH
8086static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8087 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8088{
182446d0 8089 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8090}
8091
a790de99
PT
8092struct cfs_schedulable_data {
8093 struct task_group *tg;
8094 u64 period, quota;
8095};
8096
8097/*
8098 * normalize group quota/period to be quota/max_period
8099 * note: units are usecs
8100 */
8101static u64 normalize_cfs_quota(struct task_group *tg,
8102 struct cfs_schedulable_data *d)
8103{
8104 u64 quota, period;
8105
8106 if (tg == d->tg) {
8107 period = d->period;
8108 quota = d->quota;
8109 } else {
8110 period = tg_get_cfs_period(tg);
8111 quota = tg_get_cfs_quota(tg);
8112 }
8113
8114 /* note: these should typically be equivalent */
8115 if (quota == RUNTIME_INF || quota == -1)
8116 return RUNTIME_INF;
8117
8118 return to_ratio(period, quota);
8119}
8120
8121static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8122{
8123 struct cfs_schedulable_data *d = data;
029632fb 8124 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8125 s64 quota = 0, parent_quota = -1;
8126
8127 if (!tg->parent) {
8128 quota = RUNTIME_INF;
8129 } else {
029632fb 8130 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8131
8132 quota = normalize_cfs_quota(tg, d);
9c58c79a 8133 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8134
8135 /*
8136 * ensure max(child_quota) <= parent_quota, inherit when no
8137 * limit is set
8138 */
8139 if (quota == RUNTIME_INF)
8140 quota = parent_quota;
8141 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8142 return -EINVAL;
8143 }
9c58c79a 8144 cfs_b->hierarchical_quota = quota;
a790de99
PT
8145
8146 return 0;
8147}
8148
8149static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8150{
8277434e 8151 int ret;
a790de99
PT
8152 struct cfs_schedulable_data data = {
8153 .tg = tg,
8154 .period = period,
8155 .quota = quota,
8156 };
8157
8158 if (quota != RUNTIME_INF) {
8159 do_div(data.period, NSEC_PER_USEC);
8160 do_div(data.quota, NSEC_PER_USEC);
8161 }
8162
8277434e
PT
8163 rcu_read_lock();
8164 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8165 rcu_read_unlock();
8166
8167 return ret;
a790de99 8168}
e8da1b18 8169
2da8ca82 8170static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8171{
2da8ca82 8172 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8173 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8174
44ffc75b
TH
8175 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8176 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8177 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8178
8179 return 0;
8180}
ab84d31e 8181#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8182#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8183
052f1dc7 8184#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8185static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8186 struct cftype *cft, s64 val)
6f505b16 8187{
182446d0 8188 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8189}
8190
182446d0
TH
8191static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8192 struct cftype *cft)
6f505b16 8193{
182446d0 8194 return sched_group_rt_runtime(css_tg(css));
6f505b16 8195}
d0b27fa7 8196
182446d0
TH
8197static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8198 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8199{
182446d0 8200 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8201}
8202
182446d0
TH
8203static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8204 struct cftype *cft)
d0b27fa7 8205{
182446d0 8206 return sched_group_rt_period(css_tg(css));
d0b27fa7 8207}
6d6bc0ad 8208#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8209
fe5c7cc2 8210static struct cftype cpu_files[] = {
052f1dc7 8211#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8212 {
8213 .name = "shares",
f4c753b7
PM
8214 .read_u64 = cpu_shares_read_u64,
8215 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8216 },
052f1dc7 8217#endif
ab84d31e
PT
8218#ifdef CONFIG_CFS_BANDWIDTH
8219 {
8220 .name = "cfs_quota_us",
8221 .read_s64 = cpu_cfs_quota_read_s64,
8222 .write_s64 = cpu_cfs_quota_write_s64,
8223 },
8224 {
8225 .name = "cfs_period_us",
8226 .read_u64 = cpu_cfs_period_read_u64,
8227 .write_u64 = cpu_cfs_period_write_u64,
8228 },
e8da1b18
NR
8229 {
8230 .name = "stat",
2da8ca82 8231 .seq_show = cpu_stats_show,
e8da1b18 8232 },
ab84d31e 8233#endif
052f1dc7 8234#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8235 {
9f0c1e56 8236 .name = "rt_runtime_us",
06ecb27c
PM
8237 .read_s64 = cpu_rt_runtime_read,
8238 .write_s64 = cpu_rt_runtime_write,
6f505b16 8239 },
d0b27fa7
PZ
8240 {
8241 .name = "rt_period_us",
f4c753b7
PM
8242 .read_u64 = cpu_rt_period_read_uint,
8243 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8244 },
052f1dc7 8245#endif
4baf6e33 8246 { } /* terminate */
68318b8e
SV
8247};
8248
073219e9 8249struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8250 .css_alloc = cpu_cgroup_css_alloc,
8251 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8252 .css_online = cpu_cgroup_css_online,
8253 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8254 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8255 .can_attach = cpu_cgroup_can_attach,
8256 .attach = cpu_cgroup_attach,
068c5cc5 8257 .exit = cpu_cgroup_exit,
5577964e 8258 .legacy_cftypes = cpu_files,
68318b8e
SV
8259 .early_init = 1,
8260};
8261
052f1dc7 8262#endif /* CONFIG_CGROUP_SCHED */
d842de87 8263
b637a328
PM
8264void dump_cpu_task(int cpu)
8265{
8266 pr_info("Task dump for CPU %d:\n", cpu);
8267 sched_show_task(cpu_curr(cpu));
8268}
This page took 3.526324 seconds and 5 git commands to generate.