sched/fair: Avoid using uninitialized variable in preferred_group_nid()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
126 if (delta < 0)
127 return;
fe44d621
PZ
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
3e51f33f
PZ
130}
131
bf5c91ba
IM
132/*
133 * Debugging: various feature bits
134 */
f00b45c1 135
f00b45c1
PZ
136#define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
bf5c91ba 139const_debug unsigned int sysctl_sched_features =
391e43da 140#include "features.h"
f00b45c1
PZ
141 0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled) \
147 #name ,
148
1292531f 149static const char * const sched_feat_names[] = {
391e43da 150#include "features.h"
f00b45c1
PZ
151};
152
153#undef SCHED_FEAT
154
34f3a814 155static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 156{
f00b45c1
PZ
157 int i;
158
f8b6d1cc 159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 163 }
34f3a814 164 seq_puts(m, "\n");
f00b45c1 165
34f3a814 166 return 0;
f00b45c1
PZ
167}
168
f8b6d1cc
PZ
169#ifdef HAVE_JUMP_LABEL
170
c5905afb
IM
171#define jump_label_key__true STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
173
174#define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
c5905afb 177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
c5905afb
IM
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
187}
188
189static void sched_feat_enable(int i)
190{
c5905afb
IM
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
1a687c2e 199static int sched_feat_set(char *cmp)
f00b45c1 200{
f00b45c1 201 int i;
1a687c2e 202 int neg = 0;
f00b45c1 203
524429c3 204 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
205 neg = 1;
206 cmp += 3;
207 }
208
f8b6d1cc 209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 211 if (neg) {
f00b45c1 212 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
213 sched_feat_disable(i);
214 } else {
f00b45c1 215 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
216 sched_feat_enable(i);
217 }
f00b45c1
PZ
218 break;
219 }
220 }
221
1a687c2e
MG
222 return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228{
229 char buf[64];
230 char *cmp;
231 int i;
5cd08fbf 232 struct inode *inode;
1a687c2e
MG
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
5cd08fbf
JB
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
1a687c2e 246 i = sched_feat_set(cmp);
5cd08fbf 247 mutex_unlock(&inode->i_mutex);
f8b6d1cc 248 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
249 return -EINVAL;
250
42994724 251 *ppos += cnt;
f00b45c1
PZ
252
253 return cnt;
254}
255
34f3a814
LZ
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258 return single_open(filp, sched_feat_show, NULL);
259}
260
828c0950 261static const struct file_operations sched_feat_fops = {
34f3a814
LZ
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
f00b45c1
PZ
267};
268
269static __init int sched_init_debug(void)
270{
f00b45c1
PZ
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275}
276late_initcall(sched_init_debug);
f8b6d1cc 277#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 278
b82d9fdd
PZ
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
e9e9250b
PZ
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
fa85ae24 293/*
9f0c1e56 294 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
295 * default: 1s
296 */
9f0c1e56 297unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 298
029632fb 299__read_mostly int scheduler_running;
6892b75e 300
9f0c1e56
PZ
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
fa85ae24 306
0970d299 307/*
0122ec5b 308 * __task_rq_lock - lock the rq @p resides on.
b29739f9 309 */
70b97a7f 310static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
311 __acquires(rq->lock)
312{
0970d299
PZ
313 struct rq *rq;
314
0122ec5b
PZ
315 lockdep_assert_held(&p->pi_lock);
316
3a5c359a 317 for (;;) {
0970d299 318 rq = task_rq(p);
05fa785c 319 raw_spin_lock(&rq->lock);
cca26e80 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 321 return rq;
05fa785c 322 raw_spin_unlock(&rq->lock);
cca26e80
KT
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
cca26e80 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
1da177e4 349 }
1da177e4
LT
350}
351
a9957449 352static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
353 __releases(rq->lock)
354{
05fa785c 355 raw_spin_unlock(&rq->lock);
b29739f9
IM
356}
357
0122ec5b
PZ
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 360 __releases(rq->lock)
0122ec5b 361 __releases(p->pi_lock)
1da177e4 362{
0122ec5b
PZ
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
365}
366
1da177e4 367/*
cc2a73b5 368 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 369 */
a9957449 370static struct rq *this_rq_lock(void)
1da177e4
LT
371 __acquires(rq->lock)
372{
70b97a7f 373 struct rq *rq;
1da177e4
LT
374
375 local_irq_disable();
376 rq = this_rq();
05fa785c 377 raw_spin_lock(&rq->lock);
1da177e4
LT
378
379 return rq;
380}
381
8f4d37ec
PZ
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 385 */
8f4d37ec 386
8f4d37ec
PZ
387static void hrtick_clear(struct rq *rq)
388{
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391}
392
8f4d37ec
PZ
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
05fa785c 403 raw_spin_lock(&rq->lock);
3e51f33f 404 update_rq_clock(rq);
8f4d37ec 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 406 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
407
408 return HRTIMER_NORESTART;
409}
410
95e904c7 411#ifdef CONFIG_SMP
971ee28c
PZ
412
413static int __hrtick_restart(struct rq *rq)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
31656519
PZ
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
b328ca18 425{
31656519 426 struct rq *rq = arg;
b328ca18 427
05fa785c 428 raw_spin_lock(&rq->lock);
971ee28c 429 __hrtick_restart(rq);
31656519 430 rq->hrtick_csd_pending = 0;
05fa785c 431 raw_spin_unlock(&rq->lock);
b328ca18
PZ
432}
433
31656519
PZ
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
029632fb 439void hrtick_start(struct rq *rq, u64 delay)
b328ca18 440{
31656519 441 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 451
cc584b21 452 hrtimer_set_expires(timer, time);
31656519
PZ
453
454 if (rq == this_rq()) {
971ee28c 455 __hrtick_restart(rq);
31656519 456 } else if (!rq->hrtick_csd_pending) {
c46fff2a 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
458 rq->hrtick_csd_pending = 1;
459 }
b328ca18
PZ
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
31656519 474 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479}
480
fa748203 481static __init void init_hrtick(void)
b328ca18
PZ
482{
483 hotcpu_notifier(hotplug_hrtick, 0);
484}
31656519
PZ
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
029632fb 491void hrtick_start(struct rq *rq, u64 delay)
31656519 492{
7f1e2ca9 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 494 HRTIMER_MODE_REL_PINNED, 0);
31656519 495}
b328ca18 496
006c75f1 497static inline void init_hrtick(void)
8f4d37ec 498{
8f4d37ec 499}
31656519 500#endif /* CONFIG_SMP */
8f4d37ec 501
31656519 502static void init_rq_hrtick(struct rq *rq)
8f4d37ec 503{
31656519
PZ
504#ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
8f4d37ec 506
31656519
PZ
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510#endif
8f4d37ec 511
31656519
PZ
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
8f4d37ec 514}
006c75f1 515#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
8f4d37ec
PZ
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
b328ca18
PZ
524static inline void init_hrtick(void)
525{
526}
006c75f1 527#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 528
fd99f91a
PZ
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val) \
533({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541})
542
e3baac47 543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
e3baac47
PZ
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577}
578
fd99f91a
PZ
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582 set_tsk_need_resched(p);
583 return true;
584}
e3baac47
PZ
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589 return false;
590}
591#endif
fd99f91a
PZ
592#endif
593
c24d20db 594/*
8875125e 595 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
8875125e 601void resched_curr(struct rq *rq)
c24d20db 602{
8875125e 603 struct task_struct *curr = rq->curr;
c24d20db
IM
604 int cpu;
605
8875125e 606 lockdep_assert_held(&rq->lock);
c24d20db 607
8875125e 608 if (test_tsk_need_resched(curr))
c24d20db
IM
609 return;
610
8875125e 611 cpu = cpu_of(rq);
fd99f91a 612
f27dde8d 613 if (cpu == smp_processor_id()) {
8875125e 614 set_tsk_need_resched(curr);
f27dde8d 615 set_preempt_need_resched();
c24d20db 616 return;
f27dde8d 617 }
c24d20db 618
8875125e 619 if (set_nr_and_not_polling(curr))
c24d20db 620 smp_send_reschedule(cpu);
dfc68f29
AL
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
623}
624
029632fb 625void resched_cpu(int cpu)
c24d20db
IM
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
05fa785c 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 631 return;
8875125e 632 resched_curr(rq);
05fa785c 633 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 634}
06d8308c 635
b021fe3e 636#ifdef CONFIG_SMP
3451d024 637#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
6201b4d6 646int get_nohz_timer_target(int pinned)
83cd4fe2
VP
647{
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
6201b4d6
VK
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
057f3fad
PZ
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
83cd4fe2 663 }
057f3fad
PZ
664unlock:
665 rcu_read_unlock();
83cd4fe2
VP
666 return cpu;
667}
06d8308c
TG
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
1c20091e 678static void wake_up_idle_cpu(int cpu)
06d8308c
TG
679{
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
67b9ca70 685 if (set_nr_and_not_polling(rq->idle))
06d8308c 686 smp_send_reschedule(cpu);
dfc68f29
AL
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
689}
690
c5bfece2 691static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 692{
53c5fa16
FW
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
c5bfece2 699 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
53c5fa16 702 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
703 return true;
704 }
705
706 return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
c5bfece2 711 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
712 wake_up_idle_cpu(cpu);
713}
714
ca38062e 715static inline bool got_nohz_idle_kick(void)
45bf76df 716{
1c792db7 717 int cpu = smp_processor_id();
873b4c65
VG
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
45bf76df
IM
731}
732
3451d024 733#else /* CONFIG_NO_HZ_COMMON */
45bf76df 734
ca38062e 735static inline bool got_nohz_idle_kick(void)
2069dd75 736{
ca38062e 737 return false;
2069dd75
PZ
738}
739
3451d024 740#endif /* CONFIG_NO_HZ_COMMON */
d842de87 741
ce831b38
FW
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
3882ec64
FW
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
541b8264
VK
750 if (this_rq()->nr_running > 1)
751 return false;
ce831b38 752
541b8264 753 return true;
ce831b38
FW
754}
755#endif /* CONFIG_NO_HZ_FULL */
d842de87 756
029632fb 757void sched_avg_update(struct rq *rq)
18d95a28 758{
e9e9250b
PZ
759 s64 period = sched_avg_period();
760
78becc27 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
18d95a28
PZ
771}
772
6d6bc0ad 773#endif /* CONFIG_SMP */
18d95a28 774
a790de99
PT
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 777/*
8277434e
PT
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 782 */
029632fb 783int walk_tg_tree_from(struct task_group *from,
8277434e 784 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
785{
786 struct task_group *parent, *child;
eb755805 787 int ret;
c09595f6 788
8277434e
PT
789 parent = from;
790
c09595f6 791down:
eb755805
PZ
792 ret = (*down)(parent, data);
793 if (ret)
8277434e 794 goto out;
c09595f6
PZ
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799up:
800 continue;
801 }
eb755805 802 ret = (*up)(parent, data);
8277434e
PT
803 if (ret || parent == from)
804 goto out;
c09595f6
PZ
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
8277434e 810out:
eb755805 811 return ret;
c09595f6
PZ
812}
813
029632fb 814int tg_nop(struct task_group *tg, void *data)
eb755805 815{
e2b245f8 816 return 0;
eb755805 817}
18d95a28
PZ
818#endif
819
45bf76df
IM
820static void set_load_weight(struct task_struct *p)
821{
f05998d4
NR
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
dd41f596
IM
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
c8b28116 829 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 830 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
831 return;
832 }
71f8bd46 833
c8b28116 834 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 835 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
836}
837
371fd7e7 838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 839{
a64692a3 840 update_rq_clock(rq);
43148951 841 sched_info_queued(rq, p);
371fd7e7 842 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
843}
844
371fd7e7 845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 846{
a64692a3 847 update_rq_clock(rq);
43148951 848 sched_info_dequeued(rq, p);
371fd7e7 849 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
850}
851
029632fb 852void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
371fd7e7 857 enqueue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
029632fb 860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
371fd7e7 865 dequeue_task(rq, p, flags);
1e3c88bd
PZ
866}
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 902 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
095c0aa8 909 rq->prev_steal_time_rq += steal;
095c0aa8
GC
910 delta -= steal;
911 }
912#endif
913
fe44d621
PZ
914 rq->clock_task += delta;
915
095c0aa8 916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
918 sched_rt_avg_update(rq, irq_delta + steal);
919#endif
aa483808
VP
920}
921
34f971f6
PZ
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950}
951
14531189 952/*
dd41f596 953 * __normal_prio - return the priority that is based on the static prio
14531189 954 */
14531189
IM
955static inline int __normal_prio(struct task_struct *p)
956{
dd41f596 957 return p->static_prio;
14531189
IM
958}
959
b29739f9
IM
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
36c8b586 967static inline int normal_prio(struct task_struct *p)
b29739f9
IM
968{
969 int prio;
970
aab03e05
DF
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
b29739f9
IM
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
36c8b586 987static int effective_prio(struct task_struct *p)
b29739f9
IM
988{
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998}
999
1da177e4
LT
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
e69f6186
YB
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1005 */
36c8b586 1006inline int task_curr(const struct task_struct *p)
1da177e4
LT
1007{
1008 return cpu_curr(task_cpu(p)) == p;
1009}
1010
67dfa1b7
KT
1011/*
1012 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1013 */
cb469845
SR
1014static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1015 const struct sched_class *prev_class,
da7a735e 1016 int oldprio)
cb469845
SR
1017{
1018 if (prev_class != p->sched_class) {
1019 if (prev_class->switched_from)
da7a735e 1020 prev_class->switched_from(rq, p);
67dfa1b7 1021 /* Possble rq->lock 'hole'. */
da7a735e 1022 p->sched_class->switched_to(rq, p);
2d3d891d 1023 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1024 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1025}
1026
029632fb 1027void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1028{
1029 const struct sched_class *class;
1030
1031 if (p->sched_class == rq->curr->sched_class) {
1032 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1033 } else {
1034 for_each_class(class) {
1035 if (class == rq->curr->sched_class)
1036 break;
1037 if (class == p->sched_class) {
8875125e 1038 resched_curr(rq);
1e5a7405
PZ
1039 break;
1040 }
1041 }
1042 }
1043
1044 /*
1045 * A queue event has occurred, and we're going to schedule. In
1046 * this case, we can save a useless back to back clock update.
1047 */
da0c1e65 1048 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1049 rq->skip_clock_update = 1;
1050}
1051
1da177e4 1052#ifdef CONFIG_SMP
dd41f596 1053void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1054{
e2912009
PZ
1055#ifdef CONFIG_SCHED_DEBUG
1056 /*
1057 * We should never call set_task_cpu() on a blocked task,
1058 * ttwu() will sort out the placement.
1059 */
077614ee 1060 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1061 !p->on_rq);
0122ec5b
PZ
1062
1063#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1064 /*
1065 * The caller should hold either p->pi_lock or rq->lock, when changing
1066 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1067 *
1068 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1069 * see task_group().
6c6c54e1
PZ
1070 *
1071 * Furthermore, all task_rq users should acquire both locks, see
1072 * task_rq_lock().
1073 */
0122ec5b
PZ
1074 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1075 lockdep_is_held(&task_rq(p)->lock)));
1076#endif
e2912009
PZ
1077#endif
1078
de1d7286 1079 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1080
0c69774e 1081 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1082 if (p->sched_class->migrate_task_rq)
1083 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1084 p->se.nr_migrations++;
a8b0ca17 1085 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1086 }
dd41f596
IM
1087
1088 __set_task_cpu(p, new_cpu);
c65cc870
IM
1089}
1090
ac66f547
PZ
1091static void __migrate_swap_task(struct task_struct *p, int cpu)
1092{
da0c1e65 1093 if (task_on_rq_queued(p)) {
ac66f547
PZ
1094 struct rq *src_rq, *dst_rq;
1095
1096 src_rq = task_rq(p);
1097 dst_rq = cpu_rq(cpu);
1098
1099 deactivate_task(src_rq, p, 0);
1100 set_task_cpu(p, cpu);
1101 activate_task(dst_rq, p, 0);
1102 check_preempt_curr(dst_rq, p, 0);
1103 } else {
1104 /*
1105 * Task isn't running anymore; make it appear like we migrated
1106 * it before it went to sleep. This means on wakeup we make the
1107 * previous cpu our targer instead of where it really is.
1108 */
1109 p->wake_cpu = cpu;
1110 }
1111}
1112
1113struct migration_swap_arg {
1114 struct task_struct *src_task, *dst_task;
1115 int src_cpu, dst_cpu;
1116};
1117
1118static int migrate_swap_stop(void *data)
1119{
1120 struct migration_swap_arg *arg = data;
1121 struct rq *src_rq, *dst_rq;
1122 int ret = -EAGAIN;
1123
1124 src_rq = cpu_rq(arg->src_cpu);
1125 dst_rq = cpu_rq(arg->dst_cpu);
1126
74602315
PZ
1127 double_raw_lock(&arg->src_task->pi_lock,
1128 &arg->dst_task->pi_lock);
ac66f547
PZ
1129 double_rq_lock(src_rq, dst_rq);
1130 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1131 goto unlock;
1132
1133 if (task_cpu(arg->src_task) != arg->src_cpu)
1134 goto unlock;
1135
1136 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1137 goto unlock;
1138
1139 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1140 goto unlock;
1141
1142 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1143 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1144
1145 ret = 0;
1146
1147unlock:
1148 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1149 raw_spin_unlock(&arg->dst_task->pi_lock);
1150 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1151
1152 return ret;
1153}
1154
1155/*
1156 * Cross migrate two tasks
1157 */
1158int migrate_swap(struct task_struct *cur, struct task_struct *p)
1159{
1160 struct migration_swap_arg arg;
1161 int ret = -EINVAL;
1162
ac66f547
PZ
1163 arg = (struct migration_swap_arg){
1164 .src_task = cur,
1165 .src_cpu = task_cpu(cur),
1166 .dst_task = p,
1167 .dst_cpu = task_cpu(p),
1168 };
1169
1170 if (arg.src_cpu == arg.dst_cpu)
1171 goto out;
1172
6acce3ef
PZ
1173 /*
1174 * These three tests are all lockless; this is OK since all of them
1175 * will be re-checked with proper locks held further down the line.
1176 */
ac66f547
PZ
1177 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1178 goto out;
1179
1180 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1181 goto out;
1182
1183 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1184 goto out;
1185
286549dc 1186 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1187 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1188
1189out:
ac66f547
PZ
1190 return ret;
1191}
1192
969c7921 1193struct migration_arg {
36c8b586 1194 struct task_struct *task;
1da177e4 1195 int dest_cpu;
70b97a7f 1196};
1da177e4 1197
969c7921
TH
1198static int migration_cpu_stop(void *data);
1199
1da177e4
LT
1200/*
1201 * wait_task_inactive - wait for a thread to unschedule.
1202 *
85ba2d86
RM
1203 * If @match_state is nonzero, it's the @p->state value just checked and
1204 * not expected to change. If it changes, i.e. @p might have woken up,
1205 * then return zero. When we succeed in waiting for @p to be off its CPU,
1206 * we return a positive number (its total switch count). If a second call
1207 * a short while later returns the same number, the caller can be sure that
1208 * @p has remained unscheduled the whole time.
1209 *
1da177e4
LT
1210 * The caller must ensure that the task *will* unschedule sometime soon,
1211 * else this function might spin for a *long* time. This function can't
1212 * be called with interrupts off, or it may introduce deadlock with
1213 * smp_call_function() if an IPI is sent by the same process we are
1214 * waiting to become inactive.
1215 */
85ba2d86 1216unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1217{
1218 unsigned long flags;
da0c1e65 1219 int running, queued;
85ba2d86 1220 unsigned long ncsw;
70b97a7f 1221 struct rq *rq;
1da177e4 1222
3a5c359a
AK
1223 for (;;) {
1224 /*
1225 * We do the initial early heuristics without holding
1226 * any task-queue locks at all. We'll only try to get
1227 * the runqueue lock when things look like they will
1228 * work out!
1229 */
1230 rq = task_rq(p);
fa490cfd 1231
3a5c359a
AK
1232 /*
1233 * If the task is actively running on another CPU
1234 * still, just relax and busy-wait without holding
1235 * any locks.
1236 *
1237 * NOTE! Since we don't hold any locks, it's not
1238 * even sure that "rq" stays as the right runqueue!
1239 * But we don't care, since "task_running()" will
1240 * return false if the runqueue has changed and p
1241 * is actually now running somewhere else!
1242 */
85ba2d86
RM
1243 while (task_running(rq, p)) {
1244 if (match_state && unlikely(p->state != match_state))
1245 return 0;
3a5c359a 1246 cpu_relax();
85ba2d86 1247 }
fa490cfd 1248
3a5c359a
AK
1249 /*
1250 * Ok, time to look more closely! We need the rq
1251 * lock now, to be *sure*. If we're wrong, we'll
1252 * just go back and repeat.
1253 */
1254 rq = task_rq_lock(p, &flags);
27a9da65 1255 trace_sched_wait_task(p);
3a5c359a 1256 running = task_running(rq, p);
da0c1e65 1257 queued = task_on_rq_queued(p);
85ba2d86 1258 ncsw = 0;
f31e11d8 1259 if (!match_state || p->state == match_state)
93dcf55f 1260 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1261 task_rq_unlock(rq, p, &flags);
fa490cfd 1262
85ba2d86
RM
1263 /*
1264 * If it changed from the expected state, bail out now.
1265 */
1266 if (unlikely(!ncsw))
1267 break;
1268
3a5c359a
AK
1269 /*
1270 * Was it really running after all now that we
1271 * checked with the proper locks actually held?
1272 *
1273 * Oops. Go back and try again..
1274 */
1275 if (unlikely(running)) {
1276 cpu_relax();
1277 continue;
1278 }
fa490cfd 1279
3a5c359a
AK
1280 /*
1281 * It's not enough that it's not actively running,
1282 * it must be off the runqueue _entirely_, and not
1283 * preempted!
1284 *
80dd99b3 1285 * So if it was still runnable (but just not actively
3a5c359a
AK
1286 * running right now), it's preempted, and we should
1287 * yield - it could be a while.
1288 */
da0c1e65 1289 if (unlikely(queued)) {
8eb90c30
TG
1290 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1291
1292 set_current_state(TASK_UNINTERRUPTIBLE);
1293 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1294 continue;
1295 }
fa490cfd 1296
3a5c359a
AK
1297 /*
1298 * Ahh, all good. It wasn't running, and it wasn't
1299 * runnable, which means that it will never become
1300 * running in the future either. We're all done!
1301 */
1302 break;
1303 }
85ba2d86
RM
1304
1305 return ncsw;
1da177e4
LT
1306}
1307
1308/***
1309 * kick_process - kick a running thread to enter/exit the kernel
1310 * @p: the to-be-kicked thread
1311 *
1312 * Cause a process which is running on another CPU to enter
1313 * kernel-mode, without any delay. (to get signals handled.)
1314 *
25985edc 1315 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1316 * because all it wants to ensure is that the remote task enters
1317 * the kernel. If the IPI races and the task has been migrated
1318 * to another CPU then no harm is done and the purpose has been
1319 * achieved as well.
1320 */
36c8b586 1321void kick_process(struct task_struct *p)
1da177e4
LT
1322{
1323 int cpu;
1324
1325 preempt_disable();
1326 cpu = task_cpu(p);
1327 if ((cpu != smp_processor_id()) && task_curr(p))
1328 smp_send_reschedule(cpu);
1329 preempt_enable();
1330}
b43e3521 1331EXPORT_SYMBOL_GPL(kick_process);
476d139c 1332#endif /* CONFIG_SMP */
1da177e4 1333
970b13ba 1334#ifdef CONFIG_SMP
30da688e 1335/*
013fdb80 1336 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1337 */
5da9a0fb
PZ
1338static int select_fallback_rq(int cpu, struct task_struct *p)
1339{
aa00d89c
TC
1340 int nid = cpu_to_node(cpu);
1341 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1342 enum { cpuset, possible, fail } state = cpuset;
1343 int dest_cpu;
5da9a0fb 1344
aa00d89c
TC
1345 /*
1346 * If the node that the cpu is on has been offlined, cpu_to_node()
1347 * will return -1. There is no cpu on the node, and we should
1348 * select the cpu on the other node.
1349 */
1350 if (nid != -1) {
1351 nodemask = cpumask_of_node(nid);
1352
1353 /* Look for allowed, online CPU in same node. */
1354 for_each_cpu(dest_cpu, nodemask) {
1355 if (!cpu_online(dest_cpu))
1356 continue;
1357 if (!cpu_active(dest_cpu))
1358 continue;
1359 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1360 return dest_cpu;
1361 }
2baab4e9 1362 }
5da9a0fb 1363
2baab4e9
PZ
1364 for (;;) {
1365 /* Any allowed, online CPU? */
e3831edd 1366 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1367 if (!cpu_online(dest_cpu))
1368 continue;
1369 if (!cpu_active(dest_cpu))
1370 continue;
1371 goto out;
1372 }
5da9a0fb 1373
2baab4e9
PZ
1374 switch (state) {
1375 case cpuset:
1376 /* No more Mr. Nice Guy. */
1377 cpuset_cpus_allowed_fallback(p);
1378 state = possible;
1379 break;
1380
1381 case possible:
1382 do_set_cpus_allowed(p, cpu_possible_mask);
1383 state = fail;
1384 break;
1385
1386 case fail:
1387 BUG();
1388 break;
1389 }
1390 }
1391
1392out:
1393 if (state != cpuset) {
1394 /*
1395 * Don't tell them about moving exiting tasks or
1396 * kernel threads (both mm NULL), since they never
1397 * leave kernel.
1398 */
1399 if (p->mm && printk_ratelimit()) {
aac74dc4 1400 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1401 task_pid_nr(p), p->comm, cpu);
1402 }
5da9a0fb
PZ
1403 }
1404
1405 return dest_cpu;
1406}
1407
e2912009 1408/*
013fdb80 1409 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1410 */
970b13ba 1411static inline
ac66f547 1412int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1413{
6c1d9410
WL
1414 if (p->nr_cpus_allowed > 1)
1415 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1416
1417 /*
1418 * In order not to call set_task_cpu() on a blocking task we need
1419 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1420 * cpu.
1421 *
1422 * Since this is common to all placement strategies, this lives here.
1423 *
1424 * [ this allows ->select_task() to simply return task_cpu(p) and
1425 * not worry about this generic constraint ]
1426 */
fa17b507 1427 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1428 !cpu_online(cpu)))
5da9a0fb 1429 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1430
1431 return cpu;
970b13ba 1432}
09a40af5
MG
1433
1434static void update_avg(u64 *avg, u64 sample)
1435{
1436 s64 diff = sample - *avg;
1437 *avg += diff >> 3;
1438}
970b13ba
PZ
1439#endif
1440
d7c01d27 1441static void
b84cb5df 1442ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1443{
d7c01d27 1444#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1445 struct rq *rq = this_rq();
1446
d7c01d27
PZ
1447#ifdef CONFIG_SMP
1448 int this_cpu = smp_processor_id();
1449
1450 if (cpu == this_cpu) {
1451 schedstat_inc(rq, ttwu_local);
1452 schedstat_inc(p, se.statistics.nr_wakeups_local);
1453 } else {
1454 struct sched_domain *sd;
1455
1456 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1457 rcu_read_lock();
d7c01d27
PZ
1458 for_each_domain(this_cpu, sd) {
1459 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1460 schedstat_inc(sd, ttwu_wake_remote);
1461 break;
1462 }
1463 }
057f3fad 1464 rcu_read_unlock();
d7c01d27 1465 }
f339b9dc
PZ
1466
1467 if (wake_flags & WF_MIGRATED)
1468 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1469
d7c01d27
PZ
1470#endif /* CONFIG_SMP */
1471
1472 schedstat_inc(rq, ttwu_count);
9ed3811a 1473 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1474
1475 if (wake_flags & WF_SYNC)
9ed3811a 1476 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1477
d7c01d27
PZ
1478#endif /* CONFIG_SCHEDSTATS */
1479}
1480
1481static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1482{
9ed3811a 1483 activate_task(rq, p, en_flags);
da0c1e65 1484 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1485
1486 /* if a worker is waking up, notify workqueue */
1487 if (p->flags & PF_WQ_WORKER)
1488 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1489}
1490
23f41eeb
PZ
1491/*
1492 * Mark the task runnable and perform wakeup-preemption.
1493 */
89363381 1494static void
23f41eeb 1495ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1496{
9ed3811a 1497 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1498 trace_sched_wakeup(p, true);
9ed3811a
TH
1499
1500 p->state = TASK_RUNNING;
1501#ifdef CONFIG_SMP
1502 if (p->sched_class->task_woken)
1503 p->sched_class->task_woken(rq, p);
1504
e69c6341 1505 if (rq->idle_stamp) {
78becc27 1506 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1507 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1508
abfafa54
JL
1509 update_avg(&rq->avg_idle, delta);
1510
1511 if (rq->avg_idle > max)
9ed3811a 1512 rq->avg_idle = max;
abfafa54 1513
9ed3811a
TH
1514 rq->idle_stamp = 0;
1515 }
1516#endif
1517}
1518
c05fbafb
PZ
1519static void
1520ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1521{
1522#ifdef CONFIG_SMP
1523 if (p->sched_contributes_to_load)
1524 rq->nr_uninterruptible--;
1525#endif
1526
1527 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1528 ttwu_do_wakeup(rq, p, wake_flags);
1529}
1530
1531/*
1532 * Called in case the task @p isn't fully descheduled from its runqueue,
1533 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1534 * since all we need to do is flip p->state to TASK_RUNNING, since
1535 * the task is still ->on_rq.
1536 */
1537static int ttwu_remote(struct task_struct *p, int wake_flags)
1538{
1539 struct rq *rq;
1540 int ret = 0;
1541
1542 rq = __task_rq_lock(p);
da0c1e65 1543 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1544 /* check_preempt_curr() may use rq clock */
1545 update_rq_clock(rq);
c05fbafb
PZ
1546 ttwu_do_wakeup(rq, p, wake_flags);
1547 ret = 1;
1548 }
1549 __task_rq_unlock(rq);
1550
1551 return ret;
1552}
1553
317f3941 1554#ifdef CONFIG_SMP
e3baac47 1555void sched_ttwu_pending(void)
317f3941
PZ
1556{
1557 struct rq *rq = this_rq();
fa14ff4a
PZ
1558 struct llist_node *llist = llist_del_all(&rq->wake_list);
1559 struct task_struct *p;
e3baac47 1560 unsigned long flags;
317f3941 1561
e3baac47
PZ
1562 if (!llist)
1563 return;
1564
1565 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1566
fa14ff4a
PZ
1567 while (llist) {
1568 p = llist_entry(llist, struct task_struct, wake_entry);
1569 llist = llist_next(llist);
317f3941
PZ
1570 ttwu_do_activate(rq, p, 0);
1571 }
1572
e3baac47 1573 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1574}
1575
1576void scheduler_ipi(void)
1577{
f27dde8d
PZ
1578 /*
1579 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1580 * TIF_NEED_RESCHED remotely (for the first time) will also send
1581 * this IPI.
1582 */
8cb75e0c 1583 preempt_fold_need_resched();
f27dde8d 1584
fd2ac4f4 1585 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1586 return;
1587
1588 /*
1589 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1590 * traditionally all their work was done from the interrupt return
1591 * path. Now that we actually do some work, we need to make sure
1592 * we do call them.
1593 *
1594 * Some archs already do call them, luckily irq_enter/exit nest
1595 * properly.
1596 *
1597 * Arguably we should visit all archs and update all handlers,
1598 * however a fair share of IPIs are still resched only so this would
1599 * somewhat pessimize the simple resched case.
1600 */
1601 irq_enter();
fa14ff4a 1602 sched_ttwu_pending();
ca38062e
SS
1603
1604 /*
1605 * Check if someone kicked us for doing the nohz idle load balance.
1606 */
873b4c65 1607 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1608 this_rq()->idle_balance = 1;
ca38062e 1609 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1610 }
c5d753a5 1611 irq_exit();
317f3941
PZ
1612}
1613
1614static void ttwu_queue_remote(struct task_struct *p, int cpu)
1615{
e3baac47
PZ
1616 struct rq *rq = cpu_rq(cpu);
1617
1618 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1619 if (!set_nr_if_polling(rq->idle))
1620 smp_send_reschedule(cpu);
1621 else
1622 trace_sched_wake_idle_without_ipi(cpu);
1623 }
317f3941 1624}
d6aa8f85 1625
f6be8af1
CL
1626void wake_up_if_idle(int cpu)
1627{
1628 struct rq *rq = cpu_rq(cpu);
1629 unsigned long flags;
1630
fd7de1e8
AL
1631 rcu_read_lock();
1632
1633 if (!is_idle_task(rcu_dereference(rq->curr)))
1634 goto out;
f6be8af1
CL
1635
1636 if (set_nr_if_polling(rq->idle)) {
1637 trace_sched_wake_idle_without_ipi(cpu);
1638 } else {
1639 raw_spin_lock_irqsave(&rq->lock, flags);
1640 if (is_idle_task(rq->curr))
1641 smp_send_reschedule(cpu);
1642 /* Else cpu is not in idle, do nothing here */
1643 raw_spin_unlock_irqrestore(&rq->lock, flags);
1644 }
fd7de1e8
AL
1645
1646out:
1647 rcu_read_unlock();
f6be8af1
CL
1648}
1649
39be3501 1650bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1651{
1652 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1653}
d6aa8f85 1654#endif /* CONFIG_SMP */
317f3941 1655
c05fbafb
PZ
1656static void ttwu_queue(struct task_struct *p, int cpu)
1657{
1658 struct rq *rq = cpu_rq(cpu);
1659
17d9f311 1660#if defined(CONFIG_SMP)
39be3501 1661 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1662 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1663 ttwu_queue_remote(p, cpu);
1664 return;
1665 }
1666#endif
1667
c05fbafb
PZ
1668 raw_spin_lock(&rq->lock);
1669 ttwu_do_activate(rq, p, 0);
1670 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1671}
1672
1673/**
1da177e4 1674 * try_to_wake_up - wake up a thread
9ed3811a 1675 * @p: the thread to be awakened
1da177e4 1676 * @state: the mask of task states that can be woken
9ed3811a 1677 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1678 *
1679 * Put it on the run-queue if it's not already there. The "current"
1680 * thread is always on the run-queue (except when the actual
1681 * re-schedule is in progress), and as such you're allowed to do
1682 * the simpler "current->state = TASK_RUNNING" to mark yourself
1683 * runnable without the overhead of this.
1684 *
e69f6186 1685 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1686 * or @state didn't match @p's state.
1da177e4 1687 */
e4a52bcb
PZ
1688static int
1689try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1690{
1da177e4 1691 unsigned long flags;
c05fbafb 1692 int cpu, success = 0;
2398f2c6 1693
e0acd0a6
ON
1694 /*
1695 * If we are going to wake up a thread waiting for CONDITION we
1696 * need to ensure that CONDITION=1 done by the caller can not be
1697 * reordered with p->state check below. This pairs with mb() in
1698 * set_current_state() the waiting thread does.
1699 */
1700 smp_mb__before_spinlock();
013fdb80 1701 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1702 if (!(p->state & state))
1da177e4
LT
1703 goto out;
1704
c05fbafb 1705 success = 1; /* we're going to change ->state */
1da177e4 1706 cpu = task_cpu(p);
1da177e4 1707
c05fbafb
PZ
1708 if (p->on_rq && ttwu_remote(p, wake_flags))
1709 goto stat;
1da177e4 1710
1da177e4 1711#ifdef CONFIG_SMP
e9c84311 1712 /*
c05fbafb
PZ
1713 * If the owning (remote) cpu is still in the middle of schedule() with
1714 * this task as prev, wait until its done referencing the task.
e9c84311 1715 */
f3e94786 1716 while (p->on_cpu)
e4a52bcb 1717 cpu_relax();
0970d299 1718 /*
e4a52bcb 1719 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1720 */
e4a52bcb 1721 smp_rmb();
1da177e4 1722
a8e4f2ea 1723 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1724 p->state = TASK_WAKING;
e7693a36 1725
e4a52bcb 1726 if (p->sched_class->task_waking)
74f8e4b2 1727 p->sched_class->task_waking(p);
efbbd05a 1728
ac66f547 1729 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1730 if (task_cpu(p) != cpu) {
1731 wake_flags |= WF_MIGRATED;
e4a52bcb 1732 set_task_cpu(p, cpu);
f339b9dc 1733 }
1da177e4 1734#endif /* CONFIG_SMP */
1da177e4 1735
c05fbafb
PZ
1736 ttwu_queue(p, cpu);
1737stat:
b84cb5df 1738 ttwu_stat(p, cpu, wake_flags);
1da177e4 1739out:
013fdb80 1740 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1741
1742 return success;
1743}
1744
21aa9af0
TH
1745/**
1746 * try_to_wake_up_local - try to wake up a local task with rq lock held
1747 * @p: the thread to be awakened
1748 *
2acca55e 1749 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1750 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1751 * the current task.
21aa9af0
TH
1752 */
1753static void try_to_wake_up_local(struct task_struct *p)
1754{
1755 struct rq *rq = task_rq(p);
21aa9af0 1756
383efcd0
TH
1757 if (WARN_ON_ONCE(rq != this_rq()) ||
1758 WARN_ON_ONCE(p == current))
1759 return;
1760
21aa9af0
TH
1761 lockdep_assert_held(&rq->lock);
1762
2acca55e
PZ
1763 if (!raw_spin_trylock(&p->pi_lock)) {
1764 raw_spin_unlock(&rq->lock);
1765 raw_spin_lock(&p->pi_lock);
1766 raw_spin_lock(&rq->lock);
1767 }
1768
21aa9af0 1769 if (!(p->state & TASK_NORMAL))
2acca55e 1770 goto out;
21aa9af0 1771
da0c1e65 1772 if (!task_on_rq_queued(p))
d7c01d27
PZ
1773 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1774
23f41eeb 1775 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1776 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1777out:
1778 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1779}
1780
50fa610a
DH
1781/**
1782 * wake_up_process - Wake up a specific process
1783 * @p: The process to be woken up.
1784 *
1785 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1786 * processes.
1787 *
1788 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1789 *
1790 * It may be assumed that this function implies a write memory barrier before
1791 * changing the task state if and only if any tasks are woken up.
1792 */
7ad5b3a5 1793int wake_up_process(struct task_struct *p)
1da177e4 1794{
9067ac85
ON
1795 WARN_ON(task_is_stopped_or_traced(p));
1796 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1797}
1da177e4
LT
1798EXPORT_SYMBOL(wake_up_process);
1799
7ad5b3a5 1800int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1801{
1802 return try_to_wake_up(p, state, 0);
1803}
1804
a5e7be3b
JL
1805/*
1806 * This function clears the sched_dl_entity static params.
1807 */
1808void __dl_clear_params(struct task_struct *p)
1809{
1810 struct sched_dl_entity *dl_se = &p->dl;
1811
1812 dl_se->dl_runtime = 0;
1813 dl_se->dl_deadline = 0;
1814 dl_se->dl_period = 0;
1815 dl_se->flags = 0;
1816 dl_se->dl_bw = 0;
1817}
1818
1da177e4
LT
1819/*
1820 * Perform scheduler related setup for a newly forked process p.
1821 * p is forked by current.
dd41f596
IM
1822 *
1823 * __sched_fork() is basic setup used by init_idle() too:
1824 */
5e1576ed 1825static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1826{
fd2f4419
PZ
1827 p->on_rq = 0;
1828
1829 p->se.on_rq = 0;
dd41f596
IM
1830 p->se.exec_start = 0;
1831 p->se.sum_exec_runtime = 0;
f6cf891c 1832 p->se.prev_sum_exec_runtime = 0;
6c594c21 1833 p->se.nr_migrations = 0;
da7a735e 1834 p->se.vruntime = 0;
fd2f4419 1835 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1836
1837#ifdef CONFIG_SCHEDSTATS
41acab88 1838 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1839#endif
476d139c 1840
aab03e05
DF
1841 RB_CLEAR_NODE(&p->dl.rb_node);
1842 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1843 __dl_clear_params(p);
aab03e05 1844
fa717060 1845 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1846
e107be36
AK
1847#ifdef CONFIG_PREEMPT_NOTIFIERS
1848 INIT_HLIST_HEAD(&p->preempt_notifiers);
1849#endif
cbee9f88
PZ
1850
1851#ifdef CONFIG_NUMA_BALANCING
1852 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1853 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1854 p->mm->numa_scan_seq = 0;
1855 }
1856
5e1576ed
RR
1857 if (clone_flags & CLONE_VM)
1858 p->numa_preferred_nid = current->numa_preferred_nid;
1859 else
1860 p->numa_preferred_nid = -1;
1861
cbee9f88
PZ
1862 p->node_stamp = 0ULL;
1863 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1864 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1865 p->numa_work.next = &p->numa_work;
44dba3d5 1866 p->numa_faults = NULL;
7e2703e6
RR
1867 p->last_task_numa_placement = 0;
1868 p->last_sum_exec_runtime = 0;
8c8a743c 1869
8c8a743c 1870 p->numa_group = NULL;
cbee9f88 1871#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1872}
1873
1a687c2e 1874#ifdef CONFIG_NUMA_BALANCING
3105b86a 1875#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1876void set_numabalancing_state(bool enabled)
1877{
1878 if (enabled)
1879 sched_feat_set("NUMA");
1880 else
1881 sched_feat_set("NO_NUMA");
1882}
3105b86a
MG
1883#else
1884__read_mostly bool numabalancing_enabled;
1885
1886void set_numabalancing_state(bool enabled)
1887{
1888 numabalancing_enabled = enabled;
dd41f596 1889}
3105b86a 1890#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1891
1892#ifdef CONFIG_PROC_SYSCTL
1893int sysctl_numa_balancing(struct ctl_table *table, int write,
1894 void __user *buffer, size_t *lenp, loff_t *ppos)
1895{
1896 struct ctl_table t;
1897 int err;
1898 int state = numabalancing_enabled;
1899
1900 if (write && !capable(CAP_SYS_ADMIN))
1901 return -EPERM;
1902
1903 t = *table;
1904 t.data = &state;
1905 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1906 if (err < 0)
1907 return err;
1908 if (write)
1909 set_numabalancing_state(state);
1910 return err;
1911}
1912#endif
1913#endif
dd41f596
IM
1914
1915/*
1916 * fork()/clone()-time setup:
1917 */
aab03e05 1918int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1919{
0122ec5b 1920 unsigned long flags;
dd41f596
IM
1921 int cpu = get_cpu();
1922
5e1576ed 1923 __sched_fork(clone_flags, p);
06b83b5f 1924 /*
0017d735 1925 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1926 * nobody will actually run it, and a signal or other external
1927 * event cannot wake it up and insert it on the runqueue either.
1928 */
0017d735 1929 p->state = TASK_RUNNING;
dd41f596 1930
c350a04e
MG
1931 /*
1932 * Make sure we do not leak PI boosting priority to the child.
1933 */
1934 p->prio = current->normal_prio;
1935
b9dc29e7
MG
1936 /*
1937 * Revert to default priority/policy on fork if requested.
1938 */
1939 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1940 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1941 p->policy = SCHED_NORMAL;
6c697bdf 1942 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1943 p->rt_priority = 0;
1944 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1945 p->static_prio = NICE_TO_PRIO(0);
1946
1947 p->prio = p->normal_prio = __normal_prio(p);
1948 set_load_weight(p);
6c697bdf 1949
b9dc29e7
MG
1950 /*
1951 * We don't need the reset flag anymore after the fork. It has
1952 * fulfilled its duty:
1953 */
1954 p->sched_reset_on_fork = 0;
1955 }
ca94c442 1956
aab03e05
DF
1957 if (dl_prio(p->prio)) {
1958 put_cpu();
1959 return -EAGAIN;
1960 } else if (rt_prio(p->prio)) {
1961 p->sched_class = &rt_sched_class;
1962 } else {
2ddbf952 1963 p->sched_class = &fair_sched_class;
aab03e05 1964 }
b29739f9 1965
cd29fe6f
PZ
1966 if (p->sched_class->task_fork)
1967 p->sched_class->task_fork(p);
1968
86951599
PZ
1969 /*
1970 * The child is not yet in the pid-hash so no cgroup attach races,
1971 * and the cgroup is pinned to this child due to cgroup_fork()
1972 * is ran before sched_fork().
1973 *
1974 * Silence PROVE_RCU.
1975 */
0122ec5b 1976 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1977 set_task_cpu(p, cpu);
0122ec5b 1978 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1979
52f17b6c 1980#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1981 if (likely(sched_info_on()))
52f17b6c 1982 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1983#endif
3ca7a440
PZ
1984#if defined(CONFIG_SMP)
1985 p->on_cpu = 0;
4866cde0 1986#endif
01028747 1987 init_task_preempt_count(p);
806c09a7 1988#ifdef CONFIG_SMP
917b627d 1989 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1990 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1991#endif
917b627d 1992
476d139c 1993 put_cpu();
aab03e05 1994 return 0;
1da177e4
LT
1995}
1996
332ac17e
DF
1997unsigned long to_ratio(u64 period, u64 runtime)
1998{
1999 if (runtime == RUNTIME_INF)
2000 return 1ULL << 20;
2001
2002 /*
2003 * Doing this here saves a lot of checks in all
2004 * the calling paths, and returning zero seems
2005 * safe for them anyway.
2006 */
2007 if (period == 0)
2008 return 0;
2009
2010 return div64_u64(runtime << 20, period);
2011}
2012
2013#ifdef CONFIG_SMP
2014inline struct dl_bw *dl_bw_of(int i)
2015{
66339c31
KT
2016 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2017 "sched RCU must be held");
332ac17e
DF
2018 return &cpu_rq(i)->rd->dl_bw;
2019}
2020
de212f18 2021static inline int dl_bw_cpus(int i)
332ac17e 2022{
de212f18
PZ
2023 struct root_domain *rd = cpu_rq(i)->rd;
2024 int cpus = 0;
2025
66339c31
KT
2026 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2027 "sched RCU must be held");
de212f18
PZ
2028 for_each_cpu_and(i, rd->span, cpu_active_mask)
2029 cpus++;
2030
2031 return cpus;
332ac17e
DF
2032}
2033#else
2034inline struct dl_bw *dl_bw_of(int i)
2035{
2036 return &cpu_rq(i)->dl.dl_bw;
2037}
2038
de212f18 2039static inline int dl_bw_cpus(int i)
332ac17e
DF
2040{
2041 return 1;
2042}
2043#endif
2044
332ac17e
DF
2045/*
2046 * We must be sure that accepting a new task (or allowing changing the
2047 * parameters of an existing one) is consistent with the bandwidth
2048 * constraints. If yes, this function also accordingly updates the currently
2049 * allocated bandwidth to reflect the new situation.
2050 *
2051 * This function is called while holding p's rq->lock.
2052 */
2053static int dl_overflow(struct task_struct *p, int policy,
2054 const struct sched_attr *attr)
2055{
2056
2057 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2058 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2059 u64 runtime = attr->sched_runtime;
2060 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2061 int cpus, err = -1;
332ac17e
DF
2062
2063 if (new_bw == p->dl.dl_bw)
2064 return 0;
2065
2066 /*
2067 * Either if a task, enters, leave, or stays -deadline but changes
2068 * its parameters, we may need to update accordingly the total
2069 * allocated bandwidth of the container.
2070 */
2071 raw_spin_lock(&dl_b->lock);
de212f18 2072 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2073 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2074 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2075 __dl_add(dl_b, new_bw);
2076 err = 0;
2077 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2078 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2079 __dl_clear(dl_b, p->dl.dl_bw);
2080 __dl_add(dl_b, new_bw);
2081 err = 0;
2082 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2083 __dl_clear(dl_b, p->dl.dl_bw);
2084 err = 0;
2085 }
2086 raw_spin_unlock(&dl_b->lock);
2087
2088 return err;
2089}
2090
2091extern void init_dl_bw(struct dl_bw *dl_b);
2092
1da177e4
LT
2093/*
2094 * wake_up_new_task - wake up a newly created task for the first time.
2095 *
2096 * This function will do some initial scheduler statistics housekeeping
2097 * that must be done for every newly created context, then puts the task
2098 * on the runqueue and wakes it.
2099 */
3e51e3ed 2100void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2101{
2102 unsigned long flags;
dd41f596 2103 struct rq *rq;
fabf318e 2104
ab2515c4 2105 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2106#ifdef CONFIG_SMP
2107 /*
2108 * Fork balancing, do it here and not earlier because:
2109 * - cpus_allowed can change in the fork path
2110 * - any previously selected cpu might disappear through hotplug
fabf318e 2111 */
ac66f547 2112 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2113#endif
2114
a75cdaa9
AS
2115 /* Initialize new task's runnable average */
2116 init_task_runnable_average(p);
ab2515c4 2117 rq = __task_rq_lock(p);
cd29fe6f 2118 activate_task(rq, p, 0);
da0c1e65 2119 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2120 trace_sched_wakeup_new(p, true);
a7558e01 2121 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2122#ifdef CONFIG_SMP
efbbd05a
PZ
2123 if (p->sched_class->task_woken)
2124 p->sched_class->task_woken(rq, p);
9a897c5a 2125#endif
0122ec5b 2126 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2127}
2128
e107be36
AK
2129#ifdef CONFIG_PREEMPT_NOTIFIERS
2130
2131/**
80dd99b3 2132 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2133 * @notifier: notifier struct to register
e107be36
AK
2134 */
2135void preempt_notifier_register(struct preempt_notifier *notifier)
2136{
2137 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2138}
2139EXPORT_SYMBOL_GPL(preempt_notifier_register);
2140
2141/**
2142 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2143 * @notifier: notifier struct to unregister
e107be36
AK
2144 *
2145 * This is safe to call from within a preemption notifier.
2146 */
2147void preempt_notifier_unregister(struct preempt_notifier *notifier)
2148{
2149 hlist_del(&notifier->link);
2150}
2151EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2152
2153static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2154{
2155 struct preempt_notifier *notifier;
e107be36 2156
b67bfe0d 2157 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2158 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2159}
2160
2161static void
2162fire_sched_out_preempt_notifiers(struct task_struct *curr,
2163 struct task_struct *next)
2164{
2165 struct preempt_notifier *notifier;
e107be36 2166
b67bfe0d 2167 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2168 notifier->ops->sched_out(notifier, next);
2169}
2170
6d6bc0ad 2171#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2172
2173static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2174{
2175}
2176
2177static void
2178fire_sched_out_preempt_notifiers(struct task_struct *curr,
2179 struct task_struct *next)
2180{
2181}
2182
6d6bc0ad 2183#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2184
4866cde0
NP
2185/**
2186 * prepare_task_switch - prepare to switch tasks
2187 * @rq: the runqueue preparing to switch
421cee29 2188 * @prev: the current task that is being switched out
4866cde0
NP
2189 * @next: the task we are going to switch to.
2190 *
2191 * This is called with the rq lock held and interrupts off. It must
2192 * be paired with a subsequent finish_task_switch after the context
2193 * switch.
2194 *
2195 * prepare_task_switch sets up locking and calls architecture specific
2196 * hooks.
2197 */
e107be36
AK
2198static inline void
2199prepare_task_switch(struct rq *rq, struct task_struct *prev,
2200 struct task_struct *next)
4866cde0 2201{
895dd92c 2202 trace_sched_switch(prev, next);
43148951 2203 sched_info_switch(rq, prev, next);
fe4b04fa 2204 perf_event_task_sched_out(prev, next);
e107be36 2205 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2206 prepare_lock_switch(rq, next);
2207 prepare_arch_switch(next);
2208}
2209
1da177e4
LT
2210/**
2211 * finish_task_switch - clean up after a task-switch
2212 * @prev: the thread we just switched away from.
2213 *
4866cde0
NP
2214 * finish_task_switch must be called after the context switch, paired
2215 * with a prepare_task_switch call before the context switch.
2216 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2217 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2218 *
2219 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2220 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2221 * with the lock held can cause deadlocks; see schedule() for
2222 * details.)
dfa50b60
ON
2223 *
2224 * The context switch have flipped the stack from under us and restored the
2225 * local variables which were saved when this task called schedule() in the
2226 * past. prev == current is still correct but we need to recalculate this_rq
2227 * because prev may have moved to another CPU.
1da177e4 2228 */
dfa50b60 2229static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2230 __releases(rq->lock)
2231{
dfa50b60 2232 struct rq *rq = this_rq();
1da177e4 2233 struct mm_struct *mm = rq->prev_mm;
55a101f8 2234 long prev_state;
1da177e4
LT
2235
2236 rq->prev_mm = NULL;
2237
2238 /*
2239 * A task struct has one reference for the use as "current".
c394cc9f 2240 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2241 * schedule one last time. The schedule call will never return, and
2242 * the scheduled task must drop that reference.
c394cc9f 2243 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2244 * still held, otherwise prev could be scheduled on another cpu, die
2245 * there before we look at prev->state, and then the reference would
2246 * be dropped twice.
2247 * Manfred Spraul <manfred@colorfullife.com>
2248 */
55a101f8 2249 prev_state = prev->state;
bf9fae9f 2250 vtime_task_switch(prev);
4866cde0 2251 finish_arch_switch(prev);
a8d757ef 2252 perf_event_task_sched_in(prev, current);
4866cde0 2253 finish_lock_switch(rq, prev);
01f23e16 2254 finish_arch_post_lock_switch();
e8fa1362 2255
e107be36 2256 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2257 if (mm)
2258 mmdrop(mm);
c394cc9f 2259 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2260 if (prev->sched_class->task_dead)
2261 prev->sched_class->task_dead(prev);
2262
c6fd91f0 2263 /*
2264 * Remove function-return probe instances associated with this
2265 * task and put them back on the free list.
9761eea8 2266 */
c6fd91f0 2267 kprobe_flush_task(prev);
1da177e4 2268 put_task_struct(prev);
c6fd91f0 2269 }
99e5ada9
FW
2270
2271 tick_nohz_task_switch(current);
dfa50b60 2272 return rq;
1da177e4
LT
2273}
2274
3f029d3c
GH
2275#ifdef CONFIG_SMP
2276
3f029d3c
GH
2277/* rq->lock is NOT held, but preemption is disabled */
2278static inline void post_schedule(struct rq *rq)
2279{
2280 if (rq->post_schedule) {
2281 unsigned long flags;
2282
05fa785c 2283 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2284 if (rq->curr->sched_class->post_schedule)
2285 rq->curr->sched_class->post_schedule(rq);
05fa785c 2286 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2287
2288 rq->post_schedule = 0;
2289 }
2290}
2291
2292#else
da19ab51 2293
3f029d3c
GH
2294static inline void post_schedule(struct rq *rq)
2295{
1da177e4
LT
2296}
2297
3f029d3c
GH
2298#endif
2299
1da177e4
LT
2300/**
2301 * schedule_tail - first thing a freshly forked thread must call.
2302 * @prev: the thread we just switched away from.
2303 */
722a9f92 2304asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2305 __releases(rq->lock)
2306{
1a43a14a 2307 struct rq *rq;
da19ab51 2308
1a43a14a
ON
2309 /* finish_task_switch() drops rq->lock and enables preemtion */
2310 preempt_disable();
dfa50b60 2311 rq = finish_task_switch(prev);
3f029d3c 2312 post_schedule(rq);
1a43a14a 2313 preempt_enable();
70b97a7f 2314
1da177e4 2315 if (current->set_child_tid)
b488893a 2316 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2317}
2318
2319/*
dfa50b60 2320 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2321 */
dfa50b60 2322static inline struct rq *
70b97a7f 2323context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2324 struct task_struct *next)
1da177e4 2325{
dd41f596 2326 struct mm_struct *mm, *oldmm;
1da177e4 2327
e107be36 2328 prepare_task_switch(rq, prev, next);
fe4b04fa 2329
dd41f596
IM
2330 mm = next->mm;
2331 oldmm = prev->active_mm;
9226d125
ZA
2332 /*
2333 * For paravirt, this is coupled with an exit in switch_to to
2334 * combine the page table reload and the switch backend into
2335 * one hypercall.
2336 */
224101ed 2337 arch_start_context_switch(prev);
9226d125 2338
31915ab4 2339 if (!mm) {
1da177e4
LT
2340 next->active_mm = oldmm;
2341 atomic_inc(&oldmm->mm_count);
2342 enter_lazy_tlb(oldmm, next);
2343 } else
2344 switch_mm(oldmm, mm, next);
2345
31915ab4 2346 if (!prev->mm) {
1da177e4 2347 prev->active_mm = NULL;
1da177e4
LT
2348 rq->prev_mm = oldmm;
2349 }
3a5f5e48
IM
2350 /*
2351 * Since the runqueue lock will be released by the next
2352 * task (which is an invalid locking op but in the case
2353 * of the scheduler it's an obvious special-case), so we
2354 * do an early lockdep release here:
2355 */
8a25d5de 2356 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2357
91d1aa43 2358 context_tracking_task_switch(prev, next);
1da177e4
LT
2359 /* Here we just switch the register state and the stack. */
2360 switch_to(prev, next, prev);
dd41f596 2361 barrier();
dfa50b60
ON
2362
2363 return finish_task_switch(prev);
1da177e4
LT
2364}
2365
2366/*
1c3e8264 2367 * nr_running and nr_context_switches:
1da177e4
LT
2368 *
2369 * externally visible scheduler statistics: current number of runnable
1c3e8264 2370 * threads, total number of context switches performed since bootup.
1da177e4
LT
2371 */
2372unsigned long nr_running(void)
2373{
2374 unsigned long i, sum = 0;
2375
2376 for_each_online_cpu(i)
2377 sum += cpu_rq(i)->nr_running;
2378
2379 return sum;
f711f609 2380}
1da177e4 2381
2ee507c4
TC
2382/*
2383 * Check if only the current task is running on the cpu.
2384 */
2385bool single_task_running(void)
2386{
2387 if (cpu_rq(smp_processor_id())->nr_running == 1)
2388 return true;
2389 else
2390 return false;
2391}
2392EXPORT_SYMBOL(single_task_running);
2393
1da177e4 2394unsigned long long nr_context_switches(void)
46cb4b7c 2395{
cc94abfc
SR
2396 int i;
2397 unsigned long long sum = 0;
46cb4b7c 2398
0a945022 2399 for_each_possible_cpu(i)
1da177e4 2400 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2401
1da177e4
LT
2402 return sum;
2403}
483b4ee6 2404
1da177e4
LT
2405unsigned long nr_iowait(void)
2406{
2407 unsigned long i, sum = 0;
483b4ee6 2408
0a945022 2409 for_each_possible_cpu(i)
1da177e4 2410 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2411
1da177e4
LT
2412 return sum;
2413}
483b4ee6 2414
8c215bd3 2415unsigned long nr_iowait_cpu(int cpu)
69d25870 2416{
8c215bd3 2417 struct rq *this = cpu_rq(cpu);
69d25870
AV
2418 return atomic_read(&this->nr_iowait);
2419}
46cb4b7c 2420
372ba8cb
MG
2421void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2422{
2423 struct rq *this = this_rq();
2424 *nr_waiters = atomic_read(&this->nr_iowait);
2425 *load = this->cpu_load[0];
2426}
2427
dd41f596 2428#ifdef CONFIG_SMP
8a0be9ef 2429
46cb4b7c 2430/*
38022906
PZ
2431 * sched_exec - execve() is a valuable balancing opportunity, because at
2432 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2433 */
38022906 2434void sched_exec(void)
46cb4b7c 2435{
38022906 2436 struct task_struct *p = current;
1da177e4 2437 unsigned long flags;
0017d735 2438 int dest_cpu;
46cb4b7c 2439
8f42ced9 2440 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2441 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2442 if (dest_cpu == smp_processor_id())
2443 goto unlock;
38022906 2444
8f42ced9 2445 if (likely(cpu_active(dest_cpu))) {
969c7921 2446 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2447
8f42ced9
PZ
2448 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2449 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2450 return;
2451 }
0017d735 2452unlock:
8f42ced9 2453 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2454}
dd41f596 2455
1da177e4
LT
2456#endif
2457
1da177e4 2458DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2459DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2460
2461EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2462EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2463
c5f8d995
HS
2464/*
2465 * Return accounted runtime for the task.
2466 * In case the task is currently running, return the runtime plus current's
2467 * pending runtime that have not been accounted yet.
2468 */
2469unsigned long long task_sched_runtime(struct task_struct *p)
2470{
2471 unsigned long flags;
2472 struct rq *rq;
6e998916 2473 u64 ns;
c5f8d995 2474
911b2898
PZ
2475#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2476 /*
2477 * 64-bit doesn't need locks to atomically read a 64bit value.
2478 * So we have a optimization chance when the task's delta_exec is 0.
2479 * Reading ->on_cpu is racy, but this is ok.
2480 *
2481 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2482 * If we race with it entering cpu, unaccounted time is 0. This is
2483 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2484 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2485 * been accounted, so we're correct here as well.
911b2898 2486 */
da0c1e65 2487 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2488 return p->se.sum_exec_runtime;
2489#endif
2490
c5f8d995 2491 rq = task_rq_lock(p, &flags);
6e998916
SG
2492 /*
2493 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2494 * project cycles that may never be accounted to this
2495 * thread, breaking clock_gettime().
2496 */
2497 if (task_current(rq, p) && task_on_rq_queued(p)) {
2498 update_rq_clock(rq);
2499 p->sched_class->update_curr(rq);
2500 }
2501 ns = p->se.sum_exec_runtime;
0122ec5b 2502 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2503
2504 return ns;
2505}
48f24c4d 2506
7835b98b
CL
2507/*
2508 * This function gets called by the timer code, with HZ frequency.
2509 * We call it with interrupts disabled.
7835b98b
CL
2510 */
2511void scheduler_tick(void)
2512{
7835b98b
CL
2513 int cpu = smp_processor_id();
2514 struct rq *rq = cpu_rq(cpu);
dd41f596 2515 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2516
2517 sched_clock_tick();
dd41f596 2518
05fa785c 2519 raw_spin_lock(&rq->lock);
3e51f33f 2520 update_rq_clock(rq);
fa85ae24 2521 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2522 update_cpu_load_active(rq);
05fa785c 2523 raw_spin_unlock(&rq->lock);
7835b98b 2524
e9d2b064 2525 perf_event_task_tick();
e220d2dc 2526
e418e1c2 2527#ifdef CONFIG_SMP
6eb57e0d 2528 rq->idle_balance = idle_cpu(cpu);
7caff66f 2529 trigger_load_balance(rq);
e418e1c2 2530#endif
265f22a9 2531 rq_last_tick_reset(rq);
1da177e4
LT
2532}
2533
265f22a9
FW
2534#ifdef CONFIG_NO_HZ_FULL
2535/**
2536 * scheduler_tick_max_deferment
2537 *
2538 * Keep at least one tick per second when a single
2539 * active task is running because the scheduler doesn't
2540 * yet completely support full dynticks environment.
2541 *
2542 * This makes sure that uptime, CFS vruntime, load
2543 * balancing, etc... continue to move forward, even
2544 * with a very low granularity.
e69f6186
YB
2545 *
2546 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2547 */
2548u64 scheduler_tick_max_deferment(void)
2549{
2550 struct rq *rq = this_rq();
2551 unsigned long next, now = ACCESS_ONCE(jiffies);
2552
2553 next = rq->last_sched_tick + HZ;
2554
2555 if (time_before_eq(next, now))
2556 return 0;
2557
8fe8ff09 2558 return jiffies_to_nsecs(next - now);
1da177e4 2559}
265f22a9 2560#endif
1da177e4 2561
132380a0 2562notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2563{
2564 if (in_lock_functions(addr)) {
2565 addr = CALLER_ADDR2;
2566 if (in_lock_functions(addr))
2567 addr = CALLER_ADDR3;
2568 }
2569 return addr;
2570}
1da177e4 2571
7e49fcce
SR
2572#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2573 defined(CONFIG_PREEMPT_TRACER))
2574
edafe3a5 2575void preempt_count_add(int val)
1da177e4 2576{
6cd8a4bb 2577#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2578 /*
2579 * Underflow?
2580 */
9a11b49a
IM
2581 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2582 return;
6cd8a4bb 2583#endif
bdb43806 2584 __preempt_count_add(val);
6cd8a4bb 2585#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2586 /*
2587 * Spinlock count overflowing soon?
2588 */
33859f7f
MOS
2589 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2590 PREEMPT_MASK - 10);
6cd8a4bb 2591#endif
8f47b187
TG
2592 if (preempt_count() == val) {
2593 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2594#ifdef CONFIG_DEBUG_PREEMPT
2595 current->preempt_disable_ip = ip;
2596#endif
2597 trace_preempt_off(CALLER_ADDR0, ip);
2598 }
1da177e4 2599}
bdb43806 2600EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2601NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2602
edafe3a5 2603void preempt_count_sub(int val)
1da177e4 2604{
6cd8a4bb 2605#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2606 /*
2607 * Underflow?
2608 */
01e3eb82 2609 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2610 return;
1da177e4
LT
2611 /*
2612 * Is the spinlock portion underflowing?
2613 */
9a11b49a
IM
2614 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2615 !(preempt_count() & PREEMPT_MASK)))
2616 return;
6cd8a4bb 2617#endif
9a11b49a 2618
6cd8a4bb
SR
2619 if (preempt_count() == val)
2620 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2621 __preempt_count_sub(val);
1da177e4 2622}
bdb43806 2623EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2624NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2625
2626#endif
2627
2628/*
dd41f596 2629 * Print scheduling while atomic bug:
1da177e4 2630 */
dd41f596 2631static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2632{
664dfa65
DJ
2633 if (oops_in_progress)
2634 return;
2635
3df0fc5b
PZ
2636 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2637 prev->comm, prev->pid, preempt_count());
838225b4 2638
dd41f596 2639 debug_show_held_locks(prev);
e21f5b15 2640 print_modules();
dd41f596
IM
2641 if (irqs_disabled())
2642 print_irqtrace_events(prev);
8f47b187
TG
2643#ifdef CONFIG_DEBUG_PREEMPT
2644 if (in_atomic_preempt_off()) {
2645 pr_err("Preemption disabled at:");
2646 print_ip_sym(current->preempt_disable_ip);
2647 pr_cont("\n");
2648 }
2649#endif
6135fc1e 2650 dump_stack();
373d4d09 2651 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2652}
1da177e4 2653
dd41f596
IM
2654/*
2655 * Various schedule()-time debugging checks and statistics:
2656 */
2657static inline void schedule_debug(struct task_struct *prev)
2658{
0d9e2632
AT
2659#ifdef CONFIG_SCHED_STACK_END_CHECK
2660 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2661#endif
1da177e4 2662 /*
41a2d6cf 2663 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2664 * schedule() atomically, we ignore that path. Otherwise whine
2665 * if we are scheduling when we should not.
1da177e4 2666 */
192301e7 2667 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2668 __schedule_bug(prev);
b3fbab05 2669 rcu_sleep_check();
dd41f596 2670
1da177e4
LT
2671 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2672
2d72376b 2673 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2674}
2675
2676/*
2677 * Pick up the highest-prio task:
2678 */
2679static inline struct task_struct *
606dba2e 2680pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2681{
37e117c0 2682 const struct sched_class *class = &fair_sched_class;
dd41f596 2683 struct task_struct *p;
1da177e4
LT
2684
2685 /*
dd41f596
IM
2686 * Optimization: we know that if all tasks are in
2687 * the fair class we can call that function directly:
1da177e4 2688 */
37e117c0 2689 if (likely(prev->sched_class == class &&
38033c37 2690 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2691 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2692 if (unlikely(p == RETRY_TASK))
2693 goto again;
2694
2695 /* assumes fair_sched_class->next == idle_sched_class */
2696 if (unlikely(!p))
2697 p = idle_sched_class.pick_next_task(rq, prev);
2698
2699 return p;
1da177e4
LT
2700 }
2701
37e117c0 2702again:
34f971f6 2703 for_each_class(class) {
606dba2e 2704 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2705 if (p) {
2706 if (unlikely(p == RETRY_TASK))
2707 goto again;
dd41f596 2708 return p;
37e117c0 2709 }
dd41f596 2710 }
34f971f6
PZ
2711
2712 BUG(); /* the idle class will always have a runnable task */
dd41f596 2713}
1da177e4 2714
dd41f596 2715/*
c259e01a 2716 * __schedule() is the main scheduler function.
edde96ea
PE
2717 *
2718 * The main means of driving the scheduler and thus entering this function are:
2719 *
2720 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2721 *
2722 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2723 * paths. For example, see arch/x86/entry_64.S.
2724 *
2725 * To drive preemption between tasks, the scheduler sets the flag in timer
2726 * interrupt handler scheduler_tick().
2727 *
2728 * 3. Wakeups don't really cause entry into schedule(). They add a
2729 * task to the run-queue and that's it.
2730 *
2731 * Now, if the new task added to the run-queue preempts the current
2732 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2733 * called on the nearest possible occasion:
2734 *
2735 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2736 *
2737 * - in syscall or exception context, at the next outmost
2738 * preempt_enable(). (this might be as soon as the wake_up()'s
2739 * spin_unlock()!)
2740 *
2741 * - in IRQ context, return from interrupt-handler to
2742 * preemptible context
2743 *
2744 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2745 * then at the next:
2746 *
2747 * - cond_resched() call
2748 * - explicit schedule() call
2749 * - return from syscall or exception to user-space
2750 * - return from interrupt-handler to user-space
dd41f596 2751 */
c259e01a 2752static void __sched __schedule(void)
dd41f596
IM
2753{
2754 struct task_struct *prev, *next;
67ca7bde 2755 unsigned long *switch_count;
dd41f596 2756 struct rq *rq;
31656519 2757 int cpu;
dd41f596 2758
ff743345
PZ
2759need_resched:
2760 preempt_disable();
dd41f596
IM
2761 cpu = smp_processor_id();
2762 rq = cpu_rq(cpu);
38200cf2 2763 rcu_note_context_switch();
dd41f596 2764 prev = rq->curr;
dd41f596 2765
dd41f596 2766 schedule_debug(prev);
1da177e4 2767
31656519 2768 if (sched_feat(HRTICK))
f333fdc9 2769 hrtick_clear(rq);
8f4d37ec 2770
e0acd0a6
ON
2771 /*
2772 * Make sure that signal_pending_state()->signal_pending() below
2773 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2774 * done by the caller to avoid the race with signal_wake_up().
2775 */
2776 smp_mb__before_spinlock();
05fa785c 2777 raw_spin_lock_irq(&rq->lock);
1da177e4 2778
246d86b5 2779 switch_count = &prev->nivcsw;
1da177e4 2780 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2781 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2782 prev->state = TASK_RUNNING;
21aa9af0 2783 } else {
2acca55e
PZ
2784 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2785 prev->on_rq = 0;
2786
21aa9af0 2787 /*
2acca55e
PZ
2788 * If a worker went to sleep, notify and ask workqueue
2789 * whether it wants to wake up a task to maintain
2790 * concurrency.
21aa9af0
TH
2791 */
2792 if (prev->flags & PF_WQ_WORKER) {
2793 struct task_struct *to_wakeup;
2794
2795 to_wakeup = wq_worker_sleeping(prev, cpu);
2796 if (to_wakeup)
2797 try_to_wake_up_local(to_wakeup);
2798 }
21aa9af0 2799 }
dd41f596 2800 switch_count = &prev->nvcsw;
1da177e4
LT
2801 }
2802
da0c1e65 2803 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2804 update_rq_clock(rq);
2805
2806 next = pick_next_task(rq, prev);
f26f9aff 2807 clear_tsk_need_resched(prev);
f27dde8d 2808 clear_preempt_need_resched();
f26f9aff 2809 rq->skip_clock_update = 0;
1da177e4 2810
1da177e4 2811 if (likely(prev != next)) {
1da177e4
LT
2812 rq->nr_switches++;
2813 rq->curr = next;
2814 ++*switch_count;
2815
dfa50b60
ON
2816 rq = context_switch(rq, prev, next); /* unlocks the rq */
2817 cpu = cpu_of(rq);
1da177e4 2818 } else
05fa785c 2819 raw_spin_unlock_irq(&rq->lock);
1da177e4 2820
3f029d3c 2821 post_schedule(rq);
1da177e4 2822
ba74c144 2823 sched_preempt_enable_no_resched();
ff743345 2824 if (need_resched())
1da177e4
LT
2825 goto need_resched;
2826}
c259e01a 2827
9c40cef2
TG
2828static inline void sched_submit_work(struct task_struct *tsk)
2829{
3c7d5184 2830 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2831 return;
2832 /*
2833 * If we are going to sleep and we have plugged IO queued,
2834 * make sure to submit it to avoid deadlocks.
2835 */
2836 if (blk_needs_flush_plug(tsk))
2837 blk_schedule_flush_plug(tsk);
2838}
2839
722a9f92 2840asmlinkage __visible void __sched schedule(void)
c259e01a 2841{
9c40cef2
TG
2842 struct task_struct *tsk = current;
2843
2844 sched_submit_work(tsk);
c259e01a
TG
2845 __schedule();
2846}
1da177e4
LT
2847EXPORT_SYMBOL(schedule);
2848
91d1aa43 2849#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2850asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2851{
2852 /*
2853 * If we come here after a random call to set_need_resched(),
2854 * or we have been woken up remotely but the IPI has not yet arrived,
2855 * we haven't yet exited the RCU idle mode. Do it here manually until
2856 * we find a better solution.
7cc78f8f
AL
2857 *
2858 * NB: There are buggy callers of this function. Ideally we
2859 * should warn if prev_state != IN_USER, but that will trigger
2860 * too frequently to make sense yet.
20ab65e3 2861 */
7cc78f8f 2862 enum ctx_state prev_state = exception_enter();
20ab65e3 2863 schedule();
7cc78f8f 2864 exception_exit(prev_state);
20ab65e3
FW
2865}
2866#endif
2867
c5491ea7
TG
2868/**
2869 * schedule_preempt_disabled - called with preemption disabled
2870 *
2871 * Returns with preemption disabled. Note: preempt_count must be 1
2872 */
2873void __sched schedule_preempt_disabled(void)
2874{
ba74c144 2875 sched_preempt_enable_no_resched();
c5491ea7
TG
2876 schedule();
2877 preempt_disable();
2878}
2879
1da177e4
LT
2880#ifdef CONFIG_PREEMPT
2881/*
2ed6e34f 2882 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2883 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2884 * occur there and call schedule directly.
2885 */
722a9f92 2886asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2887{
1da177e4
LT
2888 /*
2889 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2890 * we do not want to preempt the current task. Just return..
1da177e4 2891 */
fbb00b56 2892 if (likely(!preemptible()))
1da177e4
LT
2893 return;
2894
3a5c359a 2895 do {
bdb43806 2896 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2897 __schedule();
bdb43806 2898 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2899
3a5c359a
AK
2900 /*
2901 * Check again in case we missed a preemption opportunity
2902 * between schedule and now.
2903 */
2904 barrier();
5ed0cec0 2905 } while (need_resched());
1da177e4 2906}
376e2424 2907NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2908EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2909
2910#ifdef CONFIG_CONTEXT_TRACKING
2911/**
2912 * preempt_schedule_context - preempt_schedule called by tracing
2913 *
2914 * The tracing infrastructure uses preempt_enable_notrace to prevent
2915 * recursion and tracing preempt enabling caused by the tracing
2916 * infrastructure itself. But as tracing can happen in areas coming
2917 * from userspace or just about to enter userspace, a preempt enable
2918 * can occur before user_exit() is called. This will cause the scheduler
2919 * to be called when the system is still in usermode.
2920 *
2921 * To prevent this, the preempt_enable_notrace will use this function
2922 * instead of preempt_schedule() to exit user context if needed before
2923 * calling the scheduler.
2924 */
2925asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2926{
2927 enum ctx_state prev_ctx;
2928
2929 if (likely(!preemptible()))
2930 return;
2931
2932 do {
2933 __preempt_count_add(PREEMPT_ACTIVE);
2934 /*
2935 * Needs preempt disabled in case user_exit() is traced
2936 * and the tracer calls preempt_enable_notrace() causing
2937 * an infinite recursion.
2938 */
2939 prev_ctx = exception_enter();
2940 __schedule();
2941 exception_exit(prev_ctx);
2942
2943 __preempt_count_sub(PREEMPT_ACTIVE);
2944 barrier();
2945 } while (need_resched());
2946}
2947EXPORT_SYMBOL_GPL(preempt_schedule_context);
2948#endif /* CONFIG_CONTEXT_TRACKING */
2949
32e475d7 2950#endif /* CONFIG_PREEMPT */
1da177e4
LT
2951
2952/*
2ed6e34f 2953 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2954 * off of irq context.
2955 * Note, that this is called and return with irqs disabled. This will
2956 * protect us against recursive calling from irq.
2957 */
722a9f92 2958asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2959{
b22366cd 2960 enum ctx_state prev_state;
6478d880 2961
2ed6e34f 2962 /* Catch callers which need to be fixed */
f27dde8d 2963 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2964
b22366cd
FW
2965 prev_state = exception_enter();
2966
3a5c359a 2967 do {
bdb43806 2968 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2969 local_irq_enable();
c259e01a 2970 __schedule();
3a5c359a 2971 local_irq_disable();
bdb43806 2972 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2973
3a5c359a
AK
2974 /*
2975 * Check again in case we missed a preemption opportunity
2976 * between schedule and now.
2977 */
2978 barrier();
5ed0cec0 2979 } while (need_resched());
b22366cd
FW
2980
2981 exception_exit(prev_state);
1da177e4
LT
2982}
2983
63859d4f 2984int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2985 void *key)
1da177e4 2986{
63859d4f 2987 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2988}
1da177e4
LT
2989EXPORT_SYMBOL(default_wake_function);
2990
b29739f9
IM
2991#ifdef CONFIG_RT_MUTEXES
2992
2993/*
2994 * rt_mutex_setprio - set the current priority of a task
2995 * @p: task
2996 * @prio: prio value (kernel-internal form)
2997 *
2998 * This function changes the 'effective' priority of a task. It does
2999 * not touch ->normal_prio like __setscheduler().
3000 *
c365c292
TG
3001 * Used by the rt_mutex code to implement priority inheritance
3002 * logic. Call site only calls if the priority of the task changed.
b29739f9 3003 */
36c8b586 3004void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3005{
da0c1e65 3006 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3007 struct rq *rq;
83ab0aa0 3008 const struct sched_class *prev_class;
b29739f9 3009
aab03e05 3010 BUG_ON(prio > MAX_PRIO);
b29739f9 3011
0122ec5b 3012 rq = __task_rq_lock(p);
b29739f9 3013
1c4dd99b
TG
3014 /*
3015 * Idle task boosting is a nono in general. There is one
3016 * exception, when PREEMPT_RT and NOHZ is active:
3017 *
3018 * The idle task calls get_next_timer_interrupt() and holds
3019 * the timer wheel base->lock on the CPU and another CPU wants
3020 * to access the timer (probably to cancel it). We can safely
3021 * ignore the boosting request, as the idle CPU runs this code
3022 * with interrupts disabled and will complete the lock
3023 * protected section without being interrupted. So there is no
3024 * real need to boost.
3025 */
3026 if (unlikely(p == rq->idle)) {
3027 WARN_ON(p != rq->curr);
3028 WARN_ON(p->pi_blocked_on);
3029 goto out_unlock;
3030 }
3031
a8027073 3032 trace_sched_pi_setprio(p, prio);
d5f9f942 3033 oldprio = p->prio;
83ab0aa0 3034 prev_class = p->sched_class;
da0c1e65 3035 queued = task_on_rq_queued(p);
051a1d1a 3036 running = task_current(rq, p);
da0c1e65 3037 if (queued)
69be72c1 3038 dequeue_task(rq, p, 0);
0e1f3483 3039 if (running)
f3cd1c4e 3040 put_prev_task(rq, p);
dd41f596 3041
2d3d891d
DF
3042 /*
3043 * Boosting condition are:
3044 * 1. -rt task is running and holds mutex A
3045 * --> -dl task blocks on mutex A
3046 *
3047 * 2. -dl task is running and holds mutex A
3048 * --> -dl task blocks on mutex A and could preempt the
3049 * running task
3050 */
3051 if (dl_prio(prio)) {
466af29b
ON
3052 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3053 if (!dl_prio(p->normal_prio) ||
3054 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3055 p->dl.dl_boosted = 1;
3056 p->dl.dl_throttled = 0;
3057 enqueue_flag = ENQUEUE_REPLENISH;
3058 } else
3059 p->dl.dl_boosted = 0;
aab03e05 3060 p->sched_class = &dl_sched_class;
2d3d891d
DF
3061 } else if (rt_prio(prio)) {
3062 if (dl_prio(oldprio))
3063 p->dl.dl_boosted = 0;
3064 if (oldprio < prio)
3065 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3066 p->sched_class = &rt_sched_class;
2d3d891d
DF
3067 } else {
3068 if (dl_prio(oldprio))
3069 p->dl.dl_boosted = 0;
dd41f596 3070 p->sched_class = &fair_sched_class;
2d3d891d 3071 }
dd41f596 3072
b29739f9
IM
3073 p->prio = prio;
3074
0e1f3483
HS
3075 if (running)
3076 p->sched_class->set_curr_task(rq);
da0c1e65 3077 if (queued)
2d3d891d 3078 enqueue_task(rq, p, enqueue_flag);
cb469845 3079
da7a735e 3080 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3081out_unlock:
0122ec5b 3082 __task_rq_unlock(rq);
b29739f9 3083}
b29739f9 3084#endif
d50dde5a 3085
36c8b586 3086void set_user_nice(struct task_struct *p, long nice)
1da177e4 3087{
da0c1e65 3088 int old_prio, delta, queued;
1da177e4 3089 unsigned long flags;
70b97a7f 3090 struct rq *rq;
1da177e4 3091
75e45d51 3092 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3093 return;
3094 /*
3095 * We have to be careful, if called from sys_setpriority(),
3096 * the task might be in the middle of scheduling on another CPU.
3097 */
3098 rq = task_rq_lock(p, &flags);
3099 /*
3100 * The RT priorities are set via sched_setscheduler(), but we still
3101 * allow the 'normal' nice value to be set - but as expected
3102 * it wont have any effect on scheduling until the task is
aab03e05 3103 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3104 */
aab03e05 3105 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3106 p->static_prio = NICE_TO_PRIO(nice);
3107 goto out_unlock;
3108 }
da0c1e65
KT
3109 queued = task_on_rq_queued(p);
3110 if (queued)
69be72c1 3111 dequeue_task(rq, p, 0);
1da177e4 3112
1da177e4 3113 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3114 set_load_weight(p);
b29739f9
IM
3115 old_prio = p->prio;
3116 p->prio = effective_prio(p);
3117 delta = p->prio - old_prio;
1da177e4 3118
da0c1e65 3119 if (queued) {
371fd7e7 3120 enqueue_task(rq, p, 0);
1da177e4 3121 /*
d5f9f942
AM
3122 * If the task increased its priority or is running and
3123 * lowered its priority, then reschedule its CPU:
1da177e4 3124 */
d5f9f942 3125 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3126 resched_curr(rq);
1da177e4
LT
3127 }
3128out_unlock:
0122ec5b 3129 task_rq_unlock(rq, p, &flags);
1da177e4 3130}
1da177e4
LT
3131EXPORT_SYMBOL(set_user_nice);
3132
e43379f1
MM
3133/*
3134 * can_nice - check if a task can reduce its nice value
3135 * @p: task
3136 * @nice: nice value
3137 */
36c8b586 3138int can_nice(const struct task_struct *p, const int nice)
e43379f1 3139{
024f4747 3140 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3141 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3142
78d7d407 3143 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3144 capable(CAP_SYS_NICE));
3145}
3146
1da177e4
LT
3147#ifdef __ARCH_WANT_SYS_NICE
3148
3149/*
3150 * sys_nice - change the priority of the current process.
3151 * @increment: priority increment
3152 *
3153 * sys_setpriority is a more generic, but much slower function that
3154 * does similar things.
3155 */
5add95d4 3156SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3157{
48f24c4d 3158 long nice, retval;
1da177e4
LT
3159
3160 /*
3161 * Setpriority might change our priority at the same moment.
3162 * We don't have to worry. Conceptually one call occurs first
3163 * and we have a single winner.
3164 */
a9467fa3 3165 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3166 nice = task_nice(current) + increment;
1da177e4 3167
a9467fa3 3168 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3169 if (increment < 0 && !can_nice(current, nice))
3170 return -EPERM;
3171
1da177e4
LT
3172 retval = security_task_setnice(current, nice);
3173 if (retval)
3174 return retval;
3175
3176 set_user_nice(current, nice);
3177 return 0;
3178}
3179
3180#endif
3181
3182/**
3183 * task_prio - return the priority value of a given task.
3184 * @p: the task in question.
3185 *
e69f6186 3186 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3187 * RT tasks are offset by -200. Normal tasks are centered
3188 * around 0, value goes from -16 to +15.
3189 */
36c8b586 3190int task_prio(const struct task_struct *p)
1da177e4
LT
3191{
3192 return p->prio - MAX_RT_PRIO;
3193}
3194
1da177e4
LT
3195/**
3196 * idle_cpu - is a given cpu idle currently?
3197 * @cpu: the processor in question.
e69f6186
YB
3198 *
3199 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3200 */
3201int idle_cpu(int cpu)
3202{
908a3283
TG
3203 struct rq *rq = cpu_rq(cpu);
3204
3205 if (rq->curr != rq->idle)
3206 return 0;
3207
3208 if (rq->nr_running)
3209 return 0;
3210
3211#ifdef CONFIG_SMP
3212 if (!llist_empty(&rq->wake_list))
3213 return 0;
3214#endif
3215
3216 return 1;
1da177e4
LT
3217}
3218
1da177e4
LT
3219/**
3220 * idle_task - return the idle task for a given cpu.
3221 * @cpu: the processor in question.
e69f6186
YB
3222 *
3223 * Return: The idle task for the cpu @cpu.
1da177e4 3224 */
36c8b586 3225struct task_struct *idle_task(int cpu)
1da177e4
LT
3226{
3227 return cpu_rq(cpu)->idle;
3228}
3229
3230/**
3231 * find_process_by_pid - find a process with a matching PID value.
3232 * @pid: the pid in question.
e69f6186
YB
3233 *
3234 * The task of @pid, if found. %NULL otherwise.
1da177e4 3235 */
a9957449 3236static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3237{
228ebcbe 3238 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3239}
3240
aab03e05
DF
3241/*
3242 * This function initializes the sched_dl_entity of a newly becoming
3243 * SCHED_DEADLINE task.
3244 *
3245 * Only the static values are considered here, the actual runtime and the
3246 * absolute deadline will be properly calculated when the task is enqueued
3247 * for the first time with its new policy.
3248 */
3249static void
3250__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3251{
3252 struct sched_dl_entity *dl_se = &p->dl;
3253
3254 init_dl_task_timer(dl_se);
3255 dl_se->dl_runtime = attr->sched_runtime;
3256 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3257 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3258 dl_se->flags = attr->sched_flags;
332ac17e 3259 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3260 dl_se->dl_throttled = 0;
3261 dl_se->dl_new = 1;
5bfd126e 3262 dl_se->dl_yielded = 0;
aab03e05
DF
3263}
3264
c13db6b1
SR
3265/*
3266 * sched_setparam() passes in -1 for its policy, to let the functions
3267 * it calls know not to change it.
3268 */
3269#define SETPARAM_POLICY -1
3270
c365c292
TG
3271static void __setscheduler_params(struct task_struct *p,
3272 const struct sched_attr *attr)
1da177e4 3273{
d50dde5a
DF
3274 int policy = attr->sched_policy;
3275
c13db6b1 3276 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3277 policy = p->policy;
3278
1da177e4 3279 p->policy = policy;
d50dde5a 3280
aab03e05
DF
3281 if (dl_policy(policy))
3282 __setparam_dl(p, attr);
39fd8fd2 3283 else if (fair_policy(policy))
d50dde5a
DF
3284 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3285
39fd8fd2
PZ
3286 /*
3287 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3288 * !rt_policy. Always setting this ensures that things like
3289 * getparam()/getattr() don't report silly values for !rt tasks.
3290 */
3291 p->rt_priority = attr->sched_priority;
383afd09 3292 p->normal_prio = normal_prio(p);
c365c292
TG
3293 set_load_weight(p);
3294}
39fd8fd2 3295
c365c292
TG
3296/* Actually do priority change: must hold pi & rq lock. */
3297static void __setscheduler(struct rq *rq, struct task_struct *p,
3298 const struct sched_attr *attr)
3299{
3300 __setscheduler_params(p, attr);
d50dde5a 3301
383afd09
SR
3302 /*
3303 * If we get here, there was no pi waiters boosting the
3304 * task. It is safe to use the normal prio.
3305 */
3306 p->prio = normal_prio(p);
3307
aab03e05
DF
3308 if (dl_prio(p->prio))
3309 p->sched_class = &dl_sched_class;
3310 else if (rt_prio(p->prio))
ffd44db5
PZ
3311 p->sched_class = &rt_sched_class;
3312 else
3313 p->sched_class = &fair_sched_class;
1da177e4 3314}
aab03e05
DF
3315
3316static void
3317__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3318{
3319 struct sched_dl_entity *dl_se = &p->dl;
3320
3321 attr->sched_priority = p->rt_priority;
3322 attr->sched_runtime = dl_se->dl_runtime;
3323 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3324 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3325 attr->sched_flags = dl_se->flags;
3326}
3327
3328/*
3329 * This function validates the new parameters of a -deadline task.
3330 * We ask for the deadline not being zero, and greater or equal
755378a4 3331 * than the runtime, as well as the period of being zero or
332ac17e 3332 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3333 * user parameters are above the internal resolution of 1us (we
3334 * check sched_runtime only since it is always the smaller one) and
3335 * below 2^63 ns (we have to check both sched_deadline and
3336 * sched_period, as the latter can be zero).
aab03e05
DF
3337 */
3338static bool
3339__checkparam_dl(const struct sched_attr *attr)
3340{
b0827819
JL
3341 /* deadline != 0 */
3342 if (attr->sched_deadline == 0)
3343 return false;
3344
3345 /*
3346 * Since we truncate DL_SCALE bits, make sure we're at least
3347 * that big.
3348 */
3349 if (attr->sched_runtime < (1ULL << DL_SCALE))
3350 return false;
3351
3352 /*
3353 * Since we use the MSB for wrap-around and sign issues, make
3354 * sure it's not set (mind that period can be equal to zero).
3355 */
3356 if (attr->sched_deadline & (1ULL << 63) ||
3357 attr->sched_period & (1ULL << 63))
3358 return false;
3359
3360 /* runtime <= deadline <= period (if period != 0) */
3361 if ((attr->sched_period != 0 &&
3362 attr->sched_period < attr->sched_deadline) ||
3363 attr->sched_deadline < attr->sched_runtime)
3364 return false;
3365
3366 return true;
aab03e05
DF
3367}
3368
c69e8d9c
DH
3369/*
3370 * check the target process has a UID that matches the current process's
3371 */
3372static bool check_same_owner(struct task_struct *p)
3373{
3374 const struct cred *cred = current_cred(), *pcred;
3375 bool match;
3376
3377 rcu_read_lock();
3378 pcred = __task_cred(p);
9c806aa0
EB
3379 match = (uid_eq(cred->euid, pcred->euid) ||
3380 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3381 rcu_read_unlock();
3382 return match;
3383}
3384
d50dde5a
DF
3385static int __sched_setscheduler(struct task_struct *p,
3386 const struct sched_attr *attr,
3387 bool user)
1da177e4 3388{
383afd09
SR
3389 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3390 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3391 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3392 int policy = attr->sched_policy;
1da177e4 3393 unsigned long flags;
83ab0aa0 3394 const struct sched_class *prev_class;
70b97a7f 3395 struct rq *rq;
ca94c442 3396 int reset_on_fork;
1da177e4 3397
66e5393a
SR
3398 /* may grab non-irq protected spin_locks */
3399 BUG_ON(in_interrupt());
1da177e4
LT
3400recheck:
3401 /* double check policy once rq lock held */
ca94c442
LP
3402 if (policy < 0) {
3403 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3404 policy = oldpolicy = p->policy;
ca94c442 3405 } else {
7479f3c9 3406 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3407
aab03e05
DF
3408 if (policy != SCHED_DEADLINE &&
3409 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3410 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3411 policy != SCHED_IDLE)
3412 return -EINVAL;
3413 }
3414
7479f3c9
PZ
3415 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3416 return -EINVAL;
3417
1da177e4
LT
3418 /*
3419 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3420 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3421 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3422 */
0bb040a4 3423 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3424 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3425 return -EINVAL;
aab03e05
DF
3426 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3427 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3428 return -EINVAL;
3429
37e4ab3f
OC
3430 /*
3431 * Allow unprivileged RT tasks to decrease priority:
3432 */
961ccddd 3433 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3434 if (fair_policy(policy)) {
d0ea0268 3435 if (attr->sched_nice < task_nice(p) &&
eaad4513 3436 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3437 return -EPERM;
3438 }
3439
e05606d3 3440 if (rt_policy(policy)) {
a44702e8
ON
3441 unsigned long rlim_rtprio =
3442 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3443
3444 /* can't set/change the rt policy */
3445 if (policy != p->policy && !rlim_rtprio)
3446 return -EPERM;
3447
3448 /* can't increase priority */
d50dde5a
DF
3449 if (attr->sched_priority > p->rt_priority &&
3450 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3451 return -EPERM;
3452 }
c02aa73b 3453
d44753b8
JL
3454 /*
3455 * Can't set/change SCHED_DEADLINE policy at all for now
3456 * (safest behavior); in the future we would like to allow
3457 * unprivileged DL tasks to increase their relative deadline
3458 * or reduce their runtime (both ways reducing utilization)
3459 */
3460 if (dl_policy(policy))
3461 return -EPERM;
3462
dd41f596 3463 /*
c02aa73b
DH
3464 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3465 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3466 */
c02aa73b 3467 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3468 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3469 return -EPERM;
3470 }
5fe1d75f 3471
37e4ab3f 3472 /* can't change other user's priorities */
c69e8d9c 3473 if (!check_same_owner(p))
37e4ab3f 3474 return -EPERM;
ca94c442
LP
3475
3476 /* Normal users shall not reset the sched_reset_on_fork flag */
3477 if (p->sched_reset_on_fork && !reset_on_fork)
3478 return -EPERM;
37e4ab3f 3479 }
1da177e4 3480
725aad24 3481 if (user) {
b0ae1981 3482 retval = security_task_setscheduler(p);
725aad24
JF
3483 if (retval)
3484 return retval;
3485 }
3486
b29739f9
IM
3487 /*
3488 * make sure no PI-waiters arrive (or leave) while we are
3489 * changing the priority of the task:
0122ec5b 3490 *
25985edc 3491 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3492 * runqueue lock must be held.
3493 */
0122ec5b 3494 rq = task_rq_lock(p, &flags);
dc61b1d6 3495
34f971f6
PZ
3496 /*
3497 * Changing the policy of the stop threads its a very bad idea
3498 */
3499 if (p == rq->stop) {
0122ec5b 3500 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3501 return -EINVAL;
3502 }
3503
a51e9198 3504 /*
d6b1e911
TG
3505 * If not changing anything there's no need to proceed further,
3506 * but store a possible modification of reset_on_fork.
a51e9198 3507 */
d50dde5a 3508 if (unlikely(policy == p->policy)) {
d0ea0268 3509 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3510 goto change;
3511 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3512 goto change;
aab03e05
DF
3513 if (dl_policy(policy))
3514 goto change;
d50dde5a 3515
d6b1e911 3516 p->sched_reset_on_fork = reset_on_fork;
45afb173 3517 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3518 return 0;
3519 }
d50dde5a 3520change:
a51e9198 3521
dc61b1d6 3522 if (user) {
332ac17e 3523#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3524 /*
3525 * Do not allow realtime tasks into groups that have no runtime
3526 * assigned.
3527 */
3528 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3529 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3530 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3531 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3532 return -EPERM;
3533 }
dc61b1d6 3534#endif
332ac17e
DF
3535#ifdef CONFIG_SMP
3536 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3537 cpumask_t *span = rq->rd->span;
332ac17e
DF
3538
3539 /*
3540 * Don't allow tasks with an affinity mask smaller than
3541 * the entire root_domain to become SCHED_DEADLINE. We
3542 * will also fail if there's no bandwidth available.
3543 */
e4099a5e
PZ
3544 if (!cpumask_subset(span, &p->cpus_allowed) ||
3545 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3546 task_rq_unlock(rq, p, &flags);
3547 return -EPERM;
3548 }
3549 }
3550#endif
3551 }
dc61b1d6 3552
1da177e4
LT
3553 /* recheck policy now with rq lock held */
3554 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3555 policy = oldpolicy = -1;
0122ec5b 3556 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3557 goto recheck;
3558 }
332ac17e
DF
3559
3560 /*
3561 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3562 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3563 * is available.
3564 */
e4099a5e 3565 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3566 task_rq_unlock(rq, p, &flags);
3567 return -EBUSY;
3568 }
3569
c365c292
TG
3570 p->sched_reset_on_fork = reset_on_fork;
3571 oldprio = p->prio;
3572
3573 /*
3574 * Special case for priority boosted tasks.
3575 *
3576 * If the new priority is lower or equal (user space view)
3577 * than the current (boosted) priority, we just store the new
3578 * normal parameters and do not touch the scheduler class and
3579 * the runqueue. This will be done when the task deboost
3580 * itself.
3581 */
3582 if (rt_mutex_check_prio(p, newprio)) {
3583 __setscheduler_params(p, attr);
3584 task_rq_unlock(rq, p, &flags);
3585 return 0;
3586 }
3587
da0c1e65 3588 queued = task_on_rq_queued(p);
051a1d1a 3589 running = task_current(rq, p);
da0c1e65 3590 if (queued)
4ca9b72b 3591 dequeue_task(rq, p, 0);
0e1f3483 3592 if (running)
f3cd1c4e 3593 put_prev_task(rq, p);
f6b53205 3594
83ab0aa0 3595 prev_class = p->sched_class;
d50dde5a 3596 __setscheduler(rq, p, attr);
f6b53205 3597
0e1f3483
HS
3598 if (running)
3599 p->sched_class->set_curr_task(rq);
da0c1e65 3600 if (queued) {
81a44c54
TG
3601 /*
3602 * We enqueue to tail when the priority of a task is
3603 * increased (user space view).
3604 */
3605 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3606 }
cb469845 3607
da7a735e 3608 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3609 task_rq_unlock(rq, p, &flags);
b29739f9 3610
95e02ca9
TG
3611 rt_mutex_adjust_pi(p);
3612
1da177e4
LT
3613 return 0;
3614}
961ccddd 3615
7479f3c9
PZ
3616static int _sched_setscheduler(struct task_struct *p, int policy,
3617 const struct sched_param *param, bool check)
3618{
3619 struct sched_attr attr = {
3620 .sched_policy = policy,
3621 .sched_priority = param->sched_priority,
3622 .sched_nice = PRIO_TO_NICE(p->static_prio),
3623 };
3624
c13db6b1
SR
3625 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3626 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3627 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3628 policy &= ~SCHED_RESET_ON_FORK;
3629 attr.sched_policy = policy;
3630 }
3631
3632 return __sched_setscheduler(p, &attr, check);
3633}
961ccddd
RR
3634/**
3635 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3636 * @p: the task in question.
3637 * @policy: new policy.
3638 * @param: structure containing the new RT priority.
3639 *
e69f6186
YB
3640 * Return: 0 on success. An error code otherwise.
3641 *
961ccddd
RR
3642 * NOTE that the task may be already dead.
3643 */
3644int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3645 const struct sched_param *param)
961ccddd 3646{
7479f3c9 3647 return _sched_setscheduler(p, policy, param, true);
961ccddd 3648}
1da177e4
LT
3649EXPORT_SYMBOL_GPL(sched_setscheduler);
3650
d50dde5a
DF
3651int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3652{
3653 return __sched_setscheduler(p, attr, true);
3654}
3655EXPORT_SYMBOL_GPL(sched_setattr);
3656
961ccddd
RR
3657/**
3658 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3659 * @p: the task in question.
3660 * @policy: new policy.
3661 * @param: structure containing the new RT priority.
3662 *
3663 * Just like sched_setscheduler, only don't bother checking if the
3664 * current context has permission. For example, this is needed in
3665 * stop_machine(): we create temporary high priority worker threads,
3666 * but our caller might not have that capability.
e69f6186
YB
3667 *
3668 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3669 */
3670int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3671 const struct sched_param *param)
961ccddd 3672{
7479f3c9 3673 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3674}
3675
95cdf3b7
IM
3676static int
3677do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3678{
1da177e4
LT
3679 struct sched_param lparam;
3680 struct task_struct *p;
36c8b586 3681 int retval;
1da177e4
LT
3682
3683 if (!param || pid < 0)
3684 return -EINVAL;
3685 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3686 return -EFAULT;
5fe1d75f
ON
3687
3688 rcu_read_lock();
3689 retval = -ESRCH;
1da177e4 3690 p = find_process_by_pid(pid);
5fe1d75f
ON
3691 if (p != NULL)
3692 retval = sched_setscheduler(p, policy, &lparam);
3693 rcu_read_unlock();
36c8b586 3694
1da177e4
LT
3695 return retval;
3696}
3697
d50dde5a
DF
3698/*
3699 * Mimics kernel/events/core.c perf_copy_attr().
3700 */
3701static int sched_copy_attr(struct sched_attr __user *uattr,
3702 struct sched_attr *attr)
3703{
3704 u32 size;
3705 int ret;
3706
3707 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3708 return -EFAULT;
3709
3710 /*
3711 * zero the full structure, so that a short copy will be nice.
3712 */
3713 memset(attr, 0, sizeof(*attr));
3714
3715 ret = get_user(size, &uattr->size);
3716 if (ret)
3717 return ret;
3718
3719 if (size > PAGE_SIZE) /* silly large */
3720 goto err_size;
3721
3722 if (!size) /* abi compat */
3723 size = SCHED_ATTR_SIZE_VER0;
3724
3725 if (size < SCHED_ATTR_SIZE_VER0)
3726 goto err_size;
3727
3728 /*
3729 * If we're handed a bigger struct than we know of,
3730 * ensure all the unknown bits are 0 - i.e. new
3731 * user-space does not rely on any kernel feature
3732 * extensions we dont know about yet.
3733 */
3734 if (size > sizeof(*attr)) {
3735 unsigned char __user *addr;
3736 unsigned char __user *end;
3737 unsigned char val;
3738
3739 addr = (void __user *)uattr + sizeof(*attr);
3740 end = (void __user *)uattr + size;
3741
3742 for (; addr < end; addr++) {
3743 ret = get_user(val, addr);
3744 if (ret)
3745 return ret;
3746 if (val)
3747 goto err_size;
3748 }
3749 size = sizeof(*attr);
3750 }
3751
3752 ret = copy_from_user(attr, uattr, size);
3753 if (ret)
3754 return -EFAULT;
3755
3756 /*
3757 * XXX: do we want to be lenient like existing syscalls; or do we want
3758 * to be strict and return an error on out-of-bounds values?
3759 */
75e45d51 3760 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3761
e78c7bca 3762 return 0;
d50dde5a
DF
3763
3764err_size:
3765 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3766 return -E2BIG;
d50dde5a
DF
3767}
3768
1da177e4
LT
3769/**
3770 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3771 * @pid: the pid in question.
3772 * @policy: new policy.
3773 * @param: structure containing the new RT priority.
e69f6186
YB
3774 *
3775 * Return: 0 on success. An error code otherwise.
1da177e4 3776 */
5add95d4
HC
3777SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3778 struct sched_param __user *, param)
1da177e4 3779{
c21761f1
JB
3780 /* negative values for policy are not valid */
3781 if (policy < 0)
3782 return -EINVAL;
3783
1da177e4
LT
3784 return do_sched_setscheduler(pid, policy, param);
3785}
3786
3787/**
3788 * sys_sched_setparam - set/change the RT priority of a thread
3789 * @pid: the pid in question.
3790 * @param: structure containing the new RT priority.
e69f6186
YB
3791 *
3792 * Return: 0 on success. An error code otherwise.
1da177e4 3793 */
5add95d4 3794SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3795{
c13db6b1 3796 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3797}
3798
d50dde5a
DF
3799/**
3800 * sys_sched_setattr - same as above, but with extended sched_attr
3801 * @pid: the pid in question.
5778fccf 3802 * @uattr: structure containing the extended parameters.
db66d756 3803 * @flags: for future extension.
d50dde5a 3804 */
6d35ab48
PZ
3805SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3806 unsigned int, flags)
d50dde5a
DF
3807{
3808 struct sched_attr attr;
3809 struct task_struct *p;
3810 int retval;
3811
6d35ab48 3812 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3813 return -EINVAL;
3814
143cf23d
MK
3815 retval = sched_copy_attr(uattr, &attr);
3816 if (retval)
3817 return retval;
d50dde5a 3818
b14ed2c2 3819 if ((int)attr.sched_policy < 0)
dbdb2275 3820 return -EINVAL;
d50dde5a
DF
3821
3822 rcu_read_lock();
3823 retval = -ESRCH;
3824 p = find_process_by_pid(pid);
3825 if (p != NULL)
3826 retval = sched_setattr(p, &attr);
3827 rcu_read_unlock();
3828
3829 return retval;
3830}
3831
1da177e4
LT
3832/**
3833 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3834 * @pid: the pid in question.
e69f6186
YB
3835 *
3836 * Return: On success, the policy of the thread. Otherwise, a negative error
3837 * code.
1da177e4 3838 */
5add95d4 3839SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3840{
36c8b586 3841 struct task_struct *p;
3a5c359a 3842 int retval;
1da177e4
LT
3843
3844 if (pid < 0)
3a5c359a 3845 return -EINVAL;
1da177e4
LT
3846
3847 retval = -ESRCH;
5fe85be0 3848 rcu_read_lock();
1da177e4
LT
3849 p = find_process_by_pid(pid);
3850 if (p) {
3851 retval = security_task_getscheduler(p);
3852 if (!retval)
ca94c442
LP
3853 retval = p->policy
3854 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3855 }
5fe85be0 3856 rcu_read_unlock();
1da177e4
LT
3857 return retval;
3858}
3859
3860/**
ca94c442 3861 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3862 * @pid: the pid in question.
3863 * @param: structure containing the RT priority.
e69f6186
YB
3864 *
3865 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3866 * code.
1da177e4 3867 */
5add95d4 3868SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3869{
ce5f7f82 3870 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3871 struct task_struct *p;
3a5c359a 3872 int retval;
1da177e4
LT
3873
3874 if (!param || pid < 0)
3a5c359a 3875 return -EINVAL;
1da177e4 3876
5fe85be0 3877 rcu_read_lock();
1da177e4
LT
3878 p = find_process_by_pid(pid);
3879 retval = -ESRCH;
3880 if (!p)
3881 goto out_unlock;
3882
3883 retval = security_task_getscheduler(p);
3884 if (retval)
3885 goto out_unlock;
3886
ce5f7f82
PZ
3887 if (task_has_rt_policy(p))
3888 lp.sched_priority = p->rt_priority;
5fe85be0 3889 rcu_read_unlock();
1da177e4
LT
3890
3891 /*
3892 * This one might sleep, we cannot do it with a spinlock held ...
3893 */
3894 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3895
1da177e4
LT
3896 return retval;
3897
3898out_unlock:
5fe85be0 3899 rcu_read_unlock();
1da177e4
LT
3900 return retval;
3901}
3902
d50dde5a
DF
3903static int sched_read_attr(struct sched_attr __user *uattr,
3904 struct sched_attr *attr,
3905 unsigned int usize)
3906{
3907 int ret;
3908
3909 if (!access_ok(VERIFY_WRITE, uattr, usize))
3910 return -EFAULT;
3911
3912 /*
3913 * If we're handed a smaller struct than we know of,
3914 * ensure all the unknown bits are 0 - i.e. old
3915 * user-space does not get uncomplete information.
3916 */
3917 if (usize < sizeof(*attr)) {
3918 unsigned char *addr;
3919 unsigned char *end;
3920
3921 addr = (void *)attr + usize;
3922 end = (void *)attr + sizeof(*attr);
3923
3924 for (; addr < end; addr++) {
3925 if (*addr)
22400674 3926 return -EFBIG;
d50dde5a
DF
3927 }
3928
3929 attr->size = usize;
3930 }
3931
4efbc454 3932 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3933 if (ret)
3934 return -EFAULT;
3935
22400674 3936 return 0;
d50dde5a
DF
3937}
3938
3939/**
aab03e05 3940 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3941 * @pid: the pid in question.
5778fccf 3942 * @uattr: structure containing the extended parameters.
d50dde5a 3943 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3944 * @flags: for future extension.
d50dde5a 3945 */
6d35ab48
PZ
3946SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3947 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3948{
3949 struct sched_attr attr = {
3950 .size = sizeof(struct sched_attr),
3951 };
3952 struct task_struct *p;
3953 int retval;
3954
3955 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3956 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3957 return -EINVAL;
3958
3959 rcu_read_lock();
3960 p = find_process_by_pid(pid);
3961 retval = -ESRCH;
3962 if (!p)
3963 goto out_unlock;
3964
3965 retval = security_task_getscheduler(p);
3966 if (retval)
3967 goto out_unlock;
3968
3969 attr.sched_policy = p->policy;
7479f3c9
PZ
3970 if (p->sched_reset_on_fork)
3971 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3972 if (task_has_dl_policy(p))
3973 __getparam_dl(p, &attr);
3974 else if (task_has_rt_policy(p))
d50dde5a
DF
3975 attr.sched_priority = p->rt_priority;
3976 else
d0ea0268 3977 attr.sched_nice = task_nice(p);
d50dde5a
DF
3978
3979 rcu_read_unlock();
3980
3981 retval = sched_read_attr(uattr, &attr, size);
3982 return retval;
3983
3984out_unlock:
3985 rcu_read_unlock();
3986 return retval;
3987}
3988
96f874e2 3989long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3990{
5a16f3d3 3991 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3992 struct task_struct *p;
3993 int retval;
1da177e4 3994
23f5d142 3995 rcu_read_lock();
1da177e4
LT
3996
3997 p = find_process_by_pid(pid);
3998 if (!p) {
23f5d142 3999 rcu_read_unlock();
1da177e4
LT
4000 return -ESRCH;
4001 }
4002
23f5d142 4003 /* Prevent p going away */
1da177e4 4004 get_task_struct(p);
23f5d142 4005 rcu_read_unlock();
1da177e4 4006
14a40ffc
TH
4007 if (p->flags & PF_NO_SETAFFINITY) {
4008 retval = -EINVAL;
4009 goto out_put_task;
4010 }
5a16f3d3
RR
4011 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4012 retval = -ENOMEM;
4013 goto out_put_task;
4014 }
4015 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4016 retval = -ENOMEM;
4017 goto out_free_cpus_allowed;
4018 }
1da177e4 4019 retval = -EPERM;
4c44aaaf
EB
4020 if (!check_same_owner(p)) {
4021 rcu_read_lock();
4022 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4023 rcu_read_unlock();
16303ab2 4024 goto out_free_new_mask;
4c44aaaf
EB
4025 }
4026 rcu_read_unlock();
4027 }
1da177e4 4028
b0ae1981 4029 retval = security_task_setscheduler(p);
e7834f8f 4030 if (retval)
16303ab2 4031 goto out_free_new_mask;
e7834f8f 4032
e4099a5e
PZ
4033
4034 cpuset_cpus_allowed(p, cpus_allowed);
4035 cpumask_and(new_mask, in_mask, cpus_allowed);
4036
332ac17e
DF
4037 /*
4038 * Since bandwidth control happens on root_domain basis,
4039 * if admission test is enabled, we only admit -deadline
4040 * tasks allowed to run on all the CPUs in the task's
4041 * root_domain.
4042 */
4043#ifdef CONFIG_SMP
f1e3a093
KT
4044 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4045 rcu_read_lock();
4046 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4047 retval = -EBUSY;
f1e3a093 4048 rcu_read_unlock();
16303ab2 4049 goto out_free_new_mask;
332ac17e 4050 }
f1e3a093 4051 rcu_read_unlock();
332ac17e
DF
4052 }
4053#endif
49246274 4054again:
5a16f3d3 4055 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4056
8707d8b8 4057 if (!retval) {
5a16f3d3
RR
4058 cpuset_cpus_allowed(p, cpus_allowed);
4059 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4060 /*
4061 * We must have raced with a concurrent cpuset
4062 * update. Just reset the cpus_allowed to the
4063 * cpuset's cpus_allowed
4064 */
5a16f3d3 4065 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4066 goto again;
4067 }
4068 }
16303ab2 4069out_free_new_mask:
5a16f3d3
RR
4070 free_cpumask_var(new_mask);
4071out_free_cpus_allowed:
4072 free_cpumask_var(cpus_allowed);
4073out_put_task:
1da177e4 4074 put_task_struct(p);
1da177e4
LT
4075 return retval;
4076}
4077
4078static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4079 struct cpumask *new_mask)
1da177e4 4080{
96f874e2
RR
4081 if (len < cpumask_size())
4082 cpumask_clear(new_mask);
4083 else if (len > cpumask_size())
4084 len = cpumask_size();
4085
1da177e4
LT
4086 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4087}
4088
4089/**
4090 * sys_sched_setaffinity - set the cpu affinity of a process
4091 * @pid: pid of the process
4092 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4093 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4094 *
4095 * Return: 0 on success. An error code otherwise.
1da177e4 4096 */
5add95d4
HC
4097SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4098 unsigned long __user *, user_mask_ptr)
1da177e4 4099{
5a16f3d3 4100 cpumask_var_t new_mask;
1da177e4
LT
4101 int retval;
4102
5a16f3d3
RR
4103 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4104 return -ENOMEM;
1da177e4 4105
5a16f3d3
RR
4106 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4107 if (retval == 0)
4108 retval = sched_setaffinity(pid, new_mask);
4109 free_cpumask_var(new_mask);
4110 return retval;
1da177e4
LT
4111}
4112
96f874e2 4113long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4114{
36c8b586 4115 struct task_struct *p;
31605683 4116 unsigned long flags;
1da177e4 4117 int retval;
1da177e4 4118
23f5d142 4119 rcu_read_lock();
1da177e4
LT
4120
4121 retval = -ESRCH;
4122 p = find_process_by_pid(pid);
4123 if (!p)
4124 goto out_unlock;
4125
e7834f8f
DQ
4126 retval = security_task_getscheduler(p);
4127 if (retval)
4128 goto out_unlock;
4129
013fdb80 4130 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4131 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4132 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4133
4134out_unlock:
23f5d142 4135 rcu_read_unlock();
1da177e4 4136
9531b62f 4137 return retval;
1da177e4
LT
4138}
4139
4140/**
4141 * sys_sched_getaffinity - get the cpu affinity of a process
4142 * @pid: pid of the process
4143 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4144 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4145 *
4146 * Return: 0 on success. An error code otherwise.
1da177e4 4147 */
5add95d4
HC
4148SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4149 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4150{
4151 int ret;
f17c8607 4152 cpumask_var_t mask;
1da177e4 4153
84fba5ec 4154 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4155 return -EINVAL;
4156 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4157 return -EINVAL;
4158
f17c8607
RR
4159 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4160 return -ENOMEM;
1da177e4 4161
f17c8607
RR
4162 ret = sched_getaffinity(pid, mask);
4163 if (ret == 0) {
8bc037fb 4164 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4165
4166 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4167 ret = -EFAULT;
4168 else
cd3d8031 4169 ret = retlen;
f17c8607
RR
4170 }
4171 free_cpumask_var(mask);
1da177e4 4172
f17c8607 4173 return ret;
1da177e4
LT
4174}
4175
4176/**
4177 * sys_sched_yield - yield the current processor to other threads.
4178 *
dd41f596
IM
4179 * This function yields the current CPU to other tasks. If there are no
4180 * other threads running on this CPU then this function will return.
e69f6186
YB
4181 *
4182 * Return: 0.
1da177e4 4183 */
5add95d4 4184SYSCALL_DEFINE0(sched_yield)
1da177e4 4185{
70b97a7f 4186 struct rq *rq = this_rq_lock();
1da177e4 4187
2d72376b 4188 schedstat_inc(rq, yld_count);
4530d7ab 4189 current->sched_class->yield_task(rq);
1da177e4
LT
4190
4191 /*
4192 * Since we are going to call schedule() anyway, there's
4193 * no need to preempt or enable interrupts:
4194 */
4195 __release(rq->lock);
8a25d5de 4196 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4197 do_raw_spin_unlock(&rq->lock);
ba74c144 4198 sched_preempt_enable_no_resched();
1da177e4
LT
4199
4200 schedule();
4201
4202 return 0;
4203}
4204
e7b38404 4205static void __cond_resched(void)
1da177e4 4206{
bdb43806 4207 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4208 __schedule();
bdb43806 4209 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4210}
4211
02b67cc3 4212int __sched _cond_resched(void)
1da177e4 4213{
d86ee480 4214 if (should_resched()) {
1da177e4
LT
4215 __cond_resched();
4216 return 1;
4217 }
4218 return 0;
4219}
02b67cc3 4220EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4221
4222/*
613afbf8 4223 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4224 * call schedule, and on return reacquire the lock.
4225 *
41a2d6cf 4226 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4227 * operations here to prevent schedule() from being called twice (once via
4228 * spin_unlock(), once by hand).
4229 */
613afbf8 4230int __cond_resched_lock(spinlock_t *lock)
1da177e4 4231{
d86ee480 4232 int resched = should_resched();
6df3cecb
JK
4233 int ret = 0;
4234
f607c668
PZ
4235 lockdep_assert_held(lock);
4236
4a81e832 4237 if (spin_needbreak(lock) || resched) {
1da177e4 4238 spin_unlock(lock);
d86ee480 4239 if (resched)
95c354fe
NP
4240 __cond_resched();
4241 else
4242 cpu_relax();
6df3cecb 4243 ret = 1;
1da177e4 4244 spin_lock(lock);
1da177e4 4245 }
6df3cecb 4246 return ret;
1da177e4 4247}
613afbf8 4248EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4249
613afbf8 4250int __sched __cond_resched_softirq(void)
1da177e4
LT
4251{
4252 BUG_ON(!in_softirq());
4253
d86ee480 4254 if (should_resched()) {
98d82567 4255 local_bh_enable();
1da177e4
LT
4256 __cond_resched();
4257 local_bh_disable();
4258 return 1;
4259 }
4260 return 0;
4261}
613afbf8 4262EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4263
1da177e4
LT
4264/**
4265 * yield - yield the current processor to other threads.
4266 *
8e3fabfd
PZ
4267 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4268 *
4269 * The scheduler is at all times free to pick the calling task as the most
4270 * eligible task to run, if removing the yield() call from your code breaks
4271 * it, its already broken.
4272 *
4273 * Typical broken usage is:
4274 *
4275 * while (!event)
4276 * yield();
4277 *
4278 * where one assumes that yield() will let 'the other' process run that will
4279 * make event true. If the current task is a SCHED_FIFO task that will never
4280 * happen. Never use yield() as a progress guarantee!!
4281 *
4282 * If you want to use yield() to wait for something, use wait_event().
4283 * If you want to use yield() to be 'nice' for others, use cond_resched().
4284 * If you still want to use yield(), do not!
1da177e4
LT
4285 */
4286void __sched yield(void)
4287{
4288 set_current_state(TASK_RUNNING);
4289 sys_sched_yield();
4290}
1da177e4
LT
4291EXPORT_SYMBOL(yield);
4292
d95f4122
MG
4293/**
4294 * yield_to - yield the current processor to another thread in
4295 * your thread group, or accelerate that thread toward the
4296 * processor it's on.
16addf95
RD
4297 * @p: target task
4298 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4299 *
4300 * It's the caller's job to ensure that the target task struct
4301 * can't go away on us before we can do any checks.
4302 *
e69f6186 4303 * Return:
7b270f60
PZ
4304 * true (>0) if we indeed boosted the target task.
4305 * false (0) if we failed to boost the target.
4306 * -ESRCH if there's no task to yield to.
d95f4122 4307 */
fa93384f 4308int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4309{
4310 struct task_struct *curr = current;
4311 struct rq *rq, *p_rq;
4312 unsigned long flags;
c3c18640 4313 int yielded = 0;
d95f4122
MG
4314
4315 local_irq_save(flags);
4316 rq = this_rq();
4317
4318again:
4319 p_rq = task_rq(p);
7b270f60
PZ
4320 /*
4321 * If we're the only runnable task on the rq and target rq also
4322 * has only one task, there's absolutely no point in yielding.
4323 */
4324 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4325 yielded = -ESRCH;
4326 goto out_irq;
4327 }
4328
d95f4122 4329 double_rq_lock(rq, p_rq);
39e24d8f 4330 if (task_rq(p) != p_rq) {
d95f4122
MG
4331 double_rq_unlock(rq, p_rq);
4332 goto again;
4333 }
4334
4335 if (!curr->sched_class->yield_to_task)
7b270f60 4336 goto out_unlock;
d95f4122
MG
4337
4338 if (curr->sched_class != p->sched_class)
7b270f60 4339 goto out_unlock;
d95f4122
MG
4340
4341 if (task_running(p_rq, p) || p->state)
7b270f60 4342 goto out_unlock;
d95f4122
MG
4343
4344 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4345 if (yielded) {
d95f4122 4346 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4347 /*
4348 * Make p's CPU reschedule; pick_next_entity takes care of
4349 * fairness.
4350 */
4351 if (preempt && rq != p_rq)
8875125e 4352 resched_curr(p_rq);
6d1cafd8 4353 }
d95f4122 4354
7b270f60 4355out_unlock:
d95f4122 4356 double_rq_unlock(rq, p_rq);
7b270f60 4357out_irq:
d95f4122
MG
4358 local_irq_restore(flags);
4359
7b270f60 4360 if (yielded > 0)
d95f4122
MG
4361 schedule();
4362
4363 return yielded;
4364}
4365EXPORT_SYMBOL_GPL(yield_to);
4366
1da177e4 4367/*
41a2d6cf 4368 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4369 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4370 */
4371void __sched io_schedule(void)
4372{
54d35f29 4373 struct rq *rq = raw_rq();
1da177e4 4374
0ff92245 4375 delayacct_blkio_start();
1da177e4 4376 atomic_inc(&rq->nr_iowait);
73c10101 4377 blk_flush_plug(current);
8f0dfc34 4378 current->in_iowait = 1;
1da177e4 4379 schedule();
8f0dfc34 4380 current->in_iowait = 0;
1da177e4 4381 atomic_dec(&rq->nr_iowait);
0ff92245 4382 delayacct_blkio_end();
1da177e4 4383}
1da177e4
LT
4384EXPORT_SYMBOL(io_schedule);
4385
4386long __sched io_schedule_timeout(long timeout)
4387{
54d35f29 4388 struct rq *rq = raw_rq();
1da177e4
LT
4389 long ret;
4390
0ff92245 4391 delayacct_blkio_start();
1da177e4 4392 atomic_inc(&rq->nr_iowait);
73c10101 4393 blk_flush_plug(current);
8f0dfc34 4394 current->in_iowait = 1;
1da177e4 4395 ret = schedule_timeout(timeout);
8f0dfc34 4396 current->in_iowait = 0;
1da177e4 4397 atomic_dec(&rq->nr_iowait);
0ff92245 4398 delayacct_blkio_end();
1da177e4
LT
4399 return ret;
4400}
4401
4402/**
4403 * sys_sched_get_priority_max - return maximum RT priority.
4404 * @policy: scheduling class.
4405 *
e69f6186
YB
4406 * Return: On success, this syscall returns the maximum
4407 * rt_priority that can be used by a given scheduling class.
4408 * On failure, a negative error code is returned.
1da177e4 4409 */
5add95d4 4410SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4411{
4412 int ret = -EINVAL;
4413
4414 switch (policy) {
4415 case SCHED_FIFO:
4416 case SCHED_RR:
4417 ret = MAX_USER_RT_PRIO-1;
4418 break;
aab03e05 4419 case SCHED_DEADLINE:
1da177e4 4420 case SCHED_NORMAL:
b0a9499c 4421 case SCHED_BATCH:
dd41f596 4422 case SCHED_IDLE:
1da177e4
LT
4423 ret = 0;
4424 break;
4425 }
4426 return ret;
4427}
4428
4429/**
4430 * sys_sched_get_priority_min - return minimum RT priority.
4431 * @policy: scheduling class.
4432 *
e69f6186
YB
4433 * Return: On success, this syscall returns the minimum
4434 * rt_priority that can be used by a given scheduling class.
4435 * On failure, a negative error code is returned.
1da177e4 4436 */
5add95d4 4437SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4438{
4439 int ret = -EINVAL;
4440
4441 switch (policy) {
4442 case SCHED_FIFO:
4443 case SCHED_RR:
4444 ret = 1;
4445 break;
aab03e05 4446 case SCHED_DEADLINE:
1da177e4 4447 case SCHED_NORMAL:
b0a9499c 4448 case SCHED_BATCH:
dd41f596 4449 case SCHED_IDLE:
1da177e4
LT
4450 ret = 0;
4451 }
4452 return ret;
4453}
4454
4455/**
4456 * sys_sched_rr_get_interval - return the default timeslice of a process.
4457 * @pid: pid of the process.
4458 * @interval: userspace pointer to the timeslice value.
4459 *
4460 * this syscall writes the default timeslice value of a given process
4461 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4462 *
4463 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4464 * an error code.
1da177e4 4465 */
17da2bd9 4466SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4467 struct timespec __user *, interval)
1da177e4 4468{
36c8b586 4469 struct task_struct *p;
a4ec24b4 4470 unsigned int time_slice;
dba091b9
TG
4471 unsigned long flags;
4472 struct rq *rq;
3a5c359a 4473 int retval;
1da177e4 4474 struct timespec t;
1da177e4
LT
4475
4476 if (pid < 0)
3a5c359a 4477 return -EINVAL;
1da177e4
LT
4478
4479 retval = -ESRCH;
1a551ae7 4480 rcu_read_lock();
1da177e4
LT
4481 p = find_process_by_pid(pid);
4482 if (!p)
4483 goto out_unlock;
4484
4485 retval = security_task_getscheduler(p);
4486 if (retval)
4487 goto out_unlock;
4488
dba091b9 4489 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4490 time_slice = 0;
4491 if (p->sched_class->get_rr_interval)
4492 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4493 task_rq_unlock(rq, p, &flags);
a4ec24b4 4494
1a551ae7 4495 rcu_read_unlock();
a4ec24b4 4496 jiffies_to_timespec(time_slice, &t);
1da177e4 4497 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4498 return retval;
3a5c359a 4499
1da177e4 4500out_unlock:
1a551ae7 4501 rcu_read_unlock();
1da177e4
LT
4502 return retval;
4503}
4504
7c731e0a 4505static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4506
82a1fcb9 4507void sched_show_task(struct task_struct *p)
1da177e4 4508{
1da177e4 4509 unsigned long free = 0;
4e79752c 4510 int ppid;
36c8b586 4511 unsigned state;
1da177e4 4512
1da177e4 4513 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4514 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4515 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4516#if BITS_PER_LONG == 32
1da177e4 4517 if (state == TASK_RUNNING)
3df0fc5b 4518 printk(KERN_CONT " running ");
1da177e4 4519 else
3df0fc5b 4520 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4521#else
4522 if (state == TASK_RUNNING)
3df0fc5b 4523 printk(KERN_CONT " running task ");
1da177e4 4524 else
3df0fc5b 4525 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4526#endif
4527#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4528 free = stack_not_used(p);
1da177e4 4529#endif
a90e984c 4530 ppid = 0;
4e79752c 4531 rcu_read_lock();
a90e984c
ON
4532 if (pid_alive(p))
4533 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4534 rcu_read_unlock();
3df0fc5b 4535 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4536 task_pid_nr(p), ppid,
aa47b7e0 4537 (unsigned long)task_thread_info(p)->flags);
1da177e4 4538
3d1cb205 4539 print_worker_info(KERN_INFO, p);
5fb5e6de 4540 show_stack(p, NULL);
1da177e4
LT
4541}
4542
e59e2ae2 4543void show_state_filter(unsigned long state_filter)
1da177e4 4544{
36c8b586 4545 struct task_struct *g, *p;
1da177e4 4546
4bd77321 4547#if BITS_PER_LONG == 32
3df0fc5b
PZ
4548 printk(KERN_INFO
4549 " task PC stack pid father\n");
1da177e4 4550#else
3df0fc5b
PZ
4551 printk(KERN_INFO
4552 " task PC stack pid father\n");
1da177e4 4553#endif
510f5acc 4554 rcu_read_lock();
5d07f420 4555 for_each_process_thread(g, p) {
1da177e4
LT
4556 /*
4557 * reset the NMI-timeout, listing all files on a slow
25985edc 4558 * console might take a lot of time:
1da177e4
LT
4559 */
4560 touch_nmi_watchdog();
39bc89fd 4561 if (!state_filter || (p->state & state_filter))
82a1fcb9 4562 sched_show_task(p);
5d07f420 4563 }
1da177e4 4564
04c9167f
JF
4565 touch_all_softlockup_watchdogs();
4566
dd41f596
IM
4567#ifdef CONFIG_SCHED_DEBUG
4568 sysrq_sched_debug_show();
4569#endif
510f5acc 4570 rcu_read_unlock();
e59e2ae2
IM
4571 /*
4572 * Only show locks if all tasks are dumped:
4573 */
93335a21 4574 if (!state_filter)
e59e2ae2 4575 debug_show_all_locks();
1da177e4
LT
4576}
4577
0db0628d 4578void init_idle_bootup_task(struct task_struct *idle)
1df21055 4579{
dd41f596 4580 idle->sched_class = &idle_sched_class;
1df21055
IM
4581}
4582
f340c0d1
IM
4583/**
4584 * init_idle - set up an idle thread for a given CPU
4585 * @idle: task in question
4586 * @cpu: cpu the idle task belongs to
4587 *
4588 * NOTE: this function does not set the idle thread's NEED_RESCHED
4589 * flag, to make booting more robust.
4590 */
0db0628d 4591void init_idle(struct task_struct *idle, int cpu)
1da177e4 4592{
70b97a7f 4593 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4594 unsigned long flags;
4595
05fa785c 4596 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4597
5e1576ed 4598 __sched_fork(0, idle);
06b83b5f 4599 idle->state = TASK_RUNNING;
dd41f596
IM
4600 idle->se.exec_start = sched_clock();
4601
1e1b6c51 4602 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4603 /*
4604 * We're having a chicken and egg problem, even though we are
4605 * holding rq->lock, the cpu isn't yet set to this cpu so the
4606 * lockdep check in task_group() will fail.
4607 *
4608 * Similar case to sched_fork(). / Alternatively we could
4609 * use task_rq_lock() here and obtain the other rq->lock.
4610 *
4611 * Silence PROVE_RCU
4612 */
4613 rcu_read_lock();
dd41f596 4614 __set_task_cpu(idle, cpu);
6506cf6c 4615 rcu_read_unlock();
1da177e4 4616
1da177e4 4617 rq->curr = rq->idle = idle;
da0c1e65 4618 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4619#if defined(CONFIG_SMP)
4620 idle->on_cpu = 1;
4866cde0 4621#endif
05fa785c 4622 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4623
4624 /* Set the preempt count _outside_ the spinlocks! */
01028747 4625 init_idle_preempt_count(idle, cpu);
55cd5340 4626
dd41f596
IM
4627 /*
4628 * The idle tasks have their own, simple scheduling class:
4629 */
4630 idle->sched_class = &idle_sched_class;
868baf07 4631 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4632 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4633#if defined(CONFIG_SMP)
4634 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4635#endif
19978ca6
IM
4636}
4637
f82f8042
JL
4638int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4639 const struct cpumask *trial)
4640{
4641 int ret = 1, trial_cpus;
4642 struct dl_bw *cur_dl_b;
4643 unsigned long flags;
4644
75e23e49 4645 rcu_read_lock_sched();
f82f8042
JL
4646 cur_dl_b = dl_bw_of(cpumask_any(cur));
4647 trial_cpus = cpumask_weight(trial);
4648
4649 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4650 if (cur_dl_b->bw != -1 &&
4651 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4652 ret = 0;
4653 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4654 rcu_read_unlock_sched();
f82f8042
JL
4655
4656 return ret;
4657}
4658
7f51412a
JL
4659int task_can_attach(struct task_struct *p,
4660 const struct cpumask *cs_cpus_allowed)
4661{
4662 int ret = 0;
4663
4664 /*
4665 * Kthreads which disallow setaffinity shouldn't be moved
4666 * to a new cpuset; we don't want to change their cpu
4667 * affinity and isolating such threads by their set of
4668 * allowed nodes is unnecessary. Thus, cpusets are not
4669 * applicable for such threads. This prevents checking for
4670 * success of set_cpus_allowed_ptr() on all attached tasks
4671 * before cpus_allowed may be changed.
4672 */
4673 if (p->flags & PF_NO_SETAFFINITY) {
4674 ret = -EINVAL;
4675 goto out;
4676 }
4677
4678#ifdef CONFIG_SMP
4679 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4680 cs_cpus_allowed)) {
4681 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4682 cs_cpus_allowed);
75e23e49 4683 struct dl_bw *dl_b;
7f51412a
JL
4684 bool overflow;
4685 int cpus;
4686 unsigned long flags;
4687
75e23e49
JL
4688 rcu_read_lock_sched();
4689 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4690 raw_spin_lock_irqsave(&dl_b->lock, flags);
4691 cpus = dl_bw_cpus(dest_cpu);
4692 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4693 if (overflow)
4694 ret = -EBUSY;
4695 else {
4696 /*
4697 * We reserve space for this task in the destination
4698 * root_domain, as we can't fail after this point.
4699 * We will free resources in the source root_domain
4700 * later on (see set_cpus_allowed_dl()).
4701 */
4702 __dl_add(dl_b, p->dl.dl_bw);
4703 }
4704 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4705 rcu_read_unlock_sched();
7f51412a
JL
4706
4707 }
4708#endif
4709out:
4710 return ret;
4711}
4712
1da177e4 4713#ifdef CONFIG_SMP
a15b12ac
KT
4714/*
4715 * move_queued_task - move a queued task to new rq.
4716 *
4717 * Returns (locked) new rq. Old rq's lock is released.
4718 */
4719static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4720{
4721 struct rq *rq = task_rq(p);
4722
4723 lockdep_assert_held(&rq->lock);
4724
4725 dequeue_task(rq, p, 0);
4726 p->on_rq = TASK_ON_RQ_MIGRATING;
4727 set_task_cpu(p, new_cpu);
4728 raw_spin_unlock(&rq->lock);
4729
4730 rq = cpu_rq(new_cpu);
4731
4732 raw_spin_lock(&rq->lock);
4733 BUG_ON(task_cpu(p) != new_cpu);
4734 p->on_rq = TASK_ON_RQ_QUEUED;
4735 enqueue_task(rq, p, 0);
4736 check_preempt_curr(rq, p, 0);
4737
4738 return rq;
4739}
4740
1e1b6c51
KM
4741void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4742{
4743 if (p->sched_class && p->sched_class->set_cpus_allowed)
4744 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4745
4746 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4747 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4748}
4749
1da177e4
LT
4750/*
4751 * This is how migration works:
4752 *
969c7921
TH
4753 * 1) we invoke migration_cpu_stop() on the target CPU using
4754 * stop_one_cpu().
4755 * 2) stopper starts to run (implicitly forcing the migrated thread
4756 * off the CPU)
4757 * 3) it checks whether the migrated task is still in the wrong runqueue.
4758 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4759 * it and puts it into the right queue.
969c7921
TH
4760 * 5) stopper completes and stop_one_cpu() returns and the migration
4761 * is done.
1da177e4
LT
4762 */
4763
4764/*
4765 * Change a given task's CPU affinity. Migrate the thread to a
4766 * proper CPU and schedule it away if the CPU it's executing on
4767 * is removed from the allowed bitmask.
4768 *
4769 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4770 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4771 * call is not atomic; no spinlocks may be held.
4772 */
96f874e2 4773int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4774{
4775 unsigned long flags;
70b97a7f 4776 struct rq *rq;
969c7921 4777 unsigned int dest_cpu;
48f24c4d 4778 int ret = 0;
1da177e4
LT
4779
4780 rq = task_rq_lock(p, &flags);
e2912009 4781
db44fc01
YZ
4782 if (cpumask_equal(&p->cpus_allowed, new_mask))
4783 goto out;
4784
6ad4c188 4785 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4786 ret = -EINVAL;
4787 goto out;
4788 }
4789
1e1b6c51 4790 do_set_cpus_allowed(p, new_mask);
73fe6aae 4791
1da177e4 4792 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4793 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4794 goto out;
4795
969c7921 4796 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4797 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4798 struct migration_arg arg = { p, dest_cpu };
1da177e4 4799 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4800 task_rq_unlock(rq, p, &flags);
969c7921 4801 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4802 tlb_migrate_finish(p->mm);
4803 return 0;
a15b12ac
KT
4804 } else if (task_on_rq_queued(p))
4805 rq = move_queued_task(p, dest_cpu);
1da177e4 4806out:
0122ec5b 4807 task_rq_unlock(rq, p, &flags);
48f24c4d 4808
1da177e4
LT
4809 return ret;
4810}
cd8ba7cd 4811EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4812
4813/*
41a2d6cf 4814 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4815 * this because either it can't run here any more (set_cpus_allowed()
4816 * away from this CPU, or CPU going down), or because we're
4817 * attempting to rebalance this task on exec (sched_exec).
4818 *
4819 * So we race with normal scheduler movements, but that's OK, as long
4820 * as the task is no longer on this CPU.
efc30814
KK
4821 *
4822 * Returns non-zero if task was successfully migrated.
1da177e4 4823 */
efc30814 4824static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4825{
a1e01829 4826 struct rq *rq;
e2912009 4827 int ret = 0;
1da177e4 4828
e761b772 4829 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4830 return ret;
1da177e4 4831
a1e01829 4832 rq = cpu_rq(src_cpu);
1da177e4 4833
0122ec5b 4834 raw_spin_lock(&p->pi_lock);
a1e01829 4835 raw_spin_lock(&rq->lock);
1da177e4
LT
4836 /* Already moved. */
4837 if (task_cpu(p) != src_cpu)
b1e38734 4838 goto done;
a1e01829 4839
1da177e4 4840 /* Affinity changed (again). */
fa17b507 4841 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4842 goto fail;
1da177e4 4843
e2912009
PZ
4844 /*
4845 * If we're not on a rq, the next wake-up will ensure we're
4846 * placed properly.
4847 */
a15b12ac
KT
4848 if (task_on_rq_queued(p))
4849 rq = move_queued_task(p, dest_cpu);
b1e38734 4850done:
efc30814 4851 ret = 1;
b1e38734 4852fail:
a1e01829 4853 raw_spin_unlock(&rq->lock);
0122ec5b 4854 raw_spin_unlock(&p->pi_lock);
efc30814 4855 return ret;
1da177e4
LT
4856}
4857
e6628d5b
MG
4858#ifdef CONFIG_NUMA_BALANCING
4859/* Migrate current task p to target_cpu */
4860int migrate_task_to(struct task_struct *p, int target_cpu)
4861{
4862 struct migration_arg arg = { p, target_cpu };
4863 int curr_cpu = task_cpu(p);
4864
4865 if (curr_cpu == target_cpu)
4866 return 0;
4867
4868 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4869 return -EINVAL;
4870
4871 /* TODO: This is not properly updating schedstats */
4872
286549dc 4873 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4874 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4875}
0ec8aa00
PZ
4876
4877/*
4878 * Requeue a task on a given node and accurately track the number of NUMA
4879 * tasks on the runqueues
4880 */
4881void sched_setnuma(struct task_struct *p, int nid)
4882{
4883 struct rq *rq;
4884 unsigned long flags;
da0c1e65 4885 bool queued, running;
0ec8aa00
PZ
4886
4887 rq = task_rq_lock(p, &flags);
da0c1e65 4888 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4889 running = task_current(rq, p);
4890
da0c1e65 4891 if (queued)
0ec8aa00
PZ
4892 dequeue_task(rq, p, 0);
4893 if (running)
f3cd1c4e 4894 put_prev_task(rq, p);
0ec8aa00
PZ
4895
4896 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4897
4898 if (running)
4899 p->sched_class->set_curr_task(rq);
da0c1e65 4900 if (queued)
0ec8aa00
PZ
4901 enqueue_task(rq, p, 0);
4902 task_rq_unlock(rq, p, &flags);
4903}
e6628d5b
MG
4904#endif
4905
1da177e4 4906/*
969c7921
TH
4907 * migration_cpu_stop - this will be executed by a highprio stopper thread
4908 * and performs thread migration by bumping thread off CPU then
4909 * 'pushing' onto another runqueue.
1da177e4 4910 */
969c7921 4911static int migration_cpu_stop(void *data)
1da177e4 4912{
969c7921 4913 struct migration_arg *arg = data;
f7b4cddc 4914
969c7921
TH
4915 /*
4916 * The original target cpu might have gone down and we might
4917 * be on another cpu but it doesn't matter.
4918 */
f7b4cddc 4919 local_irq_disable();
5cd038f5
LJ
4920 /*
4921 * We need to explicitly wake pending tasks before running
4922 * __migrate_task() such that we will not miss enforcing cpus_allowed
4923 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4924 */
4925 sched_ttwu_pending();
969c7921 4926 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4927 local_irq_enable();
1da177e4 4928 return 0;
f7b4cddc
ON
4929}
4930
1da177e4 4931#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4932
054b9108 4933/*
48c5ccae
PZ
4934 * Ensures that the idle task is using init_mm right before its cpu goes
4935 * offline.
054b9108 4936 */
48c5ccae 4937void idle_task_exit(void)
1da177e4 4938{
48c5ccae 4939 struct mm_struct *mm = current->active_mm;
e76bd8d9 4940
48c5ccae 4941 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4942
a53efe5f 4943 if (mm != &init_mm) {
48c5ccae 4944 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4945 finish_arch_post_lock_switch();
4946 }
48c5ccae 4947 mmdrop(mm);
1da177e4
LT
4948}
4949
4950/*
5d180232
PZ
4951 * Since this CPU is going 'away' for a while, fold any nr_active delta
4952 * we might have. Assumes we're called after migrate_tasks() so that the
4953 * nr_active count is stable.
4954 *
4955 * Also see the comment "Global load-average calculations".
1da177e4 4956 */
5d180232 4957static void calc_load_migrate(struct rq *rq)
1da177e4 4958{
5d180232
PZ
4959 long delta = calc_load_fold_active(rq);
4960 if (delta)
4961 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4962}
4963
3f1d2a31
PZ
4964static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4965{
4966}
4967
4968static const struct sched_class fake_sched_class = {
4969 .put_prev_task = put_prev_task_fake,
4970};
4971
4972static struct task_struct fake_task = {
4973 /*
4974 * Avoid pull_{rt,dl}_task()
4975 */
4976 .prio = MAX_PRIO + 1,
4977 .sched_class = &fake_sched_class,
4978};
4979
48f24c4d 4980/*
48c5ccae
PZ
4981 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4982 * try_to_wake_up()->select_task_rq().
4983 *
4984 * Called with rq->lock held even though we'er in stop_machine() and
4985 * there's no concurrency possible, we hold the required locks anyway
4986 * because of lock validation efforts.
1da177e4 4987 */
48c5ccae 4988static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4989{
70b97a7f 4990 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4991 struct task_struct *next, *stop = rq->stop;
4992 int dest_cpu;
1da177e4
LT
4993
4994 /*
48c5ccae
PZ
4995 * Fudge the rq selection such that the below task selection loop
4996 * doesn't get stuck on the currently eligible stop task.
4997 *
4998 * We're currently inside stop_machine() and the rq is either stuck
4999 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5000 * either way we should never end up calling schedule() until we're
5001 * done here.
1da177e4 5002 */
48c5ccae 5003 rq->stop = NULL;
48f24c4d 5004
77bd3970
FW
5005 /*
5006 * put_prev_task() and pick_next_task() sched
5007 * class method both need to have an up-to-date
5008 * value of rq->clock[_task]
5009 */
5010 update_rq_clock(rq);
5011
dd41f596 5012 for ( ; ; ) {
48c5ccae
PZ
5013 /*
5014 * There's this thread running, bail when that's the only
5015 * remaining thread.
5016 */
5017 if (rq->nr_running == 1)
dd41f596 5018 break;
48c5ccae 5019
3f1d2a31 5020 next = pick_next_task(rq, &fake_task);
48c5ccae 5021 BUG_ON(!next);
79c53799 5022 next->sched_class->put_prev_task(rq, next);
e692ab53 5023
48c5ccae
PZ
5024 /* Find suitable destination for @next, with force if needed. */
5025 dest_cpu = select_fallback_rq(dead_cpu, next);
5026 raw_spin_unlock(&rq->lock);
5027
5028 __migrate_task(next, dead_cpu, dest_cpu);
5029
5030 raw_spin_lock(&rq->lock);
1da177e4 5031 }
dce48a84 5032
48c5ccae 5033 rq->stop = stop;
dce48a84 5034}
48c5ccae 5035
1da177e4
LT
5036#endif /* CONFIG_HOTPLUG_CPU */
5037
e692ab53
NP
5038#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5039
5040static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5041 {
5042 .procname = "sched_domain",
c57baf1e 5043 .mode = 0555,
e0361851 5044 },
56992309 5045 {}
e692ab53
NP
5046};
5047
5048static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5049 {
5050 .procname = "kernel",
c57baf1e 5051 .mode = 0555,
e0361851
AD
5052 .child = sd_ctl_dir,
5053 },
56992309 5054 {}
e692ab53
NP
5055};
5056
5057static struct ctl_table *sd_alloc_ctl_entry(int n)
5058{
5059 struct ctl_table *entry =
5cf9f062 5060 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5061
e692ab53
NP
5062 return entry;
5063}
5064
6382bc90
MM
5065static void sd_free_ctl_entry(struct ctl_table **tablep)
5066{
cd790076 5067 struct ctl_table *entry;
6382bc90 5068
cd790076
MM
5069 /*
5070 * In the intermediate directories, both the child directory and
5071 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5072 * will always be set. In the lowest directory the names are
cd790076
MM
5073 * static strings and all have proc handlers.
5074 */
5075 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5076 if (entry->child)
5077 sd_free_ctl_entry(&entry->child);
cd790076
MM
5078 if (entry->proc_handler == NULL)
5079 kfree(entry->procname);
5080 }
6382bc90
MM
5081
5082 kfree(*tablep);
5083 *tablep = NULL;
5084}
5085
201c373e 5086static int min_load_idx = 0;
fd9b86d3 5087static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5088
e692ab53 5089static void
e0361851 5090set_table_entry(struct ctl_table *entry,
e692ab53 5091 const char *procname, void *data, int maxlen,
201c373e
NK
5092 umode_t mode, proc_handler *proc_handler,
5093 bool load_idx)
e692ab53 5094{
e692ab53
NP
5095 entry->procname = procname;
5096 entry->data = data;
5097 entry->maxlen = maxlen;
5098 entry->mode = mode;
5099 entry->proc_handler = proc_handler;
201c373e
NK
5100
5101 if (load_idx) {
5102 entry->extra1 = &min_load_idx;
5103 entry->extra2 = &max_load_idx;
5104 }
e692ab53
NP
5105}
5106
5107static struct ctl_table *
5108sd_alloc_ctl_domain_table(struct sched_domain *sd)
5109{
37e6bae8 5110 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5111
ad1cdc1d
MM
5112 if (table == NULL)
5113 return NULL;
5114
e0361851 5115 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5116 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5117 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5118 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5119 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5120 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5121 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5122 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5123 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5124 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5125 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5126 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5127 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5128 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5129 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5130 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5131 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5132 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5133 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5134 &sd->cache_nice_tries,
201c373e 5135 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5136 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5137 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5138 set_table_entry(&table[11], "max_newidle_lb_cost",
5139 &sd->max_newidle_lb_cost,
5140 sizeof(long), 0644, proc_doulongvec_minmax, false);
5141 set_table_entry(&table[12], "name", sd->name,
201c373e 5142 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5143 /* &table[13] is terminator */
e692ab53
NP
5144
5145 return table;
5146}
5147
be7002e6 5148static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5149{
5150 struct ctl_table *entry, *table;
5151 struct sched_domain *sd;
5152 int domain_num = 0, i;
5153 char buf[32];
5154
5155 for_each_domain(cpu, sd)
5156 domain_num++;
5157 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5158 if (table == NULL)
5159 return NULL;
e692ab53
NP
5160
5161 i = 0;
5162 for_each_domain(cpu, sd) {
5163 snprintf(buf, 32, "domain%d", i);
e692ab53 5164 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5165 entry->mode = 0555;
e692ab53
NP
5166 entry->child = sd_alloc_ctl_domain_table(sd);
5167 entry++;
5168 i++;
5169 }
5170 return table;
5171}
5172
5173static struct ctl_table_header *sd_sysctl_header;
6382bc90 5174static void register_sched_domain_sysctl(void)
e692ab53 5175{
6ad4c188 5176 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5177 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5178 char buf[32];
5179
7378547f
MM
5180 WARN_ON(sd_ctl_dir[0].child);
5181 sd_ctl_dir[0].child = entry;
5182
ad1cdc1d
MM
5183 if (entry == NULL)
5184 return;
5185
6ad4c188 5186 for_each_possible_cpu(i) {
e692ab53 5187 snprintf(buf, 32, "cpu%d", i);
e692ab53 5188 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5189 entry->mode = 0555;
e692ab53 5190 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5191 entry++;
e692ab53 5192 }
7378547f
MM
5193
5194 WARN_ON(sd_sysctl_header);
e692ab53
NP
5195 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5196}
6382bc90 5197
7378547f 5198/* may be called multiple times per register */
6382bc90
MM
5199static void unregister_sched_domain_sysctl(void)
5200{
7378547f
MM
5201 if (sd_sysctl_header)
5202 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5203 sd_sysctl_header = NULL;
7378547f
MM
5204 if (sd_ctl_dir[0].child)
5205 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5206}
e692ab53 5207#else
6382bc90
MM
5208static void register_sched_domain_sysctl(void)
5209{
5210}
5211static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5212{
5213}
5214#endif
5215
1f11eb6a
GH
5216static void set_rq_online(struct rq *rq)
5217{
5218 if (!rq->online) {
5219 const struct sched_class *class;
5220
c6c4927b 5221 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5222 rq->online = 1;
5223
5224 for_each_class(class) {
5225 if (class->rq_online)
5226 class->rq_online(rq);
5227 }
5228 }
5229}
5230
5231static void set_rq_offline(struct rq *rq)
5232{
5233 if (rq->online) {
5234 const struct sched_class *class;
5235
5236 for_each_class(class) {
5237 if (class->rq_offline)
5238 class->rq_offline(rq);
5239 }
5240
c6c4927b 5241 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5242 rq->online = 0;
5243 }
5244}
5245
1da177e4
LT
5246/*
5247 * migration_call - callback that gets triggered when a CPU is added.
5248 * Here we can start up the necessary migration thread for the new CPU.
5249 */
0db0628d 5250static int
48f24c4d 5251migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5252{
48f24c4d 5253 int cpu = (long)hcpu;
1da177e4 5254 unsigned long flags;
969c7921 5255 struct rq *rq = cpu_rq(cpu);
1da177e4 5256
48c5ccae 5257 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5258
1da177e4 5259 case CPU_UP_PREPARE:
a468d389 5260 rq->calc_load_update = calc_load_update;
1da177e4 5261 break;
48f24c4d 5262
1da177e4 5263 case CPU_ONLINE:
1f94ef59 5264 /* Update our root-domain */
05fa785c 5265 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5266 if (rq->rd) {
c6c4927b 5267 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5268
5269 set_rq_online(rq);
1f94ef59 5270 }
05fa785c 5271 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5272 break;
48f24c4d 5273
1da177e4 5274#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5275 case CPU_DYING:
317f3941 5276 sched_ttwu_pending();
57d885fe 5277 /* Update our root-domain */
05fa785c 5278 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5279 if (rq->rd) {
c6c4927b 5280 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5281 set_rq_offline(rq);
57d885fe 5282 }
48c5ccae
PZ
5283 migrate_tasks(cpu);
5284 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5285 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5286 break;
48c5ccae 5287
5d180232 5288 case CPU_DEAD:
f319da0c 5289 calc_load_migrate(rq);
57d885fe 5290 break;
1da177e4
LT
5291#endif
5292 }
49c022e6
PZ
5293
5294 update_max_interval();
5295
1da177e4
LT
5296 return NOTIFY_OK;
5297}
5298
f38b0820
PM
5299/*
5300 * Register at high priority so that task migration (migrate_all_tasks)
5301 * happens before everything else. This has to be lower priority than
cdd6c482 5302 * the notifier in the perf_event subsystem, though.
1da177e4 5303 */
0db0628d 5304static struct notifier_block migration_notifier = {
1da177e4 5305 .notifier_call = migration_call,
50a323b7 5306 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5307};
5308
a803f026
CM
5309static void __cpuinit set_cpu_rq_start_time(void)
5310{
5311 int cpu = smp_processor_id();
5312 struct rq *rq = cpu_rq(cpu);
5313 rq->age_stamp = sched_clock_cpu(cpu);
5314}
5315
0db0628d 5316static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5317 unsigned long action, void *hcpu)
5318{
5319 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5320 case CPU_STARTING:
5321 set_cpu_rq_start_time();
5322 return NOTIFY_OK;
3a101d05
TH
5323 case CPU_DOWN_FAILED:
5324 set_cpu_active((long)hcpu, true);
5325 return NOTIFY_OK;
5326 default:
5327 return NOTIFY_DONE;
5328 }
5329}
5330
0db0628d 5331static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5332 unsigned long action, void *hcpu)
5333{
de212f18
PZ
5334 unsigned long flags;
5335 long cpu = (long)hcpu;
f10e00f4 5336 struct dl_bw *dl_b;
de212f18 5337
3a101d05
TH
5338 switch (action & ~CPU_TASKS_FROZEN) {
5339 case CPU_DOWN_PREPARE:
de212f18
PZ
5340 set_cpu_active(cpu, false);
5341
5342 /* explicitly allow suspend */
5343 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5344 bool overflow;
5345 int cpus;
5346
f10e00f4
KT
5347 rcu_read_lock_sched();
5348 dl_b = dl_bw_of(cpu);
5349
de212f18
PZ
5350 raw_spin_lock_irqsave(&dl_b->lock, flags);
5351 cpus = dl_bw_cpus(cpu);
5352 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5353 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5354
f10e00f4
KT
5355 rcu_read_unlock_sched();
5356
de212f18
PZ
5357 if (overflow)
5358 return notifier_from_errno(-EBUSY);
5359 }
3a101d05 5360 return NOTIFY_OK;
3a101d05 5361 }
de212f18
PZ
5362
5363 return NOTIFY_DONE;
3a101d05
TH
5364}
5365
7babe8db 5366static int __init migration_init(void)
1da177e4
LT
5367{
5368 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5369 int err;
48f24c4d 5370
3a101d05 5371 /* Initialize migration for the boot CPU */
07dccf33
AM
5372 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5373 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5374 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5375 register_cpu_notifier(&migration_notifier);
7babe8db 5376
3a101d05
TH
5377 /* Register cpu active notifiers */
5378 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5379 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5380
a004cd42 5381 return 0;
1da177e4 5382}
7babe8db 5383early_initcall(migration_init);
1da177e4
LT
5384#endif
5385
5386#ifdef CONFIG_SMP
476f3534 5387
4cb98839
PZ
5388static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5389
3e9830dc 5390#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5391
d039ac60 5392static __read_mostly int sched_debug_enabled;
f6630114 5393
d039ac60 5394static int __init sched_debug_setup(char *str)
f6630114 5395{
d039ac60 5396 sched_debug_enabled = 1;
f6630114
MT
5397
5398 return 0;
5399}
d039ac60
PZ
5400early_param("sched_debug", sched_debug_setup);
5401
5402static inline bool sched_debug(void)
5403{
5404 return sched_debug_enabled;
5405}
f6630114 5406
7c16ec58 5407static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5408 struct cpumask *groupmask)
1da177e4 5409{
4dcf6aff 5410 struct sched_group *group = sd->groups;
434d53b0 5411 char str[256];
1da177e4 5412
968ea6d8 5413 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5414 cpumask_clear(groupmask);
4dcf6aff
IM
5415
5416 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5417
5418 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5419 printk("does not load-balance\n");
4dcf6aff 5420 if (sd->parent)
3df0fc5b
PZ
5421 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5422 " has parent");
4dcf6aff 5423 return -1;
41c7ce9a
NP
5424 }
5425
3df0fc5b 5426 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5427
758b2cdc 5428 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5429 printk(KERN_ERR "ERROR: domain->span does not contain "
5430 "CPU%d\n", cpu);
4dcf6aff 5431 }
758b2cdc 5432 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5433 printk(KERN_ERR "ERROR: domain->groups does not contain"
5434 " CPU%d\n", cpu);
4dcf6aff 5435 }
1da177e4 5436
4dcf6aff 5437 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5438 do {
4dcf6aff 5439 if (!group) {
3df0fc5b
PZ
5440 printk("\n");
5441 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5442 break;
5443 }
5444
c3decf0d 5445 /*
63b2ca30
NP
5446 * Even though we initialize ->capacity to something semi-sane,
5447 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5448 * domain iteration is still funny without causing /0 traps.
5449 */
63b2ca30 5450 if (!group->sgc->capacity_orig) {
3df0fc5b 5451 printk(KERN_CONT "\n");
63b2ca30 5452 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5453 break;
5454 }
1da177e4 5455
758b2cdc 5456 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5457 printk(KERN_CONT "\n");
5458 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5459 break;
5460 }
1da177e4 5461
cb83b629
PZ
5462 if (!(sd->flags & SD_OVERLAP) &&
5463 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5464 printk(KERN_CONT "\n");
5465 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5466 break;
5467 }
1da177e4 5468
758b2cdc 5469 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5470
968ea6d8 5471 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5472
3df0fc5b 5473 printk(KERN_CONT " %s", str);
ca8ce3d0 5474 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5475 printk(KERN_CONT " (cpu_capacity = %d)",
5476 group->sgc->capacity);
381512cf 5477 }
1da177e4 5478
4dcf6aff
IM
5479 group = group->next;
5480 } while (group != sd->groups);
3df0fc5b 5481 printk(KERN_CONT "\n");
1da177e4 5482
758b2cdc 5483 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5484 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5485
758b2cdc
RR
5486 if (sd->parent &&
5487 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5488 printk(KERN_ERR "ERROR: parent span is not a superset "
5489 "of domain->span\n");
4dcf6aff
IM
5490 return 0;
5491}
1da177e4 5492
4dcf6aff
IM
5493static void sched_domain_debug(struct sched_domain *sd, int cpu)
5494{
5495 int level = 0;
1da177e4 5496
d039ac60 5497 if (!sched_debug_enabled)
f6630114
MT
5498 return;
5499
4dcf6aff
IM
5500 if (!sd) {
5501 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5502 return;
5503 }
1da177e4 5504
4dcf6aff
IM
5505 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5506
5507 for (;;) {
4cb98839 5508 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5509 break;
1da177e4
LT
5510 level++;
5511 sd = sd->parent;
33859f7f 5512 if (!sd)
4dcf6aff
IM
5513 break;
5514 }
1da177e4 5515}
6d6bc0ad 5516#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5517# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5518static inline bool sched_debug(void)
5519{
5520 return false;
5521}
6d6bc0ad 5522#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5523
1a20ff27 5524static int sd_degenerate(struct sched_domain *sd)
245af2c7 5525{
758b2cdc 5526 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5527 return 1;
5528
5529 /* Following flags need at least 2 groups */
5530 if (sd->flags & (SD_LOAD_BALANCE |
5531 SD_BALANCE_NEWIDLE |
5532 SD_BALANCE_FORK |
89c4710e 5533 SD_BALANCE_EXEC |
5d4dfddd 5534 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5535 SD_SHARE_PKG_RESOURCES |
5536 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5537 if (sd->groups != sd->groups->next)
5538 return 0;
5539 }
5540
5541 /* Following flags don't use groups */
c88d5910 5542 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5543 return 0;
5544
5545 return 1;
5546}
5547
48f24c4d
IM
5548static int
5549sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5550{
5551 unsigned long cflags = sd->flags, pflags = parent->flags;
5552
5553 if (sd_degenerate(parent))
5554 return 1;
5555
758b2cdc 5556 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5557 return 0;
5558
245af2c7
SS
5559 /* Flags needing groups don't count if only 1 group in parent */
5560 if (parent->groups == parent->groups->next) {
5561 pflags &= ~(SD_LOAD_BALANCE |
5562 SD_BALANCE_NEWIDLE |
5563 SD_BALANCE_FORK |
89c4710e 5564 SD_BALANCE_EXEC |
5d4dfddd 5565 SD_SHARE_CPUCAPACITY |
10866e62 5566 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5567 SD_PREFER_SIBLING |
5568 SD_SHARE_POWERDOMAIN);
5436499e
KC
5569 if (nr_node_ids == 1)
5570 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5571 }
5572 if (~cflags & pflags)
5573 return 0;
5574
5575 return 1;
5576}
5577
dce840a0 5578static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5579{
dce840a0 5580 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5581
68e74568 5582 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5583 cpudl_cleanup(&rd->cpudl);
1baca4ce 5584 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5585 free_cpumask_var(rd->rto_mask);
5586 free_cpumask_var(rd->online);
5587 free_cpumask_var(rd->span);
5588 kfree(rd);
5589}
5590
57d885fe
GH
5591static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5592{
a0490fa3 5593 struct root_domain *old_rd = NULL;
57d885fe 5594 unsigned long flags;
57d885fe 5595
05fa785c 5596 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5597
5598 if (rq->rd) {
a0490fa3 5599 old_rd = rq->rd;
57d885fe 5600
c6c4927b 5601 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5602 set_rq_offline(rq);
57d885fe 5603
c6c4927b 5604 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5605
a0490fa3 5606 /*
0515973f 5607 * If we dont want to free the old_rd yet then
a0490fa3
IM
5608 * set old_rd to NULL to skip the freeing later
5609 * in this function:
5610 */
5611 if (!atomic_dec_and_test(&old_rd->refcount))
5612 old_rd = NULL;
57d885fe
GH
5613 }
5614
5615 atomic_inc(&rd->refcount);
5616 rq->rd = rd;
5617
c6c4927b 5618 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5619 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5620 set_rq_online(rq);
57d885fe 5621
05fa785c 5622 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5623
5624 if (old_rd)
dce840a0 5625 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5626}
5627
68c38fc3 5628static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5629{
5630 memset(rd, 0, sizeof(*rd));
5631
68c38fc3 5632 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5633 goto out;
68c38fc3 5634 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5635 goto free_span;
1baca4ce 5636 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5637 goto free_online;
1baca4ce
JL
5638 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5639 goto free_dlo_mask;
6e0534f2 5640
332ac17e 5641 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5642 if (cpudl_init(&rd->cpudl) != 0)
5643 goto free_dlo_mask;
332ac17e 5644
68c38fc3 5645 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5646 goto free_rto_mask;
c6c4927b 5647 return 0;
6e0534f2 5648
68e74568
RR
5649free_rto_mask:
5650 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5651free_dlo_mask:
5652 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5653free_online:
5654 free_cpumask_var(rd->online);
5655free_span:
5656 free_cpumask_var(rd->span);
0c910d28 5657out:
c6c4927b 5658 return -ENOMEM;
57d885fe
GH
5659}
5660
029632fb
PZ
5661/*
5662 * By default the system creates a single root-domain with all cpus as
5663 * members (mimicking the global state we have today).
5664 */
5665struct root_domain def_root_domain;
5666
57d885fe
GH
5667static void init_defrootdomain(void)
5668{
68c38fc3 5669 init_rootdomain(&def_root_domain);
c6c4927b 5670
57d885fe
GH
5671 atomic_set(&def_root_domain.refcount, 1);
5672}
5673
dc938520 5674static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5675{
5676 struct root_domain *rd;
5677
5678 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5679 if (!rd)
5680 return NULL;
5681
68c38fc3 5682 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5683 kfree(rd);
5684 return NULL;
5685 }
57d885fe
GH
5686
5687 return rd;
5688}
5689
63b2ca30 5690static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5691{
5692 struct sched_group *tmp, *first;
5693
5694 if (!sg)
5695 return;
5696
5697 first = sg;
5698 do {
5699 tmp = sg->next;
5700
63b2ca30
NP
5701 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5702 kfree(sg->sgc);
e3589f6c
PZ
5703
5704 kfree(sg);
5705 sg = tmp;
5706 } while (sg != first);
5707}
5708
dce840a0
PZ
5709static void free_sched_domain(struct rcu_head *rcu)
5710{
5711 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5712
5713 /*
5714 * If its an overlapping domain it has private groups, iterate and
5715 * nuke them all.
5716 */
5717 if (sd->flags & SD_OVERLAP) {
5718 free_sched_groups(sd->groups, 1);
5719 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5720 kfree(sd->groups->sgc);
dce840a0 5721 kfree(sd->groups);
9c3f75cb 5722 }
dce840a0
PZ
5723 kfree(sd);
5724}
5725
5726static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5727{
5728 call_rcu(&sd->rcu, free_sched_domain);
5729}
5730
5731static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5732{
5733 for (; sd; sd = sd->parent)
5734 destroy_sched_domain(sd, cpu);
5735}
5736
518cd623
PZ
5737/*
5738 * Keep a special pointer to the highest sched_domain that has
5739 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5740 * allows us to avoid some pointer chasing select_idle_sibling().
5741 *
5742 * Also keep a unique ID per domain (we use the first cpu number in
5743 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5744 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5745 */
5746DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5747DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5748DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5749DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5750DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5751DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5752
5753static void update_top_cache_domain(int cpu)
5754{
5755 struct sched_domain *sd;
5d4cf996 5756 struct sched_domain *busy_sd = NULL;
518cd623 5757 int id = cpu;
7d9ffa89 5758 int size = 1;
518cd623
PZ
5759
5760 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5761 if (sd) {
518cd623 5762 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5763 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5764 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5765 }
5d4cf996 5766 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5767
5768 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5769 per_cpu(sd_llc_size, cpu) = size;
518cd623 5770 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5771
5772 sd = lowest_flag_domain(cpu, SD_NUMA);
5773 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5774
5775 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5776 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5777}
5778
1da177e4 5779/*
0eab9146 5780 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5781 * hold the hotplug lock.
5782 */
0eab9146
IM
5783static void
5784cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5785{
70b97a7f 5786 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5787 struct sched_domain *tmp;
5788
5789 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5790 for (tmp = sd; tmp; ) {
245af2c7
SS
5791 struct sched_domain *parent = tmp->parent;
5792 if (!parent)
5793 break;
f29c9b1c 5794
1a848870 5795 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5796 tmp->parent = parent->parent;
1a848870
SS
5797 if (parent->parent)
5798 parent->parent->child = tmp;
10866e62
PZ
5799 /*
5800 * Transfer SD_PREFER_SIBLING down in case of a
5801 * degenerate parent; the spans match for this
5802 * so the property transfers.
5803 */
5804 if (parent->flags & SD_PREFER_SIBLING)
5805 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5806 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5807 } else
5808 tmp = tmp->parent;
245af2c7
SS
5809 }
5810
1a848870 5811 if (sd && sd_degenerate(sd)) {
dce840a0 5812 tmp = sd;
245af2c7 5813 sd = sd->parent;
dce840a0 5814 destroy_sched_domain(tmp, cpu);
1a848870
SS
5815 if (sd)
5816 sd->child = NULL;
5817 }
1da177e4 5818
4cb98839 5819 sched_domain_debug(sd, cpu);
1da177e4 5820
57d885fe 5821 rq_attach_root(rq, rd);
dce840a0 5822 tmp = rq->sd;
674311d5 5823 rcu_assign_pointer(rq->sd, sd);
dce840a0 5824 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5825
5826 update_top_cache_domain(cpu);
1da177e4
LT
5827}
5828
5829/* cpus with isolated domains */
dcc30a35 5830static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5831
5832/* Setup the mask of cpus configured for isolated domains */
5833static int __init isolated_cpu_setup(char *str)
5834{
bdddd296 5835 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5836 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5837 return 1;
5838}
5839
8927f494 5840__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5841
49a02c51 5842struct s_data {
21d42ccf 5843 struct sched_domain ** __percpu sd;
49a02c51
AH
5844 struct root_domain *rd;
5845};
5846
2109b99e 5847enum s_alloc {
2109b99e 5848 sa_rootdomain,
21d42ccf 5849 sa_sd,
dce840a0 5850 sa_sd_storage,
2109b99e
AH
5851 sa_none,
5852};
5853
c1174876
PZ
5854/*
5855 * Build an iteration mask that can exclude certain CPUs from the upwards
5856 * domain traversal.
5857 *
5858 * Asymmetric node setups can result in situations where the domain tree is of
5859 * unequal depth, make sure to skip domains that already cover the entire
5860 * range.
5861 *
5862 * In that case build_sched_domains() will have terminated the iteration early
5863 * and our sibling sd spans will be empty. Domains should always include the
5864 * cpu they're built on, so check that.
5865 *
5866 */
5867static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5868{
5869 const struct cpumask *span = sched_domain_span(sd);
5870 struct sd_data *sdd = sd->private;
5871 struct sched_domain *sibling;
5872 int i;
5873
5874 for_each_cpu(i, span) {
5875 sibling = *per_cpu_ptr(sdd->sd, i);
5876 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5877 continue;
5878
5879 cpumask_set_cpu(i, sched_group_mask(sg));
5880 }
5881}
5882
5883/*
5884 * Return the canonical balance cpu for this group, this is the first cpu
5885 * of this group that's also in the iteration mask.
5886 */
5887int group_balance_cpu(struct sched_group *sg)
5888{
5889 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5890}
5891
e3589f6c
PZ
5892static int
5893build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5894{
5895 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5896 const struct cpumask *span = sched_domain_span(sd);
5897 struct cpumask *covered = sched_domains_tmpmask;
5898 struct sd_data *sdd = sd->private;
aaecac4a 5899 struct sched_domain *sibling;
e3589f6c
PZ
5900 int i;
5901
5902 cpumask_clear(covered);
5903
5904 for_each_cpu(i, span) {
5905 struct cpumask *sg_span;
5906
5907 if (cpumask_test_cpu(i, covered))
5908 continue;
5909
aaecac4a 5910 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5911
5912 /* See the comment near build_group_mask(). */
aaecac4a 5913 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5914 continue;
5915
e3589f6c 5916 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5917 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5918
5919 if (!sg)
5920 goto fail;
5921
5922 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5923 if (sibling->child)
5924 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5925 else
e3589f6c
PZ
5926 cpumask_set_cpu(i, sg_span);
5927
5928 cpumask_or(covered, covered, sg_span);
5929
63b2ca30
NP
5930 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5931 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5932 build_group_mask(sd, sg);
5933
c3decf0d 5934 /*
63b2ca30 5935 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5936 * domains and no possible iteration will get us here, we won't
5937 * die on a /0 trap.
5938 */
ca8ce3d0 5939 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5940 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5941
c1174876
PZ
5942 /*
5943 * Make sure the first group of this domain contains the
5944 * canonical balance cpu. Otherwise the sched_domain iteration
5945 * breaks. See update_sg_lb_stats().
5946 */
74a5ce20 5947 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5948 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5949 groups = sg;
5950
5951 if (!first)
5952 first = sg;
5953 if (last)
5954 last->next = sg;
5955 last = sg;
5956 last->next = first;
5957 }
5958 sd->groups = groups;
5959
5960 return 0;
5961
5962fail:
5963 free_sched_groups(first, 0);
5964
5965 return -ENOMEM;
5966}
5967
dce840a0 5968static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5969{
dce840a0
PZ
5970 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5971 struct sched_domain *child = sd->child;
1da177e4 5972
dce840a0
PZ
5973 if (child)
5974 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5975
9c3f75cb 5976 if (sg) {
dce840a0 5977 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5978 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5979 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5980 }
dce840a0
PZ
5981
5982 return cpu;
1e9f28fa 5983}
1e9f28fa 5984
01a08546 5985/*
dce840a0
PZ
5986 * build_sched_groups will build a circular linked list of the groups
5987 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5988 * and ->cpu_capacity to 0.
e3589f6c
PZ
5989 *
5990 * Assumes the sched_domain tree is fully constructed
01a08546 5991 */
e3589f6c
PZ
5992static int
5993build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5994{
dce840a0
PZ
5995 struct sched_group *first = NULL, *last = NULL;
5996 struct sd_data *sdd = sd->private;
5997 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5998 struct cpumask *covered;
dce840a0 5999 int i;
9c1cfda2 6000
e3589f6c
PZ
6001 get_group(cpu, sdd, &sd->groups);
6002 atomic_inc(&sd->groups->ref);
6003
0936629f 6004 if (cpu != cpumask_first(span))
e3589f6c
PZ
6005 return 0;
6006
f96225fd
PZ
6007 lockdep_assert_held(&sched_domains_mutex);
6008 covered = sched_domains_tmpmask;
6009
dce840a0 6010 cpumask_clear(covered);
6711cab4 6011
dce840a0
PZ
6012 for_each_cpu(i, span) {
6013 struct sched_group *sg;
cd08e923 6014 int group, j;
6711cab4 6015
dce840a0
PZ
6016 if (cpumask_test_cpu(i, covered))
6017 continue;
6711cab4 6018
cd08e923 6019 group = get_group(i, sdd, &sg);
c1174876 6020 cpumask_setall(sched_group_mask(sg));
0601a88d 6021
dce840a0
PZ
6022 for_each_cpu(j, span) {
6023 if (get_group(j, sdd, NULL) != group)
6024 continue;
0601a88d 6025
dce840a0
PZ
6026 cpumask_set_cpu(j, covered);
6027 cpumask_set_cpu(j, sched_group_cpus(sg));
6028 }
0601a88d 6029
dce840a0
PZ
6030 if (!first)
6031 first = sg;
6032 if (last)
6033 last->next = sg;
6034 last = sg;
6035 }
6036 last->next = first;
e3589f6c
PZ
6037
6038 return 0;
0601a88d 6039}
51888ca2 6040
89c4710e 6041/*
63b2ca30 6042 * Initialize sched groups cpu_capacity.
89c4710e 6043 *
63b2ca30 6044 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6045 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6046 * Typically cpu_capacity for all the groups in a sched domain will be same
6047 * unless there are asymmetries in the topology. If there are asymmetries,
6048 * group having more cpu_capacity will pickup more load compared to the
6049 * group having less cpu_capacity.
89c4710e 6050 */
63b2ca30 6051static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6052{
e3589f6c 6053 struct sched_group *sg = sd->groups;
89c4710e 6054
94c95ba6 6055 WARN_ON(!sg);
e3589f6c
PZ
6056
6057 do {
6058 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6059 sg = sg->next;
6060 } while (sg != sd->groups);
89c4710e 6061
c1174876 6062 if (cpu != group_balance_cpu(sg))
e3589f6c 6063 return;
aae6d3dd 6064
63b2ca30
NP
6065 update_group_capacity(sd, cpu);
6066 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6067}
6068
7c16ec58
MT
6069/*
6070 * Initializers for schedule domains
6071 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6072 */
6073
1d3504fc 6074static int default_relax_domain_level = -1;
60495e77 6075int sched_domain_level_max;
1d3504fc
HS
6076
6077static int __init setup_relax_domain_level(char *str)
6078{
a841f8ce
DS
6079 if (kstrtoint(str, 0, &default_relax_domain_level))
6080 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6081
1d3504fc
HS
6082 return 1;
6083}
6084__setup("relax_domain_level=", setup_relax_domain_level);
6085
6086static void set_domain_attribute(struct sched_domain *sd,
6087 struct sched_domain_attr *attr)
6088{
6089 int request;
6090
6091 if (!attr || attr->relax_domain_level < 0) {
6092 if (default_relax_domain_level < 0)
6093 return;
6094 else
6095 request = default_relax_domain_level;
6096 } else
6097 request = attr->relax_domain_level;
6098 if (request < sd->level) {
6099 /* turn off idle balance on this domain */
c88d5910 6100 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6101 } else {
6102 /* turn on idle balance on this domain */
c88d5910 6103 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6104 }
6105}
6106
54ab4ff4
PZ
6107static void __sdt_free(const struct cpumask *cpu_map);
6108static int __sdt_alloc(const struct cpumask *cpu_map);
6109
2109b99e
AH
6110static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6111 const struct cpumask *cpu_map)
6112{
6113 switch (what) {
2109b99e 6114 case sa_rootdomain:
822ff793
PZ
6115 if (!atomic_read(&d->rd->refcount))
6116 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6117 case sa_sd:
6118 free_percpu(d->sd); /* fall through */
dce840a0 6119 case sa_sd_storage:
54ab4ff4 6120 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6121 case sa_none:
6122 break;
6123 }
6124}
3404c8d9 6125
2109b99e
AH
6126static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6127 const struct cpumask *cpu_map)
6128{
dce840a0
PZ
6129 memset(d, 0, sizeof(*d));
6130
54ab4ff4
PZ
6131 if (__sdt_alloc(cpu_map))
6132 return sa_sd_storage;
dce840a0
PZ
6133 d->sd = alloc_percpu(struct sched_domain *);
6134 if (!d->sd)
6135 return sa_sd_storage;
2109b99e 6136 d->rd = alloc_rootdomain();
dce840a0 6137 if (!d->rd)
21d42ccf 6138 return sa_sd;
2109b99e
AH
6139 return sa_rootdomain;
6140}
57d885fe 6141
dce840a0
PZ
6142/*
6143 * NULL the sd_data elements we've used to build the sched_domain and
6144 * sched_group structure so that the subsequent __free_domain_allocs()
6145 * will not free the data we're using.
6146 */
6147static void claim_allocations(int cpu, struct sched_domain *sd)
6148{
6149 struct sd_data *sdd = sd->private;
dce840a0
PZ
6150
6151 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6152 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6153
e3589f6c 6154 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6155 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6156
63b2ca30
NP
6157 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6158 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6159}
6160
cb83b629 6161#ifdef CONFIG_NUMA
cb83b629 6162static int sched_domains_numa_levels;
e3fe70b1 6163enum numa_topology_type sched_numa_topology_type;
cb83b629 6164static int *sched_domains_numa_distance;
9942f79b 6165int sched_max_numa_distance;
cb83b629
PZ
6166static struct cpumask ***sched_domains_numa_masks;
6167static int sched_domains_curr_level;
143e1e28 6168#endif
cb83b629 6169
143e1e28
VG
6170/*
6171 * SD_flags allowed in topology descriptions.
6172 *
5d4dfddd 6173 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6174 * SD_SHARE_PKG_RESOURCES - describes shared caches
6175 * SD_NUMA - describes NUMA topologies
d77b3ed5 6176 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6177 *
6178 * Odd one out:
6179 * SD_ASYM_PACKING - describes SMT quirks
6180 */
6181#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6182 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6183 SD_SHARE_PKG_RESOURCES | \
6184 SD_NUMA | \
d77b3ed5
VG
6185 SD_ASYM_PACKING | \
6186 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6187
6188static struct sched_domain *
143e1e28 6189sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6190{
6191 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6192 int sd_weight, sd_flags = 0;
6193
6194#ifdef CONFIG_NUMA
6195 /*
6196 * Ugly hack to pass state to sd_numa_mask()...
6197 */
6198 sched_domains_curr_level = tl->numa_level;
6199#endif
6200
6201 sd_weight = cpumask_weight(tl->mask(cpu));
6202
6203 if (tl->sd_flags)
6204 sd_flags = (*tl->sd_flags)();
6205 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6206 "wrong sd_flags in topology description\n"))
6207 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6208
6209 *sd = (struct sched_domain){
6210 .min_interval = sd_weight,
6211 .max_interval = 2*sd_weight,
6212 .busy_factor = 32,
870a0bb5 6213 .imbalance_pct = 125,
143e1e28
VG
6214
6215 .cache_nice_tries = 0,
6216 .busy_idx = 0,
6217 .idle_idx = 0,
cb83b629
PZ
6218 .newidle_idx = 0,
6219 .wake_idx = 0,
6220 .forkexec_idx = 0,
6221
6222 .flags = 1*SD_LOAD_BALANCE
6223 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6224 | 1*SD_BALANCE_EXEC
6225 | 1*SD_BALANCE_FORK
cb83b629 6226 | 0*SD_BALANCE_WAKE
143e1e28 6227 | 1*SD_WAKE_AFFINE
5d4dfddd 6228 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6229 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6230 | 0*SD_SERIALIZE
cb83b629 6231 | 0*SD_PREFER_SIBLING
143e1e28
VG
6232 | 0*SD_NUMA
6233 | sd_flags
cb83b629 6234 ,
143e1e28 6235
cb83b629
PZ
6236 .last_balance = jiffies,
6237 .balance_interval = sd_weight,
143e1e28 6238 .smt_gain = 0,
2b4cfe64
JL
6239 .max_newidle_lb_cost = 0,
6240 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6241#ifdef CONFIG_SCHED_DEBUG
6242 .name = tl->name,
6243#endif
cb83b629 6244 };
cb83b629
PZ
6245
6246 /*
143e1e28 6247 * Convert topological properties into behaviour.
cb83b629 6248 */
143e1e28 6249
5d4dfddd 6250 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6251 sd->imbalance_pct = 110;
6252 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6253
6254 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6255 sd->imbalance_pct = 117;
6256 sd->cache_nice_tries = 1;
6257 sd->busy_idx = 2;
6258
6259#ifdef CONFIG_NUMA
6260 } else if (sd->flags & SD_NUMA) {
6261 sd->cache_nice_tries = 2;
6262 sd->busy_idx = 3;
6263 sd->idle_idx = 2;
6264
6265 sd->flags |= SD_SERIALIZE;
6266 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6267 sd->flags &= ~(SD_BALANCE_EXEC |
6268 SD_BALANCE_FORK |
6269 SD_WAKE_AFFINE);
6270 }
6271
6272#endif
6273 } else {
6274 sd->flags |= SD_PREFER_SIBLING;
6275 sd->cache_nice_tries = 1;
6276 sd->busy_idx = 2;
6277 sd->idle_idx = 1;
6278 }
6279
6280 sd->private = &tl->data;
cb83b629
PZ
6281
6282 return sd;
6283}
6284
143e1e28
VG
6285/*
6286 * Topology list, bottom-up.
6287 */
6288static struct sched_domain_topology_level default_topology[] = {
6289#ifdef CONFIG_SCHED_SMT
6290 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6291#endif
6292#ifdef CONFIG_SCHED_MC
6293 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6294#endif
6295 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6296 { NULL, },
6297};
6298
6299struct sched_domain_topology_level *sched_domain_topology = default_topology;
6300
6301#define for_each_sd_topology(tl) \
6302 for (tl = sched_domain_topology; tl->mask; tl++)
6303
6304void set_sched_topology(struct sched_domain_topology_level *tl)
6305{
6306 sched_domain_topology = tl;
6307}
6308
6309#ifdef CONFIG_NUMA
6310
cb83b629
PZ
6311static const struct cpumask *sd_numa_mask(int cpu)
6312{
6313 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6314}
6315
d039ac60
PZ
6316static void sched_numa_warn(const char *str)
6317{
6318 static int done = false;
6319 int i,j;
6320
6321 if (done)
6322 return;
6323
6324 done = true;
6325
6326 printk(KERN_WARNING "ERROR: %s\n\n", str);
6327
6328 for (i = 0; i < nr_node_ids; i++) {
6329 printk(KERN_WARNING " ");
6330 for (j = 0; j < nr_node_ids; j++)
6331 printk(KERN_CONT "%02d ", node_distance(i,j));
6332 printk(KERN_CONT "\n");
6333 }
6334 printk(KERN_WARNING "\n");
6335}
6336
9942f79b 6337bool find_numa_distance(int distance)
d039ac60
PZ
6338{
6339 int i;
6340
6341 if (distance == node_distance(0, 0))
6342 return true;
6343
6344 for (i = 0; i < sched_domains_numa_levels; i++) {
6345 if (sched_domains_numa_distance[i] == distance)
6346 return true;
6347 }
6348
6349 return false;
6350}
6351
e3fe70b1
RR
6352/*
6353 * A system can have three types of NUMA topology:
6354 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6355 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6356 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6357 *
6358 * The difference between a glueless mesh topology and a backplane
6359 * topology lies in whether communication between not directly
6360 * connected nodes goes through intermediary nodes (where programs
6361 * could run), or through backplane controllers. This affects
6362 * placement of programs.
6363 *
6364 * The type of topology can be discerned with the following tests:
6365 * - If the maximum distance between any nodes is 1 hop, the system
6366 * is directly connected.
6367 * - If for two nodes A and B, located N > 1 hops away from each other,
6368 * there is an intermediary node C, which is < N hops away from both
6369 * nodes A and B, the system is a glueless mesh.
6370 */
6371static void init_numa_topology_type(void)
6372{
6373 int a, b, c, n;
6374
6375 n = sched_max_numa_distance;
6376
6377 if (n <= 1)
6378 sched_numa_topology_type = NUMA_DIRECT;
6379
6380 for_each_online_node(a) {
6381 for_each_online_node(b) {
6382 /* Find two nodes furthest removed from each other. */
6383 if (node_distance(a, b) < n)
6384 continue;
6385
6386 /* Is there an intermediary node between a and b? */
6387 for_each_online_node(c) {
6388 if (node_distance(a, c) < n &&
6389 node_distance(b, c) < n) {
6390 sched_numa_topology_type =
6391 NUMA_GLUELESS_MESH;
6392 return;
6393 }
6394 }
6395
6396 sched_numa_topology_type = NUMA_BACKPLANE;
6397 return;
6398 }
6399 }
6400}
6401
cb83b629
PZ
6402static void sched_init_numa(void)
6403{
6404 int next_distance, curr_distance = node_distance(0, 0);
6405 struct sched_domain_topology_level *tl;
6406 int level = 0;
6407 int i, j, k;
6408
cb83b629
PZ
6409 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6410 if (!sched_domains_numa_distance)
6411 return;
6412
6413 /*
6414 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6415 * unique distances in the node_distance() table.
6416 *
6417 * Assumes node_distance(0,j) includes all distances in
6418 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6419 */
6420 next_distance = curr_distance;
6421 for (i = 0; i < nr_node_ids; i++) {
6422 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6423 for (k = 0; k < nr_node_ids; k++) {
6424 int distance = node_distance(i, k);
6425
6426 if (distance > curr_distance &&
6427 (distance < next_distance ||
6428 next_distance == curr_distance))
6429 next_distance = distance;
6430
6431 /*
6432 * While not a strong assumption it would be nice to know
6433 * about cases where if node A is connected to B, B is not
6434 * equally connected to A.
6435 */
6436 if (sched_debug() && node_distance(k, i) != distance)
6437 sched_numa_warn("Node-distance not symmetric");
6438
6439 if (sched_debug() && i && !find_numa_distance(distance))
6440 sched_numa_warn("Node-0 not representative");
6441 }
6442 if (next_distance != curr_distance) {
6443 sched_domains_numa_distance[level++] = next_distance;
6444 sched_domains_numa_levels = level;
6445 curr_distance = next_distance;
6446 } else break;
cb83b629 6447 }
d039ac60
PZ
6448
6449 /*
6450 * In case of sched_debug() we verify the above assumption.
6451 */
6452 if (!sched_debug())
6453 break;
cb83b629 6454 }
c123588b
AR
6455
6456 if (!level)
6457 return;
6458
cb83b629
PZ
6459 /*
6460 * 'level' contains the number of unique distances, excluding the
6461 * identity distance node_distance(i,i).
6462 *
28b4a521 6463 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6464 * numbers.
6465 */
6466
5f7865f3
TC
6467 /*
6468 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6469 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6470 * the array will contain less then 'level' members. This could be
6471 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6472 * in other functions.
6473 *
6474 * We reset it to 'level' at the end of this function.
6475 */
6476 sched_domains_numa_levels = 0;
6477
cb83b629
PZ
6478 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6479 if (!sched_domains_numa_masks)
6480 return;
6481
6482 /*
6483 * Now for each level, construct a mask per node which contains all
6484 * cpus of nodes that are that many hops away from us.
6485 */
6486 for (i = 0; i < level; i++) {
6487 sched_domains_numa_masks[i] =
6488 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6489 if (!sched_domains_numa_masks[i])
6490 return;
6491
6492 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6493 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6494 if (!mask)
6495 return;
6496
6497 sched_domains_numa_masks[i][j] = mask;
6498
6499 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6500 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6501 continue;
6502
6503 cpumask_or(mask, mask, cpumask_of_node(k));
6504 }
6505 }
6506 }
6507
143e1e28
VG
6508 /* Compute default topology size */
6509 for (i = 0; sched_domain_topology[i].mask; i++);
6510
c515db8c 6511 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6512 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6513 if (!tl)
6514 return;
6515
6516 /*
6517 * Copy the default topology bits..
6518 */
143e1e28
VG
6519 for (i = 0; sched_domain_topology[i].mask; i++)
6520 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6521
6522 /*
6523 * .. and append 'j' levels of NUMA goodness.
6524 */
6525 for (j = 0; j < level; i++, j++) {
6526 tl[i] = (struct sched_domain_topology_level){
cb83b629 6527 .mask = sd_numa_mask,
143e1e28 6528 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6529 .flags = SDTL_OVERLAP,
6530 .numa_level = j,
143e1e28 6531 SD_INIT_NAME(NUMA)
cb83b629
PZ
6532 };
6533 }
6534
6535 sched_domain_topology = tl;
5f7865f3
TC
6536
6537 sched_domains_numa_levels = level;
9942f79b 6538 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6539
6540 init_numa_topology_type();
cb83b629 6541}
301a5cba
TC
6542
6543static void sched_domains_numa_masks_set(int cpu)
6544{
6545 int i, j;
6546 int node = cpu_to_node(cpu);
6547
6548 for (i = 0; i < sched_domains_numa_levels; i++) {
6549 for (j = 0; j < nr_node_ids; j++) {
6550 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6551 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6552 }
6553 }
6554}
6555
6556static void sched_domains_numa_masks_clear(int cpu)
6557{
6558 int i, j;
6559 for (i = 0; i < sched_domains_numa_levels; i++) {
6560 for (j = 0; j < nr_node_ids; j++)
6561 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6562 }
6563}
6564
6565/*
6566 * Update sched_domains_numa_masks[level][node] array when new cpus
6567 * are onlined.
6568 */
6569static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6570 unsigned long action,
6571 void *hcpu)
6572{
6573 int cpu = (long)hcpu;
6574
6575 switch (action & ~CPU_TASKS_FROZEN) {
6576 case CPU_ONLINE:
6577 sched_domains_numa_masks_set(cpu);
6578 break;
6579
6580 case CPU_DEAD:
6581 sched_domains_numa_masks_clear(cpu);
6582 break;
6583
6584 default:
6585 return NOTIFY_DONE;
6586 }
6587
6588 return NOTIFY_OK;
cb83b629
PZ
6589}
6590#else
6591static inline void sched_init_numa(void)
6592{
6593}
301a5cba
TC
6594
6595static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6596 unsigned long action,
6597 void *hcpu)
6598{
6599 return 0;
6600}
cb83b629
PZ
6601#endif /* CONFIG_NUMA */
6602
54ab4ff4
PZ
6603static int __sdt_alloc(const struct cpumask *cpu_map)
6604{
6605 struct sched_domain_topology_level *tl;
6606 int j;
6607
27723a68 6608 for_each_sd_topology(tl) {
54ab4ff4
PZ
6609 struct sd_data *sdd = &tl->data;
6610
6611 sdd->sd = alloc_percpu(struct sched_domain *);
6612 if (!sdd->sd)
6613 return -ENOMEM;
6614
6615 sdd->sg = alloc_percpu(struct sched_group *);
6616 if (!sdd->sg)
6617 return -ENOMEM;
6618
63b2ca30
NP
6619 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6620 if (!sdd->sgc)
9c3f75cb
PZ
6621 return -ENOMEM;
6622
54ab4ff4
PZ
6623 for_each_cpu(j, cpu_map) {
6624 struct sched_domain *sd;
6625 struct sched_group *sg;
63b2ca30 6626 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6627
6628 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6629 GFP_KERNEL, cpu_to_node(j));
6630 if (!sd)
6631 return -ENOMEM;
6632
6633 *per_cpu_ptr(sdd->sd, j) = sd;
6634
6635 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6636 GFP_KERNEL, cpu_to_node(j));
6637 if (!sg)
6638 return -ENOMEM;
6639
30b4e9eb
IM
6640 sg->next = sg;
6641
54ab4ff4 6642 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6643
63b2ca30 6644 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6645 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6646 if (!sgc)
9c3f75cb
PZ
6647 return -ENOMEM;
6648
63b2ca30 6649 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6650 }
6651 }
6652
6653 return 0;
6654}
6655
6656static void __sdt_free(const struct cpumask *cpu_map)
6657{
6658 struct sched_domain_topology_level *tl;
6659 int j;
6660
27723a68 6661 for_each_sd_topology(tl) {
54ab4ff4
PZ
6662 struct sd_data *sdd = &tl->data;
6663
6664 for_each_cpu(j, cpu_map) {
fb2cf2c6 6665 struct sched_domain *sd;
6666
6667 if (sdd->sd) {
6668 sd = *per_cpu_ptr(sdd->sd, j);
6669 if (sd && (sd->flags & SD_OVERLAP))
6670 free_sched_groups(sd->groups, 0);
6671 kfree(*per_cpu_ptr(sdd->sd, j));
6672 }
6673
6674 if (sdd->sg)
6675 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6676 if (sdd->sgc)
6677 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6678 }
6679 free_percpu(sdd->sd);
fb2cf2c6 6680 sdd->sd = NULL;
54ab4ff4 6681 free_percpu(sdd->sg);
fb2cf2c6 6682 sdd->sg = NULL;
63b2ca30
NP
6683 free_percpu(sdd->sgc);
6684 sdd->sgc = NULL;
54ab4ff4
PZ
6685 }
6686}
6687
2c402dc3 6688struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6689 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6690 struct sched_domain *child, int cpu)
2c402dc3 6691{
143e1e28 6692 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6693 if (!sd)
d069b916 6694 return child;
2c402dc3 6695
2c402dc3 6696 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6697 if (child) {
6698 sd->level = child->level + 1;
6699 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6700 child->parent = sd;
c75e0128 6701 sd->child = child;
6ae72dff
PZ
6702
6703 if (!cpumask_subset(sched_domain_span(child),
6704 sched_domain_span(sd))) {
6705 pr_err("BUG: arch topology borken\n");
6706#ifdef CONFIG_SCHED_DEBUG
6707 pr_err(" the %s domain not a subset of the %s domain\n",
6708 child->name, sd->name);
6709#endif
6710 /* Fixup, ensure @sd has at least @child cpus. */
6711 cpumask_or(sched_domain_span(sd),
6712 sched_domain_span(sd),
6713 sched_domain_span(child));
6714 }
6715
60495e77 6716 }
a841f8ce 6717 set_domain_attribute(sd, attr);
2c402dc3
PZ
6718
6719 return sd;
6720}
6721
2109b99e
AH
6722/*
6723 * Build sched domains for a given set of cpus and attach the sched domains
6724 * to the individual cpus
6725 */
dce840a0
PZ
6726static int build_sched_domains(const struct cpumask *cpu_map,
6727 struct sched_domain_attr *attr)
2109b99e 6728{
1c632169 6729 enum s_alloc alloc_state;
dce840a0 6730 struct sched_domain *sd;
2109b99e 6731 struct s_data d;
822ff793 6732 int i, ret = -ENOMEM;
9c1cfda2 6733
2109b99e
AH
6734 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6735 if (alloc_state != sa_rootdomain)
6736 goto error;
9c1cfda2 6737
dce840a0 6738 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6739 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6740 struct sched_domain_topology_level *tl;
6741
3bd65a80 6742 sd = NULL;
27723a68 6743 for_each_sd_topology(tl) {
4a850cbe 6744 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6745 if (tl == sched_domain_topology)
6746 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6747 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6748 sd->flags |= SD_OVERLAP;
d110235d
PZ
6749 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6750 break;
e3589f6c 6751 }
dce840a0
PZ
6752 }
6753
6754 /* Build the groups for the domains */
6755 for_each_cpu(i, cpu_map) {
6756 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6757 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6758 if (sd->flags & SD_OVERLAP) {
6759 if (build_overlap_sched_groups(sd, i))
6760 goto error;
6761 } else {
6762 if (build_sched_groups(sd, i))
6763 goto error;
6764 }
1cf51902 6765 }
a06dadbe 6766 }
9c1cfda2 6767
ced549fa 6768 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6769 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6770 if (!cpumask_test_cpu(i, cpu_map))
6771 continue;
9c1cfda2 6772
dce840a0
PZ
6773 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6774 claim_allocations(i, sd);
63b2ca30 6775 init_sched_groups_capacity(i, sd);
dce840a0 6776 }
f712c0c7 6777 }
9c1cfda2 6778
1da177e4 6779 /* Attach the domains */
dce840a0 6780 rcu_read_lock();
abcd083a 6781 for_each_cpu(i, cpu_map) {
21d42ccf 6782 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6783 cpu_attach_domain(sd, d.rd, i);
1da177e4 6784 }
dce840a0 6785 rcu_read_unlock();
51888ca2 6786
822ff793 6787 ret = 0;
51888ca2 6788error:
2109b99e 6789 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6790 return ret;
1da177e4 6791}
029190c5 6792
acc3f5d7 6793static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6794static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6795static struct sched_domain_attr *dattr_cur;
6796 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6797
6798/*
6799 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6800 * cpumask) fails, then fallback to a single sched domain,
6801 * as determined by the single cpumask fallback_doms.
029190c5 6802 */
4212823f 6803static cpumask_var_t fallback_doms;
029190c5 6804
ee79d1bd
HC
6805/*
6806 * arch_update_cpu_topology lets virtualized architectures update the
6807 * cpu core maps. It is supposed to return 1 if the topology changed
6808 * or 0 if it stayed the same.
6809 */
52f5684c 6810int __weak arch_update_cpu_topology(void)
22e52b07 6811{
ee79d1bd 6812 return 0;
22e52b07
HC
6813}
6814
acc3f5d7
RR
6815cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6816{
6817 int i;
6818 cpumask_var_t *doms;
6819
6820 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6821 if (!doms)
6822 return NULL;
6823 for (i = 0; i < ndoms; i++) {
6824 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6825 free_sched_domains(doms, i);
6826 return NULL;
6827 }
6828 }
6829 return doms;
6830}
6831
6832void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6833{
6834 unsigned int i;
6835 for (i = 0; i < ndoms; i++)
6836 free_cpumask_var(doms[i]);
6837 kfree(doms);
6838}
6839
1a20ff27 6840/*
41a2d6cf 6841 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6842 * For now this just excludes isolated cpus, but could be used to
6843 * exclude other special cases in the future.
1a20ff27 6844 */
c4a8849a 6845static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6846{
7378547f
MM
6847 int err;
6848
22e52b07 6849 arch_update_cpu_topology();
029190c5 6850 ndoms_cur = 1;
acc3f5d7 6851 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6852 if (!doms_cur)
acc3f5d7
RR
6853 doms_cur = &fallback_doms;
6854 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6855 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6856 register_sched_domain_sysctl();
7378547f
MM
6857
6858 return err;
1a20ff27
DG
6859}
6860
1a20ff27
DG
6861/*
6862 * Detach sched domains from a group of cpus specified in cpu_map
6863 * These cpus will now be attached to the NULL domain
6864 */
96f874e2 6865static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6866{
6867 int i;
6868
dce840a0 6869 rcu_read_lock();
abcd083a 6870 for_each_cpu(i, cpu_map)
57d885fe 6871 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6872 rcu_read_unlock();
1a20ff27
DG
6873}
6874
1d3504fc
HS
6875/* handle null as "default" */
6876static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6877 struct sched_domain_attr *new, int idx_new)
6878{
6879 struct sched_domain_attr tmp;
6880
6881 /* fast path */
6882 if (!new && !cur)
6883 return 1;
6884
6885 tmp = SD_ATTR_INIT;
6886 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6887 new ? (new + idx_new) : &tmp,
6888 sizeof(struct sched_domain_attr));
6889}
6890
029190c5
PJ
6891/*
6892 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6893 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6894 * doms_new[] to the current sched domain partitioning, doms_cur[].
6895 * It destroys each deleted domain and builds each new domain.
6896 *
acc3f5d7 6897 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6898 * The masks don't intersect (don't overlap.) We should setup one
6899 * sched domain for each mask. CPUs not in any of the cpumasks will
6900 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6901 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6902 * it as it is.
6903 *
acc3f5d7
RR
6904 * The passed in 'doms_new' should be allocated using
6905 * alloc_sched_domains. This routine takes ownership of it and will
6906 * free_sched_domains it when done with it. If the caller failed the
6907 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6908 * and partition_sched_domains() will fallback to the single partition
6909 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6910 *
96f874e2 6911 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6912 * ndoms_new == 0 is a special case for destroying existing domains,
6913 * and it will not create the default domain.
dfb512ec 6914 *
029190c5
PJ
6915 * Call with hotplug lock held
6916 */
acc3f5d7 6917void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6918 struct sched_domain_attr *dattr_new)
029190c5 6919{
dfb512ec 6920 int i, j, n;
d65bd5ec 6921 int new_topology;
029190c5 6922
712555ee 6923 mutex_lock(&sched_domains_mutex);
a1835615 6924
7378547f
MM
6925 /* always unregister in case we don't destroy any domains */
6926 unregister_sched_domain_sysctl();
6927
d65bd5ec
HC
6928 /* Let architecture update cpu core mappings. */
6929 new_topology = arch_update_cpu_topology();
6930
dfb512ec 6931 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6932
6933 /* Destroy deleted domains */
6934 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6935 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6936 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6937 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6938 goto match1;
6939 }
6940 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6941 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6942match1:
6943 ;
6944 }
6945
c8d2d47a 6946 n = ndoms_cur;
e761b772 6947 if (doms_new == NULL) {
c8d2d47a 6948 n = 0;
acc3f5d7 6949 doms_new = &fallback_doms;
6ad4c188 6950 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6951 WARN_ON_ONCE(dattr_new);
e761b772
MK
6952 }
6953
029190c5
PJ
6954 /* Build new domains */
6955 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6956 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6957 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6958 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6959 goto match2;
6960 }
6961 /* no match - add a new doms_new */
dce840a0 6962 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6963match2:
6964 ;
6965 }
6966
6967 /* Remember the new sched domains */
acc3f5d7
RR
6968 if (doms_cur != &fallback_doms)
6969 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6970 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6971 doms_cur = doms_new;
1d3504fc 6972 dattr_cur = dattr_new;
029190c5 6973 ndoms_cur = ndoms_new;
7378547f
MM
6974
6975 register_sched_domain_sysctl();
a1835615 6976
712555ee 6977 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6978}
6979
d35be8ba
SB
6980static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6981
1da177e4 6982/*
3a101d05
TH
6983 * Update cpusets according to cpu_active mask. If cpusets are
6984 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6985 * around partition_sched_domains().
d35be8ba
SB
6986 *
6987 * If we come here as part of a suspend/resume, don't touch cpusets because we
6988 * want to restore it back to its original state upon resume anyway.
1da177e4 6989 */
0b2e918a
TH
6990static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6991 void *hcpu)
e761b772 6992{
d35be8ba
SB
6993 switch (action) {
6994 case CPU_ONLINE_FROZEN:
6995 case CPU_DOWN_FAILED_FROZEN:
6996
6997 /*
6998 * num_cpus_frozen tracks how many CPUs are involved in suspend
6999 * resume sequence. As long as this is not the last online
7000 * operation in the resume sequence, just build a single sched
7001 * domain, ignoring cpusets.
7002 */
7003 num_cpus_frozen--;
7004 if (likely(num_cpus_frozen)) {
7005 partition_sched_domains(1, NULL, NULL);
7006 break;
7007 }
7008
7009 /*
7010 * This is the last CPU online operation. So fall through and
7011 * restore the original sched domains by considering the
7012 * cpuset configurations.
7013 */
7014
e761b772 7015 case CPU_ONLINE:
6ad4c188 7016 case CPU_DOWN_FAILED:
7ddf96b0 7017 cpuset_update_active_cpus(true);
d35be8ba 7018 break;
3a101d05
TH
7019 default:
7020 return NOTIFY_DONE;
7021 }
d35be8ba 7022 return NOTIFY_OK;
3a101d05 7023}
e761b772 7024
0b2e918a
TH
7025static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7026 void *hcpu)
3a101d05 7027{
d35be8ba 7028 switch (action) {
3a101d05 7029 case CPU_DOWN_PREPARE:
7ddf96b0 7030 cpuset_update_active_cpus(false);
d35be8ba
SB
7031 break;
7032 case CPU_DOWN_PREPARE_FROZEN:
7033 num_cpus_frozen++;
7034 partition_sched_domains(1, NULL, NULL);
7035 break;
e761b772
MK
7036 default:
7037 return NOTIFY_DONE;
7038 }
d35be8ba 7039 return NOTIFY_OK;
e761b772 7040}
e761b772 7041
1da177e4
LT
7042void __init sched_init_smp(void)
7043{
dcc30a35
RR
7044 cpumask_var_t non_isolated_cpus;
7045
7046 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7047 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7048
cb83b629
PZ
7049 sched_init_numa();
7050
6acce3ef
PZ
7051 /*
7052 * There's no userspace yet to cause hotplug operations; hence all the
7053 * cpu masks are stable and all blatant races in the below code cannot
7054 * happen.
7055 */
712555ee 7056 mutex_lock(&sched_domains_mutex);
c4a8849a 7057 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7058 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7059 if (cpumask_empty(non_isolated_cpus))
7060 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7061 mutex_unlock(&sched_domains_mutex);
e761b772 7062
301a5cba 7063 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7064 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7065 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7066
b328ca18 7067 init_hrtick();
5c1e1767
NP
7068
7069 /* Move init over to a non-isolated CPU */
dcc30a35 7070 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7071 BUG();
19978ca6 7072 sched_init_granularity();
dcc30a35 7073 free_cpumask_var(non_isolated_cpus);
4212823f 7074
0e3900e6 7075 init_sched_rt_class();
1baca4ce 7076 init_sched_dl_class();
1da177e4
LT
7077}
7078#else
7079void __init sched_init_smp(void)
7080{
19978ca6 7081 sched_init_granularity();
1da177e4
LT
7082}
7083#endif /* CONFIG_SMP */
7084
cd1bb94b
AB
7085const_debug unsigned int sysctl_timer_migration = 1;
7086
1da177e4
LT
7087int in_sched_functions(unsigned long addr)
7088{
1da177e4
LT
7089 return in_lock_functions(addr) ||
7090 (addr >= (unsigned long)__sched_text_start
7091 && addr < (unsigned long)__sched_text_end);
7092}
7093
029632fb 7094#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7095/*
7096 * Default task group.
7097 * Every task in system belongs to this group at bootup.
7098 */
029632fb 7099struct task_group root_task_group;
35cf4e50 7100LIST_HEAD(task_groups);
052f1dc7 7101#endif
6f505b16 7102
e6252c3e 7103DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7104
1da177e4
LT
7105void __init sched_init(void)
7106{
dd41f596 7107 int i, j;
434d53b0
MT
7108 unsigned long alloc_size = 0, ptr;
7109
7110#ifdef CONFIG_FAIR_GROUP_SCHED
7111 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7112#endif
7113#ifdef CONFIG_RT_GROUP_SCHED
7114 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7115#endif
434d53b0 7116 if (alloc_size) {
36b7b6d4 7117 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7118
7119#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7120 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7121 ptr += nr_cpu_ids * sizeof(void **);
7122
07e06b01 7123 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7124 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7125
6d6bc0ad 7126#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7127#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7128 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7129 ptr += nr_cpu_ids * sizeof(void **);
7130
07e06b01 7131 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7132 ptr += nr_cpu_ids * sizeof(void **);
7133
6d6bc0ad 7134#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7135 }
df7c8e84 7136#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7137 for_each_possible_cpu(i) {
7138 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7139 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7140 }
b74e6278 7141#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7142
332ac17e
DF
7143 init_rt_bandwidth(&def_rt_bandwidth,
7144 global_rt_period(), global_rt_runtime());
7145 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7146 global_rt_period(), global_rt_runtime());
332ac17e 7147
57d885fe
GH
7148#ifdef CONFIG_SMP
7149 init_defrootdomain();
7150#endif
7151
d0b27fa7 7152#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7153 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7154 global_rt_period(), global_rt_runtime());
6d6bc0ad 7155#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7156
7c941438 7157#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7158 list_add(&root_task_group.list, &task_groups);
7159 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7160 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7161 autogroup_init(&init_task);
54c707e9 7162
7c941438 7163#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7164
0a945022 7165 for_each_possible_cpu(i) {
70b97a7f 7166 struct rq *rq;
1da177e4
LT
7167
7168 rq = cpu_rq(i);
05fa785c 7169 raw_spin_lock_init(&rq->lock);
7897986b 7170 rq->nr_running = 0;
dce48a84
TG
7171 rq->calc_load_active = 0;
7172 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7173 init_cfs_rq(&rq->cfs);
6f505b16 7174 init_rt_rq(&rq->rt, rq);
aab03e05 7175 init_dl_rq(&rq->dl, rq);
dd41f596 7176#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7177 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7178 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7179 /*
07e06b01 7180 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7181 *
7182 * In case of task-groups formed thr' the cgroup filesystem, it
7183 * gets 100% of the cpu resources in the system. This overall
7184 * system cpu resource is divided among the tasks of
07e06b01 7185 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7186 * based on each entity's (task or task-group's) weight
7187 * (se->load.weight).
7188 *
07e06b01 7189 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7190 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7191 * then A0's share of the cpu resource is:
7192 *
0d905bca 7193 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7194 *
07e06b01
YZ
7195 * We achieve this by letting root_task_group's tasks sit
7196 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7197 */
ab84d31e 7198 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7199 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7200#endif /* CONFIG_FAIR_GROUP_SCHED */
7201
7202 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7203#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7204 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7205#endif
1da177e4 7206
dd41f596
IM
7207 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7208 rq->cpu_load[j] = 0;
fdf3e95d
VP
7209
7210 rq->last_load_update_tick = jiffies;
7211
1da177e4 7212#ifdef CONFIG_SMP
41c7ce9a 7213 rq->sd = NULL;
57d885fe 7214 rq->rd = NULL;
ca8ce3d0 7215 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7216 rq->post_schedule = 0;
1da177e4 7217 rq->active_balance = 0;
dd41f596 7218 rq->next_balance = jiffies;
1da177e4 7219 rq->push_cpu = 0;
0a2966b4 7220 rq->cpu = i;
1f11eb6a 7221 rq->online = 0;
eae0c9df
MG
7222 rq->idle_stamp = 0;
7223 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7224 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7225
7226 INIT_LIST_HEAD(&rq->cfs_tasks);
7227
dc938520 7228 rq_attach_root(rq, &def_root_domain);
3451d024 7229#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7230 rq->nohz_flags = 0;
83cd4fe2 7231#endif
265f22a9
FW
7232#ifdef CONFIG_NO_HZ_FULL
7233 rq->last_sched_tick = 0;
7234#endif
1da177e4 7235#endif
8f4d37ec 7236 init_rq_hrtick(rq);
1da177e4 7237 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7238 }
7239
2dd73a4f 7240 set_load_weight(&init_task);
b50f60ce 7241
e107be36
AK
7242#ifdef CONFIG_PREEMPT_NOTIFIERS
7243 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7244#endif
7245
1da177e4
LT
7246 /*
7247 * The boot idle thread does lazy MMU switching as well:
7248 */
7249 atomic_inc(&init_mm.mm_count);
7250 enter_lazy_tlb(&init_mm, current);
7251
7252 /*
7253 * Make us the idle thread. Technically, schedule() should not be
7254 * called from this thread, however somewhere below it might be,
7255 * but because we are the idle thread, we just pick up running again
7256 * when this runqueue becomes "idle".
7257 */
7258 init_idle(current, smp_processor_id());
dce48a84
TG
7259
7260 calc_load_update = jiffies + LOAD_FREQ;
7261
dd41f596
IM
7262 /*
7263 * During early bootup we pretend to be a normal task:
7264 */
7265 current->sched_class = &fair_sched_class;
6892b75e 7266
bf4d83f6 7267#ifdef CONFIG_SMP
4cb98839 7268 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7269 /* May be allocated at isolcpus cmdline parse time */
7270 if (cpu_isolated_map == NULL)
7271 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7272 idle_thread_set_boot_cpu();
a803f026 7273 set_cpu_rq_start_time();
029632fb
PZ
7274#endif
7275 init_sched_fair_class();
6a7b3dc3 7276
6892b75e 7277 scheduler_running = 1;
1da177e4
LT
7278}
7279
d902db1e 7280#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7281static inline int preempt_count_equals(int preempt_offset)
7282{
234da7bc 7283 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7284
4ba8216c 7285 return (nested == preempt_offset);
e4aafea2
FW
7286}
7287
d894837f 7288void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7289{
8eb23b9f
PZ
7290 /*
7291 * Blocking primitives will set (and therefore destroy) current->state,
7292 * since we will exit with TASK_RUNNING make sure we enter with it,
7293 * otherwise we will destroy state.
7294 */
e7097e8b 7295 if (WARN_ONCE(current->state != TASK_RUNNING,
8eb23b9f
PZ
7296 "do not call blocking ops when !TASK_RUNNING; "
7297 "state=%lx set at [<%p>] %pS\n",
7298 current->state,
7299 (void *)current->task_state_change,
7300 (void *)current->task_state_change))
7301 __set_current_state(TASK_RUNNING);
7302
3427445a
PZ
7303 ___might_sleep(file, line, preempt_offset);
7304}
7305EXPORT_SYMBOL(__might_sleep);
7306
7307void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7308{
1da177e4
LT
7309 static unsigned long prev_jiffy; /* ratelimiting */
7310
b3fbab05 7311 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7312 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7313 !is_idle_task(current)) ||
e4aafea2 7314 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7315 return;
7316 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7317 return;
7318 prev_jiffy = jiffies;
7319
3df0fc5b
PZ
7320 printk(KERN_ERR
7321 "BUG: sleeping function called from invalid context at %s:%d\n",
7322 file, line);
7323 printk(KERN_ERR
7324 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7325 in_atomic(), irqs_disabled(),
7326 current->pid, current->comm);
aef745fc
IM
7327
7328 debug_show_held_locks(current);
7329 if (irqs_disabled())
7330 print_irqtrace_events(current);
8f47b187
TG
7331#ifdef CONFIG_DEBUG_PREEMPT
7332 if (!preempt_count_equals(preempt_offset)) {
7333 pr_err("Preemption disabled at:");
7334 print_ip_sym(current->preempt_disable_ip);
7335 pr_cont("\n");
7336 }
7337#endif
aef745fc 7338 dump_stack();
1da177e4 7339}
3427445a 7340EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7341#endif
7342
7343#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7344static void normalize_task(struct rq *rq, struct task_struct *p)
7345{
da7a735e 7346 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7347 struct sched_attr attr = {
7348 .sched_policy = SCHED_NORMAL,
7349 };
da7a735e 7350 int old_prio = p->prio;
da0c1e65 7351 int queued;
3e51f33f 7352
da0c1e65
KT
7353 queued = task_on_rq_queued(p);
7354 if (queued)
4ca9b72b 7355 dequeue_task(rq, p, 0);
d50dde5a 7356 __setscheduler(rq, p, &attr);
da0c1e65 7357 if (queued) {
4ca9b72b 7358 enqueue_task(rq, p, 0);
8875125e 7359 resched_curr(rq);
3a5e4dc1 7360 }
da7a735e
PZ
7361
7362 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7363}
7364
1da177e4
LT
7365void normalize_rt_tasks(void)
7366{
a0f98a1c 7367 struct task_struct *g, *p;
1da177e4 7368 unsigned long flags;
70b97a7f 7369 struct rq *rq;
1da177e4 7370
3472eaa1 7371 read_lock(&tasklist_lock);
5d07f420 7372 for_each_process_thread(g, p) {
178be793
IM
7373 /*
7374 * Only normalize user tasks:
7375 */
3472eaa1 7376 if (p->flags & PF_KTHREAD)
178be793
IM
7377 continue;
7378
6cfb0d5d 7379 p->se.exec_start = 0;
6cfb0d5d 7380#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7381 p->se.statistics.wait_start = 0;
7382 p->se.statistics.sleep_start = 0;
7383 p->se.statistics.block_start = 0;
6cfb0d5d 7384#endif
dd41f596 7385
aab03e05 7386 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7387 /*
7388 * Renice negative nice level userspace
7389 * tasks back to 0:
7390 */
3472eaa1 7391 if (task_nice(p) < 0)
dd41f596 7392 set_user_nice(p, 0);
1da177e4 7393 continue;
dd41f596 7394 }
1da177e4 7395
3472eaa1 7396 rq = task_rq_lock(p, &flags);
178be793 7397 normalize_task(rq, p);
3472eaa1 7398 task_rq_unlock(rq, p, &flags);
5d07f420 7399 }
3472eaa1 7400 read_unlock(&tasklist_lock);
1da177e4
LT
7401}
7402
7403#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7404
67fc4e0c 7405#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7406/*
67fc4e0c 7407 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7408 *
7409 * They can only be called when the whole system has been
7410 * stopped - every CPU needs to be quiescent, and no scheduling
7411 * activity can take place. Using them for anything else would
7412 * be a serious bug, and as a result, they aren't even visible
7413 * under any other configuration.
7414 */
7415
7416/**
7417 * curr_task - return the current task for a given cpu.
7418 * @cpu: the processor in question.
7419 *
7420 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7421 *
7422 * Return: The current task for @cpu.
1df5c10a 7423 */
36c8b586 7424struct task_struct *curr_task(int cpu)
1df5c10a
LT
7425{
7426 return cpu_curr(cpu);
7427}
7428
67fc4e0c
JW
7429#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7430
7431#ifdef CONFIG_IA64
1df5c10a
LT
7432/**
7433 * set_curr_task - set the current task for a given cpu.
7434 * @cpu: the processor in question.
7435 * @p: the task pointer to set.
7436 *
7437 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7438 * are serviced on a separate stack. It allows the architecture to switch the
7439 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7440 * must be called with all CPU's synchronized, and interrupts disabled, the
7441 * and caller must save the original value of the current task (see
7442 * curr_task() above) and restore that value before reenabling interrupts and
7443 * re-starting the system.
7444 *
7445 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7446 */
36c8b586 7447void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7448{
7449 cpu_curr(cpu) = p;
7450}
7451
7452#endif
29f59db3 7453
7c941438 7454#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7455/* task_group_lock serializes the addition/removal of task groups */
7456static DEFINE_SPINLOCK(task_group_lock);
7457
bccbe08a
PZ
7458static void free_sched_group(struct task_group *tg)
7459{
7460 free_fair_sched_group(tg);
7461 free_rt_sched_group(tg);
e9aa1dd1 7462 autogroup_free(tg);
bccbe08a
PZ
7463 kfree(tg);
7464}
7465
7466/* allocate runqueue etc for a new task group */
ec7dc8ac 7467struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7468{
7469 struct task_group *tg;
bccbe08a
PZ
7470
7471 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7472 if (!tg)
7473 return ERR_PTR(-ENOMEM);
7474
ec7dc8ac 7475 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7476 goto err;
7477
ec7dc8ac 7478 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7479 goto err;
7480
ace783b9
LZ
7481 return tg;
7482
7483err:
7484 free_sched_group(tg);
7485 return ERR_PTR(-ENOMEM);
7486}
7487
7488void sched_online_group(struct task_group *tg, struct task_group *parent)
7489{
7490 unsigned long flags;
7491
8ed36996 7492 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7493 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7494
7495 WARN_ON(!parent); /* root should already exist */
7496
7497 tg->parent = parent;
f473aa5e 7498 INIT_LIST_HEAD(&tg->children);
09f2724a 7499 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7500 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7501}
7502
9b5b7751 7503/* rcu callback to free various structures associated with a task group */
6f505b16 7504static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7505{
29f59db3 7506 /* now it should be safe to free those cfs_rqs */
6f505b16 7507 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7508}
7509
9b5b7751 7510/* Destroy runqueue etc associated with a task group */
4cf86d77 7511void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7512{
7513 /* wait for possible concurrent references to cfs_rqs complete */
7514 call_rcu(&tg->rcu, free_sched_group_rcu);
7515}
7516
7517void sched_offline_group(struct task_group *tg)
29f59db3 7518{
8ed36996 7519 unsigned long flags;
9b5b7751 7520 int i;
29f59db3 7521
3d4b47b4
PZ
7522 /* end participation in shares distribution */
7523 for_each_possible_cpu(i)
bccbe08a 7524 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7525
7526 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7527 list_del_rcu(&tg->list);
f473aa5e 7528 list_del_rcu(&tg->siblings);
8ed36996 7529 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7530}
7531
9b5b7751 7532/* change task's runqueue when it moves between groups.
3a252015
IM
7533 * The caller of this function should have put the task in its new group
7534 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7535 * reflect its new group.
9b5b7751
SV
7536 */
7537void sched_move_task(struct task_struct *tsk)
29f59db3 7538{
8323f26c 7539 struct task_group *tg;
da0c1e65 7540 int queued, running;
29f59db3
SV
7541 unsigned long flags;
7542 struct rq *rq;
7543
7544 rq = task_rq_lock(tsk, &flags);
7545
051a1d1a 7546 running = task_current(rq, tsk);
da0c1e65 7547 queued = task_on_rq_queued(tsk);
29f59db3 7548
da0c1e65 7549 if (queued)
29f59db3 7550 dequeue_task(rq, tsk, 0);
0e1f3483 7551 if (unlikely(running))
f3cd1c4e 7552 put_prev_task(rq, tsk);
29f59db3 7553
f7b8a47d
KT
7554 /*
7555 * All callers are synchronized by task_rq_lock(); we do not use RCU
7556 * which is pointless here. Thus, we pass "true" to task_css_check()
7557 * to prevent lockdep warnings.
7558 */
7559 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7560 struct task_group, css);
7561 tg = autogroup_task_group(tsk, tg);
7562 tsk->sched_task_group = tg;
7563
810b3817 7564#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7565 if (tsk->sched_class->task_move_group)
da0c1e65 7566 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7567 else
810b3817 7568#endif
b2b5ce02 7569 set_task_rq(tsk, task_cpu(tsk));
810b3817 7570
0e1f3483
HS
7571 if (unlikely(running))
7572 tsk->sched_class->set_curr_task(rq);
da0c1e65 7573 if (queued)
371fd7e7 7574 enqueue_task(rq, tsk, 0);
29f59db3 7575
0122ec5b 7576 task_rq_unlock(rq, tsk, &flags);
29f59db3 7577}
7c941438 7578#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7579
a790de99
PT
7580#ifdef CONFIG_RT_GROUP_SCHED
7581/*
7582 * Ensure that the real time constraints are schedulable.
7583 */
7584static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7585
9a7e0b18
PZ
7586/* Must be called with tasklist_lock held */
7587static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7588{
9a7e0b18 7589 struct task_struct *g, *p;
b40b2e8e 7590
5d07f420 7591 for_each_process_thread(g, p) {
8651c658 7592 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7593 return 1;
5d07f420 7594 }
b40b2e8e 7595
9a7e0b18
PZ
7596 return 0;
7597}
b40b2e8e 7598
9a7e0b18
PZ
7599struct rt_schedulable_data {
7600 struct task_group *tg;
7601 u64 rt_period;
7602 u64 rt_runtime;
7603};
b40b2e8e 7604
a790de99 7605static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7606{
7607 struct rt_schedulable_data *d = data;
7608 struct task_group *child;
7609 unsigned long total, sum = 0;
7610 u64 period, runtime;
b40b2e8e 7611
9a7e0b18
PZ
7612 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7613 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7614
9a7e0b18
PZ
7615 if (tg == d->tg) {
7616 period = d->rt_period;
7617 runtime = d->rt_runtime;
b40b2e8e 7618 }
b40b2e8e 7619
4653f803
PZ
7620 /*
7621 * Cannot have more runtime than the period.
7622 */
7623 if (runtime > period && runtime != RUNTIME_INF)
7624 return -EINVAL;
6f505b16 7625
4653f803
PZ
7626 /*
7627 * Ensure we don't starve existing RT tasks.
7628 */
9a7e0b18
PZ
7629 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7630 return -EBUSY;
6f505b16 7631
9a7e0b18 7632 total = to_ratio(period, runtime);
6f505b16 7633
4653f803
PZ
7634 /*
7635 * Nobody can have more than the global setting allows.
7636 */
7637 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7638 return -EINVAL;
6f505b16 7639
4653f803
PZ
7640 /*
7641 * The sum of our children's runtime should not exceed our own.
7642 */
9a7e0b18
PZ
7643 list_for_each_entry_rcu(child, &tg->children, siblings) {
7644 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7645 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7646
9a7e0b18
PZ
7647 if (child == d->tg) {
7648 period = d->rt_period;
7649 runtime = d->rt_runtime;
7650 }
6f505b16 7651
9a7e0b18 7652 sum += to_ratio(period, runtime);
9f0c1e56 7653 }
6f505b16 7654
9a7e0b18
PZ
7655 if (sum > total)
7656 return -EINVAL;
7657
7658 return 0;
6f505b16
PZ
7659}
7660
9a7e0b18 7661static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7662{
8277434e
PT
7663 int ret;
7664
9a7e0b18
PZ
7665 struct rt_schedulable_data data = {
7666 .tg = tg,
7667 .rt_period = period,
7668 .rt_runtime = runtime,
7669 };
7670
8277434e
PT
7671 rcu_read_lock();
7672 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7673 rcu_read_unlock();
7674
7675 return ret;
521f1a24
DG
7676}
7677
ab84d31e 7678static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7679 u64 rt_period, u64 rt_runtime)
6f505b16 7680{
ac086bc2 7681 int i, err = 0;
9f0c1e56 7682
9f0c1e56 7683 mutex_lock(&rt_constraints_mutex);
521f1a24 7684 read_lock(&tasklist_lock);
9a7e0b18
PZ
7685 err = __rt_schedulable(tg, rt_period, rt_runtime);
7686 if (err)
9f0c1e56 7687 goto unlock;
ac086bc2 7688
0986b11b 7689 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7690 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7691 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7692
7693 for_each_possible_cpu(i) {
7694 struct rt_rq *rt_rq = tg->rt_rq[i];
7695
0986b11b 7696 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7697 rt_rq->rt_runtime = rt_runtime;
0986b11b 7698 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7699 }
0986b11b 7700 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7701unlock:
521f1a24 7702 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7703 mutex_unlock(&rt_constraints_mutex);
7704
7705 return err;
6f505b16
PZ
7706}
7707
25cc7da7 7708static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7709{
7710 u64 rt_runtime, rt_period;
7711
7712 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7713 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7714 if (rt_runtime_us < 0)
7715 rt_runtime = RUNTIME_INF;
7716
ab84d31e 7717 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7718}
7719
25cc7da7 7720static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7721{
7722 u64 rt_runtime_us;
7723
d0b27fa7 7724 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7725 return -1;
7726
d0b27fa7 7727 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7728 do_div(rt_runtime_us, NSEC_PER_USEC);
7729 return rt_runtime_us;
7730}
d0b27fa7 7731
25cc7da7 7732static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7733{
7734 u64 rt_runtime, rt_period;
7735
7736 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7737 rt_runtime = tg->rt_bandwidth.rt_runtime;
7738
619b0488
R
7739 if (rt_period == 0)
7740 return -EINVAL;
7741
ab84d31e 7742 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7743}
7744
25cc7da7 7745static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7746{
7747 u64 rt_period_us;
7748
7749 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7750 do_div(rt_period_us, NSEC_PER_USEC);
7751 return rt_period_us;
7752}
332ac17e 7753#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7754
332ac17e 7755#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7756static int sched_rt_global_constraints(void)
7757{
7758 int ret = 0;
7759
7760 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7761 read_lock(&tasklist_lock);
4653f803 7762 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7763 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7764 mutex_unlock(&rt_constraints_mutex);
7765
7766 return ret;
7767}
54e99124 7768
25cc7da7 7769static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7770{
7771 /* Don't accept realtime tasks when there is no way for them to run */
7772 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7773 return 0;
7774
7775 return 1;
7776}
7777
6d6bc0ad 7778#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7779static int sched_rt_global_constraints(void)
7780{
ac086bc2 7781 unsigned long flags;
332ac17e 7782 int i, ret = 0;
ec5d4989 7783
0986b11b 7784 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7785 for_each_possible_cpu(i) {
7786 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7787
0986b11b 7788 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7789 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7790 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7791 }
0986b11b 7792 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7793
332ac17e 7794 return ret;
d0b27fa7 7795}
6d6bc0ad 7796#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7797
332ac17e
DF
7798static int sched_dl_global_constraints(void)
7799{
1724813d
PZ
7800 u64 runtime = global_rt_runtime();
7801 u64 period = global_rt_period();
332ac17e 7802 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7803 struct dl_bw *dl_b;
1724813d 7804 int cpu, ret = 0;
49516342 7805 unsigned long flags;
332ac17e
DF
7806
7807 /*
7808 * Here we want to check the bandwidth not being set to some
7809 * value smaller than the currently allocated bandwidth in
7810 * any of the root_domains.
7811 *
7812 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7813 * cycling on root_domains... Discussion on different/better
7814 * solutions is welcome!
7815 */
1724813d 7816 for_each_possible_cpu(cpu) {
f10e00f4
KT
7817 rcu_read_lock_sched();
7818 dl_b = dl_bw_of(cpu);
332ac17e 7819
49516342 7820 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7821 if (new_bw < dl_b->total_bw)
7822 ret = -EBUSY;
49516342 7823 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7824
f10e00f4
KT
7825 rcu_read_unlock_sched();
7826
1724813d
PZ
7827 if (ret)
7828 break;
332ac17e
DF
7829 }
7830
1724813d 7831 return ret;
332ac17e
DF
7832}
7833
1724813d 7834static void sched_dl_do_global(void)
ce0dbbbb 7835{
1724813d 7836 u64 new_bw = -1;
f10e00f4 7837 struct dl_bw *dl_b;
1724813d 7838 int cpu;
49516342 7839 unsigned long flags;
ce0dbbbb 7840
1724813d
PZ
7841 def_dl_bandwidth.dl_period = global_rt_period();
7842 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7843
7844 if (global_rt_runtime() != RUNTIME_INF)
7845 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7846
7847 /*
7848 * FIXME: As above...
7849 */
7850 for_each_possible_cpu(cpu) {
f10e00f4
KT
7851 rcu_read_lock_sched();
7852 dl_b = dl_bw_of(cpu);
1724813d 7853
49516342 7854 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7855 dl_b->bw = new_bw;
49516342 7856 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7857
7858 rcu_read_unlock_sched();
ce0dbbbb 7859 }
1724813d
PZ
7860}
7861
7862static int sched_rt_global_validate(void)
7863{
7864 if (sysctl_sched_rt_period <= 0)
7865 return -EINVAL;
7866
e9e7cb38
JL
7867 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7868 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7869 return -EINVAL;
7870
7871 return 0;
7872}
7873
7874static void sched_rt_do_global(void)
7875{
7876 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7877 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7878}
7879
d0b27fa7 7880int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7881 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7882 loff_t *ppos)
7883{
d0b27fa7
PZ
7884 int old_period, old_runtime;
7885 static DEFINE_MUTEX(mutex);
1724813d 7886 int ret;
d0b27fa7
PZ
7887
7888 mutex_lock(&mutex);
7889 old_period = sysctl_sched_rt_period;
7890 old_runtime = sysctl_sched_rt_runtime;
7891
8d65af78 7892 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7893
7894 if (!ret && write) {
1724813d
PZ
7895 ret = sched_rt_global_validate();
7896 if (ret)
7897 goto undo;
7898
d0b27fa7 7899 ret = sched_rt_global_constraints();
1724813d
PZ
7900 if (ret)
7901 goto undo;
7902
7903 ret = sched_dl_global_constraints();
7904 if (ret)
7905 goto undo;
7906
7907 sched_rt_do_global();
7908 sched_dl_do_global();
7909 }
7910 if (0) {
7911undo:
7912 sysctl_sched_rt_period = old_period;
7913 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7914 }
7915 mutex_unlock(&mutex);
7916
7917 return ret;
7918}
68318b8e 7919
1724813d 7920int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7921 void __user *buffer, size_t *lenp,
7922 loff_t *ppos)
7923{
7924 int ret;
332ac17e 7925 static DEFINE_MUTEX(mutex);
332ac17e
DF
7926
7927 mutex_lock(&mutex);
332ac17e 7928 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7929 /* make sure that internally we keep jiffies */
7930 /* also, writing zero resets timeslice to default */
332ac17e 7931 if (!ret && write) {
1724813d
PZ
7932 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7933 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7934 }
7935 mutex_unlock(&mutex);
332ac17e
DF
7936 return ret;
7937}
7938
052f1dc7 7939#ifdef CONFIG_CGROUP_SCHED
68318b8e 7940
a7c6d554 7941static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7942{
a7c6d554 7943 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7944}
7945
eb95419b
TH
7946static struct cgroup_subsys_state *
7947cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7948{
eb95419b
TH
7949 struct task_group *parent = css_tg(parent_css);
7950 struct task_group *tg;
68318b8e 7951
eb95419b 7952 if (!parent) {
68318b8e 7953 /* This is early initialization for the top cgroup */
07e06b01 7954 return &root_task_group.css;
68318b8e
SV
7955 }
7956
ec7dc8ac 7957 tg = sched_create_group(parent);
68318b8e
SV
7958 if (IS_ERR(tg))
7959 return ERR_PTR(-ENOMEM);
7960
68318b8e
SV
7961 return &tg->css;
7962}
7963
eb95419b 7964static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7965{
eb95419b 7966 struct task_group *tg = css_tg(css);
5c9d535b 7967 struct task_group *parent = css_tg(css->parent);
ace783b9 7968
63876986
TH
7969 if (parent)
7970 sched_online_group(tg, parent);
ace783b9
LZ
7971 return 0;
7972}
7973
eb95419b 7974static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7975{
eb95419b 7976 struct task_group *tg = css_tg(css);
68318b8e
SV
7977
7978 sched_destroy_group(tg);
7979}
7980
eb95419b 7981static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7982{
eb95419b 7983 struct task_group *tg = css_tg(css);
ace783b9
LZ
7984
7985 sched_offline_group(tg);
7986}
7987
eeb61e53
KT
7988static void cpu_cgroup_fork(struct task_struct *task)
7989{
7990 sched_move_task(task);
7991}
7992
eb95419b 7993static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7994 struct cgroup_taskset *tset)
68318b8e 7995{
bb9d97b6
TH
7996 struct task_struct *task;
7997
924f0d9a 7998 cgroup_taskset_for_each(task, tset) {
b68aa230 7999#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8000 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8001 return -EINVAL;
b68aa230 8002#else
bb9d97b6
TH
8003 /* We don't support RT-tasks being in separate groups */
8004 if (task->sched_class != &fair_sched_class)
8005 return -EINVAL;
b68aa230 8006#endif
bb9d97b6 8007 }
be367d09
BB
8008 return 0;
8009}
68318b8e 8010
eb95419b 8011static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8012 struct cgroup_taskset *tset)
68318b8e 8013{
bb9d97b6
TH
8014 struct task_struct *task;
8015
924f0d9a 8016 cgroup_taskset_for_each(task, tset)
bb9d97b6 8017 sched_move_task(task);
68318b8e
SV
8018}
8019
eb95419b
TH
8020static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8021 struct cgroup_subsys_state *old_css,
8022 struct task_struct *task)
068c5cc5
PZ
8023{
8024 /*
8025 * cgroup_exit() is called in the copy_process() failure path.
8026 * Ignore this case since the task hasn't ran yet, this avoids
8027 * trying to poke a half freed task state from generic code.
8028 */
8029 if (!(task->flags & PF_EXITING))
8030 return;
8031
8032 sched_move_task(task);
8033}
8034
052f1dc7 8035#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8036static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8037 struct cftype *cftype, u64 shareval)
68318b8e 8038{
182446d0 8039 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8040}
8041
182446d0
TH
8042static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8043 struct cftype *cft)
68318b8e 8044{
182446d0 8045 struct task_group *tg = css_tg(css);
68318b8e 8046
c8b28116 8047 return (u64) scale_load_down(tg->shares);
68318b8e 8048}
ab84d31e
PT
8049
8050#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8051static DEFINE_MUTEX(cfs_constraints_mutex);
8052
ab84d31e
PT
8053const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8054const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8055
a790de99
PT
8056static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8057
ab84d31e
PT
8058static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8059{
56f570e5 8060 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8061 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8062
8063 if (tg == &root_task_group)
8064 return -EINVAL;
8065
8066 /*
8067 * Ensure we have at some amount of bandwidth every period. This is
8068 * to prevent reaching a state of large arrears when throttled via
8069 * entity_tick() resulting in prolonged exit starvation.
8070 */
8071 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8072 return -EINVAL;
8073
8074 /*
8075 * Likewise, bound things on the otherside by preventing insane quota
8076 * periods. This also allows us to normalize in computing quota
8077 * feasibility.
8078 */
8079 if (period > max_cfs_quota_period)
8080 return -EINVAL;
8081
0e59bdae
KT
8082 /*
8083 * Prevent race between setting of cfs_rq->runtime_enabled and
8084 * unthrottle_offline_cfs_rqs().
8085 */
8086 get_online_cpus();
a790de99
PT
8087 mutex_lock(&cfs_constraints_mutex);
8088 ret = __cfs_schedulable(tg, period, quota);
8089 if (ret)
8090 goto out_unlock;
8091
58088ad0 8092 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8093 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8094 /*
8095 * If we need to toggle cfs_bandwidth_used, off->on must occur
8096 * before making related changes, and on->off must occur afterwards
8097 */
8098 if (runtime_enabled && !runtime_was_enabled)
8099 cfs_bandwidth_usage_inc();
ab84d31e
PT
8100 raw_spin_lock_irq(&cfs_b->lock);
8101 cfs_b->period = ns_to_ktime(period);
8102 cfs_b->quota = quota;
58088ad0 8103
a9cf55b2 8104 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8105 /* restart the period timer (if active) to handle new period expiry */
8106 if (runtime_enabled && cfs_b->timer_active) {
8107 /* force a reprogram */
09dc4ab0 8108 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8109 }
ab84d31e
PT
8110 raw_spin_unlock_irq(&cfs_b->lock);
8111
0e59bdae 8112 for_each_online_cpu(i) {
ab84d31e 8113 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8114 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8115
8116 raw_spin_lock_irq(&rq->lock);
58088ad0 8117 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8118 cfs_rq->runtime_remaining = 0;
671fd9da 8119
029632fb 8120 if (cfs_rq->throttled)
671fd9da 8121 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8122 raw_spin_unlock_irq(&rq->lock);
8123 }
1ee14e6c
BS
8124 if (runtime_was_enabled && !runtime_enabled)
8125 cfs_bandwidth_usage_dec();
a790de99
PT
8126out_unlock:
8127 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8128 put_online_cpus();
ab84d31e 8129
a790de99 8130 return ret;
ab84d31e
PT
8131}
8132
8133int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8134{
8135 u64 quota, period;
8136
029632fb 8137 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8138 if (cfs_quota_us < 0)
8139 quota = RUNTIME_INF;
8140 else
8141 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8142
8143 return tg_set_cfs_bandwidth(tg, period, quota);
8144}
8145
8146long tg_get_cfs_quota(struct task_group *tg)
8147{
8148 u64 quota_us;
8149
029632fb 8150 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8151 return -1;
8152
029632fb 8153 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8154 do_div(quota_us, NSEC_PER_USEC);
8155
8156 return quota_us;
8157}
8158
8159int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8160{
8161 u64 quota, period;
8162
8163 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8164 quota = tg->cfs_bandwidth.quota;
ab84d31e 8165
ab84d31e
PT
8166 return tg_set_cfs_bandwidth(tg, period, quota);
8167}
8168
8169long tg_get_cfs_period(struct task_group *tg)
8170{
8171 u64 cfs_period_us;
8172
029632fb 8173 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8174 do_div(cfs_period_us, NSEC_PER_USEC);
8175
8176 return cfs_period_us;
8177}
8178
182446d0
TH
8179static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8180 struct cftype *cft)
ab84d31e 8181{
182446d0 8182 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8183}
8184
182446d0
TH
8185static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8186 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8187{
182446d0 8188 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8189}
8190
182446d0
TH
8191static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8192 struct cftype *cft)
ab84d31e 8193{
182446d0 8194 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8195}
8196
182446d0
TH
8197static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8198 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8199{
182446d0 8200 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8201}
8202
a790de99
PT
8203struct cfs_schedulable_data {
8204 struct task_group *tg;
8205 u64 period, quota;
8206};
8207
8208/*
8209 * normalize group quota/period to be quota/max_period
8210 * note: units are usecs
8211 */
8212static u64 normalize_cfs_quota(struct task_group *tg,
8213 struct cfs_schedulable_data *d)
8214{
8215 u64 quota, period;
8216
8217 if (tg == d->tg) {
8218 period = d->period;
8219 quota = d->quota;
8220 } else {
8221 period = tg_get_cfs_period(tg);
8222 quota = tg_get_cfs_quota(tg);
8223 }
8224
8225 /* note: these should typically be equivalent */
8226 if (quota == RUNTIME_INF || quota == -1)
8227 return RUNTIME_INF;
8228
8229 return to_ratio(period, quota);
8230}
8231
8232static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8233{
8234 struct cfs_schedulable_data *d = data;
029632fb 8235 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8236 s64 quota = 0, parent_quota = -1;
8237
8238 if (!tg->parent) {
8239 quota = RUNTIME_INF;
8240 } else {
029632fb 8241 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8242
8243 quota = normalize_cfs_quota(tg, d);
9c58c79a 8244 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8245
8246 /*
8247 * ensure max(child_quota) <= parent_quota, inherit when no
8248 * limit is set
8249 */
8250 if (quota == RUNTIME_INF)
8251 quota = parent_quota;
8252 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8253 return -EINVAL;
8254 }
9c58c79a 8255 cfs_b->hierarchical_quota = quota;
a790de99
PT
8256
8257 return 0;
8258}
8259
8260static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8261{
8277434e 8262 int ret;
a790de99
PT
8263 struct cfs_schedulable_data data = {
8264 .tg = tg,
8265 .period = period,
8266 .quota = quota,
8267 };
8268
8269 if (quota != RUNTIME_INF) {
8270 do_div(data.period, NSEC_PER_USEC);
8271 do_div(data.quota, NSEC_PER_USEC);
8272 }
8273
8277434e
PT
8274 rcu_read_lock();
8275 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8276 rcu_read_unlock();
8277
8278 return ret;
a790de99 8279}
e8da1b18 8280
2da8ca82 8281static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8282{
2da8ca82 8283 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8284 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8285
44ffc75b
TH
8286 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8287 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8288 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8289
8290 return 0;
8291}
ab84d31e 8292#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8293#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8294
052f1dc7 8295#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8296static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8297 struct cftype *cft, s64 val)
6f505b16 8298{
182446d0 8299 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8300}
8301
182446d0
TH
8302static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8303 struct cftype *cft)
6f505b16 8304{
182446d0 8305 return sched_group_rt_runtime(css_tg(css));
6f505b16 8306}
d0b27fa7 8307
182446d0
TH
8308static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8309 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8310{
182446d0 8311 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8312}
8313
182446d0
TH
8314static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8315 struct cftype *cft)
d0b27fa7 8316{
182446d0 8317 return sched_group_rt_period(css_tg(css));
d0b27fa7 8318}
6d6bc0ad 8319#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8320
fe5c7cc2 8321static struct cftype cpu_files[] = {
052f1dc7 8322#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8323 {
8324 .name = "shares",
f4c753b7
PM
8325 .read_u64 = cpu_shares_read_u64,
8326 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8327 },
052f1dc7 8328#endif
ab84d31e
PT
8329#ifdef CONFIG_CFS_BANDWIDTH
8330 {
8331 .name = "cfs_quota_us",
8332 .read_s64 = cpu_cfs_quota_read_s64,
8333 .write_s64 = cpu_cfs_quota_write_s64,
8334 },
8335 {
8336 .name = "cfs_period_us",
8337 .read_u64 = cpu_cfs_period_read_u64,
8338 .write_u64 = cpu_cfs_period_write_u64,
8339 },
e8da1b18
NR
8340 {
8341 .name = "stat",
2da8ca82 8342 .seq_show = cpu_stats_show,
e8da1b18 8343 },
ab84d31e 8344#endif
052f1dc7 8345#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8346 {
9f0c1e56 8347 .name = "rt_runtime_us",
06ecb27c
PM
8348 .read_s64 = cpu_rt_runtime_read,
8349 .write_s64 = cpu_rt_runtime_write,
6f505b16 8350 },
d0b27fa7
PZ
8351 {
8352 .name = "rt_period_us",
f4c753b7
PM
8353 .read_u64 = cpu_rt_period_read_uint,
8354 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8355 },
052f1dc7 8356#endif
4baf6e33 8357 { } /* terminate */
68318b8e
SV
8358};
8359
073219e9 8360struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8361 .css_alloc = cpu_cgroup_css_alloc,
8362 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8363 .css_online = cpu_cgroup_css_online,
8364 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8365 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8366 .can_attach = cpu_cgroup_can_attach,
8367 .attach = cpu_cgroup_attach,
068c5cc5 8368 .exit = cpu_cgroup_exit,
5577964e 8369 .legacy_cftypes = cpu_files,
68318b8e
SV
8370 .early_init = 1,
8371};
8372
052f1dc7 8373#endif /* CONFIG_CGROUP_SCHED */
d842de87 8374
b637a328
PM
8375void dump_cpu_task(int cpu)
8376{
8377 pr_info("Task dump for CPU %d:\n", cpu);
8378 sched_show_task(cpu_curr(cpu));
8379}
This page took 2.701626 seconds and 5 git commands to generate.