sched: Check if we got a shallowest_idle_cpu before searching for least_loaded_cpu
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
126 if (delta < 0)
127 return;
fe44d621
PZ
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
3e51f33f
PZ
130}
131
bf5c91ba
IM
132/*
133 * Debugging: various feature bits
134 */
f00b45c1 135
f00b45c1
PZ
136#define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
bf5c91ba 139const_debug unsigned int sysctl_sched_features =
391e43da 140#include "features.h"
f00b45c1
PZ
141 0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled) \
147 #name ,
148
1292531f 149static const char * const sched_feat_names[] = {
391e43da 150#include "features.h"
f00b45c1
PZ
151};
152
153#undef SCHED_FEAT
154
34f3a814 155static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 156{
f00b45c1
PZ
157 int i;
158
f8b6d1cc 159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 163 }
34f3a814 164 seq_puts(m, "\n");
f00b45c1 165
34f3a814 166 return 0;
f00b45c1
PZ
167}
168
f8b6d1cc
PZ
169#ifdef HAVE_JUMP_LABEL
170
c5905afb
IM
171#define jump_label_key__true STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
173
174#define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
c5905afb 177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
c5905afb
IM
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
187}
188
189static void sched_feat_enable(int i)
190{
c5905afb
IM
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
1a687c2e 199static int sched_feat_set(char *cmp)
f00b45c1 200{
f00b45c1 201 int i;
1a687c2e 202 int neg = 0;
f00b45c1 203
524429c3 204 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
205 neg = 1;
206 cmp += 3;
207 }
208
f8b6d1cc 209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 211 if (neg) {
f00b45c1 212 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
213 sched_feat_disable(i);
214 } else {
f00b45c1 215 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
216 sched_feat_enable(i);
217 }
f00b45c1
PZ
218 break;
219 }
220 }
221
1a687c2e
MG
222 return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228{
229 char buf[64];
230 char *cmp;
231 int i;
5cd08fbf 232 struct inode *inode;
1a687c2e
MG
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
5cd08fbf
JB
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
1a687c2e 246 i = sched_feat_set(cmp);
5cd08fbf 247 mutex_unlock(&inode->i_mutex);
f8b6d1cc 248 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
249 return -EINVAL;
250
42994724 251 *ppos += cnt;
f00b45c1
PZ
252
253 return cnt;
254}
255
34f3a814
LZ
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258 return single_open(filp, sched_feat_show, NULL);
259}
260
828c0950 261static const struct file_operations sched_feat_fops = {
34f3a814
LZ
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
f00b45c1
PZ
267};
268
269static __init int sched_init_debug(void)
270{
f00b45c1
PZ
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275}
276late_initcall(sched_init_debug);
f8b6d1cc 277#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 278
b82d9fdd
PZ
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
e9e9250b
PZ
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
fa85ae24 293/*
9f0c1e56 294 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
295 * default: 1s
296 */
9f0c1e56 297unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 298
029632fb 299__read_mostly int scheduler_running;
6892b75e 300
9f0c1e56
PZ
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
fa85ae24 306
0970d299 307/*
0122ec5b 308 * __task_rq_lock - lock the rq @p resides on.
b29739f9 309 */
70b97a7f 310static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
311 __acquires(rq->lock)
312{
0970d299
PZ
313 struct rq *rq;
314
0122ec5b
PZ
315 lockdep_assert_held(&p->pi_lock);
316
3a5c359a 317 for (;;) {
0970d299 318 rq = task_rq(p);
05fa785c 319 raw_spin_lock(&rq->lock);
cca26e80 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 321 return rq;
05fa785c 322 raw_spin_unlock(&rq->lock);
cca26e80
KT
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
cca26e80 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
1da177e4 349 }
1da177e4
LT
350}
351
a9957449 352static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
353 __releases(rq->lock)
354{
05fa785c 355 raw_spin_unlock(&rq->lock);
b29739f9
IM
356}
357
0122ec5b
PZ
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 360 __releases(rq->lock)
0122ec5b 361 __releases(p->pi_lock)
1da177e4 362{
0122ec5b
PZ
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
365}
366
1da177e4 367/*
cc2a73b5 368 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 369 */
a9957449 370static struct rq *this_rq_lock(void)
1da177e4
LT
371 __acquires(rq->lock)
372{
70b97a7f 373 struct rq *rq;
1da177e4
LT
374
375 local_irq_disable();
376 rq = this_rq();
05fa785c 377 raw_spin_lock(&rq->lock);
1da177e4
LT
378
379 return rq;
380}
381
8f4d37ec
PZ
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 385 */
8f4d37ec 386
8f4d37ec
PZ
387static void hrtick_clear(struct rq *rq)
388{
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391}
392
8f4d37ec
PZ
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
05fa785c 403 raw_spin_lock(&rq->lock);
3e51f33f 404 update_rq_clock(rq);
8f4d37ec 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 406 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
407
408 return HRTIMER_NORESTART;
409}
410
95e904c7 411#ifdef CONFIG_SMP
971ee28c
PZ
412
413static int __hrtick_restart(struct rq *rq)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
31656519
PZ
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
b328ca18 425{
31656519 426 struct rq *rq = arg;
b328ca18 427
05fa785c 428 raw_spin_lock(&rq->lock);
971ee28c 429 __hrtick_restart(rq);
31656519 430 rq->hrtick_csd_pending = 0;
05fa785c 431 raw_spin_unlock(&rq->lock);
b328ca18
PZ
432}
433
31656519
PZ
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
029632fb 439void hrtick_start(struct rq *rq, u64 delay)
b328ca18 440{
31656519 441 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 451
cc584b21 452 hrtimer_set_expires(timer, time);
31656519
PZ
453
454 if (rq == this_rq()) {
971ee28c 455 __hrtick_restart(rq);
31656519 456 } else if (!rq->hrtick_csd_pending) {
c46fff2a 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
458 rq->hrtick_csd_pending = 1;
459 }
b328ca18
PZ
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
31656519 474 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479}
480
fa748203 481static __init void init_hrtick(void)
b328ca18
PZ
482{
483 hotcpu_notifier(hotplug_hrtick, 0);
484}
31656519
PZ
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
029632fb 491void hrtick_start(struct rq *rq, u64 delay)
31656519 492{
7f1e2ca9 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 494 HRTIMER_MODE_REL_PINNED, 0);
31656519 495}
b328ca18 496
006c75f1 497static inline void init_hrtick(void)
8f4d37ec 498{
8f4d37ec 499}
31656519 500#endif /* CONFIG_SMP */
8f4d37ec 501
31656519 502static void init_rq_hrtick(struct rq *rq)
8f4d37ec 503{
31656519
PZ
504#ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
8f4d37ec 506
31656519
PZ
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510#endif
8f4d37ec 511
31656519
PZ
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
8f4d37ec 514}
006c75f1 515#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
8f4d37ec
PZ
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
b328ca18
PZ
524static inline void init_hrtick(void)
525{
526}
006c75f1 527#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 528
fd99f91a
PZ
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val) \
533({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541})
542
e3baac47 543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
e3baac47
PZ
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577}
578
fd99f91a
PZ
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582 set_tsk_need_resched(p);
583 return true;
584}
e3baac47
PZ
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589 return false;
590}
591#endif
fd99f91a
PZ
592#endif
593
c24d20db 594/*
8875125e 595 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
8875125e 601void resched_curr(struct rq *rq)
c24d20db 602{
8875125e 603 struct task_struct *curr = rq->curr;
c24d20db
IM
604 int cpu;
605
8875125e 606 lockdep_assert_held(&rq->lock);
c24d20db 607
8875125e 608 if (test_tsk_need_resched(curr))
c24d20db
IM
609 return;
610
8875125e 611 cpu = cpu_of(rq);
fd99f91a 612
f27dde8d 613 if (cpu == smp_processor_id()) {
8875125e 614 set_tsk_need_resched(curr);
f27dde8d 615 set_preempt_need_resched();
c24d20db 616 return;
f27dde8d 617 }
c24d20db 618
8875125e 619 if (set_nr_and_not_polling(curr))
c24d20db 620 smp_send_reschedule(cpu);
dfc68f29
AL
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
623}
624
029632fb 625void resched_cpu(int cpu)
c24d20db
IM
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
05fa785c 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 631 return;
8875125e 632 resched_curr(rq);
05fa785c 633 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 634}
06d8308c 635
b021fe3e 636#ifdef CONFIG_SMP
3451d024 637#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
6201b4d6 646int get_nohz_timer_target(int pinned)
83cd4fe2
VP
647{
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
6201b4d6
VK
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
057f3fad
PZ
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
83cd4fe2 663 }
057f3fad
PZ
664unlock:
665 rcu_read_unlock();
83cd4fe2
VP
666 return cpu;
667}
06d8308c
TG
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
1c20091e 678static void wake_up_idle_cpu(int cpu)
06d8308c
TG
679{
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
67b9ca70 685 if (set_nr_and_not_polling(rq->idle))
06d8308c 686 smp_send_reschedule(cpu);
dfc68f29
AL
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
689}
690
c5bfece2 691static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 692{
53c5fa16
FW
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
c5bfece2 699 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
53c5fa16 702 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
703 return true;
704 }
705
706 return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
c5bfece2 711 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
712 wake_up_idle_cpu(cpu);
713}
714
ca38062e 715static inline bool got_nohz_idle_kick(void)
45bf76df 716{
1c792db7 717 int cpu = smp_processor_id();
873b4c65
VG
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
45bf76df
IM
731}
732
3451d024 733#else /* CONFIG_NO_HZ_COMMON */
45bf76df 734
ca38062e 735static inline bool got_nohz_idle_kick(void)
2069dd75 736{
ca38062e 737 return false;
2069dd75
PZ
738}
739
3451d024 740#endif /* CONFIG_NO_HZ_COMMON */
d842de87 741
ce831b38
FW
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
3882ec64
FW
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
541b8264
VK
750 if (this_rq()->nr_running > 1)
751 return false;
ce831b38 752
541b8264 753 return true;
ce831b38
FW
754}
755#endif /* CONFIG_NO_HZ_FULL */
d842de87 756
029632fb 757void sched_avg_update(struct rq *rq)
18d95a28 758{
e9e9250b
PZ
759 s64 period = sched_avg_period();
760
78becc27 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
18d95a28
PZ
771}
772
6d6bc0ad 773#endif /* CONFIG_SMP */
18d95a28 774
a790de99
PT
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 777/*
8277434e
PT
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 782 */
029632fb 783int walk_tg_tree_from(struct task_group *from,
8277434e 784 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
785{
786 struct task_group *parent, *child;
eb755805 787 int ret;
c09595f6 788
8277434e
PT
789 parent = from;
790
c09595f6 791down:
eb755805
PZ
792 ret = (*down)(parent, data);
793 if (ret)
8277434e 794 goto out;
c09595f6
PZ
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799up:
800 continue;
801 }
eb755805 802 ret = (*up)(parent, data);
8277434e
PT
803 if (ret || parent == from)
804 goto out;
c09595f6
PZ
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
8277434e 810out:
eb755805 811 return ret;
c09595f6
PZ
812}
813
029632fb 814int tg_nop(struct task_group *tg, void *data)
eb755805 815{
e2b245f8 816 return 0;
eb755805 817}
18d95a28
PZ
818#endif
819
45bf76df
IM
820static void set_load_weight(struct task_struct *p)
821{
f05998d4
NR
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
dd41f596
IM
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
c8b28116 829 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 830 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
831 return;
832 }
71f8bd46 833
c8b28116 834 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 835 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
836}
837
371fd7e7 838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 839{
a64692a3 840 update_rq_clock(rq);
43148951 841 sched_info_queued(rq, p);
371fd7e7 842 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
843}
844
371fd7e7 845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 846{
a64692a3 847 update_rq_clock(rq);
43148951 848 sched_info_dequeued(rq, p);
371fd7e7 849 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
850}
851
029632fb 852void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
371fd7e7 857 enqueue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
029632fb 860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
371fd7e7 865 dequeue_task(rq, p, flags);
1e3c88bd
PZ
866}
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 902 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
095c0aa8 909 rq->prev_steal_time_rq += steal;
095c0aa8
GC
910 delta -= steal;
911 }
912#endif
913
fe44d621
PZ
914 rq->clock_task += delta;
915
095c0aa8 916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
918 sched_rt_avg_update(rq, irq_delta + steal);
919#endif
aa483808
VP
920}
921
34f971f6
PZ
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950}
951
14531189 952/*
dd41f596 953 * __normal_prio - return the priority that is based on the static prio
14531189 954 */
14531189
IM
955static inline int __normal_prio(struct task_struct *p)
956{
dd41f596 957 return p->static_prio;
14531189
IM
958}
959
b29739f9
IM
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
36c8b586 967static inline int normal_prio(struct task_struct *p)
b29739f9
IM
968{
969 int prio;
970
aab03e05
DF
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
b29739f9
IM
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
36c8b586 987static int effective_prio(struct task_struct *p)
b29739f9
IM
988{
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998}
999
1da177e4
LT
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
e69f6186
YB
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1005 */
36c8b586 1006inline int task_curr(const struct task_struct *p)
1da177e4
LT
1007{
1008 return cpu_curr(task_cpu(p)) == p;
1009}
1010
67dfa1b7
KT
1011/*
1012 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1013 */
cb469845
SR
1014static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1015 const struct sched_class *prev_class,
da7a735e 1016 int oldprio)
cb469845
SR
1017{
1018 if (prev_class != p->sched_class) {
1019 if (prev_class->switched_from)
da7a735e 1020 prev_class->switched_from(rq, p);
67dfa1b7 1021 /* Possble rq->lock 'hole'. */
da7a735e 1022 p->sched_class->switched_to(rq, p);
2d3d891d 1023 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1024 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1025}
1026
029632fb 1027void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1028{
1029 const struct sched_class *class;
1030
1031 if (p->sched_class == rq->curr->sched_class) {
1032 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1033 } else {
1034 for_each_class(class) {
1035 if (class == rq->curr->sched_class)
1036 break;
1037 if (class == p->sched_class) {
8875125e 1038 resched_curr(rq);
1e5a7405
PZ
1039 break;
1040 }
1041 }
1042 }
1043
1044 /*
1045 * A queue event has occurred, and we're going to schedule. In
1046 * this case, we can save a useless back to back clock update.
1047 */
da0c1e65 1048 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1049 rq->skip_clock_update = 1;
1050}
1051
1da177e4 1052#ifdef CONFIG_SMP
dd41f596 1053void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1054{
e2912009
PZ
1055#ifdef CONFIG_SCHED_DEBUG
1056 /*
1057 * We should never call set_task_cpu() on a blocked task,
1058 * ttwu() will sort out the placement.
1059 */
077614ee 1060 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1061 !p->on_rq);
0122ec5b
PZ
1062
1063#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1064 /*
1065 * The caller should hold either p->pi_lock or rq->lock, when changing
1066 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1067 *
1068 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1069 * see task_group().
6c6c54e1
PZ
1070 *
1071 * Furthermore, all task_rq users should acquire both locks, see
1072 * task_rq_lock().
1073 */
0122ec5b
PZ
1074 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1075 lockdep_is_held(&task_rq(p)->lock)));
1076#endif
e2912009
PZ
1077#endif
1078
de1d7286 1079 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1080
0c69774e 1081 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1082 if (p->sched_class->migrate_task_rq)
1083 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1084 p->se.nr_migrations++;
a8b0ca17 1085 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1086 }
dd41f596
IM
1087
1088 __set_task_cpu(p, new_cpu);
c65cc870
IM
1089}
1090
ac66f547
PZ
1091static void __migrate_swap_task(struct task_struct *p, int cpu)
1092{
da0c1e65 1093 if (task_on_rq_queued(p)) {
ac66f547
PZ
1094 struct rq *src_rq, *dst_rq;
1095
1096 src_rq = task_rq(p);
1097 dst_rq = cpu_rq(cpu);
1098
1099 deactivate_task(src_rq, p, 0);
1100 set_task_cpu(p, cpu);
1101 activate_task(dst_rq, p, 0);
1102 check_preempt_curr(dst_rq, p, 0);
1103 } else {
1104 /*
1105 * Task isn't running anymore; make it appear like we migrated
1106 * it before it went to sleep. This means on wakeup we make the
1107 * previous cpu our targer instead of where it really is.
1108 */
1109 p->wake_cpu = cpu;
1110 }
1111}
1112
1113struct migration_swap_arg {
1114 struct task_struct *src_task, *dst_task;
1115 int src_cpu, dst_cpu;
1116};
1117
1118static int migrate_swap_stop(void *data)
1119{
1120 struct migration_swap_arg *arg = data;
1121 struct rq *src_rq, *dst_rq;
1122 int ret = -EAGAIN;
1123
1124 src_rq = cpu_rq(arg->src_cpu);
1125 dst_rq = cpu_rq(arg->dst_cpu);
1126
74602315
PZ
1127 double_raw_lock(&arg->src_task->pi_lock,
1128 &arg->dst_task->pi_lock);
ac66f547
PZ
1129 double_rq_lock(src_rq, dst_rq);
1130 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1131 goto unlock;
1132
1133 if (task_cpu(arg->src_task) != arg->src_cpu)
1134 goto unlock;
1135
1136 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1137 goto unlock;
1138
1139 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1140 goto unlock;
1141
1142 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1143 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1144
1145 ret = 0;
1146
1147unlock:
1148 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1149 raw_spin_unlock(&arg->dst_task->pi_lock);
1150 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1151
1152 return ret;
1153}
1154
1155/*
1156 * Cross migrate two tasks
1157 */
1158int migrate_swap(struct task_struct *cur, struct task_struct *p)
1159{
1160 struct migration_swap_arg arg;
1161 int ret = -EINVAL;
1162
ac66f547
PZ
1163 arg = (struct migration_swap_arg){
1164 .src_task = cur,
1165 .src_cpu = task_cpu(cur),
1166 .dst_task = p,
1167 .dst_cpu = task_cpu(p),
1168 };
1169
1170 if (arg.src_cpu == arg.dst_cpu)
1171 goto out;
1172
6acce3ef
PZ
1173 /*
1174 * These three tests are all lockless; this is OK since all of them
1175 * will be re-checked with proper locks held further down the line.
1176 */
ac66f547
PZ
1177 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1178 goto out;
1179
1180 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1181 goto out;
1182
1183 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1184 goto out;
1185
286549dc 1186 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1187 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1188
1189out:
ac66f547
PZ
1190 return ret;
1191}
1192
969c7921 1193struct migration_arg {
36c8b586 1194 struct task_struct *task;
1da177e4 1195 int dest_cpu;
70b97a7f 1196};
1da177e4 1197
969c7921
TH
1198static int migration_cpu_stop(void *data);
1199
1da177e4
LT
1200/*
1201 * wait_task_inactive - wait for a thread to unschedule.
1202 *
85ba2d86
RM
1203 * If @match_state is nonzero, it's the @p->state value just checked and
1204 * not expected to change. If it changes, i.e. @p might have woken up,
1205 * then return zero. When we succeed in waiting for @p to be off its CPU,
1206 * we return a positive number (its total switch count). If a second call
1207 * a short while later returns the same number, the caller can be sure that
1208 * @p has remained unscheduled the whole time.
1209 *
1da177e4
LT
1210 * The caller must ensure that the task *will* unschedule sometime soon,
1211 * else this function might spin for a *long* time. This function can't
1212 * be called with interrupts off, or it may introduce deadlock with
1213 * smp_call_function() if an IPI is sent by the same process we are
1214 * waiting to become inactive.
1215 */
85ba2d86 1216unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1217{
1218 unsigned long flags;
da0c1e65 1219 int running, queued;
85ba2d86 1220 unsigned long ncsw;
70b97a7f 1221 struct rq *rq;
1da177e4 1222
3a5c359a
AK
1223 for (;;) {
1224 /*
1225 * We do the initial early heuristics without holding
1226 * any task-queue locks at all. We'll only try to get
1227 * the runqueue lock when things look like they will
1228 * work out!
1229 */
1230 rq = task_rq(p);
fa490cfd 1231
3a5c359a
AK
1232 /*
1233 * If the task is actively running on another CPU
1234 * still, just relax and busy-wait without holding
1235 * any locks.
1236 *
1237 * NOTE! Since we don't hold any locks, it's not
1238 * even sure that "rq" stays as the right runqueue!
1239 * But we don't care, since "task_running()" will
1240 * return false if the runqueue has changed and p
1241 * is actually now running somewhere else!
1242 */
85ba2d86
RM
1243 while (task_running(rq, p)) {
1244 if (match_state && unlikely(p->state != match_state))
1245 return 0;
3a5c359a 1246 cpu_relax();
85ba2d86 1247 }
fa490cfd 1248
3a5c359a
AK
1249 /*
1250 * Ok, time to look more closely! We need the rq
1251 * lock now, to be *sure*. If we're wrong, we'll
1252 * just go back and repeat.
1253 */
1254 rq = task_rq_lock(p, &flags);
27a9da65 1255 trace_sched_wait_task(p);
3a5c359a 1256 running = task_running(rq, p);
da0c1e65 1257 queued = task_on_rq_queued(p);
85ba2d86 1258 ncsw = 0;
f31e11d8 1259 if (!match_state || p->state == match_state)
93dcf55f 1260 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1261 task_rq_unlock(rq, p, &flags);
fa490cfd 1262
85ba2d86
RM
1263 /*
1264 * If it changed from the expected state, bail out now.
1265 */
1266 if (unlikely(!ncsw))
1267 break;
1268
3a5c359a
AK
1269 /*
1270 * Was it really running after all now that we
1271 * checked with the proper locks actually held?
1272 *
1273 * Oops. Go back and try again..
1274 */
1275 if (unlikely(running)) {
1276 cpu_relax();
1277 continue;
1278 }
fa490cfd 1279
3a5c359a
AK
1280 /*
1281 * It's not enough that it's not actively running,
1282 * it must be off the runqueue _entirely_, and not
1283 * preempted!
1284 *
80dd99b3 1285 * So if it was still runnable (but just not actively
3a5c359a
AK
1286 * running right now), it's preempted, and we should
1287 * yield - it could be a while.
1288 */
da0c1e65 1289 if (unlikely(queued)) {
8eb90c30
TG
1290 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1291
1292 set_current_state(TASK_UNINTERRUPTIBLE);
1293 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1294 continue;
1295 }
fa490cfd 1296
3a5c359a
AK
1297 /*
1298 * Ahh, all good. It wasn't running, and it wasn't
1299 * runnable, which means that it will never become
1300 * running in the future either. We're all done!
1301 */
1302 break;
1303 }
85ba2d86
RM
1304
1305 return ncsw;
1da177e4
LT
1306}
1307
1308/***
1309 * kick_process - kick a running thread to enter/exit the kernel
1310 * @p: the to-be-kicked thread
1311 *
1312 * Cause a process which is running on another CPU to enter
1313 * kernel-mode, without any delay. (to get signals handled.)
1314 *
25985edc 1315 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1316 * because all it wants to ensure is that the remote task enters
1317 * the kernel. If the IPI races and the task has been migrated
1318 * to another CPU then no harm is done and the purpose has been
1319 * achieved as well.
1320 */
36c8b586 1321void kick_process(struct task_struct *p)
1da177e4
LT
1322{
1323 int cpu;
1324
1325 preempt_disable();
1326 cpu = task_cpu(p);
1327 if ((cpu != smp_processor_id()) && task_curr(p))
1328 smp_send_reschedule(cpu);
1329 preempt_enable();
1330}
b43e3521 1331EXPORT_SYMBOL_GPL(kick_process);
476d139c 1332#endif /* CONFIG_SMP */
1da177e4 1333
970b13ba 1334#ifdef CONFIG_SMP
30da688e 1335/*
013fdb80 1336 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1337 */
5da9a0fb
PZ
1338static int select_fallback_rq(int cpu, struct task_struct *p)
1339{
aa00d89c
TC
1340 int nid = cpu_to_node(cpu);
1341 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1342 enum { cpuset, possible, fail } state = cpuset;
1343 int dest_cpu;
5da9a0fb 1344
aa00d89c
TC
1345 /*
1346 * If the node that the cpu is on has been offlined, cpu_to_node()
1347 * will return -1. There is no cpu on the node, and we should
1348 * select the cpu on the other node.
1349 */
1350 if (nid != -1) {
1351 nodemask = cpumask_of_node(nid);
1352
1353 /* Look for allowed, online CPU in same node. */
1354 for_each_cpu(dest_cpu, nodemask) {
1355 if (!cpu_online(dest_cpu))
1356 continue;
1357 if (!cpu_active(dest_cpu))
1358 continue;
1359 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1360 return dest_cpu;
1361 }
2baab4e9 1362 }
5da9a0fb 1363
2baab4e9
PZ
1364 for (;;) {
1365 /* Any allowed, online CPU? */
e3831edd 1366 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1367 if (!cpu_online(dest_cpu))
1368 continue;
1369 if (!cpu_active(dest_cpu))
1370 continue;
1371 goto out;
1372 }
5da9a0fb 1373
2baab4e9
PZ
1374 switch (state) {
1375 case cpuset:
1376 /* No more Mr. Nice Guy. */
1377 cpuset_cpus_allowed_fallback(p);
1378 state = possible;
1379 break;
1380
1381 case possible:
1382 do_set_cpus_allowed(p, cpu_possible_mask);
1383 state = fail;
1384 break;
1385
1386 case fail:
1387 BUG();
1388 break;
1389 }
1390 }
1391
1392out:
1393 if (state != cpuset) {
1394 /*
1395 * Don't tell them about moving exiting tasks or
1396 * kernel threads (both mm NULL), since they never
1397 * leave kernel.
1398 */
1399 if (p->mm && printk_ratelimit()) {
aac74dc4 1400 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1401 task_pid_nr(p), p->comm, cpu);
1402 }
5da9a0fb
PZ
1403 }
1404
1405 return dest_cpu;
1406}
1407
e2912009 1408/*
013fdb80 1409 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1410 */
970b13ba 1411static inline
ac66f547 1412int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1413{
ac66f547 1414 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1415
1416 /*
1417 * In order not to call set_task_cpu() on a blocking task we need
1418 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1419 * cpu.
1420 *
1421 * Since this is common to all placement strategies, this lives here.
1422 *
1423 * [ this allows ->select_task() to simply return task_cpu(p) and
1424 * not worry about this generic constraint ]
1425 */
fa17b507 1426 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1427 !cpu_online(cpu)))
5da9a0fb 1428 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1429
1430 return cpu;
970b13ba 1431}
09a40af5
MG
1432
1433static void update_avg(u64 *avg, u64 sample)
1434{
1435 s64 diff = sample - *avg;
1436 *avg += diff >> 3;
1437}
970b13ba
PZ
1438#endif
1439
d7c01d27 1440static void
b84cb5df 1441ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1442{
d7c01d27 1443#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1444 struct rq *rq = this_rq();
1445
d7c01d27
PZ
1446#ifdef CONFIG_SMP
1447 int this_cpu = smp_processor_id();
1448
1449 if (cpu == this_cpu) {
1450 schedstat_inc(rq, ttwu_local);
1451 schedstat_inc(p, se.statistics.nr_wakeups_local);
1452 } else {
1453 struct sched_domain *sd;
1454
1455 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1456 rcu_read_lock();
d7c01d27
PZ
1457 for_each_domain(this_cpu, sd) {
1458 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1459 schedstat_inc(sd, ttwu_wake_remote);
1460 break;
1461 }
1462 }
057f3fad 1463 rcu_read_unlock();
d7c01d27 1464 }
f339b9dc
PZ
1465
1466 if (wake_flags & WF_MIGRATED)
1467 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1468
d7c01d27
PZ
1469#endif /* CONFIG_SMP */
1470
1471 schedstat_inc(rq, ttwu_count);
9ed3811a 1472 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1473
1474 if (wake_flags & WF_SYNC)
9ed3811a 1475 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1476
d7c01d27
PZ
1477#endif /* CONFIG_SCHEDSTATS */
1478}
1479
1480static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1481{
9ed3811a 1482 activate_task(rq, p, en_flags);
da0c1e65 1483 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1484
1485 /* if a worker is waking up, notify workqueue */
1486 if (p->flags & PF_WQ_WORKER)
1487 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1488}
1489
23f41eeb
PZ
1490/*
1491 * Mark the task runnable and perform wakeup-preemption.
1492 */
89363381 1493static void
23f41eeb 1494ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1495{
9ed3811a 1496 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1497 trace_sched_wakeup(p, true);
9ed3811a
TH
1498
1499 p->state = TASK_RUNNING;
1500#ifdef CONFIG_SMP
1501 if (p->sched_class->task_woken)
1502 p->sched_class->task_woken(rq, p);
1503
e69c6341 1504 if (rq->idle_stamp) {
78becc27 1505 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1506 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1507
abfafa54
JL
1508 update_avg(&rq->avg_idle, delta);
1509
1510 if (rq->avg_idle > max)
9ed3811a 1511 rq->avg_idle = max;
abfafa54 1512
9ed3811a
TH
1513 rq->idle_stamp = 0;
1514 }
1515#endif
1516}
1517
c05fbafb
PZ
1518static void
1519ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1520{
1521#ifdef CONFIG_SMP
1522 if (p->sched_contributes_to_load)
1523 rq->nr_uninterruptible--;
1524#endif
1525
1526 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1527 ttwu_do_wakeup(rq, p, wake_flags);
1528}
1529
1530/*
1531 * Called in case the task @p isn't fully descheduled from its runqueue,
1532 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1533 * since all we need to do is flip p->state to TASK_RUNNING, since
1534 * the task is still ->on_rq.
1535 */
1536static int ttwu_remote(struct task_struct *p, int wake_flags)
1537{
1538 struct rq *rq;
1539 int ret = 0;
1540
1541 rq = __task_rq_lock(p);
da0c1e65 1542 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1543 /* check_preempt_curr() may use rq clock */
1544 update_rq_clock(rq);
c05fbafb
PZ
1545 ttwu_do_wakeup(rq, p, wake_flags);
1546 ret = 1;
1547 }
1548 __task_rq_unlock(rq);
1549
1550 return ret;
1551}
1552
317f3941 1553#ifdef CONFIG_SMP
e3baac47 1554void sched_ttwu_pending(void)
317f3941
PZ
1555{
1556 struct rq *rq = this_rq();
fa14ff4a
PZ
1557 struct llist_node *llist = llist_del_all(&rq->wake_list);
1558 struct task_struct *p;
e3baac47 1559 unsigned long flags;
317f3941 1560
e3baac47
PZ
1561 if (!llist)
1562 return;
1563
1564 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1565
fa14ff4a
PZ
1566 while (llist) {
1567 p = llist_entry(llist, struct task_struct, wake_entry);
1568 llist = llist_next(llist);
317f3941
PZ
1569 ttwu_do_activate(rq, p, 0);
1570 }
1571
e3baac47 1572 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1573}
1574
1575void scheduler_ipi(void)
1576{
f27dde8d
PZ
1577 /*
1578 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1579 * TIF_NEED_RESCHED remotely (for the first time) will also send
1580 * this IPI.
1581 */
8cb75e0c 1582 preempt_fold_need_resched();
f27dde8d 1583
fd2ac4f4 1584 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1585 return;
1586
1587 /*
1588 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1589 * traditionally all their work was done from the interrupt return
1590 * path. Now that we actually do some work, we need to make sure
1591 * we do call them.
1592 *
1593 * Some archs already do call them, luckily irq_enter/exit nest
1594 * properly.
1595 *
1596 * Arguably we should visit all archs and update all handlers,
1597 * however a fair share of IPIs are still resched only so this would
1598 * somewhat pessimize the simple resched case.
1599 */
1600 irq_enter();
fa14ff4a 1601 sched_ttwu_pending();
ca38062e
SS
1602
1603 /*
1604 * Check if someone kicked us for doing the nohz idle load balance.
1605 */
873b4c65 1606 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1607 this_rq()->idle_balance = 1;
ca38062e 1608 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1609 }
c5d753a5 1610 irq_exit();
317f3941
PZ
1611}
1612
1613static void ttwu_queue_remote(struct task_struct *p, int cpu)
1614{
e3baac47
PZ
1615 struct rq *rq = cpu_rq(cpu);
1616
1617 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1618 if (!set_nr_if_polling(rq->idle))
1619 smp_send_reschedule(cpu);
1620 else
1621 trace_sched_wake_idle_without_ipi(cpu);
1622 }
317f3941 1623}
d6aa8f85 1624
f6be8af1
CL
1625void wake_up_if_idle(int cpu)
1626{
1627 struct rq *rq = cpu_rq(cpu);
1628 unsigned long flags;
1629
1630 if (!is_idle_task(rq->curr))
1631 return;
1632
1633 if (set_nr_if_polling(rq->idle)) {
1634 trace_sched_wake_idle_without_ipi(cpu);
1635 } else {
1636 raw_spin_lock_irqsave(&rq->lock, flags);
1637 if (is_idle_task(rq->curr))
1638 smp_send_reschedule(cpu);
1639 /* Else cpu is not in idle, do nothing here */
1640 raw_spin_unlock_irqrestore(&rq->lock, flags);
1641 }
1642}
1643
39be3501 1644bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1645{
1646 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1647}
d6aa8f85 1648#endif /* CONFIG_SMP */
317f3941 1649
c05fbafb
PZ
1650static void ttwu_queue(struct task_struct *p, int cpu)
1651{
1652 struct rq *rq = cpu_rq(cpu);
1653
17d9f311 1654#if defined(CONFIG_SMP)
39be3501 1655 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1656 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1657 ttwu_queue_remote(p, cpu);
1658 return;
1659 }
1660#endif
1661
c05fbafb
PZ
1662 raw_spin_lock(&rq->lock);
1663 ttwu_do_activate(rq, p, 0);
1664 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1665}
1666
1667/**
1da177e4 1668 * try_to_wake_up - wake up a thread
9ed3811a 1669 * @p: the thread to be awakened
1da177e4 1670 * @state: the mask of task states that can be woken
9ed3811a 1671 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1672 *
1673 * Put it on the run-queue if it's not already there. The "current"
1674 * thread is always on the run-queue (except when the actual
1675 * re-schedule is in progress), and as such you're allowed to do
1676 * the simpler "current->state = TASK_RUNNING" to mark yourself
1677 * runnable without the overhead of this.
1678 *
e69f6186 1679 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1680 * or @state didn't match @p's state.
1da177e4 1681 */
e4a52bcb
PZ
1682static int
1683try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1684{
1da177e4 1685 unsigned long flags;
c05fbafb 1686 int cpu, success = 0;
2398f2c6 1687
e0acd0a6
ON
1688 /*
1689 * If we are going to wake up a thread waiting for CONDITION we
1690 * need to ensure that CONDITION=1 done by the caller can not be
1691 * reordered with p->state check below. This pairs with mb() in
1692 * set_current_state() the waiting thread does.
1693 */
1694 smp_mb__before_spinlock();
013fdb80 1695 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1696 if (!(p->state & state))
1da177e4
LT
1697 goto out;
1698
c05fbafb 1699 success = 1; /* we're going to change ->state */
1da177e4 1700 cpu = task_cpu(p);
1da177e4 1701
c05fbafb
PZ
1702 if (p->on_rq && ttwu_remote(p, wake_flags))
1703 goto stat;
1da177e4 1704
1da177e4 1705#ifdef CONFIG_SMP
e9c84311 1706 /*
c05fbafb
PZ
1707 * If the owning (remote) cpu is still in the middle of schedule() with
1708 * this task as prev, wait until its done referencing the task.
e9c84311 1709 */
f3e94786 1710 while (p->on_cpu)
e4a52bcb 1711 cpu_relax();
0970d299 1712 /*
e4a52bcb 1713 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1714 */
e4a52bcb 1715 smp_rmb();
1da177e4 1716
a8e4f2ea 1717 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1718 p->state = TASK_WAKING;
e7693a36 1719
e4a52bcb 1720 if (p->sched_class->task_waking)
74f8e4b2 1721 p->sched_class->task_waking(p);
efbbd05a 1722
ac66f547 1723 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1724 if (task_cpu(p) != cpu) {
1725 wake_flags |= WF_MIGRATED;
e4a52bcb 1726 set_task_cpu(p, cpu);
f339b9dc 1727 }
1da177e4 1728#endif /* CONFIG_SMP */
1da177e4 1729
c05fbafb
PZ
1730 ttwu_queue(p, cpu);
1731stat:
b84cb5df 1732 ttwu_stat(p, cpu, wake_flags);
1da177e4 1733out:
013fdb80 1734 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1735
1736 return success;
1737}
1738
21aa9af0
TH
1739/**
1740 * try_to_wake_up_local - try to wake up a local task with rq lock held
1741 * @p: the thread to be awakened
1742 *
2acca55e 1743 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1744 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1745 * the current task.
21aa9af0
TH
1746 */
1747static void try_to_wake_up_local(struct task_struct *p)
1748{
1749 struct rq *rq = task_rq(p);
21aa9af0 1750
383efcd0
TH
1751 if (WARN_ON_ONCE(rq != this_rq()) ||
1752 WARN_ON_ONCE(p == current))
1753 return;
1754
21aa9af0
TH
1755 lockdep_assert_held(&rq->lock);
1756
2acca55e
PZ
1757 if (!raw_spin_trylock(&p->pi_lock)) {
1758 raw_spin_unlock(&rq->lock);
1759 raw_spin_lock(&p->pi_lock);
1760 raw_spin_lock(&rq->lock);
1761 }
1762
21aa9af0 1763 if (!(p->state & TASK_NORMAL))
2acca55e 1764 goto out;
21aa9af0 1765
da0c1e65 1766 if (!task_on_rq_queued(p))
d7c01d27
PZ
1767 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1768
23f41eeb 1769 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1770 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1771out:
1772 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1773}
1774
50fa610a
DH
1775/**
1776 * wake_up_process - Wake up a specific process
1777 * @p: The process to be woken up.
1778 *
1779 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1780 * processes.
1781 *
1782 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1783 *
1784 * It may be assumed that this function implies a write memory barrier before
1785 * changing the task state if and only if any tasks are woken up.
1786 */
7ad5b3a5 1787int wake_up_process(struct task_struct *p)
1da177e4 1788{
9067ac85
ON
1789 WARN_ON(task_is_stopped_or_traced(p));
1790 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1791}
1da177e4
LT
1792EXPORT_SYMBOL(wake_up_process);
1793
7ad5b3a5 1794int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1795{
1796 return try_to_wake_up(p, state, 0);
1797}
1798
a5e7be3b
JL
1799/*
1800 * This function clears the sched_dl_entity static params.
1801 */
1802void __dl_clear_params(struct task_struct *p)
1803{
1804 struct sched_dl_entity *dl_se = &p->dl;
1805
1806 dl_se->dl_runtime = 0;
1807 dl_se->dl_deadline = 0;
1808 dl_se->dl_period = 0;
1809 dl_se->flags = 0;
1810 dl_se->dl_bw = 0;
1811}
1812
1da177e4
LT
1813/*
1814 * Perform scheduler related setup for a newly forked process p.
1815 * p is forked by current.
dd41f596
IM
1816 *
1817 * __sched_fork() is basic setup used by init_idle() too:
1818 */
5e1576ed 1819static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1820{
fd2f4419
PZ
1821 p->on_rq = 0;
1822
1823 p->se.on_rq = 0;
dd41f596
IM
1824 p->se.exec_start = 0;
1825 p->se.sum_exec_runtime = 0;
f6cf891c 1826 p->se.prev_sum_exec_runtime = 0;
6c594c21 1827 p->se.nr_migrations = 0;
da7a735e 1828 p->se.vruntime = 0;
fd2f4419 1829 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1830
1831#ifdef CONFIG_SCHEDSTATS
41acab88 1832 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1833#endif
476d139c 1834
aab03e05
DF
1835 RB_CLEAR_NODE(&p->dl.rb_node);
1836 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1837 __dl_clear_params(p);
aab03e05 1838
fa717060 1839 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1840
e107be36
AK
1841#ifdef CONFIG_PREEMPT_NOTIFIERS
1842 INIT_HLIST_HEAD(&p->preempt_notifiers);
1843#endif
cbee9f88
PZ
1844
1845#ifdef CONFIG_NUMA_BALANCING
1846 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1847 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1848 p->mm->numa_scan_seq = 0;
1849 }
1850
5e1576ed
RR
1851 if (clone_flags & CLONE_VM)
1852 p->numa_preferred_nid = current->numa_preferred_nid;
1853 else
1854 p->numa_preferred_nid = -1;
1855
cbee9f88
PZ
1856 p->node_stamp = 0ULL;
1857 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1858 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1859 p->numa_work.next = &p->numa_work;
ff1df896
RR
1860 p->numa_faults_memory = NULL;
1861 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1862 p->last_task_numa_placement = 0;
1863 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1864
1865 INIT_LIST_HEAD(&p->numa_entry);
1866 p->numa_group = NULL;
cbee9f88 1867#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1868}
1869
1a687c2e 1870#ifdef CONFIG_NUMA_BALANCING
3105b86a 1871#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1872void set_numabalancing_state(bool enabled)
1873{
1874 if (enabled)
1875 sched_feat_set("NUMA");
1876 else
1877 sched_feat_set("NO_NUMA");
1878}
3105b86a
MG
1879#else
1880__read_mostly bool numabalancing_enabled;
1881
1882void set_numabalancing_state(bool enabled)
1883{
1884 numabalancing_enabled = enabled;
dd41f596 1885}
3105b86a 1886#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1887
1888#ifdef CONFIG_PROC_SYSCTL
1889int sysctl_numa_balancing(struct ctl_table *table, int write,
1890 void __user *buffer, size_t *lenp, loff_t *ppos)
1891{
1892 struct ctl_table t;
1893 int err;
1894 int state = numabalancing_enabled;
1895
1896 if (write && !capable(CAP_SYS_ADMIN))
1897 return -EPERM;
1898
1899 t = *table;
1900 t.data = &state;
1901 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1902 if (err < 0)
1903 return err;
1904 if (write)
1905 set_numabalancing_state(state);
1906 return err;
1907}
1908#endif
1909#endif
dd41f596
IM
1910
1911/*
1912 * fork()/clone()-time setup:
1913 */
aab03e05 1914int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1915{
0122ec5b 1916 unsigned long flags;
dd41f596
IM
1917 int cpu = get_cpu();
1918
5e1576ed 1919 __sched_fork(clone_flags, p);
06b83b5f 1920 /*
0017d735 1921 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1922 * nobody will actually run it, and a signal or other external
1923 * event cannot wake it up and insert it on the runqueue either.
1924 */
0017d735 1925 p->state = TASK_RUNNING;
dd41f596 1926
c350a04e
MG
1927 /*
1928 * Make sure we do not leak PI boosting priority to the child.
1929 */
1930 p->prio = current->normal_prio;
1931
b9dc29e7
MG
1932 /*
1933 * Revert to default priority/policy on fork if requested.
1934 */
1935 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1936 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1937 p->policy = SCHED_NORMAL;
6c697bdf 1938 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1939 p->rt_priority = 0;
1940 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1941 p->static_prio = NICE_TO_PRIO(0);
1942
1943 p->prio = p->normal_prio = __normal_prio(p);
1944 set_load_weight(p);
6c697bdf 1945
b9dc29e7
MG
1946 /*
1947 * We don't need the reset flag anymore after the fork. It has
1948 * fulfilled its duty:
1949 */
1950 p->sched_reset_on_fork = 0;
1951 }
ca94c442 1952
aab03e05
DF
1953 if (dl_prio(p->prio)) {
1954 put_cpu();
1955 return -EAGAIN;
1956 } else if (rt_prio(p->prio)) {
1957 p->sched_class = &rt_sched_class;
1958 } else {
2ddbf952 1959 p->sched_class = &fair_sched_class;
aab03e05 1960 }
b29739f9 1961
cd29fe6f
PZ
1962 if (p->sched_class->task_fork)
1963 p->sched_class->task_fork(p);
1964
86951599
PZ
1965 /*
1966 * The child is not yet in the pid-hash so no cgroup attach races,
1967 * and the cgroup is pinned to this child due to cgroup_fork()
1968 * is ran before sched_fork().
1969 *
1970 * Silence PROVE_RCU.
1971 */
0122ec5b 1972 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1973 set_task_cpu(p, cpu);
0122ec5b 1974 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1975
52f17b6c 1976#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1977 if (likely(sched_info_on()))
52f17b6c 1978 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1979#endif
3ca7a440
PZ
1980#if defined(CONFIG_SMP)
1981 p->on_cpu = 0;
4866cde0 1982#endif
01028747 1983 init_task_preempt_count(p);
806c09a7 1984#ifdef CONFIG_SMP
917b627d 1985 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1986 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1987#endif
917b627d 1988
476d139c 1989 put_cpu();
aab03e05 1990 return 0;
1da177e4
LT
1991}
1992
332ac17e
DF
1993unsigned long to_ratio(u64 period, u64 runtime)
1994{
1995 if (runtime == RUNTIME_INF)
1996 return 1ULL << 20;
1997
1998 /*
1999 * Doing this here saves a lot of checks in all
2000 * the calling paths, and returning zero seems
2001 * safe for them anyway.
2002 */
2003 if (period == 0)
2004 return 0;
2005
2006 return div64_u64(runtime << 20, period);
2007}
2008
2009#ifdef CONFIG_SMP
2010inline struct dl_bw *dl_bw_of(int i)
2011{
66339c31
KT
2012 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2013 "sched RCU must be held");
332ac17e
DF
2014 return &cpu_rq(i)->rd->dl_bw;
2015}
2016
de212f18 2017static inline int dl_bw_cpus(int i)
332ac17e 2018{
de212f18
PZ
2019 struct root_domain *rd = cpu_rq(i)->rd;
2020 int cpus = 0;
2021
66339c31
KT
2022 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2023 "sched RCU must be held");
de212f18
PZ
2024 for_each_cpu_and(i, rd->span, cpu_active_mask)
2025 cpus++;
2026
2027 return cpus;
332ac17e
DF
2028}
2029#else
2030inline struct dl_bw *dl_bw_of(int i)
2031{
2032 return &cpu_rq(i)->dl.dl_bw;
2033}
2034
de212f18 2035static inline int dl_bw_cpus(int i)
332ac17e
DF
2036{
2037 return 1;
2038}
2039#endif
2040
332ac17e
DF
2041/*
2042 * We must be sure that accepting a new task (or allowing changing the
2043 * parameters of an existing one) is consistent with the bandwidth
2044 * constraints. If yes, this function also accordingly updates the currently
2045 * allocated bandwidth to reflect the new situation.
2046 *
2047 * This function is called while holding p's rq->lock.
2048 */
2049static int dl_overflow(struct task_struct *p, int policy,
2050 const struct sched_attr *attr)
2051{
2052
2053 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2054 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2055 u64 runtime = attr->sched_runtime;
2056 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2057 int cpus, err = -1;
332ac17e
DF
2058
2059 if (new_bw == p->dl.dl_bw)
2060 return 0;
2061
2062 /*
2063 * Either if a task, enters, leave, or stays -deadline but changes
2064 * its parameters, we may need to update accordingly the total
2065 * allocated bandwidth of the container.
2066 */
2067 raw_spin_lock(&dl_b->lock);
de212f18 2068 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2069 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2070 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2071 __dl_add(dl_b, new_bw);
2072 err = 0;
2073 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2074 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2075 __dl_clear(dl_b, p->dl.dl_bw);
2076 __dl_add(dl_b, new_bw);
2077 err = 0;
2078 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2079 __dl_clear(dl_b, p->dl.dl_bw);
2080 err = 0;
2081 }
2082 raw_spin_unlock(&dl_b->lock);
2083
2084 return err;
2085}
2086
2087extern void init_dl_bw(struct dl_bw *dl_b);
2088
1da177e4
LT
2089/*
2090 * wake_up_new_task - wake up a newly created task for the first time.
2091 *
2092 * This function will do some initial scheduler statistics housekeeping
2093 * that must be done for every newly created context, then puts the task
2094 * on the runqueue and wakes it.
2095 */
3e51e3ed 2096void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2097{
2098 unsigned long flags;
dd41f596 2099 struct rq *rq;
fabf318e 2100
ab2515c4 2101 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2102#ifdef CONFIG_SMP
2103 /*
2104 * Fork balancing, do it here and not earlier because:
2105 * - cpus_allowed can change in the fork path
2106 * - any previously selected cpu might disappear through hotplug
fabf318e 2107 */
ac66f547 2108 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2109#endif
2110
a75cdaa9
AS
2111 /* Initialize new task's runnable average */
2112 init_task_runnable_average(p);
ab2515c4 2113 rq = __task_rq_lock(p);
cd29fe6f 2114 activate_task(rq, p, 0);
da0c1e65 2115 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2116 trace_sched_wakeup_new(p, true);
a7558e01 2117 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2118#ifdef CONFIG_SMP
efbbd05a
PZ
2119 if (p->sched_class->task_woken)
2120 p->sched_class->task_woken(rq, p);
9a897c5a 2121#endif
0122ec5b 2122 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2123}
2124
e107be36
AK
2125#ifdef CONFIG_PREEMPT_NOTIFIERS
2126
2127/**
80dd99b3 2128 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2129 * @notifier: notifier struct to register
e107be36
AK
2130 */
2131void preempt_notifier_register(struct preempt_notifier *notifier)
2132{
2133 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2134}
2135EXPORT_SYMBOL_GPL(preempt_notifier_register);
2136
2137/**
2138 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2139 * @notifier: notifier struct to unregister
e107be36
AK
2140 *
2141 * This is safe to call from within a preemption notifier.
2142 */
2143void preempt_notifier_unregister(struct preempt_notifier *notifier)
2144{
2145 hlist_del(&notifier->link);
2146}
2147EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2148
2149static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2150{
2151 struct preempt_notifier *notifier;
e107be36 2152
b67bfe0d 2153 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2154 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2155}
2156
2157static void
2158fire_sched_out_preempt_notifiers(struct task_struct *curr,
2159 struct task_struct *next)
2160{
2161 struct preempt_notifier *notifier;
e107be36 2162
b67bfe0d 2163 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2164 notifier->ops->sched_out(notifier, next);
2165}
2166
6d6bc0ad 2167#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2168
2169static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2170{
2171}
2172
2173static void
2174fire_sched_out_preempt_notifiers(struct task_struct *curr,
2175 struct task_struct *next)
2176{
2177}
2178
6d6bc0ad 2179#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2180
4866cde0
NP
2181/**
2182 * prepare_task_switch - prepare to switch tasks
2183 * @rq: the runqueue preparing to switch
421cee29 2184 * @prev: the current task that is being switched out
4866cde0
NP
2185 * @next: the task we are going to switch to.
2186 *
2187 * This is called with the rq lock held and interrupts off. It must
2188 * be paired with a subsequent finish_task_switch after the context
2189 * switch.
2190 *
2191 * prepare_task_switch sets up locking and calls architecture specific
2192 * hooks.
2193 */
e107be36
AK
2194static inline void
2195prepare_task_switch(struct rq *rq, struct task_struct *prev,
2196 struct task_struct *next)
4866cde0 2197{
895dd92c 2198 trace_sched_switch(prev, next);
43148951 2199 sched_info_switch(rq, prev, next);
fe4b04fa 2200 perf_event_task_sched_out(prev, next);
e107be36 2201 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2202 prepare_lock_switch(rq, next);
2203 prepare_arch_switch(next);
2204}
2205
1da177e4
LT
2206/**
2207 * finish_task_switch - clean up after a task-switch
2208 * @prev: the thread we just switched away from.
2209 *
4866cde0
NP
2210 * finish_task_switch must be called after the context switch, paired
2211 * with a prepare_task_switch call before the context switch.
2212 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2213 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2214 *
2215 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2216 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2217 * with the lock held can cause deadlocks; see schedule() for
2218 * details.)
dfa50b60
ON
2219 *
2220 * The context switch have flipped the stack from under us and restored the
2221 * local variables which were saved when this task called schedule() in the
2222 * past. prev == current is still correct but we need to recalculate this_rq
2223 * because prev may have moved to another CPU.
1da177e4 2224 */
dfa50b60 2225static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2226 __releases(rq->lock)
2227{
dfa50b60 2228 struct rq *rq = this_rq();
1da177e4 2229 struct mm_struct *mm = rq->prev_mm;
55a101f8 2230 long prev_state;
1da177e4
LT
2231
2232 rq->prev_mm = NULL;
2233
2234 /*
2235 * A task struct has one reference for the use as "current".
c394cc9f 2236 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2237 * schedule one last time. The schedule call will never return, and
2238 * the scheduled task must drop that reference.
c394cc9f 2239 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2240 * still held, otherwise prev could be scheduled on another cpu, die
2241 * there before we look at prev->state, and then the reference would
2242 * be dropped twice.
2243 * Manfred Spraul <manfred@colorfullife.com>
2244 */
55a101f8 2245 prev_state = prev->state;
bf9fae9f 2246 vtime_task_switch(prev);
4866cde0 2247 finish_arch_switch(prev);
a8d757ef 2248 perf_event_task_sched_in(prev, current);
4866cde0 2249 finish_lock_switch(rq, prev);
01f23e16 2250 finish_arch_post_lock_switch();
e8fa1362 2251
e107be36 2252 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2253 if (mm)
2254 mmdrop(mm);
c394cc9f 2255 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2256 if (prev->sched_class->task_dead)
2257 prev->sched_class->task_dead(prev);
2258
c6fd91f0 2259 /*
2260 * Remove function-return probe instances associated with this
2261 * task and put them back on the free list.
9761eea8 2262 */
c6fd91f0 2263 kprobe_flush_task(prev);
1da177e4 2264 put_task_struct(prev);
c6fd91f0 2265 }
99e5ada9
FW
2266
2267 tick_nohz_task_switch(current);
dfa50b60 2268 return rq;
1da177e4
LT
2269}
2270
3f029d3c
GH
2271#ifdef CONFIG_SMP
2272
3f029d3c
GH
2273/* rq->lock is NOT held, but preemption is disabled */
2274static inline void post_schedule(struct rq *rq)
2275{
2276 if (rq->post_schedule) {
2277 unsigned long flags;
2278
05fa785c 2279 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2280 if (rq->curr->sched_class->post_schedule)
2281 rq->curr->sched_class->post_schedule(rq);
05fa785c 2282 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2283
2284 rq->post_schedule = 0;
2285 }
2286}
2287
2288#else
da19ab51 2289
3f029d3c
GH
2290static inline void post_schedule(struct rq *rq)
2291{
1da177e4
LT
2292}
2293
3f029d3c
GH
2294#endif
2295
1da177e4
LT
2296/**
2297 * schedule_tail - first thing a freshly forked thread must call.
2298 * @prev: the thread we just switched away from.
2299 */
722a9f92 2300asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2301 __releases(rq->lock)
2302{
1a43a14a 2303 struct rq *rq;
70b97a7f 2304
1a43a14a
ON
2305 /* finish_task_switch() drops rq->lock and enables preemtion */
2306 preempt_disable();
dfa50b60 2307 rq = finish_task_switch(prev);
3f029d3c 2308 post_schedule(rq);
1a43a14a 2309 preempt_enable();
70b97a7f 2310
1da177e4 2311 if (current->set_child_tid)
b488893a 2312 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2313}
2314
2315/*
dfa50b60 2316 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2317 */
dfa50b60 2318static inline struct rq *
70b97a7f 2319context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2320 struct task_struct *next)
1da177e4 2321{
dd41f596 2322 struct mm_struct *mm, *oldmm;
1da177e4 2323
e107be36 2324 prepare_task_switch(rq, prev, next);
fe4b04fa 2325
dd41f596
IM
2326 mm = next->mm;
2327 oldmm = prev->active_mm;
9226d125
ZA
2328 /*
2329 * For paravirt, this is coupled with an exit in switch_to to
2330 * combine the page table reload and the switch backend into
2331 * one hypercall.
2332 */
224101ed 2333 arch_start_context_switch(prev);
9226d125 2334
31915ab4 2335 if (!mm) {
1da177e4
LT
2336 next->active_mm = oldmm;
2337 atomic_inc(&oldmm->mm_count);
2338 enter_lazy_tlb(oldmm, next);
2339 } else
2340 switch_mm(oldmm, mm, next);
2341
31915ab4 2342 if (!prev->mm) {
1da177e4 2343 prev->active_mm = NULL;
1da177e4
LT
2344 rq->prev_mm = oldmm;
2345 }
3a5f5e48
IM
2346 /*
2347 * Since the runqueue lock will be released by the next
2348 * task (which is an invalid locking op but in the case
2349 * of the scheduler it's an obvious special-case), so we
2350 * do an early lockdep release here:
2351 */
8a25d5de 2352 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2353
91d1aa43 2354 context_tracking_task_switch(prev, next);
1da177e4
LT
2355 /* Here we just switch the register state and the stack. */
2356 switch_to(prev, next, prev);
dd41f596 2357 barrier();
dfa50b60
ON
2358
2359 return finish_task_switch(prev);
1da177e4
LT
2360}
2361
2362/*
1c3e8264 2363 * nr_running and nr_context_switches:
1da177e4
LT
2364 *
2365 * externally visible scheduler statistics: current number of runnable
1c3e8264 2366 * threads, total number of context switches performed since bootup.
1da177e4
LT
2367 */
2368unsigned long nr_running(void)
2369{
2370 unsigned long i, sum = 0;
2371
2372 for_each_online_cpu(i)
2373 sum += cpu_rq(i)->nr_running;
2374
2375 return sum;
f711f609 2376}
1da177e4 2377
2ee507c4
TC
2378/*
2379 * Check if only the current task is running on the cpu.
2380 */
2381bool single_task_running(void)
2382{
2383 if (cpu_rq(smp_processor_id())->nr_running == 1)
2384 return true;
2385 else
2386 return false;
2387}
2388EXPORT_SYMBOL(single_task_running);
2389
1da177e4 2390unsigned long long nr_context_switches(void)
46cb4b7c 2391{
cc94abfc
SR
2392 int i;
2393 unsigned long long sum = 0;
46cb4b7c 2394
0a945022 2395 for_each_possible_cpu(i)
1da177e4 2396 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2397
1da177e4
LT
2398 return sum;
2399}
483b4ee6 2400
1da177e4
LT
2401unsigned long nr_iowait(void)
2402{
2403 unsigned long i, sum = 0;
483b4ee6 2404
0a945022 2405 for_each_possible_cpu(i)
1da177e4 2406 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2407
1da177e4
LT
2408 return sum;
2409}
483b4ee6 2410
8c215bd3 2411unsigned long nr_iowait_cpu(int cpu)
69d25870 2412{
8c215bd3 2413 struct rq *this = cpu_rq(cpu);
69d25870
AV
2414 return atomic_read(&this->nr_iowait);
2415}
46cb4b7c 2416
372ba8cb
MG
2417void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2418{
2419 struct rq *this = this_rq();
2420 *nr_waiters = atomic_read(&this->nr_iowait);
2421 *load = this->cpu_load[0];
2422}
2423
dd41f596 2424#ifdef CONFIG_SMP
8a0be9ef 2425
46cb4b7c 2426/*
38022906
PZ
2427 * sched_exec - execve() is a valuable balancing opportunity, because at
2428 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2429 */
38022906 2430void sched_exec(void)
46cb4b7c 2431{
38022906 2432 struct task_struct *p = current;
1da177e4 2433 unsigned long flags;
0017d735 2434 int dest_cpu;
46cb4b7c 2435
8f42ced9 2436 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2437 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2438 if (dest_cpu == smp_processor_id())
2439 goto unlock;
38022906 2440
8f42ced9 2441 if (likely(cpu_active(dest_cpu))) {
969c7921 2442 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2443
8f42ced9
PZ
2444 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2445 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2446 return;
2447 }
0017d735 2448unlock:
8f42ced9 2449 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2450}
dd41f596 2451
1da177e4
LT
2452#endif
2453
1da177e4 2454DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2455DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2456
2457EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2458EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2459
2460/*
c5f8d995 2461 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2462 * @p in case that task is currently running.
c5f8d995
HS
2463 *
2464 * Called with task_rq_lock() held on @rq.
1da177e4 2465 */
c5f8d995
HS
2466static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2467{
2468 u64 ns = 0;
2469
4036ac15
MG
2470 /*
2471 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2472 * project cycles that may never be accounted to this
2473 * thread, breaking clock_gettime().
2474 */
da0c1e65 2475 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2476 update_rq_clock(rq);
78becc27 2477 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2478 if ((s64)ns < 0)
2479 ns = 0;
2480 }
2481
2482 return ns;
2483}
2484
bb34d92f 2485unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2486{
1da177e4 2487 unsigned long flags;
41b86e9c 2488 struct rq *rq;
bb34d92f 2489 u64 ns = 0;
48f24c4d 2490
41b86e9c 2491 rq = task_rq_lock(p, &flags);
c5f8d995 2492 ns = do_task_delta_exec(p, rq);
0122ec5b 2493 task_rq_unlock(rq, p, &flags);
1508487e 2494
c5f8d995
HS
2495 return ns;
2496}
f06febc9 2497
c5f8d995
HS
2498/*
2499 * Return accounted runtime for the task.
2500 * In case the task is currently running, return the runtime plus current's
2501 * pending runtime that have not been accounted yet.
2502 */
2503unsigned long long task_sched_runtime(struct task_struct *p)
2504{
2505 unsigned long flags;
2506 struct rq *rq;
2507 u64 ns = 0;
2508
911b2898
PZ
2509#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2510 /*
2511 * 64-bit doesn't need locks to atomically read a 64bit value.
2512 * So we have a optimization chance when the task's delta_exec is 0.
2513 * Reading ->on_cpu is racy, but this is ok.
2514 *
2515 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2516 * If we race with it entering cpu, unaccounted time is 0. This is
2517 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2518 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2519 * been accounted, so we're correct here as well.
911b2898 2520 */
da0c1e65 2521 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2522 return p->se.sum_exec_runtime;
2523#endif
2524
c5f8d995
HS
2525 rq = task_rq_lock(p, &flags);
2526 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2527 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2528
2529 return ns;
2530}
48f24c4d 2531
7835b98b
CL
2532/*
2533 * This function gets called by the timer code, with HZ frequency.
2534 * We call it with interrupts disabled.
7835b98b
CL
2535 */
2536void scheduler_tick(void)
2537{
7835b98b
CL
2538 int cpu = smp_processor_id();
2539 struct rq *rq = cpu_rq(cpu);
dd41f596 2540 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2541
2542 sched_clock_tick();
dd41f596 2543
05fa785c 2544 raw_spin_lock(&rq->lock);
3e51f33f 2545 update_rq_clock(rq);
fa85ae24 2546 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2547 update_cpu_load_active(rq);
05fa785c 2548 raw_spin_unlock(&rq->lock);
7835b98b 2549
e9d2b064 2550 perf_event_task_tick();
e220d2dc 2551
e418e1c2 2552#ifdef CONFIG_SMP
6eb57e0d 2553 rq->idle_balance = idle_cpu(cpu);
7caff66f 2554 trigger_load_balance(rq);
e418e1c2 2555#endif
265f22a9 2556 rq_last_tick_reset(rq);
1da177e4
LT
2557}
2558
265f22a9
FW
2559#ifdef CONFIG_NO_HZ_FULL
2560/**
2561 * scheduler_tick_max_deferment
2562 *
2563 * Keep at least one tick per second when a single
2564 * active task is running because the scheduler doesn't
2565 * yet completely support full dynticks environment.
2566 *
2567 * This makes sure that uptime, CFS vruntime, load
2568 * balancing, etc... continue to move forward, even
2569 * with a very low granularity.
e69f6186
YB
2570 *
2571 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2572 */
2573u64 scheduler_tick_max_deferment(void)
2574{
2575 struct rq *rq = this_rq();
2576 unsigned long next, now = ACCESS_ONCE(jiffies);
2577
2578 next = rq->last_sched_tick + HZ;
2579
2580 if (time_before_eq(next, now))
2581 return 0;
2582
8fe8ff09 2583 return jiffies_to_nsecs(next - now);
1da177e4 2584}
265f22a9 2585#endif
1da177e4 2586
132380a0 2587notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2588{
2589 if (in_lock_functions(addr)) {
2590 addr = CALLER_ADDR2;
2591 if (in_lock_functions(addr))
2592 addr = CALLER_ADDR3;
2593 }
2594 return addr;
2595}
1da177e4 2596
7e49fcce
SR
2597#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2598 defined(CONFIG_PREEMPT_TRACER))
2599
edafe3a5 2600void preempt_count_add(int val)
1da177e4 2601{
6cd8a4bb 2602#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2603 /*
2604 * Underflow?
2605 */
9a11b49a
IM
2606 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2607 return;
6cd8a4bb 2608#endif
bdb43806 2609 __preempt_count_add(val);
6cd8a4bb 2610#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2611 /*
2612 * Spinlock count overflowing soon?
2613 */
33859f7f
MOS
2614 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2615 PREEMPT_MASK - 10);
6cd8a4bb 2616#endif
8f47b187
TG
2617 if (preempt_count() == val) {
2618 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2619#ifdef CONFIG_DEBUG_PREEMPT
2620 current->preempt_disable_ip = ip;
2621#endif
2622 trace_preempt_off(CALLER_ADDR0, ip);
2623 }
1da177e4 2624}
bdb43806 2625EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2626NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2627
edafe3a5 2628void preempt_count_sub(int val)
1da177e4 2629{
6cd8a4bb 2630#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2631 /*
2632 * Underflow?
2633 */
01e3eb82 2634 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2635 return;
1da177e4
LT
2636 /*
2637 * Is the spinlock portion underflowing?
2638 */
9a11b49a
IM
2639 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2640 !(preempt_count() & PREEMPT_MASK)))
2641 return;
6cd8a4bb 2642#endif
9a11b49a 2643
6cd8a4bb
SR
2644 if (preempt_count() == val)
2645 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2646 __preempt_count_sub(val);
1da177e4 2647}
bdb43806 2648EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2649NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2650
2651#endif
2652
2653/*
dd41f596 2654 * Print scheduling while atomic bug:
1da177e4 2655 */
dd41f596 2656static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2657{
664dfa65
DJ
2658 if (oops_in_progress)
2659 return;
2660
3df0fc5b
PZ
2661 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2662 prev->comm, prev->pid, preempt_count());
838225b4 2663
dd41f596 2664 debug_show_held_locks(prev);
e21f5b15 2665 print_modules();
dd41f596
IM
2666 if (irqs_disabled())
2667 print_irqtrace_events(prev);
8f47b187
TG
2668#ifdef CONFIG_DEBUG_PREEMPT
2669 if (in_atomic_preempt_off()) {
2670 pr_err("Preemption disabled at:");
2671 print_ip_sym(current->preempt_disable_ip);
2672 pr_cont("\n");
2673 }
2674#endif
6135fc1e 2675 dump_stack();
373d4d09 2676 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2677}
1da177e4 2678
dd41f596
IM
2679/*
2680 * Various schedule()-time debugging checks and statistics:
2681 */
2682static inline void schedule_debug(struct task_struct *prev)
2683{
0d9e2632
AT
2684#ifdef CONFIG_SCHED_STACK_END_CHECK
2685 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2686#endif
1da177e4 2687 /*
41a2d6cf 2688 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2689 * schedule() atomically, we ignore that path. Otherwise whine
2690 * if we are scheduling when we should not.
1da177e4 2691 */
192301e7 2692 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2693 __schedule_bug(prev);
b3fbab05 2694 rcu_sleep_check();
dd41f596 2695
1da177e4
LT
2696 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2697
2d72376b 2698 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2699}
2700
2701/*
2702 * Pick up the highest-prio task:
2703 */
2704static inline struct task_struct *
606dba2e 2705pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2706{
37e117c0 2707 const struct sched_class *class = &fair_sched_class;
dd41f596 2708 struct task_struct *p;
1da177e4
LT
2709
2710 /*
dd41f596
IM
2711 * Optimization: we know that if all tasks are in
2712 * the fair class we can call that function directly:
1da177e4 2713 */
37e117c0 2714 if (likely(prev->sched_class == class &&
38033c37 2715 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2716 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2717 if (unlikely(p == RETRY_TASK))
2718 goto again;
2719
2720 /* assumes fair_sched_class->next == idle_sched_class */
2721 if (unlikely(!p))
2722 p = idle_sched_class.pick_next_task(rq, prev);
2723
2724 return p;
1da177e4
LT
2725 }
2726
37e117c0 2727again:
34f971f6 2728 for_each_class(class) {
606dba2e 2729 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2730 if (p) {
2731 if (unlikely(p == RETRY_TASK))
2732 goto again;
dd41f596 2733 return p;
37e117c0 2734 }
dd41f596 2735 }
34f971f6
PZ
2736
2737 BUG(); /* the idle class will always have a runnable task */
dd41f596 2738}
1da177e4 2739
dd41f596 2740/*
c259e01a 2741 * __schedule() is the main scheduler function.
edde96ea
PE
2742 *
2743 * The main means of driving the scheduler and thus entering this function are:
2744 *
2745 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2746 *
2747 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2748 * paths. For example, see arch/x86/entry_64.S.
2749 *
2750 * To drive preemption between tasks, the scheduler sets the flag in timer
2751 * interrupt handler scheduler_tick().
2752 *
2753 * 3. Wakeups don't really cause entry into schedule(). They add a
2754 * task to the run-queue and that's it.
2755 *
2756 * Now, if the new task added to the run-queue preempts the current
2757 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2758 * called on the nearest possible occasion:
2759 *
2760 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2761 *
2762 * - in syscall or exception context, at the next outmost
2763 * preempt_enable(). (this might be as soon as the wake_up()'s
2764 * spin_unlock()!)
2765 *
2766 * - in IRQ context, return from interrupt-handler to
2767 * preemptible context
2768 *
2769 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2770 * then at the next:
2771 *
2772 * - cond_resched() call
2773 * - explicit schedule() call
2774 * - return from syscall or exception to user-space
2775 * - return from interrupt-handler to user-space
dd41f596 2776 */
c259e01a 2777static void __sched __schedule(void)
dd41f596
IM
2778{
2779 struct task_struct *prev, *next;
67ca7bde 2780 unsigned long *switch_count;
dd41f596 2781 struct rq *rq;
31656519 2782 int cpu;
dd41f596 2783
ff743345
PZ
2784need_resched:
2785 preempt_disable();
dd41f596
IM
2786 cpu = smp_processor_id();
2787 rq = cpu_rq(cpu);
25502a6c 2788 rcu_note_context_switch(cpu);
dd41f596 2789 prev = rq->curr;
dd41f596 2790
dd41f596 2791 schedule_debug(prev);
1da177e4 2792
31656519 2793 if (sched_feat(HRTICK))
f333fdc9 2794 hrtick_clear(rq);
8f4d37ec 2795
e0acd0a6
ON
2796 /*
2797 * Make sure that signal_pending_state()->signal_pending() below
2798 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2799 * done by the caller to avoid the race with signal_wake_up().
2800 */
2801 smp_mb__before_spinlock();
05fa785c 2802 raw_spin_lock_irq(&rq->lock);
1da177e4 2803
246d86b5 2804 switch_count = &prev->nivcsw;
1da177e4 2805 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2806 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2807 prev->state = TASK_RUNNING;
21aa9af0 2808 } else {
2acca55e
PZ
2809 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2810 prev->on_rq = 0;
2811
21aa9af0 2812 /*
2acca55e
PZ
2813 * If a worker went to sleep, notify and ask workqueue
2814 * whether it wants to wake up a task to maintain
2815 * concurrency.
21aa9af0
TH
2816 */
2817 if (prev->flags & PF_WQ_WORKER) {
2818 struct task_struct *to_wakeup;
2819
2820 to_wakeup = wq_worker_sleeping(prev, cpu);
2821 if (to_wakeup)
2822 try_to_wake_up_local(to_wakeup);
2823 }
21aa9af0 2824 }
dd41f596 2825 switch_count = &prev->nvcsw;
1da177e4
LT
2826 }
2827
da0c1e65 2828 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2829 update_rq_clock(rq);
2830
2831 next = pick_next_task(rq, prev);
f26f9aff 2832 clear_tsk_need_resched(prev);
f27dde8d 2833 clear_preempt_need_resched();
f26f9aff 2834 rq->skip_clock_update = 0;
1da177e4 2835
1da177e4 2836 if (likely(prev != next)) {
1da177e4
LT
2837 rq->nr_switches++;
2838 rq->curr = next;
2839 ++*switch_count;
2840
dfa50b60
ON
2841 rq = context_switch(rq, prev, next); /* unlocks the rq */
2842 cpu = cpu_of(rq);
1da177e4 2843 } else
05fa785c 2844 raw_spin_unlock_irq(&rq->lock);
1da177e4 2845
3f029d3c 2846 post_schedule(rq);
1da177e4 2847
ba74c144 2848 sched_preempt_enable_no_resched();
ff743345 2849 if (need_resched())
1da177e4
LT
2850 goto need_resched;
2851}
c259e01a 2852
9c40cef2
TG
2853static inline void sched_submit_work(struct task_struct *tsk)
2854{
3c7d5184 2855 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2856 return;
2857 /*
2858 * If we are going to sleep and we have plugged IO queued,
2859 * make sure to submit it to avoid deadlocks.
2860 */
2861 if (blk_needs_flush_plug(tsk))
2862 blk_schedule_flush_plug(tsk);
2863}
2864
722a9f92 2865asmlinkage __visible void __sched schedule(void)
c259e01a 2866{
9c40cef2
TG
2867 struct task_struct *tsk = current;
2868
2869 sched_submit_work(tsk);
c259e01a
TG
2870 __schedule();
2871}
1da177e4
LT
2872EXPORT_SYMBOL(schedule);
2873
91d1aa43 2874#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2875asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2876{
2877 /*
2878 * If we come here after a random call to set_need_resched(),
2879 * or we have been woken up remotely but the IPI has not yet arrived,
2880 * we haven't yet exited the RCU idle mode. Do it here manually until
2881 * we find a better solution.
2882 */
91d1aa43 2883 user_exit();
20ab65e3 2884 schedule();
91d1aa43 2885 user_enter();
20ab65e3
FW
2886}
2887#endif
2888
c5491ea7
TG
2889/**
2890 * schedule_preempt_disabled - called with preemption disabled
2891 *
2892 * Returns with preemption disabled. Note: preempt_count must be 1
2893 */
2894void __sched schedule_preempt_disabled(void)
2895{
ba74c144 2896 sched_preempt_enable_no_resched();
c5491ea7
TG
2897 schedule();
2898 preempt_disable();
2899}
2900
1da177e4
LT
2901#ifdef CONFIG_PREEMPT
2902/*
2ed6e34f 2903 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2904 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2905 * occur there and call schedule directly.
2906 */
722a9f92 2907asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2908{
1da177e4
LT
2909 /*
2910 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2911 * we do not want to preempt the current task. Just return..
1da177e4 2912 */
fbb00b56 2913 if (likely(!preemptible()))
1da177e4
LT
2914 return;
2915
3a5c359a 2916 do {
bdb43806 2917 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2918 __schedule();
bdb43806 2919 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2920
3a5c359a
AK
2921 /*
2922 * Check again in case we missed a preemption opportunity
2923 * between schedule and now.
2924 */
2925 barrier();
5ed0cec0 2926 } while (need_resched());
1da177e4 2927}
376e2424 2928NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2929EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2930
2931#ifdef CONFIG_CONTEXT_TRACKING
2932/**
2933 * preempt_schedule_context - preempt_schedule called by tracing
2934 *
2935 * The tracing infrastructure uses preempt_enable_notrace to prevent
2936 * recursion and tracing preempt enabling caused by the tracing
2937 * infrastructure itself. But as tracing can happen in areas coming
2938 * from userspace or just about to enter userspace, a preempt enable
2939 * can occur before user_exit() is called. This will cause the scheduler
2940 * to be called when the system is still in usermode.
2941 *
2942 * To prevent this, the preempt_enable_notrace will use this function
2943 * instead of preempt_schedule() to exit user context if needed before
2944 * calling the scheduler.
2945 */
2946asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2947{
2948 enum ctx_state prev_ctx;
2949
2950 if (likely(!preemptible()))
2951 return;
2952
2953 do {
2954 __preempt_count_add(PREEMPT_ACTIVE);
2955 /*
2956 * Needs preempt disabled in case user_exit() is traced
2957 * and the tracer calls preempt_enable_notrace() causing
2958 * an infinite recursion.
2959 */
2960 prev_ctx = exception_enter();
2961 __schedule();
2962 exception_exit(prev_ctx);
2963
2964 __preempt_count_sub(PREEMPT_ACTIVE);
2965 barrier();
2966 } while (need_resched());
2967}
2968EXPORT_SYMBOL_GPL(preempt_schedule_context);
2969#endif /* CONFIG_CONTEXT_TRACKING */
2970
32e475d7 2971#endif /* CONFIG_PREEMPT */
1da177e4
LT
2972
2973/*
2ed6e34f 2974 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2975 * off of irq context.
2976 * Note, that this is called and return with irqs disabled. This will
2977 * protect us against recursive calling from irq.
2978 */
722a9f92 2979asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2980{
b22366cd 2981 enum ctx_state prev_state;
6478d880 2982
2ed6e34f 2983 /* Catch callers which need to be fixed */
f27dde8d 2984 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2985
b22366cd
FW
2986 prev_state = exception_enter();
2987
3a5c359a 2988 do {
bdb43806 2989 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2990 local_irq_enable();
c259e01a 2991 __schedule();
3a5c359a 2992 local_irq_disable();
bdb43806 2993 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2994
3a5c359a
AK
2995 /*
2996 * Check again in case we missed a preemption opportunity
2997 * between schedule and now.
2998 */
2999 barrier();
5ed0cec0 3000 } while (need_resched());
b22366cd
FW
3001
3002 exception_exit(prev_state);
1da177e4
LT
3003}
3004
63859d4f 3005int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3006 void *key)
1da177e4 3007{
63859d4f 3008 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3009}
1da177e4
LT
3010EXPORT_SYMBOL(default_wake_function);
3011
b29739f9
IM
3012#ifdef CONFIG_RT_MUTEXES
3013
3014/*
3015 * rt_mutex_setprio - set the current priority of a task
3016 * @p: task
3017 * @prio: prio value (kernel-internal form)
3018 *
3019 * This function changes the 'effective' priority of a task. It does
3020 * not touch ->normal_prio like __setscheduler().
3021 *
c365c292
TG
3022 * Used by the rt_mutex code to implement priority inheritance
3023 * logic. Call site only calls if the priority of the task changed.
b29739f9 3024 */
36c8b586 3025void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3026{
da0c1e65 3027 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3028 struct rq *rq;
83ab0aa0 3029 const struct sched_class *prev_class;
b29739f9 3030
aab03e05 3031 BUG_ON(prio > MAX_PRIO);
b29739f9 3032
0122ec5b 3033 rq = __task_rq_lock(p);
b29739f9 3034
1c4dd99b
TG
3035 /*
3036 * Idle task boosting is a nono in general. There is one
3037 * exception, when PREEMPT_RT and NOHZ is active:
3038 *
3039 * The idle task calls get_next_timer_interrupt() and holds
3040 * the timer wheel base->lock on the CPU and another CPU wants
3041 * to access the timer (probably to cancel it). We can safely
3042 * ignore the boosting request, as the idle CPU runs this code
3043 * with interrupts disabled and will complete the lock
3044 * protected section without being interrupted. So there is no
3045 * real need to boost.
3046 */
3047 if (unlikely(p == rq->idle)) {
3048 WARN_ON(p != rq->curr);
3049 WARN_ON(p->pi_blocked_on);
3050 goto out_unlock;
3051 }
3052
a8027073 3053 trace_sched_pi_setprio(p, prio);
d5f9f942 3054 oldprio = p->prio;
83ab0aa0 3055 prev_class = p->sched_class;
da0c1e65 3056 queued = task_on_rq_queued(p);
051a1d1a 3057 running = task_current(rq, p);
da0c1e65 3058 if (queued)
69be72c1 3059 dequeue_task(rq, p, 0);
0e1f3483 3060 if (running)
f3cd1c4e 3061 put_prev_task(rq, p);
dd41f596 3062
2d3d891d
DF
3063 /*
3064 * Boosting condition are:
3065 * 1. -rt task is running and holds mutex A
3066 * --> -dl task blocks on mutex A
3067 *
3068 * 2. -dl task is running and holds mutex A
3069 * --> -dl task blocks on mutex A and could preempt the
3070 * running task
3071 */
3072 if (dl_prio(prio)) {
466af29b
ON
3073 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3074 if (!dl_prio(p->normal_prio) ||
3075 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3076 p->dl.dl_boosted = 1;
3077 p->dl.dl_throttled = 0;
3078 enqueue_flag = ENQUEUE_REPLENISH;
3079 } else
3080 p->dl.dl_boosted = 0;
aab03e05 3081 p->sched_class = &dl_sched_class;
2d3d891d
DF
3082 } else if (rt_prio(prio)) {
3083 if (dl_prio(oldprio))
3084 p->dl.dl_boosted = 0;
3085 if (oldprio < prio)
3086 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3087 p->sched_class = &rt_sched_class;
2d3d891d
DF
3088 } else {
3089 if (dl_prio(oldprio))
3090 p->dl.dl_boosted = 0;
dd41f596 3091 p->sched_class = &fair_sched_class;
2d3d891d 3092 }
dd41f596 3093
b29739f9
IM
3094 p->prio = prio;
3095
0e1f3483
HS
3096 if (running)
3097 p->sched_class->set_curr_task(rq);
da0c1e65 3098 if (queued)
2d3d891d 3099 enqueue_task(rq, p, enqueue_flag);
cb469845 3100
da7a735e 3101 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3102out_unlock:
0122ec5b 3103 __task_rq_unlock(rq);
b29739f9 3104}
b29739f9 3105#endif
d50dde5a 3106
36c8b586 3107void set_user_nice(struct task_struct *p, long nice)
1da177e4 3108{
da0c1e65 3109 int old_prio, delta, queued;
1da177e4 3110 unsigned long flags;
70b97a7f 3111 struct rq *rq;
1da177e4 3112
75e45d51 3113 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3114 return;
3115 /*
3116 * We have to be careful, if called from sys_setpriority(),
3117 * the task might be in the middle of scheduling on another CPU.
3118 */
3119 rq = task_rq_lock(p, &flags);
3120 /*
3121 * The RT priorities are set via sched_setscheduler(), but we still
3122 * allow the 'normal' nice value to be set - but as expected
3123 * it wont have any effect on scheduling until the task is
aab03e05 3124 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3125 */
aab03e05 3126 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3127 p->static_prio = NICE_TO_PRIO(nice);
3128 goto out_unlock;
3129 }
da0c1e65
KT
3130 queued = task_on_rq_queued(p);
3131 if (queued)
69be72c1 3132 dequeue_task(rq, p, 0);
1da177e4 3133
1da177e4 3134 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3135 set_load_weight(p);
b29739f9
IM
3136 old_prio = p->prio;
3137 p->prio = effective_prio(p);
3138 delta = p->prio - old_prio;
1da177e4 3139
da0c1e65 3140 if (queued) {
371fd7e7 3141 enqueue_task(rq, p, 0);
1da177e4 3142 /*
d5f9f942
AM
3143 * If the task increased its priority or is running and
3144 * lowered its priority, then reschedule its CPU:
1da177e4 3145 */
d5f9f942 3146 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3147 resched_curr(rq);
1da177e4
LT
3148 }
3149out_unlock:
0122ec5b 3150 task_rq_unlock(rq, p, &flags);
1da177e4 3151}
1da177e4
LT
3152EXPORT_SYMBOL(set_user_nice);
3153
e43379f1
MM
3154/*
3155 * can_nice - check if a task can reduce its nice value
3156 * @p: task
3157 * @nice: nice value
3158 */
36c8b586 3159int can_nice(const struct task_struct *p, const int nice)
e43379f1 3160{
024f4747 3161 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3162 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3163
78d7d407 3164 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3165 capable(CAP_SYS_NICE));
3166}
3167
1da177e4
LT
3168#ifdef __ARCH_WANT_SYS_NICE
3169
3170/*
3171 * sys_nice - change the priority of the current process.
3172 * @increment: priority increment
3173 *
3174 * sys_setpriority is a more generic, but much slower function that
3175 * does similar things.
3176 */
5add95d4 3177SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3178{
48f24c4d 3179 long nice, retval;
1da177e4
LT
3180
3181 /*
3182 * Setpriority might change our priority at the same moment.
3183 * We don't have to worry. Conceptually one call occurs first
3184 * and we have a single winner.
3185 */
a9467fa3 3186 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3187 nice = task_nice(current) + increment;
1da177e4 3188
a9467fa3 3189 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3190 if (increment < 0 && !can_nice(current, nice))
3191 return -EPERM;
3192
1da177e4
LT
3193 retval = security_task_setnice(current, nice);
3194 if (retval)
3195 return retval;
3196
3197 set_user_nice(current, nice);
3198 return 0;
3199}
3200
3201#endif
3202
3203/**
3204 * task_prio - return the priority value of a given task.
3205 * @p: the task in question.
3206 *
e69f6186 3207 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3208 * RT tasks are offset by -200. Normal tasks are centered
3209 * around 0, value goes from -16 to +15.
3210 */
36c8b586 3211int task_prio(const struct task_struct *p)
1da177e4
LT
3212{
3213 return p->prio - MAX_RT_PRIO;
3214}
3215
1da177e4
LT
3216/**
3217 * idle_cpu - is a given cpu idle currently?
3218 * @cpu: the processor in question.
e69f6186
YB
3219 *
3220 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3221 */
3222int idle_cpu(int cpu)
3223{
908a3283
TG
3224 struct rq *rq = cpu_rq(cpu);
3225
3226 if (rq->curr != rq->idle)
3227 return 0;
3228
3229 if (rq->nr_running)
3230 return 0;
3231
3232#ifdef CONFIG_SMP
3233 if (!llist_empty(&rq->wake_list))
3234 return 0;
3235#endif
3236
3237 return 1;
1da177e4
LT
3238}
3239
1da177e4
LT
3240/**
3241 * idle_task - return the idle task for a given cpu.
3242 * @cpu: the processor in question.
e69f6186
YB
3243 *
3244 * Return: The idle task for the cpu @cpu.
1da177e4 3245 */
36c8b586 3246struct task_struct *idle_task(int cpu)
1da177e4
LT
3247{
3248 return cpu_rq(cpu)->idle;
3249}
3250
3251/**
3252 * find_process_by_pid - find a process with a matching PID value.
3253 * @pid: the pid in question.
e69f6186
YB
3254 *
3255 * The task of @pid, if found. %NULL otherwise.
1da177e4 3256 */
a9957449 3257static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3258{
228ebcbe 3259 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3260}
3261
aab03e05
DF
3262/*
3263 * This function initializes the sched_dl_entity of a newly becoming
3264 * SCHED_DEADLINE task.
3265 *
3266 * Only the static values are considered here, the actual runtime and the
3267 * absolute deadline will be properly calculated when the task is enqueued
3268 * for the first time with its new policy.
3269 */
3270static void
3271__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3272{
3273 struct sched_dl_entity *dl_se = &p->dl;
3274
3275 init_dl_task_timer(dl_se);
3276 dl_se->dl_runtime = attr->sched_runtime;
3277 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3278 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3279 dl_se->flags = attr->sched_flags;
332ac17e 3280 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3281 dl_se->dl_throttled = 0;
3282 dl_se->dl_new = 1;
5bfd126e 3283 dl_se->dl_yielded = 0;
aab03e05
DF
3284}
3285
c13db6b1
SR
3286/*
3287 * sched_setparam() passes in -1 for its policy, to let the functions
3288 * it calls know not to change it.
3289 */
3290#define SETPARAM_POLICY -1
3291
c365c292
TG
3292static void __setscheduler_params(struct task_struct *p,
3293 const struct sched_attr *attr)
1da177e4 3294{
d50dde5a
DF
3295 int policy = attr->sched_policy;
3296
c13db6b1 3297 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3298 policy = p->policy;
3299
1da177e4 3300 p->policy = policy;
d50dde5a 3301
aab03e05
DF
3302 if (dl_policy(policy))
3303 __setparam_dl(p, attr);
39fd8fd2 3304 else if (fair_policy(policy))
d50dde5a
DF
3305 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3306
39fd8fd2
PZ
3307 /*
3308 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3309 * !rt_policy. Always setting this ensures that things like
3310 * getparam()/getattr() don't report silly values for !rt tasks.
3311 */
3312 p->rt_priority = attr->sched_priority;
383afd09 3313 p->normal_prio = normal_prio(p);
c365c292
TG
3314 set_load_weight(p);
3315}
39fd8fd2 3316
c365c292
TG
3317/* Actually do priority change: must hold pi & rq lock. */
3318static void __setscheduler(struct rq *rq, struct task_struct *p,
3319 const struct sched_attr *attr)
3320{
3321 __setscheduler_params(p, attr);
d50dde5a 3322
383afd09
SR
3323 /*
3324 * If we get here, there was no pi waiters boosting the
3325 * task. It is safe to use the normal prio.
3326 */
3327 p->prio = normal_prio(p);
3328
aab03e05
DF
3329 if (dl_prio(p->prio))
3330 p->sched_class = &dl_sched_class;
3331 else if (rt_prio(p->prio))
ffd44db5
PZ
3332 p->sched_class = &rt_sched_class;
3333 else
3334 p->sched_class = &fair_sched_class;
1da177e4 3335}
aab03e05
DF
3336
3337static void
3338__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3339{
3340 struct sched_dl_entity *dl_se = &p->dl;
3341
3342 attr->sched_priority = p->rt_priority;
3343 attr->sched_runtime = dl_se->dl_runtime;
3344 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3345 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3346 attr->sched_flags = dl_se->flags;
3347}
3348
3349/*
3350 * This function validates the new parameters of a -deadline task.
3351 * We ask for the deadline not being zero, and greater or equal
755378a4 3352 * than the runtime, as well as the period of being zero or
332ac17e 3353 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3354 * user parameters are above the internal resolution of 1us (we
3355 * check sched_runtime only since it is always the smaller one) and
3356 * below 2^63 ns (we have to check both sched_deadline and
3357 * sched_period, as the latter can be zero).
aab03e05
DF
3358 */
3359static bool
3360__checkparam_dl(const struct sched_attr *attr)
3361{
b0827819
JL
3362 /* deadline != 0 */
3363 if (attr->sched_deadline == 0)
3364 return false;
3365
3366 /*
3367 * Since we truncate DL_SCALE bits, make sure we're at least
3368 * that big.
3369 */
3370 if (attr->sched_runtime < (1ULL << DL_SCALE))
3371 return false;
3372
3373 /*
3374 * Since we use the MSB for wrap-around and sign issues, make
3375 * sure it's not set (mind that period can be equal to zero).
3376 */
3377 if (attr->sched_deadline & (1ULL << 63) ||
3378 attr->sched_period & (1ULL << 63))
3379 return false;
3380
3381 /* runtime <= deadline <= period (if period != 0) */
3382 if ((attr->sched_period != 0 &&
3383 attr->sched_period < attr->sched_deadline) ||
3384 attr->sched_deadline < attr->sched_runtime)
3385 return false;
3386
3387 return true;
aab03e05
DF
3388}
3389
c69e8d9c
DH
3390/*
3391 * check the target process has a UID that matches the current process's
3392 */
3393static bool check_same_owner(struct task_struct *p)
3394{
3395 const struct cred *cred = current_cred(), *pcred;
3396 bool match;
3397
3398 rcu_read_lock();
3399 pcred = __task_cred(p);
9c806aa0
EB
3400 match = (uid_eq(cred->euid, pcred->euid) ||
3401 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3402 rcu_read_unlock();
3403 return match;
3404}
3405
d50dde5a
DF
3406static int __sched_setscheduler(struct task_struct *p,
3407 const struct sched_attr *attr,
3408 bool user)
1da177e4 3409{
383afd09
SR
3410 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3411 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3412 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3413 int policy = attr->sched_policy;
1da177e4 3414 unsigned long flags;
83ab0aa0 3415 const struct sched_class *prev_class;
70b97a7f 3416 struct rq *rq;
ca94c442 3417 int reset_on_fork;
1da177e4 3418
66e5393a
SR
3419 /* may grab non-irq protected spin_locks */
3420 BUG_ON(in_interrupt());
1da177e4
LT
3421recheck:
3422 /* double check policy once rq lock held */
ca94c442
LP
3423 if (policy < 0) {
3424 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3425 policy = oldpolicy = p->policy;
ca94c442 3426 } else {
7479f3c9 3427 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3428
aab03e05
DF
3429 if (policy != SCHED_DEADLINE &&
3430 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3431 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3432 policy != SCHED_IDLE)
3433 return -EINVAL;
3434 }
3435
7479f3c9
PZ
3436 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3437 return -EINVAL;
3438
1da177e4
LT
3439 /*
3440 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3441 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3442 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3443 */
0bb040a4 3444 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3445 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3446 return -EINVAL;
aab03e05
DF
3447 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3448 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3449 return -EINVAL;
3450
37e4ab3f
OC
3451 /*
3452 * Allow unprivileged RT tasks to decrease priority:
3453 */
961ccddd 3454 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3455 if (fair_policy(policy)) {
d0ea0268 3456 if (attr->sched_nice < task_nice(p) &&
eaad4513 3457 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3458 return -EPERM;
3459 }
3460
e05606d3 3461 if (rt_policy(policy)) {
a44702e8
ON
3462 unsigned long rlim_rtprio =
3463 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3464
3465 /* can't set/change the rt policy */
3466 if (policy != p->policy && !rlim_rtprio)
3467 return -EPERM;
3468
3469 /* can't increase priority */
d50dde5a
DF
3470 if (attr->sched_priority > p->rt_priority &&
3471 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3472 return -EPERM;
3473 }
c02aa73b 3474
d44753b8
JL
3475 /*
3476 * Can't set/change SCHED_DEADLINE policy at all for now
3477 * (safest behavior); in the future we would like to allow
3478 * unprivileged DL tasks to increase their relative deadline
3479 * or reduce their runtime (both ways reducing utilization)
3480 */
3481 if (dl_policy(policy))
3482 return -EPERM;
3483
dd41f596 3484 /*
c02aa73b
DH
3485 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3486 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3487 */
c02aa73b 3488 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3489 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3490 return -EPERM;
3491 }
5fe1d75f 3492
37e4ab3f 3493 /* can't change other user's priorities */
c69e8d9c 3494 if (!check_same_owner(p))
37e4ab3f 3495 return -EPERM;
ca94c442
LP
3496
3497 /* Normal users shall not reset the sched_reset_on_fork flag */
3498 if (p->sched_reset_on_fork && !reset_on_fork)
3499 return -EPERM;
37e4ab3f 3500 }
1da177e4 3501
725aad24 3502 if (user) {
b0ae1981 3503 retval = security_task_setscheduler(p);
725aad24
JF
3504 if (retval)
3505 return retval;
3506 }
3507
b29739f9
IM
3508 /*
3509 * make sure no PI-waiters arrive (or leave) while we are
3510 * changing the priority of the task:
0122ec5b 3511 *
25985edc 3512 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3513 * runqueue lock must be held.
3514 */
0122ec5b 3515 rq = task_rq_lock(p, &flags);
dc61b1d6 3516
34f971f6
PZ
3517 /*
3518 * Changing the policy of the stop threads its a very bad idea
3519 */
3520 if (p == rq->stop) {
0122ec5b 3521 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3522 return -EINVAL;
3523 }
3524
a51e9198 3525 /*
d6b1e911
TG
3526 * If not changing anything there's no need to proceed further,
3527 * but store a possible modification of reset_on_fork.
a51e9198 3528 */
d50dde5a 3529 if (unlikely(policy == p->policy)) {
d0ea0268 3530 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3531 goto change;
3532 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3533 goto change;
aab03e05
DF
3534 if (dl_policy(policy))
3535 goto change;
d50dde5a 3536
d6b1e911 3537 p->sched_reset_on_fork = reset_on_fork;
45afb173 3538 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3539 return 0;
3540 }
d50dde5a 3541change:
a51e9198 3542
dc61b1d6 3543 if (user) {
332ac17e 3544#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3545 /*
3546 * Do not allow realtime tasks into groups that have no runtime
3547 * assigned.
3548 */
3549 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3550 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3551 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3552 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3553 return -EPERM;
3554 }
dc61b1d6 3555#endif
332ac17e
DF
3556#ifdef CONFIG_SMP
3557 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3558 cpumask_t *span = rq->rd->span;
332ac17e
DF
3559
3560 /*
3561 * Don't allow tasks with an affinity mask smaller than
3562 * the entire root_domain to become SCHED_DEADLINE. We
3563 * will also fail if there's no bandwidth available.
3564 */
e4099a5e
PZ
3565 if (!cpumask_subset(span, &p->cpus_allowed) ||
3566 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3567 task_rq_unlock(rq, p, &flags);
3568 return -EPERM;
3569 }
3570 }
3571#endif
3572 }
dc61b1d6 3573
1da177e4
LT
3574 /* recheck policy now with rq lock held */
3575 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3576 policy = oldpolicy = -1;
0122ec5b 3577 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3578 goto recheck;
3579 }
332ac17e
DF
3580
3581 /*
3582 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3583 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3584 * is available.
3585 */
e4099a5e 3586 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3587 task_rq_unlock(rq, p, &flags);
3588 return -EBUSY;
3589 }
3590
c365c292
TG
3591 p->sched_reset_on_fork = reset_on_fork;
3592 oldprio = p->prio;
3593
3594 /*
3595 * Special case for priority boosted tasks.
3596 *
3597 * If the new priority is lower or equal (user space view)
3598 * than the current (boosted) priority, we just store the new
3599 * normal parameters and do not touch the scheduler class and
3600 * the runqueue. This will be done when the task deboost
3601 * itself.
3602 */
3603 if (rt_mutex_check_prio(p, newprio)) {
3604 __setscheduler_params(p, attr);
3605 task_rq_unlock(rq, p, &flags);
3606 return 0;
3607 }
3608
da0c1e65 3609 queued = task_on_rq_queued(p);
051a1d1a 3610 running = task_current(rq, p);
da0c1e65 3611 if (queued)
4ca9b72b 3612 dequeue_task(rq, p, 0);
0e1f3483 3613 if (running)
f3cd1c4e 3614 put_prev_task(rq, p);
f6b53205 3615
83ab0aa0 3616 prev_class = p->sched_class;
d50dde5a 3617 __setscheduler(rq, p, attr);
f6b53205 3618
0e1f3483
HS
3619 if (running)
3620 p->sched_class->set_curr_task(rq);
da0c1e65 3621 if (queued) {
81a44c54
TG
3622 /*
3623 * We enqueue to tail when the priority of a task is
3624 * increased (user space view).
3625 */
3626 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3627 }
cb469845 3628
da7a735e 3629 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3630 task_rq_unlock(rq, p, &flags);
b29739f9 3631
95e02ca9
TG
3632 rt_mutex_adjust_pi(p);
3633
1da177e4
LT
3634 return 0;
3635}
961ccddd 3636
7479f3c9
PZ
3637static int _sched_setscheduler(struct task_struct *p, int policy,
3638 const struct sched_param *param, bool check)
3639{
3640 struct sched_attr attr = {
3641 .sched_policy = policy,
3642 .sched_priority = param->sched_priority,
3643 .sched_nice = PRIO_TO_NICE(p->static_prio),
3644 };
3645
c13db6b1
SR
3646 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3647 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3648 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3649 policy &= ~SCHED_RESET_ON_FORK;
3650 attr.sched_policy = policy;
3651 }
3652
3653 return __sched_setscheduler(p, &attr, check);
3654}
961ccddd
RR
3655/**
3656 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3657 * @p: the task in question.
3658 * @policy: new policy.
3659 * @param: structure containing the new RT priority.
3660 *
e69f6186
YB
3661 * Return: 0 on success. An error code otherwise.
3662 *
961ccddd
RR
3663 * NOTE that the task may be already dead.
3664 */
3665int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3666 const struct sched_param *param)
961ccddd 3667{
7479f3c9 3668 return _sched_setscheduler(p, policy, param, true);
961ccddd 3669}
1da177e4
LT
3670EXPORT_SYMBOL_GPL(sched_setscheduler);
3671
d50dde5a
DF
3672int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3673{
3674 return __sched_setscheduler(p, attr, true);
3675}
3676EXPORT_SYMBOL_GPL(sched_setattr);
3677
961ccddd
RR
3678/**
3679 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3680 * @p: the task in question.
3681 * @policy: new policy.
3682 * @param: structure containing the new RT priority.
3683 *
3684 * Just like sched_setscheduler, only don't bother checking if the
3685 * current context has permission. For example, this is needed in
3686 * stop_machine(): we create temporary high priority worker threads,
3687 * but our caller might not have that capability.
e69f6186
YB
3688 *
3689 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3690 */
3691int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3692 const struct sched_param *param)
961ccddd 3693{
7479f3c9 3694 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3695}
3696
95cdf3b7
IM
3697static int
3698do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3699{
1da177e4
LT
3700 struct sched_param lparam;
3701 struct task_struct *p;
36c8b586 3702 int retval;
1da177e4
LT
3703
3704 if (!param || pid < 0)
3705 return -EINVAL;
3706 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3707 return -EFAULT;
5fe1d75f
ON
3708
3709 rcu_read_lock();
3710 retval = -ESRCH;
1da177e4 3711 p = find_process_by_pid(pid);
5fe1d75f
ON
3712 if (p != NULL)
3713 retval = sched_setscheduler(p, policy, &lparam);
3714 rcu_read_unlock();
36c8b586 3715
1da177e4
LT
3716 return retval;
3717}
3718
d50dde5a
DF
3719/*
3720 * Mimics kernel/events/core.c perf_copy_attr().
3721 */
3722static int sched_copy_attr(struct sched_attr __user *uattr,
3723 struct sched_attr *attr)
3724{
3725 u32 size;
3726 int ret;
3727
3728 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3729 return -EFAULT;
3730
3731 /*
3732 * zero the full structure, so that a short copy will be nice.
3733 */
3734 memset(attr, 0, sizeof(*attr));
3735
3736 ret = get_user(size, &uattr->size);
3737 if (ret)
3738 return ret;
3739
3740 if (size > PAGE_SIZE) /* silly large */
3741 goto err_size;
3742
3743 if (!size) /* abi compat */
3744 size = SCHED_ATTR_SIZE_VER0;
3745
3746 if (size < SCHED_ATTR_SIZE_VER0)
3747 goto err_size;
3748
3749 /*
3750 * If we're handed a bigger struct than we know of,
3751 * ensure all the unknown bits are 0 - i.e. new
3752 * user-space does not rely on any kernel feature
3753 * extensions we dont know about yet.
3754 */
3755 if (size > sizeof(*attr)) {
3756 unsigned char __user *addr;
3757 unsigned char __user *end;
3758 unsigned char val;
3759
3760 addr = (void __user *)uattr + sizeof(*attr);
3761 end = (void __user *)uattr + size;
3762
3763 for (; addr < end; addr++) {
3764 ret = get_user(val, addr);
3765 if (ret)
3766 return ret;
3767 if (val)
3768 goto err_size;
3769 }
3770 size = sizeof(*attr);
3771 }
3772
3773 ret = copy_from_user(attr, uattr, size);
3774 if (ret)
3775 return -EFAULT;
3776
3777 /*
3778 * XXX: do we want to be lenient like existing syscalls; or do we want
3779 * to be strict and return an error on out-of-bounds values?
3780 */
75e45d51 3781 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3782
e78c7bca 3783 return 0;
d50dde5a
DF
3784
3785err_size:
3786 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3787 return -E2BIG;
d50dde5a
DF
3788}
3789
1da177e4
LT
3790/**
3791 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3792 * @pid: the pid in question.
3793 * @policy: new policy.
3794 * @param: structure containing the new RT priority.
e69f6186
YB
3795 *
3796 * Return: 0 on success. An error code otherwise.
1da177e4 3797 */
5add95d4
HC
3798SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3799 struct sched_param __user *, param)
1da177e4 3800{
c21761f1
JB
3801 /* negative values for policy are not valid */
3802 if (policy < 0)
3803 return -EINVAL;
3804
1da177e4
LT
3805 return do_sched_setscheduler(pid, policy, param);
3806}
3807
3808/**
3809 * sys_sched_setparam - set/change the RT priority of a thread
3810 * @pid: the pid in question.
3811 * @param: structure containing the new RT priority.
e69f6186
YB
3812 *
3813 * Return: 0 on success. An error code otherwise.
1da177e4 3814 */
5add95d4 3815SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3816{
c13db6b1 3817 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3818}
3819
d50dde5a
DF
3820/**
3821 * sys_sched_setattr - same as above, but with extended sched_attr
3822 * @pid: the pid in question.
5778fccf 3823 * @uattr: structure containing the extended parameters.
db66d756 3824 * @flags: for future extension.
d50dde5a 3825 */
6d35ab48
PZ
3826SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3827 unsigned int, flags)
d50dde5a
DF
3828{
3829 struct sched_attr attr;
3830 struct task_struct *p;
3831 int retval;
3832
6d35ab48 3833 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3834 return -EINVAL;
3835
143cf23d
MK
3836 retval = sched_copy_attr(uattr, &attr);
3837 if (retval)
3838 return retval;
d50dde5a 3839
b14ed2c2 3840 if ((int)attr.sched_policy < 0)
dbdb2275 3841 return -EINVAL;
d50dde5a
DF
3842
3843 rcu_read_lock();
3844 retval = -ESRCH;
3845 p = find_process_by_pid(pid);
3846 if (p != NULL)
3847 retval = sched_setattr(p, &attr);
3848 rcu_read_unlock();
3849
3850 return retval;
3851}
3852
1da177e4
LT
3853/**
3854 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3855 * @pid: the pid in question.
e69f6186
YB
3856 *
3857 * Return: On success, the policy of the thread. Otherwise, a negative error
3858 * code.
1da177e4 3859 */
5add95d4 3860SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3861{
36c8b586 3862 struct task_struct *p;
3a5c359a 3863 int retval;
1da177e4
LT
3864
3865 if (pid < 0)
3a5c359a 3866 return -EINVAL;
1da177e4
LT
3867
3868 retval = -ESRCH;
5fe85be0 3869 rcu_read_lock();
1da177e4
LT
3870 p = find_process_by_pid(pid);
3871 if (p) {
3872 retval = security_task_getscheduler(p);
3873 if (!retval)
ca94c442
LP
3874 retval = p->policy
3875 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3876 }
5fe85be0 3877 rcu_read_unlock();
1da177e4
LT
3878 return retval;
3879}
3880
3881/**
ca94c442 3882 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3883 * @pid: the pid in question.
3884 * @param: structure containing the RT priority.
e69f6186
YB
3885 *
3886 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3887 * code.
1da177e4 3888 */
5add95d4 3889SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3890{
ce5f7f82 3891 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3892 struct task_struct *p;
3a5c359a 3893 int retval;
1da177e4
LT
3894
3895 if (!param || pid < 0)
3a5c359a 3896 return -EINVAL;
1da177e4 3897
5fe85be0 3898 rcu_read_lock();
1da177e4
LT
3899 p = find_process_by_pid(pid);
3900 retval = -ESRCH;
3901 if (!p)
3902 goto out_unlock;
3903
3904 retval = security_task_getscheduler(p);
3905 if (retval)
3906 goto out_unlock;
3907
ce5f7f82
PZ
3908 if (task_has_rt_policy(p))
3909 lp.sched_priority = p->rt_priority;
5fe85be0 3910 rcu_read_unlock();
1da177e4
LT
3911
3912 /*
3913 * This one might sleep, we cannot do it with a spinlock held ...
3914 */
3915 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3916
1da177e4
LT
3917 return retval;
3918
3919out_unlock:
5fe85be0 3920 rcu_read_unlock();
1da177e4
LT
3921 return retval;
3922}
3923
d50dde5a
DF
3924static int sched_read_attr(struct sched_attr __user *uattr,
3925 struct sched_attr *attr,
3926 unsigned int usize)
3927{
3928 int ret;
3929
3930 if (!access_ok(VERIFY_WRITE, uattr, usize))
3931 return -EFAULT;
3932
3933 /*
3934 * If we're handed a smaller struct than we know of,
3935 * ensure all the unknown bits are 0 - i.e. old
3936 * user-space does not get uncomplete information.
3937 */
3938 if (usize < sizeof(*attr)) {
3939 unsigned char *addr;
3940 unsigned char *end;
3941
3942 addr = (void *)attr + usize;
3943 end = (void *)attr + sizeof(*attr);
3944
3945 for (; addr < end; addr++) {
3946 if (*addr)
22400674 3947 return -EFBIG;
d50dde5a
DF
3948 }
3949
3950 attr->size = usize;
3951 }
3952
4efbc454 3953 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3954 if (ret)
3955 return -EFAULT;
3956
22400674 3957 return 0;
d50dde5a
DF
3958}
3959
3960/**
aab03e05 3961 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3962 * @pid: the pid in question.
5778fccf 3963 * @uattr: structure containing the extended parameters.
d50dde5a 3964 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3965 * @flags: for future extension.
d50dde5a 3966 */
6d35ab48
PZ
3967SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3968 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3969{
3970 struct sched_attr attr = {
3971 .size = sizeof(struct sched_attr),
3972 };
3973 struct task_struct *p;
3974 int retval;
3975
3976 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3977 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3978 return -EINVAL;
3979
3980 rcu_read_lock();
3981 p = find_process_by_pid(pid);
3982 retval = -ESRCH;
3983 if (!p)
3984 goto out_unlock;
3985
3986 retval = security_task_getscheduler(p);
3987 if (retval)
3988 goto out_unlock;
3989
3990 attr.sched_policy = p->policy;
7479f3c9
PZ
3991 if (p->sched_reset_on_fork)
3992 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3993 if (task_has_dl_policy(p))
3994 __getparam_dl(p, &attr);
3995 else if (task_has_rt_policy(p))
d50dde5a
DF
3996 attr.sched_priority = p->rt_priority;
3997 else
d0ea0268 3998 attr.sched_nice = task_nice(p);
d50dde5a
DF
3999
4000 rcu_read_unlock();
4001
4002 retval = sched_read_attr(uattr, &attr, size);
4003 return retval;
4004
4005out_unlock:
4006 rcu_read_unlock();
4007 return retval;
4008}
4009
96f874e2 4010long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4011{
5a16f3d3 4012 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4013 struct task_struct *p;
4014 int retval;
1da177e4 4015
23f5d142 4016 rcu_read_lock();
1da177e4
LT
4017
4018 p = find_process_by_pid(pid);
4019 if (!p) {
23f5d142 4020 rcu_read_unlock();
1da177e4
LT
4021 return -ESRCH;
4022 }
4023
23f5d142 4024 /* Prevent p going away */
1da177e4 4025 get_task_struct(p);
23f5d142 4026 rcu_read_unlock();
1da177e4 4027
14a40ffc
TH
4028 if (p->flags & PF_NO_SETAFFINITY) {
4029 retval = -EINVAL;
4030 goto out_put_task;
4031 }
5a16f3d3
RR
4032 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4033 retval = -ENOMEM;
4034 goto out_put_task;
4035 }
4036 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4037 retval = -ENOMEM;
4038 goto out_free_cpus_allowed;
4039 }
1da177e4 4040 retval = -EPERM;
4c44aaaf
EB
4041 if (!check_same_owner(p)) {
4042 rcu_read_lock();
4043 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4044 rcu_read_unlock();
16303ab2 4045 goto out_free_new_mask;
4c44aaaf
EB
4046 }
4047 rcu_read_unlock();
4048 }
1da177e4 4049
b0ae1981 4050 retval = security_task_setscheduler(p);
e7834f8f 4051 if (retval)
16303ab2 4052 goto out_free_new_mask;
e7834f8f 4053
e4099a5e
PZ
4054
4055 cpuset_cpus_allowed(p, cpus_allowed);
4056 cpumask_and(new_mask, in_mask, cpus_allowed);
4057
332ac17e
DF
4058 /*
4059 * Since bandwidth control happens on root_domain basis,
4060 * if admission test is enabled, we only admit -deadline
4061 * tasks allowed to run on all the CPUs in the task's
4062 * root_domain.
4063 */
4064#ifdef CONFIG_SMP
f1e3a093
KT
4065 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4066 rcu_read_lock();
4067 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4068 retval = -EBUSY;
f1e3a093 4069 rcu_read_unlock();
16303ab2 4070 goto out_free_new_mask;
332ac17e 4071 }
f1e3a093 4072 rcu_read_unlock();
332ac17e
DF
4073 }
4074#endif
49246274 4075again:
5a16f3d3 4076 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4077
8707d8b8 4078 if (!retval) {
5a16f3d3
RR
4079 cpuset_cpus_allowed(p, cpus_allowed);
4080 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4081 /*
4082 * We must have raced with a concurrent cpuset
4083 * update. Just reset the cpus_allowed to the
4084 * cpuset's cpus_allowed
4085 */
5a16f3d3 4086 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4087 goto again;
4088 }
4089 }
16303ab2 4090out_free_new_mask:
5a16f3d3
RR
4091 free_cpumask_var(new_mask);
4092out_free_cpus_allowed:
4093 free_cpumask_var(cpus_allowed);
4094out_put_task:
1da177e4 4095 put_task_struct(p);
1da177e4
LT
4096 return retval;
4097}
4098
4099static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4100 struct cpumask *new_mask)
1da177e4 4101{
96f874e2
RR
4102 if (len < cpumask_size())
4103 cpumask_clear(new_mask);
4104 else if (len > cpumask_size())
4105 len = cpumask_size();
4106
1da177e4
LT
4107 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4108}
4109
4110/**
4111 * sys_sched_setaffinity - set the cpu affinity of a process
4112 * @pid: pid of the process
4113 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4114 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4115 *
4116 * Return: 0 on success. An error code otherwise.
1da177e4 4117 */
5add95d4
HC
4118SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4119 unsigned long __user *, user_mask_ptr)
1da177e4 4120{
5a16f3d3 4121 cpumask_var_t new_mask;
1da177e4
LT
4122 int retval;
4123
5a16f3d3
RR
4124 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4125 return -ENOMEM;
1da177e4 4126
5a16f3d3
RR
4127 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4128 if (retval == 0)
4129 retval = sched_setaffinity(pid, new_mask);
4130 free_cpumask_var(new_mask);
4131 return retval;
1da177e4
LT
4132}
4133
96f874e2 4134long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4135{
36c8b586 4136 struct task_struct *p;
31605683 4137 unsigned long flags;
1da177e4 4138 int retval;
1da177e4 4139
23f5d142 4140 rcu_read_lock();
1da177e4
LT
4141
4142 retval = -ESRCH;
4143 p = find_process_by_pid(pid);
4144 if (!p)
4145 goto out_unlock;
4146
e7834f8f
DQ
4147 retval = security_task_getscheduler(p);
4148 if (retval)
4149 goto out_unlock;
4150
013fdb80 4151 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4152 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4153 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4154
4155out_unlock:
23f5d142 4156 rcu_read_unlock();
1da177e4 4157
9531b62f 4158 return retval;
1da177e4
LT
4159}
4160
4161/**
4162 * sys_sched_getaffinity - get the cpu affinity of a process
4163 * @pid: pid of the process
4164 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4165 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4166 *
4167 * Return: 0 on success. An error code otherwise.
1da177e4 4168 */
5add95d4
HC
4169SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4170 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4171{
4172 int ret;
f17c8607 4173 cpumask_var_t mask;
1da177e4 4174
84fba5ec 4175 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4176 return -EINVAL;
4177 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4178 return -EINVAL;
4179
f17c8607
RR
4180 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4181 return -ENOMEM;
1da177e4 4182
f17c8607
RR
4183 ret = sched_getaffinity(pid, mask);
4184 if (ret == 0) {
8bc037fb 4185 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4186
4187 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4188 ret = -EFAULT;
4189 else
cd3d8031 4190 ret = retlen;
f17c8607
RR
4191 }
4192 free_cpumask_var(mask);
1da177e4 4193
f17c8607 4194 return ret;
1da177e4
LT
4195}
4196
4197/**
4198 * sys_sched_yield - yield the current processor to other threads.
4199 *
dd41f596
IM
4200 * This function yields the current CPU to other tasks. If there are no
4201 * other threads running on this CPU then this function will return.
e69f6186
YB
4202 *
4203 * Return: 0.
1da177e4 4204 */
5add95d4 4205SYSCALL_DEFINE0(sched_yield)
1da177e4 4206{
70b97a7f 4207 struct rq *rq = this_rq_lock();
1da177e4 4208
2d72376b 4209 schedstat_inc(rq, yld_count);
4530d7ab 4210 current->sched_class->yield_task(rq);
1da177e4
LT
4211
4212 /*
4213 * Since we are going to call schedule() anyway, there's
4214 * no need to preempt or enable interrupts:
4215 */
4216 __release(rq->lock);
8a25d5de 4217 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4218 do_raw_spin_unlock(&rq->lock);
ba74c144 4219 sched_preempt_enable_no_resched();
1da177e4
LT
4220
4221 schedule();
4222
4223 return 0;
4224}
4225
e7b38404 4226static void __cond_resched(void)
1da177e4 4227{
bdb43806 4228 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4229 __schedule();
bdb43806 4230 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4231}
4232
02b67cc3 4233int __sched _cond_resched(void)
1da177e4 4234{
d86ee480 4235 if (should_resched()) {
1da177e4
LT
4236 __cond_resched();
4237 return 1;
4238 }
4239 return 0;
4240}
02b67cc3 4241EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4242
4243/*
613afbf8 4244 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4245 * call schedule, and on return reacquire the lock.
4246 *
41a2d6cf 4247 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4248 * operations here to prevent schedule() from being called twice (once via
4249 * spin_unlock(), once by hand).
4250 */
613afbf8 4251int __cond_resched_lock(spinlock_t *lock)
1da177e4 4252{
d86ee480 4253 int resched = should_resched();
6df3cecb
JK
4254 int ret = 0;
4255
f607c668
PZ
4256 lockdep_assert_held(lock);
4257
4a81e832 4258 if (spin_needbreak(lock) || resched) {
1da177e4 4259 spin_unlock(lock);
d86ee480 4260 if (resched)
95c354fe
NP
4261 __cond_resched();
4262 else
4263 cpu_relax();
6df3cecb 4264 ret = 1;
1da177e4 4265 spin_lock(lock);
1da177e4 4266 }
6df3cecb 4267 return ret;
1da177e4 4268}
613afbf8 4269EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4270
613afbf8 4271int __sched __cond_resched_softirq(void)
1da177e4
LT
4272{
4273 BUG_ON(!in_softirq());
4274
d86ee480 4275 if (should_resched()) {
98d82567 4276 local_bh_enable();
1da177e4
LT
4277 __cond_resched();
4278 local_bh_disable();
4279 return 1;
4280 }
4281 return 0;
4282}
613afbf8 4283EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4284
1da177e4
LT
4285/**
4286 * yield - yield the current processor to other threads.
4287 *
8e3fabfd
PZ
4288 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4289 *
4290 * The scheduler is at all times free to pick the calling task as the most
4291 * eligible task to run, if removing the yield() call from your code breaks
4292 * it, its already broken.
4293 *
4294 * Typical broken usage is:
4295 *
4296 * while (!event)
4297 * yield();
4298 *
4299 * where one assumes that yield() will let 'the other' process run that will
4300 * make event true. If the current task is a SCHED_FIFO task that will never
4301 * happen. Never use yield() as a progress guarantee!!
4302 *
4303 * If you want to use yield() to wait for something, use wait_event().
4304 * If you want to use yield() to be 'nice' for others, use cond_resched().
4305 * If you still want to use yield(), do not!
1da177e4
LT
4306 */
4307void __sched yield(void)
4308{
4309 set_current_state(TASK_RUNNING);
4310 sys_sched_yield();
4311}
1da177e4
LT
4312EXPORT_SYMBOL(yield);
4313
d95f4122
MG
4314/**
4315 * yield_to - yield the current processor to another thread in
4316 * your thread group, or accelerate that thread toward the
4317 * processor it's on.
16addf95
RD
4318 * @p: target task
4319 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4320 *
4321 * It's the caller's job to ensure that the target task struct
4322 * can't go away on us before we can do any checks.
4323 *
e69f6186 4324 * Return:
7b270f60
PZ
4325 * true (>0) if we indeed boosted the target task.
4326 * false (0) if we failed to boost the target.
4327 * -ESRCH if there's no task to yield to.
d95f4122 4328 */
fa93384f 4329int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4330{
4331 struct task_struct *curr = current;
4332 struct rq *rq, *p_rq;
4333 unsigned long flags;
c3c18640 4334 int yielded = 0;
d95f4122
MG
4335
4336 local_irq_save(flags);
4337 rq = this_rq();
4338
4339again:
4340 p_rq = task_rq(p);
7b270f60
PZ
4341 /*
4342 * If we're the only runnable task on the rq and target rq also
4343 * has only one task, there's absolutely no point in yielding.
4344 */
4345 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4346 yielded = -ESRCH;
4347 goto out_irq;
4348 }
4349
d95f4122 4350 double_rq_lock(rq, p_rq);
39e24d8f 4351 if (task_rq(p) != p_rq) {
d95f4122
MG
4352 double_rq_unlock(rq, p_rq);
4353 goto again;
4354 }
4355
4356 if (!curr->sched_class->yield_to_task)
7b270f60 4357 goto out_unlock;
d95f4122
MG
4358
4359 if (curr->sched_class != p->sched_class)
7b270f60 4360 goto out_unlock;
d95f4122
MG
4361
4362 if (task_running(p_rq, p) || p->state)
7b270f60 4363 goto out_unlock;
d95f4122
MG
4364
4365 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4366 if (yielded) {
d95f4122 4367 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4368 /*
4369 * Make p's CPU reschedule; pick_next_entity takes care of
4370 * fairness.
4371 */
4372 if (preempt && rq != p_rq)
8875125e 4373 resched_curr(p_rq);
6d1cafd8 4374 }
d95f4122 4375
7b270f60 4376out_unlock:
d95f4122 4377 double_rq_unlock(rq, p_rq);
7b270f60 4378out_irq:
d95f4122
MG
4379 local_irq_restore(flags);
4380
7b270f60 4381 if (yielded > 0)
d95f4122
MG
4382 schedule();
4383
4384 return yielded;
4385}
4386EXPORT_SYMBOL_GPL(yield_to);
4387
1da177e4 4388/*
41a2d6cf 4389 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4390 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4391 */
4392void __sched io_schedule(void)
4393{
54d35f29 4394 struct rq *rq = raw_rq();
1da177e4 4395
0ff92245 4396 delayacct_blkio_start();
1da177e4 4397 atomic_inc(&rq->nr_iowait);
73c10101 4398 blk_flush_plug(current);
8f0dfc34 4399 current->in_iowait = 1;
1da177e4 4400 schedule();
8f0dfc34 4401 current->in_iowait = 0;
1da177e4 4402 atomic_dec(&rq->nr_iowait);
0ff92245 4403 delayacct_blkio_end();
1da177e4 4404}
1da177e4
LT
4405EXPORT_SYMBOL(io_schedule);
4406
4407long __sched io_schedule_timeout(long timeout)
4408{
54d35f29 4409 struct rq *rq = raw_rq();
1da177e4
LT
4410 long ret;
4411
0ff92245 4412 delayacct_blkio_start();
1da177e4 4413 atomic_inc(&rq->nr_iowait);
73c10101 4414 blk_flush_plug(current);
8f0dfc34 4415 current->in_iowait = 1;
1da177e4 4416 ret = schedule_timeout(timeout);
8f0dfc34 4417 current->in_iowait = 0;
1da177e4 4418 atomic_dec(&rq->nr_iowait);
0ff92245 4419 delayacct_blkio_end();
1da177e4
LT
4420 return ret;
4421}
4422
4423/**
4424 * sys_sched_get_priority_max - return maximum RT priority.
4425 * @policy: scheduling class.
4426 *
e69f6186
YB
4427 * Return: On success, this syscall returns the maximum
4428 * rt_priority that can be used by a given scheduling class.
4429 * On failure, a negative error code is returned.
1da177e4 4430 */
5add95d4 4431SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4432{
4433 int ret = -EINVAL;
4434
4435 switch (policy) {
4436 case SCHED_FIFO:
4437 case SCHED_RR:
4438 ret = MAX_USER_RT_PRIO-1;
4439 break;
aab03e05 4440 case SCHED_DEADLINE:
1da177e4 4441 case SCHED_NORMAL:
b0a9499c 4442 case SCHED_BATCH:
dd41f596 4443 case SCHED_IDLE:
1da177e4
LT
4444 ret = 0;
4445 break;
4446 }
4447 return ret;
4448}
4449
4450/**
4451 * sys_sched_get_priority_min - return minimum RT priority.
4452 * @policy: scheduling class.
4453 *
e69f6186
YB
4454 * Return: On success, this syscall returns the minimum
4455 * rt_priority that can be used by a given scheduling class.
4456 * On failure, a negative error code is returned.
1da177e4 4457 */
5add95d4 4458SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4459{
4460 int ret = -EINVAL;
4461
4462 switch (policy) {
4463 case SCHED_FIFO:
4464 case SCHED_RR:
4465 ret = 1;
4466 break;
aab03e05 4467 case SCHED_DEADLINE:
1da177e4 4468 case SCHED_NORMAL:
b0a9499c 4469 case SCHED_BATCH:
dd41f596 4470 case SCHED_IDLE:
1da177e4
LT
4471 ret = 0;
4472 }
4473 return ret;
4474}
4475
4476/**
4477 * sys_sched_rr_get_interval - return the default timeslice of a process.
4478 * @pid: pid of the process.
4479 * @interval: userspace pointer to the timeslice value.
4480 *
4481 * this syscall writes the default timeslice value of a given process
4482 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4483 *
4484 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4485 * an error code.
1da177e4 4486 */
17da2bd9 4487SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4488 struct timespec __user *, interval)
1da177e4 4489{
36c8b586 4490 struct task_struct *p;
a4ec24b4 4491 unsigned int time_slice;
dba091b9
TG
4492 unsigned long flags;
4493 struct rq *rq;
3a5c359a 4494 int retval;
1da177e4 4495 struct timespec t;
1da177e4
LT
4496
4497 if (pid < 0)
3a5c359a 4498 return -EINVAL;
1da177e4
LT
4499
4500 retval = -ESRCH;
1a551ae7 4501 rcu_read_lock();
1da177e4
LT
4502 p = find_process_by_pid(pid);
4503 if (!p)
4504 goto out_unlock;
4505
4506 retval = security_task_getscheduler(p);
4507 if (retval)
4508 goto out_unlock;
4509
dba091b9 4510 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4511 time_slice = 0;
4512 if (p->sched_class->get_rr_interval)
4513 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4514 task_rq_unlock(rq, p, &flags);
a4ec24b4 4515
1a551ae7 4516 rcu_read_unlock();
a4ec24b4 4517 jiffies_to_timespec(time_slice, &t);
1da177e4 4518 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4519 return retval;
3a5c359a 4520
1da177e4 4521out_unlock:
1a551ae7 4522 rcu_read_unlock();
1da177e4
LT
4523 return retval;
4524}
4525
7c731e0a 4526static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4527
82a1fcb9 4528void sched_show_task(struct task_struct *p)
1da177e4 4529{
1da177e4 4530 unsigned long free = 0;
4e79752c 4531 int ppid;
36c8b586 4532 unsigned state;
1da177e4 4533
1da177e4 4534 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4535 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4536 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4537#if BITS_PER_LONG == 32
1da177e4 4538 if (state == TASK_RUNNING)
3df0fc5b 4539 printk(KERN_CONT " running ");
1da177e4 4540 else
3df0fc5b 4541 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4542#else
4543 if (state == TASK_RUNNING)
3df0fc5b 4544 printk(KERN_CONT " running task ");
1da177e4 4545 else
3df0fc5b 4546 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4547#endif
4548#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4549 free = stack_not_used(p);
1da177e4 4550#endif
4e79752c
PM
4551 rcu_read_lock();
4552 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4553 rcu_read_unlock();
3df0fc5b 4554 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4555 task_pid_nr(p), ppid,
aa47b7e0 4556 (unsigned long)task_thread_info(p)->flags);
1da177e4 4557
3d1cb205 4558 print_worker_info(KERN_INFO, p);
5fb5e6de 4559 show_stack(p, NULL);
1da177e4
LT
4560}
4561
e59e2ae2 4562void show_state_filter(unsigned long state_filter)
1da177e4 4563{
36c8b586 4564 struct task_struct *g, *p;
1da177e4 4565
4bd77321 4566#if BITS_PER_LONG == 32
3df0fc5b
PZ
4567 printk(KERN_INFO
4568 " task PC stack pid father\n");
1da177e4 4569#else
3df0fc5b
PZ
4570 printk(KERN_INFO
4571 " task PC stack pid father\n");
1da177e4 4572#endif
510f5acc 4573 rcu_read_lock();
5d07f420 4574 for_each_process_thread(g, p) {
1da177e4
LT
4575 /*
4576 * reset the NMI-timeout, listing all files on a slow
25985edc 4577 * console might take a lot of time:
1da177e4
LT
4578 */
4579 touch_nmi_watchdog();
39bc89fd 4580 if (!state_filter || (p->state & state_filter))
82a1fcb9 4581 sched_show_task(p);
5d07f420 4582 }
1da177e4 4583
04c9167f
JF
4584 touch_all_softlockup_watchdogs();
4585
dd41f596
IM
4586#ifdef CONFIG_SCHED_DEBUG
4587 sysrq_sched_debug_show();
4588#endif
510f5acc 4589 rcu_read_unlock();
e59e2ae2
IM
4590 /*
4591 * Only show locks if all tasks are dumped:
4592 */
93335a21 4593 if (!state_filter)
e59e2ae2 4594 debug_show_all_locks();
1da177e4
LT
4595}
4596
0db0628d 4597void init_idle_bootup_task(struct task_struct *idle)
1df21055 4598{
dd41f596 4599 idle->sched_class = &idle_sched_class;
1df21055
IM
4600}
4601
f340c0d1
IM
4602/**
4603 * init_idle - set up an idle thread for a given CPU
4604 * @idle: task in question
4605 * @cpu: cpu the idle task belongs to
4606 *
4607 * NOTE: this function does not set the idle thread's NEED_RESCHED
4608 * flag, to make booting more robust.
4609 */
0db0628d 4610void init_idle(struct task_struct *idle, int cpu)
1da177e4 4611{
70b97a7f 4612 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4613 unsigned long flags;
4614
05fa785c 4615 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4616
5e1576ed 4617 __sched_fork(0, idle);
06b83b5f 4618 idle->state = TASK_RUNNING;
dd41f596
IM
4619 idle->se.exec_start = sched_clock();
4620
1e1b6c51 4621 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4622 /*
4623 * We're having a chicken and egg problem, even though we are
4624 * holding rq->lock, the cpu isn't yet set to this cpu so the
4625 * lockdep check in task_group() will fail.
4626 *
4627 * Similar case to sched_fork(). / Alternatively we could
4628 * use task_rq_lock() here and obtain the other rq->lock.
4629 *
4630 * Silence PROVE_RCU
4631 */
4632 rcu_read_lock();
dd41f596 4633 __set_task_cpu(idle, cpu);
6506cf6c 4634 rcu_read_unlock();
1da177e4 4635
1da177e4 4636 rq->curr = rq->idle = idle;
da0c1e65 4637 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4638#if defined(CONFIG_SMP)
4639 idle->on_cpu = 1;
4866cde0 4640#endif
05fa785c 4641 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4642
4643 /* Set the preempt count _outside_ the spinlocks! */
01028747 4644 init_idle_preempt_count(idle, cpu);
55cd5340 4645
dd41f596
IM
4646 /*
4647 * The idle tasks have their own, simple scheduling class:
4648 */
4649 idle->sched_class = &idle_sched_class;
868baf07 4650 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4651 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4652#if defined(CONFIG_SMP)
4653 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4654#endif
19978ca6
IM
4655}
4656
f82f8042
JL
4657int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4658 const struct cpumask *trial)
4659{
4660 int ret = 1, trial_cpus;
4661 struct dl_bw *cur_dl_b;
4662 unsigned long flags;
4663
4664 cur_dl_b = dl_bw_of(cpumask_any(cur));
4665 trial_cpus = cpumask_weight(trial);
4666
4667 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4668 if (cur_dl_b->bw != -1 &&
4669 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4670 ret = 0;
4671 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4672
4673 return ret;
4674}
4675
7f51412a
JL
4676int task_can_attach(struct task_struct *p,
4677 const struct cpumask *cs_cpus_allowed)
4678{
4679 int ret = 0;
4680
4681 /*
4682 * Kthreads which disallow setaffinity shouldn't be moved
4683 * to a new cpuset; we don't want to change their cpu
4684 * affinity and isolating such threads by their set of
4685 * allowed nodes is unnecessary. Thus, cpusets are not
4686 * applicable for such threads. This prevents checking for
4687 * success of set_cpus_allowed_ptr() on all attached tasks
4688 * before cpus_allowed may be changed.
4689 */
4690 if (p->flags & PF_NO_SETAFFINITY) {
4691 ret = -EINVAL;
4692 goto out;
4693 }
4694
4695#ifdef CONFIG_SMP
4696 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4697 cs_cpus_allowed)) {
4698 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4699 cs_cpus_allowed);
4700 struct dl_bw *dl_b = dl_bw_of(dest_cpu);
4701 bool overflow;
4702 int cpus;
4703 unsigned long flags;
4704
4705 raw_spin_lock_irqsave(&dl_b->lock, flags);
4706 cpus = dl_bw_cpus(dest_cpu);
4707 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4708 if (overflow)
4709 ret = -EBUSY;
4710 else {
4711 /*
4712 * We reserve space for this task in the destination
4713 * root_domain, as we can't fail after this point.
4714 * We will free resources in the source root_domain
4715 * later on (see set_cpus_allowed_dl()).
4716 */
4717 __dl_add(dl_b, p->dl.dl_bw);
4718 }
4719 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4720
4721 }
4722#endif
4723out:
4724 return ret;
4725}
4726
1da177e4 4727#ifdef CONFIG_SMP
a15b12ac
KT
4728/*
4729 * move_queued_task - move a queued task to new rq.
4730 *
4731 * Returns (locked) new rq. Old rq's lock is released.
4732 */
4733static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4734{
4735 struct rq *rq = task_rq(p);
4736
4737 lockdep_assert_held(&rq->lock);
4738
4739 dequeue_task(rq, p, 0);
4740 p->on_rq = TASK_ON_RQ_MIGRATING;
4741 set_task_cpu(p, new_cpu);
4742 raw_spin_unlock(&rq->lock);
4743
4744 rq = cpu_rq(new_cpu);
4745
4746 raw_spin_lock(&rq->lock);
4747 BUG_ON(task_cpu(p) != new_cpu);
4748 p->on_rq = TASK_ON_RQ_QUEUED;
4749 enqueue_task(rq, p, 0);
4750 check_preempt_curr(rq, p, 0);
4751
4752 return rq;
4753}
4754
1e1b6c51
KM
4755void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4756{
4757 if (p->sched_class && p->sched_class->set_cpus_allowed)
4758 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4759
4760 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4761 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4762}
4763
1da177e4
LT
4764/*
4765 * This is how migration works:
4766 *
969c7921
TH
4767 * 1) we invoke migration_cpu_stop() on the target CPU using
4768 * stop_one_cpu().
4769 * 2) stopper starts to run (implicitly forcing the migrated thread
4770 * off the CPU)
4771 * 3) it checks whether the migrated task is still in the wrong runqueue.
4772 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4773 * it and puts it into the right queue.
969c7921
TH
4774 * 5) stopper completes and stop_one_cpu() returns and the migration
4775 * is done.
1da177e4
LT
4776 */
4777
4778/*
4779 * Change a given task's CPU affinity. Migrate the thread to a
4780 * proper CPU and schedule it away if the CPU it's executing on
4781 * is removed from the allowed bitmask.
4782 *
4783 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4784 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4785 * call is not atomic; no spinlocks may be held.
4786 */
96f874e2 4787int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4788{
4789 unsigned long flags;
70b97a7f 4790 struct rq *rq;
969c7921 4791 unsigned int dest_cpu;
48f24c4d 4792 int ret = 0;
1da177e4
LT
4793
4794 rq = task_rq_lock(p, &flags);
e2912009 4795
db44fc01
YZ
4796 if (cpumask_equal(&p->cpus_allowed, new_mask))
4797 goto out;
4798
6ad4c188 4799 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4800 ret = -EINVAL;
4801 goto out;
4802 }
4803
1e1b6c51 4804 do_set_cpus_allowed(p, new_mask);
73fe6aae 4805
1da177e4 4806 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4807 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4808 goto out;
4809
969c7921 4810 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4811 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4812 struct migration_arg arg = { p, dest_cpu };
1da177e4 4813 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4814 task_rq_unlock(rq, p, &flags);
969c7921 4815 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4816 tlb_migrate_finish(p->mm);
4817 return 0;
a15b12ac
KT
4818 } else if (task_on_rq_queued(p))
4819 rq = move_queued_task(p, dest_cpu);
1da177e4 4820out:
0122ec5b 4821 task_rq_unlock(rq, p, &flags);
48f24c4d 4822
1da177e4
LT
4823 return ret;
4824}
cd8ba7cd 4825EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4826
4827/*
41a2d6cf 4828 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4829 * this because either it can't run here any more (set_cpus_allowed()
4830 * away from this CPU, or CPU going down), or because we're
4831 * attempting to rebalance this task on exec (sched_exec).
4832 *
4833 * So we race with normal scheduler movements, but that's OK, as long
4834 * as the task is no longer on this CPU.
efc30814
KK
4835 *
4836 * Returns non-zero if task was successfully migrated.
1da177e4 4837 */
efc30814 4838static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4839{
a1e01829 4840 struct rq *rq;
e2912009 4841 int ret = 0;
1da177e4 4842
e761b772 4843 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4844 return ret;
1da177e4 4845
a1e01829 4846 rq = cpu_rq(src_cpu);
1da177e4 4847
0122ec5b 4848 raw_spin_lock(&p->pi_lock);
a1e01829 4849 raw_spin_lock(&rq->lock);
1da177e4
LT
4850 /* Already moved. */
4851 if (task_cpu(p) != src_cpu)
b1e38734 4852 goto done;
a1e01829 4853
1da177e4 4854 /* Affinity changed (again). */
fa17b507 4855 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4856 goto fail;
1da177e4 4857
e2912009
PZ
4858 /*
4859 * If we're not on a rq, the next wake-up will ensure we're
4860 * placed properly.
4861 */
a15b12ac
KT
4862 if (task_on_rq_queued(p))
4863 rq = move_queued_task(p, dest_cpu);
b1e38734 4864done:
efc30814 4865 ret = 1;
b1e38734 4866fail:
a1e01829 4867 raw_spin_unlock(&rq->lock);
0122ec5b 4868 raw_spin_unlock(&p->pi_lock);
efc30814 4869 return ret;
1da177e4
LT
4870}
4871
e6628d5b
MG
4872#ifdef CONFIG_NUMA_BALANCING
4873/* Migrate current task p to target_cpu */
4874int migrate_task_to(struct task_struct *p, int target_cpu)
4875{
4876 struct migration_arg arg = { p, target_cpu };
4877 int curr_cpu = task_cpu(p);
4878
4879 if (curr_cpu == target_cpu)
4880 return 0;
4881
4882 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4883 return -EINVAL;
4884
4885 /* TODO: This is not properly updating schedstats */
4886
286549dc 4887 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4888 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4889}
0ec8aa00
PZ
4890
4891/*
4892 * Requeue a task on a given node and accurately track the number of NUMA
4893 * tasks on the runqueues
4894 */
4895void sched_setnuma(struct task_struct *p, int nid)
4896{
4897 struct rq *rq;
4898 unsigned long flags;
da0c1e65 4899 bool queued, running;
0ec8aa00
PZ
4900
4901 rq = task_rq_lock(p, &flags);
da0c1e65 4902 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4903 running = task_current(rq, p);
4904
da0c1e65 4905 if (queued)
0ec8aa00
PZ
4906 dequeue_task(rq, p, 0);
4907 if (running)
f3cd1c4e 4908 put_prev_task(rq, p);
0ec8aa00
PZ
4909
4910 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4911
4912 if (running)
4913 p->sched_class->set_curr_task(rq);
da0c1e65 4914 if (queued)
0ec8aa00
PZ
4915 enqueue_task(rq, p, 0);
4916 task_rq_unlock(rq, p, &flags);
4917}
e6628d5b
MG
4918#endif
4919
1da177e4 4920/*
969c7921
TH
4921 * migration_cpu_stop - this will be executed by a highprio stopper thread
4922 * and performs thread migration by bumping thread off CPU then
4923 * 'pushing' onto another runqueue.
1da177e4 4924 */
969c7921 4925static int migration_cpu_stop(void *data)
1da177e4 4926{
969c7921 4927 struct migration_arg *arg = data;
f7b4cddc 4928
969c7921
TH
4929 /*
4930 * The original target cpu might have gone down and we might
4931 * be on another cpu but it doesn't matter.
4932 */
f7b4cddc 4933 local_irq_disable();
5cd038f5
LJ
4934 /*
4935 * We need to explicitly wake pending tasks before running
4936 * __migrate_task() such that we will not miss enforcing cpus_allowed
4937 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4938 */
4939 sched_ttwu_pending();
969c7921 4940 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4941 local_irq_enable();
1da177e4 4942 return 0;
f7b4cddc
ON
4943}
4944
1da177e4 4945#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4946
054b9108 4947/*
48c5ccae
PZ
4948 * Ensures that the idle task is using init_mm right before its cpu goes
4949 * offline.
054b9108 4950 */
48c5ccae 4951void idle_task_exit(void)
1da177e4 4952{
48c5ccae 4953 struct mm_struct *mm = current->active_mm;
e76bd8d9 4954
48c5ccae 4955 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4956
a53efe5f 4957 if (mm != &init_mm) {
48c5ccae 4958 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4959 finish_arch_post_lock_switch();
4960 }
48c5ccae 4961 mmdrop(mm);
1da177e4
LT
4962}
4963
4964/*
5d180232
PZ
4965 * Since this CPU is going 'away' for a while, fold any nr_active delta
4966 * we might have. Assumes we're called after migrate_tasks() so that the
4967 * nr_active count is stable.
4968 *
4969 * Also see the comment "Global load-average calculations".
1da177e4 4970 */
5d180232 4971static void calc_load_migrate(struct rq *rq)
1da177e4 4972{
5d180232
PZ
4973 long delta = calc_load_fold_active(rq);
4974 if (delta)
4975 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4976}
4977
3f1d2a31
PZ
4978static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4979{
4980}
4981
4982static const struct sched_class fake_sched_class = {
4983 .put_prev_task = put_prev_task_fake,
4984};
4985
4986static struct task_struct fake_task = {
4987 /*
4988 * Avoid pull_{rt,dl}_task()
4989 */
4990 .prio = MAX_PRIO + 1,
4991 .sched_class = &fake_sched_class,
4992};
4993
48f24c4d 4994/*
48c5ccae
PZ
4995 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4996 * try_to_wake_up()->select_task_rq().
4997 *
4998 * Called with rq->lock held even though we'er in stop_machine() and
4999 * there's no concurrency possible, we hold the required locks anyway
5000 * because of lock validation efforts.
1da177e4 5001 */
48c5ccae 5002static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5003{
70b97a7f 5004 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5005 struct task_struct *next, *stop = rq->stop;
5006 int dest_cpu;
1da177e4
LT
5007
5008 /*
48c5ccae
PZ
5009 * Fudge the rq selection such that the below task selection loop
5010 * doesn't get stuck on the currently eligible stop task.
5011 *
5012 * We're currently inside stop_machine() and the rq is either stuck
5013 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5014 * either way we should never end up calling schedule() until we're
5015 * done here.
1da177e4 5016 */
48c5ccae 5017 rq->stop = NULL;
48f24c4d 5018
77bd3970
FW
5019 /*
5020 * put_prev_task() and pick_next_task() sched
5021 * class method both need to have an up-to-date
5022 * value of rq->clock[_task]
5023 */
5024 update_rq_clock(rq);
5025
dd41f596 5026 for ( ; ; ) {
48c5ccae
PZ
5027 /*
5028 * There's this thread running, bail when that's the only
5029 * remaining thread.
5030 */
5031 if (rq->nr_running == 1)
dd41f596 5032 break;
48c5ccae 5033
3f1d2a31 5034 next = pick_next_task(rq, &fake_task);
48c5ccae 5035 BUG_ON(!next);
79c53799 5036 next->sched_class->put_prev_task(rq, next);
e692ab53 5037
48c5ccae
PZ
5038 /* Find suitable destination for @next, with force if needed. */
5039 dest_cpu = select_fallback_rq(dead_cpu, next);
5040 raw_spin_unlock(&rq->lock);
5041
5042 __migrate_task(next, dead_cpu, dest_cpu);
5043
5044 raw_spin_lock(&rq->lock);
1da177e4 5045 }
dce48a84 5046
48c5ccae 5047 rq->stop = stop;
dce48a84 5048}
48c5ccae 5049
1da177e4
LT
5050#endif /* CONFIG_HOTPLUG_CPU */
5051
e692ab53
NP
5052#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5053
5054static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5055 {
5056 .procname = "sched_domain",
c57baf1e 5057 .mode = 0555,
e0361851 5058 },
56992309 5059 {}
e692ab53
NP
5060};
5061
5062static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5063 {
5064 .procname = "kernel",
c57baf1e 5065 .mode = 0555,
e0361851
AD
5066 .child = sd_ctl_dir,
5067 },
56992309 5068 {}
e692ab53
NP
5069};
5070
5071static struct ctl_table *sd_alloc_ctl_entry(int n)
5072{
5073 struct ctl_table *entry =
5cf9f062 5074 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5075
e692ab53
NP
5076 return entry;
5077}
5078
6382bc90
MM
5079static void sd_free_ctl_entry(struct ctl_table **tablep)
5080{
cd790076 5081 struct ctl_table *entry;
6382bc90 5082
cd790076
MM
5083 /*
5084 * In the intermediate directories, both the child directory and
5085 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5086 * will always be set. In the lowest directory the names are
cd790076
MM
5087 * static strings and all have proc handlers.
5088 */
5089 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5090 if (entry->child)
5091 sd_free_ctl_entry(&entry->child);
cd790076
MM
5092 if (entry->proc_handler == NULL)
5093 kfree(entry->procname);
5094 }
6382bc90
MM
5095
5096 kfree(*tablep);
5097 *tablep = NULL;
5098}
5099
201c373e 5100static int min_load_idx = 0;
fd9b86d3 5101static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5102
e692ab53 5103static void
e0361851 5104set_table_entry(struct ctl_table *entry,
e692ab53 5105 const char *procname, void *data, int maxlen,
201c373e
NK
5106 umode_t mode, proc_handler *proc_handler,
5107 bool load_idx)
e692ab53 5108{
e692ab53
NP
5109 entry->procname = procname;
5110 entry->data = data;
5111 entry->maxlen = maxlen;
5112 entry->mode = mode;
5113 entry->proc_handler = proc_handler;
201c373e
NK
5114
5115 if (load_idx) {
5116 entry->extra1 = &min_load_idx;
5117 entry->extra2 = &max_load_idx;
5118 }
e692ab53
NP
5119}
5120
5121static struct ctl_table *
5122sd_alloc_ctl_domain_table(struct sched_domain *sd)
5123{
37e6bae8 5124 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5125
ad1cdc1d
MM
5126 if (table == NULL)
5127 return NULL;
5128
e0361851 5129 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5130 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5131 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5132 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5133 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5134 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5135 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5136 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5137 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5138 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5139 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5140 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5141 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5142 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5143 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5144 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5145 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5146 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5147 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5148 &sd->cache_nice_tries,
201c373e 5149 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5150 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5151 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5152 set_table_entry(&table[11], "max_newidle_lb_cost",
5153 &sd->max_newidle_lb_cost,
5154 sizeof(long), 0644, proc_doulongvec_minmax, false);
5155 set_table_entry(&table[12], "name", sd->name,
201c373e 5156 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5157 /* &table[13] is terminator */
e692ab53
NP
5158
5159 return table;
5160}
5161
be7002e6 5162static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5163{
5164 struct ctl_table *entry, *table;
5165 struct sched_domain *sd;
5166 int domain_num = 0, i;
5167 char buf[32];
5168
5169 for_each_domain(cpu, sd)
5170 domain_num++;
5171 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5172 if (table == NULL)
5173 return NULL;
e692ab53
NP
5174
5175 i = 0;
5176 for_each_domain(cpu, sd) {
5177 snprintf(buf, 32, "domain%d", i);
e692ab53 5178 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5179 entry->mode = 0555;
e692ab53
NP
5180 entry->child = sd_alloc_ctl_domain_table(sd);
5181 entry++;
5182 i++;
5183 }
5184 return table;
5185}
5186
5187static struct ctl_table_header *sd_sysctl_header;
6382bc90 5188static void register_sched_domain_sysctl(void)
e692ab53 5189{
6ad4c188 5190 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5191 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5192 char buf[32];
5193
7378547f
MM
5194 WARN_ON(sd_ctl_dir[0].child);
5195 sd_ctl_dir[0].child = entry;
5196
ad1cdc1d
MM
5197 if (entry == NULL)
5198 return;
5199
6ad4c188 5200 for_each_possible_cpu(i) {
e692ab53 5201 snprintf(buf, 32, "cpu%d", i);
e692ab53 5202 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5203 entry->mode = 0555;
e692ab53 5204 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5205 entry++;
e692ab53 5206 }
7378547f
MM
5207
5208 WARN_ON(sd_sysctl_header);
e692ab53
NP
5209 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5210}
6382bc90 5211
7378547f 5212/* may be called multiple times per register */
6382bc90
MM
5213static void unregister_sched_domain_sysctl(void)
5214{
7378547f
MM
5215 if (sd_sysctl_header)
5216 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5217 sd_sysctl_header = NULL;
7378547f
MM
5218 if (sd_ctl_dir[0].child)
5219 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5220}
e692ab53 5221#else
6382bc90
MM
5222static void register_sched_domain_sysctl(void)
5223{
5224}
5225static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5226{
5227}
5228#endif
5229
1f11eb6a
GH
5230static void set_rq_online(struct rq *rq)
5231{
5232 if (!rq->online) {
5233 const struct sched_class *class;
5234
c6c4927b 5235 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5236 rq->online = 1;
5237
5238 for_each_class(class) {
5239 if (class->rq_online)
5240 class->rq_online(rq);
5241 }
5242 }
5243}
5244
5245static void set_rq_offline(struct rq *rq)
5246{
5247 if (rq->online) {
5248 const struct sched_class *class;
5249
5250 for_each_class(class) {
5251 if (class->rq_offline)
5252 class->rq_offline(rq);
5253 }
5254
c6c4927b 5255 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5256 rq->online = 0;
5257 }
5258}
5259
1da177e4
LT
5260/*
5261 * migration_call - callback that gets triggered when a CPU is added.
5262 * Here we can start up the necessary migration thread for the new CPU.
5263 */
0db0628d 5264static int
48f24c4d 5265migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5266{
48f24c4d 5267 int cpu = (long)hcpu;
1da177e4 5268 unsigned long flags;
969c7921 5269 struct rq *rq = cpu_rq(cpu);
1da177e4 5270
48c5ccae 5271 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5272
1da177e4 5273 case CPU_UP_PREPARE:
a468d389 5274 rq->calc_load_update = calc_load_update;
1da177e4 5275 break;
48f24c4d 5276
1da177e4 5277 case CPU_ONLINE:
1f94ef59 5278 /* Update our root-domain */
05fa785c 5279 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5280 if (rq->rd) {
c6c4927b 5281 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5282
5283 set_rq_online(rq);
1f94ef59 5284 }
05fa785c 5285 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5286 break;
48f24c4d 5287
1da177e4 5288#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5289 case CPU_DYING:
317f3941 5290 sched_ttwu_pending();
57d885fe 5291 /* Update our root-domain */
05fa785c 5292 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5293 if (rq->rd) {
c6c4927b 5294 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5295 set_rq_offline(rq);
57d885fe 5296 }
48c5ccae
PZ
5297 migrate_tasks(cpu);
5298 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5299 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5300 break;
48c5ccae 5301
5d180232 5302 case CPU_DEAD:
f319da0c 5303 calc_load_migrate(rq);
57d885fe 5304 break;
1da177e4
LT
5305#endif
5306 }
49c022e6
PZ
5307
5308 update_max_interval();
5309
1da177e4
LT
5310 return NOTIFY_OK;
5311}
5312
f38b0820
PM
5313/*
5314 * Register at high priority so that task migration (migrate_all_tasks)
5315 * happens before everything else. This has to be lower priority than
cdd6c482 5316 * the notifier in the perf_event subsystem, though.
1da177e4 5317 */
0db0628d 5318static struct notifier_block migration_notifier = {
1da177e4 5319 .notifier_call = migration_call,
50a323b7 5320 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5321};
5322
a803f026
CM
5323static void __cpuinit set_cpu_rq_start_time(void)
5324{
5325 int cpu = smp_processor_id();
5326 struct rq *rq = cpu_rq(cpu);
5327 rq->age_stamp = sched_clock_cpu(cpu);
5328}
5329
0db0628d 5330static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5331 unsigned long action, void *hcpu)
5332{
5333 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5334 case CPU_STARTING:
5335 set_cpu_rq_start_time();
5336 return NOTIFY_OK;
3a101d05
TH
5337 case CPU_DOWN_FAILED:
5338 set_cpu_active((long)hcpu, true);
5339 return NOTIFY_OK;
5340 default:
5341 return NOTIFY_DONE;
5342 }
5343}
5344
0db0628d 5345static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5346 unsigned long action, void *hcpu)
5347{
de212f18
PZ
5348 unsigned long flags;
5349 long cpu = (long)hcpu;
f10e00f4 5350 struct dl_bw *dl_b;
de212f18 5351
3a101d05
TH
5352 switch (action & ~CPU_TASKS_FROZEN) {
5353 case CPU_DOWN_PREPARE:
de212f18
PZ
5354 set_cpu_active(cpu, false);
5355
5356 /* explicitly allow suspend */
5357 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5358 bool overflow;
5359 int cpus;
5360
f10e00f4
KT
5361 rcu_read_lock_sched();
5362 dl_b = dl_bw_of(cpu);
5363
de212f18
PZ
5364 raw_spin_lock_irqsave(&dl_b->lock, flags);
5365 cpus = dl_bw_cpus(cpu);
5366 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5367 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5368
f10e00f4
KT
5369 rcu_read_unlock_sched();
5370
de212f18
PZ
5371 if (overflow)
5372 return notifier_from_errno(-EBUSY);
5373 }
3a101d05 5374 return NOTIFY_OK;
3a101d05 5375 }
de212f18
PZ
5376
5377 return NOTIFY_DONE;
3a101d05
TH
5378}
5379
7babe8db 5380static int __init migration_init(void)
1da177e4
LT
5381{
5382 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5383 int err;
48f24c4d 5384
3a101d05 5385 /* Initialize migration for the boot CPU */
07dccf33
AM
5386 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5387 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5388 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5389 register_cpu_notifier(&migration_notifier);
7babe8db 5390
3a101d05
TH
5391 /* Register cpu active notifiers */
5392 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5393 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5394
a004cd42 5395 return 0;
1da177e4 5396}
7babe8db 5397early_initcall(migration_init);
1da177e4
LT
5398#endif
5399
5400#ifdef CONFIG_SMP
476f3534 5401
4cb98839
PZ
5402static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5403
3e9830dc 5404#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5405
d039ac60 5406static __read_mostly int sched_debug_enabled;
f6630114 5407
d039ac60 5408static int __init sched_debug_setup(char *str)
f6630114 5409{
d039ac60 5410 sched_debug_enabled = 1;
f6630114
MT
5411
5412 return 0;
5413}
d039ac60
PZ
5414early_param("sched_debug", sched_debug_setup);
5415
5416static inline bool sched_debug(void)
5417{
5418 return sched_debug_enabled;
5419}
f6630114 5420
7c16ec58 5421static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5422 struct cpumask *groupmask)
1da177e4 5423{
4dcf6aff 5424 struct sched_group *group = sd->groups;
434d53b0 5425 char str[256];
1da177e4 5426
968ea6d8 5427 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5428 cpumask_clear(groupmask);
4dcf6aff
IM
5429
5430 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5431
5432 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5433 printk("does not load-balance\n");
4dcf6aff 5434 if (sd->parent)
3df0fc5b
PZ
5435 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5436 " has parent");
4dcf6aff 5437 return -1;
41c7ce9a
NP
5438 }
5439
3df0fc5b 5440 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5441
758b2cdc 5442 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5443 printk(KERN_ERR "ERROR: domain->span does not contain "
5444 "CPU%d\n", cpu);
4dcf6aff 5445 }
758b2cdc 5446 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5447 printk(KERN_ERR "ERROR: domain->groups does not contain"
5448 " CPU%d\n", cpu);
4dcf6aff 5449 }
1da177e4 5450
4dcf6aff 5451 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5452 do {
4dcf6aff 5453 if (!group) {
3df0fc5b
PZ
5454 printk("\n");
5455 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5456 break;
5457 }
5458
c3decf0d 5459 /*
63b2ca30
NP
5460 * Even though we initialize ->capacity to something semi-sane,
5461 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5462 * domain iteration is still funny without causing /0 traps.
5463 */
63b2ca30 5464 if (!group->sgc->capacity_orig) {
3df0fc5b 5465 printk(KERN_CONT "\n");
63b2ca30 5466 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5467 break;
5468 }
1da177e4 5469
758b2cdc 5470 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5471 printk(KERN_CONT "\n");
5472 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5473 break;
5474 }
1da177e4 5475
cb83b629
PZ
5476 if (!(sd->flags & SD_OVERLAP) &&
5477 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5478 printk(KERN_CONT "\n");
5479 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5480 break;
5481 }
1da177e4 5482
758b2cdc 5483 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5484
968ea6d8 5485 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5486
3df0fc5b 5487 printk(KERN_CONT " %s", str);
ca8ce3d0 5488 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5489 printk(KERN_CONT " (cpu_capacity = %d)",
5490 group->sgc->capacity);
381512cf 5491 }
1da177e4 5492
4dcf6aff
IM
5493 group = group->next;
5494 } while (group != sd->groups);
3df0fc5b 5495 printk(KERN_CONT "\n");
1da177e4 5496
758b2cdc 5497 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5498 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5499
758b2cdc
RR
5500 if (sd->parent &&
5501 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5502 printk(KERN_ERR "ERROR: parent span is not a superset "
5503 "of domain->span\n");
4dcf6aff
IM
5504 return 0;
5505}
1da177e4 5506
4dcf6aff
IM
5507static void sched_domain_debug(struct sched_domain *sd, int cpu)
5508{
5509 int level = 0;
1da177e4 5510
d039ac60 5511 if (!sched_debug_enabled)
f6630114
MT
5512 return;
5513
4dcf6aff
IM
5514 if (!sd) {
5515 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5516 return;
5517 }
1da177e4 5518
4dcf6aff
IM
5519 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5520
5521 for (;;) {
4cb98839 5522 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5523 break;
1da177e4
LT
5524 level++;
5525 sd = sd->parent;
33859f7f 5526 if (!sd)
4dcf6aff
IM
5527 break;
5528 }
1da177e4 5529}
6d6bc0ad 5530#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5531# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5532static inline bool sched_debug(void)
5533{
5534 return false;
5535}
6d6bc0ad 5536#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5537
1a20ff27 5538static int sd_degenerate(struct sched_domain *sd)
245af2c7 5539{
758b2cdc 5540 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5541 return 1;
5542
5543 /* Following flags need at least 2 groups */
5544 if (sd->flags & (SD_LOAD_BALANCE |
5545 SD_BALANCE_NEWIDLE |
5546 SD_BALANCE_FORK |
89c4710e 5547 SD_BALANCE_EXEC |
5d4dfddd 5548 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5549 SD_SHARE_PKG_RESOURCES |
5550 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5551 if (sd->groups != sd->groups->next)
5552 return 0;
5553 }
5554
5555 /* Following flags don't use groups */
c88d5910 5556 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5557 return 0;
5558
5559 return 1;
5560}
5561
48f24c4d
IM
5562static int
5563sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5564{
5565 unsigned long cflags = sd->flags, pflags = parent->flags;
5566
5567 if (sd_degenerate(parent))
5568 return 1;
5569
758b2cdc 5570 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5571 return 0;
5572
245af2c7
SS
5573 /* Flags needing groups don't count if only 1 group in parent */
5574 if (parent->groups == parent->groups->next) {
5575 pflags &= ~(SD_LOAD_BALANCE |
5576 SD_BALANCE_NEWIDLE |
5577 SD_BALANCE_FORK |
89c4710e 5578 SD_BALANCE_EXEC |
5d4dfddd 5579 SD_SHARE_CPUCAPACITY |
10866e62 5580 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5581 SD_PREFER_SIBLING |
5582 SD_SHARE_POWERDOMAIN);
5436499e
KC
5583 if (nr_node_ids == 1)
5584 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5585 }
5586 if (~cflags & pflags)
5587 return 0;
5588
5589 return 1;
5590}
5591
dce840a0 5592static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5593{
dce840a0 5594 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5595
68e74568 5596 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5597 cpudl_cleanup(&rd->cpudl);
1baca4ce 5598 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5599 free_cpumask_var(rd->rto_mask);
5600 free_cpumask_var(rd->online);
5601 free_cpumask_var(rd->span);
5602 kfree(rd);
5603}
5604
57d885fe
GH
5605static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5606{
a0490fa3 5607 struct root_domain *old_rd = NULL;
57d885fe 5608 unsigned long flags;
57d885fe 5609
05fa785c 5610 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5611
5612 if (rq->rd) {
a0490fa3 5613 old_rd = rq->rd;
57d885fe 5614
c6c4927b 5615 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5616 set_rq_offline(rq);
57d885fe 5617
c6c4927b 5618 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5619
a0490fa3 5620 /*
0515973f 5621 * If we dont want to free the old_rd yet then
a0490fa3
IM
5622 * set old_rd to NULL to skip the freeing later
5623 * in this function:
5624 */
5625 if (!atomic_dec_and_test(&old_rd->refcount))
5626 old_rd = NULL;
57d885fe
GH
5627 }
5628
5629 atomic_inc(&rd->refcount);
5630 rq->rd = rd;
5631
c6c4927b 5632 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5633 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5634 set_rq_online(rq);
57d885fe 5635
05fa785c 5636 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5637
5638 if (old_rd)
dce840a0 5639 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5640}
5641
68c38fc3 5642static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5643{
5644 memset(rd, 0, sizeof(*rd));
5645
68c38fc3 5646 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5647 goto out;
68c38fc3 5648 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5649 goto free_span;
1baca4ce 5650 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5651 goto free_online;
1baca4ce
JL
5652 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5653 goto free_dlo_mask;
6e0534f2 5654
332ac17e 5655 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5656 if (cpudl_init(&rd->cpudl) != 0)
5657 goto free_dlo_mask;
332ac17e 5658
68c38fc3 5659 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5660 goto free_rto_mask;
c6c4927b 5661 return 0;
6e0534f2 5662
68e74568
RR
5663free_rto_mask:
5664 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5665free_dlo_mask:
5666 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5667free_online:
5668 free_cpumask_var(rd->online);
5669free_span:
5670 free_cpumask_var(rd->span);
0c910d28 5671out:
c6c4927b 5672 return -ENOMEM;
57d885fe
GH
5673}
5674
029632fb
PZ
5675/*
5676 * By default the system creates a single root-domain with all cpus as
5677 * members (mimicking the global state we have today).
5678 */
5679struct root_domain def_root_domain;
5680
57d885fe
GH
5681static void init_defrootdomain(void)
5682{
68c38fc3 5683 init_rootdomain(&def_root_domain);
c6c4927b 5684
57d885fe
GH
5685 atomic_set(&def_root_domain.refcount, 1);
5686}
5687
dc938520 5688static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5689{
5690 struct root_domain *rd;
5691
5692 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5693 if (!rd)
5694 return NULL;
5695
68c38fc3 5696 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5697 kfree(rd);
5698 return NULL;
5699 }
57d885fe
GH
5700
5701 return rd;
5702}
5703
63b2ca30 5704static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5705{
5706 struct sched_group *tmp, *first;
5707
5708 if (!sg)
5709 return;
5710
5711 first = sg;
5712 do {
5713 tmp = sg->next;
5714
63b2ca30
NP
5715 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5716 kfree(sg->sgc);
e3589f6c
PZ
5717
5718 kfree(sg);
5719 sg = tmp;
5720 } while (sg != first);
5721}
5722
dce840a0
PZ
5723static void free_sched_domain(struct rcu_head *rcu)
5724{
5725 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5726
5727 /*
5728 * If its an overlapping domain it has private groups, iterate and
5729 * nuke them all.
5730 */
5731 if (sd->flags & SD_OVERLAP) {
5732 free_sched_groups(sd->groups, 1);
5733 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5734 kfree(sd->groups->sgc);
dce840a0 5735 kfree(sd->groups);
9c3f75cb 5736 }
dce840a0
PZ
5737 kfree(sd);
5738}
5739
5740static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5741{
5742 call_rcu(&sd->rcu, free_sched_domain);
5743}
5744
5745static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5746{
5747 for (; sd; sd = sd->parent)
5748 destroy_sched_domain(sd, cpu);
5749}
5750
518cd623
PZ
5751/*
5752 * Keep a special pointer to the highest sched_domain that has
5753 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5754 * allows us to avoid some pointer chasing select_idle_sibling().
5755 *
5756 * Also keep a unique ID per domain (we use the first cpu number in
5757 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5758 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5759 */
5760DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5761DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5762DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5763DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5764DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5765DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5766
5767static void update_top_cache_domain(int cpu)
5768{
5769 struct sched_domain *sd;
5d4cf996 5770 struct sched_domain *busy_sd = NULL;
518cd623 5771 int id = cpu;
7d9ffa89 5772 int size = 1;
518cd623
PZ
5773
5774 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5775 if (sd) {
518cd623 5776 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5777 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5778 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5779 }
5d4cf996 5780 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5781
5782 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5783 per_cpu(sd_llc_size, cpu) = size;
518cd623 5784 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5785
5786 sd = lowest_flag_domain(cpu, SD_NUMA);
5787 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5788
5789 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5790 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5791}
5792
1da177e4 5793/*
0eab9146 5794 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5795 * hold the hotplug lock.
5796 */
0eab9146
IM
5797static void
5798cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5799{
70b97a7f 5800 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5801 struct sched_domain *tmp;
5802
5803 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5804 for (tmp = sd; tmp; ) {
245af2c7
SS
5805 struct sched_domain *parent = tmp->parent;
5806 if (!parent)
5807 break;
f29c9b1c 5808
1a848870 5809 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5810 tmp->parent = parent->parent;
1a848870
SS
5811 if (parent->parent)
5812 parent->parent->child = tmp;
10866e62
PZ
5813 /*
5814 * Transfer SD_PREFER_SIBLING down in case of a
5815 * degenerate parent; the spans match for this
5816 * so the property transfers.
5817 */
5818 if (parent->flags & SD_PREFER_SIBLING)
5819 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5820 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5821 } else
5822 tmp = tmp->parent;
245af2c7
SS
5823 }
5824
1a848870 5825 if (sd && sd_degenerate(sd)) {
dce840a0 5826 tmp = sd;
245af2c7 5827 sd = sd->parent;
dce840a0 5828 destroy_sched_domain(tmp, cpu);
1a848870
SS
5829 if (sd)
5830 sd->child = NULL;
5831 }
1da177e4 5832
4cb98839 5833 sched_domain_debug(sd, cpu);
1da177e4 5834
57d885fe 5835 rq_attach_root(rq, rd);
dce840a0 5836 tmp = rq->sd;
674311d5 5837 rcu_assign_pointer(rq->sd, sd);
dce840a0 5838 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5839
5840 update_top_cache_domain(cpu);
1da177e4
LT
5841}
5842
5843/* cpus with isolated domains */
dcc30a35 5844static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5845
5846/* Setup the mask of cpus configured for isolated domains */
5847static int __init isolated_cpu_setup(char *str)
5848{
bdddd296 5849 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5850 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5851 return 1;
5852}
5853
8927f494 5854__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5855
49a02c51 5856struct s_data {
21d42ccf 5857 struct sched_domain ** __percpu sd;
49a02c51
AH
5858 struct root_domain *rd;
5859};
5860
2109b99e 5861enum s_alloc {
2109b99e 5862 sa_rootdomain,
21d42ccf 5863 sa_sd,
dce840a0 5864 sa_sd_storage,
2109b99e
AH
5865 sa_none,
5866};
5867
c1174876
PZ
5868/*
5869 * Build an iteration mask that can exclude certain CPUs from the upwards
5870 * domain traversal.
5871 *
5872 * Asymmetric node setups can result in situations where the domain tree is of
5873 * unequal depth, make sure to skip domains that already cover the entire
5874 * range.
5875 *
5876 * In that case build_sched_domains() will have terminated the iteration early
5877 * and our sibling sd spans will be empty. Domains should always include the
5878 * cpu they're built on, so check that.
5879 *
5880 */
5881static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5882{
5883 const struct cpumask *span = sched_domain_span(sd);
5884 struct sd_data *sdd = sd->private;
5885 struct sched_domain *sibling;
5886 int i;
5887
5888 for_each_cpu(i, span) {
5889 sibling = *per_cpu_ptr(sdd->sd, i);
5890 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5891 continue;
5892
5893 cpumask_set_cpu(i, sched_group_mask(sg));
5894 }
5895}
5896
5897/*
5898 * Return the canonical balance cpu for this group, this is the first cpu
5899 * of this group that's also in the iteration mask.
5900 */
5901int group_balance_cpu(struct sched_group *sg)
5902{
5903 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5904}
5905
e3589f6c
PZ
5906static int
5907build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5908{
5909 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5910 const struct cpumask *span = sched_domain_span(sd);
5911 struct cpumask *covered = sched_domains_tmpmask;
5912 struct sd_data *sdd = sd->private;
aaecac4a 5913 struct sched_domain *sibling;
e3589f6c
PZ
5914 int i;
5915
5916 cpumask_clear(covered);
5917
5918 for_each_cpu(i, span) {
5919 struct cpumask *sg_span;
5920
5921 if (cpumask_test_cpu(i, covered))
5922 continue;
5923
aaecac4a 5924 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5925
5926 /* See the comment near build_group_mask(). */
aaecac4a 5927 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5928 continue;
5929
e3589f6c 5930 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5931 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5932
5933 if (!sg)
5934 goto fail;
5935
5936 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5937 if (sibling->child)
5938 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5939 else
e3589f6c
PZ
5940 cpumask_set_cpu(i, sg_span);
5941
5942 cpumask_or(covered, covered, sg_span);
5943
63b2ca30
NP
5944 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5945 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5946 build_group_mask(sd, sg);
5947
c3decf0d 5948 /*
63b2ca30 5949 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5950 * domains and no possible iteration will get us here, we won't
5951 * die on a /0 trap.
5952 */
ca8ce3d0 5953 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5954 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5955
c1174876
PZ
5956 /*
5957 * Make sure the first group of this domain contains the
5958 * canonical balance cpu. Otherwise the sched_domain iteration
5959 * breaks. See update_sg_lb_stats().
5960 */
74a5ce20 5961 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5962 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5963 groups = sg;
5964
5965 if (!first)
5966 first = sg;
5967 if (last)
5968 last->next = sg;
5969 last = sg;
5970 last->next = first;
5971 }
5972 sd->groups = groups;
5973
5974 return 0;
5975
5976fail:
5977 free_sched_groups(first, 0);
5978
5979 return -ENOMEM;
5980}
5981
dce840a0 5982static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5983{
dce840a0
PZ
5984 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5985 struct sched_domain *child = sd->child;
1da177e4 5986
dce840a0
PZ
5987 if (child)
5988 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5989
9c3f75cb 5990 if (sg) {
dce840a0 5991 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5992 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5993 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5994 }
dce840a0
PZ
5995
5996 return cpu;
1e9f28fa 5997}
1e9f28fa 5998
01a08546 5999/*
dce840a0
PZ
6000 * build_sched_groups will build a circular linked list of the groups
6001 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6002 * and ->cpu_capacity to 0.
e3589f6c
PZ
6003 *
6004 * Assumes the sched_domain tree is fully constructed
01a08546 6005 */
e3589f6c
PZ
6006static int
6007build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6008{
dce840a0
PZ
6009 struct sched_group *first = NULL, *last = NULL;
6010 struct sd_data *sdd = sd->private;
6011 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6012 struct cpumask *covered;
dce840a0 6013 int i;
9c1cfda2 6014
e3589f6c
PZ
6015 get_group(cpu, sdd, &sd->groups);
6016 atomic_inc(&sd->groups->ref);
6017
0936629f 6018 if (cpu != cpumask_first(span))
e3589f6c
PZ
6019 return 0;
6020
f96225fd
PZ
6021 lockdep_assert_held(&sched_domains_mutex);
6022 covered = sched_domains_tmpmask;
6023
dce840a0 6024 cpumask_clear(covered);
6711cab4 6025
dce840a0
PZ
6026 for_each_cpu(i, span) {
6027 struct sched_group *sg;
cd08e923 6028 int group, j;
6711cab4 6029
dce840a0
PZ
6030 if (cpumask_test_cpu(i, covered))
6031 continue;
6711cab4 6032
cd08e923 6033 group = get_group(i, sdd, &sg);
c1174876 6034 cpumask_setall(sched_group_mask(sg));
0601a88d 6035
dce840a0
PZ
6036 for_each_cpu(j, span) {
6037 if (get_group(j, sdd, NULL) != group)
6038 continue;
0601a88d 6039
dce840a0
PZ
6040 cpumask_set_cpu(j, covered);
6041 cpumask_set_cpu(j, sched_group_cpus(sg));
6042 }
0601a88d 6043
dce840a0
PZ
6044 if (!first)
6045 first = sg;
6046 if (last)
6047 last->next = sg;
6048 last = sg;
6049 }
6050 last->next = first;
e3589f6c
PZ
6051
6052 return 0;
0601a88d 6053}
51888ca2 6054
89c4710e 6055/*
63b2ca30 6056 * Initialize sched groups cpu_capacity.
89c4710e 6057 *
63b2ca30 6058 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6059 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6060 * Typically cpu_capacity for all the groups in a sched domain will be same
6061 * unless there are asymmetries in the topology. If there are asymmetries,
6062 * group having more cpu_capacity will pickup more load compared to the
6063 * group having less cpu_capacity.
89c4710e 6064 */
63b2ca30 6065static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6066{
e3589f6c 6067 struct sched_group *sg = sd->groups;
89c4710e 6068
94c95ba6 6069 WARN_ON(!sg);
e3589f6c
PZ
6070
6071 do {
6072 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6073 sg = sg->next;
6074 } while (sg != sd->groups);
89c4710e 6075
c1174876 6076 if (cpu != group_balance_cpu(sg))
e3589f6c 6077 return;
aae6d3dd 6078
63b2ca30
NP
6079 update_group_capacity(sd, cpu);
6080 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6081}
6082
7c16ec58
MT
6083/*
6084 * Initializers for schedule domains
6085 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6086 */
6087
1d3504fc 6088static int default_relax_domain_level = -1;
60495e77 6089int sched_domain_level_max;
1d3504fc
HS
6090
6091static int __init setup_relax_domain_level(char *str)
6092{
a841f8ce
DS
6093 if (kstrtoint(str, 0, &default_relax_domain_level))
6094 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6095
1d3504fc
HS
6096 return 1;
6097}
6098__setup("relax_domain_level=", setup_relax_domain_level);
6099
6100static void set_domain_attribute(struct sched_domain *sd,
6101 struct sched_domain_attr *attr)
6102{
6103 int request;
6104
6105 if (!attr || attr->relax_domain_level < 0) {
6106 if (default_relax_domain_level < 0)
6107 return;
6108 else
6109 request = default_relax_domain_level;
6110 } else
6111 request = attr->relax_domain_level;
6112 if (request < sd->level) {
6113 /* turn off idle balance on this domain */
c88d5910 6114 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6115 } else {
6116 /* turn on idle balance on this domain */
c88d5910 6117 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6118 }
6119}
6120
54ab4ff4
PZ
6121static void __sdt_free(const struct cpumask *cpu_map);
6122static int __sdt_alloc(const struct cpumask *cpu_map);
6123
2109b99e
AH
6124static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6125 const struct cpumask *cpu_map)
6126{
6127 switch (what) {
2109b99e 6128 case sa_rootdomain:
822ff793
PZ
6129 if (!atomic_read(&d->rd->refcount))
6130 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6131 case sa_sd:
6132 free_percpu(d->sd); /* fall through */
dce840a0 6133 case sa_sd_storage:
54ab4ff4 6134 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6135 case sa_none:
6136 break;
6137 }
6138}
3404c8d9 6139
2109b99e
AH
6140static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6141 const struct cpumask *cpu_map)
6142{
dce840a0
PZ
6143 memset(d, 0, sizeof(*d));
6144
54ab4ff4
PZ
6145 if (__sdt_alloc(cpu_map))
6146 return sa_sd_storage;
dce840a0
PZ
6147 d->sd = alloc_percpu(struct sched_domain *);
6148 if (!d->sd)
6149 return sa_sd_storage;
2109b99e 6150 d->rd = alloc_rootdomain();
dce840a0 6151 if (!d->rd)
21d42ccf 6152 return sa_sd;
2109b99e
AH
6153 return sa_rootdomain;
6154}
57d885fe 6155
dce840a0
PZ
6156/*
6157 * NULL the sd_data elements we've used to build the sched_domain and
6158 * sched_group structure so that the subsequent __free_domain_allocs()
6159 * will not free the data we're using.
6160 */
6161static void claim_allocations(int cpu, struct sched_domain *sd)
6162{
6163 struct sd_data *sdd = sd->private;
dce840a0
PZ
6164
6165 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6166 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6167
e3589f6c 6168 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6169 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6170
63b2ca30
NP
6171 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6172 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6173}
6174
cb83b629 6175#ifdef CONFIG_NUMA
cb83b629 6176static int sched_domains_numa_levels;
e3fe70b1 6177enum numa_topology_type sched_numa_topology_type;
cb83b629 6178static int *sched_domains_numa_distance;
9942f79b 6179int sched_max_numa_distance;
cb83b629
PZ
6180static struct cpumask ***sched_domains_numa_masks;
6181static int sched_domains_curr_level;
143e1e28 6182#endif
cb83b629 6183
143e1e28
VG
6184/*
6185 * SD_flags allowed in topology descriptions.
6186 *
5d4dfddd 6187 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6188 * SD_SHARE_PKG_RESOURCES - describes shared caches
6189 * SD_NUMA - describes NUMA topologies
d77b3ed5 6190 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6191 *
6192 * Odd one out:
6193 * SD_ASYM_PACKING - describes SMT quirks
6194 */
6195#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6196 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6197 SD_SHARE_PKG_RESOURCES | \
6198 SD_NUMA | \
d77b3ed5
VG
6199 SD_ASYM_PACKING | \
6200 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6201
6202static struct sched_domain *
143e1e28 6203sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6204{
6205 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6206 int sd_weight, sd_flags = 0;
6207
6208#ifdef CONFIG_NUMA
6209 /*
6210 * Ugly hack to pass state to sd_numa_mask()...
6211 */
6212 sched_domains_curr_level = tl->numa_level;
6213#endif
6214
6215 sd_weight = cpumask_weight(tl->mask(cpu));
6216
6217 if (tl->sd_flags)
6218 sd_flags = (*tl->sd_flags)();
6219 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6220 "wrong sd_flags in topology description\n"))
6221 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6222
6223 *sd = (struct sched_domain){
6224 .min_interval = sd_weight,
6225 .max_interval = 2*sd_weight,
6226 .busy_factor = 32,
870a0bb5 6227 .imbalance_pct = 125,
143e1e28
VG
6228
6229 .cache_nice_tries = 0,
6230 .busy_idx = 0,
6231 .idle_idx = 0,
cb83b629
PZ
6232 .newidle_idx = 0,
6233 .wake_idx = 0,
6234 .forkexec_idx = 0,
6235
6236 .flags = 1*SD_LOAD_BALANCE
6237 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6238 | 1*SD_BALANCE_EXEC
6239 | 1*SD_BALANCE_FORK
cb83b629 6240 | 0*SD_BALANCE_WAKE
143e1e28 6241 | 1*SD_WAKE_AFFINE
5d4dfddd 6242 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6243 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6244 | 0*SD_SERIALIZE
cb83b629 6245 | 0*SD_PREFER_SIBLING
143e1e28
VG
6246 | 0*SD_NUMA
6247 | sd_flags
cb83b629 6248 ,
143e1e28 6249
cb83b629
PZ
6250 .last_balance = jiffies,
6251 .balance_interval = sd_weight,
143e1e28 6252 .smt_gain = 0,
2b4cfe64
JL
6253 .max_newidle_lb_cost = 0,
6254 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6255#ifdef CONFIG_SCHED_DEBUG
6256 .name = tl->name,
6257#endif
cb83b629 6258 };
cb83b629
PZ
6259
6260 /*
143e1e28 6261 * Convert topological properties into behaviour.
cb83b629 6262 */
143e1e28 6263
5d4dfddd 6264 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6265 sd->imbalance_pct = 110;
6266 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6267
6268 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6269 sd->imbalance_pct = 117;
6270 sd->cache_nice_tries = 1;
6271 sd->busy_idx = 2;
6272
6273#ifdef CONFIG_NUMA
6274 } else if (sd->flags & SD_NUMA) {
6275 sd->cache_nice_tries = 2;
6276 sd->busy_idx = 3;
6277 sd->idle_idx = 2;
6278
6279 sd->flags |= SD_SERIALIZE;
6280 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6281 sd->flags &= ~(SD_BALANCE_EXEC |
6282 SD_BALANCE_FORK |
6283 SD_WAKE_AFFINE);
6284 }
6285
6286#endif
6287 } else {
6288 sd->flags |= SD_PREFER_SIBLING;
6289 sd->cache_nice_tries = 1;
6290 sd->busy_idx = 2;
6291 sd->idle_idx = 1;
6292 }
6293
6294 sd->private = &tl->data;
cb83b629
PZ
6295
6296 return sd;
6297}
6298
143e1e28
VG
6299/*
6300 * Topology list, bottom-up.
6301 */
6302static struct sched_domain_topology_level default_topology[] = {
6303#ifdef CONFIG_SCHED_SMT
6304 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6305#endif
6306#ifdef CONFIG_SCHED_MC
6307 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6308#endif
6309 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6310 { NULL, },
6311};
6312
6313struct sched_domain_topology_level *sched_domain_topology = default_topology;
6314
6315#define for_each_sd_topology(tl) \
6316 for (tl = sched_domain_topology; tl->mask; tl++)
6317
6318void set_sched_topology(struct sched_domain_topology_level *tl)
6319{
6320 sched_domain_topology = tl;
6321}
6322
6323#ifdef CONFIG_NUMA
6324
cb83b629
PZ
6325static const struct cpumask *sd_numa_mask(int cpu)
6326{
6327 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6328}
6329
d039ac60
PZ
6330static void sched_numa_warn(const char *str)
6331{
6332 static int done = false;
6333 int i,j;
6334
6335 if (done)
6336 return;
6337
6338 done = true;
6339
6340 printk(KERN_WARNING "ERROR: %s\n\n", str);
6341
6342 for (i = 0; i < nr_node_ids; i++) {
6343 printk(KERN_WARNING " ");
6344 for (j = 0; j < nr_node_ids; j++)
6345 printk(KERN_CONT "%02d ", node_distance(i,j));
6346 printk(KERN_CONT "\n");
6347 }
6348 printk(KERN_WARNING "\n");
6349}
6350
9942f79b 6351bool find_numa_distance(int distance)
d039ac60
PZ
6352{
6353 int i;
6354
6355 if (distance == node_distance(0, 0))
6356 return true;
6357
6358 for (i = 0; i < sched_domains_numa_levels; i++) {
6359 if (sched_domains_numa_distance[i] == distance)
6360 return true;
6361 }
6362
6363 return false;
6364}
6365
e3fe70b1
RR
6366/*
6367 * A system can have three types of NUMA topology:
6368 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6369 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6370 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6371 *
6372 * The difference between a glueless mesh topology and a backplane
6373 * topology lies in whether communication between not directly
6374 * connected nodes goes through intermediary nodes (where programs
6375 * could run), or through backplane controllers. This affects
6376 * placement of programs.
6377 *
6378 * The type of topology can be discerned with the following tests:
6379 * - If the maximum distance between any nodes is 1 hop, the system
6380 * is directly connected.
6381 * - If for two nodes A and B, located N > 1 hops away from each other,
6382 * there is an intermediary node C, which is < N hops away from both
6383 * nodes A and B, the system is a glueless mesh.
6384 */
6385static void init_numa_topology_type(void)
6386{
6387 int a, b, c, n;
6388
6389 n = sched_max_numa_distance;
6390
6391 if (n <= 1)
6392 sched_numa_topology_type = NUMA_DIRECT;
6393
6394 for_each_online_node(a) {
6395 for_each_online_node(b) {
6396 /* Find two nodes furthest removed from each other. */
6397 if (node_distance(a, b) < n)
6398 continue;
6399
6400 /* Is there an intermediary node between a and b? */
6401 for_each_online_node(c) {
6402 if (node_distance(a, c) < n &&
6403 node_distance(b, c) < n) {
6404 sched_numa_topology_type =
6405 NUMA_GLUELESS_MESH;
6406 return;
6407 }
6408 }
6409
6410 sched_numa_topology_type = NUMA_BACKPLANE;
6411 return;
6412 }
6413 }
6414}
6415
cb83b629
PZ
6416static void sched_init_numa(void)
6417{
6418 int next_distance, curr_distance = node_distance(0, 0);
6419 struct sched_domain_topology_level *tl;
6420 int level = 0;
6421 int i, j, k;
6422
cb83b629
PZ
6423 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6424 if (!sched_domains_numa_distance)
6425 return;
6426
6427 /*
6428 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6429 * unique distances in the node_distance() table.
6430 *
6431 * Assumes node_distance(0,j) includes all distances in
6432 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6433 */
6434 next_distance = curr_distance;
6435 for (i = 0; i < nr_node_ids; i++) {
6436 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6437 for (k = 0; k < nr_node_ids; k++) {
6438 int distance = node_distance(i, k);
6439
6440 if (distance > curr_distance &&
6441 (distance < next_distance ||
6442 next_distance == curr_distance))
6443 next_distance = distance;
6444
6445 /*
6446 * While not a strong assumption it would be nice to know
6447 * about cases where if node A is connected to B, B is not
6448 * equally connected to A.
6449 */
6450 if (sched_debug() && node_distance(k, i) != distance)
6451 sched_numa_warn("Node-distance not symmetric");
6452
6453 if (sched_debug() && i && !find_numa_distance(distance))
6454 sched_numa_warn("Node-0 not representative");
6455 }
6456 if (next_distance != curr_distance) {
6457 sched_domains_numa_distance[level++] = next_distance;
6458 sched_domains_numa_levels = level;
6459 curr_distance = next_distance;
6460 } else break;
cb83b629 6461 }
d039ac60
PZ
6462
6463 /*
6464 * In case of sched_debug() we verify the above assumption.
6465 */
6466 if (!sched_debug())
6467 break;
cb83b629
PZ
6468 }
6469 /*
6470 * 'level' contains the number of unique distances, excluding the
6471 * identity distance node_distance(i,i).
6472 *
28b4a521 6473 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6474 * numbers.
6475 */
6476
5f7865f3
TC
6477 /*
6478 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6479 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6480 * the array will contain less then 'level' members. This could be
6481 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6482 * in other functions.
6483 *
6484 * We reset it to 'level' at the end of this function.
6485 */
6486 sched_domains_numa_levels = 0;
6487
cb83b629
PZ
6488 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6489 if (!sched_domains_numa_masks)
6490 return;
6491
6492 /*
6493 * Now for each level, construct a mask per node which contains all
6494 * cpus of nodes that are that many hops away from us.
6495 */
6496 for (i = 0; i < level; i++) {
6497 sched_domains_numa_masks[i] =
6498 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6499 if (!sched_domains_numa_masks[i])
6500 return;
6501
6502 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6503 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6504 if (!mask)
6505 return;
6506
6507 sched_domains_numa_masks[i][j] = mask;
6508
6509 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6510 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6511 continue;
6512
6513 cpumask_or(mask, mask, cpumask_of_node(k));
6514 }
6515 }
6516 }
6517
143e1e28
VG
6518 /* Compute default topology size */
6519 for (i = 0; sched_domain_topology[i].mask; i++);
6520
c515db8c 6521 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6522 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6523 if (!tl)
6524 return;
6525
6526 /*
6527 * Copy the default topology bits..
6528 */
143e1e28
VG
6529 for (i = 0; sched_domain_topology[i].mask; i++)
6530 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6531
6532 /*
6533 * .. and append 'j' levels of NUMA goodness.
6534 */
6535 for (j = 0; j < level; i++, j++) {
6536 tl[i] = (struct sched_domain_topology_level){
cb83b629 6537 .mask = sd_numa_mask,
143e1e28 6538 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6539 .flags = SDTL_OVERLAP,
6540 .numa_level = j,
143e1e28 6541 SD_INIT_NAME(NUMA)
cb83b629
PZ
6542 };
6543 }
6544
6545 sched_domain_topology = tl;
5f7865f3
TC
6546
6547 sched_domains_numa_levels = level;
9942f79b 6548 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6549
6550 init_numa_topology_type();
cb83b629 6551}
301a5cba
TC
6552
6553static void sched_domains_numa_masks_set(int cpu)
6554{
6555 int i, j;
6556 int node = cpu_to_node(cpu);
6557
6558 for (i = 0; i < sched_domains_numa_levels; i++) {
6559 for (j = 0; j < nr_node_ids; j++) {
6560 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6561 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6562 }
6563 }
6564}
6565
6566static void sched_domains_numa_masks_clear(int cpu)
6567{
6568 int i, j;
6569 for (i = 0; i < sched_domains_numa_levels; i++) {
6570 for (j = 0; j < nr_node_ids; j++)
6571 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6572 }
6573}
6574
6575/*
6576 * Update sched_domains_numa_masks[level][node] array when new cpus
6577 * are onlined.
6578 */
6579static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6580 unsigned long action,
6581 void *hcpu)
6582{
6583 int cpu = (long)hcpu;
6584
6585 switch (action & ~CPU_TASKS_FROZEN) {
6586 case CPU_ONLINE:
6587 sched_domains_numa_masks_set(cpu);
6588 break;
6589
6590 case CPU_DEAD:
6591 sched_domains_numa_masks_clear(cpu);
6592 break;
6593
6594 default:
6595 return NOTIFY_DONE;
6596 }
6597
6598 return NOTIFY_OK;
cb83b629
PZ
6599}
6600#else
6601static inline void sched_init_numa(void)
6602{
6603}
301a5cba
TC
6604
6605static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6606 unsigned long action,
6607 void *hcpu)
6608{
6609 return 0;
6610}
cb83b629
PZ
6611#endif /* CONFIG_NUMA */
6612
54ab4ff4
PZ
6613static int __sdt_alloc(const struct cpumask *cpu_map)
6614{
6615 struct sched_domain_topology_level *tl;
6616 int j;
6617
27723a68 6618 for_each_sd_topology(tl) {
54ab4ff4
PZ
6619 struct sd_data *sdd = &tl->data;
6620
6621 sdd->sd = alloc_percpu(struct sched_domain *);
6622 if (!sdd->sd)
6623 return -ENOMEM;
6624
6625 sdd->sg = alloc_percpu(struct sched_group *);
6626 if (!sdd->sg)
6627 return -ENOMEM;
6628
63b2ca30
NP
6629 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6630 if (!sdd->sgc)
9c3f75cb
PZ
6631 return -ENOMEM;
6632
54ab4ff4
PZ
6633 for_each_cpu(j, cpu_map) {
6634 struct sched_domain *sd;
6635 struct sched_group *sg;
63b2ca30 6636 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6637
6638 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6639 GFP_KERNEL, cpu_to_node(j));
6640 if (!sd)
6641 return -ENOMEM;
6642
6643 *per_cpu_ptr(sdd->sd, j) = sd;
6644
6645 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6646 GFP_KERNEL, cpu_to_node(j));
6647 if (!sg)
6648 return -ENOMEM;
6649
30b4e9eb
IM
6650 sg->next = sg;
6651
54ab4ff4 6652 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6653
63b2ca30 6654 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6655 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6656 if (!sgc)
9c3f75cb
PZ
6657 return -ENOMEM;
6658
63b2ca30 6659 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6660 }
6661 }
6662
6663 return 0;
6664}
6665
6666static void __sdt_free(const struct cpumask *cpu_map)
6667{
6668 struct sched_domain_topology_level *tl;
6669 int j;
6670
27723a68 6671 for_each_sd_topology(tl) {
54ab4ff4
PZ
6672 struct sd_data *sdd = &tl->data;
6673
6674 for_each_cpu(j, cpu_map) {
fb2cf2c6 6675 struct sched_domain *sd;
6676
6677 if (sdd->sd) {
6678 sd = *per_cpu_ptr(sdd->sd, j);
6679 if (sd && (sd->flags & SD_OVERLAP))
6680 free_sched_groups(sd->groups, 0);
6681 kfree(*per_cpu_ptr(sdd->sd, j));
6682 }
6683
6684 if (sdd->sg)
6685 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6686 if (sdd->sgc)
6687 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6688 }
6689 free_percpu(sdd->sd);
fb2cf2c6 6690 sdd->sd = NULL;
54ab4ff4 6691 free_percpu(sdd->sg);
fb2cf2c6 6692 sdd->sg = NULL;
63b2ca30
NP
6693 free_percpu(sdd->sgc);
6694 sdd->sgc = NULL;
54ab4ff4
PZ
6695 }
6696}
6697
2c402dc3 6698struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6699 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6700 struct sched_domain *child, int cpu)
2c402dc3 6701{
143e1e28 6702 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6703 if (!sd)
d069b916 6704 return child;
2c402dc3 6705
2c402dc3 6706 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6707 if (child) {
6708 sd->level = child->level + 1;
6709 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6710 child->parent = sd;
c75e0128 6711 sd->child = child;
6ae72dff
PZ
6712
6713 if (!cpumask_subset(sched_domain_span(child),
6714 sched_domain_span(sd))) {
6715 pr_err("BUG: arch topology borken\n");
6716#ifdef CONFIG_SCHED_DEBUG
6717 pr_err(" the %s domain not a subset of the %s domain\n",
6718 child->name, sd->name);
6719#endif
6720 /* Fixup, ensure @sd has at least @child cpus. */
6721 cpumask_or(sched_domain_span(sd),
6722 sched_domain_span(sd),
6723 sched_domain_span(child));
6724 }
6725
60495e77 6726 }
a841f8ce 6727 set_domain_attribute(sd, attr);
2c402dc3
PZ
6728
6729 return sd;
6730}
6731
2109b99e
AH
6732/*
6733 * Build sched domains for a given set of cpus and attach the sched domains
6734 * to the individual cpus
6735 */
dce840a0
PZ
6736static int build_sched_domains(const struct cpumask *cpu_map,
6737 struct sched_domain_attr *attr)
2109b99e 6738{
1c632169 6739 enum s_alloc alloc_state;
dce840a0 6740 struct sched_domain *sd;
2109b99e 6741 struct s_data d;
822ff793 6742 int i, ret = -ENOMEM;
9c1cfda2 6743
2109b99e
AH
6744 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6745 if (alloc_state != sa_rootdomain)
6746 goto error;
9c1cfda2 6747
dce840a0 6748 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6749 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6750 struct sched_domain_topology_level *tl;
6751
3bd65a80 6752 sd = NULL;
27723a68 6753 for_each_sd_topology(tl) {
4a850cbe 6754 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6755 if (tl == sched_domain_topology)
6756 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6757 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6758 sd->flags |= SD_OVERLAP;
d110235d
PZ
6759 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6760 break;
e3589f6c 6761 }
dce840a0
PZ
6762 }
6763
6764 /* Build the groups for the domains */
6765 for_each_cpu(i, cpu_map) {
6766 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6767 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6768 if (sd->flags & SD_OVERLAP) {
6769 if (build_overlap_sched_groups(sd, i))
6770 goto error;
6771 } else {
6772 if (build_sched_groups(sd, i))
6773 goto error;
6774 }
1cf51902 6775 }
a06dadbe 6776 }
9c1cfda2 6777
ced549fa 6778 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6779 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6780 if (!cpumask_test_cpu(i, cpu_map))
6781 continue;
9c1cfda2 6782
dce840a0
PZ
6783 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6784 claim_allocations(i, sd);
63b2ca30 6785 init_sched_groups_capacity(i, sd);
dce840a0 6786 }
f712c0c7 6787 }
9c1cfda2 6788
1da177e4 6789 /* Attach the domains */
dce840a0 6790 rcu_read_lock();
abcd083a 6791 for_each_cpu(i, cpu_map) {
21d42ccf 6792 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6793 cpu_attach_domain(sd, d.rd, i);
1da177e4 6794 }
dce840a0 6795 rcu_read_unlock();
51888ca2 6796
822ff793 6797 ret = 0;
51888ca2 6798error:
2109b99e 6799 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6800 return ret;
1da177e4 6801}
029190c5 6802
acc3f5d7 6803static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6804static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6805static struct sched_domain_attr *dattr_cur;
6806 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6807
6808/*
6809 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6810 * cpumask) fails, then fallback to a single sched domain,
6811 * as determined by the single cpumask fallback_doms.
029190c5 6812 */
4212823f 6813static cpumask_var_t fallback_doms;
029190c5 6814
ee79d1bd
HC
6815/*
6816 * arch_update_cpu_topology lets virtualized architectures update the
6817 * cpu core maps. It is supposed to return 1 if the topology changed
6818 * or 0 if it stayed the same.
6819 */
52f5684c 6820int __weak arch_update_cpu_topology(void)
22e52b07 6821{
ee79d1bd 6822 return 0;
22e52b07
HC
6823}
6824
acc3f5d7
RR
6825cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6826{
6827 int i;
6828 cpumask_var_t *doms;
6829
6830 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6831 if (!doms)
6832 return NULL;
6833 for (i = 0; i < ndoms; i++) {
6834 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6835 free_sched_domains(doms, i);
6836 return NULL;
6837 }
6838 }
6839 return doms;
6840}
6841
6842void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6843{
6844 unsigned int i;
6845 for (i = 0; i < ndoms; i++)
6846 free_cpumask_var(doms[i]);
6847 kfree(doms);
6848}
6849
1a20ff27 6850/*
41a2d6cf 6851 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6852 * For now this just excludes isolated cpus, but could be used to
6853 * exclude other special cases in the future.
1a20ff27 6854 */
c4a8849a 6855static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6856{
7378547f
MM
6857 int err;
6858
22e52b07 6859 arch_update_cpu_topology();
029190c5 6860 ndoms_cur = 1;
acc3f5d7 6861 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6862 if (!doms_cur)
acc3f5d7
RR
6863 doms_cur = &fallback_doms;
6864 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6865 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6866 register_sched_domain_sysctl();
7378547f
MM
6867
6868 return err;
1a20ff27
DG
6869}
6870
1a20ff27
DG
6871/*
6872 * Detach sched domains from a group of cpus specified in cpu_map
6873 * These cpus will now be attached to the NULL domain
6874 */
96f874e2 6875static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6876{
6877 int i;
6878
dce840a0 6879 rcu_read_lock();
abcd083a 6880 for_each_cpu(i, cpu_map)
57d885fe 6881 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6882 rcu_read_unlock();
1a20ff27
DG
6883}
6884
1d3504fc
HS
6885/* handle null as "default" */
6886static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6887 struct sched_domain_attr *new, int idx_new)
6888{
6889 struct sched_domain_attr tmp;
6890
6891 /* fast path */
6892 if (!new && !cur)
6893 return 1;
6894
6895 tmp = SD_ATTR_INIT;
6896 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6897 new ? (new + idx_new) : &tmp,
6898 sizeof(struct sched_domain_attr));
6899}
6900
029190c5
PJ
6901/*
6902 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6903 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6904 * doms_new[] to the current sched domain partitioning, doms_cur[].
6905 * It destroys each deleted domain and builds each new domain.
6906 *
acc3f5d7 6907 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6908 * The masks don't intersect (don't overlap.) We should setup one
6909 * sched domain for each mask. CPUs not in any of the cpumasks will
6910 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6911 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6912 * it as it is.
6913 *
acc3f5d7
RR
6914 * The passed in 'doms_new' should be allocated using
6915 * alloc_sched_domains. This routine takes ownership of it and will
6916 * free_sched_domains it when done with it. If the caller failed the
6917 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6918 * and partition_sched_domains() will fallback to the single partition
6919 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6920 *
96f874e2 6921 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6922 * ndoms_new == 0 is a special case for destroying existing domains,
6923 * and it will not create the default domain.
dfb512ec 6924 *
029190c5
PJ
6925 * Call with hotplug lock held
6926 */
acc3f5d7 6927void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6928 struct sched_domain_attr *dattr_new)
029190c5 6929{
dfb512ec 6930 int i, j, n;
d65bd5ec 6931 int new_topology;
029190c5 6932
712555ee 6933 mutex_lock(&sched_domains_mutex);
a1835615 6934
7378547f
MM
6935 /* always unregister in case we don't destroy any domains */
6936 unregister_sched_domain_sysctl();
6937
d65bd5ec
HC
6938 /* Let architecture update cpu core mappings. */
6939 new_topology = arch_update_cpu_topology();
6940
dfb512ec 6941 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6942
6943 /* Destroy deleted domains */
6944 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6945 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6946 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6947 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6948 goto match1;
6949 }
6950 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6951 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6952match1:
6953 ;
6954 }
6955
c8d2d47a 6956 n = ndoms_cur;
e761b772 6957 if (doms_new == NULL) {
c8d2d47a 6958 n = 0;
acc3f5d7 6959 doms_new = &fallback_doms;
6ad4c188 6960 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6961 WARN_ON_ONCE(dattr_new);
e761b772
MK
6962 }
6963
029190c5
PJ
6964 /* Build new domains */
6965 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6966 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6967 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6968 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6969 goto match2;
6970 }
6971 /* no match - add a new doms_new */
dce840a0 6972 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6973match2:
6974 ;
6975 }
6976
6977 /* Remember the new sched domains */
acc3f5d7
RR
6978 if (doms_cur != &fallback_doms)
6979 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6980 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6981 doms_cur = doms_new;
1d3504fc 6982 dattr_cur = dattr_new;
029190c5 6983 ndoms_cur = ndoms_new;
7378547f
MM
6984
6985 register_sched_domain_sysctl();
a1835615 6986
712555ee 6987 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6988}
6989
d35be8ba
SB
6990static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6991
1da177e4 6992/*
3a101d05
TH
6993 * Update cpusets according to cpu_active mask. If cpusets are
6994 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6995 * around partition_sched_domains().
d35be8ba
SB
6996 *
6997 * If we come here as part of a suspend/resume, don't touch cpusets because we
6998 * want to restore it back to its original state upon resume anyway.
1da177e4 6999 */
0b2e918a
TH
7000static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7001 void *hcpu)
e761b772 7002{
d35be8ba
SB
7003 switch (action) {
7004 case CPU_ONLINE_FROZEN:
7005 case CPU_DOWN_FAILED_FROZEN:
7006
7007 /*
7008 * num_cpus_frozen tracks how many CPUs are involved in suspend
7009 * resume sequence. As long as this is not the last online
7010 * operation in the resume sequence, just build a single sched
7011 * domain, ignoring cpusets.
7012 */
7013 num_cpus_frozen--;
7014 if (likely(num_cpus_frozen)) {
7015 partition_sched_domains(1, NULL, NULL);
7016 break;
7017 }
7018
7019 /*
7020 * This is the last CPU online operation. So fall through and
7021 * restore the original sched domains by considering the
7022 * cpuset configurations.
7023 */
7024
e761b772 7025 case CPU_ONLINE:
6ad4c188 7026 case CPU_DOWN_FAILED:
7ddf96b0 7027 cpuset_update_active_cpus(true);
d35be8ba 7028 break;
3a101d05
TH
7029 default:
7030 return NOTIFY_DONE;
7031 }
d35be8ba 7032 return NOTIFY_OK;
3a101d05 7033}
e761b772 7034
0b2e918a
TH
7035static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7036 void *hcpu)
3a101d05 7037{
d35be8ba 7038 switch (action) {
3a101d05 7039 case CPU_DOWN_PREPARE:
7ddf96b0 7040 cpuset_update_active_cpus(false);
d35be8ba
SB
7041 break;
7042 case CPU_DOWN_PREPARE_FROZEN:
7043 num_cpus_frozen++;
7044 partition_sched_domains(1, NULL, NULL);
7045 break;
e761b772
MK
7046 default:
7047 return NOTIFY_DONE;
7048 }
d35be8ba 7049 return NOTIFY_OK;
e761b772 7050}
e761b772 7051
1da177e4
LT
7052void __init sched_init_smp(void)
7053{
dcc30a35
RR
7054 cpumask_var_t non_isolated_cpus;
7055
7056 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7057 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7058
cb83b629
PZ
7059 sched_init_numa();
7060
6acce3ef
PZ
7061 /*
7062 * There's no userspace yet to cause hotplug operations; hence all the
7063 * cpu masks are stable and all blatant races in the below code cannot
7064 * happen.
7065 */
712555ee 7066 mutex_lock(&sched_domains_mutex);
c4a8849a 7067 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7068 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7069 if (cpumask_empty(non_isolated_cpus))
7070 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7071 mutex_unlock(&sched_domains_mutex);
e761b772 7072
301a5cba 7073 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7074 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7075 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7076
b328ca18 7077 init_hrtick();
5c1e1767
NP
7078
7079 /* Move init over to a non-isolated CPU */
dcc30a35 7080 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7081 BUG();
19978ca6 7082 sched_init_granularity();
dcc30a35 7083 free_cpumask_var(non_isolated_cpus);
4212823f 7084
0e3900e6 7085 init_sched_rt_class();
1baca4ce 7086 init_sched_dl_class();
1da177e4
LT
7087}
7088#else
7089void __init sched_init_smp(void)
7090{
19978ca6 7091 sched_init_granularity();
1da177e4
LT
7092}
7093#endif /* CONFIG_SMP */
7094
cd1bb94b
AB
7095const_debug unsigned int sysctl_timer_migration = 1;
7096
1da177e4
LT
7097int in_sched_functions(unsigned long addr)
7098{
1da177e4
LT
7099 return in_lock_functions(addr) ||
7100 (addr >= (unsigned long)__sched_text_start
7101 && addr < (unsigned long)__sched_text_end);
7102}
7103
029632fb 7104#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7105/*
7106 * Default task group.
7107 * Every task in system belongs to this group at bootup.
7108 */
029632fb 7109struct task_group root_task_group;
35cf4e50 7110LIST_HEAD(task_groups);
052f1dc7 7111#endif
6f505b16 7112
e6252c3e 7113DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7114
1da177e4
LT
7115void __init sched_init(void)
7116{
dd41f596 7117 int i, j;
434d53b0
MT
7118 unsigned long alloc_size = 0, ptr;
7119
7120#ifdef CONFIG_FAIR_GROUP_SCHED
7121 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7122#endif
7123#ifdef CONFIG_RT_GROUP_SCHED
7124 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7125#endif
df7c8e84 7126#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7127 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7128#endif
434d53b0 7129 if (alloc_size) {
36b7b6d4 7130 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7131
7132#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7133 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7134 ptr += nr_cpu_ids * sizeof(void **);
7135
07e06b01 7136 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7137 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7138
6d6bc0ad 7139#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7140#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7141 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7142 ptr += nr_cpu_ids * sizeof(void **);
7143
07e06b01 7144 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7145 ptr += nr_cpu_ids * sizeof(void **);
7146
6d6bc0ad 7147#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7148#ifdef CONFIG_CPUMASK_OFFSTACK
7149 for_each_possible_cpu(i) {
e6252c3e 7150 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
7151 ptr += cpumask_size();
7152 }
7153#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7154 }
dd41f596 7155
332ac17e
DF
7156 init_rt_bandwidth(&def_rt_bandwidth,
7157 global_rt_period(), global_rt_runtime());
7158 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7159 global_rt_period(), global_rt_runtime());
332ac17e 7160
57d885fe
GH
7161#ifdef CONFIG_SMP
7162 init_defrootdomain();
7163#endif
7164
d0b27fa7 7165#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7166 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7167 global_rt_period(), global_rt_runtime());
6d6bc0ad 7168#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7169
7c941438 7170#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7171 list_add(&root_task_group.list, &task_groups);
7172 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7173 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7174 autogroup_init(&init_task);
54c707e9 7175
7c941438 7176#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7177
0a945022 7178 for_each_possible_cpu(i) {
70b97a7f 7179 struct rq *rq;
1da177e4
LT
7180
7181 rq = cpu_rq(i);
05fa785c 7182 raw_spin_lock_init(&rq->lock);
7897986b 7183 rq->nr_running = 0;
dce48a84
TG
7184 rq->calc_load_active = 0;
7185 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7186 init_cfs_rq(&rq->cfs);
6f505b16 7187 init_rt_rq(&rq->rt, rq);
aab03e05 7188 init_dl_rq(&rq->dl, rq);
dd41f596 7189#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7190 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7191 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7192 /*
07e06b01 7193 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7194 *
7195 * In case of task-groups formed thr' the cgroup filesystem, it
7196 * gets 100% of the cpu resources in the system. This overall
7197 * system cpu resource is divided among the tasks of
07e06b01 7198 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7199 * based on each entity's (task or task-group's) weight
7200 * (se->load.weight).
7201 *
07e06b01 7202 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7203 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7204 * then A0's share of the cpu resource is:
7205 *
0d905bca 7206 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7207 *
07e06b01
YZ
7208 * We achieve this by letting root_task_group's tasks sit
7209 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7210 */
ab84d31e 7211 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7212 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7213#endif /* CONFIG_FAIR_GROUP_SCHED */
7214
7215 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7216#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7217 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7218#endif
1da177e4 7219
dd41f596
IM
7220 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7221 rq->cpu_load[j] = 0;
fdf3e95d
VP
7222
7223 rq->last_load_update_tick = jiffies;
7224
1da177e4 7225#ifdef CONFIG_SMP
41c7ce9a 7226 rq->sd = NULL;
57d885fe 7227 rq->rd = NULL;
ca8ce3d0 7228 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7229 rq->post_schedule = 0;
1da177e4 7230 rq->active_balance = 0;
dd41f596 7231 rq->next_balance = jiffies;
1da177e4 7232 rq->push_cpu = 0;
0a2966b4 7233 rq->cpu = i;
1f11eb6a 7234 rq->online = 0;
eae0c9df
MG
7235 rq->idle_stamp = 0;
7236 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7237 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7238
7239 INIT_LIST_HEAD(&rq->cfs_tasks);
7240
dc938520 7241 rq_attach_root(rq, &def_root_domain);
3451d024 7242#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7243 rq->nohz_flags = 0;
83cd4fe2 7244#endif
265f22a9
FW
7245#ifdef CONFIG_NO_HZ_FULL
7246 rq->last_sched_tick = 0;
7247#endif
1da177e4 7248#endif
8f4d37ec 7249 init_rq_hrtick(rq);
1da177e4 7250 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7251 }
7252
2dd73a4f 7253 set_load_weight(&init_task);
b50f60ce 7254
e107be36
AK
7255#ifdef CONFIG_PREEMPT_NOTIFIERS
7256 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7257#endif
7258
1da177e4
LT
7259 /*
7260 * The boot idle thread does lazy MMU switching as well:
7261 */
7262 atomic_inc(&init_mm.mm_count);
7263 enter_lazy_tlb(&init_mm, current);
7264
7265 /*
7266 * Make us the idle thread. Technically, schedule() should not be
7267 * called from this thread, however somewhere below it might be,
7268 * but because we are the idle thread, we just pick up running again
7269 * when this runqueue becomes "idle".
7270 */
7271 init_idle(current, smp_processor_id());
dce48a84
TG
7272
7273 calc_load_update = jiffies + LOAD_FREQ;
7274
dd41f596
IM
7275 /*
7276 * During early bootup we pretend to be a normal task:
7277 */
7278 current->sched_class = &fair_sched_class;
6892b75e 7279
bf4d83f6 7280#ifdef CONFIG_SMP
4cb98839 7281 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7282 /* May be allocated at isolcpus cmdline parse time */
7283 if (cpu_isolated_map == NULL)
7284 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7285 idle_thread_set_boot_cpu();
a803f026 7286 set_cpu_rq_start_time();
029632fb
PZ
7287#endif
7288 init_sched_fair_class();
6a7b3dc3 7289
6892b75e 7290 scheduler_running = 1;
1da177e4
LT
7291}
7292
d902db1e 7293#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7294static inline int preempt_count_equals(int preempt_offset)
7295{
234da7bc 7296 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7297
4ba8216c 7298 return (nested == preempt_offset);
e4aafea2
FW
7299}
7300
d894837f 7301void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7302{
8eb23b9f
PZ
7303 /*
7304 * Blocking primitives will set (and therefore destroy) current->state,
7305 * since we will exit with TASK_RUNNING make sure we enter with it,
7306 * otherwise we will destroy state.
7307 */
e7097e8b 7308 if (WARN_ONCE(current->state != TASK_RUNNING,
8eb23b9f
PZ
7309 "do not call blocking ops when !TASK_RUNNING; "
7310 "state=%lx set at [<%p>] %pS\n",
7311 current->state,
7312 (void *)current->task_state_change,
7313 (void *)current->task_state_change))
7314 __set_current_state(TASK_RUNNING);
7315
3427445a
PZ
7316 ___might_sleep(file, line, preempt_offset);
7317}
7318EXPORT_SYMBOL(__might_sleep);
7319
7320void ___might_sleep(const char *file, int line, int preempt_offset)
7321{
7322 static unsigned long prev_jiffy; /* ratelimiting */
7323
b3fbab05 7324 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7325 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7326 !is_idle_task(current)) ||
e4aafea2 7327 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7328 return;
7329 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7330 return;
7331 prev_jiffy = jiffies;
7332
3df0fc5b
PZ
7333 printk(KERN_ERR
7334 "BUG: sleeping function called from invalid context at %s:%d\n",
7335 file, line);
7336 printk(KERN_ERR
7337 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7338 in_atomic(), irqs_disabled(),
7339 current->pid, current->comm);
aef745fc
IM
7340
7341 debug_show_held_locks(current);
7342 if (irqs_disabled())
7343 print_irqtrace_events(current);
8f47b187
TG
7344#ifdef CONFIG_DEBUG_PREEMPT
7345 if (!preempt_count_equals(preempt_offset)) {
7346 pr_err("Preemption disabled at:");
7347 print_ip_sym(current->preempt_disable_ip);
7348 pr_cont("\n");
7349 }
7350#endif
aef745fc 7351 dump_stack();
1da177e4 7352}
3427445a 7353EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7354#endif
7355
7356#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7357static void normalize_task(struct rq *rq, struct task_struct *p)
7358{
da7a735e 7359 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7360 struct sched_attr attr = {
7361 .sched_policy = SCHED_NORMAL,
7362 };
da7a735e 7363 int old_prio = p->prio;
da0c1e65 7364 int queued;
3e51f33f 7365
da0c1e65
KT
7366 queued = task_on_rq_queued(p);
7367 if (queued)
4ca9b72b 7368 dequeue_task(rq, p, 0);
d50dde5a 7369 __setscheduler(rq, p, &attr);
da0c1e65 7370 if (queued) {
4ca9b72b 7371 enqueue_task(rq, p, 0);
8875125e 7372 resched_curr(rq);
3a5e4dc1 7373 }
da7a735e
PZ
7374
7375 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7376}
7377
1da177e4
LT
7378void normalize_rt_tasks(void)
7379{
a0f98a1c 7380 struct task_struct *g, *p;
1da177e4 7381 unsigned long flags;
70b97a7f 7382 struct rq *rq;
1da177e4 7383
3472eaa1 7384 read_lock(&tasklist_lock);
5d07f420 7385 for_each_process_thread(g, p) {
178be793
IM
7386 /*
7387 * Only normalize user tasks:
7388 */
3472eaa1 7389 if (p->flags & PF_KTHREAD)
178be793
IM
7390 continue;
7391
6cfb0d5d 7392 p->se.exec_start = 0;
6cfb0d5d 7393#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7394 p->se.statistics.wait_start = 0;
7395 p->se.statistics.sleep_start = 0;
7396 p->se.statistics.block_start = 0;
6cfb0d5d 7397#endif
dd41f596 7398
aab03e05 7399 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7400 /*
7401 * Renice negative nice level userspace
7402 * tasks back to 0:
7403 */
3472eaa1 7404 if (task_nice(p) < 0)
dd41f596 7405 set_user_nice(p, 0);
1da177e4 7406 continue;
dd41f596 7407 }
1da177e4 7408
3472eaa1 7409 rq = task_rq_lock(p, &flags);
178be793 7410 normalize_task(rq, p);
3472eaa1 7411 task_rq_unlock(rq, p, &flags);
5d07f420 7412 }
3472eaa1 7413 read_unlock(&tasklist_lock);
1da177e4
LT
7414}
7415
7416#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7417
67fc4e0c 7418#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7419/*
67fc4e0c 7420 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7421 *
7422 * They can only be called when the whole system has been
7423 * stopped - every CPU needs to be quiescent, and no scheduling
7424 * activity can take place. Using them for anything else would
7425 * be a serious bug, and as a result, they aren't even visible
7426 * under any other configuration.
7427 */
7428
7429/**
7430 * curr_task - return the current task for a given cpu.
7431 * @cpu: the processor in question.
7432 *
7433 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7434 *
7435 * Return: The current task for @cpu.
1df5c10a 7436 */
36c8b586 7437struct task_struct *curr_task(int cpu)
1df5c10a
LT
7438{
7439 return cpu_curr(cpu);
7440}
7441
67fc4e0c
JW
7442#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7443
7444#ifdef CONFIG_IA64
1df5c10a
LT
7445/**
7446 * set_curr_task - set the current task for a given cpu.
7447 * @cpu: the processor in question.
7448 * @p: the task pointer to set.
7449 *
7450 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7451 * are serviced on a separate stack. It allows the architecture to switch the
7452 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7453 * must be called with all CPU's synchronized, and interrupts disabled, the
7454 * and caller must save the original value of the current task (see
7455 * curr_task() above) and restore that value before reenabling interrupts and
7456 * re-starting the system.
7457 *
7458 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7459 */
36c8b586 7460void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7461{
7462 cpu_curr(cpu) = p;
7463}
7464
7465#endif
29f59db3 7466
7c941438 7467#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7468/* task_group_lock serializes the addition/removal of task groups */
7469static DEFINE_SPINLOCK(task_group_lock);
7470
bccbe08a
PZ
7471static void free_sched_group(struct task_group *tg)
7472{
7473 free_fair_sched_group(tg);
7474 free_rt_sched_group(tg);
e9aa1dd1 7475 autogroup_free(tg);
bccbe08a
PZ
7476 kfree(tg);
7477}
7478
7479/* allocate runqueue etc for a new task group */
ec7dc8ac 7480struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7481{
7482 struct task_group *tg;
bccbe08a
PZ
7483
7484 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7485 if (!tg)
7486 return ERR_PTR(-ENOMEM);
7487
ec7dc8ac 7488 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7489 goto err;
7490
ec7dc8ac 7491 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7492 goto err;
7493
ace783b9
LZ
7494 return tg;
7495
7496err:
7497 free_sched_group(tg);
7498 return ERR_PTR(-ENOMEM);
7499}
7500
7501void sched_online_group(struct task_group *tg, struct task_group *parent)
7502{
7503 unsigned long flags;
7504
8ed36996 7505 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7506 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7507
7508 WARN_ON(!parent); /* root should already exist */
7509
7510 tg->parent = parent;
f473aa5e 7511 INIT_LIST_HEAD(&tg->children);
09f2724a 7512 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7513 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7514}
7515
9b5b7751 7516/* rcu callback to free various structures associated with a task group */
6f505b16 7517static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7518{
29f59db3 7519 /* now it should be safe to free those cfs_rqs */
6f505b16 7520 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7521}
7522
9b5b7751 7523/* Destroy runqueue etc associated with a task group */
4cf86d77 7524void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7525{
7526 /* wait for possible concurrent references to cfs_rqs complete */
7527 call_rcu(&tg->rcu, free_sched_group_rcu);
7528}
7529
7530void sched_offline_group(struct task_group *tg)
29f59db3 7531{
8ed36996 7532 unsigned long flags;
9b5b7751 7533 int i;
29f59db3 7534
3d4b47b4
PZ
7535 /* end participation in shares distribution */
7536 for_each_possible_cpu(i)
bccbe08a 7537 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7538
7539 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7540 list_del_rcu(&tg->list);
f473aa5e 7541 list_del_rcu(&tg->siblings);
8ed36996 7542 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7543}
7544
9b5b7751 7545/* change task's runqueue when it moves between groups.
3a252015
IM
7546 * The caller of this function should have put the task in its new group
7547 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7548 * reflect its new group.
9b5b7751
SV
7549 */
7550void sched_move_task(struct task_struct *tsk)
29f59db3 7551{
8323f26c 7552 struct task_group *tg;
da0c1e65 7553 int queued, running;
29f59db3
SV
7554 unsigned long flags;
7555 struct rq *rq;
7556
7557 rq = task_rq_lock(tsk, &flags);
7558
051a1d1a 7559 running = task_current(rq, tsk);
da0c1e65 7560 queued = task_on_rq_queued(tsk);
29f59db3 7561
da0c1e65 7562 if (queued)
29f59db3 7563 dequeue_task(rq, tsk, 0);
0e1f3483 7564 if (unlikely(running))
f3cd1c4e 7565 put_prev_task(rq, tsk);
29f59db3 7566
073219e9 7567 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7568 lockdep_is_held(&tsk->sighand->siglock)),
7569 struct task_group, css);
7570 tg = autogroup_task_group(tsk, tg);
7571 tsk->sched_task_group = tg;
7572
810b3817 7573#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7574 if (tsk->sched_class->task_move_group)
da0c1e65 7575 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7576 else
810b3817 7577#endif
b2b5ce02 7578 set_task_rq(tsk, task_cpu(tsk));
810b3817 7579
0e1f3483
HS
7580 if (unlikely(running))
7581 tsk->sched_class->set_curr_task(rq);
da0c1e65 7582 if (queued)
371fd7e7 7583 enqueue_task(rq, tsk, 0);
29f59db3 7584
0122ec5b 7585 task_rq_unlock(rq, tsk, &flags);
29f59db3 7586}
7c941438 7587#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7588
a790de99
PT
7589#ifdef CONFIG_RT_GROUP_SCHED
7590/*
7591 * Ensure that the real time constraints are schedulable.
7592 */
7593static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7594
9a7e0b18
PZ
7595/* Must be called with tasklist_lock held */
7596static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7597{
9a7e0b18 7598 struct task_struct *g, *p;
b40b2e8e 7599
5d07f420 7600 for_each_process_thread(g, p) {
8651c658 7601 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7602 return 1;
5d07f420 7603 }
b40b2e8e 7604
9a7e0b18
PZ
7605 return 0;
7606}
b40b2e8e 7607
9a7e0b18
PZ
7608struct rt_schedulable_data {
7609 struct task_group *tg;
7610 u64 rt_period;
7611 u64 rt_runtime;
7612};
b40b2e8e 7613
a790de99 7614static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7615{
7616 struct rt_schedulable_data *d = data;
7617 struct task_group *child;
7618 unsigned long total, sum = 0;
7619 u64 period, runtime;
b40b2e8e 7620
9a7e0b18
PZ
7621 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7622 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7623
9a7e0b18
PZ
7624 if (tg == d->tg) {
7625 period = d->rt_period;
7626 runtime = d->rt_runtime;
b40b2e8e 7627 }
b40b2e8e 7628
4653f803
PZ
7629 /*
7630 * Cannot have more runtime than the period.
7631 */
7632 if (runtime > period && runtime != RUNTIME_INF)
7633 return -EINVAL;
6f505b16 7634
4653f803
PZ
7635 /*
7636 * Ensure we don't starve existing RT tasks.
7637 */
9a7e0b18
PZ
7638 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7639 return -EBUSY;
6f505b16 7640
9a7e0b18 7641 total = to_ratio(period, runtime);
6f505b16 7642
4653f803
PZ
7643 /*
7644 * Nobody can have more than the global setting allows.
7645 */
7646 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7647 return -EINVAL;
6f505b16 7648
4653f803
PZ
7649 /*
7650 * The sum of our children's runtime should not exceed our own.
7651 */
9a7e0b18
PZ
7652 list_for_each_entry_rcu(child, &tg->children, siblings) {
7653 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7654 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7655
9a7e0b18
PZ
7656 if (child == d->tg) {
7657 period = d->rt_period;
7658 runtime = d->rt_runtime;
7659 }
6f505b16 7660
9a7e0b18 7661 sum += to_ratio(period, runtime);
9f0c1e56 7662 }
6f505b16 7663
9a7e0b18
PZ
7664 if (sum > total)
7665 return -EINVAL;
7666
7667 return 0;
6f505b16
PZ
7668}
7669
9a7e0b18 7670static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7671{
8277434e
PT
7672 int ret;
7673
9a7e0b18
PZ
7674 struct rt_schedulable_data data = {
7675 .tg = tg,
7676 .rt_period = period,
7677 .rt_runtime = runtime,
7678 };
7679
8277434e
PT
7680 rcu_read_lock();
7681 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7682 rcu_read_unlock();
7683
7684 return ret;
521f1a24
DG
7685}
7686
ab84d31e 7687static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7688 u64 rt_period, u64 rt_runtime)
6f505b16 7689{
ac086bc2 7690 int i, err = 0;
9f0c1e56 7691
9f0c1e56 7692 mutex_lock(&rt_constraints_mutex);
521f1a24 7693 read_lock(&tasklist_lock);
9a7e0b18
PZ
7694 err = __rt_schedulable(tg, rt_period, rt_runtime);
7695 if (err)
9f0c1e56 7696 goto unlock;
ac086bc2 7697
0986b11b 7698 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7699 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7700 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7701
7702 for_each_possible_cpu(i) {
7703 struct rt_rq *rt_rq = tg->rt_rq[i];
7704
0986b11b 7705 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7706 rt_rq->rt_runtime = rt_runtime;
0986b11b 7707 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7708 }
0986b11b 7709 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7710unlock:
521f1a24 7711 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7712 mutex_unlock(&rt_constraints_mutex);
7713
7714 return err;
6f505b16
PZ
7715}
7716
25cc7da7 7717static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7718{
7719 u64 rt_runtime, rt_period;
7720
7721 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7722 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7723 if (rt_runtime_us < 0)
7724 rt_runtime = RUNTIME_INF;
7725
ab84d31e 7726 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7727}
7728
25cc7da7 7729static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7730{
7731 u64 rt_runtime_us;
7732
d0b27fa7 7733 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7734 return -1;
7735
d0b27fa7 7736 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7737 do_div(rt_runtime_us, NSEC_PER_USEC);
7738 return rt_runtime_us;
7739}
d0b27fa7 7740
25cc7da7 7741static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7742{
7743 u64 rt_runtime, rt_period;
7744
7745 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7746 rt_runtime = tg->rt_bandwidth.rt_runtime;
7747
619b0488
R
7748 if (rt_period == 0)
7749 return -EINVAL;
7750
ab84d31e 7751 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7752}
7753
25cc7da7 7754static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7755{
7756 u64 rt_period_us;
7757
7758 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7759 do_div(rt_period_us, NSEC_PER_USEC);
7760 return rt_period_us;
7761}
332ac17e 7762#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7763
332ac17e 7764#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7765static int sched_rt_global_constraints(void)
7766{
7767 int ret = 0;
7768
7769 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7770 read_lock(&tasklist_lock);
4653f803 7771 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7772 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7773 mutex_unlock(&rt_constraints_mutex);
7774
7775 return ret;
7776}
54e99124 7777
25cc7da7 7778static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7779{
7780 /* Don't accept realtime tasks when there is no way for them to run */
7781 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7782 return 0;
7783
7784 return 1;
7785}
7786
6d6bc0ad 7787#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7788static int sched_rt_global_constraints(void)
7789{
ac086bc2 7790 unsigned long flags;
332ac17e 7791 int i, ret = 0;
ec5d4989 7792
0986b11b 7793 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7794 for_each_possible_cpu(i) {
7795 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7796
0986b11b 7797 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7798 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7799 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7800 }
0986b11b 7801 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7802
332ac17e 7803 return ret;
d0b27fa7 7804}
6d6bc0ad 7805#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7806
332ac17e
DF
7807static int sched_dl_global_constraints(void)
7808{
1724813d
PZ
7809 u64 runtime = global_rt_runtime();
7810 u64 period = global_rt_period();
332ac17e 7811 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7812 struct dl_bw *dl_b;
1724813d 7813 int cpu, ret = 0;
49516342 7814 unsigned long flags;
332ac17e
DF
7815
7816 /*
7817 * Here we want to check the bandwidth not being set to some
7818 * value smaller than the currently allocated bandwidth in
7819 * any of the root_domains.
7820 *
7821 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7822 * cycling on root_domains... Discussion on different/better
7823 * solutions is welcome!
7824 */
1724813d 7825 for_each_possible_cpu(cpu) {
f10e00f4
KT
7826 rcu_read_lock_sched();
7827 dl_b = dl_bw_of(cpu);
332ac17e 7828
49516342 7829 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7830 if (new_bw < dl_b->total_bw)
7831 ret = -EBUSY;
49516342 7832 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7833
f10e00f4
KT
7834 rcu_read_unlock_sched();
7835
1724813d
PZ
7836 if (ret)
7837 break;
332ac17e
DF
7838 }
7839
1724813d 7840 return ret;
332ac17e
DF
7841}
7842
1724813d 7843static void sched_dl_do_global(void)
ce0dbbbb 7844{
1724813d 7845 u64 new_bw = -1;
f10e00f4 7846 struct dl_bw *dl_b;
1724813d 7847 int cpu;
49516342 7848 unsigned long flags;
ce0dbbbb 7849
1724813d
PZ
7850 def_dl_bandwidth.dl_period = global_rt_period();
7851 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7852
7853 if (global_rt_runtime() != RUNTIME_INF)
7854 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7855
7856 /*
7857 * FIXME: As above...
7858 */
7859 for_each_possible_cpu(cpu) {
f10e00f4
KT
7860 rcu_read_lock_sched();
7861 dl_b = dl_bw_of(cpu);
1724813d 7862
49516342 7863 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7864 dl_b->bw = new_bw;
49516342 7865 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7866
7867 rcu_read_unlock_sched();
ce0dbbbb 7868 }
1724813d
PZ
7869}
7870
7871static int sched_rt_global_validate(void)
7872{
7873 if (sysctl_sched_rt_period <= 0)
7874 return -EINVAL;
7875
e9e7cb38
JL
7876 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7877 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7878 return -EINVAL;
7879
7880 return 0;
7881}
7882
7883static void sched_rt_do_global(void)
7884{
7885 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7886 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7887}
7888
d0b27fa7 7889int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7890 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7891 loff_t *ppos)
7892{
d0b27fa7
PZ
7893 int old_period, old_runtime;
7894 static DEFINE_MUTEX(mutex);
1724813d 7895 int ret;
d0b27fa7
PZ
7896
7897 mutex_lock(&mutex);
7898 old_period = sysctl_sched_rt_period;
7899 old_runtime = sysctl_sched_rt_runtime;
7900
8d65af78 7901 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7902
7903 if (!ret && write) {
1724813d
PZ
7904 ret = sched_rt_global_validate();
7905 if (ret)
7906 goto undo;
7907
d0b27fa7 7908 ret = sched_rt_global_constraints();
1724813d
PZ
7909 if (ret)
7910 goto undo;
7911
7912 ret = sched_dl_global_constraints();
7913 if (ret)
7914 goto undo;
7915
7916 sched_rt_do_global();
7917 sched_dl_do_global();
7918 }
7919 if (0) {
7920undo:
7921 sysctl_sched_rt_period = old_period;
7922 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7923 }
7924 mutex_unlock(&mutex);
7925
7926 return ret;
7927}
68318b8e 7928
1724813d 7929int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7930 void __user *buffer, size_t *lenp,
7931 loff_t *ppos)
7932{
7933 int ret;
332ac17e 7934 static DEFINE_MUTEX(mutex);
332ac17e
DF
7935
7936 mutex_lock(&mutex);
332ac17e 7937 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7938 /* make sure that internally we keep jiffies */
7939 /* also, writing zero resets timeslice to default */
332ac17e 7940 if (!ret && write) {
1724813d
PZ
7941 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7942 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7943 }
7944 mutex_unlock(&mutex);
332ac17e
DF
7945 return ret;
7946}
7947
052f1dc7 7948#ifdef CONFIG_CGROUP_SCHED
68318b8e 7949
a7c6d554 7950static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7951{
a7c6d554 7952 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7953}
7954
eb95419b
TH
7955static struct cgroup_subsys_state *
7956cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7957{
eb95419b
TH
7958 struct task_group *parent = css_tg(parent_css);
7959 struct task_group *tg;
68318b8e 7960
eb95419b 7961 if (!parent) {
68318b8e 7962 /* This is early initialization for the top cgroup */
07e06b01 7963 return &root_task_group.css;
68318b8e
SV
7964 }
7965
ec7dc8ac 7966 tg = sched_create_group(parent);
68318b8e
SV
7967 if (IS_ERR(tg))
7968 return ERR_PTR(-ENOMEM);
7969
68318b8e
SV
7970 return &tg->css;
7971}
7972
eb95419b 7973static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7974{
eb95419b 7975 struct task_group *tg = css_tg(css);
5c9d535b 7976 struct task_group *parent = css_tg(css->parent);
ace783b9 7977
63876986
TH
7978 if (parent)
7979 sched_online_group(tg, parent);
ace783b9
LZ
7980 return 0;
7981}
7982
eb95419b 7983static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7984{
eb95419b 7985 struct task_group *tg = css_tg(css);
68318b8e
SV
7986
7987 sched_destroy_group(tg);
7988}
7989
eb95419b 7990static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7991{
eb95419b 7992 struct task_group *tg = css_tg(css);
ace783b9
LZ
7993
7994 sched_offline_group(tg);
7995}
7996
eeb61e53
KT
7997static void cpu_cgroup_fork(struct task_struct *task)
7998{
7999 sched_move_task(task);
8000}
8001
eb95419b 8002static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8003 struct cgroup_taskset *tset)
68318b8e 8004{
bb9d97b6
TH
8005 struct task_struct *task;
8006
924f0d9a 8007 cgroup_taskset_for_each(task, tset) {
b68aa230 8008#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8009 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8010 return -EINVAL;
b68aa230 8011#else
bb9d97b6
TH
8012 /* We don't support RT-tasks being in separate groups */
8013 if (task->sched_class != &fair_sched_class)
8014 return -EINVAL;
b68aa230 8015#endif
bb9d97b6 8016 }
be367d09
BB
8017 return 0;
8018}
68318b8e 8019
eb95419b 8020static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8021 struct cgroup_taskset *tset)
68318b8e 8022{
bb9d97b6
TH
8023 struct task_struct *task;
8024
924f0d9a 8025 cgroup_taskset_for_each(task, tset)
bb9d97b6 8026 sched_move_task(task);
68318b8e
SV
8027}
8028
eb95419b
TH
8029static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8030 struct cgroup_subsys_state *old_css,
8031 struct task_struct *task)
068c5cc5
PZ
8032{
8033 /*
8034 * cgroup_exit() is called in the copy_process() failure path.
8035 * Ignore this case since the task hasn't ran yet, this avoids
8036 * trying to poke a half freed task state from generic code.
8037 */
8038 if (!(task->flags & PF_EXITING))
8039 return;
8040
8041 sched_move_task(task);
8042}
8043
052f1dc7 8044#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8045static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8046 struct cftype *cftype, u64 shareval)
68318b8e 8047{
182446d0 8048 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8049}
8050
182446d0
TH
8051static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8052 struct cftype *cft)
68318b8e 8053{
182446d0 8054 struct task_group *tg = css_tg(css);
68318b8e 8055
c8b28116 8056 return (u64) scale_load_down(tg->shares);
68318b8e 8057}
ab84d31e
PT
8058
8059#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8060static DEFINE_MUTEX(cfs_constraints_mutex);
8061
ab84d31e
PT
8062const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8063const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8064
a790de99
PT
8065static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8066
ab84d31e
PT
8067static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8068{
56f570e5 8069 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8070 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8071
8072 if (tg == &root_task_group)
8073 return -EINVAL;
8074
8075 /*
8076 * Ensure we have at some amount of bandwidth every period. This is
8077 * to prevent reaching a state of large arrears when throttled via
8078 * entity_tick() resulting in prolonged exit starvation.
8079 */
8080 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8081 return -EINVAL;
8082
8083 /*
8084 * Likewise, bound things on the otherside by preventing insane quota
8085 * periods. This also allows us to normalize in computing quota
8086 * feasibility.
8087 */
8088 if (period > max_cfs_quota_period)
8089 return -EINVAL;
8090
0e59bdae
KT
8091 /*
8092 * Prevent race between setting of cfs_rq->runtime_enabled and
8093 * unthrottle_offline_cfs_rqs().
8094 */
8095 get_online_cpus();
a790de99
PT
8096 mutex_lock(&cfs_constraints_mutex);
8097 ret = __cfs_schedulable(tg, period, quota);
8098 if (ret)
8099 goto out_unlock;
8100
58088ad0 8101 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8102 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8103 /*
8104 * If we need to toggle cfs_bandwidth_used, off->on must occur
8105 * before making related changes, and on->off must occur afterwards
8106 */
8107 if (runtime_enabled && !runtime_was_enabled)
8108 cfs_bandwidth_usage_inc();
ab84d31e
PT
8109 raw_spin_lock_irq(&cfs_b->lock);
8110 cfs_b->period = ns_to_ktime(period);
8111 cfs_b->quota = quota;
58088ad0 8112
a9cf55b2 8113 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8114 /* restart the period timer (if active) to handle new period expiry */
8115 if (runtime_enabled && cfs_b->timer_active) {
8116 /* force a reprogram */
09dc4ab0 8117 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8118 }
ab84d31e
PT
8119 raw_spin_unlock_irq(&cfs_b->lock);
8120
0e59bdae 8121 for_each_online_cpu(i) {
ab84d31e 8122 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8123 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8124
8125 raw_spin_lock_irq(&rq->lock);
58088ad0 8126 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8127 cfs_rq->runtime_remaining = 0;
671fd9da 8128
029632fb 8129 if (cfs_rq->throttled)
671fd9da 8130 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8131 raw_spin_unlock_irq(&rq->lock);
8132 }
1ee14e6c
BS
8133 if (runtime_was_enabled && !runtime_enabled)
8134 cfs_bandwidth_usage_dec();
a790de99
PT
8135out_unlock:
8136 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8137 put_online_cpus();
ab84d31e 8138
a790de99 8139 return ret;
ab84d31e
PT
8140}
8141
8142int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8143{
8144 u64 quota, period;
8145
029632fb 8146 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8147 if (cfs_quota_us < 0)
8148 quota = RUNTIME_INF;
8149 else
8150 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8151
8152 return tg_set_cfs_bandwidth(tg, period, quota);
8153}
8154
8155long tg_get_cfs_quota(struct task_group *tg)
8156{
8157 u64 quota_us;
8158
029632fb 8159 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8160 return -1;
8161
029632fb 8162 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8163 do_div(quota_us, NSEC_PER_USEC);
8164
8165 return quota_us;
8166}
8167
8168int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8169{
8170 u64 quota, period;
8171
8172 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8173 quota = tg->cfs_bandwidth.quota;
ab84d31e 8174
ab84d31e
PT
8175 return tg_set_cfs_bandwidth(tg, period, quota);
8176}
8177
8178long tg_get_cfs_period(struct task_group *tg)
8179{
8180 u64 cfs_period_us;
8181
029632fb 8182 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8183 do_div(cfs_period_us, NSEC_PER_USEC);
8184
8185 return cfs_period_us;
8186}
8187
182446d0
TH
8188static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8189 struct cftype *cft)
ab84d31e 8190{
182446d0 8191 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8192}
8193
182446d0
TH
8194static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8195 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8196{
182446d0 8197 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8198}
8199
182446d0
TH
8200static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8201 struct cftype *cft)
ab84d31e 8202{
182446d0 8203 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8204}
8205
182446d0
TH
8206static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8207 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8208{
182446d0 8209 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8210}
8211
a790de99
PT
8212struct cfs_schedulable_data {
8213 struct task_group *tg;
8214 u64 period, quota;
8215};
8216
8217/*
8218 * normalize group quota/period to be quota/max_period
8219 * note: units are usecs
8220 */
8221static u64 normalize_cfs_quota(struct task_group *tg,
8222 struct cfs_schedulable_data *d)
8223{
8224 u64 quota, period;
8225
8226 if (tg == d->tg) {
8227 period = d->period;
8228 quota = d->quota;
8229 } else {
8230 period = tg_get_cfs_period(tg);
8231 quota = tg_get_cfs_quota(tg);
8232 }
8233
8234 /* note: these should typically be equivalent */
8235 if (quota == RUNTIME_INF || quota == -1)
8236 return RUNTIME_INF;
8237
8238 return to_ratio(period, quota);
8239}
8240
8241static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8242{
8243 struct cfs_schedulable_data *d = data;
029632fb 8244 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8245 s64 quota = 0, parent_quota = -1;
8246
8247 if (!tg->parent) {
8248 quota = RUNTIME_INF;
8249 } else {
029632fb 8250 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8251
8252 quota = normalize_cfs_quota(tg, d);
9c58c79a 8253 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8254
8255 /*
8256 * ensure max(child_quota) <= parent_quota, inherit when no
8257 * limit is set
8258 */
8259 if (quota == RUNTIME_INF)
8260 quota = parent_quota;
8261 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8262 return -EINVAL;
8263 }
9c58c79a 8264 cfs_b->hierarchical_quota = quota;
a790de99
PT
8265
8266 return 0;
8267}
8268
8269static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8270{
8277434e 8271 int ret;
a790de99
PT
8272 struct cfs_schedulable_data data = {
8273 .tg = tg,
8274 .period = period,
8275 .quota = quota,
8276 };
8277
8278 if (quota != RUNTIME_INF) {
8279 do_div(data.period, NSEC_PER_USEC);
8280 do_div(data.quota, NSEC_PER_USEC);
8281 }
8282
8277434e
PT
8283 rcu_read_lock();
8284 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8285 rcu_read_unlock();
8286
8287 return ret;
a790de99 8288}
e8da1b18 8289
2da8ca82 8290static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8291{
2da8ca82 8292 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8293 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8294
44ffc75b
TH
8295 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8296 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8297 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8298
8299 return 0;
8300}
ab84d31e 8301#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8302#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8303
052f1dc7 8304#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8305static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8306 struct cftype *cft, s64 val)
6f505b16 8307{
182446d0 8308 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8309}
8310
182446d0
TH
8311static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8312 struct cftype *cft)
6f505b16 8313{
182446d0 8314 return sched_group_rt_runtime(css_tg(css));
6f505b16 8315}
d0b27fa7 8316
182446d0
TH
8317static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8318 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8319{
182446d0 8320 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8321}
8322
182446d0
TH
8323static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8324 struct cftype *cft)
d0b27fa7 8325{
182446d0 8326 return sched_group_rt_period(css_tg(css));
d0b27fa7 8327}
6d6bc0ad 8328#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8329
fe5c7cc2 8330static struct cftype cpu_files[] = {
052f1dc7 8331#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8332 {
8333 .name = "shares",
f4c753b7
PM
8334 .read_u64 = cpu_shares_read_u64,
8335 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8336 },
052f1dc7 8337#endif
ab84d31e
PT
8338#ifdef CONFIG_CFS_BANDWIDTH
8339 {
8340 .name = "cfs_quota_us",
8341 .read_s64 = cpu_cfs_quota_read_s64,
8342 .write_s64 = cpu_cfs_quota_write_s64,
8343 },
8344 {
8345 .name = "cfs_period_us",
8346 .read_u64 = cpu_cfs_period_read_u64,
8347 .write_u64 = cpu_cfs_period_write_u64,
8348 },
e8da1b18
NR
8349 {
8350 .name = "stat",
2da8ca82 8351 .seq_show = cpu_stats_show,
e8da1b18 8352 },
ab84d31e 8353#endif
052f1dc7 8354#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8355 {
9f0c1e56 8356 .name = "rt_runtime_us",
06ecb27c
PM
8357 .read_s64 = cpu_rt_runtime_read,
8358 .write_s64 = cpu_rt_runtime_write,
6f505b16 8359 },
d0b27fa7
PZ
8360 {
8361 .name = "rt_period_us",
f4c753b7
PM
8362 .read_u64 = cpu_rt_period_read_uint,
8363 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8364 },
052f1dc7 8365#endif
4baf6e33 8366 { } /* terminate */
68318b8e
SV
8367};
8368
073219e9 8369struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8370 .css_alloc = cpu_cgroup_css_alloc,
8371 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8372 .css_online = cpu_cgroup_css_online,
8373 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8374 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8375 .can_attach = cpu_cgroup_can_attach,
8376 .attach = cpu_cgroup_attach,
068c5cc5 8377 .exit = cpu_cgroup_exit,
5577964e 8378 .legacy_cftypes = cpu_files,
68318b8e
SV
8379 .early_init = 1,
8380};
8381
052f1dc7 8382#endif /* CONFIG_CGROUP_SCHED */
d842de87 8383
b637a328
PM
8384void dump_cpu_task(int cpu)
8385{
8386 pr_info("Task dump for CPU %d:\n", cpu);
8387 sched_show_task(cpu_curr(cpu));
8388}
This page took 2.62943 seconds and 5 git commands to generate.