nohz: Assert existing housekeepers when nohz full enabled
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
c5905afb
IM
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
169}
170
171static void sched_feat_enable(int i)
172{
c5905afb
IM
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
175}
176#else
177static void sched_feat_disable(int i) { };
178static void sched_feat_enable(int i) { };
179#endif /* HAVE_JUMP_LABEL */
180
1a687c2e 181static int sched_feat_set(char *cmp)
f00b45c1 182{
f00b45c1 183 int i;
1a687c2e 184 int neg = 0;
f00b45c1 185
524429c3 186 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
187 neg = 1;
188 cmp += 3;
189 }
190
f8b6d1cc 191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 193 if (neg) {
f00b45c1 194 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
195 sched_feat_disable(i);
196 } else {
f00b45c1 197 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
198 sched_feat_enable(i);
199 }
f00b45c1
PZ
200 break;
201 }
202 }
203
1a687c2e
MG
204 return i;
205}
206
207static ssize_t
208sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210{
211 char buf[64];
212 char *cmp;
213 int i;
5cd08fbf 214 struct inode *inode;
1a687c2e
MG
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
5cd08fbf
JB
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
1a687c2e 228 i = sched_feat_set(cmp);
5cd08fbf 229 mutex_unlock(&inode->i_mutex);
f8b6d1cc 230 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
231 return -EINVAL;
232
42994724 233 *ppos += cnt;
f00b45c1
PZ
234
235 return cnt;
236}
237
34f3a814
LZ
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
828c0950 243static const struct file_operations sched_feat_fops = {
34f3a814
LZ
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
f00b45c1
PZ
249};
250
251static __init int sched_init_debug(void)
252{
f00b45c1
PZ
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
f8b6d1cc 259#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 260
b82d9fdd
PZ
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
e9e9250b
PZ
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
fa85ae24 275/*
9f0c1e56 276 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
277 * default: 1s
278 */
9f0c1e56 279unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 280
029632fb 281__read_mostly int scheduler_running;
6892b75e 282
9f0c1e56
PZ
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
fa85ae24 288
3fa0818b
RR
289/* cpus with isolated domains */
290cpumask_var_t cpu_isolated_map;
291
1da177e4 292/*
cc2a73b5 293 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 294 */
a9957449 295static struct rq *this_rq_lock(void)
1da177e4
LT
296 __acquires(rq->lock)
297{
70b97a7f 298 struct rq *rq;
1da177e4
LT
299
300 local_irq_disable();
301 rq = this_rq();
05fa785c 302 raw_spin_lock(&rq->lock);
1da177e4
LT
303
304 return rq;
305}
306
8f4d37ec
PZ
307#ifdef CONFIG_SCHED_HRTICK
308/*
309 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 310 */
8f4d37ec 311
8f4d37ec
PZ
312static void hrtick_clear(struct rq *rq)
313{
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316}
317
8f4d37ec
PZ
318/*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322static enum hrtimer_restart hrtick(struct hrtimer *timer)
323{
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
05fa785c 328 raw_spin_lock(&rq->lock);
3e51f33f 329 update_rq_clock(rq);
8f4d37ec 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 331 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
332
333 return HRTIMER_NORESTART;
334}
335
95e904c7 336#ifdef CONFIG_SMP
971ee28c 337
4961b6e1 338static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
339{
340 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 341
4961b6e1 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
343}
344
31656519
PZ
345/*
346 * called from hardirq (IPI) context
347 */
348static void __hrtick_start(void *arg)
b328ca18 349{
31656519 350 struct rq *rq = arg;
b328ca18 351
05fa785c 352 raw_spin_lock(&rq->lock);
971ee28c 353 __hrtick_restart(rq);
31656519 354 rq->hrtick_csd_pending = 0;
05fa785c 355 raw_spin_unlock(&rq->lock);
b328ca18
PZ
356}
357
31656519
PZ
358/*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
029632fb 363void hrtick_start(struct rq *rq, u64 delay)
b328ca18 364{
31656519 365 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 375
cc584b21 376 hrtimer_set_expires(timer, time);
31656519
PZ
377
378 if (rq == this_rq()) {
971ee28c 379 __hrtick_restart(rq);
31656519 380 } else if (!rq->hrtick_csd_pending) {
c46fff2a 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
382 rq->hrtick_csd_pending = 1;
383 }
b328ca18
PZ
384}
385
386static int
387hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388{
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
31656519 398 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403}
404
fa748203 405static __init void init_hrtick(void)
b328ca18
PZ
406{
407 hotcpu_notifier(hotplug_hrtick, 0);
408}
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
31656519 424}
b328ca18 425
006c75f1 426static inline void init_hrtick(void)
8f4d37ec 427{
8f4d37ec 428}
31656519 429#endif /* CONFIG_SMP */
8f4d37ec 430
31656519 431static void init_rq_hrtick(struct rq *rq)
8f4d37ec 432{
31656519
PZ
433#ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
8f4d37ec 435
31656519
PZ
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439#endif
8f4d37ec 440
31656519
PZ
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
8f4d37ec 443}
006c75f1 444#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
445static inline void hrtick_clear(struct rq *rq)
446{
447}
448
8f4d37ec
PZ
449static inline void init_rq_hrtick(struct rq *rq)
450{
451}
452
b328ca18
PZ
453static inline void init_hrtick(void)
454{
455}
006c75f1 456#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 457
fd99f91a
PZ
458/*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461#define fetch_or(ptr, val) \
462({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470})
471
e3baac47 472#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
473/*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478static bool set_nr_and_not_polling(struct task_struct *p)
479{
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482}
e3baac47
PZ
483
484/*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490static bool set_nr_if_polling(struct task_struct *p)
491{
492 struct thread_info *ti = task_thread_info(p);
316c1608 493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506}
507
fd99f91a
PZ
508#else
509static bool set_nr_and_not_polling(struct task_struct *p)
510{
511 set_tsk_need_resched(p);
512 return true;
513}
e3baac47
PZ
514
515#ifdef CONFIG_SMP
516static bool set_nr_if_polling(struct task_struct *p)
517{
518 return false;
519}
520#endif
fd99f91a
PZ
521#endif
522
76751049
PZ
523void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524{
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545}
546
547void wake_up_q(struct wake_q_head *head)
548{
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567}
568
c24d20db 569/*
8875125e 570 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
8875125e 576void resched_curr(struct rq *rq)
c24d20db 577{
8875125e 578 struct task_struct *curr = rq->curr;
c24d20db
IM
579 int cpu;
580
8875125e 581 lockdep_assert_held(&rq->lock);
c24d20db 582
8875125e 583 if (test_tsk_need_resched(curr))
c24d20db
IM
584 return;
585
8875125e 586 cpu = cpu_of(rq);
fd99f91a 587
f27dde8d 588 if (cpu == smp_processor_id()) {
8875125e 589 set_tsk_need_resched(curr);
f27dde8d 590 set_preempt_need_resched();
c24d20db 591 return;
f27dde8d 592 }
c24d20db 593
8875125e 594 if (set_nr_and_not_polling(curr))
c24d20db 595 smp_send_reschedule(cpu);
dfc68f29
AL
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
598}
599
029632fb 600void resched_cpu(int cpu)
c24d20db
IM
601{
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
05fa785c 605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 606 return;
8875125e 607 resched_curr(rq);
05fa785c 608 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 609}
06d8308c 610
b021fe3e 611#ifdef CONFIG_SMP
3451d024 612#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
613/*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
bc7a34b8 621int get_nohz_timer_target(void)
83cd4fe2 622{
bc7a34b8 623 int i, cpu = smp_processor_id();
83cd4fe2
VP
624 struct sched_domain *sd;
625
9642d18e 626 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
627 return cpu;
628
057f3fad 629 rcu_read_lock();
83cd4fe2 630 for_each_domain(cpu, sd) {
057f3fad 631 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 632 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
633 cpu = i;
634 goto unlock;
635 }
636 }
83cd4fe2 637 }
9642d18e
VH
638
639 if (!is_housekeeping_cpu(cpu))
640 cpu = housekeeping_any_cpu();
057f3fad
PZ
641unlock:
642 rcu_read_unlock();
83cd4fe2
VP
643 return cpu;
644}
06d8308c
TG
645/*
646 * When add_timer_on() enqueues a timer into the timer wheel of an
647 * idle CPU then this timer might expire before the next timer event
648 * which is scheduled to wake up that CPU. In case of a completely
649 * idle system the next event might even be infinite time into the
650 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
651 * leaves the inner idle loop so the newly added timer is taken into
652 * account when the CPU goes back to idle and evaluates the timer
653 * wheel for the next timer event.
654 */
1c20091e 655static void wake_up_idle_cpu(int cpu)
06d8308c
TG
656{
657 struct rq *rq = cpu_rq(cpu);
658
659 if (cpu == smp_processor_id())
660 return;
661
67b9ca70 662 if (set_nr_and_not_polling(rq->idle))
06d8308c 663 smp_send_reschedule(cpu);
dfc68f29
AL
664 else
665 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
666}
667
c5bfece2 668static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 669{
53c5fa16
FW
670 /*
671 * We just need the target to call irq_exit() and re-evaluate
672 * the next tick. The nohz full kick at least implies that.
673 * If needed we can still optimize that later with an
674 * empty IRQ.
675 */
c5bfece2 676 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
677 if (cpu != smp_processor_id() ||
678 tick_nohz_tick_stopped())
53c5fa16 679 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
680 return true;
681 }
682
683 return false;
684}
685
686void wake_up_nohz_cpu(int cpu)
687{
c5bfece2 688 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
689 wake_up_idle_cpu(cpu);
690}
691
ca38062e 692static inline bool got_nohz_idle_kick(void)
45bf76df 693{
1c792db7 694 int cpu = smp_processor_id();
873b4c65
VG
695
696 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
697 return false;
698
699 if (idle_cpu(cpu) && !need_resched())
700 return true;
701
702 /*
703 * We can't run Idle Load Balance on this CPU for this time so we
704 * cancel it and clear NOHZ_BALANCE_KICK
705 */
706 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
707 return false;
45bf76df
IM
708}
709
3451d024 710#else /* CONFIG_NO_HZ_COMMON */
45bf76df 711
ca38062e 712static inline bool got_nohz_idle_kick(void)
2069dd75 713{
ca38062e 714 return false;
2069dd75
PZ
715}
716
3451d024 717#endif /* CONFIG_NO_HZ_COMMON */
d842de87 718
ce831b38
FW
719#ifdef CONFIG_NO_HZ_FULL
720bool sched_can_stop_tick(void)
721{
1e78cdbd
RR
722 /*
723 * FIFO realtime policy runs the highest priority task. Other runnable
724 * tasks are of a lower priority. The scheduler tick does nothing.
725 */
726 if (current->policy == SCHED_FIFO)
727 return true;
728
729 /*
730 * Round-robin realtime tasks time slice with other tasks at the same
731 * realtime priority. Is this task the only one at this priority?
732 */
733 if (current->policy == SCHED_RR) {
734 struct sched_rt_entity *rt_se = &current->rt;
735
736 return rt_se->run_list.prev == rt_se->run_list.next;
737 }
738
3882ec64
FW
739 /*
740 * More than one running task need preemption.
741 * nr_running update is assumed to be visible
742 * after IPI is sent from wakers.
743 */
541b8264
VK
744 if (this_rq()->nr_running > 1)
745 return false;
ce831b38 746
541b8264 747 return true;
ce831b38
FW
748}
749#endif /* CONFIG_NO_HZ_FULL */
d842de87 750
029632fb 751void sched_avg_update(struct rq *rq)
18d95a28 752{
e9e9250b
PZ
753 s64 period = sched_avg_period();
754
78becc27 755 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
756 /*
757 * Inline assembly required to prevent the compiler
758 * optimising this loop into a divmod call.
759 * See __iter_div_u64_rem() for another example of this.
760 */
761 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
762 rq->age_stamp += period;
763 rq->rt_avg /= 2;
764 }
18d95a28
PZ
765}
766
6d6bc0ad 767#endif /* CONFIG_SMP */
18d95a28 768
a790de99
PT
769#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
770 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 771/*
8277434e
PT
772 * Iterate task_group tree rooted at *from, calling @down when first entering a
773 * node and @up when leaving it for the final time.
774 *
775 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 776 */
029632fb 777int walk_tg_tree_from(struct task_group *from,
8277434e 778 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
779{
780 struct task_group *parent, *child;
eb755805 781 int ret;
c09595f6 782
8277434e
PT
783 parent = from;
784
c09595f6 785down:
eb755805
PZ
786 ret = (*down)(parent, data);
787 if (ret)
8277434e 788 goto out;
c09595f6
PZ
789 list_for_each_entry_rcu(child, &parent->children, siblings) {
790 parent = child;
791 goto down;
792
793up:
794 continue;
795 }
eb755805 796 ret = (*up)(parent, data);
8277434e
PT
797 if (ret || parent == from)
798 goto out;
c09595f6
PZ
799
800 child = parent;
801 parent = parent->parent;
802 if (parent)
803 goto up;
8277434e 804out:
eb755805 805 return ret;
c09595f6
PZ
806}
807
029632fb 808int tg_nop(struct task_group *tg, void *data)
eb755805 809{
e2b245f8 810 return 0;
eb755805 811}
18d95a28
PZ
812#endif
813
45bf76df
IM
814static void set_load_weight(struct task_struct *p)
815{
f05998d4
NR
816 int prio = p->static_prio - MAX_RT_PRIO;
817 struct load_weight *load = &p->se.load;
818
dd41f596
IM
819 /*
820 * SCHED_IDLE tasks get minimal weight:
821 */
822 if (p->policy == SCHED_IDLE) {
c8b28116 823 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 824 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
825 return;
826 }
71f8bd46 827
c8b28116 828 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 829 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
830}
831
371fd7e7 832static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 833{
a64692a3 834 update_rq_clock(rq);
43148951 835 sched_info_queued(rq, p);
371fd7e7 836 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
837}
838
371fd7e7 839static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 840{
a64692a3 841 update_rq_clock(rq);
43148951 842 sched_info_dequeued(rq, p);
371fd7e7 843 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
844}
845
029632fb 846void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
847{
848 if (task_contributes_to_load(p))
849 rq->nr_uninterruptible--;
850
371fd7e7 851 enqueue_task(rq, p, flags);
1e3c88bd
PZ
852}
853
029632fb 854void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
855{
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible++;
858
371fd7e7 859 dequeue_task(rq, p, flags);
1e3c88bd
PZ
860}
861
fe44d621 862static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 863{
095c0aa8
GC
864/*
865 * In theory, the compile should just see 0 here, and optimize out the call
866 * to sched_rt_avg_update. But I don't trust it...
867 */
868#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 s64 steal = 0, irq_delta = 0;
870#endif
871#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 872 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
873
874 /*
875 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 * this case when a previous update_rq_clock() happened inside a
877 * {soft,}irq region.
878 *
879 * When this happens, we stop ->clock_task and only update the
880 * prev_irq_time stamp to account for the part that fit, so that a next
881 * update will consume the rest. This ensures ->clock_task is
882 * monotonic.
883 *
884 * It does however cause some slight miss-attribution of {soft,}irq
885 * time, a more accurate solution would be to update the irq_time using
886 * the current rq->clock timestamp, except that would require using
887 * atomic ops.
888 */
889 if (irq_delta > delta)
890 irq_delta = delta;
891
892 rq->prev_irq_time += irq_delta;
893 delta -= irq_delta;
095c0aa8
GC
894#endif
895#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 896 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
897 steal = paravirt_steal_clock(cpu_of(rq));
898 steal -= rq->prev_steal_time_rq;
899
900 if (unlikely(steal > delta))
901 steal = delta;
902
095c0aa8 903 rq->prev_steal_time_rq += steal;
095c0aa8
GC
904 delta -= steal;
905 }
906#endif
907
fe44d621
PZ
908 rq->clock_task += delta;
909
095c0aa8 910#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 911 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
912 sched_rt_avg_update(rq, irq_delta + steal);
913#endif
aa483808
VP
914}
915
34f971f6
PZ
916void sched_set_stop_task(int cpu, struct task_struct *stop)
917{
918 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 struct task_struct *old_stop = cpu_rq(cpu)->stop;
920
921 if (stop) {
922 /*
923 * Make it appear like a SCHED_FIFO task, its something
924 * userspace knows about and won't get confused about.
925 *
926 * Also, it will make PI more or less work without too
927 * much confusion -- but then, stop work should not
928 * rely on PI working anyway.
929 */
930 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931
932 stop->sched_class = &stop_sched_class;
933 }
934
935 cpu_rq(cpu)->stop = stop;
936
937 if (old_stop) {
938 /*
939 * Reset it back to a normal scheduling class so that
940 * it can die in pieces.
941 */
942 old_stop->sched_class = &rt_sched_class;
943 }
944}
945
14531189 946/*
dd41f596 947 * __normal_prio - return the priority that is based on the static prio
14531189 948 */
14531189
IM
949static inline int __normal_prio(struct task_struct *p)
950{
dd41f596 951 return p->static_prio;
14531189
IM
952}
953
b29739f9
IM
954/*
955 * Calculate the expected normal priority: i.e. priority
956 * without taking RT-inheritance into account. Might be
957 * boosted by interactivity modifiers. Changes upon fork,
958 * setprio syscalls, and whenever the interactivity
959 * estimator recalculates.
960 */
36c8b586 961static inline int normal_prio(struct task_struct *p)
b29739f9
IM
962{
963 int prio;
964
aab03e05
DF
965 if (task_has_dl_policy(p))
966 prio = MAX_DL_PRIO-1;
967 else if (task_has_rt_policy(p))
b29739f9
IM
968 prio = MAX_RT_PRIO-1 - p->rt_priority;
969 else
970 prio = __normal_prio(p);
971 return prio;
972}
973
974/*
975 * Calculate the current priority, i.e. the priority
976 * taken into account by the scheduler. This value might
977 * be boosted by RT tasks, or might be boosted by
978 * interactivity modifiers. Will be RT if the task got
979 * RT-boosted. If not then it returns p->normal_prio.
980 */
36c8b586 981static int effective_prio(struct task_struct *p)
b29739f9
IM
982{
983 p->normal_prio = normal_prio(p);
984 /*
985 * If we are RT tasks or we were boosted to RT priority,
986 * keep the priority unchanged. Otherwise, update priority
987 * to the normal priority:
988 */
989 if (!rt_prio(p->prio))
990 return p->normal_prio;
991 return p->prio;
992}
993
1da177e4
LT
994/**
995 * task_curr - is this task currently executing on a CPU?
996 * @p: the task in question.
e69f6186
YB
997 *
998 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 999 */
36c8b586 1000inline int task_curr(const struct task_struct *p)
1da177e4
LT
1001{
1002 return cpu_curr(task_cpu(p)) == p;
1003}
1004
67dfa1b7 1005/*
4c9a4bc8
PZ
1006 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007 * use the balance_callback list if you want balancing.
1008 *
1009 * this means any call to check_class_changed() must be followed by a call to
1010 * balance_callback().
67dfa1b7 1011 */
cb469845
SR
1012static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 const struct sched_class *prev_class,
da7a735e 1014 int oldprio)
cb469845
SR
1015{
1016 if (prev_class != p->sched_class) {
1017 if (prev_class->switched_from)
da7a735e 1018 prev_class->switched_from(rq, p);
4c9a4bc8 1019
da7a735e 1020 p->sched_class->switched_to(rq, p);
2d3d891d 1021 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1022 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1023}
1024
029632fb 1025void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1026{
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
8875125e 1036 resched_curr(rq);
1e5a7405
PZ
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
da0c1e65 1046 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1047 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1048}
1049
1da177e4 1050#ifdef CONFIG_SMP
5cc389bc
PZ
1051/*
1052 * This is how migration works:
1053 *
1054 * 1) we invoke migration_cpu_stop() on the target CPU using
1055 * stop_one_cpu().
1056 * 2) stopper starts to run (implicitly forcing the migrated thread
1057 * off the CPU)
1058 * 3) it checks whether the migrated task is still in the wrong runqueue.
1059 * 4) if it's in the wrong runqueue then the migration thread removes
1060 * it and puts it into the right queue.
1061 * 5) stopper completes and stop_one_cpu() returns and the migration
1062 * is done.
1063 */
1064
1065/*
1066 * move_queued_task - move a queued task to new rq.
1067 *
1068 * Returns (locked) new rq. Old rq's lock is released.
1069 */
5e16bbc2 1070static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1071{
5cc389bc
PZ
1072 lockdep_assert_held(&rq->lock);
1073
1074 dequeue_task(rq, p, 0);
1075 p->on_rq = TASK_ON_RQ_MIGRATING;
1076 set_task_cpu(p, new_cpu);
1077 raw_spin_unlock(&rq->lock);
1078
1079 rq = cpu_rq(new_cpu);
1080
1081 raw_spin_lock(&rq->lock);
1082 BUG_ON(task_cpu(p) != new_cpu);
1083 p->on_rq = TASK_ON_RQ_QUEUED;
1084 enqueue_task(rq, p, 0);
1085 check_preempt_curr(rq, p, 0);
1086
1087 return rq;
1088}
1089
1090struct migration_arg {
1091 struct task_struct *task;
1092 int dest_cpu;
1093};
1094
1095/*
1096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1097 * this because either it can't run here any more (set_cpus_allowed()
1098 * away from this CPU, or CPU going down), or because we're
1099 * attempting to rebalance this task on exec (sched_exec).
1100 *
1101 * So we race with normal scheduler movements, but that's OK, as long
1102 * as the task is no longer on this CPU.
5cc389bc 1103 */
5e16bbc2 1104static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1105{
5cc389bc 1106 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1107 return rq;
5cc389bc
PZ
1108
1109 /* Affinity changed (again). */
1110 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1111 return rq;
5cc389bc 1112
5e16bbc2
PZ
1113 rq = move_queued_task(rq, p, dest_cpu);
1114
1115 return rq;
5cc389bc
PZ
1116}
1117
1118/*
1119 * migration_cpu_stop - this will be executed by a highprio stopper thread
1120 * and performs thread migration by bumping thread off CPU then
1121 * 'pushing' onto another runqueue.
1122 */
1123static int migration_cpu_stop(void *data)
1124{
1125 struct migration_arg *arg = data;
5e16bbc2
PZ
1126 struct task_struct *p = arg->task;
1127 struct rq *rq = this_rq();
5cc389bc
PZ
1128
1129 /*
1130 * The original target cpu might have gone down and we might
1131 * be on another cpu but it doesn't matter.
1132 */
1133 local_irq_disable();
1134 /*
1135 * We need to explicitly wake pending tasks before running
1136 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 */
1139 sched_ttwu_pending();
5e16bbc2
PZ
1140
1141 raw_spin_lock(&p->pi_lock);
1142 raw_spin_lock(&rq->lock);
1143 /*
1144 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 * we're holding p->pi_lock.
1147 */
1148 if (task_rq(p) == rq && task_on_rq_queued(p))
1149 rq = __migrate_task(rq, p, arg->dest_cpu);
1150 raw_spin_unlock(&rq->lock);
1151 raw_spin_unlock(&p->pi_lock);
1152
5cc389bc
PZ
1153 local_irq_enable();
1154 return 0;
1155}
1156
c5b28038
PZ
1157/*
1158 * sched_class::set_cpus_allowed must do the below, but is not required to
1159 * actually call this function.
1160 */
1161void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1162{
5cc389bc
PZ
1163 cpumask_copy(&p->cpus_allowed, new_mask);
1164 p->nr_cpus_allowed = cpumask_weight(new_mask);
1165}
1166
c5b28038
PZ
1167void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168{
6c37067e
PZ
1169 struct rq *rq = task_rq(p);
1170 bool queued, running;
1171
c5b28038 1172 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1173
1174 queued = task_on_rq_queued(p);
1175 running = task_current(rq, p);
1176
1177 if (queued) {
1178 /*
1179 * Because __kthread_bind() calls this on blocked tasks without
1180 * holding rq->lock.
1181 */
1182 lockdep_assert_held(&rq->lock);
1183 dequeue_task(rq, p, 0);
1184 }
1185 if (running)
1186 put_prev_task(rq, p);
1187
c5b28038 1188 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1189
1190 if (running)
1191 p->sched_class->set_curr_task(rq);
1192 if (queued)
1193 enqueue_task(rq, p, 0);
c5b28038
PZ
1194}
1195
5cc389bc
PZ
1196/*
1197 * Change a given task's CPU affinity. Migrate the thread to a
1198 * proper CPU and schedule it away if the CPU it's executing on
1199 * is removed from the allowed bitmask.
1200 *
1201 * NOTE: the caller must have a valid reference to the task, the
1202 * task must not exit() & deallocate itself prematurely. The
1203 * call is not atomic; no spinlocks may be held.
1204 */
25834c73
PZ
1205static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1207{
1208 unsigned long flags;
1209 struct rq *rq;
1210 unsigned int dest_cpu;
1211 int ret = 0;
1212
1213 rq = task_rq_lock(p, &flags);
1214
25834c73
PZ
1215 /*
1216 * Must re-check here, to close a race against __kthread_bind(),
1217 * sched_setaffinity() is not guaranteed to observe the flag.
1218 */
1219 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223
5cc389bc
PZ
1224 if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 goto out;
1226
1227 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 ret = -EINVAL;
1229 goto out;
1230 }
1231
1232 do_set_cpus_allowed(p, new_mask);
1233
1234 /* Can the task run on the task's current CPU? If so, we're done */
1235 if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 goto out;
1237
1238 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 struct migration_arg arg = { p, dest_cpu };
1241 /* Need help from migration thread: drop lock and wait. */
1242 task_rq_unlock(rq, p, &flags);
1243 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 tlb_migrate_finish(p->mm);
1245 return 0;
cbce1a68
PZ
1246 } else if (task_on_rq_queued(p)) {
1247 /*
1248 * OK, since we're going to drop the lock immediately
1249 * afterwards anyway.
1250 */
1251 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1252 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1253 lockdep_pin_lock(&rq->lock);
1254 }
5cc389bc
PZ
1255out:
1256 task_rq_unlock(rq, p, &flags);
1257
1258 return ret;
1259}
25834c73
PZ
1260
1261int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262{
1263 return __set_cpus_allowed_ptr(p, new_mask, false);
1264}
5cc389bc
PZ
1265EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266
dd41f596 1267void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1268{
e2912009
PZ
1269#ifdef CONFIG_SCHED_DEBUG
1270 /*
1271 * We should never call set_task_cpu() on a blocked task,
1272 * ttwu() will sort out the placement.
1273 */
077614ee 1274 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1275 !p->on_rq);
0122ec5b
PZ
1276
1277#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1278 /*
1279 * The caller should hold either p->pi_lock or rq->lock, when changing
1280 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1281 *
1282 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1283 * see task_group().
6c6c54e1
PZ
1284 *
1285 * Furthermore, all task_rq users should acquire both locks, see
1286 * task_rq_lock().
1287 */
0122ec5b
PZ
1288 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1289 lockdep_is_held(&task_rq(p)->lock)));
1290#endif
e2912009
PZ
1291#endif
1292
de1d7286 1293 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1294
0c69774e 1295 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1296 if (p->sched_class->migrate_task_rq)
1297 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1298 p->se.nr_migrations++;
ff303e66 1299 perf_event_task_migrate(p);
0c69774e 1300 }
dd41f596
IM
1301
1302 __set_task_cpu(p, new_cpu);
c65cc870
IM
1303}
1304
ac66f547
PZ
1305static void __migrate_swap_task(struct task_struct *p, int cpu)
1306{
da0c1e65 1307 if (task_on_rq_queued(p)) {
ac66f547
PZ
1308 struct rq *src_rq, *dst_rq;
1309
1310 src_rq = task_rq(p);
1311 dst_rq = cpu_rq(cpu);
1312
1313 deactivate_task(src_rq, p, 0);
1314 set_task_cpu(p, cpu);
1315 activate_task(dst_rq, p, 0);
1316 check_preempt_curr(dst_rq, p, 0);
1317 } else {
1318 /*
1319 * Task isn't running anymore; make it appear like we migrated
1320 * it before it went to sleep. This means on wakeup we make the
1321 * previous cpu our targer instead of where it really is.
1322 */
1323 p->wake_cpu = cpu;
1324 }
1325}
1326
1327struct migration_swap_arg {
1328 struct task_struct *src_task, *dst_task;
1329 int src_cpu, dst_cpu;
1330};
1331
1332static int migrate_swap_stop(void *data)
1333{
1334 struct migration_swap_arg *arg = data;
1335 struct rq *src_rq, *dst_rq;
1336 int ret = -EAGAIN;
1337
1338 src_rq = cpu_rq(arg->src_cpu);
1339 dst_rq = cpu_rq(arg->dst_cpu);
1340
74602315
PZ
1341 double_raw_lock(&arg->src_task->pi_lock,
1342 &arg->dst_task->pi_lock);
ac66f547
PZ
1343 double_rq_lock(src_rq, dst_rq);
1344 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1345 goto unlock;
1346
1347 if (task_cpu(arg->src_task) != arg->src_cpu)
1348 goto unlock;
1349
1350 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1351 goto unlock;
1352
1353 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1354 goto unlock;
1355
1356 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1357 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1358
1359 ret = 0;
1360
1361unlock:
1362 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1363 raw_spin_unlock(&arg->dst_task->pi_lock);
1364 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1365
1366 return ret;
1367}
1368
1369/*
1370 * Cross migrate two tasks
1371 */
1372int migrate_swap(struct task_struct *cur, struct task_struct *p)
1373{
1374 struct migration_swap_arg arg;
1375 int ret = -EINVAL;
1376
ac66f547
PZ
1377 arg = (struct migration_swap_arg){
1378 .src_task = cur,
1379 .src_cpu = task_cpu(cur),
1380 .dst_task = p,
1381 .dst_cpu = task_cpu(p),
1382 };
1383
1384 if (arg.src_cpu == arg.dst_cpu)
1385 goto out;
1386
6acce3ef
PZ
1387 /*
1388 * These three tests are all lockless; this is OK since all of them
1389 * will be re-checked with proper locks held further down the line.
1390 */
ac66f547
PZ
1391 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1392 goto out;
1393
1394 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1395 goto out;
1396
1397 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1398 goto out;
1399
286549dc 1400 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1401 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1402
1403out:
ac66f547
PZ
1404 return ret;
1405}
1406
1da177e4
LT
1407/*
1408 * wait_task_inactive - wait for a thread to unschedule.
1409 *
85ba2d86
RM
1410 * If @match_state is nonzero, it's the @p->state value just checked and
1411 * not expected to change. If it changes, i.e. @p might have woken up,
1412 * then return zero. When we succeed in waiting for @p to be off its CPU,
1413 * we return a positive number (its total switch count). If a second call
1414 * a short while later returns the same number, the caller can be sure that
1415 * @p has remained unscheduled the whole time.
1416 *
1da177e4
LT
1417 * The caller must ensure that the task *will* unschedule sometime soon,
1418 * else this function might spin for a *long* time. This function can't
1419 * be called with interrupts off, or it may introduce deadlock with
1420 * smp_call_function() if an IPI is sent by the same process we are
1421 * waiting to become inactive.
1422 */
85ba2d86 1423unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1424{
1425 unsigned long flags;
da0c1e65 1426 int running, queued;
85ba2d86 1427 unsigned long ncsw;
70b97a7f 1428 struct rq *rq;
1da177e4 1429
3a5c359a
AK
1430 for (;;) {
1431 /*
1432 * We do the initial early heuristics without holding
1433 * any task-queue locks at all. We'll only try to get
1434 * the runqueue lock when things look like they will
1435 * work out!
1436 */
1437 rq = task_rq(p);
fa490cfd 1438
3a5c359a
AK
1439 /*
1440 * If the task is actively running on another CPU
1441 * still, just relax and busy-wait without holding
1442 * any locks.
1443 *
1444 * NOTE! Since we don't hold any locks, it's not
1445 * even sure that "rq" stays as the right runqueue!
1446 * But we don't care, since "task_running()" will
1447 * return false if the runqueue has changed and p
1448 * is actually now running somewhere else!
1449 */
85ba2d86
RM
1450 while (task_running(rq, p)) {
1451 if (match_state && unlikely(p->state != match_state))
1452 return 0;
3a5c359a 1453 cpu_relax();
85ba2d86 1454 }
fa490cfd 1455
3a5c359a
AK
1456 /*
1457 * Ok, time to look more closely! We need the rq
1458 * lock now, to be *sure*. If we're wrong, we'll
1459 * just go back and repeat.
1460 */
1461 rq = task_rq_lock(p, &flags);
27a9da65 1462 trace_sched_wait_task(p);
3a5c359a 1463 running = task_running(rq, p);
da0c1e65 1464 queued = task_on_rq_queued(p);
85ba2d86 1465 ncsw = 0;
f31e11d8 1466 if (!match_state || p->state == match_state)
93dcf55f 1467 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1468 task_rq_unlock(rq, p, &flags);
fa490cfd 1469
85ba2d86
RM
1470 /*
1471 * If it changed from the expected state, bail out now.
1472 */
1473 if (unlikely(!ncsw))
1474 break;
1475
3a5c359a
AK
1476 /*
1477 * Was it really running after all now that we
1478 * checked with the proper locks actually held?
1479 *
1480 * Oops. Go back and try again..
1481 */
1482 if (unlikely(running)) {
1483 cpu_relax();
1484 continue;
1485 }
fa490cfd 1486
3a5c359a
AK
1487 /*
1488 * It's not enough that it's not actively running,
1489 * it must be off the runqueue _entirely_, and not
1490 * preempted!
1491 *
80dd99b3 1492 * So if it was still runnable (but just not actively
3a5c359a
AK
1493 * running right now), it's preempted, and we should
1494 * yield - it could be a while.
1495 */
da0c1e65 1496 if (unlikely(queued)) {
8eb90c30
TG
1497 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1498
1499 set_current_state(TASK_UNINTERRUPTIBLE);
1500 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1501 continue;
1502 }
fa490cfd 1503
3a5c359a
AK
1504 /*
1505 * Ahh, all good. It wasn't running, and it wasn't
1506 * runnable, which means that it will never become
1507 * running in the future either. We're all done!
1508 */
1509 break;
1510 }
85ba2d86
RM
1511
1512 return ncsw;
1da177e4
LT
1513}
1514
1515/***
1516 * kick_process - kick a running thread to enter/exit the kernel
1517 * @p: the to-be-kicked thread
1518 *
1519 * Cause a process which is running on another CPU to enter
1520 * kernel-mode, without any delay. (to get signals handled.)
1521 *
25985edc 1522 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1523 * because all it wants to ensure is that the remote task enters
1524 * the kernel. If the IPI races and the task has been migrated
1525 * to another CPU then no harm is done and the purpose has been
1526 * achieved as well.
1527 */
36c8b586 1528void kick_process(struct task_struct *p)
1da177e4
LT
1529{
1530 int cpu;
1531
1532 preempt_disable();
1533 cpu = task_cpu(p);
1534 if ((cpu != smp_processor_id()) && task_curr(p))
1535 smp_send_reschedule(cpu);
1536 preempt_enable();
1537}
b43e3521 1538EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1539
30da688e 1540/*
013fdb80 1541 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1542 */
5da9a0fb
PZ
1543static int select_fallback_rq(int cpu, struct task_struct *p)
1544{
aa00d89c
TC
1545 int nid = cpu_to_node(cpu);
1546 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1547 enum { cpuset, possible, fail } state = cpuset;
1548 int dest_cpu;
5da9a0fb 1549
aa00d89c
TC
1550 /*
1551 * If the node that the cpu is on has been offlined, cpu_to_node()
1552 * will return -1. There is no cpu on the node, and we should
1553 * select the cpu on the other node.
1554 */
1555 if (nid != -1) {
1556 nodemask = cpumask_of_node(nid);
1557
1558 /* Look for allowed, online CPU in same node. */
1559 for_each_cpu(dest_cpu, nodemask) {
1560 if (!cpu_online(dest_cpu))
1561 continue;
1562 if (!cpu_active(dest_cpu))
1563 continue;
1564 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1565 return dest_cpu;
1566 }
2baab4e9 1567 }
5da9a0fb 1568
2baab4e9
PZ
1569 for (;;) {
1570 /* Any allowed, online CPU? */
e3831edd 1571 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1572 if (!cpu_online(dest_cpu))
1573 continue;
1574 if (!cpu_active(dest_cpu))
1575 continue;
1576 goto out;
1577 }
5da9a0fb 1578
2baab4e9
PZ
1579 switch (state) {
1580 case cpuset:
1581 /* No more Mr. Nice Guy. */
1582 cpuset_cpus_allowed_fallback(p);
1583 state = possible;
1584 break;
1585
1586 case possible:
1587 do_set_cpus_allowed(p, cpu_possible_mask);
1588 state = fail;
1589 break;
1590
1591 case fail:
1592 BUG();
1593 break;
1594 }
1595 }
1596
1597out:
1598 if (state != cpuset) {
1599 /*
1600 * Don't tell them about moving exiting tasks or
1601 * kernel threads (both mm NULL), since they never
1602 * leave kernel.
1603 */
1604 if (p->mm && printk_ratelimit()) {
aac74dc4 1605 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1606 task_pid_nr(p), p->comm, cpu);
1607 }
5da9a0fb
PZ
1608 }
1609
1610 return dest_cpu;
1611}
1612
e2912009 1613/*
013fdb80 1614 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1615 */
970b13ba 1616static inline
ac66f547 1617int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1618{
cbce1a68
PZ
1619 lockdep_assert_held(&p->pi_lock);
1620
6c1d9410
WL
1621 if (p->nr_cpus_allowed > 1)
1622 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1623
1624 /*
1625 * In order not to call set_task_cpu() on a blocking task we need
1626 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1627 * cpu.
1628 *
1629 * Since this is common to all placement strategies, this lives here.
1630 *
1631 * [ this allows ->select_task() to simply return task_cpu(p) and
1632 * not worry about this generic constraint ]
1633 */
fa17b507 1634 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1635 !cpu_online(cpu)))
5da9a0fb 1636 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1637
1638 return cpu;
970b13ba 1639}
09a40af5
MG
1640
1641static void update_avg(u64 *avg, u64 sample)
1642{
1643 s64 diff = sample - *avg;
1644 *avg += diff >> 3;
1645}
25834c73
PZ
1646
1647#else
1648
1649static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1650 const struct cpumask *new_mask, bool check)
1651{
1652 return set_cpus_allowed_ptr(p, new_mask);
1653}
1654
5cc389bc 1655#endif /* CONFIG_SMP */
970b13ba 1656
d7c01d27 1657static void
b84cb5df 1658ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1659{
d7c01d27 1660#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1661 struct rq *rq = this_rq();
1662
d7c01d27
PZ
1663#ifdef CONFIG_SMP
1664 int this_cpu = smp_processor_id();
1665
1666 if (cpu == this_cpu) {
1667 schedstat_inc(rq, ttwu_local);
1668 schedstat_inc(p, se.statistics.nr_wakeups_local);
1669 } else {
1670 struct sched_domain *sd;
1671
1672 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1673 rcu_read_lock();
d7c01d27
PZ
1674 for_each_domain(this_cpu, sd) {
1675 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1676 schedstat_inc(sd, ttwu_wake_remote);
1677 break;
1678 }
1679 }
057f3fad 1680 rcu_read_unlock();
d7c01d27 1681 }
f339b9dc
PZ
1682
1683 if (wake_flags & WF_MIGRATED)
1684 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1685
d7c01d27
PZ
1686#endif /* CONFIG_SMP */
1687
1688 schedstat_inc(rq, ttwu_count);
9ed3811a 1689 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1690
1691 if (wake_flags & WF_SYNC)
9ed3811a 1692 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1693
d7c01d27
PZ
1694#endif /* CONFIG_SCHEDSTATS */
1695}
1696
1697static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1698{
9ed3811a 1699 activate_task(rq, p, en_flags);
da0c1e65 1700 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1701
1702 /* if a worker is waking up, notify workqueue */
1703 if (p->flags & PF_WQ_WORKER)
1704 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1705}
1706
23f41eeb
PZ
1707/*
1708 * Mark the task runnable and perform wakeup-preemption.
1709 */
89363381 1710static void
23f41eeb 1711ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1712{
9ed3811a 1713 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1714 p->state = TASK_RUNNING;
fbd705a0
PZ
1715 trace_sched_wakeup(p);
1716
9ed3811a 1717#ifdef CONFIG_SMP
4c9a4bc8
PZ
1718 if (p->sched_class->task_woken) {
1719 /*
cbce1a68
PZ
1720 * Our task @p is fully woken up and running; so its safe to
1721 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1722 */
cbce1a68 1723 lockdep_unpin_lock(&rq->lock);
9ed3811a 1724 p->sched_class->task_woken(rq, p);
cbce1a68 1725 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1726 }
9ed3811a 1727
e69c6341 1728 if (rq->idle_stamp) {
78becc27 1729 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1730 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1731
abfafa54
JL
1732 update_avg(&rq->avg_idle, delta);
1733
1734 if (rq->avg_idle > max)
9ed3811a 1735 rq->avg_idle = max;
abfafa54 1736
9ed3811a
TH
1737 rq->idle_stamp = 0;
1738 }
1739#endif
1740}
1741
c05fbafb
PZ
1742static void
1743ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1744{
cbce1a68
PZ
1745 lockdep_assert_held(&rq->lock);
1746
c05fbafb
PZ
1747#ifdef CONFIG_SMP
1748 if (p->sched_contributes_to_load)
1749 rq->nr_uninterruptible--;
1750#endif
1751
1752 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1753 ttwu_do_wakeup(rq, p, wake_flags);
1754}
1755
1756/*
1757 * Called in case the task @p isn't fully descheduled from its runqueue,
1758 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1759 * since all we need to do is flip p->state to TASK_RUNNING, since
1760 * the task is still ->on_rq.
1761 */
1762static int ttwu_remote(struct task_struct *p, int wake_flags)
1763{
1764 struct rq *rq;
1765 int ret = 0;
1766
1767 rq = __task_rq_lock(p);
da0c1e65 1768 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1769 /* check_preempt_curr() may use rq clock */
1770 update_rq_clock(rq);
c05fbafb
PZ
1771 ttwu_do_wakeup(rq, p, wake_flags);
1772 ret = 1;
1773 }
1774 __task_rq_unlock(rq);
1775
1776 return ret;
1777}
1778
317f3941 1779#ifdef CONFIG_SMP
e3baac47 1780void sched_ttwu_pending(void)
317f3941
PZ
1781{
1782 struct rq *rq = this_rq();
fa14ff4a
PZ
1783 struct llist_node *llist = llist_del_all(&rq->wake_list);
1784 struct task_struct *p;
e3baac47 1785 unsigned long flags;
317f3941 1786
e3baac47
PZ
1787 if (!llist)
1788 return;
1789
1790 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1791 lockdep_pin_lock(&rq->lock);
317f3941 1792
fa14ff4a
PZ
1793 while (llist) {
1794 p = llist_entry(llist, struct task_struct, wake_entry);
1795 llist = llist_next(llist);
317f3941
PZ
1796 ttwu_do_activate(rq, p, 0);
1797 }
1798
cbce1a68 1799 lockdep_unpin_lock(&rq->lock);
e3baac47 1800 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1801}
1802
1803void scheduler_ipi(void)
1804{
f27dde8d
PZ
1805 /*
1806 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1807 * TIF_NEED_RESCHED remotely (for the first time) will also send
1808 * this IPI.
1809 */
8cb75e0c 1810 preempt_fold_need_resched();
f27dde8d 1811
fd2ac4f4 1812 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1813 return;
1814
1815 /*
1816 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1817 * traditionally all their work was done from the interrupt return
1818 * path. Now that we actually do some work, we need to make sure
1819 * we do call them.
1820 *
1821 * Some archs already do call them, luckily irq_enter/exit nest
1822 * properly.
1823 *
1824 * Arguably we should visit all archs and update all handlers,
1825 * however a fair share of IPIs are still resched only so this would
1826 * somewhat pessimize the simple resched case.
1827 */
1828 irq_enter();
fa14ff4a 1829 sched_ttwu_pending();
ca38062e
SS
1830
1831 /*
1832 * Check if someone kicked us for doing the nohz idle load balance.
1833 */
873b4c65 1834 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1835 this_rq()->idle_balance = 1;
ca38062e 1836 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1837 }
c5d753a5 1838 irq_exit();
317f3941
PZ
1839}
1840
1841static void ttwu_queue_remote(struct task_struct *p, int cpu)
1842{
e3baac47
PZ
1843 struct rq *rq = cpu_rq(cpu);
1844
1845 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1846 if (!set_nr_if_polling(rq->idle))
1847 smp_send_reschedule(cpu);
1848 else
1849 trace_sched_wake_idle_without_ipi(cpu);
1850 }
317f3941 1851}
d6aa8f85 1852
f6be8af1
CL
1853void wake_up_if_idle(int cpu)
1854{
1855 struct rq *rq = cpu_rq(cpu);
1856 unsigned long flags;
1857
fd7de1e8
AL
1858 rcu_read_lock();
1859
1860 if (!is_idle_task(rcu_dereference(rq->curr)))
1861 goto out;
f6be8af1
CL
1862
1863 if (set_nr_if_polling(rq->idle)) {
1864 trace_sched_wake_idle_without_ipi(cpu);
1865 } else {
1866 raw_spin_lock_irqsave(&rq->lock, flags);
1867 if (is_idle_task(rq->curr))
1868 smp_send_reschedule(cpu);
1869 /* Else cpu is not in idle, do nothing here */
1870 raw_spin_unlock_irqrestore(&rq->lock, flags);
1871 }
fd7de1e8
AL
1872
1873out:
1874 rcu_read_unlock();
f6be8af1
CL
1875}
1876
39be3501 1877bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1878{
1879 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1880}
d6aa8f85 1881#endif /* CONFIG_SMP */
317f3941 1882
c05fbafb
PZ
1883static void ttwu_queue(struct task_struct *p, int cpu)
1884{
1885 struct rq *rq = cpu_rq(cpu);
1886
17d9f311 1887#if defined(CONFIG_SMP)
39be3501 1888 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1889 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1890 ttwu_queue_remote(p, cpu);
1891 return;
1892 }
1893#endif
1894
c05fbafb 1895 raw_spin_lock(&rq->lock);
cbce1a68 1896 lockdep_pin_lock(&rq->lock);
c05fbafb 1897 ttwu_do_activate(rq, p, 0);
cbce1a68 1898 lockdep_unpin_lock(&rq->lock);
c05fbafb 1899 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1900}
1901
1902/**
1da177e4 1903 * try_to_wake_up - wake up a thread
9ed3811a 1904 * @p: the thread to be awakened
1da177e4 1905 * @state: the mask of task states that can be woken
9ed3811a 1906 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1907 *
1908 * Put it on the run-queue if it's not already there. The "current"
1909 * thread is always on the run-queue (except when the actual
1910 * re-schedule is in progress), and as such you're allowed to do
1911 * the simpler "current->state = TASK_RUNNING" to mark yourself
1912 * runnable without the overhead of this.
1913 *
e69f6186 1914 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1915 * or @state didn't match @p's state.
1da177e4 1916 */
e4a52bcb
PZ
1917static int
1918try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1919{
1da177e4 1920 unsigned long flags;
c05fbafb 1921 int cpu, success = 0;
2398f2c6 1922
e0acd0a6
ON
1923 /*
1924 * If we are going to wake up a thread waiting for CONDITION we
1925 * need to ensure that CONDITION=1 done by the caller can not be
1926 * reordered with p->state check below. This pairs with mb() in
1927 * set_current_state() the waiting thread does.
1928 */
1929 smp_mb__before_spinlock();
013fdb80 1930 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1931 if (!(p->state & state))
1da177e4
LT
1932 goto out;
1933
fbd705a0
PZ
1934 trace_sched_waking(p);
1935
c05fbafb 1936 success = 1; /* we're going to change ->state */
1da177e4 1937 cpu = task_cpu(p);
1da177e4 1938
c05fbafb
PZ
1939 if (p->on_rq && ttwu_remote(p, wake_flags))
1940 goto stat;
1da177e4 1941
1da177e4 1942#ifdef CONFIG_SMP
e9c84311 1943 /*
c05fbafb
PZ
1944 * If the owning (remote) cpu is still in the middle of schedule() with
1945 * this task as prev, wait until its done referencing the task.
e9c84311 1946 */
f3e94786 1947 while (p->on_cpu)
e4a52bcb 1948 cpu_relax();
0970d299 1949 /*
e4a52bcb 1950 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1951 */
e4a52bcb 1952 smp_rmb();
1da177e4 1953
a8e4f2ea 1954 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1955 p->state = TASK_WAKING;
e7693a36 1956
e4a52bcb 1957 if (p->sched_class->task_waking)
74f8e4b2 1958 p->sched_class->task_waking(p);
efbbd05a 1959
ac66f547 1960 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1961 if (task_cpu(p) != cpu) {
1962 wake_flags |= WF_MIGRATED;
e4a52bcb 1963 set_task_cpu(p, cpu);
f339b9dc 1964 }
1da177e4 1965#endif /* CONFIG_SMP */
1da177e4 1966
c05fbafb
PZ
1967 ttwu_queue(p, cpu);
1968stat:
b84cb5df 1969 ttwu_stat(p, cpu, wake_flags);
1da177e4 1970out:
013fdb80 1971 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1972
1973 return success;
1974}
1975
21aa9af0
TH
1976/**
1977 * try_to_wake_up_local - try to wake up a local task with rq lock held
1978 * @p: the thread to be awakened
1979 *
2acca55e 1980 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1981 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1982 * the current task.
21aa9af0
TH
1983 */
1984static void try_to_wake_up_local(struct task_struct *p)
1985{
1986 struct rq *rq = task_rq(p);
21aa9af0 1987
383efcd0
TH
1988 if (WARN_ON_ONCE(rq != this_rq()) ||
1989 WARN_ON_ONCE(p == current))
1990 return;
1991
21aa9af0
TH
1992 lockdep_assert_held(&rq->lock);
1993
2acca55e 1994 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1995 /*
1996 * This is OK, because current is on_cpu, which avoids it being
1997 * picked for load-balance and preemption/IRQs are still
1998 * disabled avoiding further scheduler activity on it and we've
1999 * not yet picked a replacement task.
2000 */
2001 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2002 raw_spin_unlock(&rq->lock);
2003 raw_spin_lock(&p->pi_lock);
2004 raw_spin_lock(&rq->lock);
cbce1a68 2005 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2006 }
2007
21aa9af0 2008 if (!(p->state & TASK_NORMAL))
2acca55e 2009 goto out;
21aa9af0 2010
fbd705a0
PZ
2011 trace_sched_waking(p);
2012
da0c1e65 2013 if (!task_on_rq_queued(p))
d7c01d27
PZ
2014 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2015
23f41eeb 2016 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2017 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2018out:
2019 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2020}
2021
50fa610a
DH
2022/**
2023 * wake_up_process - Wake up a specific process
2024 * @p: The process to be woken up.
2025 *
2026 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2027 * processes.
2028 *
2029 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2030 *
2031 * It may be assumed that this function implies a write memory barrier before
2032 * changing the task state if and only if any tasks are woken up.
2033 */
7ad5b3a5 2034int wake_up_process(struct task_struct *p)
1da177e4 2035{
9067ac85
ON
2036 WARN_ON(task_is_stopped_or_traced(p));
2037 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2038}
1da177e4
LT
2039EXPORT_SYMBOL(wake_up_process);
2040
7ad5b3a5 2041int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2042{
2043 return try_to_wake_up(p, state, 0);
2044}
2045
a5e7be3b
JL
2046/*
2047 * This function clears the sched_dl_entity static params.
2048 */
2049void __dl_clear_params(struct task_struct *p)
2050{
2051 struct sched_dl_entity *dl_se = &p->dl;
2052
2053 dl_se->dl_runtime = 0;
2054 dl_se->dl_deadline = 0;
2055 dl_se->dl_period = 0;
2056 dl_se->flags = 0;
2057 dl_se->dl_bw = 0;
40767b0d
PZ
2058
2059 dl_se->dl_throttled = 0;
2060 dl_se->dl_new = 1;
2061 dl_se->dl_yielded = 0;
a5e7be3b
JL
2062}
2063
1da177e4
LT
2064/*
2065 * Perform scheduler related setup for a newly forked process p.
2066 * p is forked by current.
dd41f596
IM
2067 *
2068 * __sched_fork() is basic setup used by init_idle() too:
2069 */
5e1576ed 2070static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2071{
fd2f4419
PZ
2072 p->on_rq = 0;
2073
2074 p->se.on_rq = 0;
dd41f596
IM
2075 p->se.exec_start = 0;
2076 p->se.sum_exec_runtime = 0;
f6cf891c 2077 p->se.prev_sum_exec_runtime = 0;
6c594c21 2078 p->se.nr_migrations = 0;
da7a735e 2079 p->se.vruntime = 0;
fd2f4419 2080 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2081
2082#ifdef CONFIG_SCHEDSTATS
41acab88 2083 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2084#endif
476d139c 2085
aab03e05 2086 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2087 init_dl_task_timer(&p->dl);
a5e7be3b 2088 __dl_clear_params(p);
aab03e05 2089
fa717060 2090 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2091
e107be36
AK
2092#ifdef CONFIG_PREEMPT_NOTIFIERS
2093 INIT_HLIST_HEAD(&p->preempt_notifiers);
2094#endif
cbee9f88
PZ
2095
2096#ifdef CONFIG_NUMA_BALANCING
2097 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2098 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2099 p->mm->numa_scan_seq = 0;
2100 }
2101
5e1576ed
RR
2102 if (clone_flags & CLONE_VM)
2103 p->numa_preferred_nid = current->numa_preferred_nid;
2104 else
2105 p->numa_preferred_nid = -1;
2106
cbee9f88
PZ
2107 p->node_stamp = 0ULL;
2108 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2109 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2110 p->numa_work.next = &p->numa_work;
44dba3d5 2111 p->numa_faults = NULL;
7e2703e6
RR
2112 p->last_task_numa_placement = 0;
2113 p->last_sum_exec_runtime = 0;
8c8a743c 2114
8c8a743c 2115 p->numa_group = NULL;
cbee9f88 2116#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2117}
2118
1a687c2e 2119#ifdef CONFIG_NUMA_BALANCING
3105b86a 2120#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
2121void set_numabalancing_state(bool enabled)
2122{
2123 if (enabled)
2124 sched_feat_set("NUMA");
2125 else
2126 sched_feat_set("NO_NUMA");
2127}
3105b86a
MG
2128#else
2129__read_mostly bool numabalancing_enabled;
2130
2131void set_numabalancing_state(bool enabled)
2132{
2133 numabalancing_enabled = enabled;
dd41f596 2134}
3105b86a 2135#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
2136
2137#ifdef CONFIG_PROC_SYSCTL
2138int sysctl_numa_balancing(struct ctl_table *table, int write,
2139 void __user *buffer, size_t *lenp, loff_t *ppos)
2140{
2141 struct ctl_table t;
2142 int err;
2143 int state = numabalancing_enabled;
2144
2145 if (write && !capable(CAP_SYS_ADMIN))
2146 return -EPERM;
2147
2148 t = *table;
2149 t.data = &state;
2150 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2151 if (err < 0)
2152 return err;
2153 if (write)
2154 set_numabalancing_state(state);
2155 return err;
2156}
2157#endif
2158#endif
dd41f596
IM
2159
2160/*
2161 * fork()/clone()-time setup:
2162 */
aab03e05 2163int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2164{
0122ec5b 2165 unsigned long flags;
dd41f596
IM
2166 int cpu = get_cpu();
2167
5e1576ed 2168 __sched_fork(clone_flags, p);
06b83b5f 2169 /*
0017d735 2170 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2171 * nobody will actually run it, and a signal or other external
2172 * event cannot wake it up and insert it on the runqueue either.
2173 */
0017d735 2174 p->state = TASK_RUNNING;
dd41f596 2175
c350a04e
MG
2176 /*
2177 * Make sure we do not leak PI boosting priority to the child.
2178 */
2179 p->prio = current->normal_prio;
2180
b9dc29e7
MG
2181 /*
2182 * Revert to default priority/policy on fork if requested.
2183 */
2184 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2185 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2186 p->policy = SCHED_NORMAL;
6c697bdf 2187 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2188 p->rt_priority = 0;
2189 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2190 p->static_prio = NICE_TO_PRIO(0);
2191
2192 p->prio = p->normal_prio = __normal_prio(p);
2193 set_load_weight(p);
6c697bdf 2194
b9dc29e7
MG
2195 /*
2196 * We don't need the reset flag anymore after the fork. It has
2197 * fulfilled its duty:
2198 */
2199 p->sched_reset_on_fork = 0;
2200 }
ca94c442 2201
aab03e05
DF
2202 if (dl_prio(p->prio)) {
2203 put_cpu();
2204 return -EAGAIN;
2205 } else if (rt_prio(p->prio)) {
2206 p->sched_class = &rt_sched_class;
2207 } else {
2ddbf952 2208 p->sched_class = &fair_sched_class;
aab03e05 2209 }
b29739f9 2210
cd29fe6f
PZ
2211 if (p->sched_class->task_fork)
2212 p->sched_class->task_fork(p);
2213
86951599
PZ
2214 /*
2215 * The child is not yet in the pid-hash so no cgroup attach races,
2216 * and the cgroup is pinned to this child due to cgroup_fork()
2217 * is ran before sched_fork().
2218 *
2219 * Silence PROVE_RCU.
2220 */
0122ec5b 2221 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2222 set_task_cpu(p, cpu);
0122ec5b 2223 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2224
f6db8347 2225#ifdef CONFIG_SCHED_INFO
dd41f596 2226 if (likely(sched_info_on()))
52f17b6c 2227 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2228#endif
3ca7a440
PZ
2229#if defined(CONFIG_SMP)
2230 p->on_cpu = 0;
4866cde0 2231#endif
01028747 2232 init_task_preempt_count(p);
806c09a7 2233#ifdef CONFIG_SMP
917b627d 2234 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2235 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2236#endif
917b627d 2237
476d139c 2238 put_cpu();
aab03e05 2239 return 0;
1da177e4
LT
2240}
2241
332ac17e
DF
2242unsigned long to_ratio(u64 period, u64 runtime)
2243{
2244 if (runtime == RUNTIME_INF)
2245 return 1ULL << 20;
2246
2247 /*
2248 * Doing this here saves a lot of checks in all
2249 * the calling paths, and returning zero seems
2250 * safe for them anyway.
2251 */
2252 if (period == 0)
2253 return 0;
2254
2255 return div64_u64(runtime << 20, period);
2256}
2257
2258#ifdef CONFIG_SMP
2259inline struct dl_bw *dl_bw_of(int i)
2260{
f78f5b90
PM
2261 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2262 "sched RCU must be held");
332ac17e
DF
2263 return &cpu_rq(i)->rd->dl_bw;
2264}
2265
de212f18 2266static inline int dl_bw_cpus(int i)
332ac17e 2267{
de212f18
PZ
2268 struct root_domain *rd = cpu_rq(i)->rd;
2269 int cpus = 0;
2270
f78f5b90
PM
2271 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2272 "sched RCU must be held");
de212f18
PZ
2273 for_each_cpu_and(i, rd->span, cpu_active_mask)
2274 cpus++;
2275
2276 return cpus;
332ac17e
DF
2277}
2278#else
2279inline struct dl_bw *dl_bw_of(int i)
2280{
2281 return &cpu_rq(i)->dl.dl_bw;
2282}
2283
de212f18 2284static inline int dl_bw_cpus(int i)
332ac17e
DF
2285{
2286 return 1;
2287}
2288#endif
2289
332ac17e
DF
2290/*
2291 * We must be sure that accepting a new task (or allowing changing the
2292 * parameters of an existing one) is consistent with the bandwidth
2293 * constraints. If yes, this function also accordingly updates the currently
2294 * allocated bandwidth to reflect the new situation.
2295 *
2296 * This function is called while holding p's rq->lock.
40767b0d
PZ
2297 *
2298 * XXX we should delay bw change until the task's 0-lag point, see
2299 * __setparam_dl().
332ac17e
DF
2300 */
2301static int dl_overflow(struct task_struct *p, int policy,
2302 const struct sched_attr *attr)
2303{
2304
2305 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2306 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2307 u64 runtime = attr->sched_runtime;
2308 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2309 int cpus, err = -1;
332ac17e
DF
2310
2311 if (new_bw == p->dl.dl_bw)
2312 return 0;
2313
2314 /*
2315 * Either if a task, enters, leave, or stays -deadline but changes
2316 * its parameters, we may need to update accordingly the total
2317 * allocated bandwidth of the container.
2318 */
2319 raw_spin_lock(&dl_b->lock);
de212f18 2320 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2321 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2322 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2323 __dl_add(dl_b, new_bw);
2324 err = 0;
2325 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2326 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2327 __dl_clear(dl_b, p->dl.dl_bw);
2328 __dl_add(dl_b, new_bw);
2329 err = 0;
2330 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2331 __dl_clear(dl_b, p->dl.dl_bw);
2332 err = 0;
2333 }
2334 raw_spin_unlock(&dl_b->lock);
2335
2336 return err;
2337}
2338
2339extern void init_dl_bw(struct dl_bw *dl_b);
2340
1da177e4
LT
2341/*
2342 * wake_up_new_task - wake up a newly created task for the first time.
2343 *
2344 * This function will do some initial scheduler statistics housekeeping
2345 * that must be done for every newly created context, then puts the task
2346 * on the runqueue and wakes it.
2347 */
3e51e3ed 2348void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2349{
2350 unsigned long flags;
dd41f596 2351 struct rq *rq;
fabf318e 2352
ab2515c4 2353 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2354#ifdef CONFIG_SMP
2355 /*
2356 * Fork balancing, do it here and not earlier because:
2357 * - cpus_allowed can change in the fork path
2358 * - any previously selected cpu might disappear through hotplug
fabf318e 2359 */
ac66f547 2360 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2361#endif
2362
a75cdaa9 2363 /* Initialize new task's runnable average */
540247fb 2364 init_entity_runnable_average(&p->se);
ab2515c4 2365 rq = __task_rq_lock(p);
cd29fe6f 2366 activate_task(rq, p, 0);
da0c1e65 2367 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2368 trace_sched_wakeup_new(p);
a7558e01 2369 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2370#ifdef CONFIG_SMP
efbbd05a
PZ
2371 if (p->sched_class->task_woken)
2372 p->sched_class->task_woken(rq, p);
9a897c5a 2373#endif
0122ec5b 2374 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2375}
2376
e107be36
AK
2377#ifdef CONFIG_PREEMPT_NOTIFIERS
2378
1cde2930
PZ
2379static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2380
2ecd9d29
PZ
2381void preempt_notifier_inc(void)
2382{
2383 static_key_slow_inc(&preempt_notifier_key);
2384}
2385EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2386
2387void preempt_notifier_dec(void)
2388{
2389 static_key_slow_dec(&preempt_notifier_key);
2390}
2391EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2392
e107be36 2393/**
80dd99b3 2394 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2395 * @notifier: notifier struct to register
e107be36
AK
2396 */
2397void preempt_notifier_register(struct preempt_notifier *notifier)
2398{
2ecd9d29
PZ
2399 if (!static_key_false(&preempt_notifier_key))
2400 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2401
e107be36
AK
2402 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2403}
2404EXPORT_SYMBOL_GPL(preempt_notifier_register);
2405
2406/**
2407 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2408 * @notifier: notifier struct to unregister
e107be36 2409 *
d84525a8 2410 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2411 */
2412void preempt_notifier_unregister(struct preempt_notifier *notifier)
2413{
2414 hlist_del(&notifier->link);
2415}
2416EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2417
1cde2930 2418static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2419{
2420 struct preempt_notifier *notifier;
e107be36 2421
b67bfe0d 2422 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2423 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2424}
2425
1cde2930
PZ
2426static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2427{
2428 if (static_key_false(&preempt_notifier_key))
2429 __fire_sched_in_preempt_notifiers(curr);
2430}
2431
e107be36 2432static void
1cde2930
PZ
2433__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2434 struct task_struct *next)
e107be36
AK
2435{
2436 struct preempt_notifier *notifier;
e107be36 2437
b67bfe0d 2438 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2439 notifier->ops->sched_out(notifier, next);
2440}
2441
1cde2930
PZ
2442static __always_inline void
2443fire_sched_out_preempt_notifiers(struct task_struct *curr,
2444 struct task_struct *next)
2445{
2446 if (static_key_false(&preempt_notifier_key))
2447 __fire_sched_out_preempt_notifiers(curr, next);
2448}
2449
6d6bc0ad 2450#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2451
1cde2930 2452static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2453{
2454}
2455
1cde2930 2456static inline void
e107be36
AK
2457fire_sched_out_preempt_notifiers(struct task_struct *curr,
2458 struct task_struct *next)
2459{
2460}
2461
6d6bc0ad 2462#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2463
4866cde0
NP
2464/**
2465 * prepare_task_switch - prepare to switch tasks
2466 * @rq: the runqueue preparing to switch
421cee29 2467 * @prev: the current task that is being switched out
4866cde0
NP
2468 * @next: the task we are going to switch to.
2469 *
2470 * This is called with the rq lock held and interrupts off. It must
2471 * be paired with a subsequent finish_task_switch after the context
2472 * switch.
2473 *
2474 * prepare_task_switch sets up locking and calls architecture specific
2475 * hooks.
2476 */
e107be36
AK
2477static inline void
2478prepare_task_switch(struct rq *rq, struct task_struct *prev,
2479 struct task_struct *next)
4866cde0 2480{
895dd92c 2481 trace_sched_switch(prev, next);
43148951 2482 sched_info_switch(rq, prev, next);
fe4b04fa 2483 perf_event_task_sched_out(prev, next);
e107be36 2484 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2485 prepare_lock_switch(rq, next);
2486 prepare_arch_switch(next);
2487}
2488
1da177e4
LT
2489/**
2490 * finish_task_switch - clean up after a task-switch
2491 * @prev: the thread we just switched away from.
2492 *
4866cde0
NP
2493 * finish_task_switch must be called after the context switch, paired
2494 * with a prepare_task_switch call before the context switch.
2495 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2496 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2497 *
2498 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2499 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2500 * with the lock held can cause deadlocks; see schedule() for
2501 * details.)
dfa50b60
ON
2502 *
2503 * The context switch have flipped the stack from under us and restored the
2504 * local variables which were saved when this task called schedule() in the
2505 * past. prev == current is still correct but we need to recalculate this_rq
2506 * because prev may have moved to another CPU.
1da177e4 2507 */
dfa50b60 2508static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2509 __releases(rq->lock)
2510{
dfa50b60 2511 struct rq *rq = this_rq();
1da177e4 2512 struct mm_struct *mm = rq->prev_mm;
55a101f8 2513 long prev_state;
1da177e4
LT
2514
2515 rq->prev_mm = NULL;
2516
2517 /*
2518 * A task struct has one reference for the use as "current".
c394cc9f 2519 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2520 * schedule one last time. The schedule call will never return, and
2521 * the scheduled task must drop that reference.
c394cc9f 2522 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2523 * still held, otherwise prev could be scheduled on another cpu, die
2524 * there before we look at prev->state, and then the reference would
2525 * be dropped twice.
2526 * Manfred Spraul <manfred@colorfullife.com>
2527 */
55a101f8 2528 prev_state = prev->state;
bf9fae9f 2529 vtime_task_switch(prev);
a8d757ef 2530 perf_event_task_sched_in(prev, current);
4866cde0 2531 finish_lock_switch(rq, prev);
01f23e16 2532 finish_arch_post_lock_switch();
e8fa1362 2533
e107be36 2534 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2535 if (mm)
2536 mmdrop(mm);
c394cc9f 2537 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2538 if (prev->sched_class->task_dead)
2539 prev->sched_class->task_dead(prev);
2540
c6fd91f0 2541 /*
2542 * Remove function-return probe instances associated with this
2543 * task and put them back on the free list.
9761eea8 2544 */
c6fd91f0 2545 kprobe_flush_task(prev);
1da177e4 2546 put_task_struct(prev);
c6fd91f0 2547 }
99e5ada9 2548
de734f89 2549 tick_nohz_task_switch();
dfa50b60 2550 return rq;
1da177e4
LT
2551}
2552
3f029d3c
GH
2553#ifdef CONFIG_SMP
2554
3f029d3c 2555/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2556static void __balance_callback(struct rq *rq)
3f029d3c 2557{
e3fca9e7
PZ
2558 struct callback_head *head, *next;
2559 void (*func)(struct rq *rq);
2560 unsigned long flags;
3f029d3c 2561
e3fca9e7
PZ
2562 raw_spin_lock_irqsave(&rq->lock, flags);
2563 head = rq->balance_callback;
2564 rq->balance_callback = NULL;
2565 while (head) {
2566 func = (void (*)(struct rq *))head->func;
2567 next = head->next;
2568 head->next = NULL;
2569 head = next;
3f029d3c 2570
e3fca9e7 2571 func(rq);
3f029d3c 2572 }
e3fca9e7
PZ
2573 raw_spin_unlock_irqrestore(&rq->lock, flags);
2574}
2575
2576static inline void balance_callback(struct rq *rq)
2577{
2578 if (unlikely(rq->balance_callback))
2579 __balance_callback(rq);
3f029d3c
GH
2580}
2581
2582#else
da19ab51 2583
e3fca9e7 2584static inline void balance_callback(struct rq *rq)
3f029d3c 2585{
1da177e4
LT
2586}
2587
3f029d3c
GH
2588#endif
2589
1da177e4
LT
2590/**
2591 * schedule_tail - first thing a freshly forked thread must call.
2592 * @prev: the thread we just switched away from.
2593 */
722a9f92 2594asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2595 __releases(rq->lock)
2596{
1a43a14a 2597 struct rq *rq;
da19ab51 2598
1a43a14a
ON
2599 /* finish_task_switch() drops rq->lock and enables preemtion */
2600 preempt_disable();
dfa50b60 2601 rq = finish_task_switch(prev);
e3fca9e7 2602 balance_callback(rq);
1a43a14a 2603 preempt_enable();
70b97a7f 2604
1da177e4 2605 if (current->set_child_tid)
b488893a 2606 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2607}
2608
2609/*
dfa50b60 2610 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2611 */
dfa50b60 2612static inline struct rq *
70b97a7f 2613context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2614 struct task_struct *next)
1da177e4 2615{
dd41f596 2616 struct mm_struct *mm, *oldmm;
1da177e4 2617
e107be36 2618 prepare_task_switch(rq, prev, next);
fe4b04fa 2619
dd41f596
IM
2620 mm = next->mm;
2621 oldmm = prev->active_mm;
9226d125
ZA
2622 /*
2623 * For paravirt, this is coupled with an exit in switch_to to
2624 * combine the page table reload and the switch backend into
2625 * one hypercall.
2626 */
224101ed 2627 arch_start_context_switch(prev);
9226d125 2628
31915ab4 2629 if (!mm) {
1da177e4
LT
2630 next->active_mm = oldmm;
2631 atomic_inc(&oldmm->mm_count);
2632 enter_lazy_tlb(oldmm, next);
2633 } else
2634 switch_mm(oldmm, mm, next);
2635
31915ab4 2636 if (!prev->mm) {
1da177e4 2637 prev->active_mm = NULL;
1da177e4
LT
2638 rq->prev_mm = oldmm;
2639 }
3a5f5e48
IM
2640 /*
2641 * Since the runqueue lock will be released by the next
2642 * task (which is an invalid locking op but in the case
2643 * of the scheduler it's an obvious special-case), so we
2644 * do an early lockdep release here:
2645 */
cbce1a68 2646 lockdep_unpin_lock(&rq->lock);
8a25d5de 2647 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2648
2649 /* Here we just switch the register state and the stack. */
2650 switch_to(prev, next, prev);
dd41f596 2651 barrier();
dfa50b60
ON
2652
2653 return finish_task_switch(prev);
1da177e4
LT
2654}
2655
2656/*
1c3e8264 2657 * nr_running and nr_context_switches:
1da177e4
LT
2658 *
2659 * externally visible scheduler statistics: current number of runnable
1c3e8264 2660 * threads, total number of context switches performed since bootup.
1da177e4
LT
2661 */
2662unsigned long nr_running(void)
2663{
2664 unsigned long i, sum = 0;
2665
2666 for_each_online_cpu(i)
2667 sum += cpu_rq(i)->nr_running;
2668
2669 return sum;
f711f609 2670}
1da177e4 2671
2ee507c4
TC
2672/*
2673 * Check if only the current task is running on the cpu.
2674 */
2675bool single_task_running(void)
2676{
2677 if (cpu_rq(smp_processor_id())->nr_running == 1)
2678 return true;
2679 else
2680 return false;
2681}
2682EXPORT_SYMBOL(single_task_running);
2683
1da177e4 2684unsigned long long nr_context_switches(void)
46cb4b7c 2685{
cc94abfc
SR
2686 int i;
2687 unsigned long long sum = 0;
46cb4b7c 2688
0a945022 2689 for_each_possible_cpu(i)
1da177e4 2690 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2691
1da177e4
LT
2692 return sum;
2693}
483b4ee6 2694
1da177e4
LT
2695unsigned long nr_iowait(void)
2696{
2697 unsigned long i, sum = 0;
483b4ee6 2698
0a945022 2699 for_each_possible_cpu(i)
1da177e4 2700 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2701
1da177e4
LT
2702 return sum;
2703}
483b4ee6 2704
8c215bd3 2705unsigned long nr_iowait_cpu(int cpu)
69d25870 2706{
8c215bd3 2707 struct rq *this = cpu_rq(cpu);
69d25870
AV
2708 return atomic_read(&this->nr_iowait);
2709}
46cb4b7c 2710
372ba8cb
MG
2711void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2712{
3289bdb4
PZ
2713 struct rq *rq = this_rq();
2714 *nr_waiters = atomic_read(&rq->nr_iowait);
2715 *load = rq->load.weight;
372ba8cb
MG
2716}
2717
dd41f596 2718#ifdef CONFIG_SMP
8a0be9ef 2719
46cb4b7c 2720/*
38022906
PZ
2721 * sched_exec - execve() is a valuable balancing opportunity, because at
2722 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2723 */
38022906 2724void sched_exec(void)
46cb4b7c 2725{
38022906 2726 struct task_struct *p = current;
1da177e4 2727 unsigned long flags;
0017d735 2728 int dest_cpu;
46cb4b7c 2729
8f42ced9 2730 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2731 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2732 if (dest_cpu == smp_processor_id())
2733 goto unlock;
38022906 2734
8f42ced9 2735 if (likely(cpu_active(dest_cpu))) {
969c7921 2736 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2737
8f42ced9
PZ
2738 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2739 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2740 return;
2741 }
0017d735 2742unlock:
8f42ced9 2743 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2744}
dd41f596 2745
1da177e4
LT
2746#endif
2747
1da177e4 2748DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2749DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2750
2751EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2752EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2753
c5f8d995
HS
2754/*
2755 * Return accounted runtime for the task.
2756 * In case the task is currently running, return the runtime plus current's
2757 * pending runtime that have not been accounted yet.
2758 */
2759unsigned long long task_sched_runtime(struct task_struct *p)
2760{
2761 unsigned long flags;
2762 struct rq *rq;
6e998916 2763 u64 ns;
c5f8d995 2764
911b2898
PZ
2765#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2766 /*
2767 * 64-bit doesn't need locks to atomically read a 64bit value.
2768 * So we have a optimization chance when the task's delta_exec is 0.
2769 * Reading ->on_cpu is racy, but this is ok.
2770 *
2771 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2772 * If we race with it entering cpu, unaccounted time is 0. This is
2773 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2774 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2775 * been accounted, so we're correct here as well.
911b2898 2776 */
da0c1e65 2777 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2778 return p->se.sum_exec_runtime;
2779#endif
2780
c5f8d995 2781 rq = task_rq_lock(p, &flags);
6e998916
SG
2782 /*
2783 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2784 * project cycles that may never be accounted to this
2785 * thread, breaking clock_gettime().
2786 */
2787 if (task_current(rq, p) && task_on_rq_queued(p)) {
2788 update_rq_clock(rq);
2789 p->sched_class->update_curr(rq);
2790 }
2791 ns = p->se.sum_exec_runtime;
0122ec5b 2792 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2793
2794 return ns;
2795}
48f24c4d 2796
7835b98b
CL
2797/*
2798 * This function gets called by the timer code, with HZ frequency.
2799 * We call it with interrupts disabled.
7835b98b
CL
2800 */
2801void scheduler_tick(void)
2802{
7835b98b
CL
2803 int cpu = smp_processor_id();
2804 struct rq *rq = cpu_rq(cpu);
dd41f596 2805 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2806
2807 sched_clock_tick();
dd41f596 2808
05fa785c 2809 raw_spin_lock(&rq->lock);
3e51f33f 2810 update_rq_clock(rq);
fa85ae24 2811 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2812 update_cpu_load_active(rq);
3289bdb4 2813 calc_global_load_tick(rq);
05fa785c 2814 raw_spin_unlock(&rq->lock);
7835b98b 2815
e9d2b064 2816 perf_event_task_tick();
e220d2dc 2817
e418e1c2 2818#ifdef CONFIG_SMP
6eb57e0d 2819 rq->idle_balance = idle_cpu(cpu);
7caff66f 2820 trigger_load_balance(rq);
e418e1c2 2821#endif
265f22a9 2822 rq_last_tick_reset(rq);
1da177e4
LT
2823}
2824
265f22a9
FW
2825#ifdef CONFIG_NO_HZ_FULL
2826/**
2827 * scheduler_tick_max_deferment
2828 *
2829 * Keep at least one tick per second when a single
2830 * active task is running because the scheduler doesn't
2831 * yet completely support full dynticks environment.
2832 *
2833 * This makes sure that uptime, CFS vruntime, load
2834 * balancing, etc... continue to move forward, even
2835 * with a very low granularity.
e69f6186
YB
2836 *
2837 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2838 */
2839u64 scheduler_tick_max_deferment(void)
2840{
2841 struct rq *rq = this_rq();
316c1608 2842 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2843
2844 next = rq->last_sched_tick + HZ;
2845
2846 if (time_before_eq(next, now))
2847 return 0;
2848
8fe8ff09 2849 return jiffies_to_nsecs(next - now);
1da177e4 2850}
265f22a9 2851#endif
1da177e4 2852
132380a0 2853notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2854{
2855 if (in_lock_functions(addr)) {
2856 addr = CALLER_ADDR2;
2857 if (in_lock_functions(addr))
2858 addr = CALLER_ADDR3;
2859 }
2860 return addr;
2861}
1da177e4 2862
7e49fcce
SR
2863#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2864 defined(CONFIG_PREEMPT_TRACER))
2865
edafe3a5 2866void preempt_count_add(int val)
1da177e4 2867{
6cd8a4bb 2868#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2869 /*
2870 * Underflow?
2871 */
9a11b49a
IM
2872 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2873 return;
6cd8a4bb 2874#endif
bdb43806 2875 __preempt_count_add(val);
6cd8a4bb 2876#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2877 /*
2878 * Spinlock count overflowing soon?
2879 */
33859f7f
MOS
2880 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2881 PREEMPT_MASK - 10);
6cd8a4bb 2882#endif
8f47b187
TG
2883 if (preempt_count() == val) {
2884 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2885#ifdef CONFIG_DEBUG_PREEMPT
2886 current->preempt_disable_ip = ip;
2887#endif
2888 trace_preempt_off(CALLER_ADDR0, ip);
2889 }
1da177e4 2890}
bdb43806 2891EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2892NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2893
edafe3a5 2894void preempt_count_sub(int val)
1da177e4 2895{
6cd8a4bb 2896#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2897 /*
2898 * Underflow?
2899 */
01e3eb82 2900 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2901 return;
1da177e4
LT
2902 /*
2903 * Is the spinlock portion underflowing?
2904 */
9a11b49a
IM
2905 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2906 !(preempt_count() & PREEMPT_MASK)))
2907 return;
6cd8a4bb 2908#endif
9a11b49a 2909
6cd8a4bb
SR
2910 if (preempt_count() == val)
2911 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2912 __preempt_count_sub(val);
1da177e4 2913}
bdb43806 2914EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2915NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2916
2917#endif
2918
2919/*
dd41f596 2920 * Print scheduling while atomic bug:
1da177e4 2921 */
dd41f596 2922static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2923{
664dfa65
DJ
2924 if (oops_in_progress)
2925 return;
2926
3df0fc5b
PZ
2927 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2928 prev->comm, prev->pid, preempt_count());
838225b4 2929
dd41f596 2930 debug_show_held_locks(prev);
e21f5b15 2931 print_modules();
dd41f596
IM
2932 if (irqs_disabled())
2933 print_irqtrace_events(prev);
8f47b187
TG
2934#ifdef CONFIG_DEBUG_PREEMPT
2935 if (in_atomic_preempt_off()) {
2936 pr_err("Preemption disabled at:");
2937 print_ip_sym(current->preempt_disable_ip);
2938 pr_cont("\n");
2939 }
2940#endif
6135fc1e 2941 dump_stack();
373d4d09 2942 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2943}
1da177e4 2944
dd41f596
IM
2945/*
2946 * Various schedule()-time debugging checks and statistics:
2947 */
2948static inline void schedule_debug(struct task_struct *prev)
2949{
0d9e2632
AT
2950#ifdef CONFIG_SCHED_STACK_END_CHECK
2951 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2952#endif
1da177e4 2953 /*
41a2d6cf 2954 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2955 * schedule() atomically, we ignore that path. Otherwise whine
2956 * if we are scheduling when we should not.
1da177e4 2957 */
192301e7 2958 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2959 __schedule_bug(prev);
b3fbab05 2960 rcu_sleep_check();
dd41f596 2961
1da177e4
LT
2962 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2963
2d72376b 2964 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2965}
2966
2967/*
2968 * Pick up the highest-prio task:
2969 */
2970static inline struct task_struct *
606dba2e 2971pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2972{
37e117c0 2973 const struct sched_class *class = &fair_sched_class;
dd41f596 2974 struct task_struct *p;
1da177e4
LT
2975
2976 /*
dd41f596
IM
2977 * Optimization: we know that if all tasks are in
2978 * the fair class we can call that function directly:
1da177e4 2979 */
37e117c0 2980 if (likely(prev->sched_class == class &&
38033c37 2981 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2982 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2983 if (unlikely(p == RETRY_TASK))
2984 goto again;
2985
2986 /* assumes fair_sched_class->next == idle_sched_class */
2987 if (unlikely(!p))
2988 p = idle_sched_class.pick_next_task(rq, prev);
2989
2990 return p;
1da177e4
LT
2991 }
2992
37e117c0 2993again:
34f971f6 2994 for_each_class(class) {
606dba2e 2995 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2996 if (p) {
2997 if (unlikely(p == RETRY_TASK))
2998 goto again;
dd41f596 2999 return p;
37e117c0 3000 }
dd41f596 3001 }
34f971f6
PZ
3002
3003 BUG(); /* the idle class will always have a runnable task */
dd41f596 3004}
1da177e4 3005
dd41f596 3006/*
c259e01a 3007 * __schedule() is the main scheduler function.
edde96ea
PE
3008 *
3009 * The main means of driving the scheduler and thus entering this function are:
3010 *
3011 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3012 *
3013 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3014 * paths. For example, see arch/x86/entry_64.S.
3015 *
3016 * To drive preemption between tasks, the scheduler sets the flag in timer
3017 * interrupt handler scheduler_tick().
3018 *
3019 * 3. Wakeups don't really cause entry into schedule(). They add a
3020 * task to the run-queue and that's it.
3021 *
3022 * Now, if the new task added to the run-queue preempts the current
3023 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3024 * called on the nearest possible occasion:
3025 *
3026 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3027 *
3028 * - in syscall or exception context, at the next outmost
3029 * preempt_enable(). (this might be as soon as the wake_up()'s
3030 * spin_unlock()!)
3031 *
3032 * - in IRQ context, return from interrupt-handler to
3033 * preemptible context
3034 *
3035 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3036 * then at the next:
3037 *
3038 * - cond_resched() call
3039 * - explicit schedule() call
3040 * - return from syscall or exception to user-space
3041 * - return from interrupt-handler to user-space
bfd9b2b5 3042 *
b30f0e3f 3043 * WARNING: must be called with preemption disabled!
dd41f596 3044 */
c259e01a 3045static void __sched __schedule(void)
dd41f596
IM
3046{
3047 struct task_struct *prev, *next;
67ca7bde 3048 unsigned long *switch_count;
dd41f596 3049 struct rq *rq;
31656519 3050 int cpu;
dd41f596 3051
dd41f596
IM
3052 cpu = smp_processor_id();
3053 rq = cpu_rq(cpu);
38200cf2 3054 rcu_note_context_switch();
dd41f596 3055 prev = rq->curr;
dd41f596 3056
dd41f596 3057 schedule_debug(prev);
1da177e4 3058
31656519 3059 if (sched_feat(HRTICK))
f333fdc9 3060 hrtick_clear(rq);
8f4d37ec 3061
e0acd0a6
ON
3062 /*
3063 * Make sure that signal_pending_state()->signal_pending() below
3064 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3065 * done by the caller to avoid the race with signal_wake_up().
3066 */
3067 smp_mb__before_spinlock();
05fa785c 3068 raw_spin_lock_irq(&rq->lock);
cbce1a68 3069 lockdep_pin_lock(&rq->lock);
1da177e4 3070
9edfbfed
PZ
3071 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3072
246d86b5 3073 switch_count = &prev->nivcsw;
1da177e4 3074 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3075 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3076 prev->state = TASK_RUNNING;
21aa9af0 3077 } else {
2acca55e
PZ
3078 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3079 prev->on_rq = 0;
3080
21aa9af0 3081 /*
2acca55e
PZ
3082 * If a worker went to sleep, notify and ask workqueue
3083 * whether it wants to wake up a task to maintain
3084 * concurrency.
21aa9af0
TH
3085 */
3086 if (prev->flags & PF_WQ_WORKER) {
3087 struct task_struct *to_wakeup;
3088
3089 to_wakeup = wq_worker_sleeping(prev, cpu);
3090 if (to_wakeup)
3091 try_to_wake_up_local(to_wakeup);
3092 }
21aa9af0 3093 }
dd41f596 3094 switch_count = &prev->nvcsw;
1da177e4
LT
3095 }
3096
9edfbfed 3097 if (task_on_rq_queued(prev))
606dba2e
PZ
3098 update_rq_clock(rq);
3099
3100 next = pick_next_task(rq, prev);
f26f9aff 3101 clear_tsk_need_resched(prev);
f27dde8d 3102 clear_preempt_need_resched();
9edfbfed 3103 rq->clock_skip_update = 0;
1da177e4 3104
1da177e4 3105 if (likely(prev != next)) {
1da177e4
LT
3106 rq->nr_switches++;
3107 rq->curr = next;
3108 ++*switch_count;
3109
dfa50b60
ON
3110 rq = context_switch(rq, prev, next); /* unlocks the rq */
3111 cpu = cpu_of(rq);
cbce1a68
PZ
3112 } else {
3113 lockdep_unpin_lock(&rq->lock);
05fa785c 3114 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3115 }
1da177e4 3116
e3fca9e7 3117 balance_callback(rq);
1da177e4 3118}
c259e01a 3119
9c40cef2
TG
3120static inline void sched_submit_work(struct task_struct *tsk)
3121{
3c7d5184 3122 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3123 return;
3124 /*
3125 * If we are going to sleep and we have plugged IO queued,
3126 * make sure to submit it to avoid deadlocks.
3127 */
3128 if (blk_needs_flush_plug(tsk))
3129 blk_schedule_flush_plug(tsk);
3130}
3131
722a9f92 3132asmlinkage __visible void __sched schedule(void)
c259e01a 3133{
9c40cef2
TG
3134 struct task_struct *tsk = current;
3135
3136 sched_submit_work(tsk);
bfd9b2b5 3137 do {
b30f0e3f 3138 preempt_disable();
bfd9b2b5 3139 __schedule();
b30f0e3f 3140 sched_preempt_enable_no_resched();
bfd9b2b5 3141 } while (need_resched());
c259e01a 3142}
1da177e4
LT
3143EXPORT_SYMBOL(schedule);
3144
91d1aa43 3145#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3146asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3147{
3148 /*
3149 * If we come here after a random call to set_need_resched(),
3150 * or we have been woken up remotely but the IPI has not yet arrived,
3151 * we haven't yet exited the RCU idle mode. Do it here manually until
3152 * we find a better solution.
7cc78f8f
AL
3153 *
3154 * NB: There are buggy callers of this function. Ideally we
c467ea76 3155 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3156 * too frequently to make sense yet.
20ab65e3 3157 */
7cc78f8f 3158 enum ctx_state prev_state = exception_enter();
20ab65e3 3159 schedule();
7cc78f8f 3160 exception_exit(prev_state);
20ab65e3
FW
3161}
3162#endif
3163
c5491ea7
TG
3164/**
3165 * schedule_preempt_disabled - called with preemption disabled
3166 *
3167 * Returns with preemption disabled. Note: preempt_count must be 1
3168 */
3169void __sched schedule_preempt_disabled(void)
3170{
ba74c144 3171 sched_preempt_enable_no_resched();
c5491ea7
TG
3172 schedule();
3173 preempt_disable();
3174}
3175
06b1f808 3176static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3177{
3178 do {
b30f0e3f 3179 preempt_active_enter();
a18b5d01 3180 __schedule();
b30f0e3f 3181 preempt_active_exit();
a18b5d01
FW
3182
3183 /*
3184 * Check again in case we missed a preemption opportunity
3185 * between schedule and now.
3186 */
a18b5d01
FW
3187 } while (need_resched());
3188}
3189
1da177e4
LT
3190#ifdef CONFIG_PREEMPT
3191/*
2ed6e34f 3192 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3193 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3194 * occur there and call schedule directly.
3195 */
722a9f92 3196asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3197{
1da177e4
LT
3198 /*
3199 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3200 * we do not want to preempt the current task. Just return..
1da177e4 3201 */
fbb00b56 3202 if (likely(!preemptible()))
1da177e4
LT
3203 return;
3204
a18b5d01 3205 preempt_schedule_common();
1da177e4 3206}
376e2424 3207NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3208EXPORT_SYMBOL(preempt_schedule);
009f60e2 3209
009f60e2 3210/**
4eaca0a8 3211 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3212 *
3213 * The tracing infrastructure uses preempt_enable_notrace to prevent
3214 * recursion and tracing preempt enabling caused by the tracing
3215 * infrastructure itself. But as tracing can happen in areas coming
3216 * from userspace or just about to enter userspace, a preempt enable
3217 * can occur before user_exit() is called. This will cause the scheduler
3218 * to be called when the system is still in usermode.
3219 *
3220 * To prevent this, the preempt_enable_notrace will use this function
3221 * instead of preempt_schedule() to exit user context if needed before
3222 * calling the scheduler.
3223 */
4eaca0a8 3224asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3225{
3226 enum ctx_state prev_ctx;
3227
3228 if (likely(!preemptible()))
3229 return;
3230
3231 do {
be690035
FW
3232 /*
3233 * Use raw __prempt_count() ops that don't call function.
3234 * We can't call functions before disabling preemption which
3235 * disarm preemption tracing recursions.
3236 */
3237 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3238 barrier();
009f60e2
ON
3239 /*
3240 * Needs preempt disabled in case user_exit() is traced
3241 * and the tracer calls preempt_enable_notrace() causing
3242 * an infinite recursion.
3243 */
3244 prev_ctx = exception_enter();
3245 __schedule();
3246 exception_exit(prev_ctx);
3247
009f60e2 3248 barrier();
be690035 3249 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
3250 } while (need_resched());
3251}
4eaca0a8 3252EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3253
32e475d7 3254#endif /* CONFIG_PREEMPT */
1da177e4
LT
3255
3256/*
2ed6e34f 3257 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3258 * off of irq context.
3259 * Note, that this is called and return with irqs disabled. This will
3260 * protect us against recursive calling from irq.
3261 */
722a9f92 3262asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3263{
b22366cd 3264 enum ctx_state prev_state;
6478d880 3265
2ed6e34f 3266 /* Catch callers which need to be fixed */
f27dde8d 3267 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3268
b22366cd
FW
3269 prev_state = exception_enter();
3270
3a5c359a 3271 do {
b30f0e3f 3272 preempt_active_enter();
3a5c359a 3273 local_irq_enable();
c259e01a 3274 __schedule();
3a5c359a 3275 local_irq_disable();
b30f0e3f 3276 preempt_active_exit();
5ed0cec0 3277 } while (need_resched());
b22366cd
FW
3278
3279 exception_exit(prev_state);
1da177e4
LT
3280}
3281
63859d4f 3282int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3283 void *key)
1da177e4 3284{
63859d4f 3285 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3286}
1da177e4
LT
3287EXPORT_SYMBOL(default_wake_function);
3288
b29739f9
IM
3289#ifdef CONFIG_RT_MUTEXES
3290
3291/*
3292 * rt_mutex_setprio - set the current priority of a task
3293 * @p: task
3294 * @prio: prio value (kernel-internal form)
3295 *
3296 * This function changes the 'effective' priority of a task. It does
3297 * not touch ->normal_prio like __setscheduler().
3298 *
c365c292
TG
3299 * Used by the rt_mutex code to implement priority inheritance
3300 * logic. Call site only calls if the priority of the task changed.
b29739f9 3301 */
36c8b586 3302void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3303{
da0c1e65 3304 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3305 struct rq *rq;
83ab0aa0 3306 const struct sched_class *prev_class;
b29739f9 3307
aab03e05 3308 BUG_ON(prio > MAX_PRIO);
b29739f9 3309
0122ec5b 3310 rq = __task_rq_lock(p);
b29739f9 3311
1c4dd99b
TG
3312 /*
3313 * Idle task boosting is a nono in general. There is one
3314 * exception, when PREEMPT_RT and NOHZ is active:
3315 *
3316 * The idle task calls get_next_timer_interrupt() and holds
3317 * the timer wheel base->lock on the CPU and another CPU wants
3318 * to access the timer (probably to cancel it). We can safely
3319 * ignore the boosting request, as the idle CPU runs this code
3320 * with interrupts disabled and will complete the lock
3321 * protected section without being interrupted. So there is no
3322 * real need to boost.
3323 */
3324 if (unlikely(p == rq->idle)) {
3325 WARN_ON(p != rq->curr);
3326 WARN_ON(p->pi_blocked_on);
3327 goto out_unlock;
3328 }
3329
a8027073 3330 trace_sched_pi_setprio(p, prio);
d5f9f942 3331 oldprio = p->prio;
83ab0aa0 3332 prev_class = p->sched_class;
da0c1e65 3333 queued = task_on_rq_queued(p);
051a1d1a 3334 running = task_current(rq, p);
da0c1e65 3335 if (queued)
69be72c1 3336 dequeue_task(rq, p, 0);
0e1f3483 3337 if (running)
f3cd1c4e 3338 put_prev_task(rq, p);
dd41f596 3339
2d3d891d
DF
3340 /*
3341 * Boosting condition are:
3342 * 1. -rt task is running and holds mutex A
3343 * --> -dl task blocks on mutex A
3344 *
3345 * 2. -dl task is running and holds mutex A
3346 * --> -dl task blocks on mutex A and could preempt the
3347 * running task
3348 */
3349 if (dl_prio(prio)) {
466af29b
ON
3350 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3351 if (!dl_prio(p->normal_prio) ||
3352 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3353 p->dl.dl_boosted = 1;
2d3d891d
DF
3354 enqueue_flag = ENQUEUE_REPLENISH;
3355 } else
3356 p->dl.dl_boosted = 0;
aab03e05 3357 p->sched_class = &dl_sched_class;
2d3d891d
DF
3358 } else if (rt_prio(prio)) {
3359 if (dl_prio(oldprio))
3360 p->dl.dl_boosted = 0;
3361 if (oldprio < prio)
3362 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3363 p->sched_class = &rt_sched_class;
2d3d891d
DF
3364 } else {
3365 if (dl_prio(oldprio))
3366 p->dl.dl_boosted = 0;
746db944
BS
3367 if (rt_prio(oldprio))
3368 p->rt.timeout = 0;
dd41f596 3369 p->sched_class = &fair_sched_class;
2d3d891d 3370 }
dd41f596 3371
b29739f9
IM
3372 p->prio = prio;
3373
0e1f3483
HS
3374 if (running)
3375 p->sched_class->set_curr_task(rq);
da0c1e65 3376 if (queued)
2d3d891d 3377 enqueue_task(rq, p, enqueue_flag);
cb469845 3378
da7a735e 3379 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3380out_unlock:
4c9a4bc8 3381 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3382 __task_rq_unlock(rq);
4c9a4bc8
PZ
3383
3384 balance_callback(rq);
3385 preempt_enable();
b29739f9 3386}
b29739f9 3387#endif
d50dde5a 3388
36c8b586 3389void set_user_nice(struct task_struct *p, long nice)
1da177e4 3390{
da0c1e65 3391 int old_prio, delta, queued;
1da177e4 3392 unsigned long flags;
70b97a7f 3393 struct rq *rq;
1da177e4 3394
75e45d51 3395 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3396 return;
3397 /*
3398 * We have to be careful, if called from sys_setpriority(),
3399 * the task might be in the middle of scheduling on another CPU.
3400 */
3401 rq = task_rq_lock(p, &flags);
3402 /*
3403 * The RT priorities are set via sched_setscheduler(), but we still
3404 * allow the 'normal' nice value to be set - but as expected
3405 * it wont have any effect on scheduling until the task is
aab03e05 3406 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3407 */
aab03e05 3408 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3409 p->static_prio = NICE_TO_PRIO(nice);
3410 goto out_unlock;
3411 }
da0c1e65
KT
3412 queued = task_on_rq_queued(p);
3413 if (queued)
69be72c1 3414 dequeue_task(rq, p, 0);
1da177e4 3415
1da177e4 3416 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3417 set_load_weight(p);
b29739f9
IM
3418 old_prio = p->prio;
3419 p->prio = effective_prio(p);
3420 delta = p->prio - old_prio;
1da177e4 3421
da0c1e65 3422 if (queued) {
371fd7e7 3423 enqueue_task(rq, p, 0);
1da177e4 3424 /*
d5f9f942
AM
3425 * If the task increased its priority or is running and
3426 * lowered its priority, then reschedule its CPU:
1da177e4 3427 */
d5f9f942 3428 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3429 resched_curr(rq);
1da177e4
LT
3430 }
3431out_unlock:
0122ec5b 3432 task_rq_unlock(rq, p, &flags);
1da177e4 3433}
1da177e4
LT
3434EXPORT_SYMBOL(set_user_nice);
3435
e43379f1
MM
3436/*
3437 * can_nice - check if a task can reduce its nice value
3438 * @p: task
3439 * @nice: nice value
3440 */
36c8b586 3441int can_nice(const struct task_struct *p, const int nice)
e43379f1 3442{
024f4747 3443 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3444 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3445
78d7d407 3446 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3447 capable(CAP_SYS_NICE));
3448}
3449
1da177e4
LT
3450#ifdef __ARCH_WANT_SYS_NICE
3451
3452/*
3453 * sys_nice - change the priority of the current process.
3454 * @increment: priority increment
3455 *
3456 * sys_setpriority is a more generic, but much slower function that
3457 * does similar things.
3458 */
5add95d4 3459SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3460{
48f24c4d 3461 long nice, retval;
1da177e4
LT
3462
3463 /*
3464 * Setpriority might change our priority at the same moment.
3465 * We don't have to worry. Conceptually one call occurs first
3466 * and we have a single winner.
3467 */
a9467fa3 3468 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3469 nice = task_nice(current) + increment;
1da177e4 3470
a9467fa3 3471 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3472 if (increment < 0 && !can_nice(current, nice))
3473 return -EPERM;
3474
1da177e4
LT
3475 retval = security_task_setnice(current, nice);
3476 if (retval)
3477 return retval;
3478
3479 set_user_nice(current, nice);
3480 return 0;
3481}
3482
3483#endif
3484
3485/**
3486 * task_prio - return the priority value of a given task.
3487 * @p: the task in question.
3488 *
e69f6186 3489 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3490 * RT tasks are offset by -200. Normal tasks are centered
3491 * around 0, value goes from -16 to +15.
3492 */
36c8b586 3493int task_prio(const struct task_struct *p)
1da177e4
LT
3494{
3495 return p->prio - MAX_RT_PRIO;
3496}
3497
1da177e4
LT
3498/**
3499 * idle_cpu - is a given cpu idle currently?
3500 * @cpu: the processor in question.
e69f6186
YB
3501 *
3502 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3503 */
3504int idle_cpu(int cpu)
3505{
908a3283
TG
3506 struct rq *rq = cpu_rq(cpu);
3507
3508 if (rq->curr != rq->idle)
3509 return 0;
3510
3511 if (rq->nr_running)
3512 return 0;
3513
3514#ifdef CONFIG_SMP
3515 if (!llist_empty(&rq->wake_list))
3516 return 0;
3517#endif
3518
3519 return 1;
1da177e4
LT
3520}
3521
1da177e4
LT
3522/**
3523 * idle_task - return the idle task for a given cpu.
3524 * @cpu: the processor in question.
e69f6186
YB
3525 *
3526 * Return: The idle task for the cpu @cpu.
1da177e4 3527 */
36c8b586 3528struct task_struct *idle_task(int cpu)
1da177e4
LT
3529{
3530 return cpu_rq(cpu)->idle;
3531}
3532
3533/**
3534 * find_process_by_pid - find a process with a matching PID value.
3535 * @pid: the pid in question.
e69f6186
YB
3536 *
3537 * The task of @pid, if found. %NULL otherwise.
1da177e4 3538 */
a9957449 3539static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3540{
228ebcbe 3541 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3542}
3543
aab03e05
DF
3544/*
3545 * This function initializes the sched_dl_entity of a newly becoming
3546 * SCHED_DEADLINE task.
3547 *
3548 * Only the static values are considered here, the actual runtime and the
3549 * absolute deadline will be properly calculated when the task is enqueued
3550 * for the first time with its new policy.
3551 */
3552static void
3553__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3554{
3555 struct sched_dl_entity *dl_se = &p->dl;
3556
aab03e05
DF
3557 dl_se->dl_runtime = attr->sched_runtime;
3558 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3559 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3560 dl_se->flags = attr->sched_flags;
332ac17e 3561 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3562
3563 /*
3564 * Changing the parameters of a task is 'tricky' and we're not doing
3565 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3566 *
3567 * What we SHOULD do is delay the bandwidth release until the 0-lag
3568 * point. This would include retaining the task_struct until that time
3569 * and change dl_overflow() to not immediately decrement the current
3570 * amount.
3571 *
3572 * Instead we retain the current runtime/deadline and let the new
3573 * parameters take effect after the current reservation period lapses.
3574 * This is safe (albeit pessimistic) because the 0-lag point is always
3575 * before the current scheduling deadline.
3576 *
3577 * We can still have temporary overloads because we do not delay the
3578 * change in bandwidth until that time; so admission control is
3579 * not on the safe side. It does however guarantee tasks will never
3580 * consume more than promised.
3581 */
aab03e05
DF
3582}
3583
c13db6b1
SR
3584/*
3585 * sched_setparam() passes in -1 for its policy, to let the functions
3586 * it calls know not to change it.
3587 */
3588#define SETPARAM_POLICY -1
3589
c365c292
TG
3590static void __setscheduler_params(struct task_struct *p,
3591 const struct sched_attr *attr)
1da177e4 3592{
d50dde5a
DF
3593 int policy = attr->sched_policy;
3594
c13db6b1 3595 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3596 policy = p->policy;
3597
1da177e4 3598 p->policy = policy;
d50dde5a 3599
aab03e05
DF
3600 if (dl_policy(policy))
3601 __setparam_dl(p, attr);
39fd8fd2 3602 else if (fair_policy(policy))
d50dde5a
DF
3603 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3604
39fd8fd2
PZ
3605 /*
3606 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3607 * !rt_policy. Always setting this ensures that things like
3608 * getparam()/getattr() don't report silly values for !rt tasks.
3609 */
3610 p->rt_priority = attr->sched_priority;
383afd09 3611 p->normal_prio = normal_prio(p);
c365c292
TG
3612 set_load_weight(p);
3613}
39fd8fd2 3614
c365c292
TG
3615/* Actually do priority change: must hold pi & rq lock. */
3616static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3617 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3618{
3619 __setscheduler_params(p, attr);
d50dde5a 3620
383afd09 3621 /*
0782e63b
TG
3622 * Keep a potential priority boosting if called from
3623 * sched_setscheduler().
383afd09 3624 */
0782e63b
TG
3625 if (keep_boost)
3626 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3627 else
3628 p->prio = normal_prio(p);
383afd09 3629
aab03e05
DF
3630 if (dl_prio(p->prio))
3631 p->sched_class = &dl_sched_class;
3632 else if (rt_prio(p->prio))
ffd44db5
PZ
3633 p->sched_class = &rt_sched_class;
3634 else
3635 p->sched_class = &fair_sched_class;
1da177e4 3636}
aab03e05
DF
3637
3638static void
3639__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3640{
3641 struct sched_dl_entity *dl_se = &p->dl;
3642
3643 attr->sched_priority = p->rt_priority;
3644 attr->sched_runtime = dl_se->dl_runtime;
3645 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3646 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3647 attr->sched_flags = dl_se->flags;
3648}
3649
3650/*
3651 * This function validates the new parameters of a -deadline task.
3652 * We ask for the deadline not being zero, and greater or equal
755378a4 3653 * than the runtime, as well as the period of being zero or
332ac17e 3654 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3655 * user parameters are above the internal resolution of 1us (we
3656 * check sched_runtime only since it is always the smaller one) and
3657 * below 2^63 ns (we have to check both sched_deadline and
3658 * sched_period, as the latter can be zero).
aab03e05
DF
3659 */
3660static bool
3661__checkparam_dl(const struct sched_attr *attr)
3662{
b0827819
JL
3663 /* deadline != 0 */
3664 if (attr->sched_deadline == 0)
3665 return false;
3666
3667 /*
3668 * Since we truncate DL_SCALE bits, make sure we're at least
3669 * that big.
3670 */
3671 if (attr->sched_runtime < (1ULL << DL_SCALE))
3672 return false;
3673
3674 /*
3675 * Since we use the MSB for wrap-around and sign issues, make
3676 * sure it's not set (mind that period can be equal to zero).
3677 */
3678 if (attr->sched_deadline & (1ULL << 63) ||
3679 attr->sched_period & (1ULL << 63))
3680 return false;
3681
3682 /* runtime <= deadline <= period (if period != 0) */
3683 if ((attr->sched_period != 0 &&
3684 attr->sched_period < attr->sched_deadline) ||
3685 attr->sched_deadline < attr->sched_runtime)
3686 return false;
3687
3688 return true;
aab03e05
DF
3689}
3690
c69e8d9c
DH
3691/*
3692 * check the target process has a UID that matches the current process's
3693 */
3694static bool check_same_owner(struct task_struct *p)
3695{
3696 const struct cred *cred = current_cred(), *pcred;
3697 bool match;
3698
3699 rcu_read_lock();
3700 pcred = __task_cred(p);
9c806aa0
EB
3701 match = (uid_eq(cred->euid, pcred->euid) ||
3702 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3703 rcu_read_unlock();
3704 return match;
3705}
3706
75381608
WL
3707static bool dl_param_changed(struct task_struct *p,
3708 const struct sched_attr *attr)
3709{
3710 struct sched_dl_entity *dl_se = &p->dl;
3711
3712 if (dl_se->dl_runtime != attr->sched_runtime ||
3713 dl_se->dl_deadline != attr->sched_deadline ||
3714 dl_se->dl_period != attr->sched_period ||
3715 dl_se->flags != attr->sched_flags)
3716 return true;
3717
3718 return false;
3719}
3720
d50dde5a
DF
3721static int __sched_setscheduler(struct task_struct *p,
3722 const struct sched_attr *attr,
dbc7f069 3723 bool user, bool pi)
1da177e4 3724{
383afd09
SR
3725 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3726 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3727 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3728 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3729 unsigned long flags;
83ab0aa0 3730 const struct sched_class *prev_class;
70b97a7f 3731 struct rq *rq;
ca94c442 3732 int reset_on_fork;
1da177e4 3733
66e5393a
SR
3734 /* may grab non-irq protected spin_locks */
3735 BUG_ON(in_interrupt());
1da177e4
LT
3736recheck:
3737 /* double check policy once rq lock held */
ca94c442
LP
3738 if (policy < 0) {
3739 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3740 policy = oldpolicy = p->policy;
ca94c442 3741 } else {
7479f3c9 3742 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3743
aab03e05
DF
3744 if (policy != SCHED_DEADLINE &&
3745 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3746 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3747 policy != SCHED_IDLE)
3748 return -EINVAL;
3749 }
3750
7479f3c9
PZ
3751 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3752 return -EINVAL;
3753
1da177e4
LT
3754 /*
3755 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3756 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3757 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3758 */
0bb040a4 3759 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3760 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3761 return -EINVAL;
aab03e05
DF
3762 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3763 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3764 return -EINVAL;
3765
37e4ab3f
OC
3766 /*
3767 * Allow unprivileged RT tasks to decrease priority:
3768 */
961ccddd 3769 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3770 if (fair_policy(policy)) {
d0ea0268 3771 if (attr->sched_nice < task_nice(p) &&
eaad4513 3772 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3773 return -EPERM;
3774 }
3775
e05606d3 3776 if (rt_policy(policy)) {
a44702e8
ON
3777 unsigned long rlim_rtprio =
3778 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3779
3780 /* can't set/change the rt policy */
3781 if (policy != p->policy && !rlim_rtprio)
3782 return -EPERM;
3783
3784 /* can't increase priority */
d50dde5a
DF
3785 if (attr->sched_priority > p->rt_priority &&
3786 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3787 return -EPERM;
3788 }
c02aa73b 3789
d44753b8
JL
3790 /*
3791 * Can't set/change SCHED_DEADLINE policy at all for now
3792 * (safest behavior); in the future we would like to allow
3793 * unprivileged DL tasks to increase their relative deadline
3794 * or reduce their runtime (both ways reducing utilization)
3795 */
3796 if (dl_policy(policy))
3797 return -EPERM;
3798
dd41f596 3799 /*
c02aa73b
DH
3800 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3801 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3802 */
c02aa73b 3803 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3804 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3805 return -EPERM;
3806 }
5fe1d75f 3807
37e4ab3f 3808 /* can't change other user's priorities */
c69e8d9c 3809 if (!check_same_owner(p))
37e4ab3f 3810 return -EPERM;
ca94c442
LP
3811
3812 /* Normal users shall not reset the sched_reset_on_fork flag */
3813 if (p->sched_reset_on_fork && !reset_on_fork)
3814 return -EPERM;
37e4ab3f 3815 }
1da177e4 3816
725aad24 3817 if (user) {
b0ae1981 3818 retval = security_task_setscheduler(p);
725aad24
JF
3819 if (retval)
3820 return retval;
3821 }
3822
b29739f9
IM
3823 /*
3824 * make sure no PI-waiters arrive (or leave) while we are
3825 * changing the priority of the task:
0122ec5b 3826 *
25985edc 3827 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3828 * runqueue lock must be held.
3829 */
0122ec5b 3830 rq = task_rq_lock(p, &flags);
dc61b1d6 3831
34f971f6
PZ
3832 /*
3833 * Changing the policy of the stop threads its a very bad idea
3834 */
3835 if (p == rq->stop) {
0122ec5b 3836 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3837 return -EINVAL;
3838 }
3839
a51e9198 3840 /*
d6b1e911
TG
3841 * If not changing anything there's no need to proceed further,
3842 * but store a possible modification of reset_on_fork.
a51e9198 3843 */
d50dde5a 3844 if (unlikely(policy == p->policy)) {
d0ea0268 3845 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3846 goto change;
3847 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3848 goto change;
75381608 3849 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3850 goto change;
d50dde5a 3851
d6b1e911 3852 p->sched_reset_on_fork = reset_on_fork;
45afb173 3853 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3854 return 0;
3855 }
d50dde5a 3856change:
a51e9198 3857
dc61b1d6 3858 if (user) {
332ac17e 3859#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3860 /*
3861 * Do not allow realtime tasks into groups that have no runtime
3862 * assigned.
3863 */
3864 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3865 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3866 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3867 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3868 return -EPERM;
3869 }
dc61b1d6 3870#endif
332ac17e
DF
3871#ifdef CONFIG_SMP
3872 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3873 cpumask_t *span = rq->rd->span;
332ac17e
DF
3874
3875 /*
3876 * Don't allow tasks with an affinity mask smaller than
3877 * the entire root_domain to become SCHED_DEADLINE. We
3878 * will also fail if there's no bandwidth available.
3879 */
e4099a5e
PZ
3880 if (!cpumask_subset(span, &p->cpus_allowed) ||
3881 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3882 task_rq_unlock(rq, p, &flags);
3883 return -EPERM;
3884 }
3885 }
3886#endif
3887 }
dc61b1d6 3888
1da177e4
LT
3889 /* recheck policy now with rq lock held */
3890 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3891 policy = oldpolicy = -1;
0122ec5b 3892 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3893 goto recheck;
3894 }
332ac17e
DF
3895
3896 /*
3897 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3898 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3899 * is available.
3900 */
e4099a5e 3901 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3902 task_rq_unlock(rq, p, &flags);
3903 return -EBUSY;
3904 }
3905
c365c292
TG
3906 p->sched_reset_on_fork = reset_on_fork;
3907 oldprio = p->prio;
3908
dbc7f069
PZ
3909 if (pi) {
3910 /*
3911 * Take priority boosted tasks into account. If the new
3912 * effective priority is unchanged, we just store the new
3913 * normal parameters and do not touch the scheduler class and
3914 * the runqueue. This will be done when the task deboost
3915 * itself.
3916 */
3917 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3918 if (new_effective_prio == oldprio) {
3919 __setscheduler_params(p, attr);
3920 task_rq_unlock(rq, p, &flags);
3921 return 0;
3922 }
c365c292
TG
3923 }
3924
da0c1e65 3925 queued = task_on_rq_queued(p);
051a1d1a 3926 running = task_current(rq, p);
da0c1e65 3927 if (queued)
4ca9b72b 3928 dequeue_task(rq, p, 0);
0e1f3483 3929 if (running)
f3cd1c4e 3930 put_prev_task(rq, p);
f6b53205 3931
83ab0aa0 3932 prev_class = p->sched_class;
dbc7f069 3933 __setscheduler(rq, p, attr, pi);
f6b53205 3934
0e1f3483
HS
3935 if (running)
3936 p->sched_class->set_curr_task(rq);
da0c1e65 3937 if (queued) {
81a44c54
TG
3938 /*
3939 * We enqueue to tail when the priority of a task is
3940 * increased (user space view).
3941 */
3942 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3943 }
cb469845 3944
da7a735e 3945 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3946 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3947 task_rq_unlock(rq, p, &flags);
b29739f9 3948
dbc7f069
PZ
3949 if (pi)
3950 rt_mutex_adjust_pi(p);
95e02ca9 3951
4c9a4bc8
PZ
3952 /*
3953 * Run balance callbacks after we've adjusted the PI chain.
3954 */
3955 balance_callback(rq);
3956 preempt_enable();
95e02ca9 3957
1da177e4
LT
3958 return 0;
3959}
961ccddd 3960
7479f3c9
PZ
3961static int _sched_setscheduler(struct task_struct *p, int policy,
3962 const struct sched_param *param, bool check)
3963{
3964 struct sched_attr attr = {
3965 .sched_policy = policy,
3966 .sched_priority = param->sched_priority,
3967 .sched_nice = PRIO_TO_NICE(p->static_prio),
3968 };
3969
c13db6b1
SR
3970 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3971 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3972 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3973 policy &= ~SCHED_RESET_ON_FORK;
3974 attr.sched_policy = policy;
3975 }
3976
dbc7f069 3977 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3978}
961ccddd
RR
3979/**
3980 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3981 * @p: the task in question.
3982 * @policy: new policy.
3983 * @param: structure containing the new RT priority.
3984 *
e69f6186
YB
3985 * Return: 0 on success. An error code otherwise.
3986 *
961ccddd
RR
3987 * NOTE that the task may be already dead.
3988 */
3989int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3990 const struct sched_param *param)
961ccddd 3991{
7479f3c9 3992 return _sched_setscheduler(p, policy, param, true);
961ccddd 3993}
1da177e4
LT
3994EXPORT_SYMBOL_GPL(sched_setscheduler);
3995
d50dde5a
DF
3996int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3997{
dbc7f069 3998 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
3999}
4000EXPORT_SYMBOL_GPL(sched_setattr);
4001
961ccddd
RR
4002/**
4003 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4004 * @p: the task in question.
4005 * @policy: new policy.
4006 * @param: structure containing the new RT priority.
4007 *
4008 * Just like sched_setscheduler, only don't bother checking if the
4009 * current context has permission. For example, this is needed in
4010 * stop_machine(): we create temporary high priority worker threads,
4011 * but our caller might not have that capability.
e69f6186
YB
4012 *
4013 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4014 */
4015int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4016 const struct sched_param *param)
961ccddd 4017{
7479f3c9 4018 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
4019}
4020
95cdf3b7
IM
4021static int
4022do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4023{
1da177e4
LT
4024 struct sched_param lparam;
4025 struct task_struct *p;
36c8b586 4026 int retval;
1da177e4
LT
4027
4028 if (!param || pid < 0)
4029 return -EINVAL;
4030 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4031 return -EFAULT;
5fe1d75f
ON
4032
4033 rcu_read_lock();
4034 retval = -ESRCH;
1da177e4 4035 p = find_process_by_pid(pid);
5fe1d75f
ON
4036 if (p != NULL)
4037 retval = sched_setscheduler(p, policy, &lparam);
4038 rcu_read_unlock();
36c8b586 4039
1da177e4
LT
4040 return retval;
4041}
4042
d50dde5a
DF
4043/*
4044 * Mimics kernel/events/core.c perf_copy_attr().
4045 */
4046static int sched_copy_attr(struct sched_attr __user *uattr,
4047 struct sched_attr *attr)
4048{
4049 u32 size;
4050 int ret;
4051
4052 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4053 return -EFAULT;
4054
4055 /*
4056 * zero the full structure, so that a short copy will be nice.
4057 */
4058 memset(attr, 0, sizeof(*attr));
4059
4060 ret = get_user(size, &uattr->size);
4061 if (ret)
4062 return ret;
4063
4064 if (size > PAGE_SIZE) /* silly large */
4065 goto err_size;
4066
4067 if (!size) /* abi compat */
4068 size = SCHED_ATTR_SIZE_VER0;
4069
4070 if (size < SCHED_ATTR_SIZE_VER0)
4071 goto err_size;
4072
4073 /*
4074 * If we're handed a bigger struct than we know of,
4075 * ensure all the unknown bits are 0 - i.e. new
4076 * user-space does not rely on any kernel feature
4077 * extensions we dont know about yet.
4078 */
4079 if (size > sizeof(*attr)) {
4080 unsigned char __user *addr;
4081 unsigned char __user *end;
4082 unsigned char val;
4083
4084 addr = (void __user *)uattr + sizeof(*attr);
4085 end = (void __user *)uattr + size;
4086
4087 for (; addr < end; addr++) {
4088 ret = get_user(val, addr);
4089 if (ret)
4090 return ret;
4091 if (val)
4092 goto err_size;
4093 }
4094 size = sizeof(*attr);
4095 }
4096
4097 ret = copy_from_user(attr, uattr, size);
4098 if (ret)
4099 return -EFAULT;
4100
4101 /*
4102 * XXX: do we want to be lenient like existing syscalls; or do we want
4103 * to be strict and return an error on out-of-bounds values?
4104 */
75e45d51 4105 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4106
e78c7bca 4107 return 0;
d50dde5a
DF
4108
4109err_size:
4110 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4111 return -E2BIG;
d50dde5a
DF
4112}
4113
1da177e4
LT
4114/**
4115 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4116 * @pid: the pid in question.
4117 * @policy: new policy.
4118 * @param: structure containing the new RT priority.
e69f6186
YB
4119 *
4120 * Return: 0 on success. An error code otherwise.
1da177e4 4121 */
5add95d4
HC
4122SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4123 struct sched_param __user *, param)
1da177e4 4124{
c21761f1
JB
4125 /* negative values for policy are not valid */
4126 if (policy < 0)
4127 return -EINVAL;
4128
1da177e4
LT
4129 return do_sched_setscheduler(pid, policy, param);
4130}
4131
4132/**
4133 * sys_sched_setparam - set/change the RT priority of a thread
4134 * @pid: the pid in question.
4135 * @param: structure containing the new RT priority.
e69f6186
YB
4136 *
4137 * Return: 0 on success. An error code otherwise.
1da177e4 4138 */
5add95d4 4139SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4140{
c13db6b1 4141 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4142}
4143
d50dde5a
DF
4144/**
4145 * sys_sched_setattr - same as above, but with extended sched_attr
4146 * @pid: the pid in question.
5778fccf 4147 * @uattr: structure containing the extended parameters.
db66d756 4148 * @flags: for future extension.
d50dde5a 4149 */
6d35ab48
PZ
4150SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4151 unsigned int, flags)
d50dde5a
DF
4152{
4153 struct sched_attr attr;
4154 struct task_struct *p;
4155 int retval;
4156
6d35ab48 4157 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4158 return -EINVAL;
4159
143cf23d
MK
4160 retval = sched_copy_attr(uattr, &attr);
4161 if (retval)
4162 return retval;
d50dde5a 4163
b14ed2c2 4164 if ((int)attr.sched_policy < 0)
dbdb2275 4165 return -EINVAL;
d50dde5a
DF
4166
4167 rcu_read_lock();
4168 retval = -ESRCH;
4169 p = find_process_by_pid(pid);
4170 if (p != NULL)
4171 retval = sched_setattr(p, &attr);
4172 rcu_read_unlock();
4173
4174 return retval;
4175}
4176
1da177e4
LT
4177/**
4178 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4179 * @pid: the pid in question.
e69f6186
YB
4180 *
4181 * Return: On success, the policy of the thread. Otherwise, a negative error
4182 * code.
1da177e4 4183 */
5add95d4 4184SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4185{
36c8b586 4186 struct task_struct *p;
3a5c359a 4187 int retval;
1da177e4
LT
4188
4189 if (pid < 0)
3a5c359a 4190 return -EINVAL;
1da177e4
LT
4191
4192 retval = -ESRCH;
5fe85be0 4193 rcu_read_lock();
1da177e4
LT
4194 p = find_process_by_pid(pid);
4195 if (p) {
4196 retval = security_task_getscheduler(p);
4197 if (!retval)
ca94c442
LP
4198 retval = p->policy
4199 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4200 }
5fe85be0 4201 rcu_read_unlock();
1da177e4
LT
4202 return retval;
4203}
4204
4205/**
ca94c442 4206 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4207 * @pid: the pid in question.
4208 * @param: structure containing the RT priority.
e69f6186
YB
4209 *
4210 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4211 * code.
1da177e4 4212 */
5add95d4 4213SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4214{
ce5f7f82 4215 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4216 struct task_struct *p;
3a5c359a 4217 int retval;
1da177e4
LT
4218
4219 if (!param || pid < 0)
3a5c359a 4220 return -EINVAL;
1da177e4 4221
5fe85be0 4222 rcu_read_lock();
1da177e4
LT
4223 p = find_process_by_pid(pid);
4224 retval = -ESRCH;
4225 if (!p)
4226 goto out_unlock;
4227
4228 retval = security_task_getscheduler(p);
4229 if (retval)
4230 goto out_unlock;
4231
ce5f7f82
PZ
4232 if (task_has_rt_policy(p))
4233 lp.sched_priority = p->rt_priority;
5fe85be0 4234 rcu_read_unlock();
1da177e4
LT
4235
4236 /*
4237 * This one might sleep, we cannot do it with a spinlock held ...
4238 */
4239 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4240
1da177e4
LT
4241 return retval;
4242
4243out_unlock:
5fe85be0 4244 rcu_read_unlock();
1da177e4
LT
4245 return retval;
4246}
4247
d50dde5a
DF
4248static int sched_read_attr(struct sched_attr __user *uattr,
4249 struct sched_attr *attr,
4250 unsigned int usize)
4251{
4252 int ret;
4253
4254 if (!access_ok(VERIFY_WRITE, uattr, usize))
4255 return -EFAULT;
4256
4257 /*
4258 * If we're handed a smaller struct than we know of,
4259 * ensure all the unknown bits are 0 - i.e. old
4260 * user-space does not get uncomplete information.
4261 */
4262 if (usize < sizeof(*attr)) {
4263 unsigned char *addr;
4264 unsigned char *end;
4265
4266 addr = (void *)attr + usize;
4267 end = (void *)attr + sizeof(*attr);
4268
4269 for (; addr < end; addr++) {
4270 if (*addr)
22400674 4271 return -EFBIG;
d50dde5a
DF
4272 }
4273
4274 attr->size = usize;
4275 }
4276
4efbc454 4277 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4278 if (ret)
4279 return -EFAULT;
4280
22400674 4281 return 0;
d50dde5a
DF
4282}
4283
4284/**
aab03e05 4285 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4286 * @pid: the pid in question.
5778fccf 4287 * @uattr: structure containing the extended parameters.
d50dde5a 4288 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4289 * @flags: for future extension.
d50dde5a 4290 */
6d35ab48
PZ
4291SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4292 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4293{
4294 struct sched_attr attr = {
4295 .size = sizeof(struct sched_attr),
4296 };
4297 struct task_struct *p;
4298 int retval;
4299
4300 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4301 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4302 return -EINVAL;
4303
4304 rcu_read_lock();
4305 p = find_process_by_pid(pid);
4306 retval = -ESRCH;
4307 if (!p)
4308 goto out_unlock;
4309
4310 retval = security_task_getscheduler(p);
4311 if (retval)
4312 goto out_unlock;
4313
4314 attr.sched_policy = p->policy;
7479f3c9
PZ
4315 if (p->sched_reset_on_fork)
4316 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4317 if (task_has_dl_policy(p))
4318 __getparam_dl(p, &attr);
4319 else if (task_has_rt_policy(p))
d50dde5a
DF
4320 attr.sched_priority = p->rt_priority;
4321 else
d0ea0268 4322 attr.sched_nice = task_nice(p);
d50dde5a
DF
4323
4324 rcu_read_unlock();
4325
4326 retval = sched_read_attr(uattr, &attr, size);
4327 return retval;
4328
4329out_unlock:
4330 rcu_read_unlock();
4331 return retval;
4332}
4333
96f874e2 4334long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4335{
5a16f3d3 4336 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4337 struct task_struct *p;
4338 int retval;
1da177e4 4339
23f5d142 4340 rcu_read_lock();
1da177e4
LT
4341
4342 p = find_process_by_pid(pid);
4343 if (!p) {
23f5d142 4344 rcu_read_unlock();
1da177e4
LT
4345 return -ESRCH;
4346 }
4347
23f5d142 4348 /* Prevent p going away */
1da177e4 4349 get_task_struct(p);
23f5d142 4350 rcu_read_unlock();
1da177e4 4351
14a40ffc
TH
4352 if (p->flags & PF_NO_SETAFFINITY) {
4353 retval = -EINVAL;
4354 goto out_put_task;
4355 }
5a16f3d3
RR
4356 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4357 retval = -ENOMEM;
4358 goto out_put_task;
4359 }
4360 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4361 retval = -ENOMEM;
4362 goto out_free_cpus_allowed;
4363 }
1da177e4 4364 retval = -EPERM;
4c44aaaf
EB
4365 if (!check_same_owner(p)) {
4366 rcu_read_lock();
4367 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4368 rcu_read_unlock();
16303ab2 4369 goto out_free_new_mask;
4c44aaaf
EB
4370 }
4371 rcu_read_unlock();
4372 }
1da177e4 4373
b0ae1981 4374 retval = security_task_setscheduler(p);
e7834f8f 4375 if (retval)
16303ab2 4376 goto out_free_new_mask;
e7834f8f 4377
e4099a5e
PZ
4378
4379 cpuset_cpus_allowed(p, cpus_allowed);
4380 cpumask_and(new_mask, in_mask, cpus_allowed);
4381
332ac17e
DF
4382 /*
4383 * Since bandwidth control happens on root_domain basis,
4384 * if admission test is enabled, we only admit -deadline
4385 * tasks allowed to run on all the CPUs in the task's
4386 * root_domain.
4387 */
4388#ifdef CONFIG_SMP
f1e3a093
KT
4389 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4390 rcu_read_lock();
4391 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4392 retval = -EBUSY;
f1e3a093 4393 rcu_read_unlock();
16303ab2 4394 goto out_free_new_mask;
332ac17e 4395 }
f1e3a093 4396 rcu_read_unlock();
332ac17e
DF
4397 }
4398#endif
49246274 4399again:
25834c73 4400 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4401
8707d8b8 4402 if (!retval) {
5a16f3d3
RR
4403 cpuset_cpus_allowed(p, cpus_allowed);
4404 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4405 /*
4406 * We must have raced with a concurrent cpuset
4407 * update. Just reset the cpus_allowed to the
4408 * cpuset's cpus_allowed
4409 */
5a16f3d3 4410 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4411 goto again;
4412 }
4413 }
16303ab2 4414out_free_new_mask:
5a16f3d3
RR
4415 free_cpumask_var(new_mask);
4416out_free_cpus_allowed:
4417 free_cpumask_var(cpus_allowed);
4418out_put_task:
1da177e4 4419 put_task_struct(p);
1da177e4
LT
4420 return retval;
4421}
4422
4423static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4424 struct cpumask *new_mask)
1da177e4 4425{
96f874e2
RR
4426 if (len < cpumask_size())
4427 cpumask_clear(new_mask);
4428 else if (len > cpumask_size())
4429 len = cpumask_size();
4430
1da177e4
LT
4431 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4432}
4433
4434/**
4435 * sys_sched_setaffinity - set the cpu affinity of a process
4436 * @pid: pid of the process
4437 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4438 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4439 *
4440 * Return: 0 on success. An error code otherwise.
1da177e4 4441 */
5add95d4
HC
4442SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4443 unsigned long __user *, user_mask_ptr)
1da177e4 4444{
5a16f3d3 4445 cpumask_var_t new_mask;
1da177e4
LT
4446 int retval;
4447
5a16f3d3
RR
4448 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4449 return -ENOMEM;
1da177e4 4450
5a16f3d3
RR
4451 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4452 if (retval == 0)
4453 retval = sched_setaffinity(pid, new_mask);
4454 free_cpumask_var(new_mask);
4455 return retval;
1da177e4
LT
4456}
4457
96f874e2 4458long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4459{
36c8b586 4460 struct task_struct *p;
31605683 4461 unsigned long flags;
1da177e4 4462 int retval;
1da177e4 4463
23f5d142 4464 rcu_read_lock();
1da177e4
LT
4465
4466 retval = -ESRCH;
4467 p = find_process_by_pid(pid);
4468 if (!p)
4469 goto out_unlock;
4470
e7834f8f
DQ
4471 retval = security_task_getscheduler(p);
4472 if (retval)
4473 goto out_unlock;
4474
013fdb80 4475 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4476 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4477 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4478
4479out_unlock:
23f5d142 4480 rcu_read_unlock();
1da177e4 4481
9531b62f 4482 return retval;
1da177e4
LT
4483}
4484
4485/**
4486 * sys_sched_getaffinity - get the cpu affinity of a process
4487 * @pid: pid of the process
4488 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4489 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4490 *
4491 * Return: 0 on success. An error code otherwise.
1da177e4 4492 */
5add95d4
HC
4493SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4494 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4495{
4496 int ret;
f17c8607 4497 cpumask_var_t mask;
1da177e4 4498
84fba5ec 4499 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4500 return -EINVAL;
4501 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4502 return -EINVAL;
4503
f17c8607
RR
4504 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4505 return -ENOMEM;
1da177e4 4506
f17c8607
RR
4507 ret = sched_getaffinity(pid, mask);
4508 if (ret == 0) {
8bc037fb 4509 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4510
4511 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4512 ret = -EFAULT;
4513 else
cd3d8031 4514 ret = retlen;
f17c8607
RR
4515 }
4516 free_cpumask_var(mask);
1da177e4 4517
f17c8607 4518 return ret;
1da177e4
LT
4519}
4520
4521/**
4522 * sys_sched_yield - yield the current processor to other threads.
4523 *
dd41f596
IM
4524 * This function yields the current CPU to other tasks. If there are no
4525 * other threads running on this CPU then this function will return.
e69f6186
YB
4526 *
4527 * Return: 0.
1da177e4 4528 */
5add95d4 4529SYSCALL_DEFINE0(sched_yield)
1da177e4 4530{
70b97a7f 4531 struct rq *rq = this_rq_lock();
1da177e4 4532
2d72376b 4533 schedstat_inc(rq, yld_count);
4530d7ab 4534 current->sched_class->yield_task(rq);
1da177e4
LT
4535
4536 /*
4537 * Since we are going to call schedule() anyway, there's
4538 * no need to preempt or enable interrupts:
4539 */
4540 __release(rq->lock);
8a25d5de 4541 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4542 do_raw_spin_unlock(&rq->lock);
ba74c144 4543 sched_preempt_enable_no_resched();
1da177e4
LT
4544
4545 schedule();
4546
4547 return 0;
4548}
4549
02b67cc3 4550int __sched _cond_resched(void)
1da177e4 4551{
fe32d3cd 4552 if (should_resched(0)) {
a18b5d01 4553 preempt_schedule_common();
1da177e4
LT
4554 return 1;
4555 }
4556 return 0;
4557}
02b67cc3 4558EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4559
4560/*
613afbf8 4561 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4562 * call schedule, and on return reacquire the lock.
4563 *
41a2d6cf 4564 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4565 * operations here to prevent schedule() from being called twice (once via
4566 * spin_unlock(), once by hand).
4567 */
613afbf8 4568int __cond_resched_lock(spinlock_t *lock)
1da177e4 4569{
fe32d3cd 4570 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4571 int ret = 0;
4572
f607c668
PZ
4573 lockdep_assert_held(lock);
4574
4a81e832 4575 if (spin_needbreak(lock) || resched) {
1da177e4 4576 spin_unlock(lock);
d86ee480 4577 if (resched)
a18b5d01 4578 preempt_schedule_common();
95c354fe
NP
4579 else
4580 cpu_relax();
6df3cecb 4581 ret = 1;
1da177e4 4582 spin_lock(lock);
1da177e4 4583 }
6df3cecb 4584 return ret;
1da177e4 4585}
613afbf8 4586EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4587
613afbf8 4588int __sched __cond_resched_softirq(void)
1da177e4
LT
4589{
4590 BUG_ON(!in_softirq());
4591
fe32d3cd 4592 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4593 local_bh_enable();
a18b5d01 4594 preempt_schedule_common();
1da177e4
LT
4595 local_bh_disable();
4596 return 1;
4597 }
4598 return 0;
4599}
613afbf8 4600EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4601
1da177e4
LT
4602/**
4603 * yield - yield the current processor to other threads.
4604 *
8e3fabfd
PZ
4605 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4606 *
4607 * The scheduler is at all times free to pick the calling task as the most
4608 * eligible task to run, if removing the yield() call from your code breaks
4609 * it, its already broken.
4610 *
4611 * Typical broken usage is:
4612 *
4613 * while (!event)
4614 * yield();
4615 *
4616 * where one assumes that yield() will let 'the other' process run that will
4617 * make event true. If the current task is a SCHED_FIFO task that will never
4618 * happen. Never use yield() as a progress guarantee!!
4619 *
4620 * If you want to use yield() to wait for something, use wait_event().
4621 * If you want to use yield() to be 'nice' for others, use cond_resched().
4622 * If you still want to use yield(), do not!
1da177e4
LT
4623 */
4624void __sched yield(void)
4625{
4626 set_current_state(TASK_RUNNING);
4627 sys_sched_yield();
4628}
1da177e4
LT
4629EXPORT_SYMBOL(yield);
4630
d95f4122
MG
4631/**
4632 * yield_to - yield the current processor to another thread in
4633 * your thread group, or accelerate that thread toward the
4634 * processor it's on.
16addf95
RD
4635 * @p: target task
4636 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4637 *
4638 * It's the caller's job to ensure that the target task struct
4639 * can't go away on us before we can do any checks.
4640 *
e69f6186 4641 * Return:
7b270f60
PZ
4642 * true (>0) if we indeed boosted the target task.
4643 * false (0) if we failed to boost the target.
4644 * -ESRCH if there's no task to yield to.
d95f4122 4645 */
fa93384f 4646int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4647{
4648 struct task_struct *curr = current;
4649 struct rq *rq, *p_rq;
4650 unsigned long flags;
c3c18640 4651 int yielded = 0;
d95f4122
MG
4652
4653 local_irq_save(flags);
4654 rq = this_rq();
4655
4656again:
4657 p_rq = task_rq(p);
7b270f60
PZ
4658 /*
4659 * If we're the only runnable task on the rq and target rq also
4660 * has only one task, there's absolutely no point in yielding.
4661 */
4662 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4663 yielded = -ESRCH;
4664 goto out_irq;
4665 }
4666
d95f4122 4667 double_rq_lock(rq, p_rq);
39e24d8f 4668 if (task_rq(p) != p_rq) {
d95f4122
MG
4669 double_rq_unlock(rq, p_rq);
4670 goto again;
4671 }
4672
4673 if (!curr->sched_class->yield_to_task)
7b270f60 4674 goto out_unlock;
d95f4122
MG
4675
4676 if (curr->sched_class != p->sched_class)
7b270f60 4677 goto out_unlock;
d95f4122
MG
4678
4679 if (task_running(p_rq, p) || p->state)
7b270f60 4680 goto out_unlock;
d95f4122
MG
4681
4682 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4683 if (yielded) {
d95f4122 4684 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4685 /*
4686 * Make p's CPU reschedule; pick_next_entity takes care of
4687 * fairness.
4688 */
4689 if (preempt && rq != p_rq)
8875125e 4690 resched_curr(p_rq);
6d1cafd8 4691 }
d95f4122 4692
7b270f60 4693out_unlock:
d95f4122 4694 double_rq_unlock(rq, p_rq);
7b270f60 4695out_irq:
d95f4122
MG
4696 local_irq_restore(flags);
4697
7b270f60 4698 if (yielded > 0)
d95f4122
MG
4699 schedule();
4700
4701 return yielded;
4702}
4703EXPORT_SYMBOL_GPL(yield_to);
4704
1da177e4 4705/*
41a2d6cf 4706 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4707 * that process accounting knows that this is a task in IO wait state.
1da177e4 4708 */
1da177e4
LT
4709long __sched io_schedule_timeout(long timeout)
4710{
9cff8ade
N
4711 int old_iowait = current->in_iowait;
4712 struct rq *rq;
1da177e4
LT
4713 long ret;
4714
9cff8ade 4715 current->in_iowait = 1;
10d784ea 4716 blk_schedule_flush_plug(current);
9cff8ade 4717
0ff92245 4718 delayacct_blkio_start();
9cff8ade 4719 rq = raw_rq();
1da177e4
LT
4720 atomic_inc(&rq->nr_iowait);
4721 ret = schedule_timeout(timeout);
9cff8ade 4722 current->in_iowait = old_iowait;
1da177e4 4723 atomic_dec(&rq->nr_iowait);
0ff92245 4724 delayacct_blkio_end();
9cff8ade 4725
1da177e4
LT
4726 return ret;
4727}
9cff8ade 4728EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4729
4730/**
4731 * sys_sched_get_priority_max - return maximum RT priority.
4732 * @policy: scheduling class.
4733 *
e69f6186
YB
4734 * Return: On success, this syscall returns the maximum
4735 * rt_priority that can be used by a given scheduling class.
4736 * On failure, a negative error code is returned.
1da177e4 4737 */
5add95d4 4738SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4739{
4740 int ret = -EINVAL;
4741
4742 switch (policy) {
4743 case SCHED_FIFO:
4744 case SCHED_RR:
4745 ret = MAX_USER_RT_PRIO-1;
4746 break;
aab03e05 4747 case SCHED_DEADLINE:
1da177e4 4748 case SCHED_NORMAL:
b0a9499c 4749 case SCHED_BATCH:
dd41f596 4750 case SCHED_IDLE:
1da177e4
LT
4751 ret = 0;
4752 break;
4753 }
4754 return ret;
4755}
4756
4757/**
4758 * sys_sched_get_priority_min - return minimum RT priority.
4759 * @policy: scheduling class.
4760 *
e69f6186
YB
4761 * Return: On success, this syscall returns the minimum
4762 * rt_priority that can be used by a given scheduling class.
4763 * On failure, a negative error code is returned.
1da177e4 4764 */
5add95d4 4765SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4766{
4767 int ret = -EINVAL;
4768
4769 switch (policy) {
4770 case SCHED_FIFO:
4771 case SCHED_RR:
4772 ret = 1;
4773 break;
aab03e05 4774 case SCHED_DEADLINE:
1da177e4 4775 case SCHED_NORMAL:
b0a9499c 4776 case SCHED_BATCH:
dd41f596 4777 case SCHED_IDLE:
1da177e4
LT
4778 ret = 0;
4779 }
4780 return ret;
4781}
4782
4783/**
4784 * sys_sched_rr_get_interval - return the default timeslice of a process.
4785 * @pid: pid of the process.
4786 * @interval: userspace pointer to the timeslice value.
4787 *
4788 * this syscall writes the default timeslice value of a given process
4789 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4790 *
4791 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4792 * an error code.
1da177e4 4793 */
17da2bd9 4794SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4795 struct timespec __user *, interval)
1da177e4 4796{
36c8b586 4797 struct task_struct *p;
a4ec24b4 4798 unsigned int time_slice;
dba091b9
TG
4799 unsigned long flags;
4800 struct rq *rq;
3a5c359a 4801 int retval;
1da177e4 4802 struct timespec t;
1da177e4
LT
4803
4804 if (pid < 0)
3a5c359a 4805 return -EINVAL;
1da177e4
LT
4806
4807 retval = -ESRCH;
1a551ae7 4808 rcu_read_lock();
1da177e4
LT
4809 p = find_process_by_pid(pid);
4810 if (!p)
4811 goto out_unlock;
4812
4813 retval = security_task_getscheduler(p);
4814 if (retval)
4815 goto out_unlock;
4816
dba091b9 4817 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4818 time_slice = 0;
4819 if (p->sched_class->get_rr_interval)
4820 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4821 task_rq_unlock(rq, p, &flags);
a4ec24b4 4822
1a551ae7 4823 rcu_read_unlock();
a4ec24b4 4824 jiffies_to_timespec(time_slice, &t);
1da177e4 4825 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4826 return retval;
3a5c359a 4827
1da177e4 4828out_unlock:
1a551ae7 4829 rcu_read_unlock();
1da177e4
LT
4830 return retval;
4831}
4832
7c731e0a 4833static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4834
82a1fcb9 4835void sched_show_task(struct task_struct *p)
1da177e4 4836{
1da177e4 4837 unsigned long free = 0;
4e79752c 4838 int ppid;
1f8a7633 4839 unsigned long state = p->state;
1da177e4 4840
1f8a7633
TH
4841 if (state)
4842 state = __ffs(state) + 1;
28d0686c 4843 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4844 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4845#if BITS_PER_LONG == 32
1da177e4 4846 if (state == TASK_RUNNING)
3df0fc5b 4847 printk(KERN_CONT " running ");
1da177e4 4848 else
3df0fc5b 4849 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4850#else
4851 if (state == TASK_RUNNING)
3df0fc5b 4852 printk(KERN_CONT " running task ");
1da177e4 4853 else
3df0fc5b 4854 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4855#endif
4856#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4857 free = stack_not_used(p);
1da177e4 4858#endif
a90e984c 4859 ppid = 0;
4e79752c 4860 rcu_read_lock();
a90e984c
ON
4861 if (pid_alive(p))
4862 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4863 rcu_read_unlock();
3df0fc5b 4864 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4865 task_pid_nr(p), ppid,
aa47b7e0 4866 (unsigned long)task_thread_info(p)->flags);
1da177e4 4867
3d1cb205 4868 print_worker_info(KERN_INFO, p);
5fb5e6de 4869 show_stack(p, NULL);
1da177e4
LT
4870}
4871
e59e2ae2 4872void show_state_filter(unsigned long state_filter)
1da177e4 4873{
36c8b586 4874 struct task_struct *g, *p;
1da177e4 4875
4bd77321 4876#if BITS_PER_LONG == 32
3df0fc5b
PZ
4877 printk(KERN_INFO
4878 " task PC stack pid father\n");
1da177e4 4879#else
3df0fc5b
PZ
4880 printk(KERN_INFO
4881 " task PC stack pid father\n");
1da177e4 4882#endif
510f5acc 4883 rcu_read_lock();
5d07f420 4884 for_each_process_thread(g, p) {
1da177e4
LT
4885 /*
4886 * reset the NMI-timeout, listing all files on a slow
25985edc 4887 * console might take a lot of time:
1da177e4
LT
4888 */
4889 touch_nmi_watchdog();
39bc89fd 4890 if (!state_filter || (p->state & state_filter))
82a1fcb9 4891 sched_show_task(p);
5d07f420 4892 }
1da177e4 4893
04c9167f
JF
4894 touch_all_softlockup_watchdogs();
4895
dd41f596
IM
4896#ifdef CONFIG_SCHED_DEBUG
4897 sysrq_sched_debug_show();
4898#endif
510f5acc 4899 rcu_read_unlock();
e59e2ae2
IM
4900 /*
4901 * Only show locks if all tasks are dumped:
4902 */
93335a21 4903 if (!state_filter)
e59e2ae2 4904 debug_show_all_locks();
1da177e4
LT
4905}
4906
0db0628d 4907void init_idle_bootup_task(struct task_struct *idle)
1df21055 4908{
dd41f596 4909 idle->sched_class = &idle_sched_class;
1df21055
IM
4910}
4911
f340c0d1
IM
4912/**
4913 * init_idle - set up an idle thread for a given CPU
4914 * @idle: task in question
4915 * @cpu: cpu the idle task belongs to
4916 *
4917 * NOTE: this function does not set the idle thread's NEED_RESCHED
4918 * flag, to make booting more robust.
4919 */
0db0628d 4920void init_idle(struct task_struct *idle, int cpu)
1da177e4 4921{
70b97a7f 4922 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4923 unsigned long flags;
4924
25834c73
PZ
4925 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4926 raw_spin_lock(&rq->lock);
5cbd54ef 4927
5e1576ed 4928 __sched_fork(0, idle);
06b83b5f 4929 idle->state = TASK_RUNNING;
dd41f596
IM
4930 idle->se.exec_start = sched_clock();
4931
1e1b6c51 4932 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4933 /*
4934 * We're having a chicken and egg problem, even though we are
4935 * holding rq->lock, the cpu isn't yet set to this cpu so the
4936 * lockdep check in task_group() will fail.
4937 *
4938 * Similar case to sched_fork(). / Alternatively we could
4939 * use task_rq_lock() here and obtain the other rq->lock.
4940 *
4941 * Silence PROVE_RCU
4942 */
4943 rcu_read_lock();
dd41f596 4944 __set_task_cpu(idle, cpu);
6506cf6c 4945 rcu_read_unlock();
1da177e4 4946
1da177e4 4947 rq->curr = rq->idle = idle;
da0c1e65 4948 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4949#if defined(CONFIG_SMP)
4950 idle->on_cpu = 1;
4866cde0 4951#endif
25834c73
PZ
4952 raw_spin_unlock(&rq->lock);
4953 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
4954
4955 /* Set the preempt count _outside_ the spinlocks! */
01028747 4956 init_idle_preempt_count(idle, cpu);
55cd5340 4957
dd41f596
IM
4958 /*
4959 * The idle tasks have their own, simple scheduling class:
4960 */
4961 idle->sched_class = &idle_sched_class;
868baf07 4962 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4963 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4964#if defined(CONFIG_SMP)
4965 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4966#endif
19978ca6
IM
4967}
4968
f82f8042
JL
4969int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4970 const struct cpumask *trial)
4971{
4972 int ret = 1, trial_cpus;
4973 struct dl_bw *cur_dl_b;
4974 unsigned long flags;
4975
bb2bc55a
MG
4976 if (!cpumask_weight(cur))
4977 return ret;
4978
75e23e49 4979 rcu_read_lock_sched();
f82f8042
JL
4980 cur_dl_b = dl_bw_of(cpumask_any(cur));
4981 trial_cpus = cpumask_weight(trial);
4982
4983 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4984 if (cur_dl_b->bw != -1 &&
4985 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4986 ret = 0;
4987 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4988 rcu_read_unlock_sched();
f82f8042
JL
4989
4990 return ret;
4991}
4992
7f51412a
JL
4993int task_can_attach(struct task_struct *p,
4994 const struct cpumask *cs_cpus_allowed)
4995{
4996 int ret = 0;
4997
4998 /*
4999 * Kthreads which disallow setaffinity shouldn't be moved
5000 * to a new cpuset; we don't want to change their cpu
5001 * affinity and isolating such threads by their set of
5002 * allowed nodes is unnecessary. Thus, cpusets are not
5003 * applicable for such threads. This prevents checking for
5004 * success of set_cpus_allowed_ptr() on all attached tasks
5005 * before cpus_allowed may be changed.
5006 */
5007 if (p->flags & PF_NO_SETAFFINITY) {
5008 ret = -EINVAL;
5009 goto out;
5010 }
5011
5012#ifdef CONFIG_SMP
5013 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5014 cs_cpus_allowed)) {
5015 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5016 cs_cpus_allowed);
75e23e49 5017 struct dl_bw *dl_b;
7f51412a
JL
5018 bool overflow;
5019 int cpus;
5020 unsigned long flags;
5021
75e23e49
JL
5022 rcu_read_lock_sched();
5023 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5024 raw_spin_lock_irqsave(&dl_b->lock, flags);
5025 cpus = dl_bw_cpus(dest_cpu);
5026 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5027 if (overflow)
5028 ret = -EBUSY;
5029 else {
5030 /*
5031 * We reserve space for this task in the destination
5032 * root_domain, as we can't fail after this point.
5033 * We will free resources in the source root_domain
5034 * later on (see set_cpus_allowed_dl()).
5035 */
5036 __dl_add(dl_b, p->dl.dl_bw);
5037 }
5038 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5039 rcu_read_unlock_sched();
7f51412a
JL
5040
5041 }
5042#endif
5043out:
5044 return ret;
5045}
5046
1da177e4 5047#ifdef CONFIG_SMP
1da177e4 5048
e6628d5b
MG
5049#ifdef CONFIG_NUMA_BALANCING
5050/* Migrate current task p to target_cpu */
5051int migrate_task_to(struct task_struct *p, int target_cpu)
5052{
5053 struct migration_arg arg = { p, target_cpu };
5054 int curr_cpu = task_cpu(p);
5055
5056 if (curr_cpu == target_cpu)
5057 return 0;
5058
5059 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5060 return -EINVAL;
5061
5062 /* TODO: This is not properly updating schedstats */
5063
286549dc 5064 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5065 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5066}
0ec8aa00
PZ
5067
5068/*
5069 * Requeue a task on a given node and accurately track the number of NUMA
5070 * tasks on the runqueues
5071 */
5072void sched_setnuma(struct task_struct *p, int nid)
5073{
5074 struct rq *rq;
5075 unsigned long flags;
da0c1e65 5076 bool queued, running;
0ec8aa00
PZ
5077
5078 rq = task_rq_lock(p, &flags);
da0c1e65 5079 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5080 running = task_current(rq, p);
5081
da0c1e65 5082 if (queued)
0ec8aa00
PZ
5083 dequeue_task(rq, p, 0);
5084 if (running)
f3cd1c4e 5085 put_prev_task(rq, p);
0ec8aa00
PZ
5086
5087 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5088
5089 if (running)
5090 p->sched_class->set_curr_task(rq);
da0c1e65 5091 if (queued)
0ec8aa00
PZ
5092 enqueue_task(rq, p, 0);
5093 task_rq_unlock(rq, p, &flags);
5094}
5cc389bc 5095#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5096
1da177e4 5097#ifdef CONFIG_HOTPLUG_CPU
054b9108 5098/*
48c5ccae
PZ
5099 * Ensures that the idle task is using init_mm right before its cpu goes
5100 * offline.
054b9108 5101 */
48c5ccae 5102void idle_task_exit(void)
1da177e4 5103{
48c5ccae 5104 struct mm_struct *mm = current->active_mm;
e76bd8d9 5105
48c5ccae 5106 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5107
a53efe5f 5108 if (mm != &init_mm) {
48c5ccae 5109 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5110 finish_arch_post_lock_switch();
5111 }
48c5ccae 5112 mmdrop(mm);
1da177e4
LT
5113}
5114
5115/*
5d180232
PZ
5116 * Since this CPU is going 'away' for a while, fold any nr_active delta
5117 * we might have. Assumes we're called after migrate_tasks() so that the
5118 * nr_active count is stable.
5119 *
5120 * Also see the comment "Global load-average calculations".
1da177e4 5121 */
5d180232 5122static void calc_load_migrate(struct rq *rq)
1da177e4 5123{
5d180232
PZ
5124 long delta = calc_load_fold_active(rq);
5125 if (delta)
5126 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5127}
5128
3f1d2a31
PZ
5129static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5130{
5131}
5132
5133static const struct sched_class fake_sched_class = {
5134 .put_prev_task = put_prev_task_fake,
5135};
5136
5137static struct task_struct fake_task = {
5138 /*
5139 * Avoid pull_{rt,dl}_task()
5140 */
5141 .prio = MAX_PRIO + 1,
5142 .sched_class = &fake_sched_class,
5143};
5144
48f24c4d 5145/*
48c5ccae
PZ
5146 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5147 * try_to_wake_up()->select_task_rq().
5148 *
5149 * Called with rq->lock held even though we'er in stop_machine() and
5150 * there's no concurrency possible, we hold the required locks anyway
5151 * because of lock validation efforts.
1da177e4 5152 */
5e16bbc2 5153static void migrate_tasks(struct rq *dead_rq)
1da177e4 5154{
5e16bbc2 5155 struct rq *rq = dead_rq;
48c5ccae
PZ
5156 struct task_struct *next, *stop = rq->stop;
5157 int dest_cpu;
1da177e4
LT
5158
5159 /*
48c5ccae
PZ
5160 * Fudge the rq selection such that the below task selection loop
5161 * doesn't get stuck on the currently eligible stop task.
5162 *
5163 * We're currently inside stop_machine() and the rq is either stuck
5164 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5165 * either way we should never end up calling schedule() until we're
5166 * done here.
1da177e4 5167 */
48c5ccae 5168 rq->stop = NULL;
48f24c4d 5169
77bd3970
FW
5170 /*
5171 * put_prev_task() and pick_next_task() sched
5172 * class method both need to have an up-to-date
5173 * value of rq->clock[_task]
5174 */
5175 update_rq_clock(rq);
5176
5e16bbc2 5177 for (;;) {
48c5ccae
PZ
5178 /*
5179 * There's this thread running, bail when that's the only
5180 * remaining thread.
5181 */
5182 if (rq->nr_running == 1)
dd41f596 5183 break;
48c5ccae 5184
cbce1a68
PZ
5185 /*
5186 * Ensure rq->lock covers the entire task selection
5187 * until the migration.
5188 */
5189 lockdep_pin_lock(&rq->lock);
3f1d2a31 5190 next = pick_next_task(rq, &fake_task);
48c5ccae 5191 BUG_ON(!next);
79c53799 5192 next->sched_class->put_prev_task(rq, next);
e692ab53 5193
48c5ccae 5194 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5195 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5196
cbce1a68 5197 lockdep_unpin_lock(&rq->lock);
5e16bbc2
PZ
5198 rq = __migrate_task(rq, next, dest_cpu);
5199 if (rq != dead_rq) {
5200 raw_spin_unlock(&rq->lock);
5201 rq = dead_rq;
5202 raw_spin_lock(&rq->lock);
5203 }
1da177e4 5204 }
dce48a84 5205
48c5ccae 5206 rq->stop = stop;
dce48a84 5207}
1da177e4
LT
5208#endif /* CONFIG_HOTPLUG_CPU */
5209
e692ab53
NP
5210#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5211
5212static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5213 {
5214 .procname = "sched_domain",
c57baf1e 5215 .mode = 0555,
e0361851 5216 },
56992309 5217 {}
e692ab53
NP
5218};
5219
5220static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5221 {
5222 .procname = "kernel",
c57baf1e 5223 .mode = 0555,
e0361851
AD
5224 .child = sd_ctl_dir,
5225 },
56992309 5226 {}
e692ab53
NP
5227};
5228
5229static struct ctl_table *sd_alloc_ctl_entry(int n)
5230{
5231 struct ctl_table *entry =
5cf9f062 5232 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5233
e692ab53
NP
5234 return entry;
5235}
5236
6382bc90
MM
5237static void sd_free_ctl_entry(struct ctl_table **tablep)
5238{
cd790076 5239 struct ctl_table *entry;
6382bc90 5240
cd790076
MM
5241 /*
5242 * In the intermediate directories, both the child directory and
5243 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5244 * will always be set. In the lowest directory the names are
cd790076
MM
5245 * static strings and all have proc handlers.
5246 */
5247 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5248 if (entry->child)
5249 sd_free_ctl_entry(&entry->child);
cd790076
MM
5250 if (entry->proc_handler == NULL)
5251 kfree(entry->procname);
5252 }
6382bc90
MM
5253
5254 kfree(*tablep);
5255 *tablep = NULL;
5256}
5257
201c373e 5258static int min_load_idx = 0;
fd9b86d3 5259static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5260
e692ab53 5261static void
e0361851 5262set_table_entry(struct ctl_table *entry,
e692ab53 5263 const char *procname, void *data, int maxlen,
201c373e
NK
5264 umode_t mode, proc_handler *proc_handler,
5265 bool load_idx)
e692ab53 5266{
e692ab53
NP
5267 entry->procname = procname;
5268 entry->data = data;
5269 entry->maxlen = maxlen;
5270 entry->mode = mode;
5271 entry->proc_handler = proc_handler;
201c373e
NK
5272
5273 if (load_idx) {
5274 entry->extra1 = &min_load_idx;
5275 entry->extra2 = &max_load_idx;
5276 }
e692ab53
NP
5277}
5278
5279static struct ctl_table *
5280sd_alloc_ctl_domain_table(struct sched_domain *sd)
5281{
37e6bae8 5282 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5283
ad1cdc1d
MM
5284 if (table == NULL)
5285 return NULL;
5286
e0361851 5287 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5288 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5289 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5290 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5291 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5292 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5293 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5294 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5295 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5296 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5297 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5298 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5299 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5300 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5301 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5302 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5303 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5304 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5305 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5306 &sd->cache_nice_tries,
201c373e 5307 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5308 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5309 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5310 set_table_entry(&table[11], "max_newidle_lb_cost",
5311 &sd->max_newidle_lb_cost,
5312 sizeof(long), 0644, proc_doulongvec_minmax, false);
5313 set_table_entry(&table[12], "name", sd->name,
201c373e 5314 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5315 /* &table[13] is terminator */
e692ab53
NP
5316
5317 return table;
5318}
5319
be7002e6 5320static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5321{
5322 struct ctl_table *entry, *table;
5323 struct sched_domain *sd;
5324 int domain_num = 0, i;
5325 char buf[32];
5326
5327 for_each_domain(cpu, sd)
5328 domain_num++;
5329 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5330 if (table == NULL)
5331 return NULL;
e692ab53
NP
5332
5333 i = 0;
5334 for_each_domain(cpu, sd) {
5335 snprintf(buf, 32, "domain%d", i);
e692ab53 5336 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5337 entry->mode = 0555;
e692ab53
NP
5338 entry->child = sd_alloc_ctl_domain_table(sd);
5339 entry++;
5340 i++;
5341 }
5342 return table;
5343}
5344
5345static struct ctl_table_header *sd_sysctl_header;
6382bc90 5346static void register_sched_domain_sysctl(void)
e692ab53 5347{
6ad4c188 5348 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5349 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5350 char buf[32];
5351
7378547f
MM
5352 WARN_ON(sd_ctl_dir[0].child);
5353 sd_ctl_dir[0].child = entry;
5354
ad1cdc1d
MM
5355 if (entry == NULL)
5356 return;
5357
6ad4c188 5358 for_each_possible_cpu(i) {
e692ab53 5359 snprintf(buf, 32, "cpu%d", i);
e692ab53 5360 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5361 entry->mode = 0555;
e692ab53 5362 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5363 entry++;
e692ab53 5364 }
7378547f
MM
5365
5366 WARN_ON(sd_sysctl_header);
e692ab53
NP
5367 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5368}
6382bc90 5369
7378547f 5370/* may be called multiple times per register */
6382bc90
MM
5371static void unregister_sched_domain_sysctl(void)
5372{
781b0203 5373 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5374 sd_sysctl_header = NULL;
7378547f
MM
5375 if (sd_ctl_dir[0].child)
5376 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5377}
e692ab53 5378#else
6382bc90
MM
5379static void register_sched_domain_sysctl(void)
5380{
5381}
5382static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5383{
5384}
5cc389bc 5385#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5386
1f11eb6a
GH
5387static void set_rq_online(struct rq *rq)
5388{
5389 if (!rq->online) {
5390 const struct sched_class *class;
5391
c6c4927b 5392 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5393 rq->online = 1;
5394
5395 for_each_class(class) {
5396 if (class->rq_online)
5397 class->rq_online(rq);
5398 }
5399 }
5400}
5401
5402static void set_rq_offline(struct rq *rq)
5403{
5404 if (rq->online) {
5405 const struct sched_class *class;
5406
5407 for_each_class(class) {
5408 if (class->rq_offline)
5409 class->rq_offline(rq);
5410 }
5411
c6c4927b 5412 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5413 rq->online = 0;
5414 }
5415}
5416
1da177e4
LT
5417/*
5418 * migration_call - callback that gets triggered when a CPU is added.
5419 * Here we can start up the necessary migration thread for the new CPU.
5420 */
0db0628d 5421static int
48f24c4d 5422migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5423{
48f24c4d 5424 int cpu = (long)hcpu;
1da177e4 5425 unsigned long flags;
969c7921 5426 struct rq *rq = cpu_rq(cpu);
1da177e4 5427
48c5ccae 5428 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5429
1da177e4 5430 case CPU_UP_PREPARE:
a468d389 5431 rq->calc_load_update = calc_load_update;
1da177e4 5432 break;
48f24c4d 5433
1da177e4 5434 case CPU_ONLINE:
1f94ef59 5435 /* Update our root-domain */
05fa785c 5436 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5437 if (rq->rd) {
c6c4927b 5438 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5439
5440 set_rq_online(rq);
1f94ef59 5441 }
05fa785c 5442 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5443 break;
48f24c4d 5444
1da177e4 5445#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5446 case CPU_DYING:
317f3941 5447 sched_ttwu_pending();
57d885fe 5448 /* Update our root-domain */
05fa785c 5449 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5450 if (rq->rd) {
c6c4927b 5451 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5452 set_rq_offline(rq);
57d885fe 5453 }
5e16bbc2 5454 migrate_tasks(rq);
48c5ccae 5455 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5456 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5457 break;
48c5ccae 5458
5d180232 5459 case CPU_DEAD:
f319da0c 5460 calc_load_migrate(rq);
57d885fe 5461 break;
1da177e4
LT
5462#endif
5463 }
49c022e6
PZ
5464
5465 update_max_interval();
5466
1da177e4
LT
5467 return NOTIFY_OK;
5468}
5469
f38b0820
PM
5470/*
5471 * Register at high priority so that task migration (migrate_all_tasks)
5472 * happens before everything else. This has to be lower priority than
cdd6c482 5473 * the notifier in the perf_event subsystem, though.
1da177e4 5474 */
0db0628d 5475static struct notifier_block migration_notifier = {
1da177e4 5476 .notifier_call = migration_call,
50a323b7 5477 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5478};
5479
6a82b60d 5480static void set_cpu_rq_start_time(void)
a803f026
CM
5481{
5482 int cpu = smp_processor_id();
5483 struct rq *rq = cpu_rq(cpu);
5484 rq->age_stamp = sched_clock_cpu(cpu);
5485}
5486
0db0628d 5487static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5488 unsigned long action, void *hcpu)
5489{
5490 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5491 case CPU_STARTING:
5492 set_cpu_rq_start_time();
5493 return NOTIFY_OK;
dd9d3843
JS
5494 case CPU_ONLINE:
5495 /*
5496 * At this point a starting CPU has marked itself as online via
5497 * set_cpu_online(). But it might not yet have marked itself
5498 * as active, which is essential from here on.
5499 *
5500 * Thus, fall-through and help the starting CPU along.
5501 */
3a101d05
TH
5502 case CPU_DOWN_FAILED:
5503 set_cpu_active((long)hcpu, true);
5504 return NOTIFY_OK;
5505 default:
5506 return NOTIFY_DONE;
5507 }
5508}
5509
0db0628d 5510static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5511 unsigned long action, void *hcpu)
5512{
5513 switch (action & ~CPU_TASKS_FROZEN) {
5514 case CPU_DOWN_PREPARE:
3c18d447 5515 set_cpu_active((long)hcpu, false);
3a101d05 5516 return NOTIFY_OK;
3c18d447
JL
5517 default:
5518 return NOTIFY_DONE;
3a101d05
TH
5519 }
5520}
5521
7babe8db 5522static int __init migration_init(void)
1da177e4
LT
5523{
5524 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5525 int err;
48f24c4d 5526
3a101d05 5527 /* Initialize migration for the boot CPU */
07dccf33
AM
5528 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5529 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5530 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5531 register_cpu_notifier(&migration_notifier);
7babe8db 5532
3a101d05
TH
5533 /* Register cpu active notifiers */
5534 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5535 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5536
a004cd42 5537 return 0;
1da177e4 5538}
7babe8db 5539early_initcall(migration_init);
476f3534 5540
4cb98839
PZ
5541static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5542
3e9830dc 5543#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5544
d039ac60 5545static __read_mostly int sched_debug_enabled;
f6630114 5546
d039ac60 5547static int __init sched_debug_setup(char *str)
f6630114 5548{
d039ac60 5549 sched_debug_enabled = 1;
f6630114
MT
5550
5551 return 0;
5552}
d039ac60
PZ
5553early_param("sched_debug", sched_debug_setup);
5554
5555static inline bool sched_debug(void)
5556{
5557 return sched_debug_enabled;
5558}
f6630114 5559
7c16ec58 5560static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5561 struct cpumask *groupmask)
1da177e4 5562{
4dcf6aff 5563 struct sched_group *group = sd->groups;
1da177e4 5564
96f874e2 5565 cpumask_clear(groupmask);
4dcf6aff
IM
5566
5567 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5568
5569 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5570 printk("does not load-balance\n");
4dcf6aff 5571 if (sd->parent)
3df0fc5b
PZ
5572 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5573 " has parent");
4dcf6aff 5574 return -1;
41c7ce9a
NP
5575 }
5576
333470ee
TH
5577 printk(KERN_CONT "span %*pbl level %s\n",
5578 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5579
758b2cdc 5580 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5581 printk(KERN_ERR "ERROR: domain->span does not contain "
5582 "CPU%d\n", cpu);
4dcf6aff 5583 }
758b2cdc 5584 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5585 printk(KERN_ERR "ERROR: domain->groups does not contain"
5586 " CPU%d\n", cpu);
4dcf6aff 5587 }
1da177e4 5588
4dcf6aff 5589 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5590 do {
4dcf6aff 5591 if (!group) {
3df0fc5b
PZ
5592 printk("\n");
5593 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5594 break;
5595 }
5596
758b2cdc 5597 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5598 printk(KERN_CONT "\n");
5599 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5600 break;
5601 }
1da177e4 5602
cb83b629
PZ
5603 if (!(sd->flags & SD_OVERLAP) &&
5604 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5605 printk(KERN_CONT "\n");
5606 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5607 break;
5608 }
1da177e4 5609
758b2cdc 5610 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5611
333470ee
TH
5612 printk(KERN_CONT " %*pbl",
5613 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5614 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5615 printk(KERN_CONT " (cpu_capacity = %d)",
5616 group->sgc->capacity);
381512cf 5617 }
1da177e4 5618
4dcf6aff
IM
5619 group = group->next;
5620 } while (group != sd->groups);
3df0fc5b 5621 printk(KERN_CONT "\n");
1da177e4 5622
758b2cdc 5623 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5624 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5625
758b2cdc
RR
5626 if (sd->parent &&
5627 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5628 printk(KERN_ERR "ERROR: parent span is not a superset "
5629 "of domain->span\n");
4dcf6aff
IM
5630 return 0;
5631}
1da177e4 5632
4dcf6aff
IM
5633static void sched_domain_debug(struct sched_domain *sd, int cpu)
5634{
5635 int level = 0;
1da177e4 5636
d039ac60 5637 if (!sched_debug_enabled)
f6630114
MT
5638 return;
5639
4dcf6aff
IM
5640 if (!sd) {
5641 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5642 return;
5643 }
1da177e4 5644
4dcf6aff
IM
5645 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5646
5647 for (;;) {
4cb98839 5648 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5649 break;
1da177e4
LT
5650 level++;
5651 sd = sd->parent;
33859f7f 5652 if (!sd)
4dcf6aff
IM
5653 break;
5654 }
1da177e4 5655}
6d6bc0ad 5656#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5657# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5658static inline bool sched_debug(void)
5659{
5660 return false;
5661}
6d6bc0ad 5662#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5663
1a20ff27 5664static int sd_degenerate(struct sched_domain *sd)
245af2c7 5665{
758b2cdc 5666 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5667 return 1;
5668
5669 /* Following flags need at least 2 groups */
5670 if (sd->flags & (SD_LOAD_BALANCE |
5671 SD_BALANCE_NEWIDLE |
5672 SD_BALANCE_FORK |
89c4710e 5673 SD_BALANCE_EXEC |
5d4dfddd 5674 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5675 SD_SHARE_PKG_RESOURCES |
5676 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5677 if (sd->groups != sd->groups->next)
5678 return 0;
5679 }
5680
5681 /* Following flags don't use groups */
c88d5910 5682 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5683 return 0;
5684
5685 return 1;
5686}
5687
48f24c4d
IM
5688static int
5689sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5690{
5691 unsigned long cflags = sd->flags, pflags = parent->flags;
5692
5693 if (sd_degenerate(parent))
5694 return 1;
5695
758b2cdc 5696 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5697 return 0;
5698
245af2c7
SS
5699 /* Flags needing groups don't count if only 1 group in parent */
5700 if (parent->groups == parent->groups->next) {
5701 pflags &= ~(SD_LOAD_BALANCE |
5702 SD_BALANCE_NEWIDLE |
5703 SD_BALANCE_FORK |
89c4710e 5704 SD_BALANCE_EXEC |
5d4dfddd 5705 SD_SHARE_CPUCAPACITY |
10866e62 5706 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5707 SD_PREFER_SIBLING |
5708 SD_SHARE_POWERDOMAIN);
5436499e
KC
5709 if (nr_node_ids == 1)
5710 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5711 }
5712 if (~cflags & pflags)
5713 return 0;
5714
5715 return 1;
5716}
5717
dce840a0 5718static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5719{
dce840a0 5720 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5721
68e74568 5722 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5723 cpudl_cleanup(&rd->cpudl);
1baca4ce 5724 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5725 free_cpumask_var(rd->rto_mask);
5726 free_cpumask_var(rd->online);
5727 free_cpumask_var(rd->span);
5728 kfree(rd);
5729}
5730
57d885fe
GH
5731static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5732{
a0490fa3 5733 struct root_domain *old_rd = NULL;
57d885fe 5734 unsigned long flags;
57d885fe 5735
05fa785c 5736 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5737
5738 if (rq->rd) {
a0490fa3 5739 old_rd = rq->rd;
57d885fe 5740
c6c4927b 5741 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5742 set_rq_offline(rq);
57d885fe 5743
c6c4927b 5744 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5745
a0490fa3 5746 /*
0515973f 5747 * If we dont want to free the old_rd yet then
a0490fa3
IM
5748 * set old_rd to NULL to skip the freeing later
5749 * in this function:
5750 */
5751 if (!atomic_dec_and_test(&old_rd->refcount))
5752 old_rd = NULL;
57d885fe
GH
5753 }
5754
5755 atomic_inc(&rd->refcount);
5756 rq->rd = rd;
5757
c6c4927b 5758 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5759 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5760 set_rq_online(rq);
57d885fe 5761
05fa785c 5762 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5763
5764 if (old_rd)
dce840a0 5765 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5766}
5767
68c38fc3 5768static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5769{
5770 memset(rd, 0, sizeof(*rd));
5771
68c38fc3 5772 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5773 goto out;
68c38fc3 5774 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5775 goto free_span;
1baca4ce 5776 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5777 goto free_online;
1baca4ce
JL
5778 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5779 goto free_dlo_mask;
6e0534f2 5780
332ac17e 5781 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5782 if (cpudl_init(&rd->cpudl) != 0)
5783 goto free_dlo_mask;
332ac17e 5784
68c38fc3 5785 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5786 goto free_rto_mask;
c6c4927b 5787 return 0;
6e0534f2 5788
68e74568
RR
5789free_rto_mask:
5790 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5791free_dlo_mask:
5792 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5793free_online:
5794 free_cpumask_var(rd->online);
5795free_span:
5796 free_cpumask_var(rd->span);
0c910d28 5797out:
c6c4927b 5798 return -ENOMEM;
57d885fe
GH
5799}
5800
029632fb
PZ
5801/*
5802 * By default the system creates a single root-domain with all cpus as
5803 * members (mimicking the global state we have today).
5804 */
5805struct root_domain def_root_domain;
5806
57d885fe
GH
5807static void init_defrootdomain(void)
5808{
68c38fc3 5809 init_rootdomain(&def_root_domain);
c6c4927b 5810
57d885fe
GH
5811 atomic_set(&def_root_domain.refcount, 1);
5812}
5813
dc938520 5814static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5815{
5816 struct root_domain *rd;
5817
5818 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5819 if (!rd)
5820 return NULL;
5821
68c38fc3 5822 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5823 kfree(rd);
5824 return NULL;
5825 }
57d885fe
GH
5826
5827 return rd;
5828}
5829
63b2ca30 5830static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5831{
5832 struct sched_group *tmp, *first;
5833
5834 if (!sg)
5835 return;
5836
5837 first = sg;
5838 do {
5839 tmp = sg->next;
5840
63b2ca30
NP
5841 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5842 kfree(sg->sgc);
e3589f6c
PZ
5843
5844 kfree(sg);
5845 sg = tmp;
5846 } while (sg != first);
5847}
5848
dce840a0
PZ
5849static void free_sched_domain(struct rcu_head *rcu)
5850{
5851 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5852
5853 /*
5854 * If its an overlapping domain it has private groups, iterate and
5855 * nuke them all.
5856 */
5857 if (sd->flags & SD_OVERLAP) {
5858 free_sched_groups(sd->groups, 1);
5859 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5860 kfree(sd->groups->sgc);
dce840a0 5861 kfree(sd->groups);
9c3f75cb 5862 }
dce840a0
PZ
5863 kfree(sd);
5864}
5865
5866static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5867{
5868 call_rcu(&sd->rcu, free_sched_domain);
5869}
5870
5871static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5872{
5873 for (; sd; sd = sd->parent)
5874 destroy_sched_domain(sd, cpu);
5875}
5876
518cd623
PZ
5877/*
5878 * Keep a special pointer to the highest sched_domain that has
5879 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5880 * allows us to avoid some pointer chasing select_idle_sibling().
5881 *
5882 * Also keep a unique ID per domain (we use the first cpu number in
5883 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5884 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5885 */
5886DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5887DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5888DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5889DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5890DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5891DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5892
5893static void update_top_cache_domain(int cpu)
5894{
5895 struct sched_domain *sd;
5d4cf996 5896 struct sched_domain *busy_sd = NULL;
518cd623 5897 int id = cpu;
7d9ffa89 5898 int size = 1;
518cd623
PZ
5899
5900 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5901 if (sd) {
518cd623 5902 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5903 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5904 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5905 }
5d4cf996 5906 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5907
5908 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5909 per_cpu(sd_llc_size, cpu) = size;
518cd623 5910 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5911
5912 sd = lowest_flag_domain(cpu, SD_NUMA);
5913 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5914
5915 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5916 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5917}
5918
1da177e4 5919/*
0eab9146 5920 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5921 * hold the hotplug lock.
5922 */
0eab9146
IM
5923static void
5924cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5925{
70b97a7f 5926 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5927 struct sched_domain *tmp;
5928
5929 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5930 for (tmp = sd; tmp; ) {
245af2c7
SS
5931 struct sched_domain *parent = tmp->parent;
5932 if (!parent)
5933 break;
f29c9b1c 5934
1a848870 5935 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5936 tmp->parent = parent->parent;
1a848870
SS
5937 if (parent->parent)
5938 parent->parent->child = tmp;
10866e62
PZ
5939 /*
5940 * Transfer SD_PREFER_SIBLING down in case of a
5941 * degenerate parent; the spans match for this
5942 * so the property transfers.
5943 */
5944 if (parent->flags & SD_PREFER_SIBLING)
5945 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5946 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5947 } else
5948 tmp = tmp->parent;
245af2c7
SS
5949 }
5950
1a848870 5951 if (sd && sd_degenerate(sd)) {
dce840a0 5952 tmp = sd;
245af2c7 5953 sd = sd->parent;
dce840a0 5954 destroy_sched_domain(tmp, cpu);
1a848870
SS
5955 if (sd)
5956 sd->child = NULL;
5957 }
1da177e4 5958
4cb98839 5959 sched_domain_debug(sd, cpu);
1da177e4 5960
57d885fe 5961 rq_attach_root(rq, rd);
dce840a0 5962 tmp = rq->sd;
674311d5 5963 rcu_assign_pointer(rq->sd, sd);
dce840a0 5964 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5965
5966 update_top_cache_domain(cpu);
1da177e4
LT
5967}
5968
1da177e4
LT
5969/* Setup the mask of cpus configured for isolated domains */
5970static int __init isolated_cpu_setup(char *str)
5971{
bdddd296 5972 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5973 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5974 return 1;
5975}
5976
8927f494 5977__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5978
49a02c51 5979struct s_data {
21d42ccf 5980 struct sched_domain ** __percpu sd;
49a02c51
AH
5981 struct root_domain *rd;
5982};
5983
2109b99e 5984enum s_alloc {
2109b99e 5985 sa_rootdomain,
21d42ccf 5986 sa_sd,
dce840a0 5987 sa_sd_storage,
2109b99e
AH
5988 sa_none,
5989};
5990
c1174876
PZ
5991/*
5992 * Build an iteration mask that can exclude certain CPUs from the upwards
5993 * domain traversal.
5994 *
5995 * Asymmetric node setups can result in situations where the domain tree is of
5996 * unequal depth, make sure to skip domains that already cover the entire
5997 * range.
5998 *
5999 * In that case build_sched_domains() will have terminated the iteration early
6000 * and our sibling sd spans will be empty. Domains should always include the
6001 * cpu they're built on, so check that.
6002 *
6003 */
6004static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6005{
6006 const struct cpumask *span = sched_domain_span(sd);
6007 struct sd_data *sdd = sd->private;
6008 struct sched_domain *sibling;
6009 int i;
6010
6011 for_each_cpu(i, span) {
6012 sibling = *per_cpu_ptr(sdd->sd, i);
6013 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6014 continue;
6015
6016 cpumask_set_cpu(i, sched_group_mask(sg));
6017 }
6018}
6019
6020/*
6021 * Return the canonical balance cpu for this group, this is the first cpu
6022 * of this group that's also in the iteration mask.
6023 */
6024int group_balance_cpu(struct sched_group *sg)
6025{
6026 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6027}
6028
e3589f6c
PZ
6029static int
6030build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6031{
6032 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6033 const struct cpumask *span = sched_domain_span(sd);
6034 struct cpumask *covered = sched_domains_tmpmask;
6035 struct sd_data *sdd = sd->private;
aaecac4a 6036 struct sched_domain *sibling;
e3589f6c
PZ
6037 int i;
6038
6039 cpumask_clear(covered);
6040
6041 for_each_cpu(i, span) {
6042 struct cpumask *sg_span;
6043
6044 if (cpumask_test_cpu(i, covered))
6045 continue;
6046
aaecac4a 6047 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6048
6049 /* See the comment near build_group_mask(). */
aaecac4a 6050 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6051 continue;
6052
e3589f6c 6053 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6054 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6055
6056 if (!sg)
6057 goto fail;
6058
6059 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6060 if (sibling->child)
6061 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6062 else
e3589f6c
PZ
6063 cpumask_set_cpu(i, sg_span);
6064
6065 cpumask_or(covered, covered, sg_span);
6066
63b2ca30
NP
6067 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6068 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6069 build_group_mask(sd, sg);
6070
c3decf0d 6071 /*
63b2ca30 6072 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6073 * domains and no possible iteration will get us here, we won't
6074 * die on a /0 trap.
6075 */
ca8ce3d0 6076 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6077
c1174876
PZ
6078 /*
6079 * Make sure the first group of this domain contains the
6080 * canonical balance cpu. Otherwise the sched_domain iteration
6081 * breaks. See update_sg_lb_stats().
6082 */
74a5ce20 6083 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6084 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6085 groups = sg;
6086
6087 if (!first)
6088 first = sg;
6089 if (last)
6090 last->next = sg;
6091 last = sg;
6092 last->next = first;
6093 }
6094 sd->groups = groups;
6095
6096 return 0;
6097
6098fail:
6099 free_sched_groups(first, 0);
6100
6101 return -ENOMEM;
6102}
6103
dce840a0 6104static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6105{
dce840a0
PZ
6106 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6107 struct sched_domain *child = sd->child;
1da177e4 6108
dce840a0
PZ
6109 if (child)
6110 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6111
9c3f75cb 6112 if (sg) {
dce840a0 6113 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6114 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6115 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6116 }
dce840a0
PZ
6117
6118 return cpu;
1e9f28fa 6119}
1e9f28fa 6120
01a08546 6121/*
dce840a0
PZ
6122 * build_sched_groups will build a circular linked list of the groups
6123 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6124 * and ->cpu_capacity to 0.
e3589f6c
PZ
6125 *
6126 * Assumes the sched_domain tree is fully constructed
01a08546 6127 */
e3589f6c
PZ
6128static int
6129build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6130{
dce840a0
PZ
6131 struct sched_group *first = NULL, *last = NULL;
6132 struct sd_data *sdd = sd->private;
6133 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6134 struct cpumask *covered;
dce840a0 6135 int i;
9c1cfda2 6136
e3589f6c
PZ
6137 get_group(cpu, sdd, &sd->groups);
6138 atomic_inc(&sd->groups->ref);
6139
0936629f 6140 if (cpu != cpumask_first(span))
e3589f6c
PZ
6141 return 0;
6142
f96225fd
PZ
6143 lockdep_assert_held(&sched_domains_mutex);
6144 covered = sched_domains_tmpmask;
6145
dce840a0 6146 cpumask_clear(covered);
6711cab4 6147
dce840a0
PZ
6148 for_each_cpu(i, span) {
6149 struct sched_group *sg;
cd08e923 6150 int group, j;
6711cab4 6151
dce840a0
PZ
6152 if (cpumask_test_cpu(i, covered))
6153 continue;
6711cab4 6154
cd08e923 6155 group = get_group(i, sdd, &sg);
c1174876 6156 cpumask_setall(sched_group_mask(sg));
0601a88d 6157
dce840a0
PZ
6158 for_each_cpu(j, span) {
6159 if (get_group(j, sdd, NULL) != group)
6160 continue;
0601a88d 6161
dce840a0
PZ
6162 cpumask_set_cpu(j, covered);
6163 cpumask_set_cpu(j, sched_group_cpus(sg));
6164 }
0601a88d 6165
dce840a0
PZ
6166 if (!first)
6167 first = sg;
6168 if (last)
6169 last->next = sg;
6170 last = sg;
6171 }
6172 last->next = first;
e3589f6c
PZ
6173
6174 return 0;
0601a88d 6175}
51888ca2 6176
89c4710e 6177/*
63b2ca30 6178 * Initialize sched groups cpu_capacity.
89c4710e 6179 *
63b2ca30 6180 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6181 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6182 * Typically cpu_capacity for all the groups in a sched domain will be same
6183 * unless there are asymmetries in the topology. If there are asymmetries,
6184 * group having more cpu_capacity will pickup more load compared to the
6185 * group having less cpu_capacity.
89c4710e 6186 */
63b2ca30 6187static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6188{
e3589f6c 6189 struct sched_group *sg = sd->groups;
89c4710e 6190
94c95ba6 6191 WARN_ON(!sg);
e3589f6c
PZ
6192
6193 do {
6194 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6195 sg = sg->next;
6196 } while (sg != sd->groups);
89c4710e 6197
c1174876 6198 if (cpu != group_balance_cpu(sg))
e3589f6c 6199 return;
aae6d3dd 6200
63b2ca30
NP
6201 update_group_capacity(sd, cpu);
6202 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6203}
6204
7c16ec58
MT
6205/*
6206 * Initializers for schedule domains
6207 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6208 */
6209
1d3504fc 6210static int default_relax_domain_level = -1;
60495e77 6211int sched_domain_level_max;
1d3504fc
HS
6212
6213static int __init setup_relax_domain_level(char *str)
6214{
a841f8ce
DS
6215 if (kstrtoint(str, 0, &default_relax_domain_level))
6216 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6217
1d3504fc
HS
6218 return 1;
6219}
6220__setup("relax_domain_level=", setup_relax_domain_level);
6221
6222static void set_domain_attribute(struct sched_domain *sd,
6223 struct sched_domain_attr *attr)
6224{
6225 int request;
6226
6227 if (!attr || attr->relax_domain_level < 0) {
6228 if (default_relax_domain_level < 0)
6229 return;
6230 else
6231 request = default_relax_domain_level;
6232 } else
6233 request = attr->relax_domain_level;
6234 if (request < sd->level) {
6235 /* turn off idle balance on this domain */
c88d5910 6236 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6237 } else {
6238 /* turn on idle balance on this domain */
c88d5910 6239 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6240 }
6241}
6242
54ab4ff4
PZ
6243static void __sdt_free(const struct cpumask *cpu_map);
6244static int __sdt_alloc(const struct cpumask *cpu_map);
6245
2109b99e
AH
6246static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6247 const struct cpumask *cpu_map)
6248{
6249 switch (what) {
2109b99e 6250 case sa_rootdomain:
822ff793
PZ
6251 if (!atomic_read(&d->rd->refcount))
6252 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6253 case sa_sd:
6254 free_percpu(d->sd); /* fall through */
dce840a0 6255 case sa_sd_storage:
54ab4ff4 6256 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6257 case sa_none:
6258 break;
6259 }
6260}
3404c8d9 6261
2109b99e
AH
6262static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6263 const struct cpumask *cpu_map)
6264{
dce840a0
PZ
6265 memset(d, 0, sizeof(*d));
6266
54ab4ff4
PZ
6267 if (__sdt_alloc(cpu_map))
6268 return sa_sd_storage;
dce840a0
PZ
6269 d->sd = alloc_percpu(struct sched_domain *);
6270 if (!d->sd)
6271 return sa_sd_storage;
2109b99e 6272 d->rd = alloc_rootdomain();
dce840a0 6273 if (!d->rd)
21d42ccf 6274 return sa_sd;
2109b99e
AH
6275 return sa_rootdomain;
6276}
57d885fe 6277
dce840a0
PZ
6278/*
6279 * NULL the sd_data elements we've used to build the sched_domain and
6280 * sched_group structure so that the subsequent __free_domain_allocs()
6281 * will not free the data we're using.
6282 */
6283static void claim_allocations(int cpu, struct sched_domain *sd)
6284{
6285 struct sd_data *sdd = sd->private;
dce840a0
PZ
6286
6287 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6288 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6289
e3589f6c 6290 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6291 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6292
63b2ca30
NP
6293 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6294 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6295}
6296
cb83b629 6297#ifdef CONFIG_NUMA
cb83b629 6298static int sched_domains_numa_levels;
e3fe70b1 6299enum numa_topology_type sched_numa_topology_type;
cb83b629 6300static int *sched_domains_numa_distance;
9942f79b 6301int sched_max_numa_distance;
cb83b629
PZ
6302static struct cpumask ***sched_domains_numa_masks;
6303static int sched_domains_curr_level;
143e1e28 6304#endif
cb83b629 6305
143e1e28
VG
6306/*
6307 * SD_flags allowed in topology descriptions.
6308 *
5d4dfddd 6309 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6310 * SD_SHARE_PKG_RESOURCES - describes shared caches
6311 * SD_NUMA - describes NUMA topologies
d77b3ed5 6312 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6313 *
6314 * Odd one out:
6315 * SD_ASYM_PACKING - describes SMT quirks
6316 */
6317#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6318 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6319 SD_SHARE_PKG_RESOURCES | \
6320 SD_NUMA | \
d77b3ed5
VG
6321 SD_ASYM_PACKING | \
6322 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6323
6324static struct sched_domain *
143e1e28 6325sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6326{
6327 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6328 int sd_weight, sd_flags = 0;
6329
6330#ifdef CONFIG_NUMA
6331 /*
6332 * Ugly hack to pass state to sd_numa_mask()...
6333 */
6334 sched_domains_curr_level = tl->numa_level;
6335#endif
6336
6337 sd_weight = cpumask_weight(tl->mask(cpu));
6338
6339 if (tl->sd_flags)
6340 sd_flags = (*tl->sd_flags)();
6341 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6342 "wrong sd_flags in topology description\n"))
6343 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6344
6345 *sd = (struct sched_domain){
6346 .min_interval = sd_weight,
6347 .max_interval = 2*sd_weight,
6348 .busy_factor = 32,
870a0bb5 6349 .imbalance_pct = 125,
143e1e28
VG
6350
6351 .cache_nice_tries = 0,
6352 .busy_idx = 0,
6353 .idle_idx = 0,
cb83b629
PZ
6354 .newidle_idx = 0,
6355 .wake_idx = 0,
6356 .forkexec_idx = 0,
6357
6358 .flags = 1*SD_LOAD_BALANCE
6359 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6360 | 1*SD_BALANCE_EXEC
6361 | 1*SD_BALANCE_FORK
cb83b629 6362 | 0*SD_BALANCE_WAKE
143e1e28 6363 | 1*SD_WAKE_AFFINE
5d4dfddd 6364 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6365 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6366 | 0*SD_SERIALIZE
cb83b629 6367 | 0*SD_PREFER_SIBLING
143e1e28
VG
6368 | 0*SD_NUMA
6369 | sd_flags
cb83b629 6370 ,
143e1e28 6371
cb83b629
PZ
6372 .last_balance = jiffies,
6373 .balance_interval = sd_weight,
143e1e28 6374 .smt_gain = 0,
2b4cfe64
JL
6375 .max_newidle_lb_cost = 0,
6376 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6377#ifdef CONFIG_SCHED_DEBUG
6378 .name = tl->name,
6379#endif
cb83b629 6380 };
cb83b629
PZ
6381
6382 /*
143e1e28 6383 * Convert topological properties into behaviour.
cb83b629 6384 */
143e1e28 6385
5d4dfddd 6386 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6387 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6388 sd->imbalance_pct = 110;
6389 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6390
6391 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6392 sd->imbalance_pct = 117;
6393 sd->cache_nice_tries = 1;
6394 sd->busy_idx = 2;
6395
6396#ifdef CONFIG_NUMA
6397 } else if (sd->flags & SD_NUMA) {
6398 sd->cache_nice_tries = 2;
6399 sd->busy_idx = 3;
6400 sd->idle_idx = 2;
6401
6402 sd->flags |= SD_SERIALIZE;
6403 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6404 sd->flags &= ~(SD_BALANCE_EXEC |
6405 SD_BALANCE_FORK |
6406 SD_WAKE_AFFINE);
6407 }
6408
6409#endif
6410 } else {
6411 sd->flags |= SD_PREFER_SIBLING;
6412 sd->cache_nice_tries = 1;
6413 sd->busy_idx = 2;
6414 sd->idle_idx = 1;
6415 }
6416
6417 sd->private = &tl->data;
cb83b629
PZ
6418
6419 return sd;
6420}
6421
143e1e28
VG
6422/*
6423 * Topology list, bottom-up.
6424 */
6425static struct sched_domain_topology_level default_topology[] = {
6426#ifdef CONFIG_SCHED_SMT
6427 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6428#endif
6429#ifdef CONFIG_SCHED_MC
6430 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6431#endif
6432 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6433 { NULL, },
6434};
6435
6436struct sched_domain_topology_level *sched_domain_topology = default_topology;
6437
6438#define for_each_sd_topology(tl) \
6439 for (tl = sched_domain_topology; tl->mask; tl++)
6440
6441void set_sched_topology(struct sched_domain_topology_level *tl)
6442{
6443 sched_domain_topology = tl;
6444}
6445
6446#ifdef CONFIG_NUMA
6447
cb83b629
PZ
6448static const struct cpumask *sd_numa_mask(int cpu)
6449{
6450 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6451}
6452
d039ac60
PZ
6453static void sched_numa_warn(const char *str)
6454{
6455 static int done = false;
6456 int i,j;
6457
6458 if (done)
6459 return;
6460
6461 done = true;
6462
6463 printk(KERN_WARNING "ERROR: %s\n\n", str);
6464
6465 for (i = 0; i < nr_node_ids; i++) {
6466 printk(KERN_WARNING " ");
6467 for (j = 0; j < nr_node_ids; j++)
6468 printk(KERN_CONT "%02d ", node_distance(i,j));
6469 printk(KERN_CONT "\n");
6470 }
6471 printk(KERN_WARNING "\n");
6472}
6473
9942f79b 6474bool find_numa_distance(int distance)
d039ac60
PZ
6475{
6476 int i;
6477
6478 if (distance == node_distance(0, 0))
6479 return true;
6480
6481 for (i = 0; i < sched_domains_numa_levels; i++) {
6482 if (sched_domains_numa_distance[i] == distance)
6483 return true;
6484 }
6485
6486 return false;
6487}
6488
e3fe70b1
RR
6489/*
6490 * A system can have three types of NUMA topology:
6491 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6492 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6493 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6494 *
6495 * The difference between a glueless mesh topology and a backplane
6496 * topology lies in whether communication between not directly
6497 * connected nodes goes through intermediary nodes (where programs
6498 * could run), or through backplane controllers. This affects
6499 * placement of programs.
6500 *
6501 * The type of topology can be discerned with the following tests:
6502 * - If the maximum distance between any nodes is 1 hop, the system
6503 * is directly connected.
6504 * - If for two nodes A and B, located N > 1 hops away from each other,
6505 * there is an intermediary node C, which is < N hops away from both
6506 * nodes A and B, the system is a glueless mesh.
6507 */
6508static void init_numa_topology_type(void)
6509{
6510 int a, b, c, n;
6511
6512 n = sched_max_numa_distance;
6513
e237882b 6514 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6515 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6516 return;
6517 }
e3fe70b1
RR
6518
6519 for_each_online_node(a) {
6520 for_each_online_node(b) {
6521 /* Find two nodes furthest removed from each other. */
6522 if (node_distance(a, b) < n)
6523 continue;
6524
6525 /* Is there an intermediary node between a and b? */
6526 for_each_online_node(c) {
6527 if (node_distance(a, c) < n &&
6528 node_distance(b, c) < n) {
6529 sched_numa_topology_type =
6530 NUMA_GLUELESS_MESH;
6531 return;
6532 }
6533 }
6534
6535 sched_numa_topology_type = NUMA_BACKPLANE;
6536 return;
6537 }
6538 }
6539}
6540
cb83b629
PZ
6541static void sched_init_numa(void)
6542{
6543 int next_distance, curr_distance = node_distance(0, 0);
6544 struct sched_domain_topology_level *tl;
6545 int level = 0;
6546 int i, j, k;
6547
cb83b629
PZ
6548 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6549 if (!sched_domains_numa_distance)
6550 return;
6551
6552 /*
6553 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6554 * unique distances in the node_distance() table.
6555 *
6556 * Assumes node_distance(0,j) includes all distances in
6557 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6558 */
6559 next_distance = curr_distance;
6560 for (i = 0; i < nr_node_ids; i++) {
6561 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6562 for (k = 0; k < nr_node_ids; k++) {
6563 int distance = node_distance(i, k);
6564
6565 if (distance > curr_distance &&
6566 (distance < next_distance ||
6567 next_distance == curr_distance))
6568 next_distance = distance;
6569
6570 /*
6571 * While not a strong assumption it would be nice to know
6572 * about cases where if node A is connected to B, B is not
6573 * equally connected to A.
6574 */
6575 if (sched_debug() && node_distance(k, i) != distance)
6576 sched_numa_warn("Node-distance not symmetric");
6577
6578 if (sched_debug() && i && !find_numa_distance(distance))
6579 sched_numa_warn("Node-0 not representative");
6580 }
6581 if (next_distance != curr_distance) {
6582 sched_domains_numa_distance[level++] = next_distance;
6583 sched_domains_numa_levels = level;
6584 curr_distance = next_distance;
6585 } else break;
cb83b629 6586 }
d039ac60
PZ
6587
6588 /*
6589 * In case of sched_debug() we verify the above assumption.
6590 */
6591 if (!sched_debug())
6592 break;
cb83b629 6593 }
c123588b
AR
6594
6595 if (!level)
6596 return;
6597
cb83b629
PZ
6598 /*
6599 * 'level' contains the number of unique distances, excluding the
6600 * identity distance node_distance(i,i).
6601 *
28b4a521 6602 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6603 * numbers.
6604 */
6605
5f7865f3
TC
6606 /*
6607 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6608 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6609 * the array will contain less then 'level' members. This could be
6610 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6611 * in other functions.
6612 *
6613 * We reset it to 'level' at the end of this function.
6614 */
6615 sched_domains_numa_levels = 0;
6616
cb83b629
PZ
6617 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6618 if (!sched_domains_numa_masks)
6619 return;
6620
6621 /*
6622 * Now for each level, construct a mask per node which contains all
6623 * cpus of nodes that are that many hops away from us.
6624 */
6625 for (i = 0; i < level; i++) {
6626 sched_domains_numa_masks[i] =
6627 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6628 if (!sched_domains_numa_masks[i])
6629 return;
6630
6631 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6632 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6633 if (!mask)
6634 return;
6635
6636 sched_domains_numa_masks[i][j] = mask;
6637
6638 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6639 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6640 continue;
6641
6642 cpumask_or(mask, mask, cpumask_of_node(k));
6643 }
6644 }
6645 }
6646
143e1e28
VG
6647 /* Compute default topology size */
6648 for (i = 0; sched_domain_topology[i].mask; i++);
6649
c515db8c 6650 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6651 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6652 if (!tl)
6653 return;
6654
6655 /*
6656 * Copy the default topology bits..
6657 */
143e1e28
VG
6658 for (i = 0; sched_domain_topology[i].mask; i++)
6659 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6660
6661 /*
6662 * .. and append 'j' levels of NUMA goodness.
6663 */
6664 for (j = 0; j < level; i++, j++) {
6665 tl[i] = (struct sched_domain_topology_level){
cb83b629 6666 .mask = sd_numa_mask,
143e1e28 6667 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6668 .flags = SDTL_OVERLAP,
6669 .numa_level = j,
143e1e28 6670 SD_INIT_NAME(NUMA)
cb83b629
PZ
6671 };
6672 }
6673
6674 sched_domain_topology = tl;
5f7865f3
TC
6675
6676 sched_domains_numa_levels = level;
9942f79b 6677 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6678
6679 init_numa_topology_type();
cb83b629 6680}
301a5cba
TC
6681
6682static void sched_domains_numa_masks_set(int cpu)
6683{
6684 int i, j;
6685 int node = cpu_to_node(cpu);
6686
6687 for (i = 0; i < sched_domains_numa_levels; i++) {
6688 for (j = 0; j < nr_node_ids; j++) {
6689 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6690 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6691 }
6692 }
6693}
6694
6695static void sched_domains_numa_masks_clear(int cpu)
6696{
6697 int i, j;
6698 for (i = 0; i < sched_domains_numa_levels; i++) {
6699 for (j = 0; j < nr_node_ids; j++)
6700 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6701 }
6702}
6703
6704/*
6705 * Update sched_domains_numa_masks[level][node] array when new cpus
6706 * are onlined.
6707 */
6708static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6709 unsigned long action,
6710 void *hcpu)
6711{
6712 int cpu = (long)hcpu;
6713
6714 switch (action & ~CPU_TASKS_FROZEN) {
6715 case CPU_ONLINE:
6716 sched_domains_numa_masks_set(cpu);
6717 break;
6718
6719 case CPU_DEAD:
6720 sched_domains_numa_masks_clear(cpu);
6721 break;
6722
6723 default:
6724 return NOTIFY_DONE;
6725 }
6726
6727 return NOTIFY_OK;
cb83b629
PZ
6728}
6729#else
6730static inline void sched_init_numa(void)
6731{
6732}
301a5cba
TC
6733
6734static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6735 unsigned long action,
6736 void *hcpu)
6737{
6738 return 0;
6739}
cb83b629
PZ
6740#endif /* CONFIG_NUMA */
6741
54ab4ff4
PZ
6742static int __sdt_alloc(const struct cpumask *cpu_map)
6743{
6744 struct sched_domain_topology_level *tl;
6745 int j;
6746
27723a68 6747 for_each_sd_topology(tl) {
54ab4ff4
PZ
6748 struct sd_data *sdd = &tl->data;
6749
6750 sdd->sd = alloc_percpu(struct sched_domain *);
6751 if (!sdd->sd)
6752 return -ENOMEM;
6753
6754 sdd->sg = alloc_percpu(struct sched_group *);
6755 if (!sdd->sg)
6756 return -ENOMEM;
6757
63b2ca30
NP
6758 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6759 if (!sdd->sgc)
9c3f75cb
PZ
6760 return -ENOMEM;
6761
54ab4ff4
PZ
6762 for_each_cpu(j, cpu_map) {
6763 struct sched_domain *sd;
6764 struct sched_group *sg;
63b2ca30 6765 struct sched_group_capacity *sgc;
54ab4ff4 6766
5cc389bc 6767 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6768 GFP_KERNEL, cpu_to_node(j));
6769 if (!sd)
6770 return -ENOMEM;
6771
6772 *per_cpu_ptr(sdd->sd, j) = sd;
6773
6774 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6775 GFP_KERNEL, cpu_to_node(j));
6776 if (!sg)
6777 return -ENOMEM;
6778
30b4e9eb
IM
6779 sg->next = sg;
6780
54ab4ff4 6781 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6782
63b2ca30 6783 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6784 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6785 if (!sgc)
9c3f75cb
PZ
6786 return -ENOMEM;
6787
63b2ca30 6788 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6789 }
6790 }
6791
6792 return 0;
6793}
6794
6795static void __sdt_free(const struct cpumask *cpu_map)
6796{
6797 struct sched_domain_topology_level *tl;
6798 int j;
6799
27723a68 6800 for_each_sd_topology(tl) {
54ab4ff4
PZ
6801 struct sd_data *sdd = &tl->data;
6802
6803 for_each_cpu(j, cpu_map) {
fb2cf2c6 6804 struct sched_domain *sd;
6805
6806 if (sdd->sd) {
6807 sd = *per_cpu_ptr(sdd->sd, j);
6808 if (sd && (sd->flags & SD_OVERLAP))
6809 free_sched_groups(sd->groups, 0);
6810 kfree(*per_cpu_ptr(sdd->sd, j));
6811 }
6812
6813 if (sdd->sg)
6814 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6815 if (sdd->sgc)
6816 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6817 }
6818 free_percpu(sdd->sd);
fb2cf2c6 6819 sdd->sd = NULL;
54ab4ff4 6820 free_percpu(sdd->sg);
fb2cf2c6 6821 sdd->sg = NULL;
63b2ca30
NP
6822 free_percpu(sdd->sgc);
6823 sdd->sgc = NULL;
54ab4ff4
PZ
6824 }
6825}
6826
2c402dc3 6827struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6828 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6829 struct sched_domain *child, int cpu)
2c402dc3 6830{
143e1e28 6831 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6832 if (!sd)
d069b916 6833 return child;
2c402dc3 6834
2c402dc3 6835 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6836 if (child) {
6837 sd->level = child->level + 1;
6838 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6839 child->parent = sd;
c75e0128 6840 sd->child = child;
6ae72dff
PZ
6841
6842 if (!cpumask_subset(sched_domain_span(child),
6843 sched_domain_span(sd))) {
6844 pr_err("BUG: arch topology borken\n");
6845#ifdef CONFIG_SCHED_DEBUG
6846 pr_err(" the %s domain not a subset of the %s domain\n",
6847 child->name, sd->name);
6848#endif
6849 /* Fixup, ensure @sd has at least @child cpus. */
6850 cpumask_or(sched_domain_span(sd),
6851 sched_domain_span(sd),
6852 sched_domain_span(child));
6853 }
6854
60495e77 6855 }
a841f8ce 6856 set_domain_attribute(sd, attr);
2c402dc3
PZ
6857
6858 return sd;
6859}
6860
2109b99e
AH
6861/*
6862 * Build sched domains for a given set of cpus and attach the sched domains
6863 * to the individual cpus
6864 */
dce840a0
PZ
6865static int build_sched_domains(const struct cpumask *cpu_map,
6866 struct sched_domain_attr *attr)
2109b99e 6867{
1c632169 6868 enum s_alloc alloc_state;
dce840a0 6869 struct sched_domain *sd;
2109b99e 6870 struct s_data d;
822ff793 6871 int i, ret = -ENOMEM;
9c1cfda2 6872
2109b99e
AH
6873 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6874 if (alloc_state != sa_rootdomain)
6875 goto error;
9c1cfda2 6876
dce840a0 6877 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6878 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6879 struct sched_domain_topology_level *tl;
6880
3bd65a80 6881 sd = NULL;
27723a68 6882 for_each_sd_topology(tl) {
4a850cbe 6883 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6884 if (tl == sched_domain_topology)
6885 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6886 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6887 sd->flags |= SD_OVERLAP;
d110235d
PZ
6888 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6889 break;
e3589f6c 6890 }
dce840a0
PZ
6891 }
6892
6893 /* Build the groups for the domains */
6894 for_each_cpu(i, cpu_map) {
6895 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6896 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6897 if (sd->flags & SD_OVERLAP) {
6898 if (build_overlap_sched_groups(sd, i))
6899 goto error;
6900 } else {
6901 if (build_sched_groups(sd, i))
6902 goto error;
6903 }
1cf51902 6904 }
a06dadbe 6905 }
9c1cfda2 6906
ced549fa 6907 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6908 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6909 if (!cpumask_test_cpu(i, cpu_map))
6910 continue;
9c1cfda2 6911
dce840a0
PZ
6912 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6913 claim_allocations(i, sd);
63b2ca30 6914 init_sched_groups_capacity(i, sd);
dce840a0 6915 }
f712c0c7 6916 }
9c1cfda2 6917
1da177e4 6918 /* Attach the domains */
dce840a0 6919 rcu_read_lock();
abcd083a 6920 for_each_cpu(i, cpu_map) {
21d42ccf 6921 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6922 cpu_attach_domain(sd, d.rd, i);
1da177e4 6923 }
dce840a0 6924 rcu_read_unlock();
51888ca2 6925
822ff793 6926 ret = 0;
51888ca2 6927error:
2109b99e 6928 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6929 return ret;
1da177e4 6930}
029190c5 6931
acc3f5d7 6932static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6933static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6934static struct sched_domain_attr *dattr_cur;
6935 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6936
6937/*
6938 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6939 * cpumask) fails, then fallback to a single sched domain,
6940 * as determined by the single cpumask fallback_doms.
029190c5 6941 */
4212823f 6942static cpumask_var_t fallback_doms;
029190c5 6943
ee79d1bd
HC
6944/*
6945 * arch_update_cpu_topology lets virtualized architectures update the
6946 * cpu core maps. It is supposed to return 1 if the topology changed
6947 * or 0 if it stayed the same.
6948 */
52f5684c 6949int __weak arch_update_cpu_topology(void)
22e52b07 6950{
ee79d1bd 6951 return 0;
22e52b07
HC
6952}
6953
acc3f5d7
RR
6954cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6955{
6956 int i;
6957 cpumask_var_t *doms;
6958
6959 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6960 if (!doms)
6961 return NULL;
6962 for (i = 0; i < ndoms; i++) {
6963 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6964 free_sched_domains(doms, i);
6965 return NULL;
6966 }
6967 }
6968 return doms;
6969}
6970
6971void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6972{
6973 unsigned int i;
6974 for (i = 0; i < ndoms; i++)
6975 free_cpumask_var(doms[i]);
6976 kfree(doms);
6977}
6978
1a20ff27 6979/*
41a2d6cf 6980 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6981 * For now this just excludes isolated cpus, but could be used to
6982 * exclude other special cases in the future.
1a20ff27 6983 */
c4a8849a 6984static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6985{
7378547f
MM
6986 int err;
6987
22e52b07 6988 arch_update_cpu_topology();
029190c5 6989 ndoms_cur = 1;
acc3f5d7 6990 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6991 if (!doms_cur)
acc3f5d7
RR
6992 doms_cur = &fallback_doms;
6993 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6994 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6995 register_sched_domain_sysctl();
7378547f
MM
6996
6997 return err;
1a20ff27
DG
6998}
6999
1a20ff27
DG
7000/*
7001 * Detach sched domains from a group of cpus specified in cpu_map
7002 * These cpus will now be attached to the NULL domain
7003 */
96f874e2 7004static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7005{
7006 int i;
7007
dce840a0 7008 rcu_read_lock();
abcd083a 7009 for_each_cpu(i, cpu_map)
57d885fe 7010 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7011 rcu_read_unlock();
1a20ff27
DG
7012}
7013
1d3504fc
HS
7014/* handle null as "default" */
7015static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7016 struct sched_domain_attr *new, int idx_new)
7017{
7018 struct sched_domain_attr tmp;
7019
7020 /* fast path */
7021 if (!new && !cur)
7022 return 1;
7023
7024 tmp = SD_ATTR_INIT;
7025 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7026 new ? (new + idx_new) : &tmp,
7027 sizeof(struct sched_domain_attr));
7028}
7029
029190c5
PJ
7030/*
7031 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7032 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7033 * doms_new[] to the current sched domain partitioning, doms_cur[].
7034 * It destroys each deleted domain and builds each new domain.
7035 *
acc3f5d7 7036 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7037 * The masks don't intersect (don't overlap.) We should setup one
7038 * sched domain for each mask. CPUs not in any of the cpumasks will
7039 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7040 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7041 * it as it is.
7042 *
acc3f5d7
RR
7043 * The passed in 'doms_new' should be allocated using
7044 * alloc_sched_domains. This routine takes ownership of it and will
7045 * free_sched_domains it when done with it. If the caller failed the
7046 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7047 * and partition_sched_domains() will fallback to the single partition
7048 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7049 *
96f874e2 7050 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7051 * ndoms_new == 0 is a special case for destroying existing domains,
7052 * and it will not create the default domain.
dfb512ec 7053 *
029190c5
PJ
7054 * Call with hotplug lock held
7055 */
acc3f5d7 7056void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7057 struct sched_domain_attr *dattr_new)
029190c5 7058{
dfb512ec 7059 int i, j, n;
d65bd5ec 7060 int new_topology;
029190c5 7061
712555ee 7062 mutex_lock(&sched_domains_mutex);
a1835615 7063
7378547f
MM
7064 /* always unregister in case we don't destroy any domains */
7065 unregister_sched_domain_sysctl();
7066
d65bd5ec
HC
7067 /* Let architecture update cpu core mappings. */
7068 new_topology = arch_update_cpu_topology();
7069
dfb512ec 7070 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7071
7072 /* Destroy deleted domains */
7073 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7074 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7075 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7076 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7077 goto match1;
7078 }
7079 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7080 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7081match1:
7082 ;
7083 }
7084
c8d2d47a 7085 n = ndoms_cur;
e761b772 7086 if (doms_new == NULL) {
c8d2d47a 7087 n = 0;
acc3f5d7 7088 doms_new = &fallback_doms;
6ad4c188 7089 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7090 WARN_ON_ONCE(dattr_new);
e761b772
MK
7091 }
7092
029190c5
PJ
7093 /* Build new domains */
7094 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7095 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7096 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7097 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7098 goto match2;
7099 }
7100 /* no match - add a new doms_new */
dce840a0 7101 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7102match2:
7103 ;
7104 }
7105
7106 /* Remember the new sched domains */
acc3f5d7
RR
7107 if (doms_cur != &fallback_doms)
7108 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7109 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7110 doms_cur = doms_new;
1d3504fc 7111 dattr_cur = dattr_new;
029190c5 7112 ndoms_cur = ndoms_new;
7378547f
MM
7113
7114 register_sched_domain_sysctl();
a1835615 7115
712555ee 7116 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7117}
7118
d35be8ba
SB
7119static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7120
1da177e4 7121/*
3a101d05
TH
7122 * Update cpusets according to cpu_active mask. If cpusets are
7123 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7124 * around partition_sched_domains().
d35be8ba
SB
7125 *
7126 * If we come here as part of a suspend/resume, don't touch cpusets because we
7127 * want to restore it back to its original state upon resume anyway.
1da177e4 7128 */
0b2e918a
TH
7129static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7130 void *hcpu)
e761b772 7131{
d35be8ba
SB
7132 switch (action) {
7133 case CPU_ONLINE_FROZEN:
7134 case CPU_DOWN_FAILED_FROZEN:
7135
7136 /*
7137 * num_cpus_frozen tracks how many CPUs are involved in suspend
7138 * resume sequence. As long as this is not the last online
7139 * operation in the resume sequence, just build a single sched
7140 * domain, ignoring cpusets.
7141 */
7142 num_cpus_frozen--;
7143 if (likely(num_cpus_frozen)) {
7144 partition_sched_domains(1, NULL, NULL);
7145 break;
7146 }
7147
7148 /*
7149 * This is the last CPU online operation. So fall through and
7150 * restore the original sched domains by considering the
7151 * cpuset configurations.
7152 */
7153
e761b772 7154 case CPU_ONLINE:
7ddf96b0 7155 cpuset_update_active_cpus(true);
d35be8ba 7156 break;
3a101d05
TH
7157 default:
7158 return NOTIFY_DONE;
7159 }
d35be8ba 7160 return NOTIFY_OK;
3a101d05 7161}
e761b772 7162
0b2e918a
TH
7163static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7164 void *hcpu)
3a101d05 7165{
3c18d447
JL
7166 unsigned long flags;
7167 long cpu = (long)hcpu;
7168 struct dl_bw *dl_b;
533445c6
OS
7169 bool overflow;
7170 int cpus;
3c18d447 7171
533445c6 7172 switch (action) {
3a101d05 7173 case CPU_DOWN_PREPARE:
533445c6
OS
7174 rcu_read_lock_sched();
7175 dl_b = dl_bw_of(cpu);
3c18d447 7176
533445c6
OS
7177 raw_spin_lock_irqsave(&dl_b->lock, flags);
7178 cpus = dl_bw_cpus(cpu);
7179 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7180 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7181
533445c6 7182 rcu_read_unlock_sched();
3c18d447 7183
533445c6
OS
7184 if (overflow)
7185 return notifier_from_errno(-EBUSY);
7ddf96b0 7186 cpuset_update_active_cpus(false);
d35be8ba
SB
7187 break;
7188 case CPU_DOWN_PREPARE_FROZEN:
7189 num_cpus_frozen++;
7190 partition_sched_domains(1, NULL, NULL);
7191 break;
e761b772
MK
7192 default:
7193 return NOTIFY_DONE;
7194 }
d35be8ba 7195 return NOTIFY_OK;
e761b772 7196}
e761b772 7197
1da177e4
LT
7198void __init sched_init_smp(void)
7199{
dcc30a35
RR
7200 cpumask_var_t non_isolated_cpus;
7201
7202 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7203 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7204
8cb9764f
CM
7205 /* nohz_full won't take effect without isolating the cpus. */
7206 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7207
cb83b629
PZ
7208 sched_init_numa();
7209
6acce3ef
PZ
7210 /*
7211 * There's no userspace yet to cause hotplug operations; hence all the
7212 * cpu masks are stable and all blatant races in the below code cannot
7213 * happen.
7214 */
712555ee 7215 mutex_lock(&sched_domains_mutex);
c4a8849a 7216 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7217 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7218 if (cpumask_empty(non_isolated_cpus))
7219 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7220 mutex_unlock(&sched_domains_mutex);
e761b772 7221
301a5cba 7222 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7223 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7224 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7225
b328ca18 7226 init_hrtick();
5c1e1767
NP
7227
7228 /* Move init over to a non-isolated CPU */
dcc30a35 7229 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7230 BUG();
19978ca6 7231 sched_init_granularity();
dcc30a35 7232 free_cpumask_var(non_isolated_cpus);
4212823f 7233
0e3900e6 7234 init_sched_rt_class();
1baca4ce 7235 init_sched_dl_class();
1da177e4
LT
7236}
7237#else
7238void __init sched_init_smp(void)
7239{
19978ca6 7240 sched_init_granularity();
1da177e4
LT
7241}
7242#endif /* CONFIG_SMP */
7243
7244int in_sched_functions(unsigned long addr)
7245{
1da177e4
LT
7246 return in_lock_functions(addr) ||
7247 (addr >= (unsigned long)__sched_text_start
7248 && addr < (unsigned long)__sched_text_end);
7249}
7250
029632fb 7251#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7252/*
7253 * Default task group.
7254 * Every task in system belongs to this group at bootup.
7255 */
029632fb 7256struct task_group root_task_group;
35cf4e50 7257LIST_HEAD(task_groups);
052f1dc7 7258#endif
6f505b16 7259
e6252c3e 7260DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7261
1da177e4
LT
7262void __init sched_init(void)
7263{
dd41f596 7264 int i, j;
434d53b0
MT
7265 unsigned long alloc_size = 0, ptr;
7266
7267#ifdef CONFIG_FAIR_GROUP_SCHED
7268 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7269#endif
7270#ifdef CONFIG_RT_GROUP_SCHED
7271 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7272#endif
434d53b0 7273 if (alloc_size) {
36b7b6d4 7274 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7275
7276#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7277 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7278 ptr += nr_cpu_ids * sizeof(void **);
7279
07e06b01 7280 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7281 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7282
6d6bc0ad 7283#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7284#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7285 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7286 ptr += nr_cpu_ids * sizeof(void **);
7287
07e06b01 7288 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7289 ptr += nr_cpu_ids * sizeof(void **);
7290
6d6bc0ad 7291#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7292 }
df7c8e84 7293#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7294 for_each_possible_cpu(i) {
7295 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7296 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7297 }
b74e6278 7298#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7299
332ac17e
DF
7300 init_rt_bandwidth(&def_rt_bandwidth,
7301 global_rt_period(), global_rt_runtime());
7302 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7303 global_rt_period(), global_rt_runtime());
332ac17e 7304
57d885fe
GH
7305#ifdef CONFIG_SMP
7306 init_defrootdomain();
7307#endif
7308
d0b27fa7 7309#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7310 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7311 global_rt_period(), global_rt_runtime());
6d6bc0ad 7312#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7313
7c941438 7314#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7315 list_add(&root_task_group.list, &task_groups);
7316 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7317 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7318 autogroup_init(&init_task);
54c707e9 7319
7c941438 7320#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7321
0a945022 7322 for_each_possible_cpu(i) {
70b97a7f 7323 struct rq *rq;
1da177e4
LT
7324
7325 rq = cpu_rq(i);
05fa785c 7326 raw_spin_lock_init(&rq->lock);
7897986b 7327 rq->nr_running = 0;
dce48a84
TG
7328 rq->calc_load_active = 0;
7329 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7330 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7331 init_rt_rq(&rq->rt);
7332 init_dl_rq(&rq->dl);
dd41f596 7333#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7334 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7335 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7336 /*
07e06b01 7337 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7338 *
7339 * In case of task-groups formed thr' the cgroup filesystem, it
7340 * gets 100% of the cpu resources in the system. This overall
7341 * system cpu resource is divided among the tasks of
07e06b01 7342 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7343 * based on each entity's (task or task-group's) weight
7344 * (se->load.weight).
7345 *
07e06b01 7346 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7347 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7348 * then A0's share of the cpu resource is:
7349 *
0d905bca 7350 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7351 *
07e06b01
YZ
7352 * We achieve this by letting root_task_group's tasks sit
7353 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7354 */
ab84d31e 7355 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7356 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7357#endif /* CONFIG_FAIR_GROUP_SCHED */
7358
7359 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7360#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7361 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7362#endif
1da177e4 7363
dd41f596
IM
7364 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7365 rq->cpu_load[j] = 0;
fdf3e95d
VP
7366
7367 rq->last_load_update_tick = jiffies;
7368
1da177e4 7369#ifdef CONFIG_SMP
41c7ce9a 7370 rq->sd = NULL;
57d885fe 7371 rq->rd = NULL;
ca6d75e6 7372 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7373 rq->balance_callback = NULL;
1da177e4 7374 rq->active_balance = 0;
dd41f596 7375 rq->next_balance = jiffies;
1da177e4 7376 rq->push_cpu = 0;
0a2966b4 7377 rq->cpu = i;
1f11eb6a 7378 rq->online = 0;
eae0c9df
MG
7379 rq->idle_stamp = 0;
7380 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7381 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7382
7383 INIT_LIST_HEAD(&rq->cfs_tasks);
7384
dc938520 7385 rq_attach_root(rq, &def_root_domain);
3451d024 7386#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7387 rq->nohz_flags = 0;
83cd4fe2 7388#endif
265f22a9
FW
7389#ifdef CONFIG_NO_HZ_FULL
7390 rq->last_sched_tick = 0;
7391#endif
1da177e4 7392#endif
8f4d37ec 7393 init_rq_hrtick(rq);
1da177e4 7394 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7395 }
7396
2dd73a4f 7397 set_load_weight(&init_task);
b50f60ce 7398
e107be36
AK
7399#ifdef CONFIG_PREEMPT_NOTIFIERS
7400 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7401#endif
7402
1da177e4
LT
7403 /*
7404 * The boot idle thread does lazy MMU switching as well:
7405 */
7406 atomic_inc(&init_mm.mm_count);
7407 enter_lazy_tlb(&init_mm, current);
7408
1b537c7d
YD
7409 /*
7410 * During early bootup we pretend to be a normal task:
7411 */
7412 current->sched_class = &fair_sched_class;
7413
1da177e4
LT
7414 /*
7415 * Make us the idle thread. Technically, schedule() should not be
7416 * called from this thread, however somewhere below it might be,
7417 * but because we are the idle thread, we just pick up running again
7418 * when this runqueue becomes "idle".
7419 */
7420 init_idle(current, smp_processor_id());
dce48a84
TG
7421
7422 calc_load_update = jiffies + LOAD_FREQ;
7423
bf4d83f6 7424#ifdef CONFIG_SMP
4cb98839 7425 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7426 /* May be allocated at isolcpus cmdline parse time */
7427 if (cpu_isolated_map == NULL)
7428 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7429 idle_thread_set_boot_cpu();
a803f026 7430 set_cpu_rq_start_time();
029632fb
PZ
7431#endif
7432 init_sched_fair_class();
6a7b3dc3 7433
6892b75e 7434 scheduler_running = 1;
1da177e4
LT
7435}
7436
d902db1e 7437#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7438static inline int preempt_count_equals(int preempt_offset)
7439{
234da7bc 7440 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7441
4ba8216c 7442 return (nested == preempt_offset);
e4aafea2
FW
7443}
7444
d894837f 7445void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7446{
8eb23b9f
PZ
7447 /*
7448 * Blocking primitives will set (and therefore destroy) current->state,
7449 * since we will exit with TASK_RUNNING make sure we enter with it,
7450 * otherwise we will destroy state.
7451 */
00845eb9 7452 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7453 "do not call blocking ops when !TASK_RUNNING; "
7454 "state=%lx set at [<%p>] %pS\n",
7455 current->state,
7456 (void *)current->task_state_change,
00845eb9 7457 (void *)current->task_state_change);
8eb23b9f 7458
3427445a
PZ
7459 ___might_sleep(file, line, preempt_offset);
7460}
7461EXPORT_SYMBOL(__might_sleep);
7462
7463void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7464{
1da177e4
LT
7465 static unsigned long prev_jiffy; /* ratelimiting */
7466
b3fbab05 7467 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7468 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7469 !is_idle_task(current)) ||
e4aafea2 7470 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7471 return;
7472 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7473 return;
7474 prev_jiffy = jiffies;
7475
3df0fc5b
PZ
7476 printk(KERN_ERR
7477 "BUG: sleeping function called from invalid context at %s:%d\n",
7478 file, line);
7479 printk(KERN_ERR
7480 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7481 in_atomic(), irqs_disabled(),
7482 current->pid, current->comm);
aef745fc 7483
a8b686b3
ES
7484 if (task_stack_end_corrupted(current))
7485 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7486
aef745fc
IM
7487 debug_show_held_locks(current);
7488 if (irqs_disabled())
7489 print_irqtrace_events(current);
8f47b187
TG
7490#ifdef CONFIG_DEBUG_PREEMPT
7491 if (!preempt_count_equals(preempt_offset)) {
7492 pr_err("Preemption disabled at:");
7493 print_ip_sym(current->preempt_disable_ip);
7494 pr_cont("\n");
7495 }
7496#endif
aef745fc 7497 dump_stack();
1da177e4 7498}
3427445a 7499EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7500#endif
7501
7502#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7503void normalize_rt_tasks(void)
3a5e4dc1 7504{
dbc7f069 7505 struct task_struct *g, *p;
d50dde5a
DF
7506 struct sched_attr attr = {
7507 .sched_policy = SCHED_NORMAL,
7508 };
1da177e4 7509
3472eaa1 7510 read_lock(&tasklist_lock);
5d07f420 7511 for_each_process_thread(g, p) {
178be793
IM
7512 /*
7513 * Only normalize user tasks:
7514 */
3472eaa1 7515 if (p->flags & PF_KTHREAD)
178be793
IM
7516 continue;
7517
6cfb0d5d 7518 p->se.exec_start = 0;
6cfb0d5d 7519#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7520 p->se.statistics.wait_start = 0;
7521 p->se.statistics.sleep_start = 0;
7522 p->se.statistics.block_start = 0;
6cfb0d5d 7523#endif
dd41f596 7524
aab03e05 7525 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7526 /*
7527 * Renice negative nice level userspace
7528 * tasks back to 0:
7529 */
3472eaa1 7530 if (task_nice(p) < 0)
dd41f596 7531 set_user_nice(p, 0);
1da177e4 7532 continue;
dd41f596 7533 }
1da177e4 7534
dbc7f069 7535 __sched_setscheduler(p, &attr, false, false);
5d07f420 7536 }
3472eaa1 7537 read_unlock(&tasklist_lock);
1da177e4
LT
7538}
7539
7540#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7541
67fc4e0c 7542#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7543/*
67fc4e0c 7544 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7545 *
7546 * They can only be called when the whole system has been
7547 * stopped - every CPU needs to be quiescent, and no scheduling
7548 * activity can take place. Using them for anything else would
7549 * be a serious bug, and as a result, they aren't even visible
7550 * under any other configuration.
7551 */
7552
7553/**
7554 * curr_task - return the current task for a given cpu.
7555 * @cpu: the processor in question.
7556 *
7557 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7558 *
7559 * Return: The current task for @cpu.
1df5c10a 7560 */
36c8b586 7561struct task_struct *curr_task(int cpu)
1df5c10a
LT
7562{
7563 return cpu_curr(cpu);
7564}
7565
67fc4e0c
JW
7566#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7567
7568#ifdef CONFIG_IA64
1df5c10a
LT
7569/**
7570 * set_curr_task - set the current task for a given cpu.
7571 * @cpu: the processor in question.
7572 * @p: the task pointer to set.
7573 *
7574 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7575 * are serviced on a separate stack. It allows the architecture to switch the
7576 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7577 * must be called with all CPU's synchronized, and interrupts disabled, the
7578 * and caller must save the original value of the current task (see
7579 * curr_task() above) and restore that value before reenabling interrupts and
7580 * re-starting the system.
7581 *
7582 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7583 */
36c8b586 7584void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7585{
7586 cpu_curr(cpu) = p;
7587}
7588
7589#endif
29f59db3 7590
7c941438 7591#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7592/* task_group_lock serializes the addition/removal of task groups */
7593static DEFINE_SPINLOCK(task_group_lock);
7594
bccbe08a
PZ
7595static void free_sched_group(struct task_group *tg)
7596{
7597 free_fair_sched_group(tg);
7598 free_rt_sched_group(tg);
e9aa1dd1 7599 autogroup_free(tg);
bccbe08a
PZ
7600 kfree(tg);
7601}
7602
7603/* allocate runqueue etc for a new task group */
ec7dc8ac 7604struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7605{
7606 struct task_group *tg;
bccbe08a
PZ
7607
7608 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7609 if (!tg)
7610 return ERR_PTR(-ENOMEM);
7611
ec7dc8ac 7612 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7613 goto err;
7614
ec7dc8ac 7615 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7616 goto err;
7617
ace783b9
LZ
7618 return tg;
7619
7620err:
7621 free_sched_group(tg);
7622 return ERR_PTR(-ENOMEM);
7623}
7624
7625void sched_online_group(struct task_group *tg, struct task_group *parent)
7626{
7627 unsigned long flags;
7628
8ed36996 7629 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7630 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7631
7632 WARN_ON(!parent); /* root should already exist */
7633
7634 tg->parent = parent;
f473aa5e 7635 INIT_LIST_HEAD(&tg->children);
09f2724a 7636 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7637 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7638}
7639
9b5b7751 7640/* rcu callback to free various structures associated with a task group */
6f505b16 7641static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7642{
29f59db3 7643 /* now it should be safe to free those cfs_rqs */
6f505b16 7644 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7645}
7646
9b5b7751 7647/* Destroy runqueue etc associated with a task group */
4cf86d77 7648void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7649{
7650 /* wait for possible concurrent references to cfs_rqs complete */
7651 call_rcu(&tg->rcu, free_sched_group_rcu);
7652}
7653
7654void sched_offline_group(struct task_group *tg)
29f59db3 7655{
8ed36996 7656 unsigned long flags;
9b5b7751 7657 int i;
29f59db3 7658
3d4b47b4
PZ
7659 /* end participation in shares distribution */
7660 for_each_possible_cpu(i)
bccbe08a 7661 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7662
7663 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7664 list_del_rcu(&tg->list);
f473aa5e 7665 list_del_rcu(&tg->siblings);
8ed36996 7666 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7667}
7668
9b5b7751 7669/* change task's runqueue when it moves between groups.
3a252015
IM
7670 * The caller of this function should have put the task in its new group
7671 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7672 * reflect its new group.
9b5b7751
SV
7673 */
7674void sched_move_task(struct task_struct *tsk)
29f59db3 7675{
8323f26c 7676 struct task_group *tg;
da0c1e65 7677 int queued, running;
29f59db3
SV
7678 unsigned long flags;
7679 struct rq *rq;
7680
7681 rq = task_rq_lock(tsk, &flags);
7682
051a1d1a 7683 running = task_current(rq, tsk);
da0c1e65 7684 queued = task_on_rq_queued(tsk);
29f59db3 7685
da0c1e65 7686 if (queued)
29f59db3 7687 dequeue_task(rq, tsk, 0);
0e1f3483 7688 if (unlikely(running))
f3cd1c4e 7689 put_prev_task(rq, tsk);
29f59db3 7690
f7b8a47d
KT
7691 /*
7692 * All callers are synchronized by task_rq_lock(); we do not use RCU
7693 * which is pointless here. Thus, we pass "true" to task_css_check()
7694 * to prevent lockdep warnings.
7695 */
7696 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7697 struct task_group, css);
7698 tg = autogroup_task_group(tsk, tg);
7699 tsk->sched_task_group = tg;
7700
810b3817 7701#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7702 if (tsk->sched_class->task_move_group)
da0c1e65 7703 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7704 else
810b3817 7705#endif
b2b5ce02 7706 set_task_rq(tsk, task_cpu(tsk));
810b3817 7707
0e1f3483
HS
7708 if (unlikely(running))
7709 tsk->sched_class->set_curr_task(rq);
da0c1e65 7710 if (queued)
371fd7e7 7711 enqueue_task(rq, tsk, 0);
29f59db3 7712
0122ec5b 7713 task_rq_unlock(rq, tsk, &flags);
29f59db3 7714}
7c941438 7715#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7716
a790de99
PT
7717#ifdef CONFIG_RT_GROUP_SCHED
7718/*
7719 * Ensure that the real time constraints are schedulable.
7720 */
7721static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7722
9a7e0b18
PZ
7723/* Must be called with tasklist_lock held */
7724static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7725{
9a7e0b18 7726 struct task_struct *g, *p;
b40b2e8e 7727
1fe89e1b
PZ
7728 /*
7729 * Autogroups do not have RT tasks; see autogroup_create().
7730 */
7731 if (task_group_is_autogroup(tg))
7732 return 0;
7733
5d07f420 7734 for_each_process_thread(g, p) {
8651c658 7735 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7736 return 1;
5d07f420 7737 }
b40b2e8e 7738
9a7e0b18
PZ
7739 return 0;
7740}
b40b2e8e 7741
9a7e0b18
PZ
7742struct rt_schedulable_data {
7743 struct task_group *tg;
7744 u64 rt_period;
7745 u64 rt_runtime;
7746};
b40b2e8e 7747
a790de99 7748static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7749{
7750 struct rt_schedulable_data *d = data;
7751 struct task_group *child;
7752 unsigned long total, sum = 0;
7753 u64 period, runtime;
b40b2e8e 7754
9a7e0b18
PZ
7755 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7756 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7757
9a7e0b18
PZ
7758 if (tg == d->tg) {
7759 period = d->rt_period;
7760 runtime = d->rt_runtime;
b40b2e8e 7761 }
b40b2e8e 7762
4653f803
PZ
7763 /*
7764 * Cannot have more runtime than the period.
7765 */
7766 if (runtime > period && runtime != RUNTIME_INF)
7767 return -EINVAL;
6f505b16 7768
4653f803
PZ
7769 /*
7770 * Ensure we don't starve existing RT tasks.
7771 */
9a7e0b18
PZ
7772 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7773 return -EBUSY;
6f505b16 7774
9a7e0b18 7775 total = to_ratio(period, runtime);
6f505b16 7776
4653f803
PZ
7777 /*
7778 * Nobody can have more than the global setting allows.
7779 */
7780 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7781 return -EINVAL;
6f505b16 7782
4653f803
PZ
7783 /*
7784 * The sum of our children's runtime should not exceed our own.
7785 */
9a7e0b18
PZ
7786 list_for_each_entry_rcu(child, &tg->children, siblings) {
7787 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7788 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7789
9a7e0b18
PZ
7790 if (child == d->tg) {
7791 period = d->rt_period;
7792 runtime = d->rt_runtime;
7793 }
6f505b16 7794
9a7e0b18 7795 sum += to_ratio(period, runtime);
9f0c1e56 7796 }
6f505b16 7797
9a7e0b18
PZ
7798 if (sum > total)
7799 return -EINVAL;
7800
7801 return 0;
6f505b16
PZ
7802}
7803
9a7e0b18 7804static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7805{
8277434e
PT
7806 int ret;
7807
9a7e0b18
PZ
7808 struct rt_schedulable_data data = {
7809 .tg = tg,
7810 .rt_period = period,
7811 .rt_runtime = runtime,
7812 };
7813
8277434e
PT
7814 rcu_read_lock();
7815 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7816 rcu_read_unlock();
7817
7818 return ret;
521f1a24
DG
7819}
7820
ab84d31e 7821static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7822 u64 rt_period, u64 rt_runtime)
6f505b16 7823{
ac086bc2 7824 int i, err = 0;
9f0c1e56 7825
2636ed5f
PZ
7826 /*
7827 * Disallowing the root group RT runtime is BAD, it would disallow the
7828 * kernel creating (and or operating) RT threads.
7829 */
7830 if (tg == &root_task_group && rt_runtime == 0)
7831 return -EINVAL;
7832
7833 /* No period doesn't make any sense. */
7834 if (rt_period == 0)
7835 return -EINVAL;
7836
9f0c1e56 7837 mutex_lock(&rt_constraints_mutex);
521f1a24 7838 read_lock(&tasklist_lock);
9a7e0b18
PZ
7839 err = __rt_schedulable(tg, rt_period, rt_runtime);
7840 if (err)
9f0c1e56 7841 goto unlock;
ac086bc2 7842
0986b11b 7843 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7844 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7845 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7846
7847 for_each_possible_cpu(i) {
7848 struct rt_rq *rt_rq = tg->rt_rq[i];
7849
0986b11b 7850 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7851 rt_rq->rt_runtime = rt_runtime;
0986b11b 7852 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7853 }
0986b11b 7854 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7855unlock:
521f1a24 7856 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7857 mutex_unlock(&rt_constraints_mutex);
7858
7859 return err;
6f505b16
PZ
7860}
7861
25cc7da7 7862static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7863{
7864 u64 rt_runtime, rt_period;
7865
7866 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7867 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7868 if (rt_runtime_us < 0)
7869 rt_runtime = RUNTIME_INF;
7870
ab84d31e 7871 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7872}
7873
25cc7da7 7874static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7875{
7876 u64 rt_runtime_us;
7877
d0b27fa7 7878 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7879 return -1;
7880
d0b27fa7 7881 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7882 do_div(rt_runtime_us, NSEC_PER_USEC);
7883 return rt_runtime_us;
7884}
d0b27fa7 7885
ce2f5fe4 7886static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7887{
7888 u64 rt_runtime, rt_period;
7889
ce2f5fe4 7890 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7891 rt_runtime = tg->rt_bandwidth.rt_runtime;
7892
ab84d31e 7893 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7894}
7895
25cc7da7 7896static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7897{
7898 u64 rt_period_us;
7899
7900 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7901 do_div(rt_period_us, NSEC_PER_USEC);
7902 return rt_period_us;
7903}
332ac17e 7904#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7905
332ac17e 7906#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7907static int sched_rt_global_constraints(void)
7908{
7909 int ret = 0;
7910
7911 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7912 read_lock(&tasklist_lock);
4653f803 7913 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7914 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7915 mutex_unlock(&rt_constraints_mutex);
7916
7917 return ret;
7918}
54e99124 7919
25cc7da7 7920static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7921{
7922 /* Don't accept realtime tasks when there is no way for them to run */
7923 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7924 return 0;
7925
7926 return 1;
7927}
7928
6d6bc0ad 7929#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7930static int sched_rt_global_constraints(void)
7931{
ac086bc2 7932 unsigned long flags;
332ac17e 7933 int i, ret = 0;
ec5d4989 7934
0986b11b 7935 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7936 for_each_possible_cpu(i) {
7937 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7938
0986b11b 7939 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7940 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7941 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7942 }
0986b11b 7943 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7944
332ac17e 7945 return ret;
d0b27fa7 7946}
6d6bc0ad 7947#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7948
a1963b81 7949static int sched_dl_global_validate(void)
332ac17e 7950{
1724813d
PZ
7951 u64 runtime = global_rt_runtime();
7952 u64 period = global_rt_period();
332ac17e 7953 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7954 struct dl_bw *dl_b;
1724813d 7955 int cpu, ret = 0;
49516342 7956 unsigned long flags;
332ac17e
DF
7957
7958 /*
7959 * Here we want to check the bandwidth not being set to some
7960 * value smaller than the currently allocated bandwidth in
7961 * any of the root_domains.
7962 *
7963 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7964 * cycling on root_domains... Discussion on different/better
7965 * solutions is welcome!
7966 */
1724813d 7967 for_each_possible_cpu(cpu) {
f10e00f4
KT
7968 rcu_read_lock_sched();
7969 dl_b = dl_bw_of(cpu);
332ac17e 7970
49516342 7971 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7972 if (new_bw < dl_b->total_bw)
7973 ret = -EBUSY;
49516342 7974 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7975
f10e00f4
KT
7976 rcu_read_unlock_sched();
7977
1724813d
PZ
7978 if (ret)
7979 break;
332ac17e
DF
7980 }
7981
1724813d 7982 return ret;
332ac17e
DF
7983}
7984
1724813d 7985static void sched_dl_do_global(void)
ce0dbbbb 7986{
1724813d 7987 u64 new_bw = -1;
f10e00f4 7988 struct dl_bw *dl_b;
1724813d 7989 int cpu;
49516342 7990 unsigned long flags;
ce0dbbbb 7991
1724813d
PZ
7992 def_dl_bandwidth.dl_period = global_rt_period();
7993 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7994
7995 if (global_rt_runtime() != RUNTIME_INF)
7996 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7997
7998 /*
7999 * FIXME: As above...
8000 */
8001 for_each_possible_cpu(cpu) {
f10e00f4
KT
8002 rcu_read_lock_sched();
8003 dl_b = dl_bw_of(cpu);
1724813d 8004
49516342 8005 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8006 dl_b->bw = new_bw;
49516342 8007 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8008
8009 rcu_read_unlock_sched();
ce0dbbbb 8010 }
1724813d
PZ
8011}
8012
8013static int sched_rt_global_validate(void)
8014{
8015 if (sysctl_sched_rt_period <= 0)
8016 return -EINVAL;
8017
e9e7cb38
JL
8018 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8019 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8020 return -EINVAL;
8021
8022 return 0;
8023}
8024
8025static void sched_rt_do_global(void)
8026{
8027 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8028 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8029}
8030
d0b27fa7 8031int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8032 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8033 loff_t *ppos)
8034{
d0b27fa7
PZ
8035 int old_period, old_runtime;
8036 static DEFINE_MUTEX(mutex);
1724813d 8037 int ret;
d0b27fa7
PZ
8038
8039 mutex_lock(&mutex);
8040 old_period = sysctl_sched_rt_period;
8041 old_runtime = sysctl_sched_rt_runtime;
8042
8d65af78 8043 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8044
8045 if (!ret && write) {
1724813d
PZ
8046 ret = sched_rt_global_validate();
8047 if (ret)
8048 goto undo;
8049
a1963b81 8050 ret = sched_dl_global_validate();
1724813d
PZ
8051 if (ret)
8052 goto undo;
8053
a1963b81 8054 ret = sched_rt_global_constraints();
1724813d
PZ
8055 if (ret)
8056 goto undo;
8057
8058 sched_rt_do_global();
8059 sched_dl_do_global();
8060 }
8061 if (0) {
8062undo:
8063 sysctl_sched_rt_period = old_period;
8064 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8065 }
8066 mutex_unlock(&mutex);
8067
8068 return ret;
8069}
68318b8e 8070
1724813d 8071int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8072 void __user *buffer, size_t *lenp,
8073 loff_t *ppos)
8074{
8075 int ret;
332ac17e 8076 static DEFINE_MUTEX(mutex);
332ac17e
DF
8077
8078 mutex_lock(&mutex);
332ac17e 8079 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8080 /* make sure that internally we keep jiffies */
8081 /* also, writing zero resets timeslice to default */
332ac17e 8082 if (!ret && write) {
1724813d
PZ
8083 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8084 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8085 }
8086 mutex_unlock(&mutex);
332ac17e
DF
8087 return ret;
8088}
8089
052f1dc7 8090#ifdef CONFIG_CGROUP_SCHED
68318b8e 8091
a7c6d554 8092static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8093{
a7c6d554 8094 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8095}
8096
eb95419b
TH
8097static struct cgroup_subsys_state *
8098cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8099{
eb95419b
TH
8100 struct task_group *parent = css_tg(parent_css);
8101 struct task_group *tg;
68318b8e 8102
eb95419b 8103 if (!parent) {
68318b8e 8104 /* This is early initialization for the top cgroup */
07e06b01 8105 return &root_task_group.css;
68318b8e
SV
8106 }
8107
ec7dc8ac 8108 tg = sched_create_group(parent);
68318b8e
SV
8109 if (IS_ERR(tg))
8110 return ERR_PTR(-ENOMEM);
8111
68318b8e
SV
8112 return &tg->css;
8113}
8114
eb95419b 8115static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8116{
eb95419b 8117 struct task_group *tg = css_tg(css);
5c9d535b 8118 struct task_group *parent = css_tg(css->parent);
ace783b9 8119
63876986
TH
8120 if (parent)
8121 sched_online_group(tg, parent);
ace783b9
LZ
8122 return 0;
8123}
8124
eb95419b 8125static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8126{
eb95419b 8127 struct task_group *tg = css_tg(css);
68318b8e
SV
8128
8129 sched_destroy_group(tg);
8130}
8131
eb95419b 8132static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8133{
eb95419b 8134 struct task_group *tg = css_tg(css);
ace783b9
LZ
8135
8136 sched_offline_group(tg);
8137}
8138
eeb61e53
KT
8139static void cpu_cgroup_fork(struct task_struct *task)
8140{
8141 sched_move_task(task);
8142}
8143
eb95419b 8144static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8145 struct cgroup_taskset *tset)
68318b8e 8146{
bb9d97b6
TH
8147 struct task_struct *task;
8148
924f0d9a 8149 cgroup_taskset_for_each(task, tset) {
b68aa230 8150#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8151 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8152 return -EINVAL;
b68aa230 8153#else
bb9d97b6
TH
8154 /* We don't support RT-tasks being in separate groups */
8155 if (task->sched_class != &fair_sched_class)
8156 return -EINVAL;
b68aa230 8157#endif
bb9d97b6 8158 }
be367d09
BB
8159 return 0;
8160}
68318b8e 8161
eb95419b 8162static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8163 struct cgroup_taskset *tset)
68318b8e 8164{
bb9d97b6
TH
8165 struct task_struct *task;
8166
924f0d9a 8167 cgroup_taskset_for_each(task, tset)
bb9d97b6 8168 sched_move_task(task);
68318b8e
SV
8169}
8170
eb95419b
TH
8171static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8172 struct cgroup_subsys_state *old_css,
8173 struct task_struct *task)
068c5cc5
PZ
8174{
8175 /*
8176 * cgroup_exit() is called in the copy_process() failure path.
8177 * Ignore this case since the task hasn't ran yet, this avoids
8178 * trying to poke a half freed task state from generic code.
8179 */
8180 if (!(task->flags & PF_EXITING))
8181 return;
8182
8183 sched_move_task(task);
8184}
8185
052f1dc7 8186#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8187static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8188 struct cftype *cftype, u64 shareval)
68318b8e 8189{
182446d0 8190 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8191}
8192
182446d0
TH
8193static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8194 struct cftype *cft)
68318b8e 8195{
182446d0 8196 struct task_group *tg = css_tg(css);
68318b8e 8197
c8b28116 8198 return (u64) scale_load_down(tg->shares);
68318b8e 8199}
ab84d31e
PT
8200
8201#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8202static DEFINE_MUTEX(cfs_constraints_mutex);
8203
ab84d31e
PT
8204const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8205const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8206
a790de99
PT
8207static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8208
ab84d31e
PT
8209static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8210{
56f570e5 8211 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8212 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8213
8214 if (tg == &root_task_group)
8215 return -EINVAL;
8216
8217 /*
8218 * Ensure we have at some amount of bandwidth every period. This is
8219 * to prevent reaching a state of large arrears when throttled via
8220 * entity_tick() resulting in prolonged exit starvation.
8221 */
8222 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8223 return -EINVAL;
8224
8225 /*
8226 * Likewise, bound things on the otherside by preventing insane quota
8227 * periods. This also allows us to normalize in computing quota
8228 * feasibility.
8229 */
8230 if (period > max_cfs_quota_period)
8231 return -EINVAL;
8232
0e59bdae
KT
8233 /*
8234 * Prevent race between setting of cfs_rq->runtime_enabled and
8235 * unthrottle_offline_cfs_rqs().
8236 */
8237 get_online_cpus();
a790de99
PT
8238 mutex_lock(&cfs_constraints_mutex);
8239 ret = __cfs_schedulable(tg, period, quota);
8240 if (ret)
8241 goto out_unlock;
8242
58088ad0 8243 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8244 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8245 /*
8246 * If we need to toggle cfs_bandwidth_used, off->on must occur
8247 * before making related changes, and on->off must occur afterwards
8248 */
8249 if (runtime_enabled && !runtime_was_enabled)
8250 cfs_bandwidth_usage_inc();
ab84d31e
PT
8251 raw_spin_lock_irq(&cfs_b->lock);
8252 cfs_b->period = ns_to_ktime(period);
8253 cfs_b->quota = quota;
58088ad0 8254
a9cf55b2 8255 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8256 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8257 if (runtime_enabled)
8258 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8259 raw_spin_unlock_irq(&cfs_b->lock);
8260
0e59bdae 8261 for_each_online_cpu(i) {
ab84d31e 8262 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8263 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8264
8265 raw_spin_lock_irq(&rq->lock);
58088ad0 8266 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8267 cfs_rq->runtime_remaining = 0;
671fd9da 8268
029632fb 8269 if (cfs_rq->throttled)
671fd9da 8270 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8271 raw_spin_unlock_irq(&rq->lock);
8272 }
1ee14e6c
BS
8273 if (runtime_was_enabled && !runtime_enabled)
8274 cfs_bandwidth_usage_dec();
a790de99
PT
8275out_unlock:
8276 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8277 put_online_cpus();
ab84d31e 8278
a790de99 8279 return ret;
ab84d31e
PT
8280}
8281
8282int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8283{
8284 u64 quota, period;
8285
029632fb 8286 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8287 if (cfs_quota_us < 0)
8288 quota = RUNTIME_INF;
8289 else
8290 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8291
8292 return tg_set_cfs_bandwidth(tg, period, quota);
8293}
8294
8295long tg_get_cfs_quota(struct task_group *tg)
8296{
8297 u64 quota_us;
8298
029632fb 8299 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8300 return -1;
8301
029632fb 8302 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8303 do_div(quota_us, NSEC_PER_USEC);
8304
8305 return quota_us;
8306}
8307
8308int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8309{
8310 u64 quota, period;
8311
8312 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8313 quota = tg->cfs_bandwidth.quota;
ab84d31e 8314
ab84d31e
PT
8315 return tg_set_cfs_bandwidth(tg, period, quota);
8316}
8317
8318long tg_get_cfs_period(struct task_group *tg)
8319{
8320 u64 cfs_period_us;
8321
029632fb 8322 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8323 do_div(cfs_period_us, NSEC_PER_USEC);
8324
8325 return cfs_period_us;
8326}
8327
182446d0
TH
8328static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8329 struct cftype *cft)
ab84d31e 8330{
182446d0 8331 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8332}
8333
182446d0
TH
8334static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8335 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8336{
182446d0 8337 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8338}
8339
182446d0
TH
8340static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8341 struct cftype *cft)
ab84d31e 8342{
182446d0 8343 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8344}
8345
182446d0
TH
8346static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8347 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8348{
182446d0 8349 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8350}
8351
a790de99
PT
8352struct cfs_schedulable_data {
8353 struct task_group *tg;
8354 u64 period, quota;
8355};
8356
8357/*
8358 * normalize group quota/period to be quota/max_period
8359 * note: units are usecs
8360 */
8361static u64 normalize_cfs_quota(struct task_group *tg,
8362 struct cfs_schedulable_data *d)
8363{
8364 u64 quota, period;
8365
8366 if (tg == d->tg) {
8367 period = d->period;
8368 quota = d->quota;
8369 } else {
8370 period = tg_get_cfs_period(tg);
8371 quota = tg_get_cfs_quota(tg);
8372 }
8373
8374 /* note: these should typically be equivalent */
8375 if (quota == RUNTIME_INF || quota == -1)
8376 return RUNTIME_INF;
8377
8378 return to_ratio(period, quota);
8379}
8380
8381static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8382{
8383 struct cfs_schedulable_data *d = data;
029632fb 8384 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8385 s64 quota = 0, parent_quota = -1;
8386
8387 if (!tg->parent) {
8388 quota = RUNTIME_INF;
8389 } else {
029632fb 8390 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8391
8392 quota = normalize_cfs_quota(tg, d);
9c58c79a 8393 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8394
8395 /*
8396 * ensure max(child_quota) <= parent_quota, inherit when no
8397 * limit is set
8398 */
8399 if (quota == RUNTIME_INF)
8400 quota = parent_quota;
8401 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8402 return -EINVAL;
8403 }
9c58c79a 8404 cfs_b->hierarchical_quota = quota;
a790de99
PT
8405
8406 return 0;
8407}
8408
8409static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8410{
8277434e 8411 int ret;
a790de99
PT
8412 struct cfs_schedulable_data data = {
8413 .tg = tg,
8414 .period = period,
8415 .quota = quota,
8416 };
8417
8418 if (quota != RUNTIME_INF) {
8419 do_div(data.period, NSEC_PER_USEC);
8420 do_div(data.quota, NSEC_PER_USEC);
8421 }
8422
8277434e
PT
8423 rcu_read_lock();
8424 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8425 rcu_read_unlock();
8426
8427 return ret;
a790de99 8428}
e8da1b18 8429
2da8ca82 8430static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8431{
2da8ca82 8432 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8433 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8434
44ffc75b
TH
8435 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8436 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8437 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8438
8439 return 0;
8440}
ab84d31e 8441#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8442#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8443
052f1dc7 8444#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8445static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8446 struct cftype *cft, s64 val)
6f505b16 8447{
182446d0 8448 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8449}
8450
182446d0
TH
8451static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8452 struct cftype *cft)
6f505b16 8453{
182446d0 8454 return sched_group_rt_runtime(css_tg(css));
6f505b16 8455}
d0b27fa7 8456
182446d0
TH
8457static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8458 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8459{
182446d0 8460 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8461}
8462
182446d0
TH
8463static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8464 struct cftype *cft)
d0b27fa7 8465{
182446d0 8466 return sched_group_rt_period(css_tg(css));
d0b27fa7 8467}
6d6bc0ad 8468#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8469
fe5c7cc2 8470static struct cftype cpu_files[] = {
052f1dc7 8471#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8472 {
8473 .name = "shares",
f4c753b7
PM
8474 .read_u64 = cpu_shares_read_u64,
8475 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8476 },
052f1dc7 8477#endif
ab84d31e
PT
8478#ifdef CONFIG_CFS_BANDWIDTH
8479 {
8480 .name = "cfs_quota_us",
8481 .read_s64 = cpu_cfs_quota_read_s64,
8482 .write_s64 = cpu_cfs_quota_write_s64,
8483 },
8484 {
8485 .name = "cfs_period_us",
8486 .read_u64 = cpu_cfs_period_read_u64,
8487 .write_u64 = cpu_cfs_period_write_u64,
8488 },
e8da1b18
NR
8489 {
8490 .name = "stat",
2da8ca82 8491 .seq_show = cpu_stats_show,
e8da1b18 8492 },
ab84d31e 8493#endif
052f1dc7 8494#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8495 {
9f0c1e56 8496 .name = "rt_runtime_us",
06ecb27c
PM
8497 .read_s64 = cpu_rt_runtime_read,
8498 .write_s64 = cpu_rt_runtime_write,
6f505b16 8499 },
d0b27fa7
PZ
8500 {
8501 .name = "rt_period_us",
f4c753b7
PM
8502 .read_u64 = cpu_rt_period_read_uint,
8503 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8504 },
052f1dc7 8505#endif
4baf6e33 8506 { } /* terminate */
68318b8e
SV
8507};
8508
073219e9 8509struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8510 .css_alloc = cpu_cgroup_css_alloc,
8511 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8512 .css_online = cpu_cgroup_css_online,
8513 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8514 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8515 .can_attach = cpu_cgroup_can_attach,
8516 .attach = cpu_cgroup_attach,
068c5cc5 8517 .exit = cpu_cgroup_exit,
5577964e 8518 .legacy_cftypes = cpu_files,
68318b8e
SV
8519 .early_init = 1,
8520};
8521
052f1dc7 8522#endif /* CONFIG_CGROUP_SCHED */
d842de87 8523
b637a328
PM
8524void dump_cpu_task(int cpu)
8525{
8526 pr_info("Task dump for CPU %d:\n", cpu);
8527 sched_show_task(cpu_curr(cpu));
8528}
This page took 2.785676 seconds and 5 git commands to generate.