sched/rt: Reduce rq lock contention by eliminating locking of non-feasible target
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
9edfbfed
PZ
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 125 return;
aa483808 126
fe44d621 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
128 if (delta < 0)
129 return;
fe44d621
PZ
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
3e51f33f
PZ
132}
133
bf5c91ba
IM
134/*
135 * Debugging: various feature bits
136 */
f00b45c1 137
f00b45c1
PZ
138#define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
bf5c91ba 141const_debug unsigned int sysctl_sched_features =
391e43da 142#include "features.h"
f00b45c1
PZ
143 0;
144
145#undef SCHED_FEAT
146
147#ifdef CONFIG_SCHED_DEBUG
148#define SCHED_FEAT(name, enabled) \
149 #name ,
150
1292531f 151static const char * const sched_feat_names[] = {
391e43da 152#include "features.h"
f00b45c1
PZ
153};
154
155#undef SCHED_FEAT
156
34f3a814 157static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 158{
f00b45c1
PZ
159 int i;
160
f8b6d1cc 161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 165 }
34f3a814 166 seq_puts(m, "\n");
f00b45c1 167
34f3a814 168 return 0;
f00b45c1
PZ
169}
170
f8b6d1cc
PZ
171#ifdef HAVE_JUMP_LABEL
172
c5905afb
IM
173#define jump_label_key__true STATIC_KEY_INIT_TRUE
174#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
175
176#define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
c5905afb 179struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
180#include "features.h"
181};
182
183#undef SCHED_FEAT
184
185static void sched_feat_disable(int i)
186{
c5905afb
IM
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190
191static void sched_feat_enable(int i)
192{
c5905afb
IM
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
195}
196#else
197static void sched_feat_disable(int i) { };
198static void sched_feat_enable(int i) { };
199#endif /* HAVE_JUMP_LABEL */
200
1a687c2e 201static int sched_feat_set(char *cmp)
f00b45c1 202{
f00b45c1 203 int i;
1a687c2e 204 int neg = 0;
f00b45c1 205
524429c3 206 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
207 neg = 1;
208 cmp += 3;
209 }
210
f8b6d1cc 211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 213 if (neg) {
f00b45c1 214 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
215 sched_feat_disable(i);
216 } else {
f00b45c1 217 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
218 sched_feat_enable(i);
219 }
f00b45c1
PZ
220 break;
221 }
222 }
223
1a687c2e
MG
224 return i;
225}
226
227static ssize_t
228sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230{
231 char buf[64];
232 char *cmp;
233 int i;
5cd08fbf 234 struct inode *inode;
1a687c2e
MG
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
5cd08fbf
JB
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
1a687c2e 248 i = sched_feat_set(cmp);
5cd08fbf 249 mutex_unlock(&inode->i_mutex);
f8b6d1cc 250 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
251 return -EINVAL;
252
42994724 253 *ppos += cnt;
f00b45c1
PZ
254
255 return cnt;
256}
257
34f3a814
LZ
258static int sched_feat_open(struct inode *inode, struct file *filp)
259{
260 return single_open(filp, sched_feat_show, NULL);
261}
262
828c0950 263static const struct file_operations sched_feat_fops = {
34f3a814
LZ
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
f00b45c1
PZ
269};
270
271static __init int sched_init_debug(void)
272{
f00b45c1
PZ
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277}
278late_initcall(sched_init_debug);
f8b6d1cc 279#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 280
b82d9fdd
PZ
281/*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
e9e9250b
PZ
287/*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
fa85ae24 295/*
9f0c1e56 296 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
297 * default: 1s
298 */
9f0c1e56 299unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 300
029632fb 301__read_mostly int scheduler_running;
6892b75e 302
9f0c1e56
PZ
303/*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307int sysctl_sched_rt_runtime = 950000;
fa85ae24 308
0970d299 309/*
0122ec5b 310 * __task_rq_lock - lock the rq @p resides on.
b29739f9 311 */
70b97a7f 312static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
313 __acquires(rq->lock)
314{
0970d299
PZ
315 struct rq *rq;
316
0122ec5b
PZ
317 lockdep_assert_held(&p->pi_lock);
318
3a5c359a 319 for (;;) {
0970d299 320 rq = task_rq(p);
05fa785c 321 raw_spin_lock(&rq->lock);
cca26e80 322 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 323 return rq;
05fa785c 324 raw_spin_unlock(&rq->lock);
cca26e80
KT
325
326 while (unlikely(task_on_rq_migrating(p)))
327 cpu_relax();
b29739f9 328 }
b29739f9
IM
329}
330
1da177e4 331/*
0122ec5b 332 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 333 */
70b97a7f 334static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 335 __acquires(p->pi_lock)
1da177e4
LT
336 __acquires(rq->lock)
337{
70b97a7f 338 struct rq *rq;
1da177e4 339
3a5c359a 340 for (;;) {
0122ec5b 341 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 342 rq = task_rq(p);
05fa785c 343 raw_spin_lock(&rq->lock);
cca26e80 344 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 345 return rq;
0122ec5b
PZ
346 raw_spin_unlock(&rq->lock);
347 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
348
349 while (unlikely(task_on_rq_migrating(p)))
350 cpu_relax();
1da177e4 351 }
1da177e4
LT
352}
353
a9957449 354static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
355 __releases(rq->lock)
356{
05fa785c 357 raw_spin_unlock(&rq->lock);
b29739f9
IM
358}
359
0122ec5b
PZ
360static inline void
361task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 362 __releases(rq->lock)
0122ec5b 363 __releases(p->pi_lock)
1da177e4 364{
0122ec5b
PZ
365 raw_spin_unlock(&rq->lock);
366 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
367}
368
1da177e4 369/*
cc2a73b5 370 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 371 */
a9957449 372static struct rq *this_rq_lock(void)
1da177e4
LT
373 __acquires(rq->lock)
374{
70b97a7f 375 struct rq *rq;
1da177e4
LT
376
377 local_irq_disable();
378 rq = this_rq();
05fa785c 379 raw_spin_lock(&rq->lock);
1da177e4
LT
380
381 return rq;
382}
383
8f4d37ec
PZ
384#ifdef CONFIG_SCHED_HRTICK
385/*
386 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 387 */
8f4d37ec 388
8f4d37ec
PZ
389static void hrtick_clear(struct rq *rq)
390{
391 if (hrtimer_active(&rq->hrtick_timer))
392 hrtimer_cancel(&rq->hrtick_timer);
393}
394
8f4d37ec
PZ
395/*
396 * High-resolution timer tick.
397 * Runs from hardirq context with interrupts disabled.
398 */
399static enum hrtimer_restart hrtick(struct hrtimer *timer)
400{
401 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
402
403 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
404
05fa785c 405 raw_spin_lock(&rq->lock);
3e51f33f 406 update_rq_clock(rq);
8f4d37ec 407 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 408 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
409
410 return HRTIMER_NORESTART;
411}
412
95e904c7 413#ifdef CONFIG_SMP
971ee28c
PZ
414
415static int __hrtick_restart(struct rq *rq)
416{
417 struct hrtimer *timer = &rq->hrtick_timer;
418 ktime_t time = hrtimer_get_softexpires(timer);
419
420 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
421}
422
31656519
PZ
423/*
424 * called from hardirq (IPI) context
425 */
426static void __hrtick_start(void *arg)
b328ca18 427{
31656519 428 struct rq *rq = arg;
b328ca18 429
05fa785c 430 raw_spin_lock(&rq->lock);
971ee28c 431 __hrtick_restart(rq);
31656519 432 rq->hrtick_csd_pending = 0;
05fa785c 433 raw_spin_unlock(&rq->lock);
b328ca18
PZ
434}
435
31656519
PZ
436/*
437 * Called to set the hrtick timer state.
438 *
439 * called with rq->lock held and irqs disabled
440 */
029632fb 441void hrtick_start(struct rq *rq, u64 delay)
b328ca18 442{
31656519 443 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 444 ktime_t time;
445 s64 delta;
446
447 /*
448 * Don't schedule slices shorter than 10000ns, that just
449 * doesn't make sense and can cause timer DoS.
450 */
451 delta = max_t(s64, delay, 10000LL);
452 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 453
cc584b21 454 hrtimer_set_expires(timer, time);
31656519
PZ
455
456 if (rq == this_rq()) {
971ee28c 457 __hrtick_restart(rq);
31656519 458 } else if (!rq->hrtick_csd_pending) {
c46fff2a 459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
460 rq->hrtick_csd_pending = 1;
461 }
b328ca18
PZ
462}
463
464static int
465hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466{
467 int cpu = (int)(long)hcpu;
468
469 switch (action) {
470 case CPU_UP_CANCELED:
471 case CPU_UP_CANCELED_FROZEN:
472 case CPU_DOWN_PREPARE:
473 case CPU_DOWN_PREPARE_FROZEN:
474 case CPU_DEAD:
475 case CPU_DEAD_FROZEN:
31656519 476 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
477 return NOTIFY_OK;
478 }
479
480 return NOTIFY_DONE;
481}
482
fa748203 483static __init void init_hrtick(void)
b328ca18
PZ
484{
485 hotcpu_notifier(hotplug_hrtick, 0);
486}
31656519
PZ
487#else
488/*
489 * Called to set the hrtick timer state.
490 *
491 * called with rq->lock held and irqs disabled
492 */
029632fb 493void hrtick_start(struct rq *rq, u64 delay)
31656519 494{
7f1e2ca9 495 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 496 HRTIMER_MODE_REL_PINNED, 0);
31656519 497}
b328ca18 498
006c75f1 499static inline void init_hrtick(void)
8f4d37ec 500{
8f4d37ec 501}
31656519 502#endif /* CONFIG_SMP */
8f4d37ec 503
31656519 504static void init_rq_hrtick(struct rq *rq)
8f4d37ec 505{
31656519
PZ
506#ifdef CONFIG_SMP
507 rq->hrtick_csd_pending = 0;
8f4d37ec 508
31656519
PZ
509 rq->hrtick_csd.flags = 0;
510 rq->hrtick_csd.func = __hrtick_start;
511 rq->hrtick_csd.info = rq;
512#endif
8f4d37ec 513
31656519
PZ
514 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515 rq->hrtick_timer.function = hrtick;
8f4d37ec 516}
006c75f1 517#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
518static inline void hrtick_clear(struct rq *rq)
519{
520}
521
8f4d37ec
PZ
522static inline void init_rq_hrtick(struct rq *rq)
523{
524}
525
b328ca18
PZ
526static inline void init_hrtick(void)
527{
528}
006c75f1 529#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 530
fd99f91a
PZ
531/*
532 * cmpxchg based fetch_or, macro so it works for different integer types
533 */
534#define fetch_or(ptr, val) \
535({ typeof(*(ptr)) __old, __val = *(ptr); \
536 for (;;) { \
537 __old = cmpxchg((ptr), __val, __val | (val)); \
538 if (__old == __val) \
539 break; \
540 __val = __old; \
541 } \
542 __old; \
543})
544
e3baac47 545#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
546/*
547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548 * this avoids any races wrt polling state changes and thereby avoids
549 * spurious IPIs.
550 */
551static bool set_nr_and_not_polling(struct task_struct *p)
552{
553 struct thread_info *ti = task_thread_info(p);
554 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
555}
e3baac47
PZ
556
557/*
558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
559 *
560 * If this returns true, then the idle task promises to call
561 * sched_ttwu_pending() and reschedule soon.
562 */
563static bool set_nr_if_polling(struct task_struct *p)
564{
565 struct thread_info *ti = task_thread_info(p);
566 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
567
568 for (;;) {
569 if (!(val & _TIF_POLLING_NRFLAG))
570 return false;
571 if (val & _TIF_NEED_RESCHED)
572 return true;
573 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574 if (old == val)
575 break;
576 val = old;
577 }
578 return true;
579}
580
fd99f91a
PZ
581#else
582static bool set_nr_and_not_polling(struct task_struct *p)
583{
584 set_tsk_need_resched(p);
585 return true;
586}
e3baac47
PZ
587
588#ifdef CONFIG_SMP
589static bool set_nr_if_polling(struct task_struct *p)
590{
591 return false;
592}
593#endif
fd99f91a
PZ
594#endif
595
c24d20db 596/*
8875125e 597 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
8875125e 603void resched_curr(struct rq *rq)
c24d20db 604{
8875125e 605 struct task_struct *curr = rq->curr;
c24d20db
IM
606 int cpu;
607
8875125e 608 lockdep_assert_held(&rq->lock);
c24d20db 609
8875125e 610 if (test_tsk_need_resched(curr))
c24d20db
IM
611 return;
612
8875125e 613 cpu = cpu_of(rq);
fd99f91a 614
f27dde8d 615 if (cpu == smp_processor_id()) {
8875125e 616 set_tsk_need_resched(curr);
f27dde8d 617 set_preempt_need_resched();
c24d20db 618 return;
f27dde8d 619 }
c24d20db 620
8875125e 621 if (set_nr_and_not_polling(curr))
c24d20db 622 smp_send_reschedule(cpu);
dfc68f29
AL
623 else
624 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
625}
626
029632fb 627void resched_cpu(int cpu)
c24d20db
IM
628{
629 struct rq *rq = cpu_rq(cpu);
630 unsigned long flags;
631
05fa785c 632 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 633 return;
8875125e 634 resched_curr(rq);
05fa785c 635 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 636}
06d8308c 637
b021fe3e 638#ifdef CONFIG_SMP
3451d024 639#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
640/*
641 * In the semi idle case, use the nearest busy cpu for migrating timers
642 * from an idle cpu. This is good for power-savings.
643 *
644 * We don't do similar optimization for completely idle system, as
645 * selecting an idle cpu will add more delays to the timers than intended
646 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
647 */
6201b4d6 648int get_nohz_timer_target(int pinned)
83cd4fe2
VP
649{
650 int cpu = smp_processor_id();
651 int i;
652 struct sched_domain *sd;
653
6201b4d6
VK
654 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655 return cpu;
656
057f3fad 657 rcu_read_lock();
83cd4fe2 658 for_each_domain(cpu, sd) {
057f3fad
PZ
659 for_each_cpu(i, sched_domain_span(sd)) {
660 if (!idle_cpu(i)) {
661 cpu = i;
662 goto unlock;
663 }
664 }
83cd4fe2 665 }
057f3fad
PZ
666unlock:
667 rcu_read_unlock();
83cd4fe2
VP
668 return cpu;
669}
06d8308c
TG
670/*
671 * When add_timer_on() enqueues a timer into the timer wheel of an
672 * idle CPU then this timer might expire before the next timer event
673 * which is scheduled to wake up that CPU. In case of a completely
674 * idle system the next event might even be infinite time into the
675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676 * leaves the inner idle loop so the newly added timer is taken into
677 * account when the CPU goes back to idle and evaluates the timer
678 * wheel for the next timer event.
679 */
1c20091e 680static void wake_up_idle_cpu(int cpu)
06d8308c
TG
681{
682 struct rq *rq = cpu_rq(cpu);
683
684 if (cpu == smp_processor_id())
685 return;
686
67b9ca70 687 if (set_nr_and_not_polling(rq->idle))
06d8308c 688 smp_send_reschedule(cpu);
dfc68f29
AL
689 else
690 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
691}
692
c5bfece2 693static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 694{
53c5fa16
FW
695 /*
696 * We just need the target to call irq_exit() and re-evaluate
697 * the next tick. The nohz full kick at least implies that.
698 * If needed we can still optimize that later with an
699 * empty IRQ.
700 */
c5bfece2 701 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
702 if (cpu != smp_processor_id() ||
703 tick_nohz_tick_stopped())
53c5fa16 704 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
705 return true;
706 }
707
708 return false;
709}
710
711void wake_up_nohz_cpu(int cpu)
712{
c5bfece2 713 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
714 wake_up_idle_cpu(cpu);
715}
716
ca38062e 717static inline bool got_nohz_idle_kick(void)
45bf76df 718{
1c792db7 719 int cpu = smp_processor_id();
873b4c65
VG
720
721 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722 return false;
723
724 if (idle_cpu(cpu) && !need_resched())
725 return true;
726
727 /*
728 * We can't run Idle Load Balance on this CPU for this time so we
729 * cancel it and clear NOHZ_BALANCE_KICK
730 */
731 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732 return false;
45bf76df
IM
733}
734
3451d024 735#else /* CONFIG_NO_HZ_COMMON */
45bf76df 736
ca38062e 737static inline bool got_nohz_idle_kick(void)
2069dd75 738{
ca38062e 739 return false;
2069dd75
PZ
740}
741
3451d024 742#endif /* CONFIG_NO_HZ_COMMON */
d842de87 743
ce831b38
FW
744#ifdef CONFIG_NO_HZ_FULL
745bool sched_can_stop_tick(void)
746{
3882ec64
FW
747 /*
748 * More than one running task need preemption.
749 * nr_running update is assumed to be visible
750 * after IPI is sent from wakers.
751 */
541b8264
VK
752 if (this_rq()->nr_running > 1)
753 return false;
ce831b38 754
541b8264 755 return true;
ce831b38
FW
756}
757#endif /* CONFIG_NO_HZ_FULL */
d842de87 758
029632fb 759void sched_avg_update(struct rq *rq)
18d95a28 760{
e9e9250b
PZ
761 s64 period = sched_avg_period();
762
78becc27 763 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
764 /*
765 * Inline assembly required to prevent the compiler
766 * optimising this loop into a divmod call.
767 * See __iter_div_u64_rem() for another example of this.
768 */
769 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
770 rq->age_stamp += period;
771 rq->rt_avg /= 2;
772 }
18d95a28
PZ
773}
774
6d6bc0ad 775#endif /* CONFIG_SMP */
18d95a28 776
a790de99
PT
777#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 779/*
8277434e
PT
780 * Iterate task_group tree rooted at *from, calling @down when first entering a
781 * node and @up when leaving it for the final time.
782 *
783 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 784 */
029632fb 785int walk_tg_tree_from(struct task_group *from,
8277434e 786 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
787{
788 struct task_group *parent, *child;
eb755805 789 int ret;
c09595f6 790
8277434e
PT
791 parent = from;
792
c09595f6 793down:
eb755805
PZ
794 ret = (*down)(parent, data);
795 if (ret)
8277434e 796 goto out;
c09595f6
PZ
797 list_for_each_entry_rcu(child, &parent->children, siblings) {
798 parent = child;
799 goto down;
800
801up:
802 continue;
803 }
eb755805 804 ret = (*up)(parent, data);
8277434e
PT
805 if (ret || parent == from)
806 goto out;
c09595f6
PZ
807
808 child = parent;
809 parent = parent->parent;
810 if (parent)
811 goto up;
8277434e 812out:
eb755805 813 return ret;
c09595f6
PZ
814}
815
029632fb 816int tg_nop(struct task_group *tg, void *data)
eb755805 817{
e2b245f8 818 return 0;
eb755805 819}
18d95a28
PZ
820#endif
821
45bf76df
IM
822static void set_load_weight(struct task_struct *p)
823{
f05998d4
NR
824 int prio = p->static_prio - MAX_RT_PRIO;
825 struct load_weight *load = &p->se.load;
826
dd41f596
IM
827 /*
828 * SCHED_IDLE tasks get minimal weight:
829 */
830 if (p->policy == SCHED_IDLE) {
c8b28116 831 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 832 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
833 return;
834 }
71f8bd46 835
c8b28116 836 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 837 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
838}
839
371fd7e7 840static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 841{
a64692a3 842 update_rq_clock(rq);
43148951 843 sched_info_queued(rq, p);
371fd7e7 844 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
845}
846
371fd7e7 847static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 848{
a64692a3 849 update_rq_clock(rq);
43148951 850 sched_info_dequeued(rq, p);
371fd7e7 851 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
852}
853
029632fb 854void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
855{
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible--;
858
371fd7e7 859 enqueue_task(rq, p, flags);
1e3c88bd
PZ
860}
861
029632fb 862void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
863{
864 if (task_contributes_to_load(p))
865 rq->nr_uninterruptible++;
866
371fd7e7 867 dequeue_task(rq, p, flags);
1e3c88bd
PZ
868}
869
fe44d621 870static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 871{
095c0aa8
GC
872/*
873 * In theory, the compile should just see 0 here, and optimize out the call
874 * to sched_rt_avg_update. But I don't trust it...
875 */
876#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877 s64 steal = 0, irq_delta = 0;
878#endif
879#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 880 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
881
882 /*
883 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884 * this case when a previous update_rq_clock() happened inside a
885 * {soft,}irq region.
886 *
887 * When this happens, we stop ->clock_task and only update the
888 * prev_irq_time stamp to account for the part that fit, so that a next
889 * update will consume the rest. This ensures ->clock_task is
890 * monotonic.
891 *
892 * It does however cause some slight miss-attribution of {soft,}irq
893 * time, a more accurate solution would be to update the irq_time using
894 * the current rq->clock timestamp, except that would require using
895 * atomic ops.
896 */
897 if (irq_delta > delta)
898 irq_delta = delta;
899
900 rq->prev_irq_time += irq_delta;
901 delta -= irq_delta;
095c0aa8
GC
902#endif
903#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 904 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
907
908 if (unlikely(steal > delta))
909 steal = delta;
910
095c0aa8 911 rq->prev_steal_time_rq += steal;
095c0aa8
GC
912 delta -= steal;
913 }
914#endif
915
fe44d621
PZ
916 rq->clock_task += delta;
917
095c0aa8 918#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 919 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
920 sched_rt_avg_update(rq, irq_delta + steal);
921#endif
aa483808
VP
922}
923
34f971f6
PZ
924void sched_set_stop_task(int cpu, struct task_struct *stop)
925{
926 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927 struct task_struct *old_stop = cpu_rq(cpu)->stop;
928
929 if (stop) {
930 /*
931 * Make it appear like a SCHED_FIFO task, its something
932 * userspace knows about and won't get confused about.
933 *
934 * Also, it will make PI more or less work without too
935 * much confusion -- but then, stop work should not
936 * rely on PI working anyway.
937 */
938 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
939
940 stop->sched_class = &stop_sched_class;
941 }
942
943 cpu_rq(cpu)->stop = stop;
944
945 if (old_stop) {
946 /*
947 * Reset it back to a normal scheduling class so that
948 * it can die in pieces.
949 */
950 old_stop->sched_class = &rt_sched_class;
951 }
952}
953
14531189 954/*
dd41f596 955 * __normal_prio - return the priority that is based on the static prio
14531189 956 */
14531189
IM
957static inline int __normal_prio(struct task_struct *p)
958{
dd41f596 959 return p->static_prio;
14531189
IM
960}
961
b29739f9
IM
962/*
963 * Calculate the expected normal priority: i.e. priority
964 * without taking RT-inheritance into account. Might be
965 * boosted by interactivity modifiers. Changes upon fork,
966 * setprio syscalls, and whenever the interactivity
967 * estimator recalculates.
968 */
36c8b586 969static inline int normal_prio(struct task_struct *p)
b29739f9
IM
970{
971 int prio;
972
aab03e05
DF
973 if (task_has_dl_policy(p))
974 prio = MAX_DL_PRIO-1;
975 else if (task_has_rt_policy(p))
b29739f9
IM
976 prio = MAX_RT_PRIO-1 - p->rt_priority;
977 else
978 prio = __normal_prio(p);
979 return prio;
980}
981
982/*
983 * Calculate the current priority, i.e. the priority
984 * taken into account by the scheduler. This value might
985 * be boosted by RT tasks, or might be boosted by
986 * interactivity modifiers. Will be RT if the task got
987 * RT-boosted. If not then it returns p->normal_prio.
988 */
36c8b586 989static int effective_prio(struct task_struct *p)
b29739f9
IM
990{
991 p->normal_prio = normal_prio(p);
992 /*
993 * If we are RT tasks or we were boosted to RT priority,
994 * keep the priority unchanged. Otherwise, update priority
995 * to the normal priority:
996 */
997 if (!rt_prio(p->prio))
998 return p->normal_prio;
999 return p->prio;
1000}
1001
1da177e4
LT
1002/**
1003 * task_curr - is this task currently executing on a CPU?
1004 * @p: the task in question.
e69f6186
YB
1005 *
1006 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1007 */
36c8b586 1008inline int task_curr(const struct task_struct *p)
1da177e4
LT
1009{
1010 return cpu_curr(task_cpu(p)) == p;
1011}
1012
67dfa1b7
KT
1013/*
1014 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1015 */
cb469845
SR
1016static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1017 const struct sched_class *prev_class,
da7a735e 1018 int oldprio)
cb469845
SR
1019{
1020 if (prev_class != p->sched_class) {
1021 if (prev_class->switched_from)
da7a735e 1022 prev_class->switched_from(rq, p);
67dfa1b7 1023 /* Possble rq->lock 'hole'. */
da7a735e 1024 p->sched_class->switched_to(rq, p);
2d3d891d 1025 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1026 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1027}
1028
029632fb 1029void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1030{
1031 const struct sched_class *class;
1032
1033 if (p->sched_class == rq->curr->sched_class) {
1034 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1035 } else {
1036 for_each_class(class) {
1037 if (class == rq->curr->sched_class)
1038 break;
1039 if (class == p->sched_class) {
8875125e 1040 resched_curr(rq);
1e5a7405
PZ
1041 break;
1042 }
1043 }
1044 }
1045
1046 /*
1047 * A queue event has occurred, and we're going to schedule. In
1048 * this case, we can save a useless back to back clock update.
1049 */
da0c1e65 1050 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1051 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1052}
1053
1da177e4 1054#ifdef CONFIG_SMP
dd41f596 1055void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1056{
e2912009
PZ
1057#ifdef CONFIG_SCHED_DEBUG
1058 /*
1059 * We should never call set_task_cpu() on a blocked task,
1060 * ttwu() will sort out the placement.
1061 */
077614ee 1062 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1063 !p->on_rq);
0122ec5b
PZ
1064
1065#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1066 /*
1067 * The caller should hold either p->pi_lock or rq->lock, when changing
1068 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1069 *
1070 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1071 * see task_group().
6c6c54e1
PZ
1072 *
1073 * Furthermore, all task_rq users should acquire both locks, see
1074 * task_rq_lock().
1075 */
0122ec5b
PZ
1076 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1077 lockdep_is_held(&task_rq(p)->lock)));
1078#endif
e2912009
PZ
1079#endif
1080
de1d7286 1081 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1082
0c69774e 1083 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1084 if (p->sched_class->migrate_task_rq)
1085 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1086 p->se.nr_migrations++;
a8b0ca17 1087 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1088 }
dd41f596
IM
1089
1090 __set_task_cpu(p, new_cpu);
c65cc870
IM
1091}
1092
ac66f547
PZ
1093static void __migrate_swap_task(struct task_struct *p, int cpu)
1094{
da0c1e65 1095 if (task_on_rq_queued(p)) {
ac66f547
PZ
1096 struct rq *src_rq, *dst_rq;
1097
1098 src_rq = task_rq(p);
1099 dst_rq = cpu_rq(cpu);
1100
1101 deactivate_task(src_rq, p, 0);
1102 set_task_cpu(p, cpu);
1103 activate_task(dst_rq, p, 0);
1104 check_preempt_curr(dst_rq, p, 0);
1105 } else {
1106 /*
1107 * Task isn't running anymore; make it appear like we migrated
1108 * it before it went to sleep. This means on wakeup we make the
1109 * previous cpu our targer instead of where it really is.
1110 */
1111 p->wake_cpu = cpu;
1112 }
1113}
1114
1115struct migration_swap_arg {
1116 struct task_struct *src_task, *dst_task;
1117 int src_cpu, dst_cpu;
1118};
1119
1120static int migrate_swap_stop(void *data)
1121{
1122 struct migration_swap_arg *arg = data;
1123 struct rq *src_rq, *dst_rq;
1124 int ret = -EAGAIN;
1125
1126 src_rq = cpu_rq(arg->src_cpu);
1127 dst_rq = cpu_rq(arg->dst_cpu);
1128
74602315
PZ
1129 double_raw_lock(&arg->src_task->pi_lock,
1130 &arg->dst_task->pi_lock);
ac66f547
PZ
1131 double_rq_lock(src_rq, dst_rq);
1132 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1133 goto unlock;
1134
1135 if (task_cpu(arg->src_task) != arg->src_cpu)
1136 goto unlock;
1137
1138 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1139 goto unlock;
1140
1141 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1142 goto unlock;
1143
1144 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1145 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1146
1147 ret = 0;
1148
1149unlock:
1150 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1151 raw_spin_unlock(&arg->dst_task->pi_lock);
1152 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1153
1154 return ret;
1155}
1156
1157/*
1158 * Cross migrate two tasks
1159 */
1160int migrate_swap(struct task_struct *cur, struct task_struct *p)
1161{
1162 struct migration_swap_arg arg;
1163 int ret = -EINVAL;
1164
ac66f547
PZ
1165 arg = (struct migration_swap_arg){
1166 .src_task = cur,
1167 .src_cpu = task_cpu(cur),
1168 .dst_task = p,
1169 .dst_cpu = task_cpu(p),
1170 };
1171
1172 if (arg.src_cpu == arg.dst_cpu)
1173 goto out;
1174
6acce3ef
PZ
1175 /*
1176 * These three tests are all lockless; this is OK since all of them
1177 * will be re-checked with proper locks held further down the line.
1178 */
ac66f547
PZ
1179 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1180 goto out;
1181
1182 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1183 goto out;
1184
1185 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1186 goto out;
1187
286549dc 1188 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1189 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1190
1191out:
ac66f547
PZ
1192 return ret;
1193}
1194
969c7921 1195struct migration_arg {
36c8b586 1196 struct task_struct *task;
1da177e4 1197 int dest_cpu;
70b97a7f 1198};
1da177e4 1199
969c7921
TH
1200static int migration_cpu_stop(void *data);
1201
1da177e4
LT
1202/*
1203 * wait_task_inactive - wait for a thread to unschedule.
1204 *
85ba2d86
RM
1205 * If @match_state is nonzero, it's the @p->state value just checked and
1206 * not expected to change. If it changes, i.e. @p might have woken up,
1207 * then return zero. When we succeed in waiting for @p to be off its CPU,
1208 * we return a positive number (its total switch count). If a second call
1209 * a short while later returns the same number, the caller can be sure that
1210 * @p has remained unscheduled the whole time.
1211 *
1da177e4
LT
1212 * The caller must ensure that the task *will* unschedule sometime soon,
1213 * else this function might spin for a *long* time. This function can't
1214 * be called with interrupts off, or it may introduce deadlock with
1215 * smp_call_function() if an IPI is sent by the same process we are
1216 * waiting to become inactive.
1217 */
85ba2d86 1218unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1219{
1220 unsigned long flags;
da0c1e65 1221 int running, queued;
85ba2d86 1222 unsigned long ncsw;
70b97a7f 1223 struct rq *rq;
1da177e4 1224
3a5c359a
AK
1225 for (;;) {
1226 /*
1227 * We do the initial early heuristics without holding
1228 * any task-queue locks at all. We'll only try to get
1229 * the runqueue lock when things look like they will
1230 * work out!
1231 */
1232 rq = task_rq(p);
fa490cfd 1233
3a5c359a
AK
1234 /*
1235 * If the task is actively running on another CPU
1236 * still, just relax and busy-wait without holding
1237 * any locks.
1238 *
1239 * NOTE! Since we don't hold any locks, it's not
1240 * even sure that "rq" stays as the right runqueue!
1241 * But we don't care, since "task_running()" will
1242 * return false if the runqueue has changed and p
1243 * is actually now running somewhere else!
1244 */
85ba2d86
RM
1245 while (task_running(rq, p)) {
1246 if (match_state && unlikely(p->state != match_state))
1247 return 0;
3a5c359a 1248 cpu_relax();
85ba2d86 1249 }
fa490cfd 1250
3a5c359a
AK
1251 /*
1252 * Ok, time to look more closely! We need the rq
1253 * lock now, to be *sure*. If we're wrong, we'll
1254 * just go back and repeat.
1255 */
1256 rq = task_rq_lock(p, &flags);
27a9da65 1257 trace_sched_wait_task(p);
3a5c359a 1258 running = task_running(rq, p);
da0c1e65 1259 queued = task_on_rq_queued(p);
85ba2d86 1260 ncsw = 0;
f31e11d8 1261 if (!match_state || p->state == match_state)
93dcf55f 1262 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1263 task_rq_unlock(rq, p, &flags);
fa490cfd 1264
85ba2d86
RM
1265 /*
1266 * If it changed from the expected state, bail out now.
1267 */
1268 if (unlikely(!ncsw))
1269 break;
1270
3a5c359a
AK
1271 /*
1272 * Was it really running after all now that we
1273 * checked with the proper locks actually held?
1274 *
1275 * Oops. Go back and try again..
1276 */
1277 if (unlikely(running)) {
1278 cpu_relax();
1279 continue;
1280 }
fa490cfd 1281
3a5c359a
AK
1282 /*
1283 * It's not enough that it's not actively running,
1284 * it must be off the runqueue _entirely_, and not
1285 * preempted!
1286 *
80dd99b3 1287 * So if it was still runnable (but just not actively
3a5c359a
AK
1288 * running right now), it's preempted, and we should
1289 * yield - it could be a while.
1290 */
da0c1e65 1291 if (unlikely(queued)) {
8eb90c30
TG
1292 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1293
1294 set_current_state(TASK_UNINTERRUPTIBLE);
1295 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1296 continue;
1297 }
fa490cfd 1298
3a5c359a
AK
1299 /*
1300 * Ahh, all good. It wasn't running, and it wasn't
1301 * runnable, which means that it will never become
1302 * running in the future either. We're all done!
1303 */
1304 break;
1305 }
85ba2d86
RM
1306
1307 return ncsw;
1da177e4
LT
1308}
1309
1310/***
1311 * kick_process - kick a running thread to enter/exit the kernel
1312 * @p: the to-be-kicked thread
1313 *
1314 * Cause a process which is running on another CPU to enter
1315 * kernel-mode, without any delay. (to get signals handled.)
1316 *
25985edc 1317 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1318 * because all it wants to ensure is that the remote task enters
1319 * the kernel. If the IPI races and the task has been migrated
1320 * to another CPU then no harm is done and the purpose has been
1321 * achieved as well.
1322 */
36c8b586 1323void kick_process(struct task_struct *p)
1da177e4
LT
1324{
1325 int cpu;
1326
1327 preempt_disable();
1328 cpu = task_cpu(p);
1329 if ((cpu != smp_processor_id()) && task_curr(p))
1330 smp_send_reschedule(cpu);
1331 preempt_enable();
1332}
b43e3521 1333EXPORT_SYMBOL_GPL(kick_process);
476d139c 1334#endif /* CONFIG_SMP */
1da177e4 1335
970b13ba 1336#ifdef CONFIG_SMP
30da688e 1337/*
013fdb80 1338 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1339 */
5da9a0fb
PZ
1340static int select_fallback_rq(int cpu, struct task_struct *p)
1341{
aa00d89c
TC
1342 int nid = cpu_to_node(cpu);
1343 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1344 enum { cpuset, possible, fail } state = cpuset;
1345 int dest_cpu;
5da9a0fb 1346
aa00d89c
TC
1347 /*
1348 * If the node that the cpu is on has been offlined, cpu_to_node()
1349 * will return -1. There is no cpu on the node, and we should
1350 * select the cpu on the other node.
1351 */
1352 if (nid != -1) {
1353 nodemask = cpumask_of_node(nid);
1354
1355 /* Look for allowed, online CPU in same node. */
1356 for_each_cpu(dest_cpu, nodemask) {
1357 if (!cpu_online(dest_cpu))
1358 continue;
1359 if (!cpu_active(dest_cpu))
1360 continue;
1361 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1362 return dest_cpu;
1363 }
2baab4e9 1364 }
5da9a0fb 1365
2baab4e9
PZ
1366 for (;;) {
1367 /* Any allowed, online CPU? */
e3831edd 1368 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1369 if (!cpu_online(dest_cpu))
1370 continue;
1371 if (!cpu_active(dest_cpu))
1372 continue;
1373 goto out;
1374 }
5da9a0fb 1375
2baab4e9
PZ
1376 switch (state) {
1377 case cpuset:
1378 /* No more Mr. Nice Guy. */
1379 cpuset_cpus_allowed_fallback(p);
1380 state = possible;
1381 break;
1382
1383 case possible:
1384 do_set_cpus_allowed(p, cpu_possible_mask);
1385 state = fail;
1386 break;
1387
1388 case fail:
1389 BUG();
1390 break;
1391 }
1392 }
1393
1394out:
1395 if (state != cpuset) {
1396 /*
1397 * Don't tell them about moving exiting tasks or
1398 * kernel threads (both mm NULL), since they never
1399 * leave kernel.
1400 */
1401 if (p->mm && printk_ratelimit()) {
aac74dc4 1402 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1403 task_pid_nr(p), p->comm, cpu);
1404 }
5da9a0fb
PZ
1405 }
1406
1407 return dest_cpu;
1408}
1409
e2912009 1410/*
013fdb80 1411 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1412 */
970b13ba 1413static inline
ac66f547 1414int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1415{
6c1d9410
WL
1416 if (p->nr_cpus_allowed > 1)
1417 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1418
1419 /*
1420 * In order not to call set_task_cpu() on a blocking task we need
1421 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1422 * cpu.
1423 *
1424 * Since this is common to all placement strategies, this lives here.
1425 *
1426 * [ this allows ->select_task() to simply return task_cpu(p) and
1427 * not worry about this generic constraint ]
1428 */
fa17b507 1429 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1430 !cpu_online(cpu)))
5da9a0fb 1431 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1432
1433 return cpu;
970b13ba 1434}
09a40af5
MG
1435
1436static void update_avg(u64 *avg, u64 sample)
1437{
1438 s64 diff = sample - *avg;
1439 *avg += diff >> 3;
1440}
970b13ba
PZ
1441#endif
1442
d7c01d27 1443static void
b84cb5df 1444ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1445{
d7c01d27 1446#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1447 struct rq *rq = this_rq();
1448
d7c01d27
PZ
1449#ifdef CONFIG_SMP
1450 int this_cpu = smp_processor_id();
1451
1452 if (cpu == this_cpu) {
1453 schedstat_inc(rq, ttwu_local);
1454 schedstat_inc(p, se.statistics.nr_wakeups_local);
1455 } else {
1456 struct sched_domain *sd;
1457
1458 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1459 rcu_read_lock();
d7c01d27
PZ
1460 for_each_domain(this_cpu, sd) {
1461 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1462 schedstat_inc(sd, ttwu_wake_remote);
1463 break;
1464 }
1465 }
057f3fad 1466 rcu_read_unlock();
d7c01d27 1467 }
f339b9dc
PZ
1468
1469 if (wake_flags & WF_MIGRATED)
1470 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1471
d7c01d27
PZ
1472#endif /* CONFIG_SMP */
1473
1474 schedstat_inc(rq, ttwu_count);
9ed3811a 1475 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1476
1477 if (wake_flags & WF_SYNC)
9ed3811a 1478 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1479
d7c01d27
PZ
1480#endif /* CONFIG_SCHEDSTATS */
1481}
1482
1483static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1484{
9ed3811a 1485 activate_task(rq, p, en_flags);
da0c1e65 1486 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1487
1488 /* if a worker is waking up, notify workqueue */
1489 if (p->flags & PF_WQ_WORKER)
1490 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1491}
1492
23f41eeb
PZ
1493/*
1494 * Mark the task runnable and perform wakeup-preemption.
1495 */
89363381 1496static void
23f41eeb 1497ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1498{
9ed3811a 1499 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1500 trace_sched_wakeup(p, true);
9ed3811a
TH
1501
1502 p->state = TASK_RUNNING;
1503#ifdef CONFIG_SMP
1504 if (p->sched_class->task_woken)
1505 p->sched_class->task_woken(rq, p);
1506
e69c6341 1507 if (rq->idle_stamp) {
78becc27 1508 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1509 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1510
abfafa54
JL
1511 update_avg(&rq->avg_idle, delta);
1512
1513 if (rq->avg_idle > max)
9ed3811a 1514 rq->avg_idle = max;
abfafa54 1515
9ed3811a
TH
1516 rq->idle_stamp = 0;
1517 }
1518#endif
1519}
1520
c05fbafb
PZ
1521static void
1522ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1523{
1524#ifdef CONFIG_SMP
1525 if (p->sched_contributes_to_load)
1526 rq->nr_uninterruptible--;
1527#endif
1528
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531}
1532
1533/*
1534 * Called in case the task @p isn't fully descheduled from its runqueue,
1535 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1536 * since all we need to do is flip p->state to TASK_RUNNING, since
1537 * the task is still ->on_rq.
1538 */
1539static int ttwu_remote(struct task_struct *p, int wake_flags)
1540{
1541 struct rq *rq;
1542 int ret = 0;
1543
1544 rq = __task_rq_lock(p);
da0c1e65 1545 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1546 /* check_preempt_curr() may use rq clock */
1547 update_rq_clock(rq);
c05fbafb
PZ
1548 ttwu_do_wakeup(rq, p, wake_flags);
1549 ret = 1;
1550 }
1551 __task_rq_unlock(rq);
1552
1553 return ret;
1554}
1555
317f3941 1556#ifdef CONFIG_SMP
e3baac47 1557void sched_ttwu_pending(void)
317f3941
PZ
1558{
1559 struct rq *rq = this_rq();
fa14ff4a
PZ
1560 struct llist_node *llist = llist_del_all(&rq->wake_list);
1561 struct task_struct *p;
e3baac47 1562 unsigned long flags;
317f3941 1563
e3baac47
PZ
1564 if (!llist)
1565 return;
1566
1567 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1568
fa14ff4a
PZ
1569 while (llist) {
1570 p = llist_entry(llist, struct task_struct, wake_entry);
1571 llist = llist_next(llist);
317f3941
PZ
1572 ttwu_do_activate(rq, p, 0);
1573 }
1574
e3baac47 1575 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1576}
1577
1578void scheduler_ipi(void)
1579{
f27dde8d
PZ
1580 /*
1581 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1582 * TIF_NEED_RESCHED remotely (for the first time) will also send
1583 * this IPI.
1584 */
8cb75e0c 1585 preempt_fold_need_resched();
f27dde8d 1586
fd2ac4f4 1587 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1588 return;
1589
1590 /*
1591 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1592 * traditionally all their work was done from the interrupt return
1593 * path. Now that we actually do some work, we need to make sure
1594 * we do call them.
1595 *
1596 * Some archs already do call them, luckily irq_enter/exit nest
1597 * properly.
1598 *
1599 * Arguably we should visit all archs and update all handlers,
1600 * however a fair share of IPIs are still resched only so this would
1601 * somewhat pessimize the simple resched case.
1602 */
1603 irq_enter();
fa14ff4a 1604 sched_ttwu_pending();
ca38062e
SS
1605
1606 /*
1607 * Check if someone kicked us for doing the nohz idle load balance.
1608 */
873b4c65 1609 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1610 this_rq()->idle_balance = 1;
ca38062e 1611 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1612 }
c5d753a5 1613 irq_exit();
317f3941
PZ
1614}
1615
1616static void ttwu_queue_remote(struct task_struct *p, int cpu)
1617{
e3baac47
PZ
1618 struct rq *rq = cpu_rq(cpu);
1619
1620 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1621 if (!set_nr_if_polling(rq->idle))
1622 smp_send_reschedule(cpu);
1623 else
1624 trace_sched_wake_idle_without_ipi(cpu);
1625 }
317f3941 1626}
d6aa8f85 1627
f6be8af1
CL
1628void wake_up_if_idle(int cpu)
1629{
1630 struct rq *rq = cpu_rq(cpu);
1631 unsigned long flags;
1632
fd7de1e8
AL
1633 rcu_read_lock();
1634
1635 if (!is_idle_task(rcu_dereference(rq->curr)))
1636 goto out;
f6be8af1
CL
1637
1638 if (set_nr_if_polling(rq->idle)) {
1639 trace_sched_wake_idle_without_ipi(cpu);
1640 } else {
1641 raw_spin_lock_irqsave(&rq->lock, flags);
1642 if (is_idle_task(rq->curr))
1643 smp_send_reschedule(cpu);
1644 /* Else cpu is not in idle, do nothing here */
1645 raw_spin_unlock_irqrestore(&rq->lock, flags);
1646 }
fd7de1e8
AL
1647
1648out:
1649 rcu_read_unlock();
f6be8af1
CL
1650}
1651
39be3501 1652bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1653{
1654 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1655}
d6aa8f85 1656#endif /* CONFIG_SMP */
317f3941 1657
c05fbafb
PZ
1658static void ttwu_queue(struct task_struct *p, int cpu)
1659{
1660 struct rq *rq = cpu_rq(cpu);
1661
17d9f311 1662#if defined(CONFIG_SMP)
39be3501 1663 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1664 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1665 ttwu_queue_remote(p, cpu);
1666 return;
1667 }
1668#endif
1669
c05fbafb
PZ
1670 raw_spin_lock(&rq->lock);
1671 ttwu_do_activate(rq, p, 0);
1672 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1673}
1674
1675/**
1da177e4 1676 * try_to_wake_up - wake up a thread
9ed3811a 1677 * @p: the thread to be awakened
1da177e4 1678 * @state: the mask of task states that can be woken
9ed3811a 1679 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1680 *
1681 * Put it on the run-queue if it's not already there. The "current"
1682 * thread is always on the run-queue (except when the actual
1683 * re-schedule is in progress), and as such you're allowed to do
1684 * the simpler "current->state = TASK_RUNNING" to mark yourself
1685 * runnable without the overhead of this.
1686 *
e69f6186 1687 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1688 * or @state didn't match @p's state.
1da177e4 1689 */
e4a52bcb
PZ
1690static int
1691try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1692{
1da177e4 1693 unsigned long flags;
c05fbafb 1694 int cpu, success = 0;
2398f2c6 1695
e0acd0a6
ON
1696 /*
1697 * If we are going to wake up a thread waiting for CONDITION we
1698 * need to ensure that CONDITION=1 done by the caller can not be
1699 * reordered with p->state check below. This pairs with mb() in
1700 * set_current_state() the waiting thread does.
1701 */
1702 smp_mb__before_spinlock();
013fdb80 1703 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1704 if (!(p->state & state))
1da177e4
LT
1705 goto out;
1706
c05fbafb 1707 success = 1; /* we're going to change ->state */
1da177e4 1708 cpu = task_cpu(p);
1da177e4 1709
c05fbafb
PZ
1710 if (p->on_rq && ttwu_remote(p, wake_flags))
1711 goto stat;
1da177e4 1712
1da177e4 1713#ifdef CONFIG_SMP
e9c84311 1714 /*
c05fbafb
PZ
1715 * If the owning (remote) cpu is still in the middle of schedule() with
1716 * this task as prev, wait until its done referencing the task.
e9c84311 1717 */
f3e94786 1718 while (p->on_cpu)
e4a52bcb 1719 cpu_relax();
0970d299 1720 /*
e4a52bcb 1721 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1722 */
e4a52bcb 1723 smp_rmb();
1da177e4 1724
a8e4f2ea 1725 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1726 p->state = TASK_WAKING;
e7693a36 1727
e4a52bcb 1728 if (p->sched_class->task_waking)
74f8e4b2 1729 p->sched_class->task_waking(p);
efbbd05a 1730
ac66f547 1731 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1732 if (task_cpu(p) != cpu) {
1733 wake_flags |= WF_MIGRATED;
e4a52bcb 1734 set_task_cpu(p, cpu);
f339b9dc 1735 }
1da177e4 1736#endif /* CONFIG_SMP */
1da177e4 1737
c05fbafb
PZ
1738 ttwu_queue(p, cpu);
1739stat:
b84cb5df 1740 ttwu_stat(p, cpu, wake_flags);
1da177e4 1741out:
013fdb80 1742 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1743
1744 return success;
1745}
1746
21aa9af0
TH
1747/**
1748 * try_to_wake_up_local - try to wake up a local task with rq lock held
1749 * @p: the thread to be awakened
1750 *
2acca55e 1751 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1752 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1753 * the current task.
21aa9af0
TH
1754 */
1755static void try_to_wake_up_local(struct task_struct *p)
1756{
1757 struct rq *rq = task_rq(p);
21aa9af0 1758
383efcd0
TH
1759 if (WARN_ON_ONCE(rq != this_rq()) ||
1760 WARN_ON_ONCE(p == current))
1761 return;
1762
21aa9af0
TH
1763 lockdep_assert_held(&rq->lock);
1764
2acca55e
PZ
1765 if (!raw_spin_trylock(&p->pi_lock)) {
1766 raw_spin_unlock(&rq->lock);
1767 raw_spin_lock(&p->pi_lock);
1768 raw_spin_lock(&rq->lock);
1769 }
1770
21aa9af0 1771 if (!(p->state & TASK_NORMAL))
2acca55e 1772 goto out;
21aa9af0 1773
da0c1e65 1774 if (!task_on_rq_queued(p))
d7c01d27
PZ
1775 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1776
23f41eeb 1777 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1778 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1779out:
1780 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1781}
1782
50fa610a
DH
1783/**
1784 * wake_up_process - Wake up a specific process
1785 * @p: The process to be woken up.
1786 *
1787 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1788 * processes.
1789 *
1790 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1791 *
1792 * It may be assumed that this function implies a write memory barrier before
1793 * changing the task state if and only if any tasks are woken up.
1794 */
7ad5b3a5 1795int wake_up_process(struct task_struct *p)
1da177e4 1796{
9067ac85
ON
1797 WARN_ON(task_is_stopped_or_traced(p));
1798 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1799}
1da177e4
LT
1800EXPORT_SYMBOL(wake_up_process);
1801
7ad5b3a5 1802int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1803{
1804 return try_to_wake_up(p, state, 0);
1805}
1806
a5e7be3b
JL
1807/*
1808 * This function clears the sched_dl_entity static params.
1809 */
1810void __dl_clear_params(struct task_struct *p)
1811{
1812 struct sched_dl_entity *dl_se = &p->dl;
1813
1814 dl_se->dl_runtime = 0;
1815 dl_se->dl_deadline = 0;
1816 dl_se->dl_period = 0;
1817 dl_se->flags = 0;
1818 dl_se->dl_bw = 0;
1819}
1820
1da177e4
LT
1821/*
1822 * Perform scheduler related setup for a newly forked process p.
1823 * p is forked by current.
dd41f596
IM
1824 *
1825 * __sched_fork() is basic setup used by init_idle() too:
1826 */
5e1576ed 1827static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1828{
fd2f4419
PZ
1829 p->on_rq = 0;
1830
1831 p->se.on_rq = 0;
dd41f596
IM
1832 p->se.exec_start = 0;
1833 p->se.sum_exec_runtime = 0;
f6cf891c 1834 p->se.prev_sum_exec_runtime = 0;
6c594c21 1835 p->se.nr_migrations = 0;
da7a735e 1836 p->se.vruntime = 0;
bb04159d
KT
1837#ifdef CONFIG_SMP
1838 p->se.avg.decay_count = 0;
1839#endif
fd2f4419 1840 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1841
1842#ifdef CONFIG_SCHEDSTATS
41acab88 1843 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1844#endif
476d139c 1845
aab03e05
DF
1846 RB_CLEAR_NODE(&p->dl.rb_node);
1847 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1848 __dl_clear_params(p);
aab03e05 1849
fa717060 1850 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1851
e107be36
AK
1852#ifdef CONFIG_PREEMPT_NOTIFIERS
1853 INIT_HLIST_HEAD(&p->preempt_notifiers);
1854#endif
cbee9f88
PZ
1855
1856#ifdef CONFIG_NUMA_BALANCING
1857 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1858 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1859 p->mm->numa_scan_seq = 0;
1860 }
1861
5e1576ed
RR
1862 if (clone_flags & CLONE_VM)
1863 p->numa_preferred_nid = current->numa_preferred_nid;
1864 else
1865 p->numa_preferred_nid = -1;
1866
cbee9f88
PZ
1867 p->node_stamp = 0ULL;
1868 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1869 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1870 p->numa_work.next = &p->numa_work;
44dba3d5 1871 p->numa_faults = NULL;
7e2703e6
RR
1872 p->last_task_numa_placement = 0;
1873 p->last_sum_exec_runtime = 0;
8c8a743c 1874
8c8a743c 1875 p->numa_group = NULL;
cbee9f88 1876#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1877}
1878
1a687c2e 1879#ifdef CONFIG_NUMA_BALANCING
3105b86a 1880#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1881void set_numabalancing_state(bool enabled)
1882{
1883 if (enabled)
1884 sched_feat_set("NUMA");
1885 else
1886 sched_feat_set("NO_NUMA");
1887}
3105b86a
MG
1888#else
1889__read_mostly bool numabalancing_enabled;
1890
1891void set_numabalancing_state(bool enabled)
1892{
1893 numabalancing_enabled = enabled;
dd41f596 1894}
3105b86a 1895#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1896
1897#ifdef CONFIG_PROC_SYSCTL
1898int sysctl_numa_balancing(struct ctl_table *table, int write,
1899 void __user *buffer, size_t *lenp, loff_t *ppos)
1900{
1901 struct ctl_table t;
1902 int err;
1903 int state = numabalancing_enabled;
1904
1905 if (write && !capable(CAP_SYS_ADMIN))
1906 return -EPERM;
1907
1908 t = *table;
1909 t.data = &state;
1910 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1911 if (err < 0)
1912 return err;
1913 if (write)
1914 set_numabalancing_state(state);
1915 return err;
1916}
1917#endif
1918#endif
dd41f596
IM
1919
1920/*
1921 * fork()/clone()-time setup:
1922 */
aab03e05 1923int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1924{
0122ec5b 1925 unsigned long flags;
dd41f596
IM
1926 int cpu = get_cpu();
1927
5e1576ed 1928 __sched_fork(clone_flags, p);
06b83b5f 1929 /*
0017d735 1930 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1931 * nobody will actually run it, and a signal or other external
1932 * event cannot wake it up and insert it on the runqueue either.
1933 */
0017d735 1934 p->state = TASK_RUNNING;
dd41f596 1935
c350a04e
MG
1936 /*
1937 * Make sure we do not leak PI boosting priority to the child.
1938 */
1939 p->prio = current->normal_prio;
1940
b9dc29e7
MG
1941 /*
1942 * Revert to default priority/policy on fork if requested.
1943 */
1944 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1945 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1946 p->policy = SCHED_NORMAL;
6c697bdf 1947 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1948 p->rt_priority = 0;
1949 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1950 p->static_prio = NICE_TO_PRIO(0);
1951
1952 p->prio = p->normal_prio = __normal_prio(p);
1953 set_load_weight(p);
6c697bdf 1954
b9dc29e7
MG
1955 /*
1956 * We don't need the reset flag anymore after the fork. It has
1957 * fulfilled its duty:
1958 */
1959 p->sched_reset_on_fork = 0;
1960 }
ca94c442 1961
aab03e05
DF
1962 if (dl_prio(p->prio)) {
1963 put_cpu();
1964 return -EAGAIN;
1965 } else if (rt_prio(p->prio)) {
1966 p->sched_class = &rt_sched_class;
1967 } else {
2ddbf952 1968 p->sched_class = &fair_sched_class;
aab03e05 1969 }
b29739f9 1970
cd29fe6f
PZ
1971 if (p->sched_class->task_fork)
1972 p->sched_class->task_fork(p);
1973
86951599
PZ
1974 /*
1975 * The child is not yet in the pid-hash so no cgroup attach races,
1976 * and the cgroup is pinned to this child due to cgroup_fork()
1977 * is ran before sched_fork().
1978 *
1979 * Silence PROVE_RCU.
1980 */
0122ec5b 1981 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1982 set_task_cpu(p, cpu);
0122ec5b 1983 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1984
52f17b6c 1985#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1986 if (likely(sched_info_on()))
52f17b6c 1987 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1988#endif
3ca7a440
PZ
1989#if defined(CONFIG_SMP)
1990 p->on_cpu = 0;
4866cde0 1991#endif
01028747 1992 init_task_preempt_count(p);
806c09a7 1993#ifdef CONFIG_SMP
917b627d 1994 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1995 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1996#endif
917b627d 1997
476d139c 1998 put_cpu();
aab03e05 1999 return 0;
1da177e4
LT
2000}
2001
332ac17e
DF
2002unsigned long to_ratio(u64 period, u64 runtime)
2003{
2004 if (runtime == RUNTIME_INF)
2005 return 1ULL << 20;
2006
2007 /*
2008 * Doing this here saves a lot of checks in all
2009 * the calling paths, and returning zero seems
2010 * safe for them anyway.
2011 */
2012 if (period == 0)
2013 return 0;
2014
2015 return div64_u64(runtime << 20, period);
2016}
2017
2018#ifdef CONFIG_SMP
2019inline struct dl_bw *dl_bw_of(int i)
2020{
66339c31
KT
2021 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2022 "sched RCU must be held");
332ac17e
DF
2023 return &cpu_rq(i)->rd->dl_bw;
2024}
2025
de212f18 2026static inline int dl_bw_cpus(int i)
332ac17e 2027{
de212f18
PZ
2028 struct root_domain *rd = cpu_rq(i)->rd;
2029 int cpus = 0;
2030
66339c31
KT
2031 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2032 "sched RCU must be held");
de212f18
PZ
2033 for_each_cpu_and(i, rd->span, cpu_active_mask)
2034 cpus++;
2035
2036 return cpus;
332ac17e
DF
2037}
2038#else
2039inline struct dl_bw *dl_bw_of(int i)
2040{
2041 return &cpu_rq(i)->dl.dl_bw;
2042}
2043
de212f18 2044static inline int dl_bw_cpus(int i)
332ac17e
DF
2045{
2046 return 1;
2047}
2048#endif
2049
332ac17e
DF
2050/*
2051 * We must be sure that accepting a new task (or allowing changing the
2052 * parameters of an existing one) is consistent with the bandwidth
2053 * constraints. If yes, this function also accordingly updates the currently
2054 * allocated bandwidth to reflect the new situation.
2055 *
2056 * This function is called while holding p's rq->lock.
2057 */
2058static int dl_overflow(struct task_struct *p, int policy,
2059 const struct sched_attr *attr)
2060{
2061
2062 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2063 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2064 u64 runtime = attr->sched_runtime;
2065 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2066 int cpus, err = -1;
332ac17e
DF
2067
2068 if (new_bw == p->dl.dl_bw)
2069 return 0;
2070
2071 /*
2072 * Either if a task, enters, leave, or stays -deadline but changes
2073 * its parameters, we may need to update accordingly the total
2074 * allocated bandwidth of the container.
2075 */
2076 raw_spin_lock(&dl_b->lock);
de212f18 2077 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2078 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2079 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2080 __dl_add(dl_b, new_bw);
2081 err = 0;
2082 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2083 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2084 __dl_clear(dl_b, p->dl.dl_bw);
2085 __dl_add(dl_b, new_bw);
2086 err = 0;
2087 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2088 __dl_clear(dl_b, p->dl.dl_bw);
2089 err = 0;
2090 }
2091 raw_spin_unlock(&dl_b->lock);
2092
2093 return err;
2094}
2095
2096extern void init_dl_bw(struct dl_bw *dl_b);
2097
1da177e4
LT
2098/*
2099 * wake_up_new_task - wake up a newly created task for the first time.
2100 *
2101 * This function will do some initial scheduler statistics housekeeping
2102 * that must be done for every newly created context, then puts the task
2103 * on the runqueue and wakes it.
2104 */
3e51e3ed 2105void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2106{
2107 unsigned long flags;
dd41f596 2108 struct rq *rq;
fabf318e 2109
ab2515c4 2110 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2111#ifdef CONFIG_SMP
2112 /*
2113 * Fork balancing, do it here and not earlier because:
2114 * - cpus_allowed can change in the fork path
2115 * - any previously selected cpu might disappear through hotplug
fabf318e 2116 */
ac66f547 2117 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2118#endif
2119
a75cdaa9
AS
2120 /* Initialize new task's runnable average */
2121 init_task_runnable_average(p);
ab2515c4 2122 rq = __task_rq_lock(p);
cd29fe6f 2123 activate_task(rq, p, 0);
da0c1e65 2124 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2125 trace_sched_wakeup_new(p, true);
a7558e01 2126 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2127#ifdef CONFIG_SMP
efbbd05a
PZ
2128 if (p->sched_class->task_woken)
2129 p->sched_class->task_woken(rq, p);
9a897c5a 2130#endif
0122ec5b 2131 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2132}
2133
e107be36
AK
2134#ifdef CONFIG_PREEMPT_NOTIFIERS
2135
2136/**
80dd99b3 2137 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2138 * @notifier: notifier struct to register
e107be36
AK
2139 */
2140void preempt_notifier_register(struct preempt_notifier *notifier)
2141{
2142 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2143}
2144EXPORT_SYMBOL_GPL(preempt_notifier_register);
2145
2146/**
2147 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2148 * @notifier: notifier struct to unregister
e107be36
AK
2149 *
2150 * This is safe to call from within a preemption notifier.
2151 */
2152void preempt_notifier_unregister(struct preempt_notifier *notifier)
2153{
2154 hlist_del(&notifier->link);
2155}
2156EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2157
2158static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2159{
2160 struct preempt_notifier *notifier;
e107be36 2161
b67bfe0d 2162 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2163 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2164}
2165
2166static void
2167fire_sched_out_preempt_notifiers(struct task_struct *curr,
2168 struct task_struct *next)
2169{
2170 struct preempt_notifier *notifier;
e107be36 2171
b67bfe0d 2172 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2173 notifier->ops->sched_out(notifier, next);
2174}
2175
6d6bc0ad 2176#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2177
2178static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2179{
2180}
2181
2182static void
2183fire_sched_out_preempt_notifiers(struct task_struct *curr,
2184 struct task_struct *next)
2185{
2186}
2187
6d6bc0ad 2188#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2189
4866cde0
NP
2190/**
2191 * prepare_task_switch - prepare to switch tasks
2192 * @rq: the runqueue preparing to switch
421cee29 2193 * @prev: the current task that is being switched out
4866cde0
NP
2194 * @next: the task we are going to switch to.
2195 *
2196 * This is called with the rq lock held and interrupts off. It must
2197 * be paired with a subsequent finish_task_switch after the context
2198 * switch.
2199 *
2200 * prepare_task_switch sets up locking and calls architecture specific
2201 * hooks.
2202 */
e107be36
AK
2203static inline void
2204prepare_task_switch(struct rq *rq, struct task_struct *prev,
2205 struct task_struct *next)
4866cde0 2206{
895dd92c 2207 trace_sched_switch(prev, next);
43148951 2208 sched_info_switch(rq, prev, next);
fe4b04fa 2209 perf_event_task_sched_out(prev, next);
e107be36 2210 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2211 prepare_lock_switch(rq, next);
2212 prepare_arch_switch(next);
2213}
2214
1da177e4
LT
2215/**
2216 * finish_task_switch - clean up after a task-switch
2217 * @prev: the thread we just switched away from.
2218 *
4866cde0
NP
2219 * finish_task_switch must be called after the context switch, paired
2220 * with a prepare_task_switch call before the context switch.
2221 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2222 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2223 *
2224 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2225 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2226 * with the lock held can cause deadlocks; see schedule() for
2227 * details.)
dfa50b60
ON
2228 *
2229 * The context switch have flipped the stack from under us and restored the
2230 * local variables which were saved when this task called schedule() in the
2231 * past. prev == current is still correct but we need to recalculate this_rq
2232 * because prev may have moved to another CPU.
1da177e4 2233 */
dfa50b60 2234static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2235 __releases(rq->lock)
2236{
dfa50b60 2237 struct rq *rq = this_rq();
1da177e4 2238 struct mm_struct *mm = rq->prev_mm;
55a101f8 2239 long prev_state;
1da177e4
LT
2240
2241 rq->prev_mm = NULL;
2242
2243 /*
2244 * A task struct has one reference for the use as "current".
c394cc9f 2245 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2246 * schedule one last time. The schedule call will never return, and
2247 * the scheduled task must drop that reference.
c394cc9f 2248 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2249 * still held, otherwise prev could be scheduled on another cpu, die
2250 * there before we look at prev->state, and then the reference would
2251 * be dropped twice.
2252 * Manfred Spraul <manfred@colorfullife.com>
2253 */
55a101f8 2254 prev_state = prev->state;
bf9fae9f 2255 vtime_task_switch(prev);
4866cde0 2256 finish_arch_switch(prev);
a8d757ef 2257 perf_event_task_sched_in(prev, current);
4866cde0 2258 finish_lock_switch(rq, prev);
01f23e16 2259 finish_arch_post_lock_switch();
e8fa1362 2260
e107be36 2261 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2262 if (mm)
2263 mmdrop(mm);
c394cc9f 2264 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2265 if (prev->sched_class->task_dead)
2266 prev->sched_class->task_dead(prev);
2267
c6fd91f0 2268 /*
2269 * Remove function-return probe instances associated with this
2270 * task and put them back on the free list.
9761eea8 2271 */
c6fd91f0 2272 kprobe_flush_task(prev);
1da177e4 2273 put_task_struct(prev);
c6fd91f0 2274 }
99e5ada9
FW
2275
2276 tick_nohz_task_switch(current);
dfa50b60 2277 return rq;
1da177e4
LT
2278}
2279
3f029d3c
GH
2280#ifdef CONFIG_SMP
2281
3f029d3c
GH
2282/* rq->lock is NOT held, but preemption is disabled */
2283static inline void post_schedule(struct rq *rq)
2284{
2285 if (rq->post_schedule) {
2286 unsigned long flags;
2287
05fa785c 2288 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2289 if (rq->curr->sched_class->post_schedule)
2290 rq->curr->sched_class->post_schedule(rq);
05fa785c 2291 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2292
2293 rq->post_schedule = 0;
2294 }
2295}
2296
2297#else
da19ab51 2298
3f029d3c
GH
2299static inline void post_schedule(struct rq *rq)
2300{
1da177e4
LT
2301}
2302
3f029d3c
GH
2303#endif
2304
1da177e4
LT
2305/**
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2308 */
722a9f92 2309asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2310 __releases(rq->lock)
2311{
1a43a14a 2312 struct rq *rq;
da19ab51 2313
1a43a14a
ON
2314 /* finish_task_switch() drops rq->lock and enables preemtion */
2315 preempt_disable();
dfa50b60 2316 rq = finish_task_switch(prev);
3f029d3c 2317 post_schedule(rq);
1a43a14a 2318 preempt_enable();
70b97a7f 2319
1da177e4 2320 if (current->set_child_tid)
b488893a 2321 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2322}
2323
2324/*
dfa50b60 2325 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2326 */
dfa50b60 2327static inline struct rq *
70b97a7f 2328context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2329 struct task_struct *next)
1da177e4 2330{
dd41f596 2331 struct mm_struct *mm, *oldmm;
1da177e4 2332
e107be36 2333 prepare_task_switch(rq, prev, next);
fe4b04fa 2334
dd41f596
IM
2335 mm = next->mm;
2336 oldmm = prev->active_mm;
9226d125
ZA
2337 /*
2338 * For paravirt, this is coupled with an exit in switch_to to
2339 * combine the page table reload and the switch backend into
2340 * one hypercall.
2341 */
224101ed 2342 arch_start_context_switch(prev);
9226d125 2343
31915ab4 2344 if (!mm) {
1da177e4
LT
2345 next->active_mm = oldmm;
2346 atomic_inc(&oldmm->mm_count);
2347 enter_lazy_tlb(oldmm, next);
2348 } else
2349 switch_mm(oldmm, mm, next);
2350
31915ab4 2351 if (!prev->mm) {
1da177e4 2352 prev->active_mm = NULL;
1da177e4
LT
2353 rq->prev_mm = oldmm;
2354 }
3a5f5e48
IM
2355 /*
2356 * Since the runqueue lock will be released by the next
2357 * task (which is an invalid locking op but in the case
2358 * of the scheduler it's an obvious special-case), so we
2359 * do an early lockdep release here:
2360 */
8a25d5de 2361 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2362
91d1aa43 2363 context_tracking_task_switch(prev, next);
1da177e4
LT
2364 /* Here we just switch the register state and the stack. */
2365 switch_to(prev, next, prev);
dd41f596 2366 barrier();
dfa50b60
ON
2367
2368 return finish_task_switch(prev);
1da177e4
LT
2369}
2370
2371/*
1c3e8264 2372 * nr_running and nr_context_switches:
1da177e4
LT
2373 *
2374 * externally visible scheduler statistics: current number of runnable
1c3e8264 2375 * threads, total number of context switches performed since bootup.
1da177e4
LT
2376 */
2377unsigned long nr_running(void)
2378{
2379 unsigned long i, sum = 0;
2380
2381 for_each_online_cpu(i)
2382 sum += cpu_rq(i)->nr_running;
2383
2384 return sum;
f711f609 2385}
1da177e4 2386
2ee507c4
TC
2387/*
2388 * Check if only the current task is running on the cpu.
2389 */
2390bool single_task_running(void)
2391{
2392 if (cpu_rq(smp_processor_id())->nr_running == 1)
2393 return true;
2394 else
2395 return false;
2396}
2397EXPORT_SYMBOL(single_task_running);
2398
1da177e4 2399unsigned long long nr_context_switches(void)
46cb4b7c 2400{
cc94abfc
SR
2401 int i;
2402 unsigned long long sum = 0;
46cb4b7c 2403
0a945022 2404 for_each_possible_cpu(i)
1da177e4 2405 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2406
1da177e4
LT
2407 return sum;
2408}
483b4ee6 2409
1da177e4
LT
2410unsigned long nr_iowait(void)
2411{
2412 unsigned long i, sum = 0;
483b4ee6 2413
0a945022 2414 for_each_possible_cpu(i)
1da177e4 2415 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2416
1da177e4
LT
2417 return sum;
2418}
483b4ee6 2419
8c215bd3 2420unsigned long nr_iowait_cpu(int cpu)
69d25870 2421{
8c215bd3 2422 struct rq *this = cpu_rq(cpu);
69d25870
AV
2423 return atomic_read(&this->nr_iowait);
2424}
46cb4b7c 2425
372ba8cb
MG
2426void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2427{
2428 struct rq *this = this_rq();
2429 *nr_waiters = atomic_read(&this->nr_iowait);
2430 *load = this->cpu_load[0];
2431}
2432
dd41f596 2433#ifdef CONFIG_SMP
8a0be9ef 2434
46cb4b7c 2435/*
38022906
PZ
2436 * sched_exec - execve() is a valuable balancing opportunity, because at
2437 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2438 */
38022906 2439void sched_exec(void)
46cb4b7c 2440{
38022906 2441 struct task_struct *p = current;
1da177e4 2442 unsigned long flags;
0017d735 2443 int dest_cpu;
46cb4b7c 2444
8f42ced9 2445 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2446 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2447 if (dest_cpu == smp_processor_id())
2448 goto unlock;
38022906 2449
8f42ced9 2450 if (likely(cpu_active(dest_cpu))) {
969c7921 2451 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2452
8f42ced9
PZ
2453 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2454 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2455 return;
2456 }
0017d735 2457unlock:
8f42ced9 2458 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2459}
dd41f596 2460
1da177e4
LT
2461#endif
2462
1da177e4 2463DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2464DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2465
2466EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2467EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2468
c5f8d995
HS
2469/*
2470 * Return accounted runtime for the task.
2471 * In case the task is currently running, return the runtime plus current's
2472 * pending runtime that have not been accounted yet.
2473 */
2474unsigned long long task_sched_runtime(struct task_struct *p)
2475{
2476 unsigned long flags;
2477 struct rq *rq;
6e998916 2478 u64 ns;
c5f8d995 2479
911b2898
PZ
2480#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2481 /*
2482 * 64-bit doesn't need locks to atomically read a 64bit value.
2483 * So we have a optimization chance when the task's delta_exec is 0.
2484 * Reading ->on_cpu is racy, but this is ok.
2485 *
2486 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2487 * If we race with it entering cpu, unaccounted time is 0. This is
2488 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2489 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2490 * been accounted, so we're correct here as well.
911b2898 2491 */
da0c1e65 2492 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2493 return p->se.sum_exec_runtime;
2494#endif
2495
c5f8d995 2496 rq = task_rq_lock(p, &flags);
6e998916
SG
2497 /*
2498 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2499 * project cycles that may never be accounted to this
2500 * thread, breaking clock_gettime().
2501 */
2502 if (task_current(rq, p) && task_on_rq_queued(p)) {
2503 update_rq_clock(rq);
2504 p->sched_class->update_curr(rq);
2505 }
2506 ns = p->se.sum_exec_runtime;
0122ec5b 2507 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2508
2509 return ns;
2510}
48f24c4d 2511
7835b98b
CL
2512/*
2513 * This function gets called by the timer code, with HZ frequency.
2514 * We call it with interrupts disabled.
7835b98b
CL
2515 */
2516void scheduler_tick(void)
2517{
7835b98b
CL
2518 int cpu = smp_processor_id();
2519 struct rq *rq = cpu_rq(cpu);
dd41f596 2520 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2521
2522 sched_clock_tick();
dd41f596 2523
05fa785c 2524 raw_spin_lock(&rq->lock);
3e51f33f 2525 update_rq_clock(rq);
fa85ae24 2526 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2527 update_cpu_load_active(rq);
05fa785c 2528 raw_spin_unlock(&rq->lock);
7835b98b 2529
e9d2b064 2530 perf_event_task_tick();
e220d2dc 2531
e418e1c2 2532#ifdef CONFIG_SMP
6eb57e0d 2533 rq->idle_balance = idle_cpu(cpu);
7caff66f 2534 trigger_load_balance(rq);
e418e1c2 2535#endif
265f22a9 2536 rq_last_tick_reset(rq);
1da177e4
LT
2537}
2538
265f22a9
FW
2539#ifdef CONFIG_NO_HZ_FULL
2540/**
2541 * scheduler_tick_max_deferment
2542 *
2543 * Keep at least one tick per second when a single
2544 * active task is running because the scheduler doesn't
2545 * yet completely support full dynticks environment.
2546 *
2547 * This makes sure that uptime, CFS vruntime, load
2548 * balancing, etc... continue to move forward, even
2549 * with a very low granularity.
e69f6186
YB
2550 *
2551 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2552 */
2553u64 scheduler_tick_max_deferment(void)
2554{
2555 struct rq *rq = this_rq();
2556 unsigned long next, now = ACCESS_ONCE(jiffies);
2557
2558 next = rq->last_sched_tick + HZ;
2559
2560 if (time_before_eq(next, now))
2561 return 0;
2562
8fe8ff09 2563 return jiffies_to_nsecs(next - now);
1da177e4 2564}
265f22a9 2565#endif
1da177e4 2566
132380a0 2567notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2568{
2569 if (in_lock_functions(addr)) {
2570 addr = CALLER_ADDR2;
2571 if (in_lock_functions(addr))
2572 addr = CALLER_ADDR3;
2573 }
2574 return addr;
2575}
1da177e4 2576
7e49fcce
SR
2577#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2578 defined(CONFIG_PREEMPT_TRACER))
2579
edafe3a5 2580void preempt_count_add(int val)
1da177e4 2581{
6cd8a4bb 2582#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2583 /*
2584 * Underflow?
2585 */
9a11b49a
IM
2586 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2587 return;
6cd8a4bb 2588#endif
bdb43806 2589 __preempt_count_add(val);
6cd8a4bb 2590#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2591 /*
2592 * Spinlock count overflowing soon?
2593 */
33859f7f
MOS
2594 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2595 PREEMPT_MASK - 10);
6cd8a4bb 2596#endif
8f47b187
TG
2597 if (preempt_count() == val) {
2598 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2599#ifdef CONFIG_DEBUG_PREEMPT
2600 current->preempt_disable_ip = ip;
2601#endif
2602 trace_preempt_off(CALLER_ADDR0, ip);
2603 }
1da177e4 2604}
bdb43806 2605EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2606NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2607
edafe3a5 2608void preempt_count_sub(int val)
1da177e4 2609{
6cd8a4bb 2610#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2611 /*
2612 * Underflow?
2613 */
01e3eb82 2614 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2615 return;
1da177e4
LT
2616 /*
2617 * Is the spinlock portion underflowing?
2618 */
9a11b49a
IM
2619 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2620 !(preempt_count() & PREEMPT_MASK)))
2621 return;
6cd8a4bb 2622#endif
9a11b49a 2623
6cd8a4bb
SR
2624 if (preempt_count() == val)
2625 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2626 __preempt_count_sub(val);
1da177e4 2627}
bdb43806 2628EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2629NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2630
2631#endif
2632
2633/*
dd41f596 2634 * Print scheduling while atomic bug:
1da177e4 2635 */
dd41f596 2636static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2637{
664dfa65
DJ
2638 if (oops_in_progress)
2639 return;
2640
3df0fc5b
PZ
2641 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2642 prev->comm, prev->pid, preempt_count());
838225b4 2643
dd41f596 2644 debug_show_held_locks(prev);
e21f5b15 2645 print_modules();
dd41f596
IM
2646 if (irqs_disabled())
2647 print_irqtrace_events(prev);
8f47b187
TG
2648#ifdef CONFIG_DEBUG_PREEMPT
2649 if (in_atomic_preempt_off()) {
2650 pr_err("Preemption disabled at:");
2651 print_ip_sym(current->preempt_disable_ip);
2652 pr_cont("\n");
2653 }
2654#endif
6135fc1e 2655 dump_stack();
373d4d09 2656 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2657}
1da177e4 2658
dd41f596
IM
2659/*
2660 * Various schedule()-time debugging checks and statistics:
2661 */
2662static inline void schedule_debug(struct task_struct *prev)
2663{
0d9e2632
AT
2664#ifdef CONFIG_SCHED_STACK_END_CHECK
2665 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2666#endif
1da177e4 2667 /*
41a2d6cf 2668 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2669 * schedule() atomically, we ignore that path. Otherwise whine
2670 * if we are scheduling when we should not.
1da177e4 2671 */
192301e7 2672 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2673 __schedule_bug(prev);
b3fbab05 2674 rcu_sleep_check();
dd41f596 2675
1da177e4
LT
2676 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2677
2d72376b 2678 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2679}
2680
2681/*
2682 * Pick up the highest-prio task:
2683 */
2684static inline struct task_struct *
606dba2e 2685pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2686{
37e117c0 2687 const struct sched_class *class = &fair_sched_class;
dd41f596 2688 struct task_struct *p;
1da177e4
LT
2689
2690 /*
dd41f596
IM
2691 * Optimization: we know that if all tasks are in
2692 * the fair class we can call that function directly:
1da177e4 2693 */
37e117c0 2694 if (likely(prev->sched_class == class &&
38033c37 2695 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2696 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2697 if (unlikely(p == RETRY_TASK))
2698 goto again;
2699
2700 /* assumes fair_sched_class->next == idle_sched_class */
2701 if (unlikely(!p))
2702 p = idle_sched_class.pick_next_task(rq, prev);
2703
2704 return p;
1da177e4
LT
2705 }
2706
37e117c0 2707again:
34f971f6 2708 for_each_class(class) {
606dba2e 2709 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2710 if (p) {
2711 if (unlikely(p == RETRY_TASK))
2712 goto again;
dd41f596 2713 return p;
37e117c0 2714 }
dd41f596 2715 }
34f971f6
PZ
2716
2717 BUG(); /* the idle class will always have a runnable task */
dd41f596 2718}
1da177e4 2719
dd41f596 2720/*
c259e01a 2721 * __schedule() is the main scheduler function.
edde96ea
PE
2722 *
2723 * The main means of driving the scheduler and thus entering this function are:
2724 *
2725 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2726 *
2727 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2728 * paths. For example, see arch/x86/entry_64.S.
2729 *
2730 * To drive preemption between tasks, the scheduler sets the flag in timer
2731 * interrupt handler scheduler_tick().
2732 *
2733 * 3. Wakeups don't really cause entry into schedule(). They add a
2734 * task to the run-queue and that's it.
2735 *
2736 * Now, if the new task added to the run-queue preempts the current
2737 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2738 * called on the nearest possible occasion:
2739 *
2740 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2741 *
2742 * - in syscall or exception context, at the next outmost
2743 * preempt_enable(). (this might be as soon as the wake_up()'s
2744 * spin_unlock()!)
2745 *
2746 * - in IRQ context, return from interrupt-handler to
2747 * preemptible context
2748 *
2749 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2750 * then at the next:
2751 *
2752 * - cond_resched() call
2753 * - explicit schedule() call
2754 * - return from syscall or exception to user-space
2755 * - return from interrupt-handler to user-space
dd41f596 2756 */
c259e01a 2757static void __sched __schedule(void)
dd41f596
IM
2758{
2759 struct task_struct *prev, *next;
67ca7bde 2760 unsigned long *switch_count;
dd41f596 2761 struct rq *rq;
31656519 2762 int cpu;
dd41f596 2763
ff743345
PZ
2764need_resched:
2765 preempt_disable();
dd41f596
IM
2766 cpu = smp_processor_id();
2767 rq = cpu_rq(cpu);
38200cf2 2768 rcu_note_context_switch();
dd41f596 2769 prev = rq->curr;
dd41f596 2770
dd41f596 2771 schedule_debug(prev);
1da177e4 2772
31656519 2773 if (sched_feat(HRTICK))
f333fdc9 2774 hrtick_clear(rq);
8f4d37ec 2775
e0acd0a6
ON
2776 /*
2777 * Make sure that signal_pending_state()->signal_pending() below
2778 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2779 * done by the caller to avoid the race with signal_wake_up().
2780 */
2781 smp_mb__before_spinlock();
05fa785c 2782 raw_spin_lock_irq(&rq->lock);
1da177e4 2783
9edfbfed
PZ
2784 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2785
246d86b5 2786 switch_count = &prev->nivcsw;
1da177e4 2787 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2788 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2789 prev->state = TASK_RUNNING;
21aa9af0 2790 } else {
2acca55e
PZ
2791 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2792 prev->on_rq = 0;
2793
21aa9af0 2794 /*
2acca55e
PZ
2795 * If a worker went to sleep, notify and ask workqueue
2796 * whether it wants to wake up a task to maintain
2797 * concurrency.
21aa9af0
TH
2798 */
2799 if (prev->flags & PF_WQ_WORKER) {
2800 struct task_struct *to_wakeup;
2801
2802 to_wakeup = wq_worker_sleeping(prev, cpu);
2803 if (to_wakeup)
2804 try_to_wake_up_local(to_wakeup);
2805 }
21aa9af0 2806 }
dd41f596 2807 switch_count = &prev->nvcsw;
1da177e4
LT
2808 }
2809
9edfbfed 2810 if (task_on_rq_queued(prev))
606dba2e
PZ
2811 update_rq_clock(rq);
2812
2813 next = pick_next_task(rq, prev);
f26f9aff 2814 clear_tsk_need_resched(prev);
f27dde8d 2815 clear_preempt_need_resched();
9edfbfed 2816 rq->clock_skip_update = 0;
1da177e4 2817
1da177e4 2818 if (likely(prev != next)) {
1da177e4
LT
2819 rq->nr_switches++;
2820 rq->curr = next;
2821 ++*switch_count;
2822
dfa50b60
ON
2823 rq = context_switch(rq, prev, next); /* unlocks the rq */
2824 cpu = cpu_of(rq);
1da177e4 2825 } else
05fa785c 2826 raw_spin_unlock_irq(&rq->lock);
1da177e4 2827
3f029d3c 2828 post_schedule(rq);
1da177e4 2829
ba74c144 2830 sched_preempt_enable_no_resched();
ff743345 2831 if (need_resched())
1da177e4
LT
2832 goto need_resched;
2833}
c259e01a 2834
9c40cef2
TG
2835static inline void sched_submit_work(struct task_struct *tsk)
2836{
3c7d5184 2837 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2838 return;
2839 /*
2840 * If we are going to sleep and we have plugged IO queued,
2841 * make sure to submit it to avoid deadlocks.
2842 */
2843 if (blk_needs_flush_plug(tsk))
2844 blk_schedule_flush_plug(tsk);
2845}
2846
722a9f92 2847asmlinkage __visible void __sched schedule(void)
c259e01a 2848{
9c40cef2
TG
2849 struct task_struct *tsk = current;
2850
2851 sched_submit_work(tsk);
c259e01a
TG
2852 __schedule();
2853}
1da177e4
LT
2854EXPORT_SYMBOL(schedule);
2855
91d1aa43 2856#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2857asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2858{
2859 /*
2860 * If we come here after a random call to set_need_resched(),
2861 * or we have been woken up remotely but the IPI has not yet arrived,
2862 * we haven't yet exited the RCU idle mode. Do it here manually until
2863 * we find a better solution.
7cc78f8f
AL
2864 *
2865 * NB: There are buggy callers of this function. Ideally we
2866 * should warn if prev_state != IN_USER, but that will trigger
2867 * too frequently to make sense yet.
20ab65e3 2868 */
7cc78f8f 2869 enum ctx_state prev_state = exception_enter();
20ab65e3 2870 schedule();
7cc78f8f 2871 exception_exit(prev_state);
20ab65e3
FW
2872}
2873#endif
2874
c5491ea7
TG
2875/**
2876 * schedule_preempt_disabled - called with preemption disabled
2877 *
2878 * Returns with preemption disabled. Note: preempt_count must be 1
2879 */
2880void __sched schedule_preempt_disabled(void)
2881{
ba74c144 2882 sched_preempt_enable_no_resched();
c5491ea7
TG
2883 schedule();
2884 preempt_disable();
2885}
2886
1da177e4
LT
2887#ifdef CONFIG_PREEMPT
2888/*
2ed6e34f 2889 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2890 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2891 * occur there and call schedule directly.
2892 */
722a9f92 2893asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2894{
1da177e4
LT
2895 /*
2896 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2897 * we do not want to preempt the current task. Just return..
1da177e4 2898 */
fbb00b56 2899 if (likely(!preemptible()))
1da177e4
LT
2900 return;
2901
3a5c359a 2902 do {
bdb43806 2903 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2904 __schedule();
bdb43806 2905 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2906
3a5c359a
AK
2907 /*
2908 * Check again in case we missed a preemption opportunity
2909 * between schedule and now.
2910 */
2911 barrier();
5ed0cec0 2912 } while (need_resched());
1da177e4 2913}
376e2424 2914NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2915EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2916
2917#ifdef CONFIG_CONTEXT_TRACKING
2918/**
2919 * preempt_schedule_context - preempt_schedule called by tracing
2920 *
2921 * The tracing infrastructure uses preempt_enable_notrace to prevent
2922 * recursion and tracing preempt enabling caused by the tracing
2923 * infrastructure itself. But as tracing can happen in areas coming
2924 * from userspace or just about to enter userspace, a preempt enable
2925 * can occur before user_exit() is called. This will cause the scheduler
2926 * to be called when the system is still in usermode.
2927 *
2928 * To prevent this, the preempt_enable_notrace will use this function
2929 * instead of preempt_schedule() to exit user context if needed before
2930 * calling the scheduler.
2931 */
2932asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2933{
2934 enum ctx_state prev_ctx;
2935
2936 if (likely(!preemptible()))
2937 return;
2938
2939 do {
2940 __preempt_count_add(PREEMPT_ACTIVE);
2941 /*
2942 * Needs preempt disabled in case user_exit() is traced
2943 * and the tracer calls preempt_enable_notrace() causing
2944 * an infinite recursion.
2945 */
2946 prev_ctx = exception_enter();
2947 __schedule();
2948 exception_exit(prev_ctx);
2949
2950 __preempt_count_sub(PREEMPT_ACTIVE);
2951 barrier();
2952 } while (need_resched());
2953}
2954EXPORT_SYMBOL_GPL(preempt_schedule_context);
2955#endif /* CONFIG_CONTEXT_TRACKING */
2956
32e475d7 2957#endif /* CONFIG_PREEMPT */
1da177e4
LT
2958
2959/*
2ed6e34f 2960 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2961 * off of irq context.
2962 * Note, that this is called and return with irqs disabled. This will
2963 * protect us against recursive calling from irq.
2964 */
722a9f92 2965asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2966{
b22366cd 2967 enum ctx_state prev_state;
6478d880 2968
2ed6e34f 2969 /* Catch callers which need to be fixed */
f27dde8d 2970 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2971
b22366cd
FW
2972 prev_state = exception_enter();
2973
3a5c359a 2974 do {
bdb43806 2975 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2976 local_irq_enable();
c259e01a 2977 __schedule();
3a5c359a 2978 local_irq_disable();
bdb43806 2979 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2980
3a5c359a
AK
2981 /*
2982 * Check again in case we missed a preemption opportunity
2983 * between schedule and now.
2984 */
2985 barrier();
5ed0cec0 2986 } while (need_resched());
b22366cd
FW
2987
2988 exception_exit(prev_state);
1da177e4
LT
2989}
2990
63859d4f 2991int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2992 void *key)
1da177e4 2993{
63859d4f 2994 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2995}
1da177e4
LT
2996EXPORT_SYMBOL(default_wake_function);
2997
b29739f9
IM
2998#ifdef CONFIG_RT_MUTEXES
2999
3000/*
3001 * rt_mutex_setprio - set the current priority of a task
3002 * @p: task
3003 * @prio: prio value (kernel-internal form)
3004 *
3005 * This function changes the 'effective' priority of a task. It does
3006 * not touch ->normal_prio like __setscheduler().
3007 *
c365c292
TG
3008 * Used by the rt_mutex code to implement priority inheritance
3009 * logic. Call site only calls if the priority of the task changed.
b29739f9 3010 */
36c8b586 3011void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3012{
da0c1e65 3013 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3014 struct rq *rq;
83ab0aa0 3015 const struct sched_class *prev_class;
b29739f9 3016
aab03e05 3017 BUG_ON(prio > MAX_PRIO);
b29739f9 3018
0122ec5b 3019 rq = __task_rq_lock(p);
b29739f9 3020
1c4dd99b
TG
3021 /*
3022 * Idle task boosting is a nono in general. There is one
3023 * exception, when PREEMPT_RT and NOHZ is active:
3024 *
3025 * The idle task calls get_next_timer_interrupt() and holds
3026 * the timer wheel base->lock on the CPU and another CPU wants
3027 * to access the timer (probably to cancel it). We can safely
3028 * ignore the boosting request, as the idle CPU runs this code
3029 * with interrupts disabled and will complete the lock
3030 * protected section without being interrupted. So there is no
3031 * real need to boost.
3032 */
3033 if (unlikely(p == rq->idle)) {
3034 WARN_ON(p != rq->curr);
3035 WARN_ON(p->pi_blocked_on);
3036 goto out_unlock;
3037 }
3038
a8027073 3039 trace_sched_pi_setprio(p, prio);
d5f9f942 3040 oldprio = p->prio;
83ab0aa0 3041 prev_class = p->sched_class;
da0c1e65 3042 queued = task_on_rq_queued(p);
051a1d1a 3043 running = task_current(rq, p);
da0c1e65 3044 if (queued)
69be72c1 3045 dequeue_task(rq, p, 0);
0e1f3483 3046 if (running)
f3cd1c4e 3047 put_prev_task(rq, p);
dd41f596 3048
2d3d891d
DF
3049 /*
3050 * Boosting condition are:
3051 * 1. -rt task is running and holds mutex A
3052 * --> -dl task blocks on mutex A
3053 *
3054 * 2. -dl task is running and holds mutex A
3055 * --> -dl task blocks on mutex A and could preempt the
3056 * running task
3057 */
3058 if (dl_prio(prio)) {
466af29b
ON
3059 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3060 if (!dl_prio(p->normal_prio) ||
3061 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3062 p->dl.dl_boosted = 1;
3063 p->dl.dl_throttled = 0;
3064 enqueue_flag = ENQUEUE_REPLENISH;
3065 } else
3066 p->dl.dl_boosted = 0;
aab03e05 3067 p->sched_class = &dl_sched_class;
2d3d891d
DF
3068 } else if (rt_prio(prio)) {
3069 if (dl_prio(oldprio))
3070 p->dl.dl_boosted = 0;
3071 if (oldprio < prio)
3072 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3073 p->sched_class = &rt_sched_class;
2d3d891d
DF
3074 } else {
3075 if (dl_prio(oldprio))
3076 p->dl.dl_boosted = 0;
dd41f596 3077 p->sched_class = &fair_sched_class;
2d3d891d 3078 }
dd41f596 3079
b29739f9
IM
3080 p->prio = prio;
3081
0e1f3483
HS
3082 if (running)
3083 p->sched_class->set_curr_task(rq);
da0c1e65 3084 if (queued)
2d3d891d 3085 enqueue_task(rq, p, enqueue_flag);
cb469845 3086
da7a735e 3087 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3088out_unlock:
0122ec5b 3089 __task_rq_unlock(rq);
b29739f9 3090}
b29739f9 3091#endif
d50dde5a 3092
36c8b586 3093void set_user_nice(struct task_struct *p, long nice)
1da177e4 3094{
da0c1e65 3095 int old_prio, delta, queued;
1da177e4 3096 unsigned long flags;
70b97a7f 3097 struct rq *rq;
1da177e4 3098
75e45d51 3099 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3100 return;
3101 /*
3102 * We have to be careful, if called from sys_setpriority(),
3103 * the task might be in the middle of scheduling on another CPU.
3104 */
3105 rq = task_rq_lock(p, &flags);
3106 /*
3107 * The RT priorities are set via sched_setscheduler(), but we still
3108 * allow the 'normal' nice value to be set - but as expected
3109 * it wont have any effect on scheduling until the task is
aab03e05 3110 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3111 */
aab03e05 3112 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3113 p->static_prio = NICE_TO_PRIO(nice);
3114 goto out_unlock;
3115 }
da0c1e65
KT
3116 queued = task_on_rq_queued(p);
3117 if (queued)
69be72c1 3118 dequeue_task(rq, p, 0);
1da177e4 3119
1da177e4 3120 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3121 set_load_weight(p);
b29739f9
IM
3122 old_prio = p->prio;
3123 p->prio = effective_prio(p);
3124 delta = p->prio - old_prio;
1da177e4 3125
da0c1e65 3126 if (queued) {
371fd7e7 3127 enqueue_task(rq, p, 0);
1da177e4 3128 /*
d5f9f942
AM
3129 * If the task increased its priority or is running and
3130 * lowered its priority, then reschedule its CPU:
1da177e4 3131 */
d5f9f942 3132 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3133 resched_curr(rq);
1da177e4
LT
3134 }
3135out_unlock:
0122ec5b 3136 task_rq_unlock(rq, p, &flags);
1da177e4 3137}
1da177e4
LT
3138EXPORT_SYMBOL(set_user_nice);
3139
e43379f1
MM
3140/*
3141 * can_nice - check if a task can reduce its nice value
3142 * @p: task
3143 * @nice: nice value
3144 */
36c8b586 3145int can_nice(const struct task_struct *p, const int nice)
e43379f1 3146{
024f4747 3147 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3148 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3149
78d7d407 3150 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3151 capable(CAP_SYS_NICE));
3152}
3153
1da177e4
LT
3154#ifdef __ARCH_WANT_SYS_NICE
3155
3156/*
3157 * sys_nice - change the priority of the current process.
3158 * @increment: priority increment
3159 *
3160 * sys_setpriority is a more generic, but much slower function that
3161 * does similar things.
3162 */
5add95d4 3163SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3164{
48f24c4d 3165 long nice, retval;
1da177e4
LT
3166
3167 /*
3168 * Setpriority might change our priority at the same moment.
3169 * We don't have to worry. Conceptually one call occurs first
3170 * and we have a single winner.
3171 */
a9467fa3 3172 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3173 nice = task_nice(current) + increment;
1da177e4 3174
a9467fa3 3175 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3176 if (increment < 0 && !can_nice(current, nice))
3177 return -EPERM;
3178
1da177e4
LT
3179 retval = security_task_setnice(current, nice);
3180 if (retval)
3181 return retval;
3182
3183 set_user_nice(current, nice);
3184 return 0;
3185}
3186
3187#endif
3188
3189/**
3190 * task_prio - return the priority value of a given task.
3191 * @p: the task in question.
3192 *
e69f6186 3193 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3194 * RT tasks are offset by -200. Normal tasks are centered
3195 * around 0, value goes from -16 to +15.
3196 */
36c8b586 3197int task_prio(const struct task_struct *p)
1da177e4
LT
3198{
3199 return p->prio - MAX_RT_PRIO;
3200}
3201
1da177e4
LT
3202/**
3203 * idle_cpu - is a given cpu idle currently?
3204 * @cpu: the processor in question.
e69f6186
YB
3205 *
3206 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3207 */
3208int idle_cpu(int cpu)
3209{
908a3283
TG
3210 struct rq *rq = cpu_rq(cpu);
3211
3212 if (rq->curr != rq->idle)
3213 return 0;
3214
3215 if (rq->nr_running)
3216 return 0;
3217
3218#ifdef CONFIG_SMP
3219 if (!llist_empty(&rq->wake_list))
3220 return 0;
3221#endif
3222
3223 return 1;
1da177e4
LT
3224}
3225
1da177e4
LT
3226/**
3227 * idle_task - return the idle task for a given cpu.
3228 * @cpu: the processor in question.
e69f6186
YB
3229 *
3230 * Return: The idle task for the cpu @cpu.
1da177e4 3231 */
36c8b586 3232struct task_struct *idle_task(int cpu)
1da177e4
LT
3233{
3234 return cpu_rq(cpu)->idle;
3235}
3236
3237/**
3238 * find_process_by_pid - find a process with a matching PID value.
3239 * @pid: the pid in question.
e69f6186
YB
3240 *
3241 * The task of @pid, if found. %NULL otherwise.
1da177e4 3242 */
a9957449 3243static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3244{
228ebcbe 3245 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3246}
3247
aab03e05
DF
3248/*
3249 * This function initializes the sched_dl_entity of a newly becoming
3250 * SCHED_DEADLINE task.
3251 *
3252 * Only the static values are considered here, the actual runtime and the
3253 * absolute deadline will be properly calculated when the task is enqueued
3254 * for the first time with its new policy.
3255 */
3256static void
3257__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3258{
3259 struct sched_dl_entity *dl_se = &p->dl;
3260
3261 init_dl_task_timer(dl_se);
3262 dl_se->dl_runtime = attr->sched_runtime;
3263 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3264 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3265 dl_se->flags = attr->sched_flags;
332ac17e 3266 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3267 dl_se->dl_throttled = 0;
3268 dl_se->dl_new = 1;
5bfd126e 3269 dl_se->dl_yielded = 0;
aab03e05
DF
3270}
3271
c13db6b1
SR
3272/*
3273 * sched_setparam() passes in -1 for its policy, to let the functions
3274 * it calls know not to change it.
3275 */
3276#define SETPARAM_POLICY -1
3277
c365c292
TG
3278static void __setscheduler_params(struct task_struct *p,
3279 const struct sched_attr *attr)
1da177e4 3280{
d50dde5a
DF
3281 int policy = attr->sched_policy;
3282
c13db6b1 3283 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3284 policy = p->policy;
3285
1da177e4 3286 p->policy = policy;
d50dde5a 3287
aab03e05
DF
3288 if (dl_policy(policy))
3289 __setparam_dl(p, attr);
39fd8fd2 3290 else if (fair_policy(policy))
d50dde5a
DF
3291 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3292
39fd8fd2
PZ
3293 /*
3294 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3295 * !rt_policy. Always setting this ensures that things like
3296 * getparam()/getattr() don't report silly values for !rt tasks.
3297 */
3298 p->rt_priority = attr->sched_priority;
383afd09 3299 p->normal_prio = normal_prio(p);
c365c292
TG
3300 set_load_weight(p);
3301}
39fd8fd2 3302
c365c292
TG
3303/* Actually do priority change: must hold pi & rq lock. */
3304static void __setscheduler(struct rq *rq, struct task_struct *p,
3305 const struct sched_attr *attr)
3306{
3307 __setscheduler_params(p, attr);
d50dde5a 3308
383afd09
SR
3309 /*
3310 * If we get here, there was no pi waiters boosting the
3311 * task. It is safe to use the normal prio.
3312 */
3313 p->prio = normal_prio(p);
3314
aab03e05
DF
3315 if (dl_prio(p->prio))
3316 p->sched_class = &dl_sched_class;
3317 else if (rt_prio(p->prio))
ffd44db5
PZ
3318 p->sched_class = &rt_sched_class;
3319 else
3320 p->sched_class = &fair_sched_class;
1da177e4 3321}
aab03e05
DF
3322
3323static void
3324__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3325{
3326 struct sched_dl_entity *dl_se = &p->dl;
3327
3328 attr->sched_priority = p->rt_priority;
3329 attr->sched_runtime = dl_se->dl_runtime;
3330 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3331 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3332 attr->sched_flags = dl_se->flags;
3333}
3334
3335/*
3336 * This function validates the new parameters of a -deadline task.
3337 * We ask for the deadline not being zero, and greater or equal
755378a4 3338 * than the runtime, as well as the period of being zero or
332ac17e 3339 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3340 * user parameters are above the internal resolution of 1us (we
3341 * check sched_runtime only since it is always the smaller one) and
3342 * below 2^63 ns (we have to check both sched_deadline and
3343 * sched_period, as the latter can be zero).
aab03e05
DF
3344 */
3345static bool
3346__checkparam_dl(const struct sched_attr *attr)
3347{
b0827819
JL
3348 /* deadline != 0 */
3349 if (attr->sched_deadline == 0)
3350 return false;
3351
3352 /*
3353 * Since we truncate DL_SCALE bits, make sure we're at least
3354 * that big.
3355 */
3356 if (attr->sched_runtime < (1ULL << DL_SCALE))
3357 return false;
3358
3359 /*
3360 * Since we use the MSB for wrap-around and sign issues, make
3361 * sure it's not set (mind that period can be equal to zero).
3362 */
3363 if (attr->sched_deadline & (1ULL << 63) ||
3364 attr->sched_period & (1ULL << 63))
3365 return false;
3366
3367 /* runtime <= deadline <= period (if period != 0) */
3368 if ((attr->sched_period != 0 &&
3369 attr->sched_period < attr->sched_deadline) ||
3370 attr->sched_deadline < attr->sched_runtime)
3371 return false;
3372
3373 return true;
aab03e05
DF
3374}
3375
c69e8d9c
DH
3376/*
3377 * check the target process has a UID that matches the current process's
3378 */
3379static bool check_same_owner(struct task_struct *p)
3380{
3381 const struct cred *cred = current_cred(), *pcred;
3382 bool match;
3383
3384 rcu_read_lock();
3385 pcred = __task_cred(p);
9c806aa0
EB
3386 match = (uid_eq(cred->euid, pcred->euid) ||
3387 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3388 rcu_read_unlock();
3389 return match;
3390}
3391
d50dde5a
DF
3392static int __sched_setscheduler(struct task_struct *p,
3393 const struct sched_attr *attr,
3394 bool user)
1da177e4 3395{
383afd09
SR
3396 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3397 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3398 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3399 int policy = attr->sched_policy;
1da177e4 3400 unsigned long flags;
83ab0aa0 3401 const struct sched_class *prev_class;
70b97a7f 3402 struct rq *rq;
ca94c442 3403 int reset_on_fork;
1da177e4 3404
66e5393a
SR
3405 /* may grab non-irq protected spin_locks */
3406 BUG_ON(in_interrupt());
1da177e4
LT
3407recheck:
3408 /* double check policy once rq lock held */
ca94c442
LP
3409 if (policy < 0) {
3410 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3411 policy = oldpolicy = p->policy;
ca94c442 3412 } else {
7479f3c9 3413 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3414
aab03e05
DF
3415 if (policy != SCHED_DEADLINE &&
3416 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3417 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3418 policy != SCHED_IDLE)
3419 return -EINVAL;
3420 }
3421
7479f3c9
PZ
3422 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3423 return -EINVAL;
3424
1da177e4
LT
3425 /*
3426 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3427 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3428 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3429 */
0bb040a4 3430 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3431 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3432 return -EINVAL;
aab03e05
DF
3433 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3434 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3435 return -EINVAL;
3436
37e4ab3f
OC
3437 /*
3438 * Allow unprivileged RT tasks to decrease priority:
3439 */
961ccddd 3440 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3441 if (fair_policy(policy)) {
d0ea0268 3442 if (attr->sched_nice < task_nice(p) &&
eaad4513 3443 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3444 return -EPERM;
3445 }
3446
e05606d3 3447 if (rt_policy(policy)) {
a44702e8
ON
3448 unsigned long rlim_rtprio =
3449 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3450
3451 /* can't set/change the rt policy */
3452 if (policy != p->policy && !rlim_rtprio)
3453 return -EPERM;
3454
3455 /* can't increase priority */
d50dde5a
DF
3456 if (attr->sched_priority > p->rt_priority &&
3457 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3458 return -EPERM;
3459 }
c02aa73b 3460
d44753b8
JL
3461 /*
3462 * Can't set/change SCHED_DEADLINE policy at all for now
3463 * (safest behavior); in the future we would like to allow
3464 * unprivileged DL tasks to increase their relative deadline
3465 * or reduce their runtime (both ways reducing utilization)
3466 */
3467 if (dl_policy(policy))
3468 return -EPERM;
3469
dd41f596 3470 /*
c02aa73b
DH
3471 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3472 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3473 */
c02aa73b 3474 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3475 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3476 return -EPERM;
3477 }
5fe1d75f 3478
37e4ab3f 3479 /* can't change other user's priorities */
c69e8d9c 3480 if (!check_same_owner(p))
37e4ab3f 3481 return -EPERM;
ca94c442
LP
3482
3483 /* Normal users shall not reset the sched_reset_on_fork flag */
3484 if (p->sched_reset_on_fork && !reset_on_fork)
3485 return -EPERM;
37e4ab3f 3486 }
1da177e4 3487
725aad24 3488 if (user) {
b0ae1981 3489 retval = security_task_setscheduler(p);
725aad24
JF
3490 if (retval)
3491 return retval;
3492 }
3493
b29739f9
IM
3494 /*
3495 * make sure no PI-waiters arrive (or leave) while we are
3496 * changing the priority of the task:
0122ec5b 3497 *
25985edc 3498 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3499 * runqueue lock must be held.
3500 */
0122ec5b 3501 rq = task_rq_lock(p, &flags);
dc61b1d6 3502
34f971f6
PZ
3503 /*
3504 * Changing the policy of the stop threads its a very bad idea
3505 */
3506 if (p == rq->stop) {
0122ec5b 3507 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3508 return -EINVAL;
3509 }
3510
a51e9198 3511 /*
d6b1e911
TG
3512 * If not changing anything there's no need to proceed further,
3513 * but store a possible modification of reset_on_fork.
a51e9198 3514 */
d50dde5a 3515 if (unlikely(policy == p->policy)) {
d0ea0268 3516 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3517 goto change;
3518 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3519 goto change;
aab03e05
DF
3520 if (dl_policy(policy))
3521 goto change;
d50dde5a 3522
d6b1e911 3523 p->sched_reset_on_fork = reset_on_fork;
45afb173 3524 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3525 return 0;
3526 }
d50dde5a 3527change:
a51e9198 3528
dc61b1d6 3529 if (user) {
332ac17e 3530#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3531 /*
3532 * Do not allow realtime tasks into groups that have no runtime
3533 * assigned.
3534 */
3535 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3536 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3537 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3538 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3539 return -EPERM;
3540 }
dc61b1d6 3541#endif
332ac17e
DF
3542#ifdef CONFIG_SMP
3543 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3544 cpumask_t *span = rq->rd->span;
332ac17e
DF
3545
3546 /*
3547 * Don't allow tasks with an affinity mask smaller than
3548 * the entire root_domain to become SCHED_DEADLINE. We
3549 * will also fail if there's no bandwidth available.
3550 */
e4099a5e
PZ
3551 if (!cpumask_subset(span, &p->cpus_allowed) ||
3552 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3553 task_rq_unlock(rq, p, &flags);
3554 return -EPERM;
3555 }
3556 }
3557#endif
3558 }
dc61b1d6 3559
1da177e4
LT
3560 /* recheck policy now with rq lock held */
3561 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3562 policy = oldpolicy = -1;
0122ec5b 3563 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3564 goto recheck;
3565 }
332ac17e
DF
3566
3567 /*
3568 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3569 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3570 * is available.
3571 */
e4099a5e 3572 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3573 task_rq_unlock(rq, p, &flags);
3574 return -EBUSY;
3575 }
3576
c365c292
TG
3577 p->sched_reset_on_fork = reset_on_fork;
3578 oldprio = p->prio;
3579
3580 /*
3581 * Special case for priority boosted tasks.
3582 *
3583 * If the new priority is lower or equal (user space view)
3584 * than the current (boosted) priority, we just store the new
3585 * normal parameters and do not touch the scheduler class and
3586 * the runqueue. This will be done when the task deboost
3587 * itself.
3588 */
3589 if (rt_mutex_check_prio(p, newprio)) {
3590 __setscheduler_params(p, attr);
3591 task_rq_unlock(rq, p, &flags);
3592 return 0;
3593 }
3594
da0c1e65 3595 queued = task_on_rq_queued(p);
051a1d1a 3596 running = task_current(rq, p);
da0c1e65 3597 if (queued)
4ca9b72b 3598 dequeue_task(rq, p, 0);
0e1f3483 3599 if (running)
f3cd1c4e 3600 put_prev_task(rq, p);
f6b53205 3601
83ab0aa0 3602 prev_class = p->sched_class;
d50dde5a 3603 __setscheduler(rq, p, attr);
f6b53205 3604
0e1f3483
HS
3605 if (running)
3606 p->sched_class->set_curr_task(rq);
da0c1e65 3607 if (queued) {
81a44c54
TG
3608 /*
3609 * We enqueue to tail when the priority of a task is
3610 * increased (user space view).
3611 */
3612 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3613 }
cb469845 3614
da7a735e 3615 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3616 task_rq_unlock(rq, p, &flags);
b29739f9 3617
95e02ca9
TG
3618 rt_mutex_adjust_pi(p);
3619
1da177e4
LT
3620 return 0;
3621}
961ccddd 3622
7479f3c9
PZ
3623static int _sched_setscheduler(struct task_struct *p, int policy,
3624 const struct sched_param *param, bool check)
3625{
3626 struct sched_attr attr = {
3627 .sched_policy = policy,
3628 .sched_priority = param->sched_priority,
3629 .sched_nice = PRIO_TO_NICE(p->static_prio),
3630 };
3631
c13db6b1
SR
3632 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3633 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3634 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3635 policy &= ~SCHED_RESET_ON_FORK;
3636 attr.sched_policy = policy;
3637 }
3638
3639 return __sched_setscheduler(p, &attr, check);
3640}
961ccddd
RR
3641/**
3642 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3643 * @p: the task in question.
3644 * @policy: new policy.
3645 * @param: structure containing the new RT priority.
3646 *
e69f6186
YB
3647 * Return: 0 on success. An error code otherwise.
3648 *
961ccddd
RR
3649 * NOTE that the task may be already dead.
3650 */
3651int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3652 const struct sched_param *param)
961ccddd 3653{
7479f3c9 3654 return _sched_setscheduler(p, policy, param, true);
961ccddd 3655}
1da177e4
LT
3656EXPORT_SYMBOL_GPL(sched_setscheduler);
3657
d50dde5a
DF
3658int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3659{
3660 return __sched_setscheduler(p, attr, true);
3661}
3662EXPORT_SYMBOL_GPL(sched_setattr);
3663
961ccddd
RR
3664/**
3665 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3666 * @p: the task in question.
3667 * @policy: new policy.
3668 * @param: structure containing the new RT priority.
3669 *
3670 * Just like sched_setscheduler, only don't bother checking if the
3671 * current context has permission. For example, this is needed in
3672 * stop_machine(): we create temporary high priority worker threads,
3673 * but our caller might not have that capability.
e69f6186
YB
3674 *
3675 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3676 */
3677int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3678 const struct sched_param *param)
961ccddd 3679{
7479f3c9 3680 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3681}
3682
95cdf3b7
IM
3683static int
3684do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3685{
1da177e4
LT
3686 struct sched_param lparam;
3687 struct task_struct *p;
36c8b586 3688 int retval;
1da177e4
LT
3689
3690 if (!param || pid < 0)
3691 return -EINVAL;
3692 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3693 return -EFAULT;
5fe1d75f
ON
3694
3695 rcu_read_lock();
3696 retval = -ESRCH;
1da177e4 3697 p = find_process_by_pid(pid);
5fe1d75f
ON
3698 if (p != NULL)
3699 retval = sched_setscheduler(p, policy, &lparam);
3700 rcu_read_unlock();
36c8b586 3701
1da177e4
LT
3702 return retval;
3703}
3704
d50dde5a
DF
3705/*
3706 * Mimics kernel/events/core.c perf_copy_attr().
3707 */
3708static int sched_copy_attr(struct sched_attr __user *uattr,
3709 struct sched_attr *attr)
3710{
3711 u32 size;
3712 int ret;
3713
3714 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3715 return -EFAULT;
3716
3717 /*
3718 * zero the full structure, so that a short copy will be nice.
3719 */
3720 memset(attr, 0, sizeof(*attr));
3721
3722 ret = get_user(size, &uattr->size);
3723 if (ret)
3724 return ret;
3725
3726 if (size > PAGE_SIZE) /* silly large */
3727 goto err_size;
3728
3729 if (!size) /* abi compat */
3730 size = SCHED_ATTR_SIZE_VER0;
3731
3732 if (size < SCHED_ATTR_SIZE_VER0)
3733 goto err_size;
3734
3735 /*
3736 * If we're handed a bigger struct than we know of,
3737 * ensure all the unknown bits are 0 - i.e. new
3738 * user-space does not rely on any kernel feature
3739 * extensions we dont know about yet.
3740 */
3741 if (size > sizeof(*attr)) {
3742 unsigned char __user *addr;
3743 unsigned char __user *end;
3744 unsigned char val;
3745
3746 addr = (void __user *)uattr + sizeof(*attr);
3747 end = (void __user *)uattr + size;
3748
3749 for (; addr < end; addr++) {
3750 ret = get_user(val, addr);
3751 if (ret)
3752 return ret;
3753 if (val)
3754 goto err_size;
3755 }
3756 size = sizeof(*attr);
3757 }
3758
3759 ret = copy_from_user(attr, uattr, size);
3760 if (ret)
3761 return -EFAULT;
3762
3763 /*
3764 * XXX: do we want to be lenient like existing syscalls; or do we want
3765 * to be strict and return an error on out-of-bounds values?
3766 */
75e45d51 3767 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3768
e78c7bca 3769 return 0;
d50dde5a
DF
3770
3771err_size:
3772 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3773 return -E2BIG;
d50dde5a
DF
3774}
3775
1da177e4
LT
3776/**
3777 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3778 * @pid: the pid in question.
3779 * @policy: new policy.
3780 * @param: structure containing the new RT priority.
e69f6186
YB
3781 *
3782 * Return: 0 on success. An error code otherwise.
1da177e4 3783 */
5add95d4
HC
3784SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3785 struct sched_param __user *, param)
1da177e4 3786{
c21761f1
JB
3787 /* negative values for policy are not valid */
3788 if (policy < 0)
3789 return -EINVAL;
3790
1da177e4
LT
3791 return do_sched_setscheduler(pid, policy, param);
3792}
3793
3794/**
3795 * sys_sched_setparam - set/change the RT priority of a thread
3796 * @pid: the pid in question.
3797 * @param: structure containing the new RT priority.
e69f6186
YB
3798 *
3799 * Return: 0 on success. An error code otherwise.
1da177e4 3800 */
5add95d4 3801SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3802{
c13db6b1 3803 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3804}
3805
d50dde5a
DF
3806/**
3807 * sys_sched_setattr - same as above, but with extended sched_attr
3808 * @pid: the pid in question.
5778fccf 3809 * @uattr: structure containing the extended parameters.
db66d756 3810 * @flags: for future extension.
d50dde5a 3811 */
6d35ab48
PZ
3812SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3813 unsigned int, flags)
d50dde5a
DF
3814{
3815 struct sched_attr attr;
3816 struct task_struct *p;
3817 int retval;
3818
6d35ab48 3819 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3820 return -EINVAL;
3821
143cf23d
MK
3822 retval = sched_copy_attr(uattr, &attr);
3823 if (retval)
3824 return retval;
d50dde5a 3825
b14ed2c2 3826 if ((int)attr.sched_policy < 0)
dbdb2275 3827 return -EINVAL;
d50dde5a
DF
3828
3829 rcu_read_lock();
3830 retval = -ESRCH;
3831 p = find_process_by_pid(pid);
3832 if (p != NULL)
3833 retval = sched_setattr(p, &attr);
3834 rcu_read_unlock();
3835
3836 return retval;
3837}
3838
1da177e4
LT
3839/**
3840 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3841 * @pid: the pid in question.
e69f6186
YB
3842 *
3843 * Return: On success, the policy of the thread. Otherwise, a negative error
3844 * code.
1da177e4 3845 */
5add95d4 3846SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3847{
36c8b586 3848 struct task_struct *p;
3a5c359a 3849 int retval;
1da177e4
LT
3850
3851 if (pid < 0)
3a5c359a 3852 return -EINVAL;
1da177e4
LT
3853
3854 retval = -ESRCH;
5fe85be0 3855 rcu_read_lock();
1da177e4
LT
3856 p = find_process_by_pid(pid);
3857 if (p) {
3858 retval = security_task_getscheduler(p);
3859 if (!retval)
ca94c442
LP
3860 retval = p->policy
3861 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3862 }
5fe85be0 3863 rcu_read_unlock();
1da177e4
LT
3864 return retval;
3865}
3866
3867/**
ca94c442 3868 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3869 * @pid: the pid in question.
3870 * @param: structure containing the RT priority.
e69f6186
YB
3871 *
3872 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3873 * code.
1da177e4 3874 */
5add95d4 3875SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3876{
ce5f7f82 3877 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3878 struct task_struct *p;
3a5c359a 3879 int retval;
1da177e4
LT
3880
3881 if (!param || pid < 0)
3a5c359a 3882 return -EINVAL;
1da177e4 3883
5fe85be0 3884 rcu_read_lock();
1da177e4
LT
3885 p = find_process_by_pid(pid);
3886 retval = -ESRCH;
3887 if (!p)
3888 goto out_unlock;
3889
3890 retval = security_task_getscheduler(p);
3891 if (retval)
3892 goto out_unlock;
3893
ce5f7f82
PZ
3894 if (task_has_rt_policy(p))
3895 lp.sched_priority = p->rt_priority;
5fe85be0 3896 rcu_read_unlock();
1da177e4
LT
3897
3898 /*
3899 * This one might sleep, we cannot do it with a spinlock held ...
3900 */
3901 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3902
1da177e4
LT
3903 return retval;
3904
3905out_unlock:
5fe85be0 3906 rcu_read_unlock();
1da177e4
LT
3907 return retval;
3908}
3909
d50dde5a
DF
3910static int sched_read_attr(struct sched_attr __user *uattr,
3911 struct sched_attr *attr,
3912 unsigned int usize)
3913{
3914 int ret;
3915
3916 if (!access_ok(VERIFY_WRITE, uattr, usize))
3917 return -EFAULT;
3918
3919 /*
3920 * If we're handed a smaller struct than we know of,
3921 * ensure all the unknown bits are 0 - i.e. old
3922 * user-space does not get uncomplete information.
3923 */
3924 if (usize < sizeof(*attr)) {
3925 unsigned char *addr;
3926 unsigned char *end;
3927
3928 addr = (void *)attr + usize;
3929 end = (void *)attr + sizeof(*attr);
3930
3931 for (; addr < end; addr++) {
3932 if (*addr)
22400674 3933 return -EFBIG;
d50dde5a
DF
3934 }
3935
3936 attr->size = usize;
3937 }
3938
4efbc454 3939 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3940 if (ret)
3941 return -EFAULT;
3942
22400674 3943 return 0;
d50dde5a
DF
3944}
3945
3946/**
aab03e05 3947 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3948 * @pid: the pid in question.
5778fccf 3949 * @uattr: structure containing the extended parameters.
d50dde5a 3950 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3951 * @flags: for future extension.
d50dde5a 3952 */
6d35ab48
PZ
3953SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3954 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3955{
3956 struct sched_attr attr = {
3957 .size = sizeof(struct sched_attr),
3958 };
3959 struct task_struct *p;
3960 int retval;
3961
3962 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3963 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3964 return -EINVAL;
3965
3966 rcu_read_lock();
3967 p = find_process_by_pid(pid);
3968 retval = -ESRCH;
3969 if (!p)
3970 goto out_unlock;
3971
3972 retval = security_task_getscheduler(p);
3973 if (retval)
3974 goto out_unlock;
3975
3976 attr.sched_policy = p->policy;
7479f3c9
PZ
3977 if (p->sched_reset_on_fork)
3978 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3979 if (task_has_dl_policy(p))
3980 __getparam_dl(p, &attr);
3981 else if (task_has_rt_policy(p))
d50dde5a
DF
3982 attr.sched_priority = p->rt_priority;
3983 else
d0ea0268 3984 attr.sched_nice = task_nice(p);
d50dde5a
DF
3985
3986 rcu_read_unlock();
3987
3988 retval = sched_read_attr(uattr, &attr, size);
3989 return retval;
3990
3991out_unlock:
3992 rcu_read_unlock();
3993 return retval;
3994}
3995
96f874e2 3996long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3997{
5a16f3d3 3998 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3999 struct task_struct *p;
4000 int retval;
1da177e4 4001
23f5d142 4002 rcu_read_lock();
1da177e4
LT
4003
4004 p = find_process_by_pid(pid);
4005 if (!p) {
23f5d142 4006 rcu_read_unlock();
1da177e4
LT
4007 return -ESRCH;
4008 }
4009
23f5d142 4010 /* Prevent p going away */
1da177e4 4011 get_task_struct(p);
23f5d142 4012 rcu_read_unlock();
1da177e4 4013
14a40ffc
TH
4014 if (p->flags & PF_NO_SETAFFINITY) {
4015 retval = -EINVAL;
4016 goto out_put_task;
4017 }
5a16f3d3
RR
4018 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4019 retval = -ENOMEM;
4020 goto out_put_task;
4021 }
4022 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4023 retval = -ENOMEM;
4024 goto out_free_cpus_allowed;
4025 }
1da177e4 4026 retval = -EPERM;
4c44aaaf
EB
4027 if (!check_same_owner(p)) {
4028 rcu_read_lock();
4029 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4030 rcu_read_unlock();
16303ab2 4031 goto out_free_new_mask;
4c44aaaf
EB
4032 }
4033 rcu_read_unlock();
4034 }
1da177e4 4035
b0ae1981 4036 retval = security_task_setscheduler(p);
e7834f8f 4037 if (retval)
16303ab2 4038 goto out_free_new_mask;
e7834f8f 4039
e4099a5e
PZ
4040
4041 cpuset_cpus_allowed(p, cpus_allowed);
4042 cpumask_and(new_mask, in_mask, cpus_allowed);
4043
332ac17e
DF
4044 /*
4045 * Since bandwidth control happens on root_domain basis,
4046 * if admission test is enabled, we only admit -deadline
4047 * tasks allowed to run on all the CPUs in the task's
4048 * root_domain.
4049 */
4050#ifdef CONFIG_SMP
f1e3a093
KT
4051 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4052 rcu_read_lock();
4053 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4054 retval = -EBUSY;
f1e3a093 4055 rcu_read_unlock();
16303ab2 4056 goto out_free_new_mask;
332ac17e 4057 }
f1e3a093 4058 rcu_read_unlock();
332ac17e
DF
4059 }
4060#endif
49246274 4061again:
5a16f3d3 4062 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4063
8707d8b8 4064 if (!retval) {
5a16f3d3
RR
4065 cpuset_cpus_allowed(p, cpus_allowed);
4066 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4067 /*
4068 * We must have raced with a concurrent cpuset
4069 * update. Just reset the cpus_allowed to the
4070 * cpuset's cpus_allowed
4071 */
5a16f3d3 4072 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4073 goto again;
4074 }
4075 }
16303ab2 4076out_free_new_mask:
5a16f3d3
RR
4077 free_cpumask_var(new_mask);
4078out_free_cpus_allowed:
4079 free_cpumask_var(cpus_allowed);
4080out_put_task:
1da177e4 4081 put_task_struct(p);
1da177e4
LT
4082 return retval;
4083}
4084
4085static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4086 struct cpumask *new_mask)
1da177e4 4087{
96f874e2
RR
4088 if (len < cpumask_size())
4089 cpumask_clear(new_mask);
4090 else if (len > cpumask_size())
4091 len = cpumask_size();
4092
1da177e4
LT
4093 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4094}
4095
4096/**
4097 * sys_sched_setaffinity - set the cpu affinity of a process
4098 * @pid: pid of the process
4099 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4100 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4101 *
4102 * Return: 0 on success. An error code otherwise.
1da177e4 4103 */
5add95d4
HC
4104SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4105 unsigned long __user *, user_mask_ptr)
1da177e4 4106{
5a16f3d3 4107 cpumask_var_t new_mask;
1da177e4
LT
4108 int retval;
4109
5a16f3d3
RR
4110 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4111 return -ENOMEM;
1da177e4 4112
5a16f3d3
RR
4113 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4114 if (retval == 0)
4115 retval = sched_setaffinity(pid, new_mask);
4116 free_cpumask_var(new_mask);
4117 return retval;
1da177e4
LT
4118}
4119
96f874e2 4120long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4121{
36c8b586 4122 struct task_struct *p;
31605683 4123 unsigned long flags;
1da177e4 4124 int retval;
1da177e4 4125
23f5d142 4126 rcu_read_lock();
1da177e4
LT
4127
4128 retval = -ESRCH;
4129 p = find_process_by_pid(pid);
4130 if (!p)
4131 goto out_unlock;
4132
e7834f8f
DQ
4133 retval = security_task_getscheduler(p);
4134 if (retval)
4135 goto out_unlock;
4136
013fdb80 4137 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4138 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4139 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4140
4141out_unlock:
23f5d142 4142 rcu_read_unlock();
1da177e4 4143
9531b62f 4144 return retval;
1da177e4
LT
4145}
4146
4147/**
4148 * sys_sched_getaffinity - get the cpu affinity of a process
4149 * @pid: pid of the process
4150 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4151 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4152 *
4153 * Return: 0 on success. An error code otherwise.
1da177e4 4154 */
5add95d4
HC
4155SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4156 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4157{
4158 int ret;
f17c8607 4159 cpumask_var_t mask;
1da177e4 4160
84fba5ec 4161 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4162 return -EINVAL;
4163 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4164 return -EINVAL;
4165
f17c8607
RR
4166 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4167 return -ENOMEM;
1da177e4 4168
f17c8607
RR
4169 ret = sched_getaffinity(pid, mask);
4170 if (ret == 0) {
8bc037fb 4171 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4172
4173 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4174 ret = -EFAULT;
4175 else
cd3d8031 4176 ret = retlen;
f17c8607
RR
4177 }
4178 free_cpumask_var(mask);
1da177e4 4179
f17c8607 4180 return ret;
1da177e4
LT
4181}
4182
4183/**
4184 * sys_sched_yield - yield the current processor to other threads.
4185 *
dd41f596
IM
4186 * This function yields the current CPU to other tasks. If there are no
4187 * other threads running on this CPU then this function will return.
e69f6186
YB
4188 *
4189 * Return: 0.
1da177e4 4190 */
5add95d4 4191SYSCALL_DEFINE0(sched_yield)
1da177e4 4192{
70b97a7f 4193 struct rq *rq = this_rq_lock();
1da177e4 4194
2d72376b 4195 schedstat_inc(rq, yld_count);
4530d7ab 4196 current->sched_class->yield_task(rq);
1da177e4
LT
4197
4198 /*
4199 * Since we are going to call schedule() anyway, there's
4200 * no need to preempt or enable interrupts:
4201 */
4202 __release(rq->lock);
8a25d5de 4203 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4204 do_raw_spin_unlock(&rq->lock);
ba74c144 4205 sched_preempt_enable_no_resched();
1da177e4
LT
4206
4207 schedule();
4208
4209 return 0;
4210}
4211
e7b38404 4212static void __cond_resched(void)
1da177e4 4213{
bdb43806 4214 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4215 __schedule();
bdb43806 4216 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4217}
4218
02b67cc3 4219int __sched _cond_resched(void)
1da177e4 4220{
d86ee480 4221 if (should_resched()) {
1da177e4
LT
4222 __cond_resched();
4223 return 1;
4224 }
4225 return 0;
4226}
02b67cc3 4227EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4228
4229/*
613afbf8 4230 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4231 * call schedule, and on return reacquire the lock.
4232 *
41a2d6cf 4233 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4234 * operations here to prevent schedule() from being called twice (once via
4235 * spin_unlock(), once by hand).
4236 */
613afbf8 4237int __cond_resched_lock(spinlock_t *lock)
1da177e4 4238{
d86ee480 4239 int resched = should_resched();
6df3cecb
JK
4240 int ret = 0;
4241
f607c668
PZ
4242 lockdep_assert_held(lock);
4243
4a81e832 4244 if (spin_needbreak(lock) || resched) {
1da177e4 4245 spin_unlock(lock);
d86ee480 4246 if (resched)
95c354fe
NP
4247 __cond_resched();
4248 else
4249 cpu_relax();
6df3cecb 4250 ret = 1;
1da177e4 4251 spin_lock(lock);
1da177e4 4252 }
6df3cecb 4253 return ret;
1da177e4 4254}
613afbf8 4255EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4256
613afbf8 4257int __sched __cond_resched_softirq(void)
1da177e4
LT
4258{
4259 BUG_ON(!in_softirq());
4260
d86ee480 4261 if (should_resched()) {
98d82567 4262 local_bh_enable();
1da177e4
LT
4263 __cond_resched();
4264 local_bh_disable();
4265 return 1;
4266 }
4267 return 0;
4268}
613afbf8 4269EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4270
1da177e4
LT
4271/**
4272 * yield - yield the current processor to other threads.
4273 *
8e3fabfd
PZ
4274 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4275 *
4276 * The scheduler is at all times free to pick the calling task as the most
4277 * eligible task to run, if removing the yield() call from your code breaks
4278 * it, its already broken.
4279 *
4280 * Typical broken usage is:
4281 *
4282 * while (!event)
4283 * yield();
4284 *
4285 * where one assumes that yield() will let 'the other' process run that will
4286 * make event true. If the current task is a SCHED_FIFO task that will never
4287 * happen. Never use yield() as a progress guarantee!!
4288 *
4289 * If you want to use yield() to wait for something, use wait_event().
4290 * If you want to use yield() to be 'nice' for others, use cond_resched().
4291 * If you still want to use yield(), do not!
1da177e4
LT
4292 */
4293void __sched yield(void)
4294{
4295 set_current_state(TASK_RUNNING);
4296 sys_sched_yield();
4297}
1da177e4
LT
4298EXPORT_SYMBOL(yield);
4299
d95f4122
MG
4300/**
4301 * yield_to - yield the current processor to another thread in
4302 * your thread group, or accelerate that thread toward the
4303 * processor it's on.
16addf95
RD
4304 * @p: target task
4305 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4306 *
4307 * It's the caller's job to ensure that the target task struct
4308 * can't go away on us before we can do any checks.
4309 *
e69f6186 4310 * Return:
7b270f60
PZ
4311 * true (>0) if we indeed boosted the target task.
4312 * false (0) if we failed to boost the target.
4313 * -ESRCH if there's no task to yield to.
d95f4122 4314 */
fa93384f 4315int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4316{
4317 struct task_struct *curr = current;
4318 struct rq *rq, *p_rq;
4319 unsigned long flags;
c3c18640 4320 int yielded = 0;
d95f4122
MG
4321
4322 local_irq_save(flags);
4323 rq = this_rq();
4324
4325again:
4326 p_rq = task_rq(p);
7b270f60
PZ
4327 /*
4328 * If we're the only runnable task on the rq and target rq also
4329 * has only one task, there's absolutely no point in yielding.
4330 */
4331 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4332 yielded = -ESRCH;
4333 goto out_irq;
4334 }
4335
d95f4122 4336 double_rq_lock(rq, p_rq);
39e24d8f 4337 if (task_rq(p) != p_rq) {
d95f4122
MG
4338 double_rq_unlock(rq, p_rq);
4339 goto again;
4340 }
4341
4342 if (!curr->sched_class->yield_to_task)
7b270f60 4343 goto out_unlock;
d95f4122
MG
4344
4345 if (curr->sched_class != p->sched_class)
7b270f60 4346 goto out_unlock;
d95f4122
MG
4347
4348 if (task_running(p_rq, p) || p->state)
7b270f60 4349 goto out_unlock;
d95f4122
MG
4350
4351 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4352 if (yielded) {
d95f4122 4353 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4354 /*
4355 * Make p's CPU reschedule; pick_next_entity takes care of
4356 * fairness.
4357 */
4358 if (preempt && rq != p_rq)
8875125e 4359 resched_curr(p_rq);
6d1cafd8 4360 }
d95f4122 4361
7b270f60 4362out_unlock:
d95f4122 4363 double_rq_unlock(rq, p_rq);
7b270f60 4364out_irq:
d95f4122
MG
4365 local_irq_restore(flags);
4366
7b270f60 4367 if (yielded > 0)
d95f4122
MG
4368 schedule();
4369
4370 return yielded;
4371}
4372EXPORT_SYMBOL_GPL(yield_to);
4373
1da177e4 4374/*
41a2d6cf 4375 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4376 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4377 */
4378void __sched io_schedule(void)
4379{
54d35f29 4380 struct rq *rq = raw_rq();
1da177e4 4381
0ff92245 4382 delayacct_blkio_start();
1da177e4 4383 atomic_inc(&rq->nr_iowait);
73c10101 4384 blk_flush_plug(current);
8f0dfc34 4385 current->in_iowait = 1;
1da177e4 4386 schedule();
8f0dfc34 4387 current->in_iowait = 0;
1da177e4 4388 atomic_dec(&rq->nr_iowait);
0ff92245 4389 delayacct_blkio_end();
1da177e4 4390}
1da177e4
LT
4391EXPORT_SYMBOL(io_schedule);
4392
4393long __sched io_schedule_timeout(long timeout)
4394{
54d35f29 4395 struct rq *rq = raw_rq();
1da177e4
LT
4396 long ret;
4397
0ff92245 4398 delayacct_blkio_start();
1da177e4 4399 atomic_inc(&rq->nr_iowait);
73c10101 4400 blk_flush_plug(current);
8f0dfc34 4401 current->in_iowait = 1;
1da177e4 4402 ret = schedule_timeout(timeout);
8f0dfc34 4403 current->in_iowait = 0;
1da177e4 4404 atomic_dec(&rq->nr_iowait);
0ff92245 4405 delayacct_blkio_end();
1da177e4
LT
4406 return ret;
4407}
4408
4409/**
4410 * sys_sched_get_priority_max - return maximum RT priority.
4411 * @policy: scheduling class.
4412 *
e69f6186
YB
4413 * Return: On success, this syscall returns the maximum
4414 * rt_priority that can be used by a given scheduling class.
4415 * On failure, a negative error code is returned.
1da177e4 4416 */
5add95d4 4417SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4418{
4419 int ret = -EINVAL;
4420
4421 switch (policy) {
4422 case SCHED_FIFO:
4423 case SCHED_RR:
4424 ret = MAX_USER_RT_PRIO-1;
4425 break;
aab03e05 4426 case SCHED_DEADLINE:
1da177e4 4427 case SCHED_NORMAL:
b0a9499c 4428 case SCHED_BATCH:
dd41f596 4429 case SCHED_IDLE:
1da177e4
LT
4430 ret = 0;
4431 break;
4432 }
4433 return ret;
4434}
4435
4436/**
4437 * sys_sched_get_priority_min - return minimum RT priority.
4438 * @policy: scheduling class.
4439 *
e69f6186
YB
4440 * Return: On success, this syscall returns the minimum
4441 * rt_priority that can be used by a given scheduling class.
4442 * On failure, a negative error code is returned.
1da177e4 4443 */
5add95d4 4444SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4445{
4446 int ret = -EINVAL;
4447
4448 switch (policy) {
4449 case SCHED_FIFO:
4450 case SCHED_RR:
4451 ret = 1;
4452 break;
aab03e05 4453 case SCHED_DEADLINE:
1da177e4 4454 case SCHED_NORMAL:
b0a9499c 4455 case SCHED_BATCH:
dd41f596 4456 case SCHED_IDLE:
1da177e4
LT
4457 ret = 0;
4458 }
4459 return ret;
4460}
4461
4462/**
4463 * sys_sched_rr_get_interval - return the default timeslice of a process.
4464 * @pid: pid of the process.
4465 * @interval: userspace pointer to the timeslice value.
4466 *
4467 * this syscall writes the default timeslice value of a given process
4468 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4469 *
4470 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4471 * an error code.
1da177e4 4472 */
17da2bd9 4473SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4474 struct timespec __user *, interval)
1da177e4 4475{
36c8b586 4476 struct task_struct *p;
a4ec24b4 4477 unsigned int time_slice;
dba091b9
TG
4478 unsigned long flags;
4479 struct rq *rq;
3a5c359a 4480 int retval;
1da177e4 4481 struct timespec t;
1da177e4
LT
4482
4483 if (pid < 0)
3a5c359a 4484 return -EINVAL;
1da177e4
LT
4485
4486 retval = -ESRCH;
1a551ae7 4487 rcu_read_lock();
1da177e4
LT
4488 p = find_process_by_pid(pid);
4489 if (!p)
4490 goto out_unlock;
4491
4492 retval = security_task_getscheduler(p);
4493 if (retval)
4494 goto out_unlock;
4495
dba091b9 4496 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4497 time_slice = 0;
4498 if (p->sched_class->get_rr_interval)
4499 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4500 task_rq_unlock(rq, p, &flags);
a4ec24b4 4501
1a551ae7 4502 rcu_read_unlock();
a4ec24b4 4503 jiffies_to_timespec(time_slice, &t);
1da177e4 4504 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4505 return retval;
3a5c359a 4506
1da177e4 4507out_unlock:
1a551ae7 4508 rcu_read_unlock();
1da177e4
LT
4509 return retval;
4510}
4511
7c731e0a 4512static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4513
82a1fcb9 4514void sched_show_task(struct task_struct *p)
1da177e4 4515{
1da177e4 4516 unsigned long free = 0;
4e79752c 4517 int ppid;
1f8a7633 4518 unsigned long state = p->state;
1da177e4 4519
1f8a7633
TH
4520 if (state)
4521 state = __ffs(state) + 1;
28d0686c 4522 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4523 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4524#if BITS_PER_LONG == 32
1da177e4 4525 if (state == TASK_RUNNING)
3df0fc5b 4526 printk(KERN_CONT " running ");
1da177e4 4527 else
3df0fc5b 4528 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4529#else
4530 if (state == TASK_RUNNING)
3df0fc5b 4531 printk(KERN_CONT " running task ");
1da177e4 4532 else
3df0fc5b 4533 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4534#endif
4535#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4536 free = stack_not_used(p);
1da177e4 4537#endif
a90e984c 4538 ppid = 0;
4e79752c 4539 rcu_read_lock();
a90e984c
ON
4540 if (pid_alive(p))
4541 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4542 rcu_read_unlock();
3df0fc5b 4543 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4544 task_pid_nr(p), ppid,
aa47b7e0 4545 (unsigned long)task_thread_info(p)->flags);
1da177e4 4546
3d1cb205 4547 print_worker_info(KERN_INFO, p);
5fb5e6de 4548 show_stack(p, NULL);
1da177e4
LT
4549}
4550
e59e2ae2 4551void show_state_filter(unsigned long state_filter)
1da177e4 4552{
36c8b586 4553 struct task_struct *g, *p;
1da177e4 4554
4bd77321 4555#if BITS_PER_LONG == 32
3df0fc5b
PZ
4556 printk(KERN_INFO
4557 " task PC stack pid father\n");
1da177e4 4558#else
3df0fc5b
PZ
4559 printk(KERN_INFO
4560 " task PC stack pid father\n");
1da177e4 4561#endif
510f5acc 4562 rcu_read_lock();
5d07f420 4563 for_each_process_thread(g, p) {
1da177e4
LT
4564 /*
4565 * reset the NMI-timeout, listing all files on a slow
25985edc 4566 * console might take a lot of time:
1da177e4
LT
4567 */
4568 touch_nmi_watchdog();
39bc89fd 4569 if (!state_filter || (p->state & state_filter))
82a1fcb9 4570 sched_show_task(p);
5d07f420 4571 }
1da177e4 4572
04c9167f
JF
4573 touch_all_softlockup_watchdogs();
4574
dd41f596
IM
4575#ifdef CONFIG_SCHED_DEBUG
4576 sysrq_sched_debug_show();
4577#endif
510f5acc 4578 rcu_read_unlock();
e59e2ae2
IM
4579 /*
4580 * Only show locks if all tasks are dumped:
4581 */
93335a21 4582 if (!state_filter)
e59e2ae2 4583 debug_show_all_locks();
1da177e4
LT
4584}
4585
0db0628d 4586void init_idle_bootup_task(struct task_struct *idle)
1df21055 4587{
dd41f596 4588 idle->sched_class = &idle_sched_class;
1df21055
IM
4589}
4590
f340c0d1
IM
4591/**
4592 * init_idle - set up an idle thread for a given CPU
4593 * @idle: task in question
4594 * @cpu: cpu the idle task belongs to
4595 *
4596 * NOTE: this function does not set the idle thread's NEED_RESCHED
4597 * flag, to make booting more robust.
4598 */
0db0628d 4599void init_idle(struct task_struct *idle, int cpu)
1da177e4 4600{
70b97a7f 4601 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4602 unsigned long flags;
4603
05fa785c 4604 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4605
5e1576ed 4606 __sched_fork(0, idle);
06b83b5f 4607 idle->state = TASK_RUNNING;
dd41f596
IM
4608 idle->se.exec_start = sched_clock();
4609
1e1b6c51 4610 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4611 /*
4612 * We're having a chicken and egg problem, even though we are
4613 * holding rq->lock, the cpu isn't yet set to this cpu so the
4614 * lockdep check in task_group() will fail.
4615 *
4616 * Similar case to sched_fork(). / Alternatively we could
4617 * use task_rq_lock() here and obtain the other rq->lock.
4618 *
4619 * Silence PROVE_RCU
4620 */
4621 rcu_read_lock();
dd41f596 4622 __set_task_cpu(idle, cpu);
6506cf6c 4623 rcu_read_unlock();
1da177e4 4624
1da177e4 4625 rq->curr = rq->idle = idle;
da0c1e65 4626 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4627#if defined(CONFIG_SMP)
4628 idle->on_cpu = 1;
4866cde0 4629#endif
05fa785c 4630 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4631
4632 /* Set the preempt count _outside_ the spinlocks! */
01028747 4633 init_idle_preempt_count(idle, cpu);
55cd5340 4634
dd41f596
IM
4635 /*
4636 * The idle tasks have their own, simple scheduling class:
4637 */
4638 idle->sched_class = &idle_sched_class;
868baf07 4639 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4640 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4641#if defined(CONFIG_SMP)
4642 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4643#endif
19978ca6
IM
4644}
4645
f82f8042
JL
4646int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4647 const struct cpumask *trial)
4648{
4649 int ret = 1, trial_cpus;
4650 struct dl_bw *cur_dl_b;
4651 unsigned long flags;
4652
bb2bc55a
MG
4653 if (!cpumask_weight(cur))
4654 return ret;
4655
75e23e49 4656 rcu_read_lock_sched();
f82f8042
JL
4657 cur_dl_b = dl_bw_of(cpumask_any(cur));
4658 trial_cpus = cpumask_weight(trial);
4659
4660 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4661 if (cur_dl_b->bw != -1 &&
4662 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4663 ret = 0;
4664 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4665 rcu_read_unlock_sched();
f82f8042
JL
4666
4667 return ret;
4668}
4669
7f51412a
JL
4670int task_can_attach(struct task_struct *p,
4671 const struct cpumask *cs_cpus_allowed)
4672{
4673 int ret = 0;
4674
4675 /*
4676 * Kthreads which disallow setaffinity shouldn't be moved
4677 * to a new cpuset; we don't want to change their cpu
4678 * affinity and isolating such threads by their set of
4679 * allowed nodes is unnecessary. Thus, cpusets are not
4680 * applicable for such threads. This prevents checking for
4681 * success of set_cpus_allowed_ptr() on all attached tasks
4682 * before cpus_allowed may be changed.
4683 */
4684 if (p->flags & PF_NO_SETAFFINITY) {
4685 ret = -EINVAL;
4686 goto out;
4687 }
4688
4689#ifdef CONFIG_SMP
4690 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4691 cs_cpus_allowed)) {
4692 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4693 cs_cpus_allowed);
75e23e49 4694 struct dl_bw *dl_b;
7f51412a
JL
4695 bool overflow;
4696 int cpus;
4697 unsigned long flags;
4698
75e23e49
JL
4699 rcu_read_lock_sched();
4700 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4701 raw_spin_lock_irqsave(&dl_b->lock, flags);
4702 cpus = dl_bw_cpus(dest_cpu);
4703 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4704 if (overflow)
4705 ret = -EBUSY;
4706 else {
4707 /*
4708 * We reserve space for this task in the destination
4709 * root_domain, as we can't fail after this point.
4710 * We will free resources in the source root_domain
4711 * later on (see set_cpus_allowed_dl()).
4712 */
4713 __dl_add(dl_b, p->dl.dl_bw);
4714 }
4715 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4716 rcu_read_unlock_sched();
7f51412a
JL
4717
4718 }
4719#endif
4720out:
4721 return ret;
4722}
4723
1da177e4 4724#ifdef CONFIG_SMP
a15b12ac
KT
4725/*
4726 * move_queued_task - move a queued task to new rq.
4727 *
4728 * Returns (locked) new rq. Old rq's lock is released.
4729 */
4730static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4731{
4732 struct rq *rq = task_rq(p);
4733
4734 lockdep_assert_held(&rq->lock);
4735
4736 dequeue_task(rq, p, 0);
4737 p->on_rq = TASK_ON_RQ_MIGRATING;
4738 set_task_cpu(p, new_cpu);
4739 raw_spin_unlock(&rq->lock);
4740
4741 rq = cpu_rq(new_cpu);
4742
4743 raw_spin_lock(&rq->lock);
4744 BUG_ON(task_cpu(p) != new_cpu);
4745 p->on_rq = TASK_ON_RQ_QUEUED;
4746 enqueue_task(rq, p, 0);
4747 check_preempt_curr(rq, p, 0);
4748
4749 return rq;
4750}
4751
1e1b6c51
KM
4752void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4753{
1b537c7d 4754 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4755 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4756
4757 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4758 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4759}
4760
1da177e4
LT
4761/*
4762 * This is how migration works:
4763 *
969c7921
TH
4764 * 1) we invoke migration_cpu_stop() on the target CPU using
4765 * stop_one_cpu().
4766 * 2) stopper starts to run (implicitly forcing the migrated thread
4767 * off the CPU)
4768 * 3) it checks whether the migrated task is still in the wrong runqueue.
4769 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4770 * it and puts it into the right queue.
969c7921
TH
4771 * 5) stopper completes and stop_one_cpu() returns and the migration
4772 * is done.
1da177e4
LT
4773 */
4774
4775/*
4776 * Change a given task's CPU affinity. Migrate the thread to a
4777 * proper CPU and schedule it away if the CPU it's executing on
4778 * is removed from the allowed bitmask.
4779 *
4780 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4781 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4782 * call is not atomic; no spinlocks may be held.
4783 */
96f874e2 4784int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4785{
4786 unsigned long flags;
70b97a7f 4787 struct rq *rq;
969c7921 4788 unsigned int dest_cpu;
48f24c4d 4789 int ret = 0;
1da177e4
LT
4790
4791 rq = task_rq_lock(p, &flags);
e2912009 4792
db44fc01
YZ
4793 if (cpumask_equal(&p->cpus_allowed, new_mask))
4794 goto out;
4795
6ad4c188 4796 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4797 ret = -EINVAL;
4798 goto out;
4799 }
4800
1e1b6c51 4801 do_set_cpus_allowed(p, new_mask);
73fe6aae 4802
1da177e4 4803 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4804 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4805 goto out;
4806
969c7921 4807 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4808 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4809 struct migration_arg arg = { p, dest_cpu };
1da177e4 4810 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4811 task_rq_unlock(rq, p, &flags);
969c7921 4812 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4813 tlb_migrate_finish(p->mm);
4814 return 0;
a15b12ac
KT
4815 } else if (task_on_rq_queued(p))
4816 rq = move_queued_task(p, dest_cpu);
1da177e4 4817out:
0122ec5b 4818 task_rq_unlock(rq, p, &flags);
48f24c4d 4819
1da177e4
LT
4820 return ret;
4821}
cd8ba7cd 4822EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4823
4824/*
41a2d6cf 4825 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4826 * this because either it can't run here any more (set_cpus_allowed()
4827 * away from this CPU, or CPU going down), or because we're
4828 * attempting to rebalance this task on exec (sched_exec).
4829 *
4830 * So we race with normal scheduler movements, but that's OK, as long
4831 * as the task is no longer on this CPU.
efc30814
KK
4832 *
4833 * Returns non-zero if task was successfully migrated.
1da177e4 4834 */
efc30814 4835static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4836{
a1e01829 4837 struct rq *rq;
e2912009 4838 int ret = 0;
1da177e4 4839
e761b772 4840 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4841 return ret;
1da177e4 4842
a1e01829 4843 rq = cpu_rq(src_cpu);
1da177e4 4844
0122ec5b 4845 raw_spin_lock(&p->pi_lock);
a1e01829 4846 raw_spin_lock(&rq->lock);
1da177e4
LT
4847 /* Already moved. */
4848 if (task_cpu(p) != src_cpu)
b1e38734 4849 goto done;
a1e01829 4850
1da177e4 4851 /* Affinity changed (again). */
fa17b507 4852 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4853 goto fail;
1da177e4 4854
e2912009
PZ
4855 /*
4856 * If we're not on a rq, the next wake-up will ensure we're
4857 * placed properly.
4858 */
a15b12ac
KT
4859 if (task_on_rq_queued(p))
4860 rq = move_queued_task(p, dest_cpu);
b1e38734 4861done:
efc30814 4862 ret = 1;
b1e38734 4863fail:
a1e01829 4864 raw_spin_unlock(&rq->lock);
0122ec5b 4865 raw_spin_unlock(&p->pi_lock);
efc30814 4866 return ret;
1da177e4
LT
4867}
4868
e6628d5b
MG
4869#ifdef CONFIG_NUMA_BALANCING
4870/* Migrate current task p to target_cpu */
4871int migrate_task_to(struct task_struct *p, int target_cpu)
4872{
4873 struct migration_arg arg = { p, target_cpu };
4874 int curr_cpu = task_cpu(p);
4875
4876 if (curr_cpu == target_cpu)
4877 return 0;
4878
4879 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4880 return -EINVAL;
4881
4882 /* TODO: This is not properly updating schedstats */
4883
286549dc 4884 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4885 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4886}
0ec8aa00
PZ
4887
4888/*
4889 * Requeue a task on a given node and accurately track the number of NUMA
4890 * tasks on the runqueues
4891 */
4892void sched_setnuma(struct task_struct *p, int nid)
4893{
4894 struct rq *rq;
4895 unsigned long flags;
da0c1e65 4896 bool queued, running;
0ec8aa00
PZ
4897
4898 rq = task_rq_lock(p, &flags);
da0c1e65 4899 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4900 running = task_current(rq, p);
4901
da0c1e65 4902 if (queued)
0ec8aa00
PZ
4903 dequeue_task(rq, p, 0);
4904 if (running)
f3cd1c4e 4905 put_prev_task(rq, p);
0ec8aa00
PZ
4906
4907 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4908
4909 if (running)
4910 p->sched_class->set_curr_task(rq);
da0c1e65 4911 if (queued)
0ec8aa00
PZ
4912 enqueue_task(rq, p, 0);
4913 task_rq_unlock(rq, p, &flags);
4914}
e6628d5b
MG
4915#endif
4916
1da177e4 4917/*
969c7921
TH
4918 * migration_cpu_stop - this will be executed by a highprio stopper thread
4919 * and performs thread migration by bumping thread off CPU then
4920 * 'pushing' onto another runqueue.
1da177e4 4921 */
969c7921 4922static int migration_cpu_stop(void *data)
1da177e4 4923{
969c7921 4924 struct migration_arg *arg = data;
f7b4cddc 4925
969c7921
TH
4926 /*
4927 * The original target cpu might have gone down and we might
4928 * be on another cpu but it doesn't matter.
4929 */
f7b4cddc 4930 local_irq_disable();
5cd038f5
LJ
4931 /*
4932 * We need to explicitly wake pending tasks before running
4933 * __migrate_task() such that we will not miss enforcing cpus_allowed
4934 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4935 */
4936 sched_ttwu_pending();
969c7921 4937 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4938 local_irq_enable();
1da177e4 4939 return 0;
f7b4cddc
ON
4940}
4941
1da177e4 4942#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4943
054b9108 4944/*
48c5ccae
PZ
4945 * Ensures that the idle task is using init_mm right before its cpu goes
4946 * offline.
054b9108 4947 */
48c5ccae 4948void idle_task_exit(void)
1da177e4 4949{
48c5ccae 4950 struct mm_struct *mm = current->active_mm;
e76bd8d9 4951
48c5ccae 4952 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4953
a53efe5f 4954 if (mm != &init_mm) {
48c5ccae 4955 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4956 finish_arch_post_lock_switch();
4957 }
48c5ccae 4958 mmdrop(mm);
1da177e4
LT
4959}
4960
4961/*
5d180232
PZ
4962 * Since this CPU is going 'away' for a while, fold any nr_active delta
4963 * we might have. Assumes we're called after migrate_tasks() so that the
4964 * nr_active count is stable.
4965 *
4966 * Also see the comment "Global load-average calculations".
1da177e4 4967 */
5d180232 4968static void calc_load_migrate(struct rq *rq)
1da177e4 4969{
5d180232
PZ
4970 long delta = calc_load_fold_active(rq);
4971 if (delta)
4972 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4973}
4974
3f1d2a31
PZ
4975static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4976{
4977}
4978
4979static const struct sched_class fake_sched_class = {
4980 .put_prev_task = put_prev_task_fake,
4981};
4982
4983static struct task_struct fake_task = {
4984 /*
4985 * Avoid pull_{rt,dl}_task()
4986 */
4987 .prio = MAX_PRIO + 1,
4988 .sched_class = &fake_sched_class,
4989};
4990
48f24c4d 4991/*
48c5ccae
PZ
4992 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4993 * try_to_wake_up()->select_task_rq().
4994 *
4995 * Called with rq->lock held even though we'er in stop_machine() and
4996 * there's no concurrency possible, we hold the required locks anyway
4997 * because of lock validation efforts.
1da177e4 4998 */
48c5ccae 4999static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5000{
70b97a7f 5001 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5002 struct task_struct *next, *stop = rq->stop;
5003 int dest_cpu;
1da177e4
LT
5004
5005 /*
48c5ccae
PZ
5006 * Fudge the rq selection such that the below task selection loop
5007 * doesn't get stuck on the currently eligible stop task.
5008 *
5009 * We're currently inside stop_machine() and the rq is either stuck
5010 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5011 * either way we should never end up calling schedule() until we're
5012 * done here.
1da177e4 5013 */
48c5ccae 5014 rq->stop = NULL;
48f24c4d 5015
77bd3970
FW
5016 /*
5017 * put_prev_task() and pick_next_task() sched
5018 * class method both need to have an up-to-date
5019 * value of rq->clock[_task]
5020 */
5021 update_rq_clock(rq);
5022
dd41f596 5023 for ( ; ; ) {
48c5ccae
PZ
5024 /*
5025 * There's this thread running, bail when that's the only
5026 * remaining thread.
5027 */
5028 if (rq->nr_running == 1)
dd41f596 5029 break;
48c5ccae 5030
3f1d2a31 5031 next = pick_next_task(rq, &fake_task);
48c5ccae 5032 BUG_ON(!next);
79c53799 5033 next->sched_class->put_prev_task(rq, next);
e692ab53 5034
48c5ccae
PZ
5035 /* Find suitable destination for @next, with force if needed. */
5036 dest_cpu = select_fallback_rq(dead_cpu, next);
5037 raw_spin_unlock(&rq->lock);
5038
5039 __migrate_task(next, dead_cpu, dest_cpu);
5040
5041 raw_spin_lock(&rq->lock);
1da177e4 5042 }
dce48a84 5043
48c5ccae 5044 rq->stop = stop;
dce48a84 5045}
48c5ccae 5046
1da177e4
LT
5047#endif /* CONFIG_HOTPLUG_CPU */
5048
e692ab53
NP
5049#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5050
5051static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5052 {
5053 .procname = "sched_domain",
c57baf1e 5054 .mode = 0555,
e0361851 5055 },
56992309 5056 {}
e692ab53
NP
5057};
5058
5059static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5060 {
5061 .procname = "kernel",
c57baf1e 5062 .mode = 0555,
e0361851
AD
5063 .child = sd_ctl_dir,
5064 },
56992309 5065 {}
e692ab53
NP
5066};
5067
5068static struct ctl_table *sd_alloc_ctl_entry(int n)
5069{
5070 struct ctl_table *entry =
5cf9f062 5071 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5072
e692ab53
NP
5073 return entry;
5074}
5075
6382bc90
MM
5076static void sd_free_ctl_entry(struct ctl_table **tablep)
5077{
cd790076 5078 struct ctl_table *entry;
6382bc90 5079
cd790076
MM
5080 /*
5081 * In the intermediate directories, both the child directory and
5082 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5083 * will always be set. In the lowest directory the names are
cd790076
MM
5084 * static strings and all have proc handlers.
5085 */
5086 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5087 if (entry->child)
5088 sd_free_ctl_entry(&entry->child);
cd790076
MM
5089 if (entry->proc_handler == NULL)
5090 kfree(entry->procname);
5091 }
6382bc90
MM
5092
5093 kfree(*tablep);
5094 *tablep = NULL;
5095}
5096
201c373e 5097static int min_load_idx = 0;
fd9b86d3 5098static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5099
e692ab53 5100static void
e0361851 5101set_table_entry(struct ctl_table *entry,
e692ab53 5102 const char *procname, void *data, int maxlen,
201c373e
NK
5103 umode_t mode, proc_handler *proc_handler,
5104 bool load_idx)
e692ab53 5105{
e692ab53
NP
5106 entry->procname = procname;
5107 entry->data = data;
5108 entry->maxlen = maxlen;
5109 entry->mode = mode;
5110 entry->proc_handler = proc_handler;
201c373e
NK
5111
5112 if (load_idx) {
5113 entry->extra1 = &min_load_idx;
5114 entry->extra2 = &max_load_idx;
5115 }
e692ab53
NP
5116}
5117
5118static struct ctl_table *
5119sd_alloc_ctl_domain_table(struct sched_domain *sd)
5120{
37e6bae8 5121 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5122
ad1cdc1d
MM
5123 if (table == NULL)
5124 return NULL;
5125
e0361851 5126 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5127 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5128 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5129 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5130 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5131 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5132 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5133 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5134 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5135 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5136 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5137 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5138 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5139 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5140 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5141 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5142 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5143 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5144 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5145 &sd->cache_nice_tries,
201c373e 5146 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5147 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5148 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5149 set_table_entry(&table[11], "max_newidle_lb_cost",
5150 &sd->max_newidle_lb_cost,
5151 sizeof(long), 0644, proc_doulongvec_minmax, false);
5152 set_table_entry(&table[12], "name", sd->name,
201c373e 5153 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5154 /* &table[13] is terminator */
e692ab53
NP
5155
5156 return table;
5157}
5158
be7002e6 5159static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5160{
5161 struct ctl_table *entry, *table;
5162 struct sched_domain *sd;
5163 int domain_num = 0, i;
5164 char buf[32];
5165
5166 for_each_domain(cpu, sd)
5167 domain_num++;
5168 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5169 if (table == NULL)
5170 return NULL;
e692ab53
NP
5171
5172 i = 0;
5173 for_each_domain(cpu, sd) {
5174 snprintf(buf, 32, "domain%d", i);
e692ab53 5175 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5176 entry->mode = 0555;
e692ab53
NP
5177 entry->child = sd_alloc_ctl_domain_table(sd);
5178 entry++;
5179 i++;
5180 }
5181 return table;
5182}
5183
5184static struct ctl_table_header *sd_sysctl_header;
6382bc90 5185static void register_sched_domain_sysctl(void)
e692ab53 5186{
6ad4c188 5187 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5188 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5189 char buf[32];
5190
7378547f
MM
5191 WARN_ON(sd_ctl_dir[0].child);
5192 sd_ctl_dir[0].child = entry;
5193
ad1cdc1d
MM
5194 if (entry == NULL)
5195 return;
5196
6ad4c188 5197 for_each_possible_cpu(i) {
e692ab53 5198 snprintf(buf, 32, "cpu%d", i);
e692ab53 5199 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5200 entry->mode = 0555;
e692ab53 5201 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5202 entry++;
e692ab53 5203 }
7378547f
MM
5204
5205 WARN_ON(sd_sysctl_header);
e692ab53
NP
5206 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5207}
6382bc90 5208
7378547f 5209/* may be called multiple times per register */
6382bc90
MM
5210static void unregister_sched_domain_sysctl(void)
5211{
7378547f
MM
5212 if (sd_sysctl_header)
5213 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5214 sd_sysctl_header = NULL;
7378547f
MM
5215 if (sd_ctl_dir[0].child)
5216 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5217}
e692ab53 5218#else
6382bc90
MM
5219static void register_sched_domain_sysctl(void)
5220{
5221}
5222static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5223{
5224}
5225#endif
5226
1f11eb6a
GH
5227static void set_rq_online(struct rq *rq)
5228{
5229 if (!rq->online) {
5230 const struct sched_class *class;
5231
c6c4927b 5232 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5233 rq->online = 1;
5234
5235 for_each_class(class) {
5236 if (class->rq_online)
5237 class->rq_online(rq);
5238 }
5239 }
5240}
5241
5242static void set_rq_offline(struct rq *rq)
5243{
5244 if (rq->online) {
5245 const struct sched_class *class;
5246
5247 for_each_class(class) {
5248 if (class->rq_offline)
5249 class->rq_offline(rq);
5250 }
5251
c6c4927b 5252 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5253 rq->online = 0;
5254 }
5255}
5256
1da177e4
LT
5257/*
5258 * migration_call - callback that gets triggered when a CPU is added.
5259 * Here we can start up the necessary migration thread for the new CPU.
5260 */
0db0628d 5261static int
48f24c4d 5262migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5263{
48f24c4d 5264 int cpu = (long)hcpu;
1da177e4 5265 unsigned long flags;
969c7921 5266 struct rq *rq = cpu_rq(cpu);
1da177e4 5267
48c5ccae 5268 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5269
1da177e4 5270 case CPU_UP_PREPARE:
a468d389 5271 rq->calc_load_update = calc_load_update;
1da177e4 5272 break;
48f24c4d 5273
1da177e4 5274 case CPU_ONLINE:
1f94ef59 5275 /* Update our root-domain */
05fa785c 5276 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5277 if (rq->rd) {
c6c4927b 5278 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5279
5280 set_rq_online(rq);
1f94ef59 5281 }
05fa785c 5282 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5283 break;
48f24c4d 5284
1da177e4 5285#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5286 case CPU_DYING:
317f3941 5287 sched_ttwu_pending();
57d885fe 5288 /* Update our root-domain */
05fa785c 5289 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5290 if (rq->rd) {
c6c4927b 5291 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5292 set_rq_offline(rq);
57d885fe 5293 }
48c5ccae
PZ
5294 migrate_tasks(cpu);
5295 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5296 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5297 break;
48c5ccae 5298
5d180232 5299 case CPU_DEAD:
f319da0c 5300 calc_load_migrate(rq);
57d885fe 5301 break;
1da177e4
LT
5302#endif
5303 }
49c022e6
PZ
5304
5305 update_max_interval();
5306
1da177e4
LT
5307 return NOTIFY_OK;
5308}
5309
f38b0820
PM
5310/*
5311 * Register at high priority so that task migration (migrate_all_tasks)
5312 * happens before everything else. This has to be lower priority than
cdd6c482 5313 * the notifier in the perf_event subsystem, though.
1da177e4 5314 */
0db0628d 5315static struct notifier_block migration_notifier = {
1da177e4 5316 .notifier_call = migration_call,
50a323b7 5317 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5318};
5319
a803f026
CM
5320static void __cpuinit set_cpu_rq_start_time(void)
5321{
5322 int cpu = smp_processor_id();
5323 struct rq *rq = cpu_rq(cpu);
5324 rq->age_stamp = sched_clock_cpu(cpu);
5325}
5326
0db0628d 5327static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5328 unsigned long action, void *hcpu)
5329{
5330 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5331 case CPU_STARTING:
5332 set_cpu_rq_start_time();
5333 return NOTIFY_OK;
3a101d05
TH
5334 case CPU_DOWN_FAILED:
5335 set_cpu_active((long)hcpu, true);
5336 return NOTIFY_OK;
5337 default:
5338 return NOTIFY_DONE;
5339 }
5340}
5341
0db0628d 5342static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5343 unsigned long action, void *hcpu)
5344{
de212f18
PZ
5345 unsigned long flags;
5346 long cpu = (long)hcpu;
f10e00f4 5347 struct dl_bw *dl_b;
de212f18 5348
3a101d05
TH
5349 switch (action & ~CPU_TASKS_FROZEN) {
5350 case CPU_DOWN_PREPARE:
de212f18
PZ
5351 set_cpu_active(cpu, false);
5352
5353 /* explicitly allow suspend */
5354 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5355 bool overflow;
5356 int cpus;
5357
f10e00f4
KT
5358 rcu_read_lock_sched();
5359 dl_b = dl_bw_of(cpu);
5360
de212f18
PZ
5361 raw_spin_lock_irqsave(&dl_b->lock, flags);
5362 cpus = dl_bw_cpus(cpu);
5363 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5364 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5365
f10e00f4
KT
5366 rcu_read_unlock_sched();
5367
de212f18
PZ
5368 if (overflow)
5369 return notifier_from_errno(-EBUSY);
5370 }
3a101d05 5371 return NOTIFY_OK;
3a101d05 5372 }
de212f18
PZ
5373
5374 return NOTIFY_DONE;
3a101d05
TH
5375}
5376
7babe8db 5377static int __init migration_init(void)
1da177e4
LT
5378{
5379 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5380 int err;
48f24c4d 5381
3a101d05 5382 /* Initialize migration for the boot CPU */
07dccf33
AM
5383 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5384 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5385 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5386 register_cpu_notifier(&migration_notifier);
7babe8db 5387
3a101d05
TH
5388 /* Register cpu active notifiers */
5389 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5390 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5391
a004cd42 5392 return 0;
1da177e4 5393}
7babe8db 5394early_initcall(migration_init);
1da177e4
LT
5395#endif
5396
5397#ifdef CONFIG_SMP
476f3534 5398
4cb98839
PZ
5399static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5400
3e9830dc 5401#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5402
d039ac60 5403static __read_mostly int sched_debug_enabled;
f6630114 5404
d039ac60 5405static int __init sched_debug_setup(char *str)
f6630114 5406{
d039ac60 5407 sched_debug_enabled = 1;
f6630114
MT
5408
5409 return 0;
5410}
d039ac60
PZ
5411early_param("sched_debug", sched_debug_setup);
5412
5413static inline bool sched_debug(void)
5414{
5415 return sched_debug_enabled;
5416}
f6630114 5417
7c16ec58 5418static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5419 struct cpumask *groupmask)
1da177e4 5420{
4dcf6aff 5421 struct sched_group *group = sd->groups;
434d53b0 5422 char str[256];
1da177e4 5423
968ea6d8 5424 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5425 cpumask_clear(groupmask);
4dcf6aff
IM
5426
5427 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5428
5429 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5430 printk("does not load-balance\n");
4dcf6aff 5431 if (sd->parent)
3df0fc5b
PZ
5432 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5433 " has parent");
4dcf6aff 5434 return -1;
41c7ce9a
NP
5435 }
5436
3df0fc5b 5437 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5438
758b2cdc 5439 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5440 printk(KERN_ERR "ERROR: domain->span does not contain "
5441 "CPU%d\n", cpu);
4dcf6aff 5442 }
758b2cdc 5443 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5444 printk(KERN_ERR "ERROR: domain->groups does not contain"
5445 " CPU%d\n", cpu);
4dcf6aff 5446 }
1da177e4 5447
4dcf6aff 5448 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5449 do {
4dcf6aff 5450 if (!group) {
3df0fc5b
PZ
5451 printk("\n");
5452 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5453 break;
5454 }
5455
c3decf0d 5456 /*
63b2ca30
NP
5457 * Even though we initialize ->capacity to something semi-sane,
5458 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5459 * domain iteration is still funny without causing /0 traps.
5460 */
63b2ca30 5461 if (!group->sgc->capacity_orig) {
3df0fc5b 5462 printk(KERN_CONT "\n");
63b2ca30 5463 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5464 break;
5465 }
1da177e4 5466
758b2cdc 5467 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5468 printk(KERN_CONT "\n");
5469 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5470 break;
5471 }
1da177e4 5472
cb83b629
PZ
5473 if (!(sd->flags & SD_OVERLAP) &&
5474 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5475 printk(KERN_CONT "\n");
5476 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5477 break;
5478 }
1da177e4 5479
758b2cdc 5480 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5481
968ea6d8 5482 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5483
3df0fc5b 5484 printk(KERN_CONT " %s", str);
ca8ce3d0 5485 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5486 printk(KERN_CONT " (cpu_capacity = %d)",
5487 group->sgc->capacity);
381512cf 5488 }
1da177e4 5489
4dcf6aff
IM
5490 group = group->next;
5491 } while (group != sd->groups);
3df0fc5b 5492 printk(KERN_CONT "\n");
1da177e4 5493
758b2cdc 5494 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5495 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5496
758b2cdc
RR
5497 if (sd->parent &&
5498 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5499 printk(KERN_ERR "ERROR: parent span is not a superset "
5500 "of domain->span\n");
4dcf6aff
IM
5501 return 0;
5502}
1da177e4 5503
4dcf6aff
IM
5504static void sched_domain_debug(struct sched_domain *sd, int cpu)
5505{
5506 int level = 0;
1da177e4 5507
d039ac60 5508 if (!sched_debug_enabled)
f6630114
MT
5509 return;
5510
4dcf6aff
IM
5511 if (!sd) {
5512 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5513 return;
5514 }
1da177e4 5515
4dcf6aff
IM
5516 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5517
5518 for (;;) {
4cb98839 5519 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5520 break;
1da177e4
LT
5521 level++;
5522 sd = sd->parent;
33859f7f 5523 if (!sd)
4dcf6aff
IM
5524 break;
5525 }
1da177e4 5526}
6d6bc0ad 5527#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5528# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5529static inline bool sched_debug(void)
5530{
5531 return false;
5532}
6d6bc0ad 5533#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5534
1a20ff27 5535static int sd_degenerate(struct sched_domain *sd)
245af2c7 5536{
758b2cdc 5537 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5538 return 1;
5539
5540 /* Following flags need at least 2 groups */
5541 if (sd->flags & (SD_LOAD_BALANCE |
5542 SD_BALANCE_NEWIDLE |
5543 SD_BALANCE_FORK |
89c4710e 5544 SD_BALANCE_EXEC |
5d4dfddd 5545 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5546 SD_SHARE_PKG_RESOURCES |
5547 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5548 if (sd->groups != sd->groups->next)
5549 return 0;
5550 }
5551
5552 /* Following flags don't use groups */
c88d5910 5553 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5554 return 0;
5555
5556 return 1;
5557}
5558
48f24c4d
IM
5559static int
5560sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5561{
5562 unsigned long cflags = sd->flags, pflags = parent->flags;
5563
5564 if (sd_degenerate(parent))
5565 return 1;
5566
758b2cdc 5567 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5568 return 0;
5569
245af2c7
SS
5570 /* Flags needing groups don't count if only 1 group in parent */
5571 if (parent->groups == parent->groups->next) {
5572 pflags &= ~(SD_LOAD_BALANCE |
5573 SD_BALANCE_NEWIDLE |
5574 SD_BALANCE_FORK |
89c4710e 5575 SD_BALANCE_EXEC |
5d4dfddd 5576 SD_SHARE_CPUCAPACITY |
10866e62 5577 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5578 SD_PREFER_SIBLING |
5579 SD_SHARE_POWERDOMAIN);
5436499e
KC
5580 if (nr_node_ids == 1)
5581 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5582 }
5583 if (~cflags & pflags)
5584 return 0;
5585
5586 return 1;
5587}
5588
dce840a0 5589static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5590{
dce840a0 5591 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5592
68e74568 5593 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5594 cpudl_cleanup(&rd->cpudl);
1baca4ce 5595 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5596 free_cpumask_var(rd->rto_mask);
5597 free_cpumask_var(rd->online);
5598 free_cpumask_var(rd->span);
5599 kfree(rd);
5600}
5601
57d885fe
GH
5602static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5603{
a0490fa3 5604 struct root_domain *old_rd = NULL;
57d885fe 5605 unsigned long flags;
57d885fe 5606
05fa785c 5607 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5608
5609 if (rq->rd) {
a0490fa3 5610 old_rd = rq->rd;
57d885fe 5611
c6c4927b 5612 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5613 set_rq_offline(rq);
57d885fe 5614
c6c4927b 5615 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5616
a0490fa3 5617 /*
0515973f 5618 * If we dont want to free the old_rd yet then
a0490fa3
IM
5619 * set old_rd to NULL to skip the freeing later
5620 * in this function:
5621 */
5622 if (!atomic_dec_and_test(&old_rd->refcount))
5623 old_rd = NULL;
57d885fe
GH
5624 }
5625
5626 atomic_inc(&rd->refcount);
5627 rq->rd = rd;
5628
c6c4927b 5629 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5630 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5631 set_rq_online(rq);
57d885fe 5632
05fa785c 5633 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5634
5635 if (old_rd)
dce840a0 5636 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5637}
5638
68c38fc3 5639static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5640{
5641 memset(rd, 0, sizeof(*rd));
5642
68c38fc3 5643 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5644 goto out;
68c38fc3 5645 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5646 goto free_span;
1baca4ce 5647 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5648 goto free_online;
1baca4ce
JL
5649 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5650 goto free_dlo_mask;
6e0534f2 5651
332ac17e 5652 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5653 if (cpudl_init(&rd->cpudl) != 0)
5654 goto free_dlo_mask;
332ac17e 5655
68c38fc3 5656 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5657 goto free_rto_mask;
c6c4927b 5658 return 0;
6e0534f2 5659
68e74568
RR
5660free_rto_mask:
5661 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5662free_dlo_mask:
5663 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5664free_online:
5665 free_cpumask_var(rd->online);
5666free_span:
5667 free_cpumask_var(rd->span);
0c910d28 5668out:
c6c4927b 5669 return -ENOMEM;
57d885fe
GH
5670}
5671
029632fb
PZ
5672/*
5673 * By default the system creates a single root-domain with all cpus as
5674 * members (mimicking the global state we have today).
5675 */
5676struct root_domain def_root_domain;
5677
57d885fe
GH
5678static void init_defrootdomain(void)
5679{
68c38fc3 5680 init_rootdomain(&def_root_domain);
c6c4927b 5681
57d885fe
GH
5682 atomic_set(&def_root_domain.refcount, 1);
5683}
5684
dc938520 5685static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5686{
5687 struct root_domain *rd;
5688
5689 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5690 if (!rd)
5691 return NULL;
5692
68c38fc3 5693 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5694 kfree(rd);
5695 return NULL;
5696 }
57d885fe
GH
5697
5698 return rd;
5699}
5700
63b2ca30 5701static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5702{
5703 struct sched_group *tmp, *first;
5704
5705 if (!sg)
5706 return;
5707
5708 first = sg;
5709 do {
5710 tmp = sg->next;
5711
63b2ca30
NP
5712 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5713 kfree(sg->sgc);
e3589f6c
PZ
5714
5715 kfree(sg);
5716 sg = tmp;
5717 } while (sg != first);
5718}
5719
dce840a0
PZ
5720static void free_sched_domain(struct rcu_head *rcu)
5721{
5722 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5723
5724 /*
5725 * If its an overlapping domain it has private groups, iterate and
5726 * nuke them all.
5727 */
5728 if (sd->flags & SD_OVERLAP) {
5729 free_sched_groups(sd->groups, 1);
5730 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5731 kfree(sd->groups->sgc);
dce840a0 5732 kfree(sd->groups);
9c3f75cb 5733 }
dce840a0
PZ
5734 kfree(sd);
5735}
5736
5737static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5738{
5739 call_rcu(&sd->rcu, free_sched_domain);
5740}
5741
5742static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5743{
5744 for (; sd; sd = sd->parent)
5745 destroy_sched_domain(sd, cpu);
5746}
5747
518cd623
PZ
5748/*
5749 * Keep a special pointer to the highest sched_domain that has
5750 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5751 * allows us to avoid some pointer chasing select_idle_sibling().
5752 *
5753 * Also keep a unique ID per domain (we use the first cpu number in
5754 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5755 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5756 */
5757DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5758DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5759DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5760DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5761DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5762DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5763
5764static void update_top_cache_domain(int cpu)
5765{
5766 struct sched_domain *sd;
5d4cf996 5767 struct sched_domain *busy_sd = NULL;
518cd623 5768 int id = cpu;
7d9ffa89 5769 int size = 1;
518cd623
PZ
5770
5771 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5772 if (sd) {
518cd623 5773 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5774 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5775 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5776 }
5d4cf996 5777 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5778
5779 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5780 per_cpu(sd_llc_size, cpu) = size;
518cd623 5781 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5782
5783 sd = lowest_flag_domain(cpu, SD_NUMA);
5784 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5785
5786 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5787 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5788}
5789
1da177e4 5790/*
0eab9146 5791 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5792 * hold the hotplug lock.
5793 */
0eab9146
IM
5794static void
5795cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5796{
70b97a7f 5797 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5798 struct sched_domain *tmp;
5799
5800 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5801 for (tmp = sd; tmp; ) {
245af2c7
SS
5802 struct sched_domain *parent = tmp->parent;
5803 if (!parent)
5804 break;
f29c9b1c 5805
1a848870 5806 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5807 tmp->parent = parent->parent;
1a848870
SS
5808 if (parent->parent)
5809 parent->parent->child = tmp;
10866e62
PZ
5810 /*
5811 * Transfer SD_PREFER_SIBLING down in case of a
5812 * degenerate parent; the spans match for this
5813 * so the property transfers.
5814 */
5815 if (parent->flags & SD_PREFER_SIBLING)
5816 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5817 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5818 } else
5819 tmp = tmp->parent;
245af2c7
SS
5820 }
5821
1a848870 5822 if (sd && sd_degenerate(sd)) {
dce840a0 5823 tmp = sd;
245af2c7 5824 sd = sd->parent;
dce840a0 5825 destroy_sched_domain(tmp, cpu);
1a848870
SS
5826 if (sd)
5827 sd->child = NULL;
5828 }
1da177e4 5829
4cb98839 5830 sched_domain_debug(sd, cpu);
1da177e4 5831
57d885fe 5832 rq_attach_root(rq, rd);
dce840a0 5833 tmp = rq->sd;
674311d5 5834 rcu_assign_pointer(rq->sd, sd);
dce840a0 5835 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5836
5837 update_top_cache_domain(cpu);
1da177e4
LT
5838}
5839
5840/* cpus with isolated domains */
dcc30a35 5841static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5842
5843/* Setup the mask of cpus configured for isolated domains */
5844static int __init isolated_cpu_setup(char *str)
5845{
bdddd296 5846 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5847 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5848 return 1;
5849}
5850
8927f494 5851__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5852
49a02c51 5853struct s_data {
21d42ccf 5854 struct sched_domain ** __percpu sd;
49a02c51
AH
5855 struct root_domain *rd;
5856};
5857
2109b99e 5858enum s_alloc {
2109b99e 5859 sa_rootdomain,
21d42ccf 5860 sa_sd,
dce840a0 5861 sa_sd_storage,
2109b99e
AH
5862 sa_none,
5863};
5864
c1174876
PZ
5865/*
5866 * Build an iteration mask that can exclude certain CPUs from the upwards
5867 * domain traversal.
5868 *
5869 * Asymmetric node setups can result in situations where the domain tree is of
5870 * unequal depth, make sure to skip domains that already cover the entire
5871 * range.
5872 *
5873 * In that case build_sched_domains() will have terminated the iteration early
5874 * and our sibling sd spans will be empty. Domains should always include the
5875 * cpu they're built on, so check that.
5876 *
5877 */
5878static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5879{
5880 const struct cpumask *span = sched_domain_span(sd);
5881 struct sd_data *sdd = sd->private;
5882 struct sched_domain *sibling;
5883 int i;
5884
5885 for_each_cpu(i, span) {
5886 sibling = *per_cpu_ptr(sdd->sd, i);
5887 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5888 continue;
5889
5890 cpumask_set_cpu(i, sched_group_mask(sg));
5891 }
5892}
5893
5894/*
5895 * Return the canonical balance cpu for this group, this is the first cpu
5896 * of this group that's also in the iteration mask.
5897 */
5898int group_balance_cpu(struct sched_group *sg)
5899{
5900 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5901}
5902
e3589f6c
PZ
5903static int
5904build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5905{
5906 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5907 const struct cpumask *span = sched_domain_span(sd);
5908 struct cpumask *covered = sched_domains_tmpmask;
5909 struct sd_data *sdd = sd->private;
aaecac4a 5910 struct sched_domain *sibling;
e3589f6c
PZ
5911 int i;
5912
5913 cpumask_clear(covered);
5914
5915 for_each_cpu(i, span) {
5916 struct cpumask *sg_span;
5917
5918 if (cpumask_test_cpu(i, covered))
5919 continue;
5920
aaecac4a 5921 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5922
5923 /* See the comment near build_group_mask(). */
aaecac4a 5924 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5925 continue;
5926
e3589f6c 5927 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5928 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5929
5930 if (!sg)
5931 goto fail;
5932
5933 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5934 if (sibling->child)
5935 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5936 else
e3589f6c
PZ
5937 cpumask_set_cpu(i, sg_span);
5938
5939 cpumask_or(covered, covered, sg_span);
5940
63b2ca30
NP
5941 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5942 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5943 build_group_mask(sd, sg);
5944
c3decf0d 5945 /*
63b2ca30 5946 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5947 * domains and no possible iteration will get us here, we won't
5948 * die on a /0 trap.
5949 */
ca8ce3d0 5950 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5951 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5952
c1174876
PZ
5953 /*
5954 * Make sure the first group of this domain contains the
5955 * canonical balance cpu. Otherwise the sched_domain iteration
5956 * breaks. See update_sg_lb_stats().
5957 */
74a5ce20 5958 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5959 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5960 groups = sg;
5961
5962 if (!first)
5963 first = sg;
5964 if (last)
5965 last->next = sg;
5966 last = sg;
5967 last->next = first;
5968 }
5969 sd->groups = groups;
5970
5971 return 0;
5972
5973fail:
5974 free_sched_groups(first, 0);
5975
5976 return -ENOMEM;
5977}
5978
dce840a0 5979static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5980{
dce840a0
PZ
5981 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5982 struct sched_domain *child = sd->child;
1da177e4 5983
dce840a0
PZ
5984 if (child)
5985 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5986
9c3f75cb 5987 if (sg) {
dce840a0 5988 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5989 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5990 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5991 }
dce840a0
PZ
5992
5993 return cpu;
1e9f28fa 5994}
1e9f28fa 5995
01a08546 5996/*
dce840a0
PZ
5997 * build_sched_groups will build a circular linked list of the groups
5998 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5999 * and ->cpu_capacity to 0.
e3589f6c
PZ
6000 *
6001 * Assumes the sched_domain tree is fully constructed
01a08546 6002 */
e3589f6c
PZ
6003static int
6004build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6005{
dce840a0
PZ
6006 struct sched_group *first = NULL, *last = NULL;
6007 struct sd_data *sdd = sd->private;
6008 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6009 struct cpumask *covered;
dce840a0 6010 int i;
9c1cfda2 6011
e3589f6c
PZ
6012 get_group(cpu, sdd, &sd->groups);
6013 atomic_inc(&sd->groups->ref);
6014
0936629f 6015 if (cpu != cpumask_first(span))
e3589f6c
PZ
6016 return 0;
6017
f96225fd
PZ
6018 lockdep_assert_held(&sched_domains_mutex);
6019 covered = sched_domains_tmpmask;
6020
dce840a0 6021 cpumask_clear(covered);
6711cab4 6022
dce840a0
PZ
6023 for_each_cpu(i, span) {
6024 struct sched_group *sg;
cd08e923 6025 int group, j;
6711cab4 6026
dce840a0
PZ
6027 if (cpumask_test_cpu(i, covered))
6028 continue;
6711cab4 6029
cd08e923 6030 group = get_group(i, sdd, &sg);
c1174876 6031 cpumask_setall(sched_group_mask(sg));
0601a88d 6032
dce840a0
PZ
6033 for_each_cpu(j, span) {
6034 if (get_group(j, sdd, NULL) != group)
6035 continue;
0601a88d 6036
dce840a0
PZ
6037 cpumask_set_cpu(j, covered);
6038 cpumask_set_cpu(j, sched_group_cpus(sg));
6039 }
0601a88d 6040
dce840a0
PZ
6041 if (!first)
6042 first = sg;
6043 if (last)
6044 last->next = sg;
6045 last = sg;
6046 }
6047 last->next = first;
e3589f6c
PZ
6048
6049 return 0;
0601a88d 6050}
51888ca2 6051
89c4710e 6052/*
63b2ca30 6053 * Initialize sched groups cpu_capacity.
89c4710e 6054 *
63b2ca30 6055 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6056 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6057 * Typically cpu_capacity for all the groups in a sched domain will be same
6058 * unless there are asymmetries in the topology. If there are asymmetries,
6059 * group having more cpu_capacity will pickup more load compared to the
6060 * group having less cpu_capacity.
89c4710e 6061 */
63b2ca30 6062static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6063{
e3589f6c 6064 struct sched_group *sg = sd->groups;
89c4710e 6065
94c95ba6 6066 WARN_ON(!sg);
e3589f6c
PZ
6067
6068 do {
6069 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6070 sg = sg->next;
6071 } while (sg != sd->groups);
89c4710e 6072
c1174876 6073 if (cpu != group_balance_cpu(sg))
e3589f6c 6074 return;
aae6d3dd 6075
63b2ca30
NP
6076 update_group_capacity(sd, cpu);
6077 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6078}
6079
7c16ec58
MT
6080/*
6081 * Initializers for schedule domains
6082 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6083 */
6084
1d3504fc 6085static int default_relax_domain_level = -1;
60495e77 6086int sched_domain_level_max;
1d3504fc
HS
6087
6088static int __init setup_relax_domain_level(char *str)
6089{
a841f8ce
DS
6090 if (kstrtoint(str, 0, &default_relax_domain_level))
6091 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6092
1d3504fc
HS
6093 return 1;
6094}
6095__setup("relax_domain_level=", setup_relax_domain_level);
6096
6097static void set_domain_attribute(struct sched_domain *sd,
6098 struct sched_domain_attr *attr)
6099{
6100 int request;
6101
6102 if (!attr || attr->relax_domain_level < 0) {
6103 if (default_relax_domain_level < 0)
6104 return;
6105 else
6106 request = default_relax_domain_level;
6107 } else
6108 request = attr->relax_domain_level;
6109 if (request < sd->level) {
6110 /* turn off idle balance on this domain */
c88d5910 6111 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6112 } else {
6113 /* turn on idle balance on this domain */
c88d5910 6114 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6115 }
6116}
6117
54ab4ff4
PZ
6118static void __sdt_free(const struct cpumask *cpu_map);
6119static int __sdt_alloc(const struct cpumask *cpu_map);
6120
2109b99e
AH
6121static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6122 const struct cpumask *cpu_map)
6123{
6124 switch (what) {
2109b99e 6125 case sa_rootdomain:
822ff793
PZ
6126 if (!atomic_read(&d->rd->refcount))
6127 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6128 case sa_sd:
6129 free_percpu(d->sd); /* fall through */
dce840a0 6130 case sa_sd_storage:
54ab4ff4 6131 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6132 case sa_none:
6133 break;
6134 }
6135}
3404c8d9 6136
2109b99e
AH
6137static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6138 const struct cpumask *cpu_map)
6139{
dce840a0
PZ
6140 memset(d, 0, sizeof(*d));
6141
54ab4ff4
PZ
6142 if (__sdt_alloc(cpu_map))
6143 return sa_sd_storage;
dce840a0
PZ
6144 d->sd = alloc_percpu(struct sched_domain *);
6145 if (!d->sd)
6146 return sa_sd_storage;
2109b99e 6147 d->rd = alloc_rootdomain();
dce840a0 6148 if (!d->rd)
21d42ccf 6149 return sa_sd;
2109b99e
AH
6150 return sa_rootdomain;
6151}
57d885fe 6152
dce840a0
PZ
6153/*
6154 * NULL the sd_data elements we've used to build the sched_domain and
6155 * sched_group structure so that the subsequent __free_domain_allocs()
6156 * will not free the data we're using.
6157 */
6158static void claim_allocations(int cpu, struct sched_domain *sd)
6159{
6160 struct sd_data *sdd = sd->private;
dce840a0
PZ
6161
6162 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6163 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6164
e3589f6c 6165 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6166 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6167
63b2ca30
NP
6168 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6169 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6170}
6171
cb83b629 6172#ifdef CONFIG_NUMA
cb83b629 6173static int sched_domains_numa_levels;
e3fe70b1 6174enum numa_topology_type sched_numa_topology_type;
cb83b629 6175static int *sched_domains_numa_distance;
9942f79b 6176int sched_max_numa_distance;
cb83b629
PZ
6177static struct cpumask ***sched_domains_numa_masks;
6178static int sched_domains_curr_level;
143e1e28 6179#endif
cb83b629 6180
143e1e28
VG
6181/*
6182 * SD_flags allowed in topology descriptions.
6183 *
5d4dfddd 6184 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6185 * SD_SHARE_PKG_RESOURCES - describes shared caches
6186 * SD_NUMA - describes NUMA topologies
d77b3ed5 6187 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6188 *
6189 * Odd one out:
6190 * SD_ASYM_PACKING - describes SMT quirks
6191 */
6192#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6193 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6194 SD_SHARE_PKG_RESOURCES | \
6195 SD_NUMA | \
d77b3ed5
VG
6196 SD_ASYM_PACKING | \
6197 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6198
6199static struct sched_domain *
143e1e28 6200sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6201{
6202 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6203 int sd_weight, sd_flags = 0;
6204
6205#ifdef CONFIG_NUMA
6206 /*
6207 * Ugly hack to pass state to sd_numa_mask()...
6208 */
6209 sched_domains_curr_level = tl->numa_level;
6210#endif
6211
6212 sd_weight = cpumask_weight(tl->mask(cpu));
6213
6214 if (tl->sd_flags)
6215 sd_flags = (*tl->sd_flags)();
6216 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6217 "wrong sd_flags in topology description\n"))
6218 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6219
6220 *sd = (struct sched_domain){
6221 .min_interval = sd_weight,
6222 .max_interval = 2*sd_weight,
6223 .busy_factor = 32,
870a0bb5 6224 .imbalance_pct = 125,
143e1e28
VG
6225
6226 .cache_nice_tries = 0,
6227 .busy_idx = 0,
6228 .idle_idx = 0,
cb83b629
PZ
6229 .newidle_idx = 0,
6230 .wake_idx = 0,
6231 .forkexec_idx = 0,
6232
6233 .flags = 1*SD_LOAD_BALANCE
6234 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6235 | 1*SD_BALANCE_EXEC
6236 | 1*SD_BALANCE_FORK
cb83b629 6237 | 0*SD_BALANCE_WAKE
143e1e28 6238 | 1*SD_WAKE_AFFINE
5d4dfddd 6239 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6240 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6241 | 0*SD_SERIALIZE
cb83b629 6242 | 0*SD_PREFER_SIBLING
143e1e28
VG
6243 | 0*SD_NUMA
6244 | sd_flags
cb83b629 6245 ,
143e1e28 6246
cb83b629
PZ
6247 .last_balance = jiffies,
6248 .balance_interval = sd_weight,
143e1e28 6249 .smt_gain = 0,
2b4cfe64
JL
6250 .max_newidle_lb_cost = 0,
6251 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6252#ifdef CONFIG_SCHED_DEBUG
6253 .name = tl->name,
6254#endif
cb83b629 6255 };
cb83b629
PZ
6256
6257 /*
143e1e28 6258 * Convert topological properties into behaviour.
cb83b629 6259 */
143e1e28 6260
5d4dfddd 6261 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6262 sd->imbalance_pct = 110;
6263 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6264
6265 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6266 sd->imbalance_pct = 117;
6267 sd->cache_nice_tries = 1;
6268 sd->busy_idx = 2;
6269
6270#ifdef CONFIG_NUMA
6271 } else if (sd->flags & SD_NUMA) {
6272 sd->cache_nice_tries = 2;
6273 sd->busy_idx = 3;
6274 sd->idle_idx = 2;
6275
6276 sd->flags |= SD_SERIALIZE;
6277 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6278 sd->flags &= ~(SD_BALANCE_EXEC |
6279 SD_BALANCE_FORK |
6280 SD_WAKE_AFFINE);
6281 }
6282
6283#endif
6284 } else {
6285 sd->flags |= SD_PREFER_SIBLING;
6286 sd->cache_nice_tries = 1;
6287 sd->busy_idx = 2;
6288 sd->idle_idx = 1;
6289 }
6290
6291 sd->private = &tl->data;
cb83b629
PZ
6292
6293 return sd;
6294}
6295
143e1e28
VG
6296/*
6297 * Topology list, bottom-up.
6298 */
6299static struct sched_domain_topology_level default_topology[] = {
6300#ifdef CONFIG_SCHED_SMT
6301 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6302#endif
6303#ifdef CONFIG_SCHED_MC
6304 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6305#endif
6306 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6307 { NULL, },
6308};
6309
6310struct sched_domain_topology_level *sched_domain_topology = default_topology;
6311
6312#define for_each_sd_topology(tl) \
6313 for (tl = sched_domain_topology; tl->mask; tl++)
6314
6315void set_sched_topology(struct sched_domain_topology_level *tl)
6316{
6317 sched_domain_topology = tl;
6318}
6319
6320#ifdef CONFIG_NUMA
6321
cb83b629
PZ
6322static const struct cpumask *sd_numa_mask(int cpu)
6323{
6324 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6325}
6326
d039ac60
PZ
6327static void sched_numa_warn(const char *str)
6328{
6329 static int done = false;
6330 int i,j;
6331
6332 if (done)
6333 return;
6334
6335 done = true;
6336
6337 printk(KERN_WARNING "ERROR: %s\n\n", str);
6338
6339 for (i = 0; i < nr_node_ids; i++) {
6340 printk(KERN_WARNING " ");
6341 for (j = 0; j < nr_node_ids; j++)
6342 printk(KERN_CONT "%02d ", node_distance(i,j));
6343 printk(KERN_CONT "\n");
6344 }
6345 printk(KERN_WARNING "\n");
6346}
6347
9942f79b 6348bool find_numa_distance(int distance)
d039ac60
PZ
6349{
6350 int i;
6351
6352 if (distance == node_distance(0, 0))
6353 return true;
6354
6355 for (i = 0; i < sched_domains_numa_levels; i++) {
6356 if (sched_domains_numa_distance[i] == distance)
6357 return true;
6358 }
6359
6360 return false;
6361}
6362
e3fe70b1
RR
6363/*
6364 * A system can have three types of NUMA topology:
6365 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6366 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6367 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6368 *
6369 * The difference between a glueless mesh topology and a backplane
6370 * topology lies in whether communication between not directly
6371 * connected nodes goes through intermediary nodes (where programs
6372 * could run), or through backplane controllers. This affects
6373 * placement of programs.
6374 *
6375 * The type of topology can be discerned with the following tests:
6376 * - If the maximum distance between any nodes is 1 hop, the system
6377 * is directly connected.
6378 * - If for two nodes A and B, located N > 1 hops away from each other,
6379 * there is an intermediary node C, which is < N hops away from both
6380 * nodes A and B, the system is a glueless mesh.
6381 */
6382static void init_numa_topology_type(void)
6383{
6384 int a, b, c, n;
6385
6386 n = sched_max_numa_distance;
6387
6388 if (n <= 1)
6389 sched_numa_topology_type = NUMA_DIRECT;
6390
6391 for_each_online_node(a) {
6392 for_each_online_node(b) {
6393 /* Find two nodes furthest removed from each other. */
6394 if (node_distance(a, b) < n)
6395 continue;
6396
6397 /* Is there an intermediary node between a and b? */
6398 for_each_online_node(c) {
6399 if (node_distance(a, c) < n &&
6400 node_distance(b, c) < n) {
6401 sched_numa_topology_type =
6402 NUMA_GLUELESS_MESH;
6403 return;
6404 }
6405 }
6406
6407 sched_numa_topology_type = NUMA_BACKPLANE;
6408 return;
6409 }
6410 }
6411}
6412
cb83b629
PZ
6413static void sched_init_numa(void)
6414{
6415 int next_distance, curr_distance = node_distance(0, 0);
6416 struct sched_domain_topology_level *tl;
6417 int level = 0;
6418 int i, j, k;
6419
cb83b629
PZ
6420 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6421 if (!sched_domains_numa_distance)
6422 return;
6423
6424 /*
6425 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6426 * unique distances in the node_distance() table.
6427 *
6428 * Assumes node_distance(0,j) includes all distances in
6429 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6430 */
6431 next_distance = curr_distance;
6432 for (i = 0; i < nr_node_ids; i++) {
6433 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6434 for (k = 0; k < nr_node_ids; k++) {
6435 int distance = node_distance(i, k);
6436
6437 if (distance > curr_distance &&
6438 (distance < next_distance ||
6439 next_distance == curr_distance))
6440 next_distance = distance;
6441
6442 /*
6443 * While not a strong assumption it would be nice to know
6444 * about cases where if node A is connected to B, B is not
6445 * equally connected to A.
6446 */
6447 if (sched_debug() && node_distance(k, i) != distance)
6448 sched_numa_warn("Node-distance not symmetric");
6449
6450 if (sched_debug() && i && !find_numa_distance(distance))
6451 sched_numa_warn("Node-0 not representative");
6452 }
6453 if (next_distance != curr_distance) {
6454 sched_domains_numa_distance[level++] = next_distance;
6455 sched_domains_numa_levels = level;
6456 curr_distance = next_distance;
6457 } else break;
cb83b629 6458 }
d039ac60
PZ
6459
6460 /*
6461 * In case of sched_debug() we verify the above assumption.
6462 */
6463 if (!sched_debug())
6464 break;
cb83b629 6465 }
c123588b
AR
6466
6467 if (!level)
6468 return;
6469
cb83b629
PZ
6470 /*
6471 * 'level' contains the number of unique distances, excluding the
6472 * identity distance node_distance(i,i).
6473 *
28b4a521 6474 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6475 * numbers.
6476 */
6477
5f7865f3
TC
6478 /*
6479 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6480 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6481 * the array will contain less then 'level' members. This could be
6482 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6483 * in other functions.
6484 *
6485 * We reset it to 'level' at the end of this function.
6486 */
6487 sched_domains_numa_levels = 0;
6488
cb83b629
PZ
6489 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6490 if (!sched_domains_numa_masks)
6491 return;
6492
6493 /*
6494 * Now for each level, construct a mask per node which contains all
6495 * cpus of nodes that are that many hops away from us.
6496 */
6497 for (i = 0; i < level; i++) {
6498 sched_domains_numa_masks[i] =
6499 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6500 if (!sched_domains_numa_masks[i])
6501 return;
6502
6503 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6504 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6505 if (!mask)
6506 return;
6507
6508 sched_domains_numa_masks[i][j] = mask;
6509
6510 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6511 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6512 continue;
6513
6514 cpumask_or(mask, mask, cpumask_of_node(k));
6515 }
6516 }
6517 }
6518
143e1e28
VG
6519 /* Compute default topology size */
6520 for (i = 0; sched_domain_topology[i].mask; i++);
6521
c515db8c 6522 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6523 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6524 if (!tl)
6525 return;
6526
6527 /*
6528 * Copy the default topology bits..
6529 */
143e1e28
VG
6530 for (i = 0; sched_domain_topology[i].mask; i++)
6531 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6532
6533 /*
6534 * .. and append 'j' levels of NUMA goodness.
6535 */
6536 for (j = 0; j < level; i++, j++) {
6537 tl[i] = (struct sched_domain_topology_level){
cb83b629 6538 .mask = sd_numa_mask,
143e1e28 6539 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6540 .flags = SDTL_OVERLAP,
6541 .numa_level = j,
143e1e28 6542 SD_INIT_NAME(NUMA)
cb83b629
PZ
6543 };
6544 }
6545
6546 sched_domain_topology = tl;
5f7865f3
TC
6547
6548 sched_domains_numa_levels = level;
9942f79b 6549 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6550
6551 init_numa_topology_type();
cb83b629 6552}
301a5cba
TC
6553
6554static void sched_domains_numa_masks_set(int cpu)
6555{
6556 int i, j;
6557 int node = cpu_to_node(cpu);
6558
6559 for (i = 0; i < sched_domains_numa_levels; i++) {
6560 for (j = 0; j < nr_node_ids; j++) {
6561 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6562 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6563 }
6564 }
6565}
6566
6567static void sched_domains_numa_masks_clear(int cpu)
6568{
6569 int i, j;
6570 for (i = 0; i < sched_domains_numa_levels; i++) {
6571 for (j = 0; j < nr_node_ids; j++)
6572 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6573 }
6574}
6575
6576/*
6577 * Update sched_domains_numa_masks[level][node] array when new cpus
6578 * are onlined.
6579 */
6580static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6581 unsigned long action,
6582 void *hcpu)
6583{
6584 int cpu = (long)hcpu;
6585
6586 switch (action & ~CPU_TASKS_FROZEN) {
6587 case CPU_ONLINE:
6588 sched_domains_numa_masks_set(cpu);
6589 break;
6590
6591 case CPU_DEAD:
6592 sched_domains_numa_masks_clear(cpu);
6593 break;
6594
6595 default:
6596 return NOTIFY_DONE;
6597 }
6598
6599 return NOTIFY_OK;
cb83b629
PZ
6600}
6601#else
6602static inline void sched_init_numa(void)
6603{
6604}
301a5cba
TC
6605
6606static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6607 unsigned long action,
6608 void *hcpu)
6609{
6610 return 0;
6611}
cb83b629
PZ
6612#endif /* CONFIG_NUMA */
6613
54ab4ff4
PZ
6614static int __sdt_alloc(const struct cpumask *cpu_map)
6615{
6616 struct sched_domain_topology_level *tl;
6617 int j;
6618
27723a68 6619 for_each_sd_topology(tl) {
54ab4ff4
PZ
6620 struct sd_data *sdd = &tl->data;
6621
6622 sdd->sd = alloc_percpu(struct sched_domain *);
6623 if (!sdd->sd)
6624 return -ENOMEM;
6625
6626 sdd->sg = alloc_percpu(struct sched_group *);
6627 if (!sdd->sg)
6628 return -ENOMEM;
6629
63b2ca30
NP
6630 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6631 if (!sdd->sgc)
9c3f75cb
PZ
6632 return -ENOMEM;
6633
54ab4ff4
PZ
6634 for_each_cpu(j, cpu_map) {
6635 struct sched_domain *sd;
6636 struct sched_group *sg;
63b2ca30 6637 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6638
6639 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6640 GFP_KERNEL, cpu_to_node(j));
6641 if (!sd)
6642 return -ENOMEM;
6643
6644 *per_cpu_ptr(sdd->sd, j) = sd;
6645
6646 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6647 GFP_KERNEL, cpu_to_node(j));
6648 if (!sg)
6649 return -ENOMEM;
6650
30b4e9eb
IM
6651 sg->next = sg;
6652
54ab4ff4 6653 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6654
63b2ca30 6655 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6656 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6657 if (!sgc)
9c3f75cb
PZ
6658 return -ENOMEM;
6659
63b2ca30 6660 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6661 }
6662 }
6663
6664 return 0;
6665}
6666
6667static void __sdt_free(const struct cpumask *cpu_map)
6668{
6669 struct sched_domain_topology_level *tl;
6670 int j;
6671
27723a68 6672 for_each_sd_topology(tl) {
54ab4ff4
PZ
6673 struct sd_data *sdd = &tl->data;
6674
6675 for_each_cpu(j, cpu_map) {
fb2cf2c6 6676 struct sched_domain *sd;
6677
6678 if (sdd->sd) {
6679 sd = *per_cpu_ptr(sdd->sd, j);
6680 if (sd && (sd->flags & SD_OVERLAP))
6681 free_sched_groups(sd->groups, 0);
6682 kfree(*per_cpu_ptr(sdd->sd, j));
6683 }
6684
6685 if (sdd->sg)
6686 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6687 if (sdd->sgc)
6688 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6689 }
6690 free_percpu(sdd->sd);
fb2cf2c6 6691 sdd->sd = NULL;
54ab4ff4 6692 free_percpu(sdd->sg);
fb2cf2c6 6693 sdd->sg = NULL;
63b2ca30
NP
6694 free_percpu(sdd->sgc);
6695 sdd->sgc = NULL;
54ab4ff4
PZ
6696 }
6697}
6698
2c402dc3 6699struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6700 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6701 struct sched_domain *child, int cpu)
2c402dc3 6702{
143e1e28 6703 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6704 if (!sd)
d069b916 6705 return child;
2c402dc3 6706
2c402dc3 6707 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6708 if (child) {
6709 sd->level = child->level + 1;
6710 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6711 child->parent = sd;
c75e0128 6712 sd->child = child;
6ae72dff
PZ
6713
6714 if (!cpumask_subset(sched_domain_span(child),
6715 sched_domain_span(sd))) {
6716 pr_err("BUG: arch topology borken\n");
6717#ifdef CONFIG_SCHED_DEBUG
6718 pr_err(" the %s domain not a subset of the %s domain\n",
6719 child->name, sd->name);
6720#endif
6721 /* Fixup, ensure @sd has at least @child cpus. */
6722 cpumask_or(sched_domain_span(sd),
6723 sched_domain_span(sd),
6724 sched_domain_span(child));
6725 }
6726
60495e77 6727 }
a841f8ce 6728 set_domain_attribute(sd, attr);
2c402dc3
PZ
6729
6730 return sd;
6731}
6732
2109b99e
AH
6733/*
6734 * Build sched domains for a given set of cpus and attach the sched domains
6735 * to the individual cpus
6736 */
dce840a0
PZ
6737static int build_sched_domains(const struct cpumask *cpu_map,
6738 struct sched_domain_attr *attr)
2109b99e 6739{
1c632169 6740 enum s_alloc alloc_state;
dce840a0 6741 struct sched_domain *sd;
2109b99e 6742 struct s_data d;
822ff793 6743 int i, ret = -ENOMEM;
9c1cfda2 6744
2109b99e
AH
6745 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6746 if (alloc_state != sa_rootdomain)
6747 goto error;
9c1cfda2 6748
dce840a0 6749 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6750 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6751 struct sched_domain_topology_level *tl;
6752
3bd65a80 6753 sd = NULL;
27723a68 6754 for_each_sd_topology(tl) {
4a850cbe 6755 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6756 if (tl == sched_domain_topology)
6757 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6758 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6759 sd->flags |= SD_OVERLAP;
d110235d
PZ
6760 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6761 break;
e3589f6c 6762 }
dce840a0
PZ
6763 }
6764
6765 /* Build the groups for the domains */
6766 for_each_cpu(i, cpu_map) {
6767 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6768 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6769 if (sd->flags & SD_OVERLAP) {
6770 if (build_overlap_sched_groups(sd, i))
6771 goto error;
6772 } else {
6773 if (build_sched_groups(sd, i))
6774 goto error;
6775 }
1cf51902 6776 }
a06dadbe 6777 }
9c1cfda2 6778
ced549fa 6779 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6780 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6781 if (!cpumask_test_cpu(i, cpu_map))
6782 continue;
9c1cfda2 6783
dce840a0
PZ
6784 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6785 claim_allocations(i, sd);
63b2ca30 6786 init_sched_groups_capacity(i, sd);
dce840a0 6787 }
f712c0c7 6788 }
9c1cfda2 6789
1da177e4 6790 /* Attach the domains */
dce840a0 6791 rcu_read_lock();
abcd083a 6792 for_each_cpu(i, cpu_map) {
21d42ccf 6793 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6794 cpu_attach_domain(sd, d.rd, i);
1da177e4 6795 }
dce840a0 6796 rcu_read_unlock();
51888ca2 6797
822ff793 6798 ret = 0;
51888ca2 6799error:
2109b99e 6800 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6801 return ret;
1da177e4 6802}
029190c5 6803
acc3f5d7 6804static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6805static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6806static struct sched_domain_attr *dattr_cur;
6807 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6808
6809/*
6810 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6811 * cpumask) fails, then fallback to a single sched domain,
6812 * as determined by the single cpumask fallback_doms.
029190c5 6813 */
4212823f 6814static cpumask_var_t fallback_doms;
029190c5 6815
ee79d1bd
HC
6816/*
6817 * arch_update_cpu_topology lets virtualized architectures update the
6818 * cpu core maps. It is supposed to return 1 if the topology changed
6819 * or 0 if it stayed the same.
6820 */
52f5684c 6821int __weak arch_update_cpu_topology(void)
22e52b07 6822{
ee79d1bd 6823 return 0;
22e52b07
HC
6824}
6825
acc3f5d7
RR
6826cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6827{
6828 int i;
6829 cpumask_var_t *doms;
6830
6831 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6832 if (!doms)
6833 return NULL;
6834 for (i = 0; i < ndoms; i++) {
6835 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6836 free_sched_domains(doms, i);
6837 return NULL;
6838 }
6839 }
6840 return doms;
6841}
6842
6843void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6844{
6845 unsigned int i;
6846 for (i = 0; i < ndoms; i++)
6847 free_cpumask_var(doms[i]);
6848 kfree(doms);
6849}
6850
1a20ff27 6851/*
41a2d6cf 6852 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6853 * For now this just excludes isolated cpus, but could be used to
6854 * exclude other special cases in the future.
1a20ff27 6855 */
c4a8849a 6856static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6857{
7378547f
MM
6858 int err;
6859
22e52b07 6860 arch_update_cpu_topology();
029190c5 6861 ndoms_cur = 1;
acc3f5d7 6862 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6863 if (!doms_cur)
acc3f5d7
RR
6864 doms_cur = &fallback_doms;
6865 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6866 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6867 register_sched_domain_sysctl();
7378547f
MM
6868
6869 return err;
1a20ff27
DG
6870}
6871
1a20ff27
DG
6872/*
6873 * Detach sched domains from a group of cpus specified in cpu_map
6874 * These cpus will now be attached to the NULL domain
6875 */
96f874e2 6876static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6877{
6878 int i;
6879
dce840a0 6880 rcu_read_lock();
abcd083a 6881 for_each_cpu(i, cpu_map)
57d885fe 6882 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6883 rcu_read_unlock();
1a20ff27
DG
6884}
6885
1d3504fc
HS
6886/* handle null as "default" */
6887static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6888 struct sched_domain_attr *new, int idx_new)
6889{
6890 struct sched_domain_attr tmp;
6891
6892 /* fast path */
6893 if (!new && !cur)
6894 return 1;
6895
6896 tmp = SD_ATTR_INIT;
6897 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6898 new ? (new + idx_new) : &tmp,
6899 sizeof(struct sched_domain_attr));
6900}
6901
029190c5
PJ
6902/*
6903 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6904 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6905 * doms_new[] to the current sched domain partitioning, doms_cur[].
6906 * It destroys each deleted domain and builds each new domain.
6907 *
acc3f5d7 6908 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6909 * The masks don't intersect (don't overlap.) We should setup one
6910 * sched domain for each mask. CPUs not in any of the cpumasks will
6911 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6912 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6913 * it as it is.
6914 *
acc3f5d7
RR
6915 * The passed in 'doms_new' should be allocated using
6916 * alloc_sched_domains. This routine takes ownership of it and will
6917 * free_sched_domains it when done with it. If the caller failed the
6918 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6919 * and partition_sched_domains() will fallback to the single partition
6920 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6921 *
96f874e2 6922 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6923 * ndoms_new == 0 is a special case for destroying existing domains,
6924 * and it will not create the default domain.
dfb512ec 6925 *
029190c5
PJ
6926 * Call with hotplug lock held
6927 */
acc3f5d7 6928void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6929 struct sched_domain_attr *dattr_new)
029190c5 6930{
dfb512ec 6931 int i, j, n;
d65bd5ec 6932 int new_topology;
029190c5 6933
712555ee 6934 mutex_lock(&sched_domains_mutex);
a1835615 6935
7378547f
MM
6936 /* always unregister in case we don't destroy any domains */
6937 unregister_sched_domain_sysctl();
6938
d65bd5ec
HC
6939 /* Let architecture update cpu core mappings. */
6940 new_topology = arch_update_cpu_topology();
6941
dfb512ec 6942 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6943
6944 /* Destroy deleted domains */
6945 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6946 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6947 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6948 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6949 goto match1;
6950 }
6951 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6952 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6953match1:
6954 ;
6955 }
6956
c8d2d47a 6957 n = ndoms_cur;
e761b772 6958 if (doms_new == NULL) {
c8d2d47a 6959 n = 0;
acc3f5d7 6960 doms_new = &fallback_doms;
6ad4c188 6961 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6962 WARN_ON_ONCE(dattr_new);
e761b772
MK
6963 }
6964
029190c5
PJ
6965 /* Build new domains */
6966 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6967 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6968 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6969 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6970 goto match2;
6971 }
6972 /* no match - add a new doms_new */
dce840a0 6973 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6974match2:
6975 ;
6976 }
6977
6978 /* Remember the new sched domains */
acc3f5d7
RR
6979 if (doms_cur != &fallback_doms)
6980 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6981 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6982 doms_cur = doms_new;
1d3504fc 6983 dattr_cur = dattr_new;
029190c5 6984 ndoms_cur = ndoms_new;
7378547f
MM
6985
6986 register_sched_domain_sysctl();
a1835615 6987
712555ee 6988 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6989}
6990
d35be8ba
SB
6991static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6992
1da177e4 6993/*
3a101d05
TH
6994 * Update cpusets according to cpu_active mask. If cpusets are
6995 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6996 * around partition_sched_domains().
d35be8ba
SB
6997 *
6998 * If we come here as part of a suspend/resume, don't touch cpusets because we
6999 * want to restore it back to its original state upon resume anyway.
1da177e4 7000 */
0b2e918a
TH
7001static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7002 void *hcpu)
e761b772 7003{
d35be8ba
SB
7004 switch (action) {
7005 case CPU_ONLINE_FROZEN:
7006 case CPU_DOWN_FAILED_FROZEN:
7007
7008 /*
7009 * num_cpus_frozen tracks how many CPUs are involved in suspend
7010 * resume sequence. As long as this is not the last online
7011 * operation in the resume sequence, just build a single sched
7012 * domain, ignoring cpusets.
7013 */
7014 num_cpus_frozen--;
7015 if (likely(num_cpus_frozen)) {
7016 partition_sched_domains(1, NULL, NULL);
7017 break;
7018 }
7019
7020 /*
7021 * This is the last CPU online operation. So fall through and
7022 * restore the original sched domains by considering the
7023 * cpuset configurations.
7024 */
7025
e761b772 7026 case CPU_ONLINE:
6ad4c188 7027 case CPU_DOWN_FAILED:
7ddf96b0 7028 cpuset_update_active_cpus(true);
d35be8ba 7029 break;
3a101d05
TH
7030 default:
7031 return NOTIFY_DONE;
7032 }
d35be8ba 7033 return NOTIFY_OK;
3a101d05 7034}
e761b772 7035
0b2e918a
TH
7036static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7037 void *hcpu)
3a101d05 7038{
d35be8ba 7039 switch (action) {
3a101d05 7040 case CPU_DOWN_PREPARE:
7ddf96b0 7041 cpuset_update_active_cpus(false);
d35be8ba
SB
7042 break;
7043 case CPU_DOWN_PREPARE_FROZEN:
7044 num_cpus_frozen++;
7045 partition_sched_domains(1, NULL, NULL);
7046 break;
e761b772
MK
7047 default:
7048 return NOTIFY_DONE;
7049 }
d35be8ba 7050 return NOTIFY_OK;
e761b772 7051}
e761b772 7052
1da177e4
LT
7053void __init sched_init_smp(void)
7054{
dcc30a35
RR
7055 cpumask_var_t non_isolated_cpus;
7056
7057 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7058 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7059
cb83b629
PZ
7060 sched_init_numa();
7061
6acce3ef
PZ
7062 /*
7063 * There's no userspace yet to cause hotplug operations; hence all the
7064 * cpu masks are stable and all blatant races in the below code cannot
7065 * happen.
7066 */
712555ee 7067 mutex_lock(&sched_domains_mutex);
c4a8849a 7068 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7069 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7070 if (cpumask_empty(non_isolated_cpus))
7071 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7072 mutex_unlock(&sched_domains_mutex);
e761b772 7073
301a5cba 7074 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7075 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7076 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7077
b328ca18 7078 init_hrtick();
5c1e1767
NP
7079
7080 /* Move init over to a non-isolated CPU */
dcc30a35 7081 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7082 BUG();
19978ca6 7083 sched_init_granularity();
dcc30a35 7084 free_cpumask_var(non_isolated_cpus);
4212823f 7085
0e3900e6 7086 init_sched_rt_class();
1baca4ce 7087 init_sched_dl_class();
1da177e4
LT
7088}
7089#else
7090void __init sched_init_smp(void)
7091{
19978ca6 7092 sched_init_granularity();
1da177e4
LT
7093}
7094#endif /* CONFIG_SMP */
7095
cd1bb94b
AB
7096const_debug unsigned int sysctl_timer_migration = 1;
7097
1da177e4
LT
7098int in_sched_functions(unsigned long addr)
7099{
1da177e4
LT
7100 return in_lock_functions(addr) ||
7101 (addr >= (unsigned long)__sched_text_start
7102 && addr < (unsigned long)__sched_text_end);
7103}
7104
029632fb 7105#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7106/*
7107 * Default task group.
7108 * Every task in system belongs to this group at bootup.
7109 */
029632fb 7110struct task_group root_task_group;
35cf4e50 7111LIST_HEAD(task_groups);
052f1dc7 7112#endif
6f505b16 7113
e6252c3e 7114DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7115
1da177e4
LT
7116void __init sched_init(void)
7117{
dd41f596 7118 int i, j;
434d53b0
MT
7119 unsigned long alloc_size = 0, ptr;
7120
7121#ifdef CONFIG_FAIR_GROUP_SCHED
7122 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7123#endif
7124#ifdef CONFIG_RT_GROUP_SCHED
7125 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7126#endif
434d53b0 7127 if (alloc_size) {
36b7b6d4 7128 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7129
7130#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7131 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7132 ptr += nr_cpu_ids * sizeof(void **);
7133
07e06b01 7134 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7135 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7136
6d6bc0ad 7137#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7138#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7139 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7140 ptr += nr_cpu_ids * sizeof(void **);
7141
07e06b01 7142 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7143 ptr += nr_cpu_ids * sizeof(void **);
7144
6d6bc0ad 7145#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7146 }
df7c8e84 7147#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7148 for_each_possible_cpu(i) {
7149 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7150 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7151 }
b74e6278 7152#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7153
332ac17e
DF
7154 init_rt_bandwidth(&def_rt_bandwidth,
7155 global_rt_period(), global_rt_runtime());
7156 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7157 global_rt_period(), global_rt_runtime());
332ac17e 7158
57d885fe
GH
7159#ifdef CONFIG_SMP
7160 init_defrootdomain();
7161#endif
7162
d0b27fa7 7163#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7164 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7165 global_rt_period(), global_rt_runtime());
6d6bc0ad 7166#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7167
7c941438 7168#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7169 list_add(&root_task_group.list, &task_groups);
7170 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7171 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7172 autogroup_init(&init_task);
54c707e9 7173
7c941438 7174#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7175
0a945022 7176 for_each_possible_cpu(i) {
70b97a7f 7177 struct rq *rq;
1da177e4
LT
7178
7179 rq = cpu_rq(i);
05fa785c 7180 raw_spin_lock_init(&rq->lock);
7897986b 7181 rq->nr_running = 0;
dce48a84
TG
7182 rq->calc_load_active = 0;
7183 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7184 init_cfs_rq(&rq->cfs);
6f505b16 7185 init_rt_rq(&rq->rt, rq);
aab03e05 7186 init_dl_rq(&rq->dl, rq);
dd41f596 7187#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7188 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7189 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7190 /*
07e06b01 7191 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7192 *
7193 * In case of task-groups formed thr' the cgroup filesystem, it
7194 * gets 100% of the cpu resources in the system. This overall
7195 * system cpu resource is divided among the tasks of
07e06b01 7196 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7197 * based on each entity's (task or task-group's) weight
7198 * (se->load.weight).
7199 *
07e06b01 7200 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7201 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7202 * then A0's share of the cpu resource is:
7203 *
0d905bca 7204 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7205 *
07e06b01
YZ
7206 * We achieve this by letting root_task_group's tasks sit
7207 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7208 */
ab84d31e 7209 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7210 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7211#endif /* CONFIG_FAIR_GROUP_SCHED */
7212
7213 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7214#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7215 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7216#endif
1da177e4 7217
dd41f596
IM
7218 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7219 rq->cpu_load[j] = 0;
fdf3e95d
VP
7220
7221 rq->last_load_update_tick = jiffies;
7222
1da177e4 7223#ifdef CONFIG_SMP
41c7ce9a 7224 rq->sd = NULL;
57d885fe 7225 rq->rd = NULL;
ca8ce3d0 7226 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7227 rq->post_schedule = 0;
1da177e4 7228 rq->active_balance = 0;
dd41f596 7229 rq->next_balance = jiffies;
1da177e4 7230 rq->push_cpu = 0;
0a2966b4 7231 rq->cpu = i;
1f11eb6a 7232 rq->online = 0;
eae0c9df
MG
7233 rq->idle_stamp = 0;
7234 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7235 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7236
7237 INIT_LIST_HEAD(&rq->cfs_tasks);
7238
dc938520 7239 rq_attach_root(rq, &def_root_domain);
3451d024 7240#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7241 rq->nohz_flags = 0;
83cd4fe2 7242#endif
265f22a9
FW
7243#ifdef CONFIG_NO_HZ_FULL
7244 rq->last_sched_tick = 0;
7245#endif
1da177e4 7246#endif
8f4d37ec 7247 init_rq_hrtick(rq);
1da177e4 7248 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7249 }
7250
2dd73a4f 7251 set_load_weight(&init_task);
b50f60ce 7252
e107be36
AK
7253#ifdef CONFIG_PREEMPT_NOTIFIERS
7254 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7255#endif
7256
1da177e4
LT
7257 /*
7258 * The boot idle thread does lazy MMU switching as well:
7259 */
7260 atomic_inc(&init_mm.mm_count);
7261 enter_lazy_tlb(&init_mm, current);
7262
1b537c7d
YD
7263 /*
7264 * During early bootup we pretend to be a normal task:
7265 */
7266 current->sched_class = &fair_sched_class;
7267
1da177e4
LT
7268 /*
7269 * Make us the idle thread. Technically, schedule() should not be
7270 * called from this thread, however somewhere below it might be,
7271 * but because we are the idle thread, we just pick up running again
7272 * when this runqueue becomes "idle".
7273 */
7274 init_idle(current, smp_processor_id());
dce48a84
TG
7275
7276 calc_load_update = jiffies + LOAD_FREQ;
7277
bf4d83f6 7278#ifdef CONFIG_SMP
4cb98839 7279 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7280 /* May be allocated at isolcpus cmdline parse time */
7281 if (cpu_isolated_map == NULL)
7282 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7283 idle_thread_set_boot_cpu();
a803f026 7284 set_cpu_rq_start_time();
029632fb
PZ
7285#endif
7286 init_sched_fair_class();
6a7b3dc3 7287
6892b75e 7288 scheduler_running = 1;
1da177e4
LT
7289}
7290
d902db1e 7291#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7292static inline int preempt_count_equals(int preempt_offset)
7293{
234da7bc 7294 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7295
4ba8216c 7296 return (nested == preempt_offset);
e4aafea2
FW
7297}
7298
d894837f 7299void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7300{
8eb23b9f
PZ
7301 /*
7302 * Blocking primitives will set (and therefore destroy) current->state,
7303 * since we will exit with TASK_RUNNING make sure we enter with it,
7304 * otherwise we will destroy state.
7305 */
e7097e8b 7306 if (WARN_ONCE(current->state != TASK_RUNNING,
8eb23b9f
PZ
7307 "do not call blocking ops when !TASK_RUNNING; "
7308 "state=%lx set at [<%p>] %pS\n",
7309 current->state,
7310 (void *)current->task_state_change,
7311 (void *)current->task_state_change))
7312 __set_current_state(TASK_RUNNING);
7313
3427445a
PZ
7314 ___might_sleep(file, line, preempt_offset);
7315}
7316EXPORT_SYMBOL(__might_sleep);
7317
7318void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7319{
1da177e4
LT
7320 static unsigned long prev_jiffy; /* ratelimiting */
7321
b3fbab05 7322 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7323 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7324 !is_idle_task(current)) ||
e4aafea2 7325 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7326 return;
7327 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7328 return;
7329 prev_jiffy = jiffies;
7330
3df0fc5b
PZ
7331 printk(KERN_ERR
7332 "BUG: sleeping function called from invalid context at %s:%d\n",
7333 file, line);
7334 printk(KERN_ERR
7335 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7336 in_atomic(), irqs_disabled(),
7337 current->pid, current->comm);
aef745fc 7338
a8b686b3
ES
7339 if (task_stack_end_corrupted(current))
7340 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7341
aef745fc
IM
7342 debug_show_held_locks(current);
7343 if (irqs_disabled())
7344 print_irqtrace_events(current);
8f47b187
TG
7345#ifdef CONFIG_DEBUG_PREEMPT
7346 if (!preempt_count_equals(preempt_offset)) {
7347 pr_err("Preemption disabled at:");
7348 print_ip_sym(current->preempt_disable_ip);
7349 pr_cont("\n");
7350 }
7351#endif
aef745fc 7352 dump_stack();
1da177e4 7353}
3427445a 7354EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7355#endif
7356
7357#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7358static void normalize_task(struct rq *rq, struct task_struct *p)
7359{
da7a735e 7360 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7361 struct sched_attr attr = {
7362 .sched_policy = SCHED_NORMAL,
7363 };
da7a735e 7364 int old_prio = p->prio;
da0c1e65 7365 int queued;
3e51f33f 7366
da0c1e65
KT
7367 queued = task_on_rq_queued(p);
7368 if (queued)
4ca9b72b 7369 dequeue_task(rq, p, 0);
d50dde5a 7370 __setscheduler(rq, p, &attr);
da0c1e65 7371 if (queued) {
4ca9b72b 7372 enqueue_task(rq, p, 0);
8875125e 7373 resched_curr(rq);
3a5e4dc1 7374 }
da7a735e
PZ
7375
7376 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7377}
7378
1da177e4
LT
7379void normalize_rt_tasks(void)
7380{
a0f98a1c 7381 struct task_struct *g, *p;
1da177e4 7382 unsigned long flags;
70b97a7f 7383 struct rq *rq;
1da177e4 7384
3472eaa1 7385 read_lock(&tasklist_lock);
5d07f420 7386 for_each_process_thread(g, p) {
178be793
IM
7387 /*
7388 * Only normalize user tasks:
7389 */
3472eaa1 7390 if (p->flags & PF_KTHREAD)
178be793
IM
7391 continue;
7392
6cfb0d5d 7393 p->se.exec_start = 0;
6cfb0d5d 7394#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7395 p->se.statistics.wait_start = 0;
7396 p->se.statistics.sleep_start = 0;
7397 p->se.statistics.block_start = 0;
6cfb0d5d 7398#endif
dd41f596 7399
aab03e05 7400 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7401 /*
7402 * Renice negative nice level userspace
7403 * tasks back to 0:
7404 */
3472eaa1 7405 if (task_nice(p) < 0)
dd41f596 7406 set_user_nice(p, 0);
1da177e4 7407 continue;
dd41f596 7408 }
1da177e4 7409
3472eaa1 7410 rq = task_rq_lock(p, &flags);
178be793 7411 normalize_task(rq, p);
3472eaa1 7412 task_rq_unlock(rq, p, &flags);
5d07f420 7413 }
3472eaa1 7414 read_unlock(&tasklist_lock);
1da177e4
LT
7415}
7416
7417#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7418
67fc4e0c 7419#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7420/*
67fc4e0c 7421 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7422 *
7423 * They can only be called when the whole system has been
7424 * stopped - every CPU needs to be quiescent, and no scheduling
7425 * activity can take place. Using them for anything else would
7426 * be a serious bug, and as a result, they aren't even visible
7427 * under any other configuration.
7428 */
7429
7430/**
7431 * curr_task - return the current task for a given cpu.
7432 * @cpu: the processor in question.
7433 *
7434 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7435 *
7436 * Return: The current task for @cpu.
1df5c10a 7437 */
36c8b586 7438struct task_struct *curr_task(int cpu)
1df5c10a
LT
7439{
7440 return cpu_curr(cpu);
7441}
7442
67fc4e0c
JW
7443#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7444
7445#ifdef CONFIG_IA64
1df5c10a
LT
7446/**
7447 * set_curr_task - set the current task for a given cpu.
7448 * @cpu: the processor in question.
7449 * @p: the task pointer to set.
7450 *
7451 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7452 * are serviced on a separate stack. It allows the architecture to switch the
7453 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7454 * must be called with all CPU's synchronized, and interrupts disabled, the
7455 * and caller must save the original value of the current task (see
7456 * curr_task() above) and restore that value before reenabling interrupts and
7457 * re-starting the system.
7458 *
7459 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7460 */
36c8b586 7461void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7462{
7463 cpu_curr(cpu) = p;
7464}
7465
7466#endif
29f59db3 7467
7c941438 7468#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7469/* task_group_lock serializes the addition/removal of task groups */
7470static DEFINE_SPINLOCK(task_group_lock);
7471
bccbe08a
PZ
7472static void free_sched_group(struct task_group *tg)
7473{
7474 free_fair_sched_group(tg);
7475 free_rt_sched_group(tg);
e9aa1dd1 7476 autogroup_free(tg);
bccbe08a
PZ
7477 kfree(tg);
7478}
7479
7480/* allocate runqueue etc for a new task group */
ec7dc8ac 7481struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7482{
7483 struct task_group *tg;
bccbe08a
PZ
7484
7485 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7486 if (!tg)
7487 return ERR_PTR(-ENOMEM);
7488
ec7dc8ac 7489 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7490 goto err;
7491
ec7dc8ac 7492 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7493 goto err;
7494
ace783b9
LZ
7495 return tg;
7496
7497err:
7498 free_sched_group(tg);
7499 return ERR_PTR(-ENOMEM);
7500}
7501
7502void sched_online_group(struct task_group *tg, struct task_group *parent)
7503{
7504 unsigned long flags;
7505
8ed36996 7506 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7507 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7508
7509 WARN_ON(!parent); /* root should already exist */
7510
7511 tg->parent = parent;
f473aa5e 7512 INIT_LIST_HEAD(&tg->children);
09f2724a 7513 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7514 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7515}
7516
9b5b7751 7517/* rcu callback to free various structures associated with a task group */
6f505b16 7518static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7519{
29f59db3 7520 /* now it should be safe to free those cfs_rqs */
6f505b16 7521 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7522}
7523
9b5b7751 7524/* Destroy runqueue etc associated with a task group */
4cf86d77 7525void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7526{
7527 /* wait for possible concurrent references to cfs_rqs complete */
7528 call_rcu(&tg->rcu, free_sched_group_rcu);
7529}
7530
7531void sched_offline_group(struct task_group *tg)
29f59db3 7532{
8ed36996 7533 unsigned long flags;
9b5b7751 7534 int i;
29f59db3 7535
3d4b47b4
PZ
7536 /* end participation in shares distribution */
7537 for_each_possible_cpu(i)
bccbe08a 7538 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7539
7540 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7541 list_del_rcu(&tg->list);
f473aa5e 7542 list_del_rcu(&tg->siblings);
8ed36996 7543 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7544}
7545
9b5b7751 7546/* change task's runqueue when it moves between groups.
3a252015
IM
7547 * The caller of this function should have put the task in its new group
7548 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7549 * reflect its new group.
9b5b7751
SV
7550 */
7551void sched_move_task(struct task_struct *tsk)
29f59db3 7552{
8323f26c 7553 struct task_group *tg;
da0c1e65 7554 int queued, running;
29f59db3
SV
7555 unsigned long flags;
7556 struct rq *rq;
7557
7558 rq = task_rq_lock(tsk, &flags);
7559
051a1d1a 7560 running = task_current(rq, tsk);
da0c1e65 7561 queued = task_on_rq_queued(tsk);
29f59db3 7562
da0c1e65 7563 if (queued)
29f59db3 7564 dequeue_task(rq, tsk, 0);
0e1f3483 7565 if (unlikely(running))
f3cd1c4e 7566 put_prev_task(rq, tsk);
29f59db3 7567
f7b8a47d
KT
7568 /*
7569 * All callers are synchronized by task_rq_lock(); we do not use RCU
7570 * which is pointless here. Thus, we pass "true" to task_css_check()
7571 * to prevent lockdep warnings.
7572 */
7573 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7574 struct task_group, css);
7575 tg = autogroup_task_group(tsk, tg);
7576 tsk->sched_task_group = tg;
7577
810b3817 7578#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7579 if (tsk->sched_class->task_move_group)
da0c1e65 7580 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7581 else
810b3817 7582#endif
b2b5ce02 7583 set_task_rq(tsk, task_cpu(tsk));
810b3817 7584
0e1f3483
HS
7585 if (unlikely(running))
7586 tsk->sched_class->set_curr_task(rq);
da0c1e65 7587 if (queued)
371fd7e7 7588 enqueue_task(rq, tsk, 0);
29f59db3 7589
0122ec5b 7590 task_rq_unlock(rq, tsk, &flags);
29f59db3 7591}
7c941438 7592#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7593
a790de99
PT
7594#ifdef CONFIG_RT_GROUP_SCHED
7595/*
7596 * Ensure that the real time constraints are schedulable.
7597 */
7598static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7599
9a7e0b18
PZ
7600/* Must be called with tasklist_lock held */
7601static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7602{
9a7e0b18 7603 struct task_struct *g, *p;
b40b2e8e 7604
5d07f420 7605 for_each_process_thread(g, p) {
8651c658 7606 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7607 return 1;
5d07f420 7608 }
b40b2e8e 7609
9a7e0b18
PZ
7610 return 0;
7611}
b40b2e8e 7612
9a7e0b18
PZ
7613struct rt_schedulable_data {
7614 struct task_group *tg;
7615 u64 rt_period;
7616 u64 rt_runtime;
7617};
b40b2e8e 7618
a790de99 7619static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7620{
7621 struct rt_schedulable_data *d = data;
7622 struct task_group *child;
7623 unsigned long total, sum = 0;
7624 u64 period, runtime;
b40b2e8e 7625
9a7e0b18
PZ
7626 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7627 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7628
9a7e0b18
PZ
7629 if (tg == d->tg) {
7630 period = d->rt_period;
7631 runtime = d->rt_runtime;
b40b2e8e 7632 }
b40b2e8e 7633
4653f803
PZ
7634 /*
7635 * Cannot have more runtime than the period.
7636 */
7637 if (runtime > period && runtime != RUNTIME_INF)
7638 return -EINVAL;
6f505b16 7639
4653f803
PZ
7640 /*
7641 * Ensure we don't starve existing RT tasks.
7642 */
9a7e0b18
PZ
7643 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7644 return -EBUSY;
6f505b16 7645
9a7e0b18 7646 total = to_ratio(period, runtime);
6f505b16 7647
4653f803
PZ
7648 /*
7649 * Nobody can have more than the global setting allows.
7650 */
7651 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7652 return -EINVAL;
6f505b16 7653
4653f803
PZ
7654 /*
7655 * The sum of our children's runtime should not exceed our own.
7656 */
9a7e0b18
PZ
7657 list_for_each_entry_rcu(child, &tg->children, siblings) {
7658 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7659 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7660
9a7e0b18
PZ
7661 if (child == d->tg) {
7662 period = d->rt_period;
7663 runtime = d->rt_runtime;
7664 }
6f505b16 7665
9a7e0b18 7666 sum += to_ratio(period, runtime);
9f0c1e56 7667 }
6f505b16 7668
9a7e0b18
PZ
7669 if (sum > total)
7670 return -EINVAL;
7671
7672 return 0;
6f505b16
PZ
7673}
7674
9a7e0b18 7675static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7676{
8277434e
PT
7677 int ret;
7678
9a7e0b18
PZ
7679 struct rt_schedulable_data data = {
7680 .tg = tg,
7681 .rt_period = period,
7682 .rt_runtime = runtime,
7683 };
7684
8277434e
PT
7685 rcu_read_lock();
7686 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7687 rcu_read_unlock();
7688
7689 return ret;
521f1a24
DG
7690}
7691
ab84d31e 7692static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7693 u64 rt_period, u64 rt_runtime)
6f505b16 7694{
ac086bc2 7695 int i, err = 0;
9f0c1e56 7696
9f0c1e56 7697 mutex_lock(&rt_constraints_mutex);
521f1a24 7698 read_lock(&tasklist_lock);
9a7e0b18
PZ
7699 err = __rt_schedulable(tg, rt_period, rt_runtime);
7700 if (err)
9f0c1e56 7701 goto unlock;
ac086bc2 7702
0986b11b 7703 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7704 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7705 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7706
7707 for_each_possible_cpu(i) {
7708 struct rt_rq *rt_rq = tg->rt_rq[i];
7709
0986b11b 7710 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7711 rt_rq->rt_runtime = rt_runtime;
0986b11b 7712 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7713 }
0986b11b 7714 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7715unlock:
521f1a24 7716 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7717 mutex_unlock(&rt_constraints_mutex);
7718
7719 return err;
6f505b16
PZ
7720}
7721
25cc7da7 7722static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7723{
7724 u64 rt_runtime, rt_period;
7725
7726 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7727 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7728 if (rt_runtime_us < 0)
7729 rt_runtime = RUNTIME_INF;
7730
ab84d31e 7731 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7732}
7733
25cc7da7 7734static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7735{
7736 u64 rt_runtime_us;
7737
d0b27fa7 7738 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7739 return -1;
7740
d0b27fa7 7741 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7742 do_div(rt_runtime_us, NSEC_PER_USEC);
7743 return rt_runtime_us;
7744}
d0b27fa7 7745
25cc7da7 7746static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7747{
7748 u64 rt_runtime, rt_period;
7749
7750 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7751 rt_runtime = tg->rt_bandwidth.rt_runtime;
7752
619b0488
R
7753 if (rt_period == 0)
7754 return -EINVAL;
7755
ab84d31e 7756 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7757}
7758
25cc7da7 7759static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7760{
7761 u64 rt_period_us;
7762
7763 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7764 do_div(rt_period_us, NSEC_PER_USEC);
7765 return rt_period_us;
7766}
332ac17e 7767#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7768
332ac17e 7769#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7770static int sched_rt_global_constraints(void)
7771{
7772 int ret = 0;
7773
7774 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7775 read_lock(&tasklist_lock);
4653f803 7776 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7777 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7778 mutex_unlock(&rt_constraints_mutex);
7779
7780 return ret;
7781}
54e99124 7782
25cc7da7 7783static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7784{
7785 /* Don't accept realtime tasks when there is no way for them to run */
7786 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7787 return 0;
7788
7789 return 1;
7790}
7791
6d6bc0ad 7792#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7793static int sched_rt_global_constraints(void)
7794{
ac086bc2 7795 unsigned long flags;
332ac17e 7796 int i, ret = 0;
ec5d4989 7797
0986b11b 7798 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7799 for_each_possible_cpu(i) {
7800 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7801
0986b11b 7802 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7803 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7804 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7805 }
0986b11b 7806 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7807
332ac17e 7808 return ret;
d0b27fa7 7809}
6d6bc0ad 7810#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7811
332ac17e
DF
7812static int sched_dl_global_constraints(void)
7813{
1724813d
PZ
7814 u64 runtime = global_rt_runtime();
7815 u64 period = global_rt_period();
332ac17e 7816 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7817 struct dl_bw *dl_b;
1724813d 7818 int cpu, ret = 0;
49516342 7819 unsigned long flags;
332ac17e
DF
7820
7821 /*
7822 * Here we want to check the bandwidth not being set to some
7823 * value smaller than the currently allocated bandwidth in
7824 * any of the root_domains.
7825 *
7826 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7827 * cycling on root_domains... Discussion on different/better
7828 * solutions is welcome!
7829 */
1724813d 7830 for_each_possible_cpu(cpu) {
f10e00f4
KT
7831 rcu_read_lock_sched();
7832 dl_b = dl_bw_of(cpu);
332ac17e 7833
49516342 7834 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7835 if (new_bw < dl_b->total_bw)
7836 ret = -EBUSY;
49516342 7837 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7838
f10e00f4
KT
7839 rcu_read_unlock_sched();
7840
1724813d
PZ
7841 if (ret)
7842 break;
332ac17e
DF
7843 }
7844
1724813d 7845 return ret;
332ac17e
DF
7846}
7847
1724813d 7848static void sched_dl_do_global(void)
ce0dbbbb 7849{
1724813d 7850 u64 new_bw = -1;
f10e00f4 7851 struct dl_bw *dl_b;
1724813d 7852 int cpu;
49516342 7853 unsigned long flags;
ce0dbbbb 7854
1724813d
PZ
7855 def_dl_bandwidth.dl_period = global_rt_period();
7856 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7857
7858 if (global_rt_runtime() != RUNTIME_INF)
7859 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7860
7861 /*
7862 * FIXME: As above...
7863 */
7864 for_each_possible_cpu(cpu) {
f10e00f4
KT
7865 rcu_read_lock_sched();
7866 dl_b = dl_bw_of(cpu);
1724813d 7867
49516342 7868 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7869 dl_b->bw = new_bw;
49516342 7870 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7871
7872 rcu_read_unlock_sched();
ce0dbbbb 7873 }
1724813d
PZ
7874}
7875
7876static int sched_rt_global_validate(void)
7877{
7878 if (sysctl_sched_rt_period <= 0)
7879 return -EINVAL;
7880
e9e7cb38
JL
7881 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7882 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7883 return -EINVAL;
7884
7885 return 0;
7886}
7887
7888static void sched_rt_do_global(void)
7889{
7890 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7891 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7892}
7893
d0b27fa7 7894int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7895 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7896 loff_t *ppos)
7897{
d0b27fa7
PZ
7898 int old_period, old_runtime;
7899 static DEFINE_MUTEX(mutex);
1724813d 7900 int ret;
d0b27fa7
PZ
7901
7902 mutex_lock(&mutex);
7903 old_period = sysctl_sched_rt_period;
7904 old_runtime = sysctl_sched_rt_runtime;
7905
8d65af78 7906 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7907
7908 if (!ret && write) {
1724813d
PZ
7909 ret = sched_rt_global_validate();
7910 if (ret)
7911 goto undo;
7912
d0b27fa7 7913 ret = sched_rt_global_constraints();
1724813d
PZ
7914 if (ret)
7915 goto undo;
7916
7917 ret = sched_dl_global_constraints();
7918 if (ret)
7919 goto undo;
7920
7921 sched_rt_do_global();
7922 sched_dl_do_global();
7923 }
7924 if (0) {
7925undo:
7926 sysctl_sched_rt_period = old_period;
7927 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7928 }
7929 mutex_unlock(&mutex);
7930
7931 return ret;
7932}
68318b8e 7933
1724813d 7934int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7935 void __user *buffer, size_t *lenp,
7936 loff_t *ppos)
7937{
7938 int ret;
332ac17e 7939 static DEFINE_MUTEX(mutex);
332ac17e
DF
7940
7941 mutex_lock(&mutex);
332ac17e 7942 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7943 /* make sure that internally we keep jiffies */
7944 /* also, writing zero resets timeslice to default */
332ac17e 7945 if (!ret && write) {
1724813d
PZ
7946 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7947 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7948 }
7949 mutex_unlock(&mutex);
332ac17e
DF
7950 return ret;
7951}
7952
052f1dc7 7953#ifdef CONFIG_CGROUP_SCHED
68318b8e 7954
a7c6d554 7955static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7956{
a7c6d554 7957 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7958}
7959
eb95419b
TH
7960static struct cgroup_subsys_state *
7961cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7962{
eb95419b
TH
7963 struct task_group *parent = css_tg(parent_css);
7964 struct task_group *tg;
68318b8e 7965
eb95419b 7966 if (!parent) {
68318b8e 7967 /* This is early initialization for the top cgroup */
07e06b01 7968 return &root_task_group.css;
68318b8e
SV
7969 }
7970
ec7dc8ac 7971 tg = sched_create_group(parent);
68318b8e
SV
7972 if (IS_ERR(tg))
7973 return ERR_PTR(-ENOMEM);
7974
68318b8e
SV
7975 return &tg->css;
7976}
7977
eb95419b 7978static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7979{
eb95419b 7980 struct task_group *tg = css_tg(css);
5c9d535b 7981 struct task_group *parent = css_tg(css->parent);
ace783b9 7982
63876986
TH
7983 if (parent)
7984 sched_online_group(tg, parent);
ace783b9
LZ
7985 return 0;
7986}
7987
eb95419b 7988static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7989{
eb95419b 7990 struct task_group *tg = css_tg(css);
68318b8e
SV
7991
7992 sched_destroy_group(tg);
7993}
7994
eb95419b 7995static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7996{
eb95419b 7997 struct task_group *tg = css_tg(css);
ace783b9
LZ
7998
7999 sched_offline_group(tg);
8000}
8001
eeb61e53
KT
8002static void cpu_cgroup_fork(struct task_struct *task)
8003{
8004 sched_move_task(task);
8005}
8006
eb95419b 8007static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8008 struct cgroup_taskset *tset)
68318b8e 8009{
bb9d97b6
TH
8010 struct task_struct *task;
8011
924f0d9a 8012 cgroup_taskset_for_each(task, tset) {
b68aa230 8013#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8014 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8015 return -EINVAL;
b68aa230 8016#else
bb9d97b6
TH
8017 /* We don't support RT-tasks being in separate groups */
8018 if (task->sched_class != &fair_sched_class)
8019 return -EINVAL;
b68aa230 8020#endif
bb9d97b6 8021 }
be367d09
BB
8022 return 0;
8023}
68318b8e 8024
eb95419b 8025static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8026 struct cgroup_taskset *tset)
68318b8e 8027{
bb9d97b6
TH
8028 struct task_struct *task;
8029
924f0d9a 8030 cgroup_taskset_for_each(task, tset)
bb9d97b6 8031 sched_move_task(task);
68318b8e
SV
8032}
8033
eb95419b
TH
8034static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8035 struct cgroup_subsys_state *old_css,
8036 struct task_struct *task)
068c5cc5
PZ
8037{
8038 /*
8039 * cgroup_exit() is called in the copy_process() failure path.
8040 * Ignore this case since the task hasn't ran yet, this avoids
8041 * trying to poke a half freed task state from generic code.
8042 */
8043 if (!(task->flags & PF_EXITING))
8044 return;
8045
8046 sched_move_task(task);
8047}
8048
052f1dc7 8049#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8050static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8051 struct cftype *cftype, u64 shareval)
68318b8e 8052{
182446d0 8053 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8054}
8055
182446d0
TH
8056static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8057 struct cftype *cft)
68318b8e 8058{
182446d0 8059 struct task_group *tg = css_tg(css);
68318b8e 8060
c8b28116 8061 return (u64) scale_load_down(tg->shares);
68318b8e 8062}
ab84d31e
PT
8063
8064#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8065static DEFINE_MUTEX(cfs_constraints_mutex);
8066
ab84d31e
PT
8067const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8068const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8069
a790de99
PT
8070static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8071
ab84d31e
PT
8072static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8073{
56f570e5 8074 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8075 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8076
8077 if (tg == &root_task_group)
8078 return -EINVAL;
8079
8080 /*
8081 * Ensure we have at some amount of bandwidth every period. This is
8082 * to prevent reaching a state of large arrears when throttled via
8083 * entity_tick() resulting in prolonged exit starvation.
8084 */
8085 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8086 return -EINVAL;
8087
8088 /*
8089 * Likewise, bound things on the otherside by preventing insane quota
8090 * periods. This also allows us to normalize in computing quota
8091 * feasibility.
8092 */
8093 if (period > max_cfs_quota_period)
8094 return -EINVAL;
8095
0e59bdae
KT
8096 /*
8097 * Prevent race between setting of cfs_rq->runtime_enabled and
8098 * unthrottle_offline_cfs_rqs().
8099 */
8100 get_online_cpus();
a790de99
PT
8101 mutex_lock(&cfs_constraints_mutex);
8102 ret = __cfs_schedulable(tg, period, quota);
8103 if (ret)
8104 goto out_unlock;
8105
58088ad0 8106 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8107 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8108 /*
8109 * If we need to toggle cfs_bandwidth_used, off->on must occur
8110 * before making related changes, and on->off must occur afterwards
8111 */
8112 if (runtime_enabled && !runtime_was_enabled)
8113 cfs_bandwidth_usage_inc();
ab84d31e
PT
8114 raw_spin_lock_irq(&cfs_b->lock);
8115 cfs_b->period = ns_to_ktime(period);
8116 cfs_b->quota = quota;
58088ad0 8117
a9cf55b2 8118 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8119 /* restart the period timer (if active) to handle new period expiry */
8120 if (runtime_enabled && cfs_b->timer_active) {
8121 /* force a reprogram */
09dc4ab0 8122 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8123 }
ab84d31e
PT
8124 raw_spin_unlock_irq(&cfs_b->lock);
8125
0e59bdae 8126 for_each_online_cpu(i) {
ab84d31e 8127 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8128 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8129
8130 raw_spin_lock_irq(&rq->lock);
58088ad0 8131 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8132 cfs_rq->runtime_remaining = 0;
671fd9da 8133
029632fb 8134 if (cfs_rq->throttled)
671fd9da 8135 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8136 raw_spin_unlock_irq(&rq->lock);
8137 }
1ee14e6c
BS
8138 if (runtime_was_enabled && !runtime_enabled)
8139 cfs_bandwidth_usage_dec();
a790de99
PT
8140out_unlock:
8141 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8142 put_online_cpus();
ab84d31e 8143
a790de99 8144 return ret;
ab84d31e
PT
8145}
8146
8147int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8148{
8149 u64 quota, period;
8150
029632fb 8151 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8152 if (cfs_quota_us < 0)
8153 quota = RUNTIME_INF;
8154 else
8155 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8156
8157 return tg_set_cfs_bandwidth(tg, period, quota);
8158}
8159
8160long tg_get_cfs_quota(struct task_group *tg)
8161{
8162 u64 quota_us;
8163
029632fb 8164 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8165 return -1;
8166
029632fb 8167 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8168 do_div(quota_us, NSEC_PER_USEC);
8169
8170 return quota_us;
8171}
8172
8173int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8174{
8175 u64 quota, period;
8176
8177 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8178 quota = tg->cfs_bandwidth.quota;
ab84d31e 8179
ab84d31e
PT
8180 return tg_set_cfs_bandwidth(tg, period, quota);
8181}
8182
8183long tg_get_cfs_period(struct task_group *tg)
8184{
8185 u64 cfs_period_us;
8186
029632fb 8187 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8188 do_div(cfs_period_us, NSEC_PER_USEC);
8189
8190 return cfs_period_us;
8191}
8192
182446d0
TH
8193static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8194 struct cftype *cft)
ab84d31e 8195{
182446d0 8196 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8197}
8198
182446d0
TH
8199static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8200 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8201{
182446d0 8202 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8203}
8204
182446d0
TH
8205static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8206 struct cftype *cft)
ab84d31e 8207{
182446d0 8208 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8209}
8210
182446d0
TH
8211static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8212 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8213{
182446d0 8214 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8215}
8216
a790de99
PT
8217struct cfs_schedulable_data {
8218 struct task_group *tg;
8219 u64 period, quota;
8220};
8221
8222/*
8223 * normalize group quota/period to be quota/max_period
8224 * note: units are usecs
8225 */
8226static u64 normalize_cfs_quota(struct task_group *tg,
8227 struct cfs_schedulable_data *d)
8228{
8229 u64 quota, period;
8230
8231 if (tg == d->tg) {
8232 period = d->period;
8233 quota = d->quota;
8234 } else {
8235 period = tg_get_cfs_period(tg);
8236 quota = tg_get_cfs_quota(tg);
8237 }
8238
8239 /* note: these should typically be equivalent */
8240 if (quota == RUNTIME_INF || quota == -1)
8241 return RUNTIME_INF;
8242
8243 return to_ratio(period, quota);
8244}
8245
8246static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8247{
8248 struct cfs_schedulable_data *d = data;
029632fb 8249 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8250 s64 quota = 0, parent_quota = -1;
8251
8252 if (!tg->parent) {
8253 quota = RUNTIME_INF;
8254 } else {
029632fb 8255 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8256
8257 quota = normalize_cfs_quota(tg, d);
9c58c79a 8258 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8259
8260 /*
8261 * ensure max(child_quota) <= parent_quota, inherit when no
8262 * limit is set
8263 */
8264 if (quota == RUNTIME_INF)
8265 quota = parent_quota;
8266 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8267 return -EINVAL;
8268 }
9c58c79a 8269 cfs_b->hierarchical_quota = quota;
a790de99
PT
8270
8271 return 0;
8272}
8273
8274static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8275{
8277434e 8276 int ret;
a790de99
PT
8277 struct cfs_schedulable_data data = {
8278 .tg = tg,
8279 .period = period,
8280 .quota = quota,
8281 };
8282
8283 if (quota != RUNTIME_INF) {
8284 do_div(data.period, NSEC_PER_USEC);
8285 do_div(data.quota, NSEC_PER_USEC);
8286 }
8287
8277434e
PT
8288 rcu_read_lock();
8289 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8290 rcu_read_unlock();
8291
8292 return ret;
a790de99 8293}
e8da1b18 8294
2da8ca82 8295static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8296{
2da8ca82 8297 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8298 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8299
44ffc75b
TH
8300 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8301 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8302 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8303
8304 return 0;
8305}
ab84d31e 8306#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8307#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8308
052f1dc7 8309#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8310static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8311 struct cftype *cft, s64 val)
6f505b16 8312{
182446d0 8313 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8314}
8315
182446d0
TH
8316static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8317 struct cftype *cft)
6f505b16 8318{
182446d0 8319 return sched_group_rt_runtime(css_tg(css));
6f505b16 8320}
d0b27fa7 8321
182446d0
TH
8322static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8323 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8324{
182446d0 8325 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8326}
8327
182446d0
TH
8328static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8329 struct cftype *cft)
d0b27fa7 8330{
182446d0 8331 return sched_group_rt_period(css_tg(css));
d0b27fa7 8332}
6d6bc0ad 8333#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8334
fe5c7cc2 8335static struct cftype cpu_files[] = {
052f1dc7 8336#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8337 {
8338 .name = "shares",
f4c753b7
PM
8339 .read_u64 = cpu_shares_read_u64,
8340 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8341 },
052f1dc7 8342#endif
ab84d31e
PT
8343#ifdef CONFIG_CFS_BANDWIDTH
8344 {
8345 .name = "cfs_quota_us",
8346 .read_s64 = cpu_cfs_quota_read_s64,
8347 .write_s64 = cpu_cfs_quota_write_s64,
8348 },
8349 {
8350 .name = "cfs_period_us",
8351 .read_u64 = cpu_cfs_period_read_u64,
8352 .write_u64 = cpu_cfs_period_write_u64,
8353 },
e8da1b18
NR
8354 {
8355 .name = "stat",
2da8ca82 8356 .seq_show = cpu_stats_show,
e8da1b18 8357 },
ab84d31e 8358#endif
052f1dc7 8359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8360 {
9f0c1e56 8361 .name = "rt_runtime_us",
06ecb27c
PM
8362 .read_s64 = cpu_rt_runtime_read,
8363 .write_s64 = cpu_rt_runtime_write,
6f505b16 8364 },
d0b27fa7
PZ
8365 {
8366 .name = "rt_period_us",
f4c753b7
PM
8367 .read_u64 = cpu_rt_period_read_uint,
8368 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8369 },
052f1dc7 8370#endif
4baf6e33 8371 { } /* terminate */
68318b8e
SV
8372};
8373
073219e9 8374struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8375 .css_alloc = cpu_cgroup_css_alloc,
8376 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8377 .css_online = cpu_cgroup_css_online,
8378 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8379 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8380 .can_attach = cpu_cgroup_can_attach,
8381 .attach = cpu_cgroup_attach,
068c5cc5 8382 .exit = cpu_cgroup_exit,
5577964e 8383 .legacy_cftypes = cpu_files,
68318b8e
SV
8384 .early_init = 1,
8385};
8386
052f1dc7 8387#endif /* CONFIG_CGROUP_SCHED */
d842de87 8388
b637a328
PM
8389void dump_cpu_task(int cpu)
8390{
8391 pr_info("Task dump for CPU %d:\n", cpu);
8392 sched_show_task(cpu_curr(cpu));
8393}
This page took 2.778807 seconds and 5 git commands to generate.