sched: Make finish_task_switch() return 'struct rq *'
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
126 if (delta < 0)
127 return;
fe44d621
PZ
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
3e51f33f
PZ
130}
131
bf5c91ba
IM
132/*
133 * Debugging: various feature bits
134 */
f00b45c1 135
f00b45c1
PZ
136#define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
bf5c91ba 139const_debug unsigned int sysctl_sched_features =
391e43da 140#include "features.h"
f00b45c1
PZ
141 0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled) \
147 #name ,
148
1292531f 149static const char * const sched_feat_names[] = {
391e43da 150#include "features.h"
f00b45c1
PZ
151};
152
153#undef SCHED_FEAT
154
34f3a814 155static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 156{
f00b45c1
PZ
157 int i;
158
f8b6d1cc 159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 163 }
34f3a814 164 seq_puts(m, "\n");
f00b45c1 165
34f3a814 166 return 0;
f00b45c1
PZ
167}
168
f8b6d1cc
PZ
169#ifdef HAVE_JUMP_LABEL
170
c5905afb
IM
171#define jump_label_key__true STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
173
174#define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
c5905afb 177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
c5905afb
IM
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
187}
188
189static void sched_feat_enable(int i)
190{
c5905afb
IM
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
1a687c2e 199static int sched_feat_set(char *cmp)
f00b45c1 200{
f00b45c1 201 int i;
1a687c2e 202 int neg = 0;
f00b45c1 203
524429c3 204 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
205 neg = 1;
206 cmp += 3;
207 }
208
f8b6d1cc 209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 211 if (neg) {
f00b45c1 212 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
213 sched_feat_disable(i);
214 } else {
f00b45c1 215 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
216 sched_feat_enable(i);
217 }
f00b45c1
PZ
218 break;
219 }
220 }
221
1a687c2e
MG
222 return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228{
229 char buf[64];
230 char *cmp;
231 int i;
5cd08fbf 232 struct inode *inode;
1a687c2e
MG
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
5cd08fbf
JB
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
1a687c2e 246 i = sched_feat_set(cmp);
5cd08fbf 247 mutex_unlock(&inode->i_mutex);
f8b6d1cc 248 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
249 return -EINVAL;
250
42994724 251 *ppos += cnt;
f00b45c1
PZ
252
253 return cnt;
254}
255
34f3a814
LZ
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258 return single_open(filp, sched_feat_show, NULL);
259}
260
828c0950 261static const struct file_operations sched_feat_fops = {
34f3a814
LZ
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
f00b45c1
PZ
267};
268
269static __init int sched_init_debug(void)
270{
f00b45c1
PZ
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275}
276late_initcall(sched_init_debug);
f8b6d1cc 277#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 278
b82d9fdd
PZ
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
e9e9250b
PZ
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
fa85ae24 293/*
9f0c1e56 294 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
295 * default: 1s
296 */
9f0c1e56 297unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 298
029632fb 299__read_mostly int scheduler_running;
6892b75e 300
9f0c1e56
PZ
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
fa85ae24 306
0970d299 307/*
0122ec5b 308 * __task_rq_lock - lock the rq @p resides on.
b29739f9 309 */
70b97a7f 310static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
311 __acquires(rq->lock)
312{
0970d299
PZ
313 struct rq *rq;
314
0122ec5b
PZ
315 lockdep_assert_held(&p->pi_lock);
316
3a5c359a 317 for (;;) {
0970d299 318 rq = task_rq(p);
05fa785c 319 raw_spin_lock(&rq->lock);
cca26e80 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 321 return rq;
05fa785c 322 raw_spin_unlock(&rq->lock);
cca26e80
KT
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
cca26e80 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
1da177e4 349 }
1da177e4
LT
350}
351
a9957449 352static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
353 __releases(rq->lock)
354{
05fa785c 355 raw_spin_unlock(&rq->lock);
b29739f9
IM
356}
357
0122ec5b
PZ
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 360 __releases(rq->lock)
0122ec5b 361 __releases(p->pi_lock)
1da177e4 362{
0122ec5b
PZ
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
365}
366
1da177e4 367/*
cc2a73b5 368 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 369 */
a9957449 370static struct rq *this_rq_lock(void)
1da177e4
LT
371 __acquires(rq->lock)
372{
70b97a7f 373 struct rq *rq;
1da177e4
LT
374
375 local_irq_disable();
376 rq = this_rq();
05fa785c 377 raw_spin_lock(&rq->lock);
1da177e4
LT
378
379 return rq;
380}
381
8f4d37ec
PZ
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 385 */
8f4d37ec 386
8f4d37ec
PZ
387static void hrtick_clear(struct rq *rq)
388{
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391}
392
8f4d37ec
PZ
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
05fa785c 403 raw_spin_lock(&rq->lock);
3e51f33f 404 update_rq_clock(rq);
8f4d37ec 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 406 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
407
408 return HRTIMER_NORESTART;
409}
410
95e904c7 411#ifdef CONFIG_SMP
971ee28c
PZ
412
413static int __hrtick_restart(struct rq *rq)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
31656519
PZ
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
b328ca18 425{
31656519 426 struct rq *rq = arg;
b328ca18 427
05fa785c 428 raw_spin_lock(&rq->lock);
971ee28c 429 __hrtick_restart(rq);
31656519 430 rq->hrtick_csd_pending = 0;
05fa785c 431 raw_spin_unlock(&rq->lock);
b328ca18
PZ
432}
433
31656519
PZ
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
029632fb 439void hrtick_start(struct rq *rq, u64 delay)
b328ca18 440{
31656519 441 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 451
cc584b21 452 hrtimer_set_expires(timer, time);
31656519
PZ
453
454 if (rq == this_rq()) {
971ee28c 455 __hrtick_restart(rq);
31656519 456 } else if (!rq->hrtick_csd_pending) {
c46fff2a 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
458 rq->hrtick_csd_pending = 1;
459 }
b328ca18
PZ
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
31656519 474 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479}
480
fa748203 481static __init void init_hrtick(void)
b328ca18
PZ
482{
483 hotcpu_notifier(hotplug_hrtick, 0);
484}
31656519
PZ
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
029632fb 491void hrtick_start(struct rq *rq, u64 delay)
31656519 492{
7f1e2ca9 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 494 HRTIMER_MODE_REL_PINNED, 0);
31656519 495}
b328ca18 496
006c75f1 497static inline void init_hrtick(void)
8f4d37ec 498{
8f4d37ec 499}
31656519 500#endif /* CONFIG_SMP */
8f4d37ec 501
31656519 502static void init_rq_hrtick(struct rq *rq)
8f4d37ec 503{
31656519
PZ
504#ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
8f4d37ec 506
31656519
PZ
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510#endif
8f4d37ec 511
31656519
PZ
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
8f4d37ec 514}
006c75f1 515#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
8f4d37ec
PZ
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
b328ca18
PZ
524static inline void init_hrtick(void)
525{
526}
006c75f1 527#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 528
fd99f91a
PZ
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val) \
533({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541})
542
e3baac47 543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
e3baac47
PZ
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577}
578
fd99f91a
PZ
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582 set_tsk_need_resched(p);
583 return true;
584}
e3baac47
PZ
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589 return false;
590}
591#endif
fd99f91a
PZ
592#endif
593
c24d20db 594/*
8875125e 595 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
8875125e 601void resched_curr(struct rq *rq)
c24d20db 602{
8875125e 603 struct task_struct *curr = rq->curr;
c24d20db
IM
604 int cpu;
605
8875125e 606 lockdep_assert_held(&rq->lock);
c24d20db 607
8875125e 608 if (test_tsk_need_resched(curr))
c24d20db
IM
609 return;
610
8875125e 611 cpu = cpu_of(rq);
fd99f91a 612
f27dde8d 613 if (cpu == smp_processor_id()) {
8875125e 614 set_tsk_need_resched(curr);
f27dde8d 615 set_preempt_need_resched();
c24d20db 616 return;
f27dde8d 617 }
c24d20db 618
8875125e 619 if (set_nr_and_not_polling(curr))
c24d20db 620 smp_send_reschedule(cpu);
dfc68f29
AL
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
623}
624
029632fb 625void resched_cpu(int cpu)
c24d20db
IM
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
05fa785c 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 631 return;
8875125e 632 resched_curr(rq);
05fa785c 633 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 634}
06d8308c 635
b021fe3e 636#ifdef CONFIG_SMP
3451d024 637#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
6201b4d6 646int get_nohz_timer_target(int pinned)
83cd4fe2
VP
647{
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
6201b4d6
VK
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
057f3fad
PZ
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
83cd4fe2 663 }
057f3fad
PZ
664unlock:
665 rcu_read_unlock();
83cd4fe2
VP
666 return cpu;
667}
06d8308c
TG
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
1c20091e 678static void wake_up_idle_cpu(int cpu)
06d8308c
TG
679{
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
67b9ca70 685 if (set_nr_and_not_polling(rq->idle))
06d8308c 686 smp_send_reschedule(cpu);
dfc68f29
AL
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
689}
690
c5bfece2 691static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 692{
53c5fa16
FW
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
c5bfece2 699 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
53c5fa16 702 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
703 return true;
704 }
705
706 return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
c5bfece2 711 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
712 wake_up_idle_cpu(cpu);
713}
714
ca38062e 715static inline bool got_nohz_idle_kick(void)
45bf76df 716{
1c792db7 717 int cpu = smp_processor_id();
873b4c65
VG
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
45bf76df
IM
731}
732
3451d024 733#else /* CONFIG_NO_HZ_COMMON */
45bf76df 734
ca38062e 735static inline bool got_nohz_idle_kick(void)
2069dd75 736{
ca38062e 737 return false;
2069dd75
PZ
738}
739
3451d024 740#endif /* CONFIG_NO_HZ_COMMON */
d842de87 741
ce831b38
FW
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
3882ec64
FW
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
541b8264
VK
750 if (this_rq()->nr_running > 1)
751 return false;
ce831b38 752
541b8264 753 return true;
ce831b38
FW
754}
755#endif /* CONFIG_NO_HZ_FULL */
d842de87 756
029632fb 757void sched_avg_update(struct rq *rq)
18d95a28 758{
e9e9250b
PZ
759 s64 period = sched_avg_period();
760
78becc27 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
18d95a28
PZ
771}
772
6d6bc0ad 773#endif /* CONFIG_SMP */
18d95a28 774
a790de99
PT
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 777/*
8277434e
PT
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 782 */
029632fb 783int walk_tg_tree_from(struct task_group *from,
8277434e 784 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
785{
786 struct task_group *parent, *child;
eb755805 787 int ret;
c09595f6 788
8277434e
PT
789 parent = from;
790
c09595f6 791down:
eb755805
PZ
792 ret = (*down)(parent, data);
793 if (ret)
8277434e 794 goto out;
c09595f6
PZ
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799up:
800 continue;
801 }
eb755805 802 ret = (*up)(parent, data);
8277434e
PT
803 if (ret || parent == from)
804 goto out;
c09595f6
PZ
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
8277434e 810out:
eb755805 811 return ret;
c09595f6
PZ
812}
813
029632fb 814int tg_nop(struct task_group *tg, void *data)
eb755805 815{
e2b245f8 816 return 0;
eb755805 817}
18d95a28
PZ
818#endif
819
45bf76df
IM
820static void set_load_weight(struct task_struct *p)
821{
f05998d4
NR
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
dd41f596
IM
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
c8b28116 829 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 830 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
831 return;
832 }
71f8bd46 833
c8b28116 834 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 835 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
836}
837
371fd7e7 838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 839{
a64692a3 840 update_rq_clock(rq);
43148951 841 sched_info_queued(rq, p);
371fd7e7 842 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
843}
844
371fd7e7 845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 846{
a64692a3 847 update_rq_clock(rq);
43148951 848 sched_info_dequeued(rq, p);
371fd7e7 849 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
850}
851
029632fb 852void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
371fd7e7 857 enqueue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
029632fb 860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
371fd7e7 865 dequeue_task(rq, p, flags);
1e3c88bd
PZ
866}
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 902 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
095c0aa8 909 rq->prev_steal_time_rq += steal;
095c0aa8
GC
910 delta -= steal;
911 }
912#endif
913
fe44d621
PZ
914 rq->clock_task += delta;
915
095c0aa8 916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
918 sched_rt_avg_update(rq, irq_delta + steal);
919#endif
aa483808
VP
920}
921
34f971f6
PZ
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950}
951
14531189 952/*
dd41f596 953 * __normal_prio - return the priority that is based on the static prio
14531189 954 */
14531189
IM
955static inline int __normal_prio(struct task_struct *p)
956{
dd41f596 957 return p->static_prio;
14531189
IM
958}
959
b29739f9
IM
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
36c8b586 967static inline int normal_prio(struct task_struct *p)
b29739f9
IM
968{
969 int prio;
970
aab03e05
DF
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
b29739f9
IM
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
36c8b586 987static int effective_prio(struct task_struct *p)
b29739f9
IM
988{
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998}
999
1da177e4
LT
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
e69f6186
YB
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1005 */
36c8b586 1006inline int task_curr(const struct task_struct *p)
1da177e4
LT
1007{
1008 return cpu_curr(task_cpu(p)) == p;
1009}
1010
cb469845
SR
1011static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 const struct sched_class *prev_class,
da7a735e 1013 int oldprio)
cb469845
SR
1014{
1015 if (prev_class != p->sched_class) {
1016 if (prev_class->switched_from)
da7a735e
PZ
1017 prev_class->switched_from(rq, p);
1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1045 rq->skip_clock_update = 1;
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
dd41f596 1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1050{
e2912009
PZ
1051#ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
077614ee 1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1057 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1058
1059#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1065 * see task_group().
6c6c54e1
PZ
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
0122ec5b
PZ
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072#endif
e2912009
PZ
1073#endif
1074
de1d7286 1075 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1076
0c69774e 1077 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1080 p->se.nr_migrations++;
a8b0ca17 1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1082 }
dd41f596
IM
1083
1084 __set_task_cpu(p, new_cpu);
c65cc870
IM
1085}
1086
ac66f547
PZ
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
da0c1e65 1089 if (task_on_rq_queued(p)) {
ac66f547
PZ
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107}
1108
1109struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
74602315
PZ
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
ac66f547
PZ
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143unlock:
1144 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1147
1148 return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
ac66f547
PZ
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
6acce3ef
PZ
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
ac66f547
PZ
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
286549dc 1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
ac66f547
PZ
1186 return ret;
1187}
1188
969c7921 1189struct migration_arg {
36c8b586 1190 struct task_struct *task;
1da177e4 1191 int dest_cpu;
70b97a7f 1192};
1da177e4 1193
969c7921
TH
1194static int migration_cpu_stop(void *data);
1195
1da177e4
LT
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
85ba2d86
RM
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1da177e4
LT
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
85ba2d86 1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1213{
1214 unsigned long flags;
da0c1e65 1215 int running, queued;
85ba2d86 1216 unsigned long ncsw;
70b97a7f 1217 struct rq *rq;
1da177e4 1218
3a5c359a
AK
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
85ba2d86
RM
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
3a5c359a 1242 cpu_relax();
85ba2d86 1243 }
fa490cfd 1244
3a5c359a
AK
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
27a9da65 1251 trace_sched_wait_task(p);
3a5c359a 1252 running = task_running(rq, p);
da0c1e65 1253 queued = task_on_rq_queued(p);
85ba2d86 1254 ncsw = 0;
f31e11d8 1255 if (!match_state || p->state == match_state)
93dcf55f 1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1257 task_rq_unlock(rq, p, &flags);
fa490cfd 1258
85ba2d86
RM
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
3a5c359a
AK
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
fa490cfd 1275
3a5c359a
AK
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
80dd99b3 1281 * So if it was still runnable (but just not actively
3a5c359a
AK
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
da0c1e65 1285 if (unlikely(queued)) {
8eb90c30
TG
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1290 continue;
1291 }
fa490cfd 1292
3a5c359a
AK
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
85ba2d86
RM
1300
1301 return ncsw;
1da177e4
LT
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
25985edc 1311 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
36c8b586 1317void kick_process(struct task_struct *p)
1da177e4
LT
1318{
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326}
b43e3521 1327EXPORT_SYMBOL_GPL(kick_process);
476d139c 1328#endif /* CONFIG_SMP */
1da177e4 1329
970b13ba 1330#ifdef CONFIG_SMP
30da688e 1331/*
013fdb80 1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1333 */
5da9a0fb
PZ
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
aa00d89c
TC
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
5da9a0fb 1340
aa00d89c
TC
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
2baab4e9 1358 }
5da9a0fb 1359
2baab4e9
PZ
1360 for (;;) {
1361 /* Any allowed, online CPU? */
e3831edd 1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
5da9a0fb 1369
2baab4e9
PZ
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
aac74dc4 1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1397 task_pid_nr(p), p->comm, cpu);
1398 }
5da9a0fb
PZ
1399 }
1400
1401 return dest_cpu;
1402}
1403
e2912009 1404/*
013fdb80 1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1406 */
970b13ba 1407static inline
ac66f547 1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1409{
ac66f547 1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1411
1412 /*
1413 * In order not to call set_task_cpu() on a blocking task we need
1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 * cpu.
1416 *
1417 * Since this is common to all placement strategies, this lives here.
1418 *
1419 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 * not worry about this generic constraint ]
1421 */
fa17b507 1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1423 !cpu_online(cpu)))
5da9a0fb 1424 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1425
1426 return cpu;
970b13ba 1427}
09a40af5
MG
1428
1429static void update_avg(u64 *avg, u64 sample)
1430{
1431 s64 diff = sample - *avg;
1432 *avg += diff >> 3;
1433}
970b13ba
PZ
1434#endif
1435
d7c01d27 1436static void
b84cb5df 1437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1438{
d7c01d27 1439#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1440 struct rq *rq = this_rq();
1441
d7c01d27
PZ
1442#ifdef CONFIG_SMP
1443 int this_cpu = smp_processor_id();
1444
1445 if (cpu == this_cpu) {
1446 schedstat_inc(rq, ttwu_local);
1447 schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 } else {
1449 struct sched_domain *sd;
1450
1451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1452 rcu_read_lock();
d7c01d27
PZ
1453 for_each_domain(this_cpu, sd) {
1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 break;
1457 }
1458 }
057f3fad 1459 rcu_read_unlock();
d7c01d27 1460 }
f339b9dc
PZ
1461
1462 if (wake_flags & WF_MIGRATED)
1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
d7c01d27
PZ
1465#endif /* CONFIG_SMP */
1466
1467 schedstat_inc(rq, ttwu_count);
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1469
1470 if (wake_flags & WF_SYNC)
9ed3811a 1471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1472
d7c01d27
PZ
1473#endif /* CONFIG_SCHEDSTATS */
1474}
1475
1476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477{
9ed3811a 1478 activate_task(rq, p, en_flags);
da0c1e65 1479 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1480
1481 /* if a worker is waking up, notify workqueue */
1482 if (p->flags & PF_WQ_WORKER)
1483 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1484}
1485
23f41eeb
PZ
1486/*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
89363381 1489static void
23f41eeb 1490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1491{
9ed3811a 1492 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1493 trace_sched_wakeup(p, true);
9ed3811a
TH
1494
1495 p->state = TASK_RUNNING;
1496#ifdef CONFIG_SMP
1497 if (p->sched_class->task_woken)
1498 p->sched_class->task_woken(rq, p);
1499
e69c6341 1500 if (rq->idle_stamp) {
78becc27 1501 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1502 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1503
abfafa54
JL
1504 update_avg(&rq->avg_idle, delta);
1505
1506 if (rq->avg_idle > max)
9ed3811a 1507 rq->avg_idle = max;
abfafa54 1508
9ed3811a
TH
1509 rq->idle_stamp = 0;
1510 }
1511#endif
1512}
1513
c05fbafb
PZ
1514static void
1515ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516{
1517#ifdef CONFIG_SMP
1518 if (p->sched_contributes_to_load)
1519 rq->nr_uninterruptible--;
1520#endif
1521
1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 ttwu_do_wakeup(rq, p, wake_flags);
1524}
1525
1526/*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532static int ttwu_remote(struct task_struct *p, int wake_flags)
1533{
1534 struct rq *rq;
1535 int ret = 0;
1536
1537 rq = __task_rq_lock(p);
da0c1e65 1538 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1539 /* check_preempt_curr() may use rq clock */
1540 update_rq_clock(rq);
c05fbafb
PZ
1541 ttwu_do_wakeup(rq, p, wake_flags);
1542 ret = 1;
1543 }
1544 __task_rq_unlock(rq);
1545
1546 return ret;
1547}
1548
317f3941 1549#ifdef CONFIG_SMP
e3baac47 1550void sched_ttwu_pending(void)
317f3941
PZ
1551{
1552 struct rq *rq = this_rq();
fa14ff4a
PZ
1553 struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 struct task_struct *p;
e3baac47 1555 unsigned long flags;
317f3941 1556
e3baac47
PZ
1557 if (!llist)
1558 return;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1561
fa14ff4a
PZ
1562 while (llist) {
1563 p = llist_entry(llist, struct task_struct, wake_entry);
1564 llist = llist_next(llist);
317f3941
PZ
1565 ttwu_do_activate(rq, p, 0);
1566 }
1567
e3baac47 1568 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1569}
1570
1571void scheduler_ipi(void)
1572{
f27dde8d
PZ
1573 /*
1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 * this IPI.
1577 */
8cb75e0c 1578 preempt_fold_need_resched();
f27dde8d 1579
fd2ac4f4 1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1581 return;
1582
1583 /*
1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 * traditionally all their work was done from the interrupt return
1586 * path. Now that we actually do some work, we need to make sure
1587 * we do call them.
1588 *
1589 * Some archs already do call them, luckily irq_enter/exit nest
1590 * properly.
1591 *
1592 * Arguably we should visit all archs and update all handlers,
1593 * however a fair share of IPIs are still resched only so this would
1594 * somewhat pessimize the simple resched case.
1595 */
1596 irq_enter();
fa14ff4a 1597 sched_ttwu_pending();
ca38062e
SS
1598
1599 /*
1600 * Check if someone kicked us for doing the nohz idle load balance.
1601 */
873b4c65 1602 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1603 this_rq()->idle_balance = 1;
ca38062e 1604 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1605 }
c5d753a5 1606 irq_exit();
317f3941
PZ
1607}
1608
1609static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610{
e3baac47
PZ
1611 struct rq *rq = cpu_rq(cpu);
1612
1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 if (!set_nr_if_polling(rq->idle))
1615 smp_send_reschedule(cpu);
1616 else
1617 trace_sched_wake_idle_without_ipi(cpu);
1618 }
317f3941 1619}
d6aa8f85 1620
f6be8af1
CL
1621void wake_up_if_idle(int cpu)
1622{
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long flags;
1625
1626 if (!is_idle_task(rq->curr))
1627 return;
1628
1629 if (set_nr_if_polling(rq->idle)) {
1630 trace_sched_wake_idle_without_ipi(cpu);
1631 } else {
1632 raw_spin_lock_irqsave(&rq->lock, flags);
1633 if (is_idle_task(rq->curr))
1634 smp_send_reschedule(cpu);
1635 /* Else cpu is not in idle, do nothing here */
1636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 }
1638}
1639
39be3501 1640bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1641{
1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643}
d6aa8f85 1644#endif /* CONFIG_SMP */
317f3941 1645
c05fbafb
PZ
1646static void ttwu_queue(struct task_struct *p, int cpu)
1647{
1648 struct rq *rq = cpu_rq(cpu);
1649
17d9f311 1650#if defined(CONFIG_SMP)
39be3501 1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1653 ttwu_queue_remote(p, cpu);
1654 return;
1655 }
1656#endif
1657
c05fbafb
PZ
1658 raw_spin_lock(&rq->lock);
1659 ttwu_do_activate(rq, p, 0);
1660 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1661}
1662
1663/**
1da177e4 1664 * try_to_wake_up - wake up a thread
9ed3811a 1665 * @p: the thread to be awakened
1da177e4 1666 * @state: the mask of task states that can be woken
9ed3811a 1667 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
e69f6186 1675 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1676 * or @state didn't match @p's state.
1da177e4 1677 */
e4a52bcb
PZ
1678static int
1679try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1680{
1da177e4 1681 unsigned long flags;
c05fbafb 1682 int cpu, success = 0;
2398f2c6 1683
e0acd0a6
ON
1684 /*
1685 * If we are going to wake up a thread waiting for CONDITION we
1686 * need to ensure that CONDITION=1 done by the caller can not be
1687 * reordered with p->state check below. This pairs with mb() in
1688 * set_current_state() the waiting thread does.
1689 */
1690 smp_mb__before_spinlock();
013fdb80 1691 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1692 if (!(p->state & state))
1da177e4
LT
1693 goto out;
1694
c05fbafb 1695 success = 1; /* we're going to change ->state */
1da177e4 1696 cpu = task_cpu(p);
1da177e4 1697
c05fbafb
PZ
1698 if (p->on_rq && ttwu_remote(p, wake_flags))
1699 goto stat;
1da177e4 1700
1da177e4 1701#ifdef CONFIG_SMP
e9c84311 1702 /*
c05fbafb
PZ
1703 * If the owning (remote) cpu is still in the middle of schedule() with
1704 * this task as prev, wait until its done referencing the task.
e9c84311 1705 */
f3e94786 1706 while (p->on_cpu)
e4a52bcb 1707 cpu_relax();
0970d299 1708 /*
e4a52bcb 1709 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1710 */
e4a52bcb 1711 smp_rmb();
1da177e4 1712
a8e4f2ea 1713 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1714 p->state = TASK_WAKING;
e7693a36 1715
e4a52bcb 1716 if (p->sched_class->task_waking)
74f8e4b2 1717 p->sched_class->task_waking(p);
efbbd05a 1718
ac66f547 1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1720 if (task_cpu(p) != cpu) {
1721 wake_flags |= WF_MIGRATED;
e4a52bcb 1722 set_task_cpu(p, cpu);
f339b9dc 1723 }
1da177e4 1724#endif /* CONFIG_SMP */
1da177e4 1725
c05fbafb
PZ
1726 ttwu_queue(p, cpu);
1727stat:
b84cb5df 1728 ttwu_stat(p, cpu, wake_flags);
1da177e4 1729out:
013fdb80 1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1731
1732 return success;
1733}
1734
21aa9af0
TH
1735/**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
2acca55e 1739 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1741 * the current task.
21aa9af0
TH
1742 */
1743static void try_to_wake_up_local(struct task_struct *p)
1744{
1745 struct rq *rq = task_rq(p);
21aa9af0 1746
383efcd0
TH
1747 if (WARN_ON_ONCE(rq != this_rq()) ||
1748 WARN_ON_ONCE(p == current))
1749 return;
1750
21aa9af0
TH
1751 lockdep_assert_held(&rq->lock);
1752
2acca55e
PZ
1753 if (!raw_spin_trylock(&p->pi_lock)) {
1754 raw_spin_unlock(&rq->lock);
1755 raw_spin_lock(&p->pi_lock);
1756 raw_spin_lock(&rq->lock);
1757 }
1758
21aa9af0 1759 if (!(p->state & TASK_NORMAL))
2acca55e 1760 goto out;
21aa9af0 1761
da0c1e65 1762 if (!task_on_rq_queued(p))
d7c01d27
PZ
1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
23f41eeb 1765 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1766 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1767out:
1768 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1769}
1770
50fa610a
DH
1771/**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
7ad5b3a5 1783int wake_up_process(struct task_struct *p)
1da177e4 1784{
9067ac85
ON
1785 WARN_ON(task_is_stopped_or_traced(p));
1786 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1787}
1da177e4
LT
1788EXPORT_SYMBOL(wake_up_process);
1789
7ad5b3a5 1790int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1791{
1792 return try_to_wake_up(p, state, 0);
1793}
1794
a5e7be3b
JL
1795/*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798void __dl_clear_params(struct task_struct *p)
1799{
1800 struct sched_dl_entity *dl_se = &p->dl;
1801
1802 dl_se->dl_runtime = 0;
1803 dl_se->dl_deadline = 0;
1804 dl_se->dl_period = 0;
1805 dl_se->flags = 0;
1806 dl_se->dl_bw = 0;
1807}
1808
1da177e4
LT
1809/*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
dd41f596
IM
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
5e1576ed 1815static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1816{
fd2f4419
PZ
1817 p->on_rq = 0;
1818
1819 p->se.on_rq = 0;
dd41f596
IM
1820 p->se.exec_start = 0;
1821 p->se.sum_exec_runtime = 0;
f6cf891c 1822 p->se.prev_sum_exec_runtime = 0;
6c594c21 1823 p->se.nr_migrations = 0;
da7a735e 1824 p->se.vruntime = 0;
fd2f4419 1825 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1826
1827#ifdef CONFIG_SCHEDSTATS
41acab88 1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1829#endif
476d139c 1830
aab03e05
DF
1831 RB_CLEAR_NODE(&p->dl.rb_node);
1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1833 __dl_clear_params(p);
aab03e05 1834
fa717060 1835 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1836
e107be36
AK
1837#ifdef CONFIG_PREEMPT_NOTIFIERS
1838 INIT_HLIST_HEAD(&p->preempt_notifiers);
1839#endif
cbee9f88
PZ
1840
1841#ifdef CONFIG_NUMA_BALANCING
1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1844 p->mm->numa_scan_seq = 0;
1845 }
1846
5e1576ed
RR
1847 if (clone_flags & CLONE_VM)
1848 p->numa_preferred_nid = current->numa_preferred_nid;
1849 else
1850 p->numa_preferred_nid = -1;
1851
cbee9f88
PZ
1852 p->node_stamp = 0ULL;
1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1855 p->numa_work.next = &p->numa_work;
ff1df896
RR
1856 p->numa_faults_memory = NULL;
1857 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1858 p->last_task_numa_placement = 0;
1859 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1860
1861 INIT_LIST_HEAD(&p->numa_entry);
1862 p->numa_group = NULL;
cbee9f88 1863#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1864}
1865
1a687c2e 1866#ifdef CONFIG_NUMA_BALANCING
3105b86a 1867#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1868void set_numabalancing_state(bool enabled)
1869{
1870 if (enabled)
1871 sched_feat_set("NUMA");
1872 else
1873 sched_feat_set("NO_NUMA");
1874}
3105b86a
MG
1875#else
1876__read_mostly bool numabalancing_enabled;
1877
1878void set_numabalancing_state(bool enabled)
1879{
1880 numabalancing_enabled = enabled;
dd41f596 1881}
3105b86a 1882#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1883
1884#ifdef CONFIG_PROC_SYSCTL
1885int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 void __user *buffer, size_t *lenp, loff_t *ppos)
1887{
1888 struct ctl_table t;
1889 int err;
1890 int state = numabalancing_enabled;
1891
1892 if (write && !capable(CAP_SYS_ADMIN))
1893 return -EPERM;
1894
1895 t = *table;
1896 t.data = &state;
1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 if (err < 0)
1899 return err;
1900 if (write)
1901 set_numabalancing_state(state);
1902 return err;
1903}
1904#endif
1905#endif
dd41f596
IM
1906
1907/*
1908 * fork()/clone()-time setup:
1909 */
aab03e05 1910int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1911{
0122ec5b 1912 unsigned long flags;
dd41f596
IM
1913 int cpu = get_cpu();
1914
5e1576ed 1915 __sched_fork(clone_flags, p);
06b83b5f 1916 /*
0017d735 1917 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1920 */
0017d735 1921 p->state = TASK_RUNNING;
dd41f596 1922
c350a04e
MG
1923 /*
1924 * Make sure we do not leak PI boosting priority to the child.
1925 */
1926 p->prio = current->normal_prio;
1927
b9dc29e7
MG
1928 /*
1929 * Revert to default priority/policy on fork if requested.
1930 */
1931 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1933 p->policy = SCHED_NORMAL;
6c697bdf 1934 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1935 p->rt_priority = 0;
1936 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 p->static_prio = NICE_TO_PRIO(0);
1938
1939 p->prio = p->normal_prio = __normal_prio(p);
1940 set_load_weight(p);
6c697bdf 1941
b9dc29e7
MG
1942 /*
1943 * We don't need the reset flag anymore after the fork. It has
1944 * fulfilled its duty:
1945 */
1946 p->sched_reset_on_fork = 0;
1947 }
ca94c442 1948
aab03e05
DF
1949 if (dl_prio(p->prio)) {
1950 put_cpu();
1951 return -EAGAIN;
1952 } else if (rt_prio(p->prio)) {
1953 p->sched_class = &rt_sched_class;
1954 } else {
2ddbf952 1955 p->sched_class = &fair_sched_class;
aab03e05 1956 }
b29739f9 1957
cd29fe6f
PZ
1958 if (p->sched_class->task_fork)
1959 p->sched_class->task_fork(p);
1960
86951599
PZ
1961 /*
1962 * The child is not yet in the pid-hash so no cgroup attach races,
1963 * and the cgroup is pinned to this child due to cgroup_fork()
1964 * is ran before sched_fork().
1965 *
1966 * Silence PROVE_RCU.
1967 */
0122ec5b 1968 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1969 set_task_cpu(p, cpu);
0122ec5b 1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1971
52f17b6c 1972#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1973 if (likely(sched_info_on()))
52f17b6c 1974 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1975#endif
3ca7a440
PZ
1976#if defined(CONFIG_SMP)
1977 p->on_cpu = 0;
4866cde0 1978#endif
01028747 1979 init_task_preempt_count(p);
806c09a7 1980#ifdef CONFIG_SMP
917b627d 1981 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1982 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1983#endif
917b627d 1984
476d139c 1985 put_cpu();
aab03e05 1986 return 0;
1da177e4
LT
1987}
1988
332ac17e
DF
1989unsigned long to_ratio(u64 period, u64 runtime)
1990{
1991 if (runtime == RUNTIME_INF)
1992 return 1ULL << 20;
1993
1994 /*
1995 * Doing this here saves a lot of checks in all
1996 * the calling paths, and returning zero seems
1997 * safe for them anyway.
1998 */
1999 if (period == 0)
2000 return 0;
2001
2002 return div64_u64(runtime << 20, period);
2003}
2004
2005#ifdef CONFIG_SMP
2006inline struct dl_bw *dl_bw_of(int i)
2007{
66339c31
KT
2008 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 "sched RCU must be held");
332ac17e
DF
2010 return &cpu_rq(i)->rd->dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e 2014{
de212f18
PZ
2015 struct root_domain *rd = cpu_rq(i)->rd;
2016 int cpus = 0;
2017
66339c31
KT
2018 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 "sched RCU must be held");
de212f18
PZ
2020 for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 cpus++;
2022
2023 return cpus;
332ac17e
DF
2024}
2025#else
2026inline struct dl_bw *dl_bw_of(int i)
2027{
2028 return &cpu_rq(i)->dl.dl_bw;
2029}
2030
de212f18 2031static inline int dl_bw_cpus(int i)
332ac17e
DF
2032{
2033 return 1;
2034}
2035#endif
2036
2037static inline
2038void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039{
2040 dl_b->total_bw -= tsk_bw;
2041}
2042
2043static inline
2044void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045{
2046 dl_b->total_bw += tsk_bw;
2047}
2048
2049static inline
2050bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051{
2052 return dl_b->bw != -1 &&
2053 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054}
2055
2056/*
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2061 *
2062 * This function is called while holding p's rq->lock.
2063 */
2064static int dl_overflow(struct task_struct *p, int policy,
2065 const struct sched_attr *attr)
2066{
2067
2068 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2069 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2070 u64 runtime = attr->sched_runtime;
2071 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2072 int cpus, err = -1;
332ac17e
DF
2073
2074 if (new_bw == p->dl.dl_bw)
2075 return 0;
2076
2077 /*
2078 * Either if a task, enters, leave, or stays -deadline but changes
2079 * its parameters, we may need to update accordingly the total
2080 * allocated bandwidth of the container.
2081 */
2082 raw_spin_lock(&dl_b->lock);
de212f18 2083 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2084 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 __dl_add(dl_b, new_bw);
2087 err = 0;
2088 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 __dl_clear(dl_b, p->dl.dl_bw);
2091 __dl_add(dl_b, new_bw);
2092 err = 0;
2093 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 __dl_clear(dl_b, p->dl.dl_bw);
2095 err = 0;
2096 }
2097 raw_spin_unlock(&dl_b->lock);
2098
2099 return err;
2100}
2101
2102extern void init_dl_bw(struct dl_bw *dl_b);
2103
1da177e4
LT
2104/*
2105 * wake_up_new_task - wake up a newly created task for the first time.
2106 *
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2110 */
3e51e3ed 2111void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2112{
2113 unsigned long flags;
dd41f596 2114 struct rq *rq;
fabf318e 2115
ab2515c4 2116 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2117#ifdef CONFIG_SMP
2118 /*
2119 * Fork balancing, do it here and not earlier because:
2120 * - cpus_allowed can change in the fork path
2121 * - any previously selected cpu might disappear through hotplug
fabf318e 2122 */
ac66f547 2123 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2124#endif
2125
a75cdaa9
AS
2126 /* Initialize new task's runnable average */
2127 init_task_runnable_average(p);
ab2515c4 2128 rq = __task_rq_lock(p);
cd29fe6f 2129 activate_task(rq, p, 0);
da0c1e65 2130 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2131 trace_sched_wakeup_new(p, true);
a7558e01 2132 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2133#ifdef CONFIG_SMP
efbbd05a
PZ
2134 if (p->sched_class->task_woken)
2135 p->sched_class->task_woken(rq, p);
9a897c5a 2136#endif
0122ec5b 2137 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2138}
2139
e107be36
AK
2140#ifdef CONFIG_PREEMPT_NOTIFIERS
2141
2142/**
80dd99b3 2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2144 * @notifier: notifier struct to register
e107be36
AK
2145 */
2146void preempt_notifier_register(struct preempt_notifier *notifier)
2147{
2148 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149}
2150EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151
2152/**
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2154 * @notifier: notifier struct to unregister
e107be36
AK
2155 *
2156 * This is safe to call from within a preemption notifier.
2157 */
2158void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159{
2160 hlist_del(&notifier->link);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163
2164static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165{
2166 struct preempt_notifier *notifier;
e107be36 2167
b67bfe0d 2168 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2169 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170}
2171
2172static void
2173fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 struct task_struct *next)
2175{
2176 struct preempt_notifier *notifier;
e107be36 2177
b67bfe0d 2178 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2179 notifier->ops->sched_out(notifier, next);
2180}
2181
6d6bc0ad 2182#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2183
2184static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185{
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 struct task_struct *next)
2191{
2192}
2193
6d6bc0ad 2194#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2195
4866cde0
NP
2196/**
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
421cee29 2199 * @prev: the current task that is being switched out
4866cde0
NP
2200 * @next: the task we are going to switch to.
2201 *
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2204 * switch.
2205 *
2206 * prepare_task_switch sets up locking and calls architecture specific
2207 * hooks.
2208 */
e107be36
AK
2209static inline void
2210prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 struct task_struct *next)
4866cde0 2212{
895dd92c 2213 trace_sched_switch(prev, next);
43148951 2214 sched_info_switch(rq, prev, next);
fe4b04fa 2215 perf_event_task_sched_out(prev, next);
e107be36 2216 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2217 prepare_lock_switch(rq, next);
2218 prepare_arch_switch(next);
2219}
2220
1da177e4
LT
2221/**
2222 * finish_task_switch - clean up after a task-switch
2223 * @prev: the thread we just switched away from.
2224 *
4866cde0
NP
2225 * finish_task_switch must be called after the context switch, paired
2226 * with a prepare_task_switch call before the context switch.
2227 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2228 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2229 *
2230 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2231 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2232 * with the lock held can cause deadlocks; see schedule() for
2233 * details.)
dfa50b60
ON
2234 *
2235 * The context switch have flipped the stack from under us and restored the
2236 * local variables which were saved when this task called schedule() in the
2237 * past. prev == current is still correct but we need to recalculate this_rq
2238 * because prev may have moved to another CPU.
1da177e4 2239 */
dfa50b60 2240static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2241 __releases(rq->lock)
2242{
dfa50b60 2243 struct rq *rq = this_rq();
1da177e4 2244 struct mm_struct *mm = rq->prev_mm;
55a101f8 2245 long prev_state;
1da177e4
LT
2246
2247 rq->prev_mm = NULL;
2248
2249 /*
2250 * A task struct has one reference for the use as "current".
c394cc9f 2251 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2252 * schedule one last time. The schedule call will never return, and
2253 * the scheduled task must drop that reference.
c394cc9f 2254 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2255 * still held, otherwise prev could be scheduled on another cpu, die
2256 * there before we look at prev->state, and then the reference would
2257 * be dropped twice.
2258 * Manfred Spraul <manfred@colorfullife.com>
2259 */
55a101f8 2260 prev_state = prev->state;
bf9fae9f 2261 vtime_task_switch(prev);
4866cde0 2262 finish_arch_switch(prev);
a8d757ef 2263 perf_event_task_sched_in(prev, current);
4866cde0 2264 finish_lock_switch(rq, prev);
01f23e16 2265 finish_arch_post_lock_switch();
e8fa1362 2266
e107be36 2267 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2268 if (mm)
2269 mmdrop(mm);
c394cc9f 2270 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2271 if (prev->sched_class->task_dead)
2272 prev->sched_class->task_dead(prev);
2273
c6fd91f0 2274 /*
2275 * Remove function-return probe instances associated with this
2276 * task and put them back on the free list.
9761eea8 2277 */
c6fd91f0 2278 kprobe_flush_task(prev);
1da177e4 2279 put_task_struct(prev);
c6fd91f0 2280 }
99e5ada9
FW
2281
2282 tick_nohz_task_switch(current);
dfa50b60 2283 return rq;
1da177e4
LT
2284}
2285
3f029d3c
GH
2286#ifdef CONFIG_SMP
2287
3f029d3c
GH
2288/* rq->lock is NOT held, but preemption is disabled */
2289static inline void post_schedule(struct rq *rq)
2290{
2291 if (rq->post_schedule) {
2292 unsigned long flags;
2293
05fa785c 2294 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2295 if (rq->curr->sched_class->post_schedule)
2296 rq->curr->sched_class->post_schedule(rq);
05fa785c 2297 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2298
2299 rq->post_schedule = 0;
2300 }
2301}
2302
2303#else
da19ab51 2304
3f029d3c
GH
2305static inline void post_schedule(struct rq *rq)
2306{
1da177e4
LT
2307}
2308
3f029d3c
GH
2309#endif
2310
1da177e4
LT
2311/**
2312 * schedule_tail - first thing a freshly forked thread must call.
2313 * @prev: the thread we just switched away from.
2314 */
722a9f92 2315asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2316 __releases(rq->lock)
2317{
1a43a14a 2318 struct rq *rq;
70b97a7f 2319
1a43a14a
ON
2320 /* finish_task_switch() drops rq->lock and enables preemtion */
2321 preempt_disable();
dfa50b60 2322 rq = finish_task_switch(prev);
3f029d3c 2323 post_schedule(rq);
1a43a14a 2324 preempt_enable();
70b97a7f 2325
1da177e4 2326 if (current->set_child_tid)
b488893a 2327 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2328}
2329
2330/*
dfa50b60 2331 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2332 */
dfa50b60 2333static inline struct rq *
70b97a7f 2334context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2335 struct task_struct *next)
1da177e4 2336{
dd41f596 2337 struct mm_struct *mm, *oldmm;
1da177e4 2338
e107be36 2339 prepare_task_switch(rq, prev, next);
fe4b04fa 2340
dd41f596
IM
2341 mm = next->mm;
2342 oldmm = prev->active_mm;
9226d125
ZA
2343 /*
2344 * For paravirt, this is coupled with an exit in switch_to to
2345 * combine the page table reload and the switch backend into
2346 * one hypercall.
2347 */
224101ed 2348 arch_start_context_switch(prev);
9226d125 2349
31915ab4 2350 if (!mm) {
1da177e4
LT
2351 next->active_mm = oldmm;
2352 atomic_inc(&oldmm->mm_count);
2353 enter_lazy_tlb(oldmm, next);
2354 } else
2355 switch_mm(oldmm, mm, next);
2356
31915ab4 2357 if (!prev->mm) {
1da177e4 2358 prev->active_mm = NULL;
1da177e4
LT
2359 rq->prev_mm = oldmm;
2360 }
3a5f5e48
IM
2361 /*
2362 * Since the runqueue lock will be released by the next
2363 * task (which is an invalid locking op but in the case
2364 * of the scheduler it's an obvious special-case), so we
2365 * do an early lockdep release here:
2366 */
8a25d5de 2367 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2368
91d1aa43 2369 context_tracking_task_switch(prev, next);
1da177e4
LT
2370 /* Here we just switch the register state and the stack. */
2371 switch_to(prev, next, prev);
dd41f596 2372 barrier();
dfa50b60
ON
2373
2374 return finish_task_switch(prev);
1da177e4
LT
2375}
2376
2377/*
1c3e8264 2378 * nr_running and nr_context_switches:
1da177e4
LT
2379 *
2380 * externally visible scheduler statistics: current number of runnable
1c3e8264 2381 * threads, total number of context switches performed since bootup.
1da177e4
LT
2382 */
2383unsigned long nr_running(void)
2384{
2385 unsigned long i, sum = 0;
2386
2387 for_each_online_cpu(i)
2388 sum += cpu_rq(i)->nr_running;
2389
2390 return sum;
f711f609 2391}
1da177e4 2392
2ee507c4
TC
2393/*
2394 * Check if only the current task is running on the cpu.
2395 */
2396bool single_task_running(void)
2397{
2398 if (cpu_rq(smp_processor_id())->nr_running == 1)
2399 return true;
2400 else
2401 return false;
2402}
2403EXPORT_SYMBOL(single_task_running);
2404
1da177e4 2405unsigned long long nr_context_switches(void)
46cb4b7c 2406{
cc94abfc
SR
2407 int i;
2408 unsigned long long sum = 0;
46cb4b7c 2409
0a945022 2410 for_each_possible_cpu(i)
1da177e4 2411 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2412
1da177e4
LT
2413 return sum;
2414}
483b4ee6 2415
1da177e4
LT
2416unsigned long nr_iowait(void)
2417{
2418 unsigned long i, sum = 0;
483b4ee6 2419
0a945022 2420 for_each_possible_cpu(i)
1da177e4 2421 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2422
1da177e4
LT
2423 return sum;
2424}
483b4ee6 2425
8c215bd3 2426unsigned long nr_iowait_cpu(int cpu)
69d25870 2427{
8c215bd3 2428 struct rq *this = cpu_rq(cpu);
69d25870
AV
2429 return atomic_read(&this->nr_iowait);
2430}
46cb4b7c 2431
372ba8cb
MG
2432void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2433{
2434 struct rq *this = this_rq();
2435 *nr_waiters = atomic_read(&this->nr_iowait);
2436 *load = this->cpu_load[0];
2437}
2438
dd41f596 2439#ifdef CONFIG_SMP
8a0be9ef 2440
46cb4b7c 2441/*
38022906
PZ
2442 * sched_exec - execve() is a valuable balancing opportunity, because at
2443 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2444 */
38022906 2445void sched_exec(void)
46cb4b7c 2446{
38022906 2447 struct task_struct *p = current;
1da177e4 2448 unsigned long flags;
0017d735 2449 int dest_cpu;
46cb4b7c 2450
8f42ced9 2451 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2452 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2453 if (dest_cpu == smp_processor_id())
2454 goto unlock;
38022906 2455
8f42ced9 2456 if (likely(cpu_active(dest_cpu))) {
969c7921 2457 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2458
8f42ced9
PZ
2459 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2460 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2461 return;
2462 }
0017d735 2463unlock:
8f42ced9 2464 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2465}
dd41f596 2466
1da177e4
LT
2467#endif
2468
1da177e4 2469DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2470DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2471
2472EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2473EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2474
2475/*
c5f8d995 2476 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2477 * @p in case that task is currently running.
c5f8d995
HS
2478 *
2479 * Called with task_rq_lock() held on @rq.
1da177e4 2480 */
c5f8d995
HS
2481static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2482{
2483 u64 ns = 0;
2484
4036ac15
MG
2485 /*
2486 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2487 * project cycles that may never be accounted to this
2488 * thread, breaking clock_gettime().
2489 */
da0c1e65 2490 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2491 update_rq_clock(rq);
78becc27 2492 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2493 if ((s64)ns < 0)
2494 ns = 0;
2495 }
2496
2497 return ns;
2498}
2499
bb34d92f 2500unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2501{
1da177e4 2502 unsigned long flags;
41b86e9c 2503 struct rq *rq;
bb34d92f 2504 u64 ns = 0;
48f24c4d 2505
41b86e9c 2506 rq = task_rq_lock(p, &flags);
c5f8d995 2507 ns = do_task_delta_exec(p, rq);
0122ec5b 2508 task_rq_unlock(rq, p, &flags);
1508487e 2509
c5f8d995
HS
2510 return ns;
2511}
f06febc9 2512
c5f8d995
HS
2513/*
2514 * Return accounted runtime for the task.
2515 * In case the task is currently running, return the runtime plus current's
2516 * pending runtime that have not been accounted yet.
2517 */
2518unsigned long long task_sched_runtime(struct task_struct *p)
2519{
2520 unsigned long flags;
2521 struct rq *rq;
2522 u64 ns = 0;
2523
911b2898
PZ
2524#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2525 /*
2526 * 64-bit doesn't need locks to atomically read a 64bit value.
2527 * So we have a optimization chance when the task's delta_exec is 0.
2528 * Reading ->on_cpu is racy, but this is ok.
2529 *
2530 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2531 * If we race with it entering cpu, unaccounted time is 0. This is
2532 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2533 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2534 * been accounted, so we're correct here as well.
911b2898 2535 */
da0c1e65 2536 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2537 return p->se.sum_exec_runtime;
2538#endif
2539
c5f8d995
HS
2540 rq = task_rq_lock(p, &flags);
2541 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2542 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2543
2544 return ns;
2545}
48f24c4d 2546
7835b98b
CL
2547/*
2548 * This function gets called by the timer code, with HZ frequency.
2549 * We call it with interrupts disabled.
7835b98b
CL
2550 */
2551void scheduler_tick(void)
2552{
7835b98b
CL
2553 int cpu = smp_processor_id();
2554 struct rq *rq = cpu_rq(cpu);
dd41f596 2555 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2556
2557 sched_clock_tick();
dd41f596 2558
05fa785c 2559 raw_spin_lock(&rq->lock);
3e51f33f 2560 update_rq_clock(rq);
fa85ae24 2561 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2562 update_cpu_load_active(rq);
05fa785c 2563 raw_spin_unlock(&rq->lock);
7835b98b 2564
e9d2b064 2565 perf_event_task_tick();
e220d2dc 2566
e418e1c2 2567#ifdef CONFIG_SMP
6eb57e0d 2568 rq->idle_balance = idle_cpu(cpu);
7caff66f 2569 trigger_load_balance(rq);
e418e1c2 2570#endif
265f22a9 2571 rq_last_tick_reset(rq);
1da177e4
LT
2572}
2573
265f22a9
FW
2574#ifdef CONFIG_NO_HZ_FULL
2575/**
2576 * scheduler_tick_max_deferment
2577 *
2578 * Keep at least one tick per second when a single
2579 * active task is running because the scheduler doesn't
2580 * yet completely support full dynticks environment.
2581 *
2582 * This makes sure that uptime, CFS vruntime, load
2583 * balancing, etc... continue to move forward, even
2584 * with a very low granularity.
e69f6186
YB
2585 *
2586 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2587 */
2588u64 scheduler_tick_max_deferment(void)
2589{
2590 struct rq *rq = this_rq();
2591 unsigned long next, now = ACCESS_ONCE(jiffies);
2592
2593 next = rq->last_sched_tick + HZ;
2594
2595 if (time_before_eq(next, now))
2596 return 0;
2597
8fe8ff09 2598 return jiffies_to_nsecs(next - now);
1da177e4 2599}
265f22a9 2600#endif
1da177e4 2601
132380a0 2602notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2603{
2604 if (in_lock_functions(addr)) {
2605 addr = CALLER_ADDR2;
2606 if (in_lock_functions(addr))
2607 addr = CALLER_ADDR3;
2608 }
2609 return addr;
2610}
1da177e4 2611
7e49fcce
SR
2612#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2613 defined(CONFIG_PREEMPT_TRACER))
2614
edafe3a5 2615void preempt_count_add(int val)
1da177e4 2616{
6cd8a4bb 2617#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2618 /*
2619 * Underflow?
2620 */
9a11b49a
IM
2621 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2622 return;
6cd8a4bb 2623#endif
bdb43806 2624 __preempt_count_add(val);
6cd8a4bb 2625#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2626 /*
2627 * Spinlock count overflowing soon?
2628 */
33859f7f
MOS
2629 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2630 PREEMPT_MASK - 10);
6cd8a4bb 2631#endif
8f47b187
TG
2632 if (preempt_count() == val) {
2633 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2634#ifdef CONFIG_DEBUG_PREEMPT
2635 current->preempt_disable_ip = ip;
2636#endif
2637 trace_preempt_off(CALLER_ADDR0, ip);
2638 }
1da177e4 2639}
bdb43806 2640EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2641NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2642
edafe3a5 2643void preempt_count_sub(int val)
1da177e4 2644{
6cd8a4bb 2645#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2646 /*
2647 * Underflow?
2648 */
01e3eb82 2649 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2650 return;
1da177e4
LT
2651 /*
2652 * Is the spinlock portion underflowing?
2653 */
9a11b49a
IM
2654 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2655 !(preempt_count() & PREEMPT_MASK)))
2656 return;
6cd8a4bb 2657#endif
9a11b49a 2658
6cd8a4bb
SR
2659 if (preempt_count() == val)
2660 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2661 __preempt_count_sub(val);
1da177e4 2662}
bdb43806 2663EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2664NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2665
2666#endif
2667
2668/*
dd41f596 2669 * Print scheduling while atomic bug:
1da177e4 2670 */
dd41f596 2671static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2672{
664dfa65
DJ
2673 if (oops_in_progress)
2674 return;
2675
3df0fc5b
PZ
2676 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2677 prev->comm, prev->pid, preempt_count());
838225b4 2678
dd41f596 2679 debug_show_held_locks(prev);
e21f5b15 2680 print_modules();
dd41f596
IM
2681 if (irqs_disabled())
2682 print_irqtrace_events(prev);
8f47b187
TG
2683#ifdef CONFIG_DEBUG_PREEMPT
2684 if (in_atomic_preempt_off()) {
2685 pr_err("Preemption disabled at:");
2686 print_ip_sym(current->preempt_disable_ip);
2687 pr_cont("\n");
2688 }
2689#endif
6135fc1e 2690 dump_stack();
373d4d09 2691 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2692}
1da177e4 2693
dd41f596
IM
2694/*
2695 * Various schedule()-time debugging checks and statistics:
2696 */
2697static inline void schedule_debug(struct task_struct *prev)
2698{
0d9e2632
AT
2699#ifdef CONFIG_SCHED_STACK_END_CHECK
2700 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2701#endif
1da177e4 2702 /*
41a2d6cf 2703 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2704 * schedule() atomically, we ignore that path. Otherwise whine
2705 * if we are scheduling when we should not.
1da177e4 2706 */
192301e7 2707 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2708 __schedule_bug(prev);
b3fbab05 2709 rcu_sleep_check();
dd41f596 2710
1da177e4
LT
2711 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2712
2d72376b 2713 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2714}
2715
2716/*
2717 * Pick up the highest-prio task:
2718 */
2719static inline struct task_struct *
606dba2e 2720pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2721{
37e117c0 2722 const struct sched_class *class = &fair_sched_class;
dd41f596 2723 struct task_struct *p;
1da177e4
LT
2724
2725 /*
dd41f596
IM
2726 * Optimization: we know that if all tasks are in
2727 * the fair class we can call that function directly:
1da177e4 2728 */
37e117c0 2729 if (likely(prev->sched_class == class &&
38033c37 2730 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2731 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2732 if (unlikely(p == RETRY_TASK))
2733 goto again;
2734
2735 /* assumes fair_sched_class->next == idle_sched_class */
2736 if (unlikely(!p))
2737 p = idle_sched_class.pick_next_task(rq, prev);
2738
2739 return p;
1da177e4
LT
2740 }
2741
37e117c0 2742again:
34f971f6 2743 for_each_class(class) {
606dba2e 2744 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2745 if (p) {
2746 if (unlikely(p == RETRY_TASK))
2747 goto again;
dd41f596 2748 return p;
37e117c0 2749 }
dd41f596 2750 }
34f971f6
PZ
2751
2752 BUG(); /* the idle class will always have a runnable task */
dd41f596 2753}
1da177e4 2754
dd41f596 2755/*
c259e01a 2756 * __schedule() is the main scheduler function.
edde96ea
PE
2757 *
2758 * The main means of driving the scheduler and thus entering this function are:
2759 *
2760 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2761 *
2762 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2763 * paths. For example, see arch/x86/entry_64.S.
2764 *
2765 * To drive preemption between tasks, the scheduler sets the flag in timer
2766 * interrupt handler scheduler_tick().
2767 *
2768 * 3. Wakeups don't really cause entry into schedule(). They add a
2769 * task to the run-queue and that's it.
2770 *
2771 * Now, if the new task added to the run-queue preempts the current
2772 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2773 * called on the nearest possible occasion:
2774 *
2775 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2776 *
2777 * - in syscall or exception context, at the next outmost
2778 * preempt_enable(). (this might be as soon as the wake_up()'s
2779 * spin_unlock()!)
2780 *
2781 * - in IRQ context, return from interrupt-handler to
2782 * preemptible context
2783 *
2784 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2785 * then at the next:
2786 *
2787 * - cond_resched() call
2788 * - explicit schedule() call
2789 * - return from syscall or exception to user-space
2790 * - return from interrupt-handler to user-space
dd41f596 2791 */
c259e01a 2792static void __sched __schedule(void)
dd41f596
IM
2793{
2794 struct task_struct *prev, *next;
67ca7bde 2795 unsigned long *switch_count;
dd41f596 2796 struct rq *rq;
31656519 2797 int cpu;
dd41f596 2798
ff743345
PZ
2799need_resched:
2800 preempt_disable();
dd41f596
IM
2801 cpu = smp_processor_id();
2802 rq = cpu_rq(cpu);
25502a6c 2803 rcu_note_context_switch(cpu);
dd41f596 2804 prev = rq->curr;
dd41f596 2805
dd41f596 2806 schedule_debug(prev);
1da177e4 2807
31656519 2808 if (sched_feat(HRTICK))
f333fdc9 2809 hrtick_clear(rq);
8f4d37ec 2810
e0acd0a6
ON
2811 /*
2812 * Make sure that signal_pending_state()->signal_pending() below
2813 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2814 * done by the caller to avoid the race with signal_wake_up().
2815 */
2816 smp_mb__before_spinlock();
05fa785c 2817 raw_spin_lock_irq(&rq->lock);
1da177e4 2818
246d86b5 2819 switch_count = &prev->nivcsw;
1da177e4 2820 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2821 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2822 prev->state = TASK_RUNNING;
21aa9af0 2823 } else {
2acca55e
PZ
2824 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2825 prev->on_rq = 0;
2826
21aa9af0 2827 /*
2acca55e
PZ
2828 * If a worker went to sleep, notify and ask workqueue
2829 * whether it wants to wake up a task to maintain
2830 * concurrency.
21aa9af0
TH
2831 */
2832 if (prev->flags & PF_WQ_WORKER) {
2833 struct task_struct *to_wakeup;
2834
2835 to_wakeup = wq_worker_sleeping(prev, cpu);
2836 if (to_wakeup)
2837 try_to_wake_up_local(to_wakeup);
2838 }
21aa9af0 2839 }
dd41f596 2840 switch_count = &prev->nvcsw;
1da177e4
LT
2841 }
2842
da0c1e65 2843 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2844 update_rq_clock(rq);
2845
2846 next = pick_next_task(rq, prev);
f26f9aff 2847 clear_tsk_need_resched(prev);
f27dde8d 2848 clear_preempt_need_resched();
f26f9aff 2849 rq->skip_clock_update = 0;
1da177e4 2850
1da177e4 2851 if (likely(prev != next)) {
1da177e4
LT
2852 rq->nr_switches++;
2853 rq->curr = next;
2854 ++*switch_count;
2855
dfa50b60
ON
2856 rq = context_switch(rq, prev, next); /* unlocks the rq */
2857 cpu = cpu_of(rq);
1da177e4 2858 } else
05fa785c 2859 raw_spin_unlock_irq(&rq->lock);
1da177e4 2860
3f029d3c 2861 post_schedule(rq);
1da177e4 2862
ba74c144 2863 sched_preempt_enable_no_resched();
ff743345 2864 if (need_resched())
1da177e4
LT
2865 goto need_resched;
2866}
c259e01a 2867
9c40cef2
TG
2868static inline void sched_submit_work(struct task_struct *tsk)
2869{
3c7d5184 2870 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2871 return;
2872 /*
2873 * If we are going to sleep and we have plugged IO queued,
2874 * make sure to submit it to avoid deadlocks.
2875 */
2876 if (blk_needs_flush_plug(tsk))
2877 blk_schedule_flush_plug(tsk);
2878}
2879
722a9f92 2880asmlinkage __visible void __sched schedule(void)
c259e01a 2881{
9c40cef2
TG
2882 struct task_struct *tsk = current;
2883
2884 sched_submit_work(tsk);
c259e01a
TG
2885 __schedule();
2886}
1da177e4
LT
2887EXPORT_SYMBOL(schedule);
2888
91d1aa43 2889#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2890asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2891{
2892 /*
2893 * If we come here after a random call to set_need_resched(),
2894 * or we have been woken up remotely but the IPI has not yet arrived,
2895 * we haven't yet exited the RCU idle mode. Do it here manually until
2896 * we find a better solution.
2897 */
91d1aa43 2898 user_exit();
20ab65e3 2899 schedule();
91d1aa43 2900 user_enter();
20ab65e3
FW
2901}
2902#endif
2903
c5491ea7
TG
2904/**
2905 * schedule_preempt_disabled - called with preemption disabled
2906 *
2907 * Returns with preemption disabled. Note: preempt_count must be 1
2908 */
2909void __sched schedule_preempt_disabled(void)
2910{
ba74c144 2911 sched_preempt_enable_no_resched();
c5491ea7
TG
2912 schedule();
2913 preempt_disable();
2914}
2915
1da177e4
LT
2916#ifdef CONFIG_PREEMPT
2917/*
2ed6e34f 2918 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2919 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2920 * occur there and call schedule directly.
2921 */
722a9f92 2922asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2923{
1da177e4
LT
2924 /*
2925 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2926 * we do not want to preempt the current task. Just return..
1da177e4 2927 */
fbb00b56 2928 if (likely(!preemptible()))
1da177e4
LT
2929 return;
2930
3a5c359a 2931 do {
bdb43806 2932 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2933 __schedule();
bdb43806 2934 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2935
3a5c359a
AK
2936 /*
2937 * Check again in case we missed a preemption opportunity
2938 * between schedule and now.
2939 */
2940 barrier();
5ed0cec0 2941 } while (need_resched());
1da177e4 2942}
376e2424 2943NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2944EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2945
2946#ifdef CONFIG_CONTEXT_TRACKING
2947/**
2948 * preempt_schedule_context - preempt_schedule called by tracing
2949 *
2950 * The tracing infrastructure uses preempt_enable_notrace to prevent
2951 * recursion and tracing preempt enabling caused by the tracing
2952 * infrastructure itself. But as tracing can happen in areas coming
2953 * from userspace or just about to enter userspace, a preempt enable
2954 * can occur before user_exit() is called. This will cause the scheduler
2955 * to be called when the system is still in usermode.
2956 *
2957 * To prevent this, the preempt_enable_notrace will use this function
2958 * instead of preempt_schedule() to exit user context if needed before
2959 * calling the scheduler.
2960 */
2961asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2962{
2963 enum ctx_state prev_ctx;
2964
2965 if (likely(!preemptible()))
2966 return;
2967
2968 do {
2969 __preempt_count_add(PREEMPT_ACTIVE);
2970 /*
2971 * Needs preempt disabled in case user_exit() is traced
2972 * and the tracer calls preempt_enable_notrace() causing
2973 * an infinite recursion.
2974 */
2975 prev_ctx = exception_enter();
2976 __schedule();
2977 exception_exit(prev_ctx);
2978
2979 __preempt_count_sub(PREEMPT_ACTIVE);
2980 barrier();
2981 } while (need_resched());
2982}
2983EXPORT_SYMBOL_GPL(preempt_schedule_context);
2984#endif /* CONFIG_CONTEXT_TRACKING */
2985
32e475d7 2986#endif /* CONFIG_PREEMPT */
1da177e4
LT
2987
2988/*
2ed6e34f 2989 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2990 * off of irq context.
2991 * Note, that this is called and return with irqs disabled. This will
2992 * protect us against recursive calling from irq.
2993 */
722a9f92 2994asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2995{
b22366cd 2996 enum ctx_state prev_state;
6478d880 2997
2ed6e34f 2998 /* Catch callers which need to be fixed */
f27dde8d 2999 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3000
b22366cd
FW
3001 prev_state = exception_enter();
3002
3a5c359a 3003 do {
bdb43806 3004 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 3005 local_irq_enable();
c259e01a 3006 __schedule();
3a5c359a 3007 local_irq_disable();
bdb43806 3008 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 3009
3a5c359a
AK
3010 /*
3011 * Check again in case we missed a preemption opportunity
3012 * between schedule and now.
3013 */
3014 barrier();
5ed0cec0 3015 } while (need_resched());
b22366cd
FW
3016
3017 exception_exit(prev_state);
1da177e4
LT
3018}
3019
63859d4f 3020int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3021 void *key)
1da177e4 3022{
63859d4f 3023 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3024}
1da177e4
LT
3025EXPORT_SYMBOL(default_wake_function);
3026
b29739f9
IM
3027#ifdef CONFIG_RT_MUTEXES
3028
3029/*
3030 * rt_mutex_setprio - set the current priority of a task
3031 * @p: task
3032 * @prio: prio value (kernel-internal form)
3033 *
3034 * This function changes the 'effective' priority of a task. It does
3035 * not touch ->normal_prio like __setscheduler().
3036 *
c365c292
TG
3037 * Used by the rt_mutex code to implement priority inheritance
3038 * logic. Call site only calls if the priority of the task changed.
b29739f9 3039 */
36c8b586 3040void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3041{
da0c1e65 3042 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3043 struct rq *rq;
83ab0aa0 3044 const struct sched_class *prev_class;
b29739f9 3045
aab03e05 3046 BUG_ON(prio > MAX_PRIO);
b29739f9 3047
0122ec5b 3048 rq = __task_rq_lock(p);
b29739f9 3049
1c4dd99b
TG
3050 /*
3051 * Idle task boosting is a nono in general. There is one
3052 * exception, when PREEMPT_RT and NOHZ is active:
3053 *
3054 * The idle task calls get_next_timer_interrupt() and holds
3055 * the timer wheel base->lock on the CPU and another CPU wants
3056 * to access the timer (probably to cancel it). We can safely
3057 * ignore the boosting request, as the idle CPU runs this code
3058 * with interrupts disabled and will complete the lock
3059 * protected section without being interrupted. So there is no
3060 * real need to boost.
3061 */
3062 if (unlikely(p == rq->idle)) {
3063 WARN_ON(p != rq->curr);
3064 WARN_ON(p->pi_blocked_on);
3065 goto out_unlock;
3066 }
3067
a8027073 3068 trace_sched_pi_setprio(p, prio);
d5f9f942 3069 oldprio = p->prio;
83ab0aa0 3070 prev_class = p->sched_class;
da0c1e65 3071 queued = task_on_rq_queued(p);
051a1d1a 3072 running = task_current(rq, p);
da0c1e65 3073 if (queued)
69be72c1 3074 dequeue_task(rq, p, 0);
0e1f3483 3075 if (running)
f3cd1c4e 3076 put_prev_task(rq, p);
dd41f596 3077
2d3d891d
DF
3078 /*
3079 * Boosting condition are:
3080 * 1. -rt task is running and holds mutex A
3081 * --> -dl task blocks on mutex A
3082 *
3083 * 2. -dl task is running and holds mutex A
3084 * --> -dl task blocks on mutex A and could preempt the
3085 * running task
3086 */
3087 if (dl_prio(prio)) {
466af29b
ON
3088 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3089 if (!dl_prio(p->normal_prio) ||
3090 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3091 p->dl.dl_boosted = 1;
3092 p->dl.dl_throttled = 0;
3093 enqueue_flag = ENQUEUE_REPLENISH;
3094 } else
3095 p->dl.dl_boosted = 0;
aab03e05 3096 p->sched_class = &dl_sched_class;
2d3d891d
DF
3097 } else if (rt_prio(prio)) {
3098 if (dl_prio(oldprio))
3099 p->dl.dl_boosted = 0;
3100 if (oldprio < prio)
3101 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3102 p->sched_class = &rt_sched_class;
2d3d891d
DF
3103 } else {
3104 if (dl_prio(oldprio))
3105 p->dl.dl_boosted = 0;
dd41f596 3106 p->sched_class = &fair_sched_class;
2d3d891d 3107 }
dd41f596 3108
b29739f9
IM
3109 p->prio = prio;
3110
0e1f3483
HS
3111 if (running)
3112 p->sched_class->set_curr_task(rq);
da0c1e65 3113 if (queued)
2d3d891d 3114 enqueue_task(rq, p, enqueue_flag);
cb469845 3115
da7a735e 3116 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3117out_unlock:
0122ec5b 3118 __task_rq_unlock(rq);
b29739f9 3119}
b29739f9 3120#endif
d50dde5a 3121
36c8b586 3122void set_user_nice(struct task_struct *p, long nice)
1da177e4 3123{
da0c1e65 3124 int old_prio, delta, queued;
1da177e4 3125 unsigned long flags;
70b97a7f 3126 struct rq *rq;
1da177e4 3127
75e45d51 3128 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3129 return;
3130 /*
3131 * We have to be careful, if called from sys_setpriority(),
3132 * the task might be in the middle of scheduling on another CPU.
3133 */
3134 rq = task_rq_lock(p, &flags);
3135 /*
3136 * The RT priorities are set via sched_setscheduler(), but we still
3137 * allow the 'normal' nice value to be set - but as expected
3138 * it wont have any effect on scheduling until the task is
aab03e05 3139 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3140 */
aab03e05 3141 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3142 p->static_prio = NICE_TO_PRIO(nice);
3143 goto out_unlock;
3144 }
da0c1e65
KT
3145 queued = task_on_rq_queued(p);
3146 if (queued)
69be72c1 3147 dequeue_task(rq, p, 0);
1da177e4 3148
1da177e4 3149 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3150 set_load_weight(p);
b29739f9
IM
3151 old_prio = p->prio;
3152 p->prio = effective_prio(p);
3153 delta = p->prio - old_prio;
1da177e4 3154
da0c1e65 3155 if (queued) {
371fd7e7 3156 enqueue_task(rq, p, 0);
1da177e4 3157 /*
d5f9f942
AM
3158 * If the task increased its priority or is running and
3159 * lowered its priority, then reschedule its CPU:
1da177e4 3160 */
d5f9f942 3161 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3162 resched_curr(rq);
1da177e4
LT
3163 }
3164out_unlock:
0122ec5b 3165 task_rq_unlock(rq, p, &flags);
1da177e4 3166}
1da177e4
LT
3167EXPORT_SYMBOL(set_user_nice);
3168
e43379f1
MM
3169/*
3170 * can_nice - check if a task can reduce its nice value
3171 * @p: task
3172 * @nice: nice value
3173 */
36c8b586 3174int can_nice(const struct task_struct *p, const int nice)
e43379f1 3175{
024f4747 3176 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3177 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3178
78d7d407 3179 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3180 capable(CAP_SYS_NICE));
3181}
3182
1da177e4
LT
3183#ifdef __ARCH_WANT_SYS_NICE
3184
3185/*
3186 * sys_nice - change the priority of the current process.
3187 * @increment: priority increment
3188 *
3189 * sys_setpriority is a more generic, but much slower function that
3190 * does similar things.
3191 */
5add95d4 3192SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3193{
48f24c4d 3194 long nice, retval;
1da177e4
LT
3195
3196 /*
3197 * Setpriority might change our priority at the same moment.
3198 * We don't have to worry. Conceptually one call occurs first
3199 * and we have a single winner.
3200 */
a9467fa3 3201 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3202 nice = task_nice(current) + increment;
1da177e4 3203
a9467fa3 3204 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3205 if (increment < 0 && !can_nice(current, nice))
3206 return -EPERM;
3207
1da177e4
LT
3208 retval = security_task_setnice(current, nice);
3209 if (retval)
3210 return retval;
3211
3212 set_user_nice(current, nice);
3213 return 0;
3214}
3215
3216#endif
3217
3218/**
3219 * task_prio - return the priority value of a given task.
3220 * @p: the task in question.
3221 *
e69f6186 3222 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3223 * RT tasks are offset by -200. Normal tasks are centered
3224 * around 0, value goes from -16 to +15.
3225 */
36c8b586 3226int task_prio(const struct task_struct *p)
1da177e4
LT
3227{
3228 return p->prio - MAX_RT_PRIO;
3229}
3230
1da177e4
LT
3231/**
3232 * idle_cpu - is a given cpu idle currently?
3233 * @cpu: the processor in question.
e69f6186
YB
3234 *
3235 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3236 */
3237int idle_cpu(int cpu)
3238{
908a3283
TG
3239 struct rq *rq = cpu_rq(cpu);
3240
3241 if (rq->curr != rq->idle)
3242 return 0;
3243
3244 if (rq->nr_running)
3245 return 0;
3246
3247#ifdef CONFIG_SMP
3248 if (!llist_empty(&rq->wake_list))
3249 return 0;
3250#endif
3251
3252 return 1;
1da177e4
LT
3253}
3254
1da177e4
LT
3255/**
3256 * idle_task - return the idle task for a given cpu.
3257 * @cpu: the processor in question.
e69f6186
YB
3258 *
3259 * Return: The idle task for the cpu @cpu.
1da177e4 3260 */
36c8b586 3261struct task_struct *idle_task(int cpu)
1da177e4
LT
3262{
3263 return cpu_rq(cpu)->idle;
3264}
3265
3266/**
3267 * find_process_by_pid - find a process with a matching PID value.
3268 * @pid: the pid in question.
e69f6186
YB
3269 *
3270 * The task of @pid, if found. %NULL otherwise.
1da177e4 3271 */
a9957449 3272static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3273{
228ebcbe 3274 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3275}
3276
aab03e05
DF
3277/*
3278 * This function initializes the sched_dl_entity of a newly becoming
3279 * SCHED_DEADLINE task.
3280 *
3281 * Only the static values are considered here, the actual runtime and the
3282 * absolute deadline will be properly calculated when the task is enqueued
3283 * for the first time with its new policy.
3284 */
3285static void
3286__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3287{
3288 struct sched_dl_entity *dl_se = &p->dl;
3289
3290 init_dl_task_timer(dl_se);
3291 dl_se->dl_runtime = attr->sched_runtime;
3292 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3293 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3294 dl_se->flags = attr->sched_flags;
332ac17e 3295 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3296 dl_se->dl_throttled = 0;
3297 dl_se->dl_new = 1;
5bfd126e 3298 dl_se->dl_yielded = 0;
aab03e05
DF
3299}
3300
c13db6b1
SR
3301/*
3302 * sched_setparam() passes in -1 for its policy, to let the functions
3303 * it calls know not to change it.
3304 */
3305#define SETPARAM_POLICY -1
3306
c365c292
TG
3307static void __setscheduler_params(struct task_struct *p,
3308 const struct sched_attr *attr)
1da177e4 3309{
d50dde5a
DF
3310 int policy = attr->sched_policy;
3311
c13db6b1 3312 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3313 policy = p->policy;
3314
1da177e4 3315 p->policy = policy;
d50dde5a 3316
aab03e05
DF
3317 if (dl_policy(policy))
3318 __setparam_dl(p, attr);
39fd8fd2 3319 else if (fair_policy(policy))
d50dde5a
DF
3320 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3321
39fd8fd2
PZ
3322 /*
3323 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3324 * !rt_policy. Always setting this ensures that things like
3325 * getparam()/getattr() don't report silly values for !rt tasks.
3326 */
3327 p->rt_priority = attr->sched_priority;
383afd09 3328 p->normal_prio = normal_prio(p);
c365c292
TG
3329 set_load_weight(p);
3330}
39fd8fd2 3331
c365c292
TG
3332/* Actually do priority change: must hold pi & rq lock. */
3333static void __setscheduler(struct rq *rq, struct task_struct *p,
3334 const struct sched_attr *attr)
3335{
3336 __setscheduler_params(p, attr);
d50dde5a 3337
383afd09
SR
3338 /*
3339 * If we get here, there was no pi waiters boosting the
3340 * task. It is safe to use the normal prio.
3341 */
3342 p->prio = normal_prio(p);
3343
aab03e05
DF
3344 if (dl_prio(p->prio))
3345 p->sched_class = &dl_sched_class;
3346 else if (rt_prio(p->prio))
ffd44db5
PZ
3347 p->sched_class = &rt_sched_class;
3348 else
3349 p->sched_class = &fair_sched_class;
1da177e4 3350}
aab03e05
DF
3351
3352static void
3353__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3354{
3355 struct sched_dl_entity *dl_se = &p->dl;
3356
3357 attr->sched_priority = p->rt_priority;
3358 attr->sched_runtime = dl_se->dl_runtime;
3359 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3360 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3361 attr->sched_flags = dl_se->flags;
3362}
3363
3364/*
3365 * This function validates the new parameters of a -deadline task.
3366 * We ask for the deadline not being zero, and greater or equal
755378a4 3367 * than the runtime, as well as the period of being zero or
332ac17e 3368 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3369 * user parameters are above the internal resolution of 1us (we
3370 * check sched_runtime only since it is always the smaller one) and
3371 * below 2^63 ns (we have to check both sched_deadline and
3372 * sched_period, as the latter can be zero).
aab03e05
DF
3373 */
3374static bool
3375__checkparam_dl(const struct sched_attr *attr)
3376{
b0827819
JL
3377 /* deadline != 0 */
3378 if (attr->sched_deadline == 0)
3379 return false;
3380
3381 /*
3382 * Since we truncate DL_SCALE bits, make sure we're at least
3383 * that big.
3384 */
3385 if (attr->sched_runtime < (1ULL << DL_SCALE))
3386 return false;
3387
3388 /*
3389 * Since we use the MSB for wrap-around and sign issues, make
3390 * sure it's not set (mind that period can be equal to zero).
3391 */
3392 if (attr->sched_deadline & (1ULL << 63) ||
3393 attr->sched_period & (1ULL << 63))
3394 return false;
3395
3396 /* runtime <= deadline <= period (if period != 0) */
3397 if ((attr->sched_period != 0 &&
3398 attr->sched_period < attr->sched_deadline) ||
3399 attr->sched_deadline < attr->sched_runtime)
3400 return false;
3401
3402 return true;
aab03e05
DF
3403}
3404
c69e8d9c
DH
3405/*
3406 * check the target process has a UID that matches the current process's
3407 */
3408static bool check_same_owner(struct task_struct *p)
3409{
3410 const struct cred *cred = current_cred(), *pcred;
3411 bool match;
3412
3413 rcu_read_lock();
3414 pcred = __task_cred(p);
9c806aa0
EB
3415 match = (uid_eq(cred->euid, pcred->euid) ||
3416 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3417 rcu_read_unlock();
3418 return match;
3419}
3420
d50dde5a
DF
3421static int __sched_setscheduler(struct task_struct *p,
3422 const struct sched_attr *attr,
3423 bool user)
1da177e4 3424{
383afd09
SR
3425 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3426 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3427 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3428 int policy = attr->sched_policy;
1da177e4 3429 unsigned long flags;
83ab0aa0 3430 const struct sched_class *prev_class;
70b97a7f 3431 struct rq *rq;
ca94c442 3432 int reset_on_fork;
1da177e4 3433
66e5393a
SR
3434 /* may grab non-irq protected spin_locks */
3435 BUG_ON(in_interrupt());
1da177e4
LT
3436recheck:
3437 /* double check policy once rq lock held */
ca94c442
LP
3438 if (policy < 0) {
3439 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3440 policy = oldpolicy = p->policy;
ca94c442 3441 } else {
7479f3c9 3442 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3443
aab03e05
DF
3444 if (policy != SCHED_DEADLINE &&
3445 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3446 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3447 policy != SCHED_IDLE)
3448 return -EINVAL;
3449 }
3450
7479f3c9
PZ
3451 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3452 return -EINVAL;
3453
1da177e4
LT
3454 /*
3455 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3456 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3457 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3458 */
0bb040a4 3459 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3460 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3461 return -EINVAL;
aab03e05
DF
3462 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3463 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3464 return -EINVAL;
3465
37e4ab3f
OC
3466 /*
3467 * Allow unprivileged RT tasks to decrease priority:
3468 */
961ccddd 3469 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3470 if (fair_policy(policy)) {
d0ea0268 3471 if (attr->sched_nice < task_nice(p) &&
eaad4513 3472 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3473 return -EPERM;
3474 }
3475
e05606d3 3476 if (rt_policy(policy)) {
a44702e8
ON
3477 unsigned long rlim_rtprio =
3478 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3479
3480 /* can't set/change the rt policy */
3481 if (policy != p->policy && !rlim_rtprio)
3482 return -EPERM;
3483
3484 /* can't increase priority */
d50dde5a
DF
3485 if (attr->sched_priority > p->rt_priority &&
3486 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3487 return -EPERM;
3488 }
c02aa73b 3489
d44753b8
JL
3490 /*
3491 * Can't set/change SCHED_DEADLINE policy at all for now
3492 * (safest behavior); in the future we would like to allow
3493 * unprivileged DL tasks to increase their relative deadline
3494 * or reduce their runtime (both ways reducing utilization)
3495 */
3496 if (dl_policy(policy))
3497 return -EPERM;
3498
dd41f596 3499 /*
c02aa73b
DH
3500 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3501 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3502 */
c02aa73b 3503 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3504 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3505 return -EPERM;
3506 }
5fe1d75f 3507
37e4ab3f 3508 /* can't change other user's priorities */
c69e8d9c 3509 if (!check_same_owner(p))
37e4ab3f 3510 return -EPERM;
ca94c442
LP
3511
3512 /* Normal users shall not reset the sched_reset_on_fork flag */
3513 if (p->sched_reset_on_fork && !reset_on_fork)
3514 return -EPERM;
37e4ab3f 3515 }
1da177e4 3516
725aad24 3517 if (user) {
b0ae1981 3518 retval = security_task_setscheduler(p);
725aad24
JF
3519 if (retval)
3520 return retval;
3521 }
3522
b29739f9
IM
3523 /*
3524 * make sure no PI-waiters arrive (or leave) while we are
3525 * changing the priority of the task:
0122ec5b 3526 *
25985edc 3527 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3528 * runqueue lock must be held.
3529 */
0122ec5b 3530 rq = task_rq_lock(p, &flags);
dc61b1d6 3531
34f971f6
PZ
3532 /*
3533 * Changing the policy of the stop threads its a very bad idea
3534 */
3535 if (p == rq->stop) {
0122ec5b 3536 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3537 return -EINVAL;
3538 }
3539
a51e9198 3540 /*
d6b1e911
TG
3541 * If not changing anything there's no need to proceed further,
3542 * but store a possible modification of reset_on_fork.
a51e9198 3543 */
d50dde5a 3544 if (unlikely(policy == p->policy)) {
d0ea0268 3545 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3546 goto change;
3547 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3548 goto change;
aab03e05
DF
3549 if (dl_policy(policy))
3550 goto change;
d50dde5a 3551
d6b1e911 3552 p->sched_reset_on_fork = reset_on_fork;
45afb173 3553 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3554 return 0;
3555 }
d50dde5a 3556change:
a51e9198 3557
dc61b1d6 3558 if (user) {
332ac17e 3559#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3560 /*
3561 * Do not allow realtime tasks into groups that have no runtime
3562 * assigned.
3563 */
3564 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3565 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3566 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3567 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3568 return -EPERM;
3569 }
dc61b1d6 3570#endif
332ac17e
DF
3571#ifdef CONFIG_SMP
3572 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3573 cpumask_t *span = rq->rd->span;
332ac17e
DF
3574
3575 /*
3576 * Don't allow tasks with an affinity mask smaller than
3577 * the entire root_domain to become SCHED_DEADLINE. We
3578 * will also fail if there's no bandwidth available.
3579 */
e4099a5e
PZ
3580 if (!cpumask_subset(span, &p->cpus_allowed) ||
3581 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3582 task_rq_unlock(rq, p, &flags);
3583 return -EPERM;
3584 }
3585 }
3586#endif
3587 }
dc61b1d6 3588
1da177e4
LT
3589 /* recheck policy now with rq lock held */
3590 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3591 policy = oldpolicy = -1;
0122ec5b 3592 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3593 goto recheck;
3594 }
332ac17e
DF
3595
3596 /*
3597 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3598 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3599 * is available.
3600 */
e4099a5e 3601 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3602 task_rq_unlock(rq, p, &flags);
3603 return -EBUSY;
3604 }
3605
c365c292
TG
3606 p->sched_reset_on_fork = reset_on_fork;
3607 oldprio = p->prio;
3608
3609 /*
3610 * Special case for priority boosted tasks.
3611 *
3612 * If the new priority is lower or equal (user space view)
3613 * than the current (boosted) priority, we just store the new
3614 * normal parameters and do not touch the scheduler class and
3615 * the runqueue. This will be done when the task deboost
3616 * itself.
3617 */
3618 if (rt_mutex_check_prio(p, newprio)) {
3619 __setscheduler_params(p, attr);
3620 task_rq_unlock(rq, p, &flags);
3621 return 0;
3622 }
3623
da0c1e65 3624 queued = task_on_rq_queued(p);
051a1d1a 3625 running = task_current(rq, p);
da0c1e65 3626 if (queued)
4ca9b72b 3627 dequeue_task(rq, p, 0);
0e1f3483 3628 if (running)
f3cd1c4e 3629 put_prev_task(rq, p);
f6b53205 3630
83ab0aa0 3631 prev_class = p->sched_class;
d50dde5a 3632 __setscheduler(rq, p, attr);
f6b53205 3633
0e1f3483
HS
3634 if (running)
3635 p->sched_class->set_curr_task(rq);
da0c1e65 3636 if (queued) {
81a44c54
TG
3637 /*
3638 * We enqueue to tail when the priority of a task is
3639 * increased (user space view).
3640 */
3641 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3642 }
cb469845 3643
da7a735e 3644 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3645 task_rq_unlock(rq, p, &flags);
b29739f9 3646
95e02ca9
TG
3647 rt_mutex_adjust_pi(p);
3648
1da177e4
LT
3649 return 0;
3650}
961ccddd 3651
7479f3c9
PZ
3652static int _sched_setscheduler(struct task_struct *p, int policy,
3653 const struct sched_param *param, bool check)
3654{
3655 struct sched_attr attr = {
3656 .sched_policy = policy,
3657 .sched_priority = param->sched_priority,
3658 .sched_nice = PRIO_TO_NICE(p->static_prio),
3659 };
3660
c13db6b1
SR
3661 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3662 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3663 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3664 policy &= ~SCHED_RESET_ON_FORK;
3665 attr.sched_policy = policy;
3666 }
3667
3668 return __sched_setscheduler(p, &attr, check);
3669}
961ccddd
RR
3670/**
3671 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3672 * @p: the task in question.
3673 * @policy: new policy.
3674 * @param: structure containing the new RT priority.
3675 *
e69f6186
YB
3676 * Return: 0 on success. An error code otherwise.
3677 *
961ccddd
RR
3678 * NOTE that the task may be already dead.
3679 */
3680int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3681 const struct sched_param *param)
961ccddd 3682{
7479f3c9 3683 return _sched_setscheduler(p, policy, param, true);
961ccddd 3684}
1da177e4
LT
3685EXPORT_SYMBOL_GPL(sched_setscheduler);
3686
d50dde5a
DF
3687int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3688{
3689 return __sched_setscheduler(p, attr, true);
3690}
3691EXPORT_SYMBOL_GPL(sched_setattr);
3692
961ccddd
RR
3693/**
3694 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3695 * @p: the task in question.
3696 * @policy: new policy.
3697 * @param: structure containing the new RT priority.
3698 *
3699 * Just like sched_setscheduler, only don't bother checking if the
3700 * current context has permission. For example, this is needed in
3701 * stop_machine(): we create temporary high priority worker threads,
3702 * but our caller might not have that capability.
e69f6186
YB
3703 *
3704 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3705 */
3706int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3707 const struct sched_param *param)
961ccddd 3708{
7479f3c9 3709 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3710}
3711
95cdf3b7
IM
3712static int
3713do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3714{
1da177e4
LT
3715 struct sched_param lparam;
3716 struct task_struct *p;
36c8b586 3717 int retval;
1da177e4
LT
3718
3719 if (!param || pid < 0)
3720 return -EINVAL;
3721 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3722 return -EFAULT;
5fe1d75f
ON
3723
3724 rcu_read_lock();
3725 retval = -ESRCH;
1da177e4 3726 p = find_process_by_pid(pid);
5fe1d75f
ON
3727 if (p != NULL)
3728 retval = sched_setscheduler(p, policy, &lparam);
3729 rcu_read_unlock();
36c8b586 3730
1da177e4
LT
3731 return retval;
3732}
3733
d50dde5a
DF
3734/*
3735 * Mimics kernel/events/core.c perf_copy_attr().
3736 */
3737static int sched_copy_attr(struct sched_attr __user *uattr,
3738 struct sched_attr *attr)
3739{
3740 u32 size;
3741 int ret;
3742
3743 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3744 return -EFAULT;
3745
3746 /*
3747 * zero the full structure, so that a short copy will be nice.
3748 */
3749 memset(attr, 0, sizeof(*attr));
3750
3751 ret = get_user(size, &uattr->size);
3752 if (ret)
3753 return ret;
3754
3755 if (size > PAGE_SIZE) /* silly large */
3756 goto err_size;
3757
3758 if (!size) /* abi compat */
3759 size = SCHED_ATTR_SIZE_VER0;
3760
3761 if (size < SCHED_ATTR_SIZE_VER0)
3762 goto err_size;
3763
3764 /*
3765 * If we're handed a bigger struct than we know of,
3766 * ensure all the unknown bits are 0 - i.e. new
3767 * user-space does not rely on any kernel feature
3768 * extensions we dont know about yet.
3769 */
3770 if (size > sizeof(*attr)) {
3771 unsigned char __user *addr;
3772 unsigned char __user *end;
3773 unsigned char val;
3774
3775 addr = (void __user *)uattr + sizeof(*attr);
3776 end = (void __user *)uattr + size;
3777
3778 for (; addr < end; addr++) {
3779 ret = get_user(val, addr);
3780 if (ret)
3781 return ret;
3782 if (val)
3783 goto err_size;
3784 }
3785 size = sizeof(*attr);
3786 }
3787
3788 ret = copy_from_user(attr, uattr, size);
3789 if (ret)
3790 return -EFAULT;
3791
3792 /*
3793 * XXX: do we want to be lenient like existing syscalls; or do we want
3794 * to be strict and return an error on out-of-bounds values?
3795 */
75e45d51 3796 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3797
e78c7bca 3798 return 0;
d50dde5a
DF
3799
3800err_size:
3801 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3802 return -E2BIG;
d50dde5a
DF
3803}
3804
1da177e4
LT
3805/**
3806 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3807 * @pid: the pid in question.
3808 * @policy: new policy.
3809 * @param: structure containing the new RT priority.
e69f6186
YB
3810 *
3811 * Return: 0 on success. An error code otherwise.
1da177e4 3812 */
5add95d4
HC
3813SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3814 struct sched_param __user *, param)
1da177e4 3815{
c21761f1
JB
3816 /* negative values for policy are not valid */
3817 if (policy < 0)
3818 return -EINVAL;
3819
1da177e4
LT
3820 return do_sched_setscheduler(pid, policy, param);
3821}
3822
3823/**
3824 * sys_sched_setparam - set/change the RT priority of a thread
3825 * @pid: the pid in question.
3826 * @param: structure containing the new RT priority.
e69f6186
YB
3827 *
3828 * Return: 0 on success. An error code otherwise.
1da177e4 3829 */
5add95d4 3830SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3831{
c13db6b1 3832 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3833}
3834
d50dde5a
DF
3835/**
3836 * sys_sched_setattr - same as above, but with extended sched_attr
3837 * @pid: the pid in question.
5778fccf 3838 * @uattr: structure containing the extended parameters.
db66d756 3839 * @flags: for future extension.
d50dde5a 3840 */
6d35ab48
PZ
3841SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3842 unsigned int, flags)
d50dde5a
DF
3843{
3844 struct sched_attr attr;
3845 struct task_struct *p;
3846 int retval;
3847
6d35ab48 3848 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3849 return -EINVAL;
3850
143cf23d
MK
3851 retval = sched_copy_attr(uattr, &attr);
3852 if (retval)
3853 return retval;
d50dde5a 3854
b14ed2c2 3855 if ((int)attr.sched_policy < 0)
dbdb2275 3856 return -EINVAL;
d50dde5a
DF
3857
3858 rcu_read_lock();
3859 retval = -ESRCH;
3860 p = find_process_by_pid(pid);
3861 if (p != NULL)
3862 retval = sched_setattr(p, &attr);
3863 rcu_read_unlock();
3864
3865 return retval;
3866}
3867
1da177e4
LT
3868/**
3869 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3870 * @pid: the pid in question.
e69f6186
YB
3871 *
3872 * Return: On success, the policy of the thread. Otherwise, a negative error
3873 * code.
1da177e4 3874 */
5add95d4 3875SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3876{
36c8b586 3877 struct task_struct *p;
3a5c359a 3878 int retval;
1da177e4
LT
3879
3880 if (pid < 0)
3a5c359a 3881 return -EINVAL;
1da177e4
LT
3882
3883 retval = -ESRCH;
5fe85be0 3884 rcu_read_lock();
1da177e4
LT
3885 p = find_process_by_pid(pid);
3886 if (p) {
3887 retval = security_task_getscheduler(p);
3888 if (!retval)
ca94c442
LP
3889 retval = p->policy
3890 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3891 }
5fe85be0 3892 rcu_read_unlock();
1da177e4
LT
3893 return retval;
3894}
3895
3896/**
ca94c442 3897 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3898 * @pid: the pid in question.
3899 * @param: structure containing the RT priority.
e69f6186
YB
3900 *
3901 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3902 * code.
1da177e4 3903 */
5add95d4 3904SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3905{
ce5f7f82 3906 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3907 struct task_struct *p;
3a5c359a 3908 int retval;
1da177e4
LT
3909
3910 if (!param || pid < 0)
3a5c359a 3911 return -EINVAL;
1da177e4 3912
5fe85be0 3913 rcu_read_lock();
1da177e4
LT
3914 p = find_process_by_pid(pid);
3915 retval = -ESRCH;
3916 if (!p)
3917 goto out_unlock;
3918
3919 retval = security_task_getscheduler(p);
3920 if (retval)
3921 goto out_unlock;
3922
ce5f7f82
PZ
3923 if (task_has_rt_policy(p))
3924 lp.sched_priority = p->rt_priority;
5fe85be0 3925 rcu_read_unlock();
1da177e4
LT
3926
3927 /*
3928 * This one might sleep, we cannot do it with a spinlock held ...
3929 */
3930 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3931
1da177e4
LT
3932 return retval;
3933
3934out_unlock:
5fe85be0 3935 rcu_read_unlock();
1da177e4
LT
3936 return retval;
3937}
3938
d50dde5a
DF
3939static int sched_read_attr(struct sched_attr __user *uattr,
3940 struct sched_attr *attr,
3941 unsigned int usize)
3942{
3943 int ret;
3944
3945 if (!access_ok(VERIFY_WRITE, uattr, usize))
3946 return -EFAULT;
3947
3948 /*
3949 * If we're handed a smaller struct than we know of,
3950 * ensure all the unknown bits are 0 - i.e. old
3951 * user-space does not get uncomplete information.
3952 */
3953 if (usize < sizeof(*attr)) {
3954 unsigned char *addr;
3955 unsigned char *end;
3956
3957 addr = (void *)attr + usize;
3958 end = (void *)attr + sizeof(*attr);
3959
3960 for (; addr < end; addr++) {
3961 if (*addr)
22400674 3962 return -EFBIG;
d50dde5a
DF
3963 }
3964
3965 attr->size = usize;
3966 }
3967
4efbc454 3968 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3969 if (ret)
3970 return -EFAULT;
3971
22400674 3972 return 0;
d50dde5a
DF
3973}
3974
3975/**
aab03e05 3976 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3977 * @pid: the pid in question.
5778fccf 3978 * @uattr: structure containing the extended parameters.
d50dde5a 3979 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3980 * @flags: for future extension.
d50dde5a 3981 */
6d35ab48
PZ
3982SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3983 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3984{
3985 struct sched_attr attr = {
3986 .size = sizeof(struct sched_attr),
3987 };
3988 struct task_struct *p;
3989 int retval;
3990
3991 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3992 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3993 return -EINVAL;
3994
3995 rcu_read_lock();
3996 p = find_process_by_pid(pid);
3997 retval = -ESRCH;
3998 if (!p)
3999 goto out_unlock;
4000
4001 retval = security_task_getscheduler(p);
4002 if (retval)
4003 goto out_unlock;
4004
4005 attr.sched_policy = p->policy;
7479f3c9
PZ
4006 if (p->sched_reset_on_fork)
4007 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4008 if (task_has_dl_policy(p))
4009 __getparam_dl(p, &attr);
4010 else if (task_has_rt_policy(p))
d50dde5a
DF
4011 attr.sched_priority = p->rt_priority;
4012 else
d0ea0268 4013 attr.sched_nice = task_nice(p);
d50dde5a
DF
4014
4015 rcu_read_unlock();
4016
4017 retval = sched_read_attr(uattr, &attr, size);
4018 return retval;
4019
4020out_unlock:
4021 rcu_read_unlock();
4022 return retval;
4023}
4024
96f874e2 4025long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4026{
5a16f3d3 4027 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4028 struct task_struct *p;
4029 int retval;
1da177e4 4030
23f5d142 4031 rcu_read_lock();
1da177e4
LT
4032
4033 p = find_process_by_pid(pid);
4034 if (!p) {
23f5d142 4035 rcu_read_unlock();
1da177e4
LT
4036 return -ESRCH;
4037 }
4038
23f5d142 4039 /* Prevent p going away */
1da177e4 4040 get_task_struct(p);
23f5d142 4041 rcu_read_unlock();
1da177e4 4042
14a40ffc
TH
4043 if (p->flags & PF_NO_SETAFFINITY) {
4044 retval = -EINVAL;
4045 goto out_put_task;
4046 }
5a16f3d3
RR
4047 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4048 retval = -ENOMEM;
4049 goto out_put_task;
4050 }
4051 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4052 retval = -ENOMEM;
4053 goto out_free_cpus_allowed;
4054 }
1da177e4 4055 retval = -EPERM;
4c44aaaf
EB
4056 if (!check_same_owner(p)) {
4057 rcu_read_lock();
4058 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4059 rcu_read_unlock();
16303ab2 4060 goto out_free_new_mask;
4c44aaaf
EB
4061 }
4062 rcu_read_unlock();
4063 }
1da177e4 4064
b0ae1981 4065 retval = security_task_setscheduler(p);
e7834f8f 4066 if (retval)
16303ab2 4067 goto out_free_new_mask;
e7834f8f 4068
e4099a5e
PZ
4069
4070 cpuset_cpus_allowed(p, cpus_allowed);
4071 cpumask_and(new_mask, in_mask, cpus_allowed);
4072
332ac17e
DF
4073 /*
4074 * Since bandwidth control happens on root_domain basis,
4075 * if admission test is enabled, we only admit -deadline
4076 * tasks allowed to run on all the CPUs in the task's
4077 * root_domain.
4078 */
4079#ifdef CONFIG_SMP
f1e3a093
KT
4080 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4081 rcu_read_lock();
4082 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4083 retval = -EBUSY;
f1e3a093 4084 rcu_read_unlock();
16303ab2 4085 goto out_free_new_mask;
332ac17e 4086 }
f1e3a093 4087 rcu_read_unlock();
332ac17e
DF
4088 }
4089#endif
49246274 4090again:
5a16f3d3 4091 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4092
8707d8b8 4093 if (!retval) {
5a16f3d3
RR
4094 cpuset_cpus_allowed(p, cpus_allowed);
4095 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4096 /*
4097 * We must have raced with a concurrent cpuset
4098 * update. Just reset the cpus_allowed to the
4099 * cpuset's cpus_allowed
4100 */
5a16f3d3 4101 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4102 goto again;
4103 }
4104 }
16303ab2 4105out_free_new_mask:
5a16f3d3
RR
4106 free_cpumask_var(new_mask);
4107out_free_cpus_allowed:
4108 free_cpumask_var(cpus_allowed);
4109out_put_task:
1da177e4 4110 put_task_struct(p);
1da177e4
LT
4111 return retval;
4112}
4113
4114static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4115 struct cpumask *new_mask)
1da177e4 4116{
96f874e2
RR
4117 if (len < cpumask_size())
4118 cpumask_clear(new_mask);
4119 else if (len > cpumask_size())
4120 len = cpumask_size();
4121
1da177e4
LT
4122 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4123}
4124
4125/**
4126 * sys_sched_setaffinity - set the cpu affinity of a process
4127 * @pid: pid of the process
4128 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4129 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4130 *
4131 * Return: 0 on success. An error code otherwise.
1da177e4 4132 */
5add95d4
HC
4133SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4134 unsigned long __user *, user_mask_ptr)
1da177e4 4135{
5a16f3d3 4136 cpumask_var_t new_mask;
1da177e4
LT
4137 int retval;
4138
5a16f3d3
RR
4139 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4140 return -ENOMEM;
1da177e4 4141
5a16f3d3
RR
4142 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4143 if (retval == 0)
4144 retval = sched_setaffinity(pid, new_mask);
4145 free_cpumask_var(new_mask);
4146 return retval;
1da177e4
LT
4147}
4148
96f874e2 4149long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4150{
36c8b586 4151 struct task_struct *p;
31605683 4152 unsigned long flags;
1da177e4 4153 int retval;
1da177e4 4154
23f5d142 4155 rcu_read_lock();
1da177e4
LT
4156
4157 retval = -ESRCH;
4158 p = find_process_by_pid(pid);
4159 if (!p)
4160 goto out_unlock;
4161
e7834f8f
DQ
4162 retval = security_task_getscheduler(p);
4163 if (retval)
4164 goto out_unlock;
4165
013fdb80 4166 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4167 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4168 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4169
4170out_unlock:
23f5d142 4171 rcu_read_unlock();
1da177e4 4172
9531b62f 4173 return retval;
1da177e4
LT
4174}
4175
4176/**
4177 * sys_sched_getaffinity - get the cpu affinity of a process
4178 * @pid: pid of the process
4179 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4180 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4181 *
4182 * Return: 0 on success. An error code otherwise.
1da177e4 4183 */
5add95d4
HC
4184SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4185 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4186{
4187 int ret;
f17c8607 4188 cpumask_var_t mask;
1da177e4 4189
84fba5ec 4190 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4191 return -EINVAL;
4192 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4193 return -EINVAL;
4194
f17c8607
RR
4195 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4196 return -ENOMEM;
1da177e4 4197
f17c8607
RR
4198 ret = sched_getaffinity(pid, mask);
4199 if (ret == 0) {
8bc037fb 4200 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4201
4202 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4203 ret = -EFAULT;
4204 else
cd3d8031 4205 ret = retlen;
f17c8607
RR
4206 }
4207 free_cpumask_var(mask);
1da177e4 4208
f17c8607 4209 return ret;
1da177e4
LT
4210}
4211
4212/**
4213 * sys_sched_yield - yield the current processor to other threads.
4214 *
dd41f596
IM
4215 * This function yields the current CPU to other tasks. If there are no
4216 * other threads running on this CPU then this function will return.
e69f6186
YB
4217 *
4218 * Return: 0.
1da177e4 4219 */
5add95d4 4220SYSCALL_DEFINE0(sched_yield)
1da177e4 4221{
70b97a7f 4222 struct rq *rq = this_rq_lock();
1da177e4 4223
2d72376b 4224 schedstat_inc(rq, yld_count);
4530d7ab 4225 current->sched_class->yield_task(rq);
1da177e4
LT
4226
4227 /*
4228 * Since we are going to call schedule() anyway, there's
4229 * no need to preempt or enable interrupts:
4230 */
4231 __release(rq->lock);
8a25d5de 4232 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4233 do_raw_spin_unlock(&rq->lock);
ba74c144 4234 sched_preempt_enable_no_resched();
1da177e4
LT
4235
4236 schedule();
4237
4238 return 0;
4239}
4240
e7b38404 4241static void __cond_resched(void)
1da177e4 4242{
bdb43806 4243 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4244 __schedule();
bdb43806 4245 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4246}
4247
02b67cc3 4248int __sched _cond_resched(void)
1da177e4 4249{
d86ee480 4250 if (should_resched()) {
1da177e4
LT
4251 __cond_resched();
4252 return 1;
4253 }
4254 return 0;
4255}
02b67cc3 4256EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4257
4258/*
613afbf8 4259 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4260 * call schedule, and on return reacquire the lock.
4261 *
41a2d6cf 4262 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4263 * operations here to prevent schedule() from being called twice (once via
4264 * spin_unlock(), once by hand).
4265 */
613afbf8 4266int __cond_resched_lock(spinlock_t *lock)
1da177e4 4267{
d86ee480 4268 int resched = should_resched();
6df3cecb
JK
4269 int ret = 0;
4270
f607c668
PZ
4271 lockdep_assert_held(lock);
4272
4a81e832 4273 if (spin_needbreak(lock) || resched) {
1da177e4 4274 spin_unlock(lock);
d86ee480 4275 if (resched)
95c354fe
NP
4276 __cond_resched();
4277 else
4278 cpu_relax();
6df3cecb 4279 ret = 1;
1da177e4 4280 spin_lock(lock);
1da177e4 4281 }
6df3cecb 4282 return ret;
1da177e4 4283}
613afbf8 4284EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4285
613afbf8 4286int __sched __cond_resched_softirq(void)
1da177e4
LT
4287{
4288 BUG_ON(!in_softirq());
4289
d86ee480 4290 if (should_resched()) {
98d82567 4291 local_bh_enable();
1da177e4
LT
4292 __cond_resched();
4293 local_bh_disable();
4294 return 1;
4295 }
4296 return 0;
4297}
613afbf8 4298EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4299
1da177e4
LT
4300/**
4301 * yield - yield the current processor to other threads.
4302 *
8e3fabfd
PZ
4303 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4304 *
4305 * The scheduler is at all times free to pick the calling task as the most
4306 * eligible task to run, if removing the yield() call from your code breaks
4307 * it, its already broken.
4308 *
4309 * Typical broken usage is:
4310 *
4311 * while (!event)
4312 * yield();
4313 *
4314 * where one assumes that yield() will let 'the other' process run that will
4315 * make event true. If the current task is a SCHED_FIFO task that will never
4316 * happen. Never use yield() as a progress guarantee!!
4317 *
4318 * If you want to use yield() to wait for something, use wait_event().
4319 * If you want to use yield() to be 'nice' for others, use cond_resched().
4320 * If you still want to use yield(), do not!
1da177e4
LT
4321 */
4322void __sched yield(void)
4323{
4324 set_current_state(TASK_RUNNING);
4325 sys_sched_yield();
4326}
1da177e4
LT
4327EXPORT_SYMBOL(yield);
4328
d95f4122
MG
4329/**
4330 * yield_to - yield the current processor to another thread in
4331 * your thread group, or accelerate that thread toward the
4332 * processor it's on.
16addf95
RD
4333 * @p: target task
4334 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4335 *
4336 * It's the caller's job to ensure that the target task struct
4337 * can't go away on us before we can do any checks.
4338 *
e69f6186 4339 * Return:
7b270f60
PZ
4340 * true (>0) if we indeed boosted the target task.
4341 * false (0) if we failed to boost the target.
4342 * -ESRCH if there's no task to yield to.
d95f4122 4343 */
fa93384f 4344int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4345{
4346 struct task_struct *curr = current;
4347 struct rq *rq, *p_rq;
4348 unsigned long flags;
c3c18640 4349 int yielded = 0;
d95f4122
MG
4350
4351 local_irq_save(flags);
4352 rq = this_rq();
4353
4354again:
4355 p_rq = task_rq(p);
7b270f60
PZ
4356 /*
4357 * If we're the only runnable task on the rq and target rq also
4358 * has only one task, there's absolutely no point in yielding.
4359 */
4360 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4361 yielded = -ESRCH;
4362 goto out_irq;
4363 }
4364
d95f4122 4365 double_rq_lock(rq, p_rq);
39e24d8f 4366 if (task_rq(p) != p_rq) {
d95f4122
MG
4367 double_rq_unlock(rq, p_rq);
4368 goto again;
4369 }
4370
4371 if (!curr->sched_class->yield_to_task)
7b270f60 4372 goto out_unlock;
d95f4122
MG
4373
4374 if (curr->sched_class != p->sched_class)
7b270f60 4375 goto out_unlock;
d95f4122
MG
4376
4377 if (task_running(p_rq, p) || p->state)
7b270f60 4378 goto out_unlock;
d95f4122
MG
4379
4380 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4381 if (yielded) {
d95f4122 4382 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4383 /*
4384 * Make p's CPU reschedule; pick_next_entity takes care of
4385 * fairness.
4386 */
4387 if (preempt && rq != p_rq)
8875125e 4388 resched_curr(p_rq);
6d1cafd8 4389 }
d95f4122 4390
7b270f60 4391out_unlock:
d95f4122 4392 double_rq_unlock(rq, p_rq);
7b270f60 4393out_irq:
d95f4122
MG
4394 local_irq_restore(flags);
4395
7b270f60 4396 if (yielded > 0)
d95f4122
MG
4397 schedule();
4398
4399 return yielded;
4400}
4401EXPORT_SYMBOL_GPL(yield_to);
4402
1da177e4 4403/*
41a2d6cf 4404 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4405 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4406 */
4407void __sched io_schedule(void)
4408{
54d35f29 4409 struct rq *rq = raw_rq();
1da177e4 4410
0ff92245 4411 delayacct_blkio_start();
1da177e4 4412 atomic_inc(&rq->nr_iowait);
73c10101 4413 blk_flush_plug(current);
8f0dfc34 4414 current->in_iowait = 1;
1da177e4 4415 schedule();
8f0dfc34 4416 current->in_iowait = 0;
1da177e4 4417 atomic_dec(&rq->nr_iowait);
0ff92245 4418 delayacct_blkio_end();
1da177e4 4419}
1da177e4
LT
4420EXPORT_SYMBOL(io_schedule);
4421
4422long __sched io_schedule_timeout(long timeout)
4423{
54d35f29 4424 struct rq *rq = raw_rq();
1da177e4
LT
4425 long ret;
4426
0ff92245 4427 delayacct_blkio_start();
1da177e4 4428 atomic_inc(&rq->nr_iowait);
73c10101 4429 blk_flush_plug(current);
8f0dfc34 4430 current->in_iowait = 1;
1da177e4 4431 ret = schedule_timeout(timeout);
8f0dfc34 4432 current->in_iowait = 0;
1da177e4 4433 atomic_dec(&rq->nr_iowait);
0ff92245 4434 delayacct_blkio_end();
1da177e4
LT
4435 return ret;
4436}
4437
4438/**
4439 * sys_sched_get_priority_max - return maximum RT priority.
4440 * @policy: scheduling class.
4441 *
e69f6186
YB
4442 * Return: On success, this syscall returns the maximum
4443 * rt_priority that can be used by a given scheduling class.
4444 * On failure, a negative error code is returned.
1da177e4 4445 */
5add95d4 4446SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4447{
4448 int ret = -EINVAL;
4449
4450 switch (policy) {
4451 case SCHED_FIFO:
4452 case SCHED_RR:
4453 ret = MAX_USER_RT_PRIO-1;
4454 break;
aab03e05 4455 case SCHED_DEADLINE:
1da177e4 4456 case SCHED_NORMAL:
b0a9499c 4457 case SCHED_BATCH:
dd41f596 4458 case SCHED_IDLE:
1da177e4
LT
4459 ret = 0;
4460 break;
4461 }
4462 return ret;
4463}
4464
4465/**
4466 * sys_sched_get_priority_min - return minimum RT priority.
4467 * @policy: scheduling class.
4468 *
e69f6186
YB
4469 * Return: On success, this syscall returns the minimum
4470 * rt_priority that can be used by a given scheduling class.
4471 * On failure, a negative error code is returned.
1da177e4 4472 */
5add95d4 4473SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4474{
4475 int ret = -EINVAL;
4476
4477 switch (policy) {
4478 case SCHED_FIFO:
4479 case SCHED_RR:
4480 ret = 1;
4481 break;
aab03e05 4482 case SCHED_DEADLINE:
1da177e4 4483 case SCHED_NORMAL:
b0a9499c 4484 case SCHED_BATCH:
dd41f596 4485 case SCHED_IDLE:
1da177e4
LT
4486 ret = 0;
4487 }
4488 return ret;
4489}
4490
4491/**
4492 * sys_sched_rr_get_interval - return the default timeslice of a process.
4493 * @pid: pid of the process.
4494 * @interval: userspace pointer to the timeslice value.
4495 *
4496 * this syscall writes the default timeslice value of a given process
4497 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4498 *
4499 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4500 * an error code.
1da177e4 4501 */
17da2bd9 4502SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4503 struct timespec __user *, interval)
1da177e4 4504{
36c8b586 4505 struct task_struct *p;
a4ec24b4 4506 unsigned int time_slice;
dba091b9
TG
4507 unsigned long flags;
4508 struct rq *rq;
3a5c359a 4509 int retval;
1da177e4 4510 struct timespec t;
1da177e4
LT
4511
4512 if (pid < 0)
3a5c359a 4513 return -EINVAL;
1da177e4
LT
4514
4515 retval = -ESRCH;
1a551ae7 4516 rcu_read_lock();
1da177e4
LT
4517 p = find_process_by_pid(pid);
4518 if (!p)
4519 goto out_unlock;
4520
4521 retval = security_task_getscheduler(p);
4522 if (retval)
4523 goto out_unlock;
4524
dba091b9 4525 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4526 time_slice = 0;
4527 if (p->sched_class->get_rr_interval)
4528 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4529 task_rq_unlock(rq, p, &flags);
a4ec24b4 4530
1a551ae7 4531 rcu_read_unlock();
a4ec24b4 4532 jiffies_to_timespec(time_slice, &t);
1da177e4 4533 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4534 return retval;
3a5c359a 4535
1da177e4 4536out_unlock:
1a551ae7 4537 rcu_read_unlock();
1da177e4
LT
4538 return retval;
4539}
4540
7c731e0a 4541static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4542
82a1fcb9 4543void sched_show_task(struct task_struct *p)
1da177e4 4544{
1da177e4 4545 unsigned long free = 0;
4e79752c 4546 int ppid;
36c8b586 4547 unsigned state;
1da177e4 4548
1da177e4 4549 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4550 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4551 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4552#if BITS_PER_LONG == 32
1da177e4 4553 if (state == TASK_RUNNING)
3df0fc5b 4554 printk(KERN_CONT " running ");
1da177e4 4555 else
3df0fc5b 4556 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4557#else
4558 if (state == TASK_RUNNING)
3df0fc5b 4559 printk(KERN_CONT " running task ");
1da177e4 4560 else
3df0fc5b 4561 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4562#endif
4563#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4564 free = stack_not_used(p);
1da177e4 4565#endif
4e79752c
PM
4566 rcu_read_lock();
4567 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4568 rcu_read_unlock();
3df0fc5b 4569 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4570 task_pid_nr(p), ppid,
aa47b7e0 4571 (unsigned long)task_thread_info(p)->flags);
1da177e4 4572
3d1cb205 4573 print_worker_info(KERN_INFO, p);
5fb5e6de 4574 show_stack(p, NULL);
1da177e4
LT
4575}
4576
e59e2ae2 4577void show_state_filter(unsigned long state_filter)
1da177e4 4578{
36c8b586 4579 struct task_struct *g, *p;
1da177e4 4580
4bd77321 4581#if BITS_PER_LONG == 32
3df0fc5b
PZ
4582 printk(KERN_INFO
4583 " task PC stack pid father\n");
1da177e4 4584#else
3df0fc5b
PZ
4585 printk(KERN_INFO
4586 " task PC stack pid father\n");
1da177e4 4587#endif
510f5acc 4588 rcu_read_lock();
5d07f420 4589 for_each_process_thread(g, p) {
1da177e4
LT
4590 /*
4591 * reset the NMI-timeout, listing all files on a slow
25985edc 4592 * console might take a lot of time:
1da177e4
LT
4593 */
4594 touch_nmi_watchdog();
39bc89fd 4595 if (!state_filter || (p->state & state_filter))
82a1fcb9 4596 sched_show_task(p);
5d07f420 4597 }
1da177e4 4598
04c9167f
JF
4599 touch_all_softlockup_watchdogs();
4600
dd41f596
IM
4601#ifdef CONFIG_SCHED_DEBUG
4602 sysrq_sched_debug_show();
4603#endif
510f5acc 4604 rcu_read_unlock();
e59e2ae2
IM
4605 /*
4606 * Only show locks if all tasks are dumped:
4607 */
93335a21 4608 if (!state_filter)
e59e2ae2 4609 debug_show_all_locks();
1da177e4
LT
4610}
4611
0db0628d 4612void init_idle_bootup_task(struct task_struct *idle)
1df21055 4613{
dd41f596 4614 idle->sched_class = &idle_sched_class;
1df21055
IM
4615}
4616
f340c0d1
IM
4617/**
4618 * init_idle - set up an idle thread for a given CPU
4619 * @idle: task in question
4620 * @cpu: cpu the idle task belongs to
4621 *
4622 * NOTE: this function does not set the idle thread's NEED_RESCHED
4623 * flag, to make booting more robust.
4624 */
0db0628d 4625void init_idle(struct task_struct *idle, int cpu)
1da177e4 4626{
70b97a7f 4627 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4628 unsigned long flags;
4629
05fa785c 4630 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4631
5e1576ed 4632 __sched_fork(0, idle);
06b83b5f 4633 idle->state = TASK_RUNNING;
dd41f596
IM
4634 idle->se.exec_start = sched_clock();
4635
1e1b6c51 4636 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4637 /*
4638 * We're having a chicken and egg problem, even though we are
4639 * holding rq->lock, the cpu isn't yet set to this cpu so the
4640 * lockdep check in task_group() will fail.
4641 *
4642 * Similar case to sched_fork(). / Alternatively we could
4643 * use task_rq_lock() here and obtain the other rq->lock.
4644 *
4645 * Silence PROVE_RCU
4646 */
4647 rcu_read_lock();
dd41f596 4648 __set_task_cpu(idle, cpu);
6506cf6c 4649 rcu_read_unlock();
1da177e4 4650
1da177e4 4651 rq->curr = rq->idle = idle;
da0c1e65 4652 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4653#if defined(CONFIG_SMP)
4654 idle->on_cpu = 1;
4866cde0 4655#endif
05fa785c 4656 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4657
4658 /* Set the preempt count _outside_ the spinlocks! */
01028747 4659 init_idle_preempt_count(idle, cpu);
55cd5340 4660
dd41f596
IM
4661 /*
4662 * The idle tasks have their own, simple scheduling class:
4663 */
4664 idle->sched_class = &idle_sched_class;
868baf07 4665 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4666 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4667#if defined(CONFIG_SMP)
4668 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4669#endif
19978ca6
IM
4670}
4671
1da177e4 4672#ifdef CONFIG_SMP
a15b12ac
KT
4673/*
4674 * move_queued_task - move a queued task to new rq.
4675 *
4676 * Returns (locked) new rq. Old rq's lock is released.
4677 */
4678static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4679{
4680 struct rq *rq = task_rq(p);
4681
4682 lockdep_assert_held(&rq->lock);
4683
4684 dequeue_task(rq, p, 0);
4685 p->on_rq = TASK_ON_RQ_MIGRATING;
4686 set_task_cpu(p, new_cpu);
4687 raw_spin_unlock(&rq->lock);
4688
4689 rq = cpu_rq(new_cpu);
4690
4691 raw_spin_lock(&rq->lock);
4692 BUG_ON(task_cpu(p) != new_cpu);
4693 p->on_rq = TASK_ON_RQ_QUEUED;
4694 enqueue_task(rq, p, 0);
4695 check_preempt_curr(rq, p, 0);
4696
4697 return rq;
4698}
4699
1e1b6c51
KM
4700void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4701{
4702 if (p->sched_class && p->sched_class->set_cpus_allowed)
4703 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4704
4705 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4706 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4707}
4708
1da177e4
LT
4709/*
4710 * This is how migration works:
4711 *
969c7921
TH
4712 * 1) we invoke migration_cpu_stop() on the target CPU using
4713 * stop_one_cpu().
4714 * 2) stopper starts to run (implicitly forcing the migrated thread
4715 * off the CPU)
4716 * 3) it checks whether the migrated task is still in the wrong runqueue.
4717 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4718 * it and puts it into the right queue.
969c7921
TH
4719 * 5) stopper completes and stop_one_cpu() returns and the migration
4720 * is done.
1da177e4
LT
4721 */
4722
4723/*
4724 * Change a given task's CPU affinity. Migrate the thread to a
4725 * proper CPU and schedule it away if the CPU it's executing on
4726 * is removed from the allowed bitmask.
4727 *
4728 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4729 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4730 * call is not atomic; no spinlocks may be held.
4731 */
96f874e2 4732int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4733{
4734 unsigned long flags;
70b97a7f 4735 struct rq *rq;
969c7921 4736 unsigned int dest_cpu;
48f24c4d 4737 int ret = 0;
1da177e4
LT
4738
4739 rq = task_rq_lock(p, &flags);
e2912009 4740
db44fc01
YZ
4741 if (cpumask_equal(&p->cpus_allowed, new_mask))
4742 goto out;
4743
6ad4c188 4744 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4745 ret = -EINVAL;
4746 goto out;
4747 }
4748
1e1b6c51 4749 do_set_cpus_allowed(p, new_mask);
73fe6aae 4750
1da177e4 4751 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4752 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4753 goto out;
4754
969c7921 4755 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4756 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4757 struct migration_arg arg = { p, dest_cpu };
1da177e4 4758 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4759 task_rq_unlock(rq, p, &flags);
969c7921 4760 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4761 tlb_migrate_finish(p->mm);
4762 return 0;
a15b12ac
KT
4763 } else if (task_on_rq_queued(p))
4764 rq = move_queued_task(p, dest_cpu);
1da177e4 4765out:
0122ec5b 4766 task_rq_unlock(rq, p, &flags);
48f24c4d 4767
1da177e4
LT
4768 return ret;
4769}
cd8ba7cd 4770EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4771
4772/*
41a2d6cf 4773 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4774 * this because either it can't run here any more (set_cpus_allowed()
4775 * away from this CPU, or CPU going down), or because we're
4776 * attempting to rebalance this task on exec (sched_exec).
4777 *
4778 * So we race with normal scheduler movements, but that's OK, as long
4779 * as the task is no longer on this CPU.
efc30814
KK
4780 *
4781 * Returns non-zero if task was successfully migrated.
1da177e4 4782 */
efc30814 4783static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4784{
a1e01829 4785 struct rq *rq;
e2912009 4786 int ret = 0;
1da177e4 4787
e761b772 4788 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4789 return ret;
1da177e4 4790
a1e01829 4791 rq = cpu_rq(src_cpu);
1da177e4 4792
0122ec5b 4793 raw_spin_lock(&p->pi_lock);
a1e01829 4794 raw_spin_lock(&rq->lock);
1da177e4
LT
4795 /* Already moved. */
4796 if (task_cpu(p) != src_cpu)
b1e38734 4797 goto done;
a1e01829 4798
1da177e4 4799 /* Affinity changed (again). */
fa17b507 4800 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4801 goto fail;
1da177e4 4802
e2912009
PZ
4803 /*
4804 * If we're not on a rq, the next wake-up will ensure we're
4805 * placed properly.
4806 */
a15b12ac
KT
4807 if (task_on_rq_queued(p))
4808 rq = move_queued_task(p, dest_cpu);
b1e38734 4809done:
efc30814 4810 ret = 1;
b1e38734 4811fail:
a1e01829 4812 raw_spin_unlock(&rq->lock);
0122ec5b 4813 raw_spin_unlock(&p->pi_lock);
efc30814 4814 return ret;
1da177e4
LT
4815}
4816
e6628d5b
MG
4817#ifdef CONFIG_NUMA_BALANCING
4818/* Migrate current task p to target_cpu */
4819int migrate_task_to(struct task_struct *p, int target_cpu)
4820{
4821 struct migration_arg arg = { p, target_cpu };
4822 int curr_cpu = task_cpu(p);
4823
4824 if (curr_cpu == target_cpu)
4825 return 0;
4826
4827 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4828 return -EINVAL;
4829
4830 /* TODO: This is not properly updating schedstats */
4831
286549dc 4832 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4833 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4834}
0ec8aa00
PZ
4835
4836/*
4837 * Requeue a task on a given node and accurately track the number of NUMA
4838 * tasks on the runqueues
4839 */
4840void sched_setnuma(struct task_struct *p, int nid)
4841{
4842 struct rq *rq;
4843 unsigned long flags;
da0c1e65 4844 bool queued, running;
0ec8aa00
PZ
4845
4846 rq = task_rq_lock(p, &flags);
da0c1e65 4847 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4848 running = task_current(rq, p);
4849
da0c1e65 4850 if (queued)
0ec8aa00
PZ
4851 dequeue_task(rq, p, 0);
4852 if (running)
f3cd1c4e 4853 put_prev_task(rq, p);
0ec8aa00
PZ
4854
4855 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4856
4857 if (running)
4858 p->sched_class->set_curr_task(rq);
da0c1e65 4859 if (queued)
0ec8aa00
PZ
4860 enqueue_task(rq, p, 0);
4861 task_rq_unlock(rq, p, &flags);
4862}
e6628d5b
MG
4863#endif
4864
1da177e4 4865/*
969c7921
TH
4866 * migration_cpu_stop - this will be executed by a highprio stopper thread
4867 * and performs thread migration by bumping thread off CPU then
4868 * 'pushing' onto another runqueue.
1da177e4 4869 */
969c7921 4870static int migration_cpu_stop(void *data)
1da177e4 4871{
969c7921 4872 struct migration_arg *arg = data;
f7b4cddc 4873
969c7921
TH
4874 /*
4875 * The original target cpu might have gone down and we might
4876 * be on another cpu but it doesn't matter.
4877 */
f7b4cddc 4878 local_irq_disable();
5cd038f5
LJ
4879 /*
4880 * We need to explicitly wake pending tasks before running
4881 * __migrate_task() such that we will not miss enforcing cpus_allowed
4882 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4883 */
4884 sched_ttwu_pending();
969c7921 4885 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4886 local_irq_enable();
1da177e4 4887 return 0;
f7b4cddc
ON
4888}
4889
1da177e4 4890#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4891
054b9108 4892/*
48c5ccae
PZ
4893 * Ensures that the idle task is using init_mm right before its cpu goes
4894 * offline.
054b9108 4895 */
48c5ccae 4896void idle_task_exit(void)
1da177e4 4897{
48c5ccae 4898 struct mm_struct *mm = current->active_mm;
e76bd8d9 4899
48c5ccae 4900 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4901
a53efe5f 4902 if (mm != &init_mm) {
48c5ccae 4903 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4904 finish_arch_post_lock_switch();
4905 }
48c5ccae 4906 mmdrop(mm);
1da177e4
LT
4907}
4908
4909/*
5d180232
PZ
4910 * Since this CPU is going 'away' for a while, fold any nr_active delta
4911 * we might have. Assumes we're called after migrate_tasks() so that the
4912 * nr_active count is stable.
4913 *
4914 * Also see the comment "Global load-average calculations".
1da177e4 4915 */
5d180232 4916static void calc_load_migrate(struct rq *rq)
1da177e4 4917{
5d180232
PZ
4918 long delta = calc_load_fold_active(rq);
4919 if (delta)
4920 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4921}
4922
3f1d2a31
PZ
4923static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4924{
4925}
4926
4927static const struct sched_class fake_sched_class = {
4928 .put_prev_task = put_prev_task_fake,
4929};
4930
4931static struct task_struct fake_task = {
4932 /*
4933 * Avoid pull_{rt,dl}_task()
4934 */
4935 .prio = MAX_PRIO + 1,
4936 .sched_class = &fake_sched_class,
4937};
4938
48f24c4d 4939/*
48c5ccae
PZ
4940 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4941 * try_to_wake_up()->select_task_rq().
4942 *
4943 * Called with rq->lock held even though we'er in stop_machine() and
4944 * there's no concurrency possible, we hold the required locks anyway
4945 * because of lock validation efforts.
1da177e4 4946 */
48c5ccae 4947static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4948{
70b97a7f 4949 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4950 struct task_struct *next, *stop = rq->stop;
4951 int dest_cpu;
1da177e4
LT
4952
4953 /*
48c5ccae
PZ
4954 * Fudge the rq selection such that the below task selection loop
4955 * doesn't get stuck on the currently eligible stop task.
4956 *
4957 * We're currently inside stop_machine() and the rq is either stuck
4958 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4959 * either way we should never end up calling schedule() until we're
4960 * done here.
1da177e4 4961 */
48c5ccae 4962 rq->stop = NULL;
48f24c4d 4963
77bd3970
FW
4964 /*
4965 * put_prev_task() and pick_next_task() sched
4966 * class method both need to have an up-to-date
4967 * value of rq->clock[_task]
4968 */
4969 update_rq_clock(rq);
4970
dd41f596 4971 for ( ; ; ) {
48c5ccae
PZ
4972 /*
4973 * There's this thread running, bail when that's the only
4974 * remaining thread.
4975 */
4976 if (rq->nr_running == 1)
dd41f596 4977 break;
48c5ccae 4978
3f1d2a31 4979 next = pick_next_task(rq, &fake_task);
48c5ccae 4980 BUG_ON(!next);
79c53799 4981 next->sched_class->put_prev_task(rq, next);
e692ab53 4982
48c5ccae
PZ
4983 /* Find suitable destination for @next, with force if needed. */
4984 dest_cpu = select_fallback_rq(dead_cpu, next);
4985 raw_spin_unlock(&rq->lock);
4986
4987 __migrate_task(next, dead_cpu, dest_cpu);
4988
4989 raw_spin_lock(&rq->lock);
1da177e4 4990 }
dce48a84 4991
48c5ccae 4992 rq->stop = stop;
dce48a84 4993}
48c5ccae 4994
1da177e4
LT
4995#endif /* CONFIG_HOTPLUG_CPU */
4996
e692ab53
NP
4997#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4998
4999static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5000 {
5001 .procname = "sched_domain",
c57baf1e 5002 .mode = 0555,
e0361851 5003 },
56992309 5004 {}
e692ab53
NP
5005};
5006
5007static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5008 {
5009 .procname = "kernel",
c57baf1e 5010 .mode = 0555,
e0361851
AD
5011 .child = sd_ctl_dir,
5012 },
56992309 5013 {}
e692ab53
NP
5014};
5015
5016static struct ctl_table *sd_alloc_ctl_entry(int n)
5017{
5018 struct ctl_table *entry =
5cf9f062 5019 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5020
e692ab53
NP
5021 return entry;
5022}
5023
6382bc90
MM
5024static void sd_free_ctl_entry(struct ctl_table **tablep)
5025{
cd790076 5026 struct ctl_table *entry;
6382bc90 5027
cd790076
MM
5028 /*
5029 * In the intermediate directories, both the child directory and
5030 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5031 * will always be set. In the lowest directory the names are
cd790076
MM
5032 * static strings and all have proc handlers.
5033 */
5034 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5035 if (entry->child)
5036 sd_free_ctl_entry(&entry->child);
cd790076
MM
5037 if (entry->proc_handler == NULL)
5038 kfree(entry->procname);
5039 }
6382bc90
MM
5040
5041 kfree(*tablep);
5042 *tablep = NULL;
5043}
5044
201c373e 5045static int min_load_idx = 0;
fd9b86d3 5046static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5047
e692ab53 5048static void
e0361851 5049set_table_entry(struct ctl_table *entry,
e692ab53 5050 const char *procname, void *data, int maxlen,
201c373e
NK
5051 umode_t mode, proc_handler *proc_handler,
5052 bool load_idx)
e692ab53 5053{
e692ab53
NP
5054 entry->procname = procname;
5055 entry->data = data;
5056 entry->maxlen = maxlen;
5057 entry->mode = mode;
5058 entry->proc_handler = proc_handler;
201c373e
NK
5059
5060 if (load_idx) {
5061 entry->extra1 = &min_load_idx;
5062 entry->extra2 = &max_load_idx;
5063 }
e692ab53
NP
5064}
5065
5066static struct ctl_table *
5067sd_alloc_ctl_domain_table(struct sched_domain *sd)
5068{
37e6bae8 5069 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5070
ad1cdc1d
MM
5071 if (table == NULL)
5072 return NULL;
5073
e0361851 5074 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5075 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5076 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5077 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5078 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5079 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5080 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5081 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5082 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5083 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5084 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5085 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5086 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5087 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5088 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5089 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5090 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5091 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5092 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5093 &sd->cache_nice_tries,
201c373e 5094 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5095 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5096 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5097 set_table_entry(&table[11], "max_newidle_lb_cost",
5098 &sd->max_newidle_lb_cost,
5099 sizeof(long), 0644, proc_doulongvec_minmax, false);
5100 set_table_entry(&table[12], "name", sd->name,
201c373e 5101 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5102 /* &table[13] is terminator */
e692ab53
NP
5103
5104 return table;
5105}
5106
be7002e6 5107static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5108{
5109 struct ctl_table *entry, *table;
5110 struct sched_domain *sd;
5111 int domain_num = 0, i;
5112 char buf[32];
5113
5114 for_each_domain(cpu, sd)
5115 domain_num++;
5116 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5117 if (table == NULL)
5118 return NULL;
e692ab53
NP
5119
5120 i = 0;
5121 for_each_domain(cpu, sd) {
5122 snprintf(buf, 32, "domain%d", i);
e692ab53 5123 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5124 entry->mode = 0555;
e692ab53
NP
5125 entry->child = sd_alloc_ctl_domain_table(sd);
5126 entry++;
5127 i++;
5128 }
5129 return table;
5130}
5131
5132static struct ctl_table_header *sd_sysctl_header;
6382bc90 5133static void register_sched_domain_sysctl(void)
e692ab53 5134{
6ad4c188 5135 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5136 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5137 char buf[32];
5138
7378547f
MM
5139 WARN_ON(sd_ctl_dir[0].child);
5140 sd_ctl_dir[0].child = entry;
5141
ad1cdc1d
MM
5142 if (entry == NULL)
5143 return;
5144
6ad4c188 5145 for_each_possible_cpu(i) {
e692ab53 5146 snprintf(buf, 32, "cpu%d", i);
e692ab53 5147 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5148 entry->mode = 0555;
e692ab53 5149 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5150 entry++;
e692ab53 5151 }
7378547f
MM
5152
5153 WARN_ON(sd_sysctl_header);
e692ab53
NP
5154 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5155}
6382bc90 5156
7378547f 5157/* may be called multiple times per register */
6382bc90
MM
5158static void unregister_sched_domain_sysctl(void)
5159{
7378547f
MM
5160 if (sd_sysctl_header)
5161 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5162 sd_sysctl_header = NULL;
7378547f
MM
5163 if (sd_ctl_dir[0].child)
5164 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5165}
e692ab53 5166#else
6382bc90
MM
5167static void register_sched_domain_sysctl(void)
5168{
5169}
5170static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5171{
5172}
5173#endif
5174
1f11eb6a
GH
5175static void set_rq_online(struct rq *rq)
5176{
5177 if (!rq->online) {
5178 const struct sched_class *class;
5179
c6c4927b 5180 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5181 rq->online = 1;
5182
5183 for_each_class(class) {
5184 if (class->rq_online)
5185 class->rq_online(rq);
5186 }
5187 }
5188}
5189
5190static void set_rq_offline(struct rq *rq)
5191{
5192 if (rq->online) {
5193 const struct sched_class *class;
5194
5195 for_each_class(class) {
5196 if (class->rq_offline)
5197 class->rq_offline(rq);
5198 }
5199
c6c4927b 5200 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5201 rq->online = 0;
5202 }
5203}
5204
1da177e4
LT
5205/*
5206 * migration_call - callback that gets triggered when a CPU is added.
5207 * Here we can start up the necessary migration thread for the new CPU.
5208 */
0db0628d 5209static int
48f24c4d 5210migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5211{
48f24c4d 5212 int cpu = (long)hcpu;
1da177e4 5213 unsigned long flags;
969c7921 5214 struct rq *rq = cpu_rq(cpu);
1da177e4 5215
48c5ccae 5216 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5217
1da177e4 5218 case CPU_UP_PREPARE:
a468d389 5219 rq->calc_load_update = calc_load_update;
1da177e4 5220 break;
48f24c4d 5221
1da177e4 5222 case CPU_ONLINE:
1f94ef59 5223 /* Update our root-domain */
05fa785c 5224 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5225 if (rq->rd) {
c6c4927b 5226 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5227
5228 set_rq_online(rq);
1f94ef59 5229 }
05fa785c 5230 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5231 break;
48f24c4d 5232
1da177e4 5233#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5234 case CPU_DYING:
317f3941 5235 sched_ttwu_pending();
57d885fe 5236 /* Update our root-domain */
05fa785c 5237 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5238 if (rq->rd) {
c6c4927b 5239 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5240 set_rq_offline(rq);
57d885fe 5241 }
48c5ccae
PZ
5242 migrate_tasks(cpu);
5243 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5244 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5245 break;
48c5ccae 5246
5d180232 5247 case CPU_DEAD:
f319da0c 5248 calc_load_migrate(rq);
57d885fe 5249 break;
1da177e4
LT
5250#endif
5251 }
49c022e6
PZ
5252
5253 update_max_interval();
5254
1da177e4
LT
5255 return NOTIFY_OK;
5256}
5257
f38b0820
PM
5258/*
5259 * Register at high priority so that task migration (migrate_all_tasks)
5260 * happens before everything else. This has to be lower priority than
cdd6c482 5261 * the notifier in the perf_event subsystem, though.
1da177e4 5262 */
0db0628d 5263static struct notifier_block migration_notifier = {
1da177e4 5264 .notifier_call = migration_call,
50a323b7 5265 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5266};
5267
a803f026
CM
5268static void __cpuinit set_cpu_rq_start_time(void)
5269{
5270 int cpu = smp_processor_id();
5271 struct rq *rq = cpu_rq(cpu);
5272 rq->age_stamp = sched_clock_cpu(cpu);
5273}
5274
0db0628d 5275static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5276 unsigned long action, void *hcpu)
5277{
5278 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5279 case CPU_STARTING:
5280 set_cpu_rq_start_time();
5281 return NOTIFY_OK;
3a101d05
TH
5282 case CPU_DOWN_FAILED:
5283 set_cpu_active((long)hcpu, true);
5284 return NOTIFY_OK;
5285 default:
5286 return NOTIFY_DONE;
5287 }
5288}
5289
0db0628d 5290static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5291 unsigned long action, void *hcpu)
5292{
de212f18
PZ
5293 unsigned long flags;
5294 long cpu = (long)hcpu;
f10e00f4 5295 struct dl_bw *dl_b;
de212f18 5296
3a101d05
TH
5297 switch (action & ~CPU_TASKS_FROZEN) {
5298 case CPU_DOWN_PREPARE:
de212f18
PZ
5299 set_cpu_active(cpu, false);
5300
5301 /* explicitly allow suspend */
5302 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5303 bool overflow;
5304 int cpus;
5305
f10e00f4
KT
5306 rcu_read_lock_sched();
5307 dl_b = dl_bw_of(cpu);
5308
de212f18
PZ
5309 raw_spin_lock_irqsave(&dl_b->lock, flags);
5310 cpus = dl_bw_cpus(cpu);
5311 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5312 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5313
f10e00f4
KT
5314 rcu_read_unlock_sched();
5315
de212f18
PZ
5316 if (overflow)
5317 return notifier_from_errno(-EBUSY);
5318 }
3a101d05 5319 return NOTIFY_OK;
3a101d05 5320 }
de212f18
PZ
5321
5322 return NOTIFY_DONE;
3a101d05
TH
5323}
5324
7babe8db 5325static int __init migration_init(void)
1da177e4
LT
5326{
5327 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5328 int err;
48f24c4d 5329
3a101d05 5330 /* Initialize migration for the boot CPU */
07dccf33
AM
5331 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5332 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5333 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5334 register_cpu_notifier(&migration_notifier);
7babe8db 5335
3a101d05
TH
5336 /* Register cpu active notifiers */
5337 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5338 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5339
a004cd42 5340 return 0;
1da177e4 5341}
7babe8db 5342early_initcall(migration_init);
1da177e4
LT
5343#endif
5344
5345#ifdef CONFIG_SMP
476f3534 5346
4cb98839
PZ
5347static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5348
3e9830dc 5349#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5350
d039ac60 5351static __read_mostly int sched_debug_enabled;
f6630114 5352
d039ac60 5353static int __init sched_debug_setup(char *str)
f6630114 5354{
d039ac60 5355 sched_debug_enabled = 1;
f6630114
MT
5356
5357 return 0;
5358}
d039ac60
PZ
5359early_param("sched_debug", sched_debug_setup);
5360
5361static inline bool sched_debug(void)
5362{
5363 return sched_debug_enabled;
5364}
f6630114 5365
7c16ec58 5366static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5367 struct cpumask *groupmask)
1da177e4 5368{
4dcf6aff 5369 struct sched_group *group = sd->groups;
434d53b0 5370 char str[256];
1da177e4 5371
968ea6d8 5372 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5373 cpumask_clear(groupmask);
4dcf6aff
IM
5374
5375 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5376
5377 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5378 printk("does not load-balance\n");
4dcf6aff 5379 if (sd->parent)
3df0fc5b
PZ
5380 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5381 " has parent");
4dcf6aff 5382 return -1;
41c7ce9a
NP
5383 }
5384
3df0fc5b 5385 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5386
758b2cdc 5387 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5388 printk(KERN_ERR "ERROR: domain->span does not contain "
5389 "CPU%d\n", cpu);
4dcf6aff 5390 }
758b2cdc 5391 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5392 printk(KERN_ERR "ERROR: domain->groups does not contain"
5393 " CPU%d\n", cpu);
4dcf6aff 5394 }
1da177e4 5395
4dcf6aff 5396 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5397 do {
4dcf6aff 5398 if (!group) {
3df0fc5b
PZ
5399 printk("\n");
5400 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5401 break;
5402 }
5403
c3decf0d 5404 /*
63b2ca30
NP
5405 * Even though we initialize ->capacity to something semi-sane,
5406 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5407 * domain iteration is still funny without causing /0 traps.
5408 */
63b2ca30 5409 if (!group->sgc->capacity_orig) {
3df0fc5b 5410 printk(KERN_CONT "\n");
63b2ca30 5411 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5412 break;
5413 }
1da177e4 5414
758b2cdc 5415 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5416 printk(KERN_CONT "\n");
5417 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5418 break;
5419 }
1da177e4 5420
cb83b629
PZ
5421 if (!(sd->flags & SD_OVERLAP) &&
5422 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5423 printk(KERN_CONT "\n");
5424 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5425 break;
5426 }
1da177e4 5427
758b2cdc 5428 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5429
968ea6d8 5430 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5431
3df0fc5b 5432 printk(KERN_CONT " %s", str);
ca8ce3d0 5433 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5434 printk(KERN_CONT " (cpu_capacity = %d)",
5435 group->sgc->capacity);
381512cf 5436 }
1da177e4 5437
4dcf6aff
IM
5438 group = group->next;
5439 } while (group != sd->groups);
3df0fc5b 5440 printk(KERN_CONT "\n");
1da177e4 5441
758b2cdc 5442 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5443 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5444
758b2cdc
RR
5445 if (sd->parent &&
5446 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5447 printk(KERN_ERR "ERROR: parent span is not a superset "
5448 "of domain->span\n");
4dcf6aff
IM
5449 return 0;
5450}
1da177e4 5451
4dcf6aff
IM
5452static void sched_domain_debug(struct sched_domain *sd, int cpu)
5453{
5454 int level = 0;
1da177e4 5455
d039ac60 5456 if (!sched_debug_enabled)
f6630114
MT
5457 return;
5458
4dcf6aff
IM
5459 if (!sd) {
5460 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5461 return;
5462 }
1da177e4 5463
4dcf6aff
IM
5464 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5465
5466 for (;;) {
4cb98839 5467 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5468 break;
1da177e4
LT
5469 level++;
5470 sd = sd->parent;
33859f7f 5471 if (!sd)
4dcf6aff
IM
5472 break;
5473 }
1da177e4 5474}
6d6bc0ad 5475#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5476# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5477static inline bool sched_debug(void)
5478{
5479 return false;
5480}
6d6bc0ad 5481#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5482
1a20ff27 5483static int sd_degenerate(struct sched_domain *sd)
245af2c7 5484{
758b2cdc 5485 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5486 return 1;
5487
5488 /* Following flags need at least 2 groups */
5489 if (sd->flags & (SD_LOAD_BALANCE |
5490 SD_BALANCE_NEWIDLE |
5491 SD_BALANCE_FORK |
89c4710e 5492 SD_BALANCE_EXEC |
5d4dfddd 5493 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5494 SD_SHARE_PKG_RESOURCES |
5495 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5496 if (sd->groups != sd->groups->next)
5497 return 0;
5498 }
5499
5500 /* Following flags don't use groups */
c88d5910 5501 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5502 return 0;
5503
5504 return 1;
5505}
5506
48f24c4d
IM
5507static int
5508sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5509{
5510 unsigned long cflags = sd->flags, pflags = parent->flags;
5511
5512 if (sd_degenerate(parent))
5513 return 1;
5514
758b2cdc 5515 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5516 return 0;
5517
245af2c7
SS
5518 /* Flags needing groups don't count if only 1 group in parent */
5519 if (parent->groups == parent->groups->next) {
5520 pflags &= ~(SD_LOAD_BALANCE |
5521 SD_BALANCE_NEWIDLE |
5522 SD_BALANCE_FORK |
89c4710e 5523 SD_BALANCE_EXEC |
5d4dfddd 5524 SD_SHARE_CPUCAPACITY |
10866e62 5525 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5526 SD_PREFER_SIBLING |
5527 SD_SHARE_POWERDOMAIN);
5436499e
KC
5528 if (nr_node_ids == 1)
5529 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5530 }
5531 if (~cflags & pflags)
5532 return 0;
5533
5534 return 1;
5535}
5536
dce840a0 5537static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5538{
dce840a0 5539 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5540
68e74568 5541 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5542 cpudl_cleanup(&rd->cpudl);
1baca4ce 5543 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5544 free_cpumask_var(rd->rto_mask);
5545 free_cpumask_var(rd->online);
5546 free_cpumask_var(rd->span);
5547 kfree(rd);
5548}
5549
57d885fe
GH
5550static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5551{
a0490fa3 5552 struct root_domain *old_rd = NULL;
57d885fe 5553 unsigned long flags;
57d885fe 5554
05fa785c 5555 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5556
5557 if (rq->rd) {
a0490fa3 5558 old_rd = rq->rd;
57d885fe 5559
c6c4927b 5560 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5561 set_rq_offline(rq);
57d885fe 5562
c6c4927b 5563 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5564
a0490fa3 5565 /*
0515973f 5566 * If we dont want to free the old_rd yet then
a0490fa3
IM
5567 * set old_rd to NULL to skip the freeing later
5568 * in this function:
5569 */
5570 if (!atomic_dec_and_test(&old_rd->refcount))
5571 old_rd = NULL;
57d885fe
GH
5572 }
5573
5574 atomic_inc(&rd->refcount);
5575 rq->rd = rd;
5576
c6c4927b 5577 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5578 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5579 set_rq_online(rq);
57d885fe 5580
05fa785c 5581 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5582
5583 if (old_rd)
dce840a0 5584 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5585}
5586
68c38fc3 5587static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5588{
5589 memset(rd, 0, sizeof(*rd));
5590
68c38fc3 5591 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5592 goto out;
68c38fc3 5593 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5594 goto free_span;
1baca4ce 5595 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5596 goto free_online;
1baca4ce
JL
5597 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5598 goto free_dlo_mask;
6e0534f2 5599
332ac17e 5600 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5601 if (cpudl_init(&rd->cpudl) != 0)
5602 goto free_dlo_mask;
332ac17e 5603
68c38fc3 5604 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5605 goto free_rto_mask;
c6c4927b 5606 return 0;
6e0534f2 5607
68e74568
RR
5608free_rto_mask:
5609 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5610free_dlo_mask:
5611 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5612free_online:
5613 free_cpumask_var(rd->online);
5614free_span:
5615 free_cpumask_var(rd->span);
0c910d28 5616out:
c6c4927b 5617 return -ENOMEM;
57d885fe
GH
5618}
5619
029632fb
PZ
5620/*
5621 * By default the system creates a single root-domain with all cpus as
5622 * members (mimicking the global state we have today).
5623 */
5624struct root_domain def_root_domain;
5625
57d885fe
GH
5626static void init_defrootdomain(void)
5627{
68c38fc3 5628 init_rootdomain(&def_root_domain);
c6c4927b 5629
57d885fe
GH
5630 atomic_set(&def_root_domain.refcount, 1);
5631}
5632
dc938520 5633static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5634{
5635 struct root_domain *rd;
5636
5637 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5638 if (!rd)
5639 return NULL;
5640
68c38fc3 5641 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5642 kfree(rd);
5643 return NULL;
5644 }
57d885fe
GH
5645
5646 return rd;
5647}
5648
63b2ca30 5649static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5650{
5651 struct sched_group *tmp, *first;
5652
5653 if (!sg)
5654 return;
5655
5656 first = sg;
5657 do {
5658 tmp = sg->next;
5659
63b2ca30
NP
5660 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5661 kfree(sg->sgc);
e3589f6c
PZ
5662
5663 kfree(sg);
5664 sg = tmp;
5665 } while (sg != first);
5666}
5667
dce840a0
PZ
5668static void free_sched_domain(struct rcu_head *rcu)
5669{
5670 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5671
5672 /*
5673 * If its an overlapping domain it has private groups, iterate and
5674 * nuke them all.
5675 */
5676 if (sd->flags & SD_OVERLAP) {
5677 free_sched_groups(sd->groups, 1);
5678 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5679 kfree(sd->groups->sgc);
dce840a0 5680 kfree(sd->groups);
9c3f75cb 5681 }
dce840a0
PZ
5682 kfree(sd);
5683}
5684
5685static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5686{
5687 call_rcu(&sd->rcu, free_sched_domain);
5688}
5689
5690static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5691{
5692 for (; sd; sd = sd->parent)
5693 destroy_sched_domain(sd, cpu);
5694}
5695
518cd623
PZ
5696/*
5697 * Keep a special pointer to the highest sched_domain that has
5698 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5699 * allows us to avoid some pointer chasing select_idle_sibling().
5700 *
5701 * Also keep a unique ID per domain (we use the first cpu number in
5702 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5703 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5704 */
5705DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5706DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5707DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5708DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5709DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5710DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5711
5712static void update_top_cache_domain(int cpu)
5713{
5714 struct sched_domain *sd;
5d4cf996 5715 struct sched_domain *busy_sd = NULL;
518cd623 5716 int id = cpu;
7d9ffa89 5717 int size = 1;
518cd623
PZ
5718
5719 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5720 if (sd) {
518cd623 5721 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5722 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5723 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5724 }
5d4cf996 5725 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5726
5727 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5728 per_cpu(sd_llc_size, cpu) = size;
518cd623 5729 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5730
5731 sd = lowest_flag_domain(cpu, SD_NUMA);
5732 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5733
5734 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5735 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5736}
5737
1da177e4 5738/*
0eab9146 5739 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5740 * hold the hotplug lock.
5741 */
0eab9146
IM
5742static void
5743cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5744{
70b97a7f 5745 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5746 struct sched_domain *tmp;
5747
5748 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5749 for (tmp = sd; tmp; ) {
245af2c7
SS
5750 struct sched_domain *parent = tmp->parent;
5751 if (!parent)
5752 break;
f29c9b1c 5753
1a848870 5754 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5755 tmp->parent = parent->parent;
1a848870
SS
5756 if (parent->parent)
5757 parent->parent->child = tmp;
10866e62
PZ
5758 /*
5759 * Transfer SD_PREFER_SIBLING down in case of a
5760 * degenerate parent; the spans match for this
5761 * so the property transfers.
5762 */
5763 if (parent->flags & SD_PREFER_SIBLING)
5764 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5765 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5766 } else
5767 tmp = tmp->parent;
245af2c7
SS
5768 }
5769
1a848870 5770 if (sd && sd_degenerate(sd)) {
dce840a0 5771 tmp = sd;
245af2c7 5772 sd = sd->parent;
dce840a0 5773 destroy_sched_domain(tmp, cpu);
1a848870
SS
5774 if (sd)
5775 sd->child = NULL;
5776 }
1da177e4 5777
4cb98839 5778 sched_domain_debug(sd, cpu);
1da177e4 5779
57d885fe 5780 rq_attach_root(rq, rd);
dce840a0 5781 tmp = rq->sd;
674311d5 5782 rcu_assign_pointer(rq->sd, sd);
dce840a0 5783 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5784
5785 update_top_cache_domain(cpu);
1da177e4
LT
5786}
5787
5788/* cpus with isolated domains */
dcc30a35 5789static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5790
5791/* Setup the mask of cpus configured for isolated domains */
5792static int __init isolated_cpu_setup(char *str)
5793{
bdddd296 5794 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5795 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5796 return 1;
5797}
5798
8927f494 5799__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5800
49a02c51 5801struct s_data {
21d42ccf 5802 struct sched_domain ** __percpu sd;
49a02c51
AH
5803 struct root_domain *rd;
5804};
5805
2109b99e 5806enum s_alloc {
2109b99e 5807 sa_rootdomain,
21d42ccf 5808 sa_sd,
dce840a0 5809 sa_sd_storage,
2109b99e
AH
5810 sa_none,
5811};
5812
c1174876
PZ
5813/*
5814 * Build an iteration mask that can exclude certain CPUs from the upwards
5815 * domain traversal.
5816 *
5817 * Asymmetric node setups can result in situations where the domain tree is of
5818 * unequal depth, make sure to skip domains that already cover the entire
5819 * range.
5820 *
5821 * In that case build_sched_domains() will have terminated the iteration early
5822 * and our sibling sd spans will be empty. Domains should always include the
5823 * cpu they're built on, so check that.
5824 *
5825 */
5826static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5827{
5828 const struct cpumask *span = sched_domain_span(sd);
5829 struct sd_data *sdd = sd->private;
5830 struct sched_domain *sibling;
5831 int i;
5832
5833 for_each_cpu(i, span) {
5834 sibling = *per_cpu_ptr(sdd->sd, i);
5835 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5836 continue;
5837
5838 cpumask_set_cpu(i, sched_group_mask(sg));
5839 }
5840}
5841
5842/*
5843 * Return the canonical balance cpu for this group, this is the first cpu
5844 * of this group that's also in the iteration mask.
5845 */
5846int group_balance_cpu(struct sched_group *sg)
5847{
5848 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5849}
5850
e3589f6c
PZ
5851static int
5852build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5853{
5854 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5855 const struct cpumask *span = sched_domain_span(sd);
5856 struct cpumask *covered = sched_domains_tmpmask;
5857 struct sd_data *sdd = sd->private;
aaecac4a 5858 struct sched_domain *sibling;
e3589f6c
PZ
5859 int i;
5860
5861 cpumask_clear(covered);
5862
5863 for_each_cpu(i, span) {
5864 struct cpumask *sg_span;
5865
5866 if (cpumask_test_cpu(i, covered))
5867 continue;
5868
aaecac4a 5869 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5870
5871 /* See the comment near build_group_mask(). */
aaecac4a 5872 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5873 continue;
5874
e3589f6c 5875 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5876 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5877
5878 if (!sg)
5879 goto fail;
5880
5881 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5882 if (sibling->child)
5883 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5884 else
e3589f6c
PZ
5885 cpumask_set_cpu(i, sg_span);
5886
5887 cpumask_or(covered, covered, sg_span);
5888
63b2ca30
NP
5889 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5890 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5891 build_group_mask(sd, sg);
5892
c3decf0d 5893 /*
63b2ca30 5894 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5895 * domains and no possible iteration will get us here, we won't
5896 * die on a /0 trap.
5897 */
ca8ce3d0 5898 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5899 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5900
c1174876
PZ
5901 /*
5902 * Make sure the first group of this domain contains the
5903 * canonical balance cpu. Otherwise the sched_domain iteration
5904 * breaks. See update_sg_lb_stats().
5905 */
74a5ce20 5906 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5907 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5908 groups = sg;
5909
5910 if (!first)
5911 first = sg;
5912 if (last)
5913 last->next = sg;
5914 last = sg;
5915 last->next = first;
5916 }
5917 sd->groups = groups;
5918
5919 return 0;
5920
5921fail:
5922 free_sched_groups(first, 0);
5923
5924 return -ENOMEM;
5925}
5926
dce840a0 5927static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5928{
dce840a0
PZ
5929 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5930 struct sched_domain *child = sd->child;
1da177e4 5931
dce840a0
PZ
5932 if (child)
5933 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5934
9c3f75cb 5935 if (sg) {
dce840a0 5936 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5937 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5938 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5939 }
dce840a0
PZ
5940
5941 return cpu;
1e9f28fa 5942}
1e9f28fa 5943
01a08546 5944/*
dce840a0
PZ
5945 * build_sched_groups will build a circular linked list of the groups
5946 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5947 * and ->cpu_capacity to 0.
e3589f6c
PZ
5948 *
5949 * Assumes the sched_domain tree is fully constructed
01a08546 5950 */
e3589f6c
PZ
5951static int
5952build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5953{
dce840a0
PZ
5954 struct sched_group *first = NULL, *last = NULL;
5955 struct sd_data *sdd = sd->private;
5956 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5957 struct cpumask *covered;
dce840a0 5958 int i;
9c1cfda2 5959
e3589f6c
PZ
5960 get_group(cpu, sdd, &sd->groups);
5961 atomic_inc(&sd->groups->ref);
5962
0936629f 5963 if (cpu != cpumask_first(span))
e3589f6c
PZ
5964 return 0;
5965
f96225fd
PZ
5966 lockdep_assert_held(&sched_domains_mutex);
5967 covered = sched_domains_tmpmask;
5968
dce840a0 5969 cpumask_clear(covered);
6711cab4 5970
dce840a0
PZ
5971 for_each_cpu(i, span) {
5972 struct sched_group *sg;
cd08e923 5973 int group, j;
6711cab4 5974
dce840a0
PZ
5975 if (cpumask_test_cpu(i, covered))
5976 continue;
6711cab4 5977
cd08e923 5978 group = get_group(i, sdd, &sg);
c1174876 5979 cpumask_setall(sched_group_mask(sg));
0601a88d 5980
dce840a0
PZ
5981 for_each_cpu(j, span) {
5982 if (get_group(j, sdd, NULL) != group)
5983 continue;
0601a88d 5984
dce840a0
PZ
5985 cpumask_set_cpu(j, covered);
5986 cpumask_set_cpu(j, sched_group_cpus(sg));
5987 }
0601a88d 5988
dce840a0
PZ
5989 if (!first)
5990 first = sg;
5991 if (last)
5992 last->next = sg;
5993 last = sg;
5994 }
5995 last->next = first;
e3589f6c
PZ
5996
5997 return 0;
0601a88d 5998}
51888ca2 5999
89c4710e 6000/*
63b2ca30 6001 * Initialize sched groups cpu_capacity.
89c4710e 6002 *
63b2ca30 6003 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6004 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6005 * Typically cpu_capacity for all the groups in a sched domain will be same
6006 * unless there are asymmetries in the topology. If there are asymmetries,
6007 * group having more cpu_capacity will pickup more load compared to the
6008 * group having less cpu_capacity.
89c4710e 6009 */
63b2ca30 6010static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6011{
e3589f6c 6012 struct sched_group *sg = sd->groups;
89c4710e 6013
94c95ba6 6014 WARN_ON(!sg);
e3589f6c
PZ
6015
6016 do {
6017 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6018 sg = sg->next;
6019 } while (sg != sd->groups);
89c4710e 6020
c1174876 6021 if (cpu != group_balance_cpu(sg))
e3589f6c 6022 return;
aae6d3dd 6023
63b2ca30
NP
6024 update_group_capacity(sd, cpu);
6025 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6026}
6027
7c16ec58
MT
6028/*
6029 * Initializers for schedule domains
6030 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6031 */
6032
1d3504fc 6033static int default_relax_domain_level = -1;
60495e77 6034int sched_domain_level_max;
1d3504fc
HS
6035
6036static int __init setup_relax_domain_level(char *str)
6037{
a841f8ce
DS
6038 if (kstrtoint(str, 0, &default_relax_domain_level))
6039 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6040
1d3504fc
HS
6041 return 1;
6042}
6043__setup("relax_domain_level=", setup_relax_domain_level);
6044
6045static void set_domain_attribute(struct sched_domain *sd,
6046 struct sched_domain_attr *attr)
6047{
6048 int request;
6049
6050 if (!attr || attr->relax_domain_level < 0) {
6051 if (default_relax_domain_level < 0)
6052 return;
6053 else
6054 request = default_relax_domain_level;
6055 } else
6056 request = attr->relax_domain_level;
6057 if (request < sd->level) {
6058 /* turn off idle balance on this domain */
c88d5910 6059 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6060 } else {
6061 /* turn on idle balance on this domain */
c88d5910 6062 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6063 }
6064}
6065
54ab4ff4
PZ
6066static void __sdt_free(const struct cpumask *cpu_map);
6067static int __sdt_alloc(const struct cpumask *cpu_map);
6068
2109b99e
AH
6069static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6070 const struct cpumask *cpu_map)
6071{
6072 switch (what) {
2109b99e 6073 case sa_rootdomain:
822ff793
PZ
6074 if (!atomic_read(&d->rd->refcount))
6075 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6076 case sa_sd:
6077 free_percpu(d->sd); /* fall through */
dce840a0 6078 case sa_sd_storage:
54ab4ff4 6079 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6080 case sa_none:
6081 break;
6082 }
6083}
3404c8d9 6084
2109b99e
AH
6085static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6086 const struct cpumask *cpu_map)
6087{
dce840a0
PZ
6088 memset(d, 0, sizeof(*d));
6089
54ab4ff4
PZ
6090 if (__sdt_alloc(cpu_map))
6091 return sa_sd_storage;
dce840a0
PZ
6092 d->sd = alloc_percpu(struct sched_domain *);
6093 if (!d->sd)
6094 return sa_sd_storage;
2109b99e 6095 d->rd = alloc_rootdomain();
dce840a0 6096 if (!d->rd)
21d42ccf 6097 return sa_sd;
2109b99e
AH
6098 return sa_rootdomain;
6099}
57d885fe 6100
dce840a0
PZ
6101/*
6102 * NULL the sd_data elements we've used to build the sched_domain and
6103 * sched_group structure so that the subsequent __free_domain_allocs()
6104 * will not free the data we're using.
6105 */
6106static void claim_allocations(int cpu, struct sched_domain *sd)
6107{
6108 struct sd_data *sdd = sd->private;
dce840a0
PZ
6109
6110 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6111 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6112
e3589f6c 6113 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6114 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6115
63b2ca30
NP
6116 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6117 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6118}
6119
cb83b629 6120#ifdef CONFIG_NUMA
cb83b629 6121static int sched_domains_numa_levels;
e3fe70b1 6122enum numa_topology_type sched_numa_topology_type;
cb83b629 6123static int *sched_domains_numa_distance;
9942f79b 6124int sched_max_numa_distance;
cb83b629
PZ
6125static struct cpumask ***sched_domains_numa_masks;
6126static int sched_domains_curr_level;
143e1e28 6127#endif
cb83b629 6128
143e1e28
VG
6129/*
6130 * SD_flags allowed in topology descriptions.
6131 *
5d4dfddd 6132 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6133 * SD_SHARE_PKG_RESOURCES - describes shared caches
6134 * SD_NUMA - describes NUMA topologies
d77b3ed5 6135 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6136 *
6137 * Odd one out:
6138 * SD_ASYM_PACKING - describes SMT quirks
6139 */
6140#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6141 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6142 SD_SHARE_PKG_RESOURCES | \
6143 SD_NUMA | \
d77b3ed5
VG
6144 SD_ASYM_PACKING | \
6145 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6146
6147static struct sched_domain *
143e1e28 6148sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6149{
6150 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6151 int sd_weight, sd_flags = 0;
6152
6153#ifdef CONFIG_NUMA
6154 /*
6155 * Ugly hack to pass state to sd_numa_mask()...
6156 */
6157 sched_domains_curr_level = tl->numa_level;
6158#endif
6159
6160 sd_weight = cpumask_weight(tl->mask(cpu));
6161
6162 if (tl->sd_flags)
6163 sd_flags = (*tl->sd_flags)();
6164 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6165 "wrong sd_flags in topology description\n"))
6166 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6167
6168 *sd = (struct sched_domain){
6169 .min_interval = sd_weight,
6170 .max_interval = 2*sd_weight,
6171 .busy_factor = 32,
870a0bb5 6172 .imbalance_pct = 125,
143e1e28
VG
6173
6174 .cache_nice_tries = 0,
6175 .busy_idx = 0,
6176 .idle_idx = 0,
cb83b629
PZ
6177 .newidle_idx = 0,
6178 .wake_idx = 0,
6179 .forkexec_idx = 0,
6180
6181 .flags = 1*SD_LOAD_BALANCE
6182 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6183 | 1*SD_BALANCE_EXEC
6184 | 1*SD_BALANCE_FORK
cb83b629 6185 | 0*SD_BALANCE_WAKE
143e1e28 6186 | 1*SD_WAKE_AFFINE
5d4dfddd 6187 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6188 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6189 | 0*SD_SERIALIZE
cb83b629 6190 | 0*SD_PREFER_SIBLING
143e1e28
VG
6191 | 0*SD_NUMA
6192 | sd_flags
cb83b629 6193 ,
143e1e28 6194
cb83b629
PZ
6195 .last_balance = jiffies,
6196 .balance_interval = sd_weight,
143e1e28 6197 .smt_gain = 0,
2b4cfe64
JL
6198 .max_newidle_lb_cost = 0,
6199 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6200#ifdef CONFIG_SCHED_DEBUG
6201 .name = tl->name,
6202#endif
cb83b629 6203 };
cb83b629
PZ
6204
6205 /*
143e1e28 6206 * Convert topological properties into behaviour.
cb83b629 6207 */
143e1e28 6208
5d4dfddd 6209 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6210 sd->imbalance_pct = 110;
6211 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6212
6213 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6214 sd->imbalance_pct = 117;
6215 sd->cache_nice_tries = 1;
6216 sd->busy_idx = 2;
6217
6218#ifdef CONFIG_NUMA
6219 } else if (sd->flags & SD_NUMA) {
6220 sd->cache_nice_tries = 2;
6221 sd->busy_idx = 3;
6222 sd->idle_idx = 2;
6223
6224 sd->flags |= SD_SERIALIZE;
6225 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6226 sd->flags &= ~(SD_BALANCE_EXEC |
6227 SD_BALANCE_FORK |
6228 SD_WAKE_AFFINE);
6229 }
6230
6231#endif
6232 } else {
6233 sd->flags |= SD_PREFER_SIBLING;
6234 sd->cache_nice_tries = 1;
6235 sd->busy_idx = 2;
6236 sd->idle_idx = 1;
6237 }
6238
6239 sd->private = &tl->data;
cb83b629
PZ
6240
6241 return sd;
6242}
6243
143e1e28
VG
6244/*
6245 * Topology list, bottom-up.
6246 */
6247static struct sched_domain_topology_level default_topology[] = {
6248#ifdef CONFIG_SCHED_SMT
6249 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6250#endif
6251#ifdef CONFIG_SCHED_MC
6252 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6253#endif
6254 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6255 { NULL, },
6256};
6257
6258struct sched_domain_topology_level *sched_domain_topology = default_topology;
6259
6260#define for_each_sd_topology(tl) \
6261 for (tl = sched_domain_topology; tl->mask; tl++)
6262
6263void set_sched_topology(struct sched_domain_topology_level *tl)
6264{
6265 sched_domain_topology = tl;
6266}
6267
6268#ifdef CONFIG_NUMA
6269
cb83b629
PZ
6270static const struct cpumask *sd_numa_mask(int cpu)
6271{
6272 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6273}
6274
d039ac60
PZ
6275static void sched_numa_warn(const char *str)
6276{
6277 static int done = false;
6278 int i,j;
6279
6280 if (done)
6281 return;
6282
6283 done = true;
6284
6285 printk(KERN_WARNING "ERROR: %s\n\n", str);
6286
6287 for (i = 0; i < nr_node_ids; i++) {
6288 printk(KERN_WARNING " ");
6289 for (j = 0; j < nr_node_ids; j++)
6290 printk(KERN_CONT "%02d ", node_distance(i,j));
6291 printk(KERN_CONT "\n");
6292 }
6293 printk(KERN_WARNING "\n");
6294}
6295
9942f79b 6296bool find_numa_distance(int distance)
d039ac60
PZ
6297{
6298 int i;
6299
6300 if (distance == node_distance(0, 0))
6301 return true;
6302
6303 for (i = 0; i < sched_domains_numa_levels; i++) {
6304 if (sched_domains_numa_distance[i] == distance)
6305 return true;
6306 }
6307
6308 return false;
6309}
6310
e3fe70b1
RR
6311/*
6312 * A system can have three types of NUMA topology:
6313 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6314 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6315 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6316 *
6317 * The difference between a glueless mesh topology and a backplane
6318 * topology lies in whether communication between not directly
6319 * connected nodes goes through intermediary nodes (where programs
6320 * could run), or through backplane controllers. This affects
6321 * placement of programs.
6322 *
6323 * The type of topology can be discerned with the following tests:
6324 * - If the maximum distance between any nodes is 1 hop, the system
6325 * is directly connected.
6326 * - If for two nodes A and B, located N > 1 hops away from each other,
6327 * there is an intermediary node C, which is < N hops away from both
6328 * nodes A and B, the system is a glueless mesh.
6329 */
6330static void init_numa_topology_type(void)
6331{
6332 int a, b, c, n;
6333
6334 n = sched_max_numa_distance;
6335
6336 if (n <= 1)
6337 sched_numa_topology_type = NUMA_DIRECT;
6338
6339 for_each_online_node(a) {
6340 for_each_online_node(b) {
6341 /* Find two nodes furthest removed from each other. */
6342 if (node_distance(a, b) < n)
6343 continue;
6344
6345 /* Is there an intermediary node between a and b? */
6346 for_each_online_node(c) {
6347 if (node_distance(a, c) < n &&
6348 node_distance(b, c) < n) {
6349 sched_numa_topology_type =
6350 NUMA_GLUELESS_MESH;
6351 return;
6352 }
6353 }
6354
6355 sched_numa_topology_type = NUMA_BACKPLANE;
6356 return;
6357 }
6358 }
6359}
6360
cb83b629
PZ
6361static void sched_init_numa(void)
6362{
6363 int next_distance, curr_distance = node_distance(0, 0);
6364 struct sched_domain_topology_level *tl;
6365 int level = 0;
6366 int i, j, k;
6367
cb83b629
PZ
6368 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6369 if (!sched_domains_numa_distance)
6370 return;
6371
6372 /*
6373 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6374 * unique distances in the node_distance() table.
6375 *
6376 * Assumes node_distance(0,j) includes all distances in
6377 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6378 */
6379 next_distance = curr_distance;
6380 for (i = 0; i < nr_node_ids; i++) {
6381 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6382 for (k = 0; k < nr_node_ids; k++) {
6383 int distance = node_distance(i, k);
6384
6385 if (distance > curr_distance &&
6386 (distance < next_distance ||
6387 next_distance == curr_distance))
6388 next_distance = distance;
6389
6390 /*
6391 * While not a strong assumption it would be nice to know
6392 * about cases where if node A is connected to B, B is not
6393 * equally connected to A.
6394 */
6395 if (sched_debug() && node_distance(k, i) != distance)
6396 sched_numa_warn("Node-distance not symmetric");
6397
6398 if (sched_debug() && i && !find_numa_distance(distance))
6399 sched_numa_warn("Node-0 not representative");
6400 }
6401 if (next_distance != curr_distance) {
6402 sched_domains_numa_distance[level++] = next_distance;
6403 sched_domains_numa_levels = level;
6404 curr_distance = next_distance;
6405 } else break;
cb83b629 6406 }
d039ac60
PZ
6407
6408 /*
6409 * In case of sched_debug() we verify the above assumption.
6410 */
6411 if (!sched_debug())
6412 break;
cb83b629
PZ
6413 }
6414 /*
6415 * 'level' contains the number of unique distances, excluding the
6416 * identity distance node_distance(i,i).
6417 *
28b4a521 6418 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6419 * numbers.
6420 */
6421
5f7865f3
TC
6422 /*
6423 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6424 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6425 * the array will contain less then 'level' members. This could be
6426 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6427 * in other functions.
6428 *
6429 * We reset it to 'level' at the end of this function.
6430 */
6431 sched_domains_numa_levels = 0;
6432
cb83b629
PZ
6433 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6434 if (!sched_domains_numa_masks)
6435 return;
6436
6437 /*
6438 * Now for each level, construct a mask per node which contains all
6439 * cpus of nodes that are that many hops away from us.
6440 */
6441 for (i = 0; i < level; i++) {
6442 sched_domains_numa_masks[i] =
6443 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6444 if (!sched_domains_numa_masks[i])
6445 return;
6446
6447 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6448 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6449 if (!mask)
6450 return;
6451
6452 sched_domains_numa_masks[i][j] = mask;
6453
6454 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6455 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6456 continue;
6457
6458 cpumask_or(mask, mask, cpumask_of_node(k));
6459 }
6460 }
6461 }
6462
143e1e28
VG
6463 /* Compute default topology size */
6464 for (i = 0; sched_domain_topology[i].mask; i++);
6465
c515db8c 6466 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6467 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6468 if (!tl)
6469 return;
6470
6471 /*
6472 * Copy the default topology bits..
6473 */
143e1e28
VG
6474 for (i = 0; sched_domain_topology[i].mask; i++)
6475 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6476
6477 /*
6478 * .. and append 'j' levels of NUMA goodness.
6479 */
6480 for (j = 0; j < level; i++, j++) {
6481 tl[i] = (struct sched_domain_topology_level){
cb83b629 6482 .mask = sd_numa_mask,
143e1e28 6483 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6484 .flags = SDTL_OVERLAP,
6485 .numa_level = j,
143e1e28 6486 SD_INIT_NAME(NUMA)
cb83b629
PZ
6487 };
6488 }
6489
6490 sched_domain_topology = tl;
5f7865f3
TC
6491
6492 sched_domains_numa_levels = level;
9942f79b 6493 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6494
6495 init_numa_topology_type();
cb83b629 6496}
301a5cba
TC
6497
6498static void sched_domains_numa_masks_set(int cpu)
6499{
6500 int i, j;
6501 int node = cpu_to_node(cpu);
6502
6503 for (i = 0; i < sched_domains_numa_levels; i++) {
6504 for (j = 0; j < nr_node_ids; j++) {
6505 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6506 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6507 }
6508 }
6509}
6510
6511static void sched_domains_numa_masks_clear(int cpu)
6512{
6513 int i, j;
6514 for (i = 0; i < sched_domains_numa_levels; i++) {
6515 for (j = 0; j < nr_node_ids; j++)
6516 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6517 }
6518}
6519
6520/*
6521 * Update sched_domains_numa_masks[level][node] array when new cpus
6522 * are onlined.
6523 */
6524static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6525 unsigned long action,
6526 void *hcpu)
6527{
6528 int cpu = (long)hcpu;
6529
6530 switch (action & ~CPU_TASKS_FROZEN) {
6531 case CPU_ONLINE:
6532 sched_domains_numa_masks_set(cpu);
6533 break;
6534
6535 case CPU_DEAD:
6536 sched_domains_numa_masks_clear(cpu);
6537 break;
6538
6539 default:
6540 return NOTIFY_DONE;
6541 }
6542
6543 return NOTIFY_OK;
cb83b629
PZ
6544}
6545#else
6546static inline void sched_init_numa(void)
6547{
6548}
301a5cba
TC
6549
6550static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6551 unsigned long action,
6552 void *hcpu)
6553{
6554 return 0;
6555}
cb83b629
PZ
6556#endif /* CONFIG_NUMA */
6557
54ab4ff4
PZ
6558static int __sdt_alloc(const struct cpumask *cpu_map)
6559{
6560 struct sched_domain_topology_level *tl;
6561 int j;
6562
27723a68 6563 for_each_sd_topology(tl) {
54ab4ff4
PZ
6564 struct sd_data *sdd = &tl->data;
6565
6566 sdd->sd = alloc_percpu(struct sched_domain *);
6567 if (!sdd->sd)
6568 return -ENOMEM;
6569
6570 sdd->sg = alloc_percpu(struct sched_group *);
6571 if (!sdd->sg)
6572 return -ENOMEM;
6573
63b2ca30
NP
6574 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6575 if (!sdd->sgc)
9c3f75cb
PZ
6576 return -ENOMEM;
6577
54ab4ff4
PZ
6578 for_each_cpu(j, cpu_map) {
6579 struct sched_domain *sd;
6580 struct sched_group *sg;
63b2ca30 6581 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6582
6583 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6584 GFP_KERNEL, cpu_to_node(j));
6585 if (!sd)
6586 return -ENOMEM;
6587
6588 *per_cpu_ptr(sdd->sd, j) = sd;
6589
6590 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6591 GFP_KERNEL, cpu_to_node(j));
6592 if (!sg)
6593 return -ENOMEM;
6594
30b4e9eb
IM
6595 sg->next = sg;
6596
54ab4ff4 6597 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6598
63b2ca30 6599 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6600 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6601 if (!sgc)
9c3f75cb
PZ
6602 return -ENOMEM;
6603
63b2ca30 6604 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6605 }
6606 }
6607
6608 return 0;
6609}
6610
6611static void __sdt_free(const struct cpumask *cpu_map)
6612{
6613 struct sched_domain_topology_level *tl;
6614 int j;
6615
27723a68 6616 for_each_sd_topology(tl) {
54ab4ff4
PZ
6617 struct sd_data *sdd = &tl->data;
6618
6619 for_each_cpu(j, cpu_map) {
fb2cf2c6 6620 struct sched_domain *sd;
6621
6622 if (sdd->sd) {
6623 sd = *per_cpu_ptr(sdd->sd, j);
6624 if (sd && (sd->flags & SD_OVERLAP))
6625 free_sched_groups(sd->groups, 0);
6626 kfree(*per_cpu_ptr(sdd->sd, j));
6627 }
6628
6629 if (sdd->sg)
6630 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6631 if (sdd->sgc)
6632 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6633 }
6634 free_percpu(sdd->sd);
fb2cf2c6 6635 sdd->sd = NULL;
54ab4ff4 6636 free_percpu(sdd->sg);
fb2cf2c6 6637 sdd->sg = NULL;
63b2ca30
NP
6638 free_percpu(sdd->sgc);
6639 sdd->sgc = NULL;
54ab4ff4
PZ
6640 }
6641}
6642
2c402dc3 6643struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6644 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6645 struct sched_domain *child, int cpu)
2c402dc3 6646{
143e1e28 6647 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6648 if (!sd)
d069b916 6649 return child;
2c402dc3 6650
2c402dc3 6651 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6652 if (child) {
6653 sd->level = child->level + 1;
6654 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6655 child->parent = sd;
c75e0128 6656 sd->child = child;
6ae72dff
PZ
6657
6658 if (!cpumask_subset(sched_domain_span(child),
6659 sched_domain_span(sd))) {
6660 pr_err("BUG: arch topology borken\n");
6661#ifdef CONFIG_SCHED_DEBUG
6662 pr_err(" the %s domain not a subset of the %s domain\n",
6663 child->name, sd->name);
6664#endif
6665 /* Fixup, ensure @sd has at least @child cpus. */
6666 cpumask_or(sched_domain_span(sd),
6667 sched_domain_span(sd),
6668 sched_domain_span(child));
6669 }
6670
60495e77 6671 }
a841f8ce 6672 set_domain_attribute(sd, attr);
2c402dc3
PZ
6673
6674 return sd;
6675}
6676
2109b99e
AH
6677/*
6678 * Build sched domains for a given set of cpus and attach the sched domains
6679 * to the individual cpus
6680 */
dce840a0
PZ
6681static int build_sched_domains(const struct cpumask *cpu_map,
6682 struct sched_domain_attr *attr)
2109b99e 6683{
1c632169 6684 enum s_alloc alloc_state;
dce840a0 6685 struct sched_domain *sd;
2109b99e 6686 struct s_data d;
822ff793 6687 int i, ret = -ENOMEM;
9c1cfda2 6688
2109b99e
AH
6689 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6690 if (alloc_state != sa_rootdomain)
6691 goto error;
9c1cfda2 6692
dce840a0 6693 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6694 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6695 struct sched_domain_topology_level *tl;
6696
3bd65a80 6697 sd = NULL;
27723a68 6698 for_each_sd_topology(tl) {
4a850cbe 6699 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6700 if (tl == sched_domain_topology)
6701 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6702 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6703 sd->flags |= SD_OVERLAP;
d110235d
PZ
6704 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6705 break;
e3589f6c 6706 }
dce840a0
PZ
6707 }
6708
6709 /* Build the groups for the domains */
6710 for_each_cpu(i, cpu_map) {
6711 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6712 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6713 if (sd->flags & SD_OVERLAP) {
6714 if (build_overlap_sched_groups(sd, i))
6715 goto error;
6716 } else {
6717 if (build_sched_groups(sd, i))
6718 goto error;
6719 }
1cf51902 6720 }
a06dadbe 6721 }
9c1cfda2 6722
ced549fa 6723 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6724 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6725 if (!cpumask_test_cpu(i, cpu_map))
6726 continue;
9c1cfda2 6727
dce840a0
PZ
6728 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6729 claim_allocations(i, sd);
63b2ca30 6730 init_sched_groups_capacity(i, sd);
dce840a0 6731 }
f712c0c7 6732 }
9c1cfda2 6733
1da177e4 6734 /* Attach the domains */
dce840a0 6735 rcu_read_lock();
abcd083a 6736 for_each_cpu(i, cpu_map) {
21d42ccf 6737 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6738 cpu_attach_domain(sd, d.rd, i);
1da177e4 6739 }
dce840a0 6740 rcu_read_unlock();
51888ca2 6741
822ff793 6742 ret = 0;
51888ca2 6743error:
2109b99e 6744 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6745 return ret;
1da177e4 6746}
029190c5 6747
acc3f5d7 6748static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6749static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6750static struct sched_domain_attr *dattr_cur;
6751 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6752
6753/*
6754 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6755 * cpumask) fails, then fallback to a single sched domain,
6756 * as determined by the single cpumask fallback_doms.
029190c5 6757 */
4212823f 6758static cpumask_var_t fallback_doms;
029190c5 6759
ee79d1bd
HC
6760/*
6761 * arch_update_cpu_topology lets virtualized architectures update the
6762 * cpu core maps. It is supposed to return 1 if the topology changed
6763 * or 0 if it stayed the same.
6764 */
52f5684c 6765int __weak arch_update_cpu_topology(void)
22e52b07 6766{
ee79d1bd 6767 return 0;
22e52b07
HC
6768}
6769
acc3f5d7
RR
6770cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6771{
6772 int i;
6773 cpumask_var_t *doms;
6774
6775 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6776 if (!doms)
6777 return NULL;
6778 for (i = 0; i < ndoms; i++) {
6779 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6780 free_sched_domains(doms, i);
6781 return NULL;
6782 }
6783 }
6784 return doms;
6785}
6786
6787void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6788{
6789 unsigned int i;
6790 for (i = 0; i < ndoms; i++)
6791 free_cpumask_var(doms[i]);
6792 kfree(doms);
6793}
6794
1a20ff27 6795/*
41a2d6cf 6796 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6797 * For now this just excludes isolated cpus, but could be used to
6798 * exclude other special cases in the future.
1a20ff27 6799 */
c4a8849a 6800static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6801{
7378547f
MM
6802 int err;
6803
22e52b07 6804 arch_update_cpu_topology();
029190c5 6805 ndoms_cur = 1;
acc3f5d7 6806 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6807 if (!doms_cur)
acc3f5d7
RR
6808 doms_cur = &fallback_doms;
6809 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6810 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6811 register_sched_domain_sysctl();
7378547f
MM
6812
6813 return err;
1a20ff27
DG
6814}
6815
1a20ff27
DG
6816/*
6817 * Detach sched domains from a group of cpus specified in cpu_map
6818 * These cpus will now be attached to the NULL domain
6819 */
96f874e2 6820static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6821{
6822 int i;
6823
dce840a0 6824 rcu_read_lock();
abcd083a 6825 for_each_cpu(i, cpu_map)
57d885fe 6826 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6827 rcu_read_unlock();
1a20ff27
DG
6828}
6829
1d3504fc
HS
6830/* handle null as "default" */
6831static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6832 struct sched_domain_attr *new, int idx_new)
6833{
6834 struct sched_domain_attr tmp;
6835
6836 /* fast path */
6837 if (!new && !cur)
6838 return 1;
6839
6840 tmp = SD_ATTR_INIT;
6841 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6842 new ? (new + idx_new) : &tmp,
6843 sizeof(struct sched_domain_attr));
6844}
6845
029190c5
PJ
6846/*
6847 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6848 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6849 * doms_new[] to the current sched domain partitioning, doms_cur[].
6850 * It destroys each deleted domain and builds each new domain.
6851 *
acc3f5d7 6852 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6853 * The masks don't intersect (don't overlap.) We should setup one
6854 * sched domain for each mask. CPUs not in any of the cpumasks will
6855 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6856 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6857 * it as it is.
6858 *
acc3f5d7
RR
6859 * The passed in 'doms_new' should be allocated using
6860 * alloc_sched_domains. This routine takes ownership of it and will
6861 * free_sched_domains it when done with it. If the caller failed the
6862 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6863 * and partition_sched_domains() will fallback to the single partition
6864 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6865 *
96f874e2 6866 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6867 * ndoms_new == 0 is a special case for destroying existing domains,
6868 * and it will not create the default domain.
dfb512ec 6869 *
029190c5
PJ
6870 * Call with hotplug lock held
6871 */
acc3f5d7 6872void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6873 struct sched_domain_attr *dattr_new)
029190c5 6874{
dfb512ec 6875 int i, j, n;
d65bd5ec 6876 int new_topology;
029190c5 6877
712555ee 6878 mutex_lock(&sched_domains_mutex);
a1835615 6879
7378547f
MM
6880 /* always unregister in case we don't destroy any domains */
6881 unregister_sched_domain_sysctl();
6882
d65bd5ec
HC
6883 /* Let architecture update cpu core mappings. */
6884 new_topology = arch_update_cpu_topology();
6885
dfb512ec 6886 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6887
6888 /* Destroy deleted domains */
6889 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6890 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6891 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6892 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6893 goto match1;
6894 }
6895 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6896 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6897match1:
6898 ;
6899 }
6900
c8d2d47a 6901 n = ndoms_cur;
e761b772 6902 if (doms_new == NULL) {
c8d2d47a 6903 n = 0;
acc3f5d7 6904 doms_new = &fallback_doms;
6ad4c188 6905 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6906 WARN_ON_ONCE(dattr_new);
e761b772
MK
6907 }
6908
029190c5
PJ
6909 /* Build new domains */
6910 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6911 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6912 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6913 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6914 goto match2;
6915 }
6916 /* no match - add a new doms_new */
dce840a0 6917 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6918match2:
6919 ;
6920 }
6921
6922 /* Remember the new sched domains */
acc3f5d7
RR
6923 if (doms_cur != &fallback_doms)
6924 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6925 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6926 doms_cur = doms_new;
1d3504fc 6927 dattr_cur = dattr_new;
029190c5 6928 ndoms_cur = ndoms_new;
7378547f
MM
6929
6930 register_sched_domain_sysctl();
a1835615 6931
712555ee 6932 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6933}
6934
d35be8ba
SB
6935static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6936
1da177e4 6937/*
3a101d05
TH
6938 * Update cpusets according to cpu_active mask. If cpusets are
6939 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6940 * around partition_sched_domains().
d35be8ba
SB
6941 *
6942 * If we come here as part of a suspend/resume, don't touch cpusets because we
6943 * want to restore it back to its original state upon resume anyway.
1da177e4 6944 */
0b2e918a
TH
6945static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6946 void *hcpu)
e761b772 6947{
d35be8ba
SB
6948 switch (action) {
6949 case CPU_ONLINE_FROZEN:
6950 case CPU_DOWN_FAILED_FROZEN:
6951
6952 /*
6953 * num_cpus_frozen tracks how many CPUs are involved in suspend
6954 * resume sequence. As long as this is not the last online
6955 * operation in the resume sequence, just build a single sched
6956 * domain, ignoring cpusets.
6957 */
6958 num_cpus_frozen--;
6959 if (likely(num_cpus_frozen)) {
6960 partition_sched_domains(1, NULL, NULL);
6961 break;
6962 }
6963
6964 /*
6965 * This is the last CPU online operation. So fall through and
6966 * restore the original sched domains by considering the
6967 * cpuset configurations.
6968 */
6969
e761b772 6970 case CPU_ONLINE:
6ad4c188 6971 case CPU_DOWN_FAILED:
7ddf96b0 6972 cpuset_update_active_cpus(true);
d35be8ba 6973 break;
3a101d05
TH
6974 default:
6975 return NOTIFY_DONE;
6976 }
d35be8ba 6977 return NOTIFY_OK;
3a101d05 6978}
e761b772 6979
0b2e918a
TH
6980static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6981 void *hcpu)
3a101d05 6982{
d35be8ba 6983 switch (action) {
3a101d05 6984 case CPU_DOWN_PREPARE:
7ddf96b0 6985 cpuset_update_active_cpus(false);
d35be8ba
SB
6986 break;
6987 case CPU_DOWN_PREPARE_FROZEN:
6988 num_cpus_frozen++;
6989 partition_sched_domains(1, NULL, NULL);
6990 break;
e761b772
MK
6991 default:
6992 return NOTIFY_DONE;
6993 }
d35be8ba 6994 return NOTIFY_OK;
e761b772 6995}
e761b772 6996
1da177e4
LT
6997void __init sched_init_smp(void)
6998{
dcc30a35
RR
6999 cpumask_var_t non_isolated_cpus;
7000
7001 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7002 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7003
cb83b629
PZ
7004 sched_init_numa();
7005
6acce3ef
PZ
7006 /*
7007 * There's no userspace yet to cause hotplug operations; hence all the
7008 * cpu masks are stable and all blatant races in the below code cannot
7009 * happen.
7010 */
712555ee 7011 mutex_lock(&sched_domains_mutex);
c4a8849a 7012 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7013 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7014 if (cpumask_empty(non_isolated_cpus))
7015 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7016 mutex_unlock(&sched_domains_mutex);
e761b772 7017
301a5cba 7018 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7019 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7020 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7021
b328ca18 7022 init_hrtick();
5c1e1767
NP
7023
7024 /* Move init over to a non-isolated CPU */
dcc30a35 7025 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7026 BUG();
19978ca6 7027 sched_init_granularity();
dcc30a35 7028 free_cpumask_var(non_isolated_cpus);
4212823f 7029
0e3900e6 7030 init_sched_rt_class();
1baca4ce 7031 init_sched_dl_class();
1da177e4
LT
7032}
7033#else
7034void __init sched_init_smp(void)
7035{
19978ca6 7036 sched_init_granularity();
1da177e4
LT
7037}
7038#endif /* CONFIG_SMP */
7039
cd1bb94b
AB
7040const_debug unsigned int sysctl_timer_migration = 1;
7041
1da177e4
LT
7042int in_sched_functions(unsigned long addr)
7043{
1da177e4
LT
7044 return in_lock_functions(addr) ||
7045 (addr >= (unsigned long)__sched_text_start
7046 && addr < (unsigned long)__sched_text_end);
7047}
7048
029632fb 7049#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7050/*
7051 * Default task group.
7052 * Every task in system belongs to this group at bootup.
7053 */
029632fb 7054struct task_group root_task_group;
35cf4e50 7055LIST_HEAD(task_groups);
052f1dc7 7056#endif
6f505b16 7057
e6252c3e 7058DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7059
1da177e4
LT
7060void __init sched_init(void)
7061{
dd41f596 7062 int i, j;
434d53b0
MT
7063 unsigned long alloc_size = 0, ptr;
7064
7065#ifdef CONFIG_FAIR_GROUP_SCHED
7066 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7067#endif
7068#ifdef CONFIG_RT_GROUP_SCHED
7069 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7070#endif
df7c8e84 7071#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7072 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7073#endif
434d53b0 7074 if (alloc_size) {
36b7b6d4 7075 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7076
7077#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7078 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7079 ptr += nr_cpu_ids * sizeof(void **);
7080
07e06b01 7081 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7082 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7083
6d6bc0ad 7084#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7085#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7086 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7087 ptr += nr_cpu_ids * sizeof(void **);
7088
07e06b01 7089 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7090 ptr += nr_cpu_ids * sizeof(void **);
7091
6d6bc0ad 7092#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7093#ifdef CONFIG_CPUMASK_OFFSTACK
7094 for_each_possible_cpu(i) {
e6252c3e 7095 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
7096 ptr += cpumask_size();
7097 }
7098#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7099 }
dd41f596 7100
332ac17e
DF
7101 init_rt_bandwidth(&def_rt_bandwidth,
7102 global_rt_period(), global_rt_runtime());
7103 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7104 global_rt_period(), global_rt_runtime());
332ac17e 7105
57d885fe
GH
7106#ifdef CONFIG_SMP
7107 init_defrootdomain();
7108#endif
7109
d0b27fa7 7110#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7111 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7112 global_rt_period(), global_rt_runtime());
6d6bc0ad 7113#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7114
7c941438 7115#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7116 list_add(&root_task_group.list, &task_groups);
7117 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7118 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7119 autogroup_init(&init_task);
54c707e9 7120
7c941438 7121#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7122
0a945022 7123 for_each_possible_cpu(i) {
70b97a7f 7124 struct rq *rq;
1da177e4
LT
7125
7126 rq = cpu_rq(i);
05fa785c 7127 raw_spin_lock_init(&rq->lock);
7897986b 7128 rq->nr_running = 0;
dce48a84
TG
7129 rq->calc_load_active = 0;
7130 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7131 init_cfs_rq(&rq->cfs);
6f505b16 7132 init_rt_rq(&rq->rt, rq);
aab03e05 7133 init_dl_rq(&rq->dl, rq);
dd41f596 7134#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7135 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7136 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7137 /*
07e06b01 7138 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7139 *
7140 * In case of task-groups formed thr' the cgroup filesystem, it
7141 * gets 100% of the cpu resources in the system. This overall
7142 * system cpu resource is divided among the tasks of
07e06b01 7143 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7144 * based on each entity's (task or task-group's) weight
7145 * (se->load.weight).
7146 *
07e06b01 7147 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7148 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7149 * then A0's share of the cpu resource is:
7150 *
0d905bca 7151 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7152 *
07e06b01
YZ
7153 * We achieve this by letting root_task_group's tasks sit
7154 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7155 */
ab84d31e 7156 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7157 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7158#endif /* CONFIG_FAIR_GROUP_SCHED */
7159
7160 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7161#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7162 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7163#endif
1da177e4 7164
dd41f596
IM
7165 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7166 rq->cpu_load[j] = 0;
fdf3e95d
VP
7167
7168 rq->last_load_update_tick = jiffies;
7169
1da177e4 7170#ifdef CONFIG_SMP
41c7ce9a 7171 rq->sd = NULL;
57d885fe 7172 rq->rd = NULL;
ca8ce3d0 7173 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7174 rq->post_schedule = 0;
1da177e4 7175 rq->active_balance = 0;
dd41f596 7176 rq->next_balance = jiffies;
1da177e4 7177 rq->push_cpu = 0;
0a2966b4 7178 rq->cpu = i;
1f11eb6a 7179 rq->online = 0;
eae0c9df
MG
7180 rq->idle_stamp = 0;
7181 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7182 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7183
7184 INIT_LIST_HEAD(&rq->cfs_tasks);
7185
dc938520 7186 rq_attach_root(rq, &def_root_domain);
3451d024 7187#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7188 rq->nohz_flags = 0;
83cd4fe2 7189#endif
265f22a9
FW
7190#ifdef CONFIG_NO_HZ_FULL
7191 rq->last_sched_tick = 0;
7192#endif
1da177e4 7193#endif
8f4d37ec 7194 init_rq_hrtick(rq);
1da177e4 7195 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7196 }
7197
2dd73a4f 7198 set_load_weight(&init_task);
b50f60ce 7199
e107be36
AK
7200#ifdef CONFIG_PREEMPT_NOTIFIERS
7201 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7202#endif
7203
1da177e4
LT
7204 /*
7205 * The boot idle thread does lazy MMU switching as well:
7206 */
7207 atomic_inc(&init_mm.mm_count);
7208 enter_lazy_tlb(&init_mm, current);
7209
7210 /*
7211 * Make us the idle thread. Technically, schedule() should not be
7212 * called from this thread, however somewhere below it might be,
7213 * but because we are the idle thread, we just pick up running again
7214 * when this runqueue becomes "idle".
7215 */
7216 init_idle(current, smp_processor_id());
dce48a84
TG
7217
7218 calc_load_update = jiffies + LOAD_FREQ;
7219
dd41f596
IM
7220 /*
7221 * During early bootup we pretend to be a normal task:
7222 */
7223 current->sched_class = &fair_sched_class;
6892b75e 7224
bf4d83f6 7225#ifdef CONFIG_SMP
4cb98839 7226 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7227 /* May be allocated at isolcpus cmdline parse time */
7228 if (cpu_isolated_map == NULL)
7229 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7230 idle_thread_set_boot_cpu();
a803f026 7231 set_cpu_rq_start_time();
029632fb
PZ
7232#endif
7233 init_sched_fair_class();
6a7b3dc3 7234
6892b75e 7235 scheduler_running = 1;
1da177e4
LT
7236}
7237
d902db1e 7238#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7239static inline int preempt_count_equals(int preempt_offset)
7240{
234da7bc 7241 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7242
4ba8216c 7243 return (nested == preempt_offset);
e4aafea2
FW
7244}
7245
d894837f 7246void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7247{
1da177e4
LT
7248 static unsigned long prev_jiffy; /* ratelimiting */
7249
b3fbab05 7250 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7251 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7252 !is_idle_task(current)) ||
e4aafea2 7253 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7254 return;
7255 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7256 return;
7257 prev_jiffy = jiffies;
7258
3df0fc5b
PZ
7259 printk(KERN_ERR
7260 "BUG: sleeping function called from invalid context at %s:%d\n",
7261 file, line);
7262 printk(KERN_ERR
7263 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7264 in_atomic(), irqs_disabled(),
7265 current->pid, current->comm);
aef745fc
IM
7266
7267 debug_show_held_locks(current);
7268 if (irqs_disabled())
7269 print_irqtrace_events(current);
8f47b187
TG
7270#ifdef CONFIG_DEBUG_PREEMPT
7271 if (!preempt_count_equals(preempt_offset)) {
7272 pr_err("Preemption disabled at:");
7273 print_ip_sym(current->preempt_disable_ip);
7274 pr_cont("\n");
7275 }
7276#endif
aef745fc 7277 dump_stack();
1da177e4
LT
7278}
7279EXPORT_SYMBOL(__might_sleep);
7280#endif
7281
7282#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7283static void normalize_task(struct rq *rq, struct task_struct *p)
7284{
da7a735e 7285 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7286 struct sched_attr attr = {
7287 .sched_policy = SCHED_NORMAL,
7288 };
da7a735e 7289 int old_prio = p->prio;
da0c1e65 7290 int queued;
3e51f33f 7291
da0c1e65
KT
7292 queued = task_on_rq_queued(p);
7293 if (queued)
4ca9b72b 7294 dequeue_task(rq, p, 0);
d50dde5a 7295 __setscheduler(rq, p, &attr);
da0c1e65 7296 if (queued) {
4ca9b72b 7297 enqueue_task(rq, p, 0);
8875125e 7298 resched_curr(rq);
3a5e4dc1 7299 }
da7a735e
PZ
7300
7301 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7302}
7303
1da177e4
LT
7304void normalize_rt_tasks(void)
7305{
a0f98a1c 7306 struct task_struct *g, *p;
1da177e4 7307 unsigned long flags;
70b97a7f 7308 struct rq *rq;
1da177e4 7309
3472eaa1 7310 read_lock(&tasklist_lock);
5d07f420 7311 for_each_process_thread(g, p) {
178be793
IM
7312 /*
7313 * Only normalize user tasks:
7314 */
3472eaa1 7315 if (p->flags & PF_KTHREAD)
178be793
IM
7316 continue;
7317
6cfb0d5d 7318 p->se.exec_start = 0;
6cfb0d5d 7319#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7320 p->se.statistics.wait_start = 0;
7321 p->se.statistics.sleep_start = 0;
7322 p->se.statistics.block_start = 0;
6cfb0d5d 7323#endif
dd41f596 7324
aab03e05 7325 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7326 /*
7327 * Renice negative nice level userspace
7328 * tasks back to 0:
7329 */
3472eaa1 7330 if (task_nice(p) < 0)
dd41f596 7331 set_user_nice(p, 0);
1da177e4 7332 continue;
dd41f596 7333 }
1da177e4 7334
3472eaa1 7335 rq = task_rq_lock(p, &flags);
178be793 7336 normalize_task(rq, p);
3472eaa1 7337 task_rq_unlock(rq, p, &flags);
5d07f420 7338 }
3472eaa1 7339 read_unlock(&tasklist_lock);
1da177e4
LT
7340}
7341
7342#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7343
67fc4e0c 7344#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7345/*
67fc4e0c 7346 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7347 *
7348 * They can only be called when the whole system has been
7349 * stopped - every CPU needs to be quiescent, and no scheduling
7350 * activity can take place. Using them for anything else would
7351 * be a serious bug, and as a result, they aren't even visible
7352 * under any other configuration.
7353 */
7354
7355/**
7356 * curr_task - return the current task for a given cpu.
7357 * @cpu: the processor in question.
7358 *
7359 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7360 *
7361 * Return: The current task for @cpu.
1df5c10a 7362 */
36c8b586 7363struct task_struct *curr_task(int cpu)
1df5c10a
LT
7364{
7365 return cpu_curr(cpu);
7366}
7367
67fc4e0c
JW
7368#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7369
7370#ifdef CONFIG_IA64
1df5c10a
LT
7371/**
7372 * set_curr_task - set the current task for a given cpu.
7373 * @cpu: the processor in question.
7374 * @p: the task pointer to set.
7375 *
7376 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7377 * are serviced on a separate stack. It allows the architecture to switch the
7378 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7379 * must be called with all CPU's synchronized, and interrupts disabled, the
7380 * and caller must save the original value of the current task (see
7381 * curr_task() above) and restore that value before reenabling interrupts and
7382 * re-starting the system.
7383 *
7384 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7385 */
36c8b586 7386void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7387{
7388 cpu_curr(cpu) = p;
7389}
7390
7391#endif
29f59db3 7392
7c941438 7393#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7394/* task_group_lock serializes the addition/removal of task groups */
7395static DEFINE_SPINLOCK(task_group_lock);
7396
bccbe08a
PZ
7397static void free_sched_group(struct task_group *tg)
7398{
7399 free_fair_sched_group(tg);
7400 free_rt_sched_group(tg);
e9aa1dd1 7401 autogroup_free(tg);
bccbe08a
PZ
7402 kfree(tg);
7403}
7404
7405/* allocate runqueue etc for a new task group */
ec7dc8ac 7406struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7407{
7408 struct task_group *tg;
bccbe08a
PZ
7409
7410 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7411 if (!tg)
7412 return ERR_PTR(-ENOMEM);
7413
ec7dc8ac 7414 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7415 goto err;
7416
ec7dc8ac 7417 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7418 goto err;
7419
ace783b9
LZ
7420 return tg;
7421
7422err:
7423 free_sched_group(tg);
7424 return ERR_PTR(-ENOMEM);
7425}
7426
7427void sched_online_group(struct task_group *tg, struct task_group *parent)
7428{
7429 unsigned long flags;
7430
8ed36996 7431 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7432 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7433
7434 WARN_ON(!parent); /* root should already exist */
7435
7436 tg->parent = parent;
f473aa5e 7437 INIT_LIST_HEAD(&tg->children);
09f2724a 7438 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7439 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7440}
7441
9b5b7751 7442/* rcu callback to free various structures associated with a task group */
6f505b16 7443static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7444{
29f59db3 7445 /* now it should be safe to free those cfs_rqs */
6f505b16 7446 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7447}
7448
9b5b7751 7449/* Destroy runqueue etc associated with a task group */
4cf86d77 7450void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7451{
7452 /* wait for possible concurrent references to cfs_rqs complete */
7453 call_rcu(&tg->rcu, free_sched_group_rcu);
7454}
7455
7456void sched_offline_group(struct task_group *tg)
29f59db3 7457{
8ed36996 7458 unsigned long flags;
9b5b7751 7459 int i;
29f59db3 7460
3d4b47b4
PZ
7461 /* end participation in shares distribution */
7462 for_each_possible_cpu(i)
bccbe08a 7463 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7464
7465 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7466 list_del_rcu(&tg->list);
f473aa5e 7467 list_del_rcu(&tg->siblings);
8ed36996 7468 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7469}
7470
9b5b7751 7471/* change task's runqueue when it moves between groups.
3a252015
IM
7472 * The caller of this function should have put the task in its new group
7473 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7474 * reflect its new group.
9b5b7751
SV
7475 */
7476void sched_move_task(struct task_struct *tsk)
29f59db3 7477{
8323f26c 7478 struct task_group *tg;
da0c1e65 7479 int queued, running;
29f59db3
SV
7480 unsigned long flags;
7481 struct rq *rq;
7482
7483 rq = task_rq_lock(tsk, &flags);
7484
051a1d1a 7485 running = task_current(rq, tsk);
da0c1e65 7486 queued = task_on_rq_queued(tsk);
29f59db3 7487
da0c1e65 7488 if (queued)
29f59db3 7489 dequeue_task(rq, tsk, 0);
0e1f3483 7490 if (unlikely(running))
f3cd1c4e 7491 put_prev_task(rq, tsk);
29f59db3 7492
073219e9 7493 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7494 lockdep_is_held(&tsk->sighand->siglock)),
7495 struct task_group, css);
7496 tg = autogroup_task_group(tsk, tg);
7497 tsk->sched_task_group = tg;
7498
810b3817 7499#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7500 if (tsk->sched_class->task_move_group)
da0c1e65 7501 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7502 else
810b3817 7503#endif
b2b5ce02 7504 set_task_rq(tsk, task_cpu(tsk));
810b3817 7505
0e1f3483
HS
7506 if (unlikely(running))
7507 tsk->sched_class->set_curr_task(rq);
da0c1e65 7508 if (queued)
371fd7e7 7509 enqueue_task(rq, tsk, 0);
29f59db3 7510
0122ec5b 7511 task_rq_unlock(rq, tsk, &flags);
29f59db3 7512}
7c941438 7513#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7514
a790de99
PT
7515#ifdef CONFIG_RT_GROUP_SCHED
7516/*
7517 * Ensure that the real time constraints are schedulable.
7518 */
7519static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7520
9a7e0b18
PZ
7521/* Must be called with tasklist_lock held */
7522static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7523{
9a7e0b18 7524 struct task_struct *g, *p;
b40b2e8e 7525
5d07f420 7526 for_each_process_thread(g, p) {
8651c658 7527 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7528 return 1;
5d07f420 7529 }
b40b2e8e 7530
9a7e0b18
PZ
7531 return 0;
7532}
b40b2e8e 7533
9a7e0b18
PZ
7534struct rt_schedulable_data {
7535 struct task_group *tg;
7536 u64 rt_period;
7537 u64 rt_runtime;
7538};
b40b2e8e 7539
a790de99 7540static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7541{
7542 struct rt_schedulable_data *d = data;
7543 struct task_group *child;
7544 unsigned long total, sum = 0;
7545 u64 period, runtime;
b40b2e8e 7546
9a7e0b18
PZ
7547 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7548 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7549
9a7e0b18
PZ
7550 if (tg == d->tg) {
7551 period = d->rt_period;
7552 runtime = d->rt_runtime;
b40b2e8e 7553 }
b40b2e8e 7554
4653f803
PZ
7555 /*
7556 * Cannot have more runtime than the period.
7557 */
7558 if (runtime > period && runtime != RUNTIME_INF)
7559 return -EINVAL;
6f505b16 7560
4653f803
PZ
7561 /*
7562 * Ensure we don't starve existing RT tasks.
7563 */
9a7e0b18
PZ
7564 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7565 return -EBUSY;
6f505b16 7566
9a7e0b18 7567 total = to_ratio(period, runtime);
6f505b16 7568
4653f803
PZ
7569 /*
7570 * Nobody can have more than the global setting allows.
7571 */
7572 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7573 return -EINVAL;
6f505b16 7574
4653f803
PZ
7575 /*
7576 * The sum of our children's runtime should not exceed our own.
7577 */
9a7e0b18
PZ
7578 list_for_each_entry_rcu(child, &tg->children, siblings) {
7579 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7580 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7581
9a7e0b18
PZ
7582 if (child == d->tg) {
7583 period = d->rt_period;
7584 runtime = d->rt_runtime;
7585 }
6f505b16 7586
9a7e0b18 7587 sum += to_ratio(period, runtime);
9f0c1e56 7588 }
6f505b16 7589
9a7e0b18
PZ
7590 if (sum > total)
7591 return -EINVAL;
7592
7593 return 0;
6f505b16
PZ
7594}
7595
9a7e0b18 7596static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7597{
8277434e
PT
7598 int ret;
7599
9a7e0b18
PZ
7600 struct rt_schedulable_data data = {
7601 .tg = tg,
7602 .rt_period = period,
7603 .rt_runtime = runtime,
7604 };
7605
8277434e
PT
7606 rcu_read_lock();
7607 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7608 rcu_read_unlock();
7609
7610 return ret;
521f1a24
DG
7611}
7612
ab84d31e 7613static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7614 u64 rt_period, u64 rt_runtime)
6f505b16 7615{
ac086bc2 7616 int i, err = 0;
9f0c1e56 7617
9f0c1e56 7618 mutex_lock(&rt_constraints_mutex);
521f1a24 7619 read_lock(&tasklist_lock);
9a7e0b18
PZ
7620 err = __rt_schedulable(tg, rt_period, rt_runtime);
7621 if (err)
9f0c1e56 7622 goto unlock;
ac086bc2 7623
0986b11b 7624 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7625 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7626 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7627
7628 for_each_possible_cpu(i) {
7629 struct rt_rq *rt_rq = tg->rt_rq[i];
7630
0986b11b 7631 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7632 rt_rq->rt_runtime = rt_runtime;
0986b11b 7633 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7634 }
0986b11b 7635 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7636unlock:
521f1a24 7637 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7638 mutex_unlock(&rt_constraints_mutex);
7639
7640 return err;
6f505b16
PZ
7641}
7642
25cc7da7 7643static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7644{
7645 u64 rt_runtime, rt_period;
7646
7647 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7648 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7649 if (rt_runtime_us < 0)
7650 rt_runtime = RUNTIME_INF;
7651
ab84d31e 7652 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7653}
7654
25cc7da7 7655static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7656{
7657 u64 rt_runtime_us;
7658
d0b27fa7 7659 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7660 return -1;
7661
d0b27fa7 7662 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7663 do_div(rt_runtime_us, NSEC_PER_USEC);
7664 return rt_runtime_us;
7665}
d0b27fa7 7666
25cc7da7 7667static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7668{
7669 u64 rt_runtime, rt_period;
7670
7671 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7672 rt_runtime = tg->rt_bandwidth.rt_runtime;
7673
619b0488
R
7674 if (rt_period == 0)
7675 return -EINVAL;
7676
ab84d31e 7677 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7678}
7679
25cc7da7 7680static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7681{
7682 u64 rt_period_us;
7683
7684 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7685 do_div(rt_period_us, NSEC_PER_USEC);
7686 return rt_period_us;
7687}
332ac17e 7688#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7689
332ac17e 7690#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7691static int sched_rt_global_constraints(void)
7692{
7693 int ret = 0;
7694
7695 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7696 read_lock(&tasklist_lock);
4653f803 7697 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7698 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7699 mutex_unlock(&rt_constraints_mutex);
7700
7701 return ret;
7702}
54e99124 7703
25cc7da7 7704static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7705{
7706 /* Don't accept realtime tasks when there is no way for them to run */
7707 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7708 return 0;
7709
7710 return 1;
7711}
7712
6d6bc0ad 7713#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7714static int sched_rt_global_constraints(void)
7715{
ac086bc2 7716 unsigned long flags;
332ac17e 7717 int i, ret = 0;
ec5d4989 7718
0986b11b 7719 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7720 for_each_possible_cpu(i) {
7721 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7722
0986b11b 7723 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7724 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7725 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7726 }
0986b11b 7727 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7728
332ac17e 7729 return ret;
d0b27fa7 7730}
6d6bc0ad 7731#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7732
332ac17e
DF
7733static int sched_dl_global_constraints(void)
7734{
1724813d
PZ
7735 u64 runtime = global_rt_runtime();
7736 u64 period = global_rt_period();
332ac17e 7737 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7738 struct dl_bw *dl_b;
1724813d 7739 int cpu, ret = 0;
49516342 7740 unsigned long flags;
332ac17e
DF
7741
7742 /*
7743 * Here we want to check the bandwidth not being set to some
7744 * value smaller than the currently allocated bandwidth in
7745 * any of the root_domains.
7746 *
7747 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7748 * cycling on root_domains... Discussion on different/better
7749 * solutions is welcome!
7750 */
1724813d 7751 for_each_possible_cpu(cpu) {
f10e00f4
KT
7752 rcu_read_lock_sched();
7753 dl_b = dl_bw_of(cpu);
332ac17e 7754
49516342 7755 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7756 if (new_bw < dl_b->total_bw)
7757 ret = -EBUSY;
49516342 7758 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7759
f10e00f4
KT
7760 rcu_read_unlock_sched();
7761
1724813d
PZ
7762 if (ret)
7763 break;
332ac17e
DF
7764 }
7765
1724813d 7766 return ret;
332ac17e
DF
7767}
7768
1724813d 7769static void sched_dl_do_global(void)
ce0dbbbb 7770{
1724813d 7771 u64 new_bw = -1;
f10e00f4 7772 struct dl_bw *dl_b;
1724813d 7773 int cpu;
49516342 7774 unsigned long flags;
ce0dbbbb 7775
1724813d
PZ
7776 def_dl_bandwidth.dl_period = global_rt_period();
7777 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7778
7779 if (global_rt_runtime() != RUNTIME_INF)
7780 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7781
7782 /*
7783 * FIXME: As above...
7784 */
7785 for_each_possible_cpu(cpu) {
f10e00f4
KT
7786 rcu_read_lock_sched();
7787 dl_b = dl_bw_of(cpu);
1724813d 7788
49516342 7789 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7790 dl_b->bw = new_bw;
49516342 7791 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7792
7793 rcu_read_unlock_sched();
ce0dbbbb 7794 }
1724813d
PZ
7795}
7796
7797static int sched_rt_global_validate(void)
7798{
7799 if (sysctl_sched_rt_period <= 0)
7800 return -EINVAL;
7801
e9e7cb38
JL
7802 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7803 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7804 return -EINVAL;
7805
7806 return 0;
7807}
7808
7809static void sched_rt_do_global(void)
7810{
7811 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7812 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7813}
7814
d0b27fa7 7815int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7816 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7817 loff_t *ppos)
7818{
d0b27fa7
PZ
7819 int old_period, old_runtime;
7820 static DEFINE_MUTEX(mutex);
1724813d 7821 int ret;
d0b27fa7
PZ
7822
7823 mutex_lock(&mutex);
7824 old_period = sysctl_sched_rt_period;
7825 old_runtime = sysctl_sched_rt_runtime;
7826
8d65af78 7827 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7828
7829 if (!ret && write) {
1724813d
PZ
7830 ret = sched_rt_global_validate();
7831 if (ret)
7832 goto undo;
7833
d0b27fa7 7834 ret = sched_rt_global_constraints();
1724813d
PZ
7835 if (ret)
7836 goto undo;
7837
7838 ret = sched_dl_global_constraints();
7839 if (ret)
7840 goto undo;
7841
7842 sched_rt_do_global();
7843 sched_dl_do_global();
7844 }
7845 if (0) {
7846undo:
7847 sysctl_sched_rt_period = old_period;
7848 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7849 }
7850 mutex_unlock(&mutex);
7851
7852 return ret;
7853}
68318b8e 7854
1724813d 7855int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7856 void __user *buffer, size_t *lenp,
7857 loff_t *ppos)
7858{
7859 int ret;
332ac17e 7860 static DEFINE_MUTEX(mutex);
332ac17e
DF
7861
7862 mutex_lock(&mutex);
332ac17e 7863 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7864 /* make sure that internally we keep jiffies */
7865 /* also, writing zero resets timeslice to default */
332ac17e 7866 if (!ret && write) {
1724813d
PZ
7867 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7868 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7869 }
7870 mutex_unlock(&mutex);
332ac17e
DF
7871 return ret;
7872}
7873
052f1dc7 7874#ifdef CONFIG_CGROUP_SCHED
68318b8e 7875
a7c6d554 7876static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7877{
a7c6d554 7878 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7879}
7880
eb95419b
TH
7881static struct cgroup_subsys_state *
7882cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7883{
eb95419b
TH
7884 struct task_group *parent = css_tg(parent_css);
7885 struct task_group *tg;
68318b8e 7886
eb95419b 7887 if (!parent) {
68318b8e 7888 /* This is early initialization for the top cgroup */
07e06b01 7889 return &root_task_group.css;
68318b8e
SV
7890 }
7891
ec7dc8ac 7892 tg = sched_create_group(parent);
68318b8e
SV
7893 if (IS_ERR(tg))
7894 return ERR_PTR(-ENOMEM);
7895
68318b8e
SV
7896 return &tg->css;
7897}
7898
eb95419b 7899static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7900{
eb95419b 7901 struct task_group *tg = css_tg(css);
5c9d535b 7902 struct task_group *parent = css_tg(css->parent);
ace783b9 7903
63876986
TH
7904 if (parent)
7905 sched_online_group(tg, parent);
ace783b9
LZ
7906 return 0;
7907}
7908
eb95419b 7909static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7910{
eb95419b 7911 struct task_group *tg = css_tg(css);
68318b8e
SV
7912
7913 sched_destroy_group(tg);
7914}
7915
eb95419b 7916static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7917{
eb95419b 7918 struct task_group *tg = css_tg(css);
ace783b9
LZ
7919
7920 sched_offline_group(tg);
7921}
7922
eeb61e53
KT
7923static void cpu_cgroup_fork(struct task_struct *task)
7924{
7925 sched_move_task(task);
7926}
7927
eb95419b 7928static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7929 struct cgroup_taskset *tset)
68318b8e 7930{
bb9d97b6
TH
7931 struct task_struct *task;
7932
924f0d9a 7933 cgroup_taskset_for_each(task, tset) {
b68aa230 7934#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7935 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7936 return -EINVAL;
b68aa230 7937#else
bb9d97b6
TH
7938 /* We don't support RT-tasks being in separate groups */
7939 if (task->sched_class != &fair_sched_class)
7940 return -EINVAL;
b68aa230 7941#endif
bb9d97b6 7942 }
be367d09
BB
7943 return 0;
7944}
68318b8e 7945
eb95419b 7946static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7947 struct cgroup_taskset *tset)
68318b8e 7948{
bb9d97b6
TH
7949 struct task_struct *task;
7950
924f0d9a 7951 cgroup_taskset_for_each(task, tset)
bb9d97b6 7952 sched_move_task(task);
68318b8e
SV
7953}
7954
eb95419b
TH
7955static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7956 struct cgroup_subsys_state *old_css,
7957 struct task_struct *task)
068c5cc5
PZ
7958{
7959 /*
7960 * cgroup_exit() is called in the copy_process() failure path.
7961 * Ignore this case since the task hasn't ran yet, this avoids
7962 * trying to poke a half freed task state from generic code.
7963 */
7964 if (!(task->flags & PF_EXITING))
7965 return;
7966
7967 sched_move_task(task);
7968}
7969
052f1dc7 7970#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7971static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7972 struct cftype *cftype, u64 shareval)
68318b8e 7973{
182446d0 7974 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7975}
7976
182446d0
TH
7977static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7978 struct cftype *cft)
68318b8e 7979{
182446d0 7980 struct task_group *tg = css_tg(css);
68318b8e 7981
c8b28116 7982 return (u64) scale_load_down(tg->shares);
68318b8e 7983}
ab84d31e
PT
7984
7985#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7986static DEFINE_MUTEX(cfs_constraints_mutex);
7987
ab84d31e
PT
7988const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7989const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7990
a790de99
PT
7991static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7992
ab84d31e
PT
7993static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7994{
56f570e5 7995 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7996 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7997
7998 if (tg == &root_task_group)
7999 return -EINVAL;
8000
8001 /*
8002 * Ensure we have at some amount of bandwidth every period. This is
8003 * to prevent reaching a state of large arrears when throttled via
8004 * entity_tick() resulting in prolonged exit starvation.
8005 */
8006 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8007 return -EINVAL;
8008
8009 /*
8010 * Likewise, bound things on the otherside by preventing insane quota
8011 * periods. This also allows us to normalize in computing quota
8012 * feasibility.
8013 */
8014 if (period > max_cfs_quota_period)
8015 return -EINVAL;
8016
0e59bdae
KT
8017 /*
8018 * Prevent race between setting of cfs_rq->runtime_enabled and
8019 * unthrottle_offline_cfs_rqs().
8020 */
8021 get_online_cpus();
a790de99
PT
8022 mutex_lock(&cfs_constraints_mutex);
8023 ret = __cfs_schedulable(tg, period, quota);
8024 if (ret)
8025 goto out_unlock;
8026
58088ad0 8027 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8028 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8029 /*
8030 * If we need to toggle cfs_bandwidth_used, off->on must occur
8031 * before making related changes, and on->off must occur afterwards
8032 */
8033 if (runtime_enabled && !runtime_was_enabled)
8034 cfs_bandwidth_usage_inc();
ab84d31e
PT
8035 raw_spin_lock_irq(&cfs_b->lock);
8036 cfs_b->period = ns_to_ktime(period);
8037 cfs_b->quota = quota;
58088ad0 8038
a9cf55b2 8039 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8040 /* restart the period timer (if active) to handle new period expiry */
8041 if (runtime_enabled && cfs_b->timer_active) {
8042 /* force a reprogram */
09dc4ab0 8043 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8044 }
ab84d31e
PT
8045 raw_spin_unlock_irq(&cfs_b->lock);
8046
0e59bdae 8047 for_each_online_cpu(i) {
ab84d31e 8048 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8049 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8050
8051 raw_spin_lock_irq(&rq->lock);
58088ad0 8052 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8053 cfs_rq->runtime_remaining = 0;
671fd9da 8054
029632fb 8055 if (cfs_rq->throttled)
671fd9da 8056 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8057 raw_spin_unlock_irq(&rq->lock);
8058 }
1ee14e6c
BS
8059 if (runtime_was_enabled && !runtime_enabled)
8060 cfs_bandwidth_usage_dec();
a790de99
PT
8061out_unlock:
8062 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8063 put_online_cpus();
ab84d31e 8064
a790de99 8065 return ret;
ab84d31e
PT
8066}
8067
8068int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8069{
8070 u64 quota, period;
8071
029632fb 8072 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8073 if (cfs_quota_us < 0)
8074 quota = RUNTIME_INF;
8075 else
8076 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8077
8078 return tg_set_cfs_bandwidth(tg, period, quota);
8079}
8080
8081long tg_get_cfs_quota(struct task_group *tg)
8082{
8083 u64 quota_us;
8084
029632fb 8085 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8086 return -1;
8087
029632fb 8088 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8089 do_div(quota_us, NSEC_PER_USEC);
8090
8091 return quota_us;
8092}
8093
8094int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8095{
8096 u64 quota, period;
8097
8098 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8099 quota = tg->cfs_bandwidth.quota;
ab84d31e 8100
ab84d31e
PT
8101 return tg_set_cfs_bandwidth(tg, period, quota);
8102}
8103
8104long tg_get_cfs_period(struct task_group *tg)
8105{
8106 u64 cfs_period_us;
8107
029632fb 8108 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8109 do_div(cfs_period_us, NSEC_PER_USEC);
8110
8111 return cfs_period_us;
8112}
8113
182446d0
TH
8114static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8115 struct cftype *cft)
ab84d31e 8116{
182446d0 8117 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8118}
8119
182446d0
TH
8120static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8121 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8122{
182446d0 8123 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8124}
8125
182446d0
TH
8126static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8127 struct cftype *cft)
ab84d31e 8128{
182446d0 8129 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8130}
8131
182446d0
TH
8132static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8133 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8134{
182446d0 8135 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8136}
8137
a790de99
PT
8138struct cfs_schedulable_data {
8139 struct task_group *tg;
8140 u64 period, quota;
8141};
8142
8143/*
8144 * normalize group quota/period to be quota/max_period
8145 * note: units are usecs
8146 */
8147static u64 normalize_cfs_quota(struct task_group *tg,
8148 struct cfs_schedulable_data *d)
8149{
8150 u64 quota, period;
8151
8152 if (tg == d->tg) {
8153 period = d->period;
8154 quota = d->quota;
8155 } else {
8156 period = tg_get_cfs_period(tg);
8157 quota = tg_get_cfs_quota(tg);
8158 }
8159
8160 /* note: these should typically be equivalent */
8161 if (quota == RUNTIME_INF || quota == -1)
8162 return RUNTIME_INF;
8163
8164 return to_ratio(period, quota);
8165}
8166
8167static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8168{
8169 struct cfs_schedulable_data *d = data;
029632fb 8170 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8171 s64 quota = 0, parent_quota = -1;
8172
8173 if (!tg->parent) {
8174 quota = RUNTIME_INF;
8175 } else {
029632fb 8176 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8177
8178 quota = normalize_cfs_quota(tg, d);
9c58c79a 8179 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8180
8181 /*
8182 * ensure max(child_quota) <= parent_quota, inherit when no
8183 * limit is set
8184 */
8185 if (quota == RUNTIME_INF)
8186 quota = parent_quota;
8187 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8188 return -EINVAL;
8189 }
9c58c79a 8190 cfs_b->hierarchical_quota = quota;
a790de99
PT
8191
8192 return 0;
8193}
8194
8195static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8196{
8277434e 8197 int ret;
a790de99
PT
8198 struct cfs_schedulable_data data = {
8199 .tg = tg,
8200 .period = period,
8201 .quota = quota,
8202 };
8203
8204 if (quota != RUNTIME_INF) {
8205 do_div(data.period, NSEC_PER_USEC);
8206 do_div(data.quota, NSEC_PER_USEC);
8207 }
8208
8277434e
PT
8209 rcu_read_lock();
8210 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8211 rcu_read_unlock();
8212
8213 return ret;
a790de99 8214}
e8da1b18 8215
2da8ca82 8216static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8217{
2da8ca82 8218 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8219 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8220
44ffc75b
TH
8221 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8222 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8223 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8224
8225 return 0;
8226}
ab84d31e 8227#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8228#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8229
052f1dc7 8230#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8231static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8232 struct cftype *cft, s64 val)
6f505b16 8233{
182446d0 8234 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8235}
8236
182446d0
TH
8237static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8238 struct cftype *cft)
6f505b16 8239{
182446d0 8240 return sched_group_rt_runtime(css_tg(css));
6f505b16 8241}
d0b27fa7 8242
182446d0
TH
8243static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8244 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8245{
182446d0 8246 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8247}
8248
182446d0
TH
8249static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8250 struct cftype *cft)
d0b27fa7 8251{
182446d0 8252 return sched_group_rt_period(css_tg(css));
d0b27fa7 8253}
6d6bc0ad 8254#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8255
fe5c7cc2 8256static struct cftype cpu_files[] = {
052f1dc7 8257#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8258 {
8259 .name = "shares",
f4c753b7
PM
8260 .read_u64 = cpu_shares_read_u64,
8261 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8262 },
052f1dc7 8263#endif
ab84d31e
PT
8264#ifdef CONFIG_CFS_BANDWIDTH
8265 {
8266 .name = "cfs_quota_us",
8267 .read_s64 = cpu_cfs_quota_read_s64,
8268 .write_s64 = cpu_cfs_quota_write_s64,
8269 },
8270 {
8271 .name = "cfs_period_us",
8272 .read_u64 = cpu_cfs_period_read_u64,
8273 .write_u64 = cpu_cfs_period_write_u64,
8274 },
e8da1b18
NR
8275 {
8276 .name = "stat",
2da8ca82 8277 .seq_show = cpu_stats_show,
e8da1b18 8278 },
ab84d31e 8279#endif
052f1dc7 8280#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8281 {
9f0c1e56 8282 .name = "rt_runtime_us",
06ecb27c
PM
8283 .read_s64 = cpu_rt_runtime_read,
8284 .write_s64 = cpu_rt_runtime_write,
6f505b16 8285 },
d0b27fa7
PZ
8286 {
8287 .name = "rt_period_us",
f4c753b7
PM
8288 .read_u64 = cpu_rt_period_read_uint,
8289 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8290 },
052f1dc7 8291#endif
4baf6e33 8292 { } /* terminate */
68318b8e
SV
8293};
8294
073219e9 8295struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8296 .css_alloc = cpu_cgroup_css_alloc,
8297 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8298 .css_online = cpu_cgroup_css_online,
8299 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8300 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8301 .can_attach = cpu_cgroup_can_attach,
8302 .attach = cpu_cgroup_attach,
068c5cc5 8303 .exit = cpu_cgroup_exit,
5577964e 8304 .legacy_cftypes = cpu_files,
68318b8e
SV
8305 .early_init = 1,
8306};
8307
052f1dc7 8308#endif /* CONFIG_CGROUP_SCHED */
d842de87 8309
b637a328
PM
8310void dump_cpu_task(int cpu)
8311{
8312 pr_info("Task dump for CPU %d:\n", cpu);
8313 sched_show_task(cpu_curr(cpu));
8314}
This page took 3.408161 seconds and 5 git commands to generate.