sched/fair: Get rid of scaling utilization by capacity_orig
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
1a687c2e 226 i = sched_feat_set(cmp);
5cd08fbf 227 mutex_unlock(&inode->i_mutex);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
fd99f91a
PZ
456/*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459#define fetch_or(ptr, val) \
460({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468})
469
e3baac47 470#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
471/*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476static bool set_nr_and_not_polling(struct task_struct *p)
477{
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480}
e3baac47
PZ
481
482/*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488static bool set_nr_if_polling(struct task_struct *p)
489{
490 struct thread_info *ti = task_thread_info(p);
316c1608 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504}
505
fd99f91a
PZ
506#else
507static bool set_nr_and_not_polling(struct task_struct *p)
508{
509 set_tsk_need_resched(p);
510 return true;
511}
e3baac47
PZ
512
513#ifdef CONFIG_SMP
514static bool set_nr_if_polling(struct task_struct *p)
515{
516 return false;
517}
518#endif
fd99f91a
PZ
519#endif
520
76751049
PZ
521void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522{
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543}
544
545void wake_up_q(struct wake_q_head *head)
546{
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565}
566
c24d20db 567/*
8875125e 568 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
8875125e 574void resched_curr(struct rq *rq)
c24d20db 575{
8875125e 576 struct task_struct *curr = rq->curr;
c24d20db
IM
577 int cpu;
578
8875125e 579 lockdep_assert_held(&rq->lock);
c24d20db 580
8875125e 581 if (test_tsk_need_resched(curr))
c24d20db
IM
582 return;
583
8875125e 584 cpu = cpu_of(rq);
fd99f91a 585
f27dde8d 586 if (cpu == smp_processor_id()) {
8875125e 587 set_tsk_need_resched(curr);
f27dde8d 588 set_preempt_need_resched();
c24d20db 589 return;
f27dde8d 590 }
c24d20db 591
8875125e 592 if (set_nr_and_not_polling(curr))
c24d20db 593 smp_send_reschedule(cpu);
dfc68f29
AL
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
596}
597
029632fb 598void resched_cpu(int cpu)
c24d20db
IM
599{
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
05fa785c 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 604 return;
8875125e 605 resched_curr(rq);
05fa785c 606 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 607}
06d8308c 608
b021fe3e 609#ifdef CONFIG_SMP
3451d024 610#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
611/*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
bc7a34b8 619int get_nohz_timer_target(void)
83cd4fe2 620{
bc7a34b8 621 int i, cpu = smp_processor_id();
83cd4fe2
VP
622 struct sched_domain *sd;
623
9642d18e 624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
625 return cpu;
626
057f3fad 627 rcu_read_lock();
83cd4fe2 628 for_each_domain(cpu, sd) {
057f3fad 629 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
631 cpu = i;
632 goto unlock;
633 }
634 }
83cd4fe2 635 }
9642d18e
VH
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
371fd7e7 830static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
43148951 833 sched_info_queued(rq, p);
371fd7e7 834 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
835}
836
371fd7e7 837static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 838{
a64692a3 839 update_rq_clock(rq);
43148951 840 sched_info_dequeued(rq, p);
371fd7e7 841 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
842}
843
029632fb 844void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
845{
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
371fd7e7 849 enqueue_task(rq, p, flags);
1e3c88bd
PZ
850}
851
029632fb 852void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
371fd7e7 857 dequeue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
fe44d621 860static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 861{
095c0aa8
GC
862/*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868#endif
869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
095c0aa8
GC
892#endif
893#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 894 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
095c0aa8 901 rq->prev_steal_time_rq += steal;
095c0aa8
GC
902 delta -= steal;
903 }
904#endif
905
fe44d621
PZ
906 rq->clock_task += delta;
907
095c0aa8 908#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
910 sched_rt_avg_update(rq, irq_delta + steal);
911#endif
aa483808
VP
912}
913
34f971f6
PZ
914void sched_set_stop_task(int cpu, struct task_struct *stop)
915{
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942}
943
14531189 944/*
dd41f596 945 * __normal_prio - return the priority that is based on the static prio
14531189 946 */
14531189
IM
947static inline int __normal_prio(struct task_struct *p)
948{
dd41f596 949 return p->static_prio;
14531189
IM
950}
951
b29739f9
IM
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
36c8b586 959static inline int normal_prio(struct task_struct *p)
b29739f9
IM
960{
961 int prio;
962
aab03e05
DF
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
b29739f9
IM
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970}
971
972/*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
36c8b586 979static int effective_prio(struct task_struct *p)
b29739f9
IM
980{
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990}
991
1da177e4
LT
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
e69f6186
YB
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 997 */
36c8b586 998inline int task_curr(const struct task_struct *p)
1da177e4
LT
999{
1000 return cpu_curr(task_cpu(p)) == p;
1001}
1002
67dfa1b7 1003/*
4c9a4bc8
PZ
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
67dfa1b7 1009 */
cb469845
SR
1010static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
da7a735e 1012 int oldprio)
cb469845
SR
1013{
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
da7a735e 1016 prev_class->switched_from(rq, p);
4c9a4bc8 1017
da7a735e 1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1045 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
5cc389bc
PZ
1049/*
1050 * This is how migration works:
1051 *
1052 * 1) we invoke migration_cpu_stop() on the target CPU using
1053 * stop_one_cpu().
1054 * 2) stopper starts to run (implicitly forcing the migrated thread
1055 * off the CPU)
1056 * 3) it checks whether the migrated task is still in the wrong runqueue.
1057 * 4) if it's in the wrong runqueue then the migration thread removes
1058 * it and puts it into the right queue.
1059 * 5) stopper completes and stop_one_cpu() returns and the migration
1060 * is done.
1061 */
1062
1063/*
1064 * move_queued_task - move a queued task to new rq.
1065 *
1066 * Returns (locked) new rq. Old rq's lock is released.
1067 */
5e16bbc2 1068static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1069{
5cc389bc
PZ
1070 lockdep_assert_held(&rq->lock);
1071
1072 dequeue_task(rq, p, 0);
1073 p->on_rq = TASK_ON_RQ_MIGRATING;
1074 set_task_cpu(p, new_cpu);
1075 raw_spin_unlock(&rq->lock);
1076
1077 rq = cpu_rq(new_cpu);
1078
1079 raw_spin_lock(&rq->lock);
1080 BUG_ON(task_cpu(p) != new_cpu);
1081 p->on_rq = TASK_ON_RQ_QUEUED;
1082 enqueue_task(rq, p, 0);
1083 check_preempt_curr(rq, p, 0);
1084
1085 return rq;
1086}
1087
1088struct migration_arg {
1089 struct task_struct *task;
1090 int dest_cpu;
1091};
1092
1093/*
1094 * Move (not current) task off this cpu, onto dest cpu. We're doing
1095 * this because either it can't run here any more (set_cpus_allowed()
1096 * away from this CPU, or CPU going down), or because we're
1097 * attempting to rebalance this task on exec (sched_exec).
1098 *
1099 * So we race with normal scheduler movements, but that's OK, as long
1100 * as the task is no longer on this CPU.
5cc389bc 1101 */
5e16bbc2 1102static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1103{
5cc389bc 1104 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1105 return rq;
5cc389bc
PZ
1106
1107 /* Affinity changed (again). */
1108 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1109 return rq;
5cc389bc 1110
5e16bbc2
PZ
1111 rq = move_queued_task(rq, p, dest_cpu);
1112
1113 return rq;
5cc389bc
PZ
1114}
1115
1116/*
1117 * migration_cpu_stop - this will be executed by a highprio stopper thread
1118 * and performs thread migration by bumping thread off CPU then
1119 * 'pushing' onto another runqueue.
1120 */
1121static int migration_cpu_stop(void *data)
1122{
1123 struct migration_arg *arg = data;
5e16bbc2
PZ
1124 struct task_struct *p = arg->task;
1125 struct rq *rq = this_rq();
5cc389bc
PZ
1126
1127 /*
1128 * The original target cpu might have gone down and we might
1129 * be on another cpu but it doesn't matter.
1130 */
1131 local_irq_disable();
1132 /*
1133 * We need to explicitly wake pending tasks before running
1134 * __migrate_task() such that we will not miss enforcing cpus_allowed
1135 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 */
1137 sched_ttwu_pending();
5e16bbc2
PZ
1138
1139 raw_spin_lock(&p->pi_lock);
1140 raw_spin_lock(&rq->lock);
1141 /*
1142 * If task_rq(p) != rq, it cannot be migrated here, because we're
1143 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1144 * we're holding p->pi_lock.
1145 */
1146 if (task_rq(p) == rq && task_on_rq_queued(p))
1147 rq = __migrate_task(rq, p, arg->dest_cpu);
1148 raw_spin_unlock(&rq->lock);
1149 raw_spin_unlock(&p->pi_lock);
1150
5cc389bc
PZ
1151 local_irq_enable();
1152 return 0;
1153}
1154
c5b28038
PZ
1155/*
1156 * sched_class::set_cpus_allowed must do the below, but is not required to
1157 * actually call this function.
1158 */
1159void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1160{
5cc389bc
PZ
1161 cpumask_copy(&p->cpus_allowed, new_mask);
1162 p->nr_cpus_allowed = cpumask_weight(new_mask);
1163}
1164
c5b28038
PZ
1165void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166{
6c37067e
PZ
1167 struct rq *rq = task_rq(p);
1168 bool queued, running;
1169
c5b28038 1170 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1171
1172 queued = task_on_rq_queued(p);
1173 running = task_current(rq, p);
1174
1175 if (queued) {
1176 /*
1177 * Because __kthread_bind() calls this on blocked tasks without
1178 * holding rq->lock.
1179 */
1180 lockdep_assert_held(&rq->lock);
1181 dequeue_task(rq, p, 0);
1182 }
1183 if (running)
1184 put_prev_task(rq, p);
1185
c5b28038 1186 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1187
1188 if (running)
1189 p->sched_class->set_curr_task(rq);
1190 if (queued)
1191 enqueue_task(rq, p, 0);
c5b28038
PZ
1192}
1193
5cc389bc
PZ
1194/*
1195 * Change a given task's CPU affinity. Migrate the thread to a
1196 * proper CPU and schedule it away if the CPU it's executing on
1197 * is removed from the allowed bitmask.
1198 *
1199 * NOTE: the caller must have a valid reference to the task, the
1200 * task must not exit() & deallocate itself prematurely. The
1201 * call is not atomic; no spinlocks may be held.
1202 */
25834c73
PZ
1203static int __set_cpus_allowed_ptr(struct task_struct *p,
1204 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1205{
1206 unsigned long flags;
1207 struct rq *rq;
1208 unsigned int dest_cpu;
1209 int ret = 0;
1210
1211 rq = task_rq_lock(p, &flags);
1212
25834c73
PZ
1213 /*
1214 * Must re-check here, to close a race against __kthread_bind(),
1215 * sched_setaffinity() is not guaranteed to observe the flag.
1216 */
1217 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1218 ret = -EINVAL;
1219 goto out;
1220 }
1221
5cc389bc
PZ
1222 if (cpumask_equal(&p->cpus_allowed, new_mask))
1223 goto out;
1224
1225 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229
1230 do_set_cpus_allowed(p, new_mask);
1231
1232 /* Can the task run on the task's current CPU? If so, we're done */
1233 if (cpumask_test_cpu(task_cpu(p), new_mask))
1234 goto out;
1235
1236 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1237 if (task_running(rq, p) || p->state == TASK_WAKING) {
1238 struct migration_arg arg = { p, dest_cpu };
1239 /* Need help from migration thread: drop lock and wait. */
1240 task_rq_unlock(rq, p, &flags);
1241 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1242 tlb_migrate_finish(p->mm);
1243 return 0;
cbce1a68
PZ
1244 } else if (task_on_rq_queued(p)) {
1245 /*
1246 * OK, since we're going to drop the lock immediately
1247 * afterwards anyway.
1248 */
1249 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1250 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1251 lockdep_pin_lock(&rq->lock);
1252 }
5cc389bc
PZ
1253out:
1254 task_rq_unlock(rq, p, &flags);
1255
1256 return ret;
1257}
25834c73
PZ
1258
1259int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260{
1261 return __set_cpus_allowed_ptr(p, new_mask, false);
1262}
5cc389bc
PZ
1263EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264
dd41f596 1265void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1266{
e2912009
PZ
1267#ifdef CONFIG_SCHED_DEBUG
1268 /*
1269 * We should never call set_task_cpu() on a blocked task,
1270 * ttwu() will sort out the placement.
1271 */
077614ee 1272 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1273 !p->on_rq);
0122ec5b
PZ
1274
1275#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1276 /*
1277 * The caller should hold either p->pi_lock or rq->lock, when changing
1278 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 *
1280 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1281 * see task_group().
6c6c54e1
PZ
1282 *
1283 * Furthermore, all task_rq users should acquire both locks, see
1284 * task_rq_lock().
1285 */
0122ec5b
PZ
1286 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1287 lockdep_is_held(&task_rq(p)->lock)));
1288#endif
e2912009
PZ
1289#endif
1290
de1d7286 1291 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1292
0c69774e 1293 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1294 if (p->sched_class->migrate_task_rq)
1295 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1296 p->se.nr_migrations++;
ff303e66 1297 perf_event_task_migrate(p);
0c69774e 1298 }
dd41f596
IM
1299
1300 __set_task_cpu(p, new_cpu);
c65cc870
IM
1301}
1302
ac66f547
PZ
1303static void __migrate_swap_task(struct task_struct *p, int cpu)
1304{
da0c1e65 1305 if (task_on_rq_queued(p)) {
ac66f547
PZ
1306 struct rq *src_rq, *dst_rq;
1307
1308 src_rq = task_rq(p);
1309 dst_rq = cpu_rq(cpu);
1310
1311 deactivate_task(src_rq, p, 0);
1312 set_task_cpu(p, cpu);
1313 activate_task(dst_rq, p, 0);
1314 check_preempt_curr(dst_rq, p, 0);
1315 } else {
1316 /*
1317 * Task isn't running anymore; make it appear like we migrated
1318 * it before it went to sleep. This means on wakeup we make the
1319 * previous cpu our targer instead of where it really is.
1320 */
1321 p->wake_cpu = cpu;
1322 }
1323}
1324
1325struct migration_swap_arg {
1326 struct task_struct *src_task, *dst_task;
1327 int src_cpu, dst_cpu;
1328};
1329
1330static int migrate_swap_stop(void *data)
1331{
1332 struct migration_swap_arg *arg = data;
1333 struct rq *src_rq, *dst_rq;
1334 int ret = -EAGAIN;
1335
1336 src_rq = cpu_rq(arg->src_cpu);
1337 dst_rq = cpu_rq(arg->dst_cpu);
1338
74602315
PZ
1339 double_raw_lock(&arg->src_task->pi_lock,
1340 &arg->dst_task->pi_lock);
ac66f547
PZ
1341 double_rq_lock(src_rq, dst_rq);
1342 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1343 goto unlock;
1344
1345 if (task_cpu(arg->src_task) != arg->src_cpu)
1346 goto unlock;
1347
1348 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1349 goto unlock;
1350
1351 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1352 goto unlock;
1353
1354 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1355 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1356
1357 ret = 0;
1358
1359unlock:
1360 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1361 raw_spin_unlock(&arg->dst_task->pi_lock);
1362 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1363
1364 return ret;
1365}
1366
1367/*
1368 * Cross migrate two tasks
1369 */
1370int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371{
1372 struct migration_swap_arg arg;
1373 int ret = -EINVAL;
1374
ac66f547
PZ
1375 arg = (struct migration_swap_arg){
1376 .src_task = cur,
1377 .src_cpu = task_cpu(cur),
1378 .dst_task = p,
1379 .dst_cpu = task_cpu(p),
1380 };
1381
1382 if (arg.src_cpu == arg.dst_cpu)
1383 goto out;
1384
6acce3ef
PZ
1385 /*
1386 * These three tests are all lockless; this is OK since all of them
1387 * will be re-checked with proper locks held further down the line.
1388 */
ac66f547
PZ
1389 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1390 goto out;
1391
1392 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1393 goto out;
1394
1395 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1396 goto out;
1397
286549dc 1398 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1399 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1400
1401out:
ac66f547
PZ
1402 return ret;
1403}
1404
1da177e4
LT
1405/*
1406 * wait_task_inactive - wait for a thread to unschedule.
1407 *
85ba2d86
RM
1408 * If @match_state is nonzero, it's the @p->state value just checked and
1409 * not expected to change. If it changes, i.e. @p might have woken up,
1410 * then return zero. When we succeed in waiting for @p to be off its CPU,
1411 * we return a positive number (its total switch count). If a second call
1412 * a short while later returns the same number, the caller can be sure that
1413 * @p has remained unscheduled the whole time.
1414 *
1da177e4
LT
1415 * The caller must ensure that the task *will* unschedule sometime soon,
1416 * else this function might spin for a *long* time. This function can't
1417 * be called with interrupts off, or it may introduce deadlock with
1418 * smp_call_function() if an IPI is sent by the same process we are
1419 * waiting to become inactive.
1420 */
85ba2d86 1421unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1422{
1423 unsigned long flags;
da0c1e65 1424 int running, queued;
85ba2d86 1425 unsigned long ncsw;
70b97a7f 1426 struct rq *rq;
1da177e4 1427
3a5c359a
AK
1428 for (;;) {
1429 /*
1430 * We do the initial early heuristics without holding
1431 * any task-queue locks at all. We'll only try to get
1432 * the runqueue lock when things look like they will
1433 * work out!
1434 */
1435 rq = task_rq(p);
fa490cfd 1436
3a5c359a
AK
1437 /*
1438 * If the task is actively running on another CPU
1439 * still, just relax and busy-wait without holding
1440 * any locks.
1441 *
1442 * NOTE! Since we don't hold any locks, it's not
1443 * even sure that "rq" stays as the right runqueue!
1444 * But we don't care, since "task_running()" will
1445 * return false if the runqueue has changed and p
1446 * is actually now running somewhere else!
1447 */
85ba2d86
RM
1448 while (task_running(rq, p)) {
1449 if (match_state && unlikely(p->state != match_state))
1450 return 0;
3a5c359a 1451 cpu_relax();
85ba2d86 1452 }
fa490cfd 1453
3a5c359a
AK
1454 /*
1455 * Ok, time to look more closely! We need the rq
1456 * lock now, to be *sure*. If we're wrong, we'll
1457 * just go back and repeat.
1458 */
1459 rq = task_rq_lock(p, &flags);
27a9da65 1460 trace_sched_wait_task(p);
3a5c359a 1461 running = task_running(rq, p);
da0c1e65 1462 queued = task_on_rq_queued(p);
85ba2d86 1463 ncsw = 0;
f31e11d8 1464 if (!match_state || p->state == match_state)
93dcf55f 1465 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1466 task_rq_unlock(rq, p, &flags);
fa490cfd 1467
85ba2d86
RM
1468 /*
1469 * If it changed from the expected state, bail out now.
1470 */
1471 if (unlikely(!ncsw))
1472 break;
1473
3a5c359a
AK
1474 /*
1475 * Was it really running after all now that we
1476 * checked with the proper locks actually held?
1477 *
1478 * Oops. Go back and try again..
1479 */
1480 if (unlikely(running)) {
1481 cpu_relax();
1482 continue;
1483 }
fa490cfd 1484
3a5c359a
AK
1485 /*
1486 * It's not enough that it's not actively running,
1487 * it must be off the runqueue _entirely_, and not
1488 * preempted!
1489 *
80dd99b3 1490 * So if it was still runnable (but just not actively
3a5c359a
AK
1491 * running right now), it's preempted, and we should
1492 * yield - it could be a while.
1493 */
da0c1e65 1494 if (unlikely(queued)) {
8eb90c30
TG
1495 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496
1497 set_current_state(TASK_UNINTERRUPTIBLE);
1498 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1499 continue;
1500 }
fa490cfd 1501
3a5c359a
AK
1502 /*
1503 * Ahh, all good. It wasn't running, and it wasn't
1504 * runnable, which means that it will never become
1505 * running in the future either. We're all done!
1506 */
1507 break;
1508 }
85ba2d86
RM
1509
1510 return ncsw;
1da177e4
LT
1511}
1512
1513/***
1514 * kick_process - kick a running thread to enter/exit the kernel
1515 * @p: the to-be-kicked thread
1516 *
1517 * Cause a process which is running on another CPU to enter
1518 * kernel-mode, without any delay. (to get signals handled.)
1519 *
25985edc 1520 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1521 * because all it wants to ensure is that the remote task enters
1522 * the kernel. If the IPI races and the task has been migrated
1523 * to another CPU then no harm is done and the purpose has been
1524 * achieved as well.
1525 */
36c8b586 1526void kick_process(struct task_struct *p)
1da177e4
LT
1527{
1528 int cpu;
1529
1530 preempt_disable();
1531 cpu = task_cpu(p);
1532 if ((cpu != smp_processor_id()) && task_curr(p))
1533 smp_send_reschedule(cpu);
1534 preempt_enable();
1535}
b43e3521 1536EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1537
30da688e 1538/*
013fdb80 1539 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1540 */
5da9a0fb
PZ
1541static int select_fallback_rq(int cpu, struct task_struct *p)
1542{
aa00d89c
TC
1543 int nid = cpu_to_node(cpu);
1544 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1545 enum { cpuset, possible, fail } state = cpuset;
1546 int dest_cpu;
5da9a0fb 1547
aa00d89c
TC
1548 /*
1549 * If the node that the cpu is on has been offlined, cpu_to_node()
1550 * will return -1. There is no cpu on the node, and we should
1551 * select the cpu on the other node.
1552 */
1553 if (nid != -1) {
1554 nodemask = cpumask_of_node(nid);
1555
1556 /* Look for allowed, online CPU in same node. */
1557 for_each_cpu(dest_cpu, nodemask) {
1558 if (!cpu_online(dest_cpu))
1559 continue;
1560 if (!cpu_active(dest_cpu))
1561 continue;
1562 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1563 return dest_cpu;
1564 }
2baab4e9 1565 }
5da9a0fb 1566
2baab4e9
PZ
1567 for (;;) {
1568 /* Any allowed, online CPU? */
e3831edd 1569 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1570 if (!cpu_online(dest_cpu))
1571 continue;
1572 if (!cpu_active(dest_cpu))
1573 continue;
1574 goto out;
1575 }
5da9a0fb 1576
2baab4e9
PZ
1577 switch (state) {
1578 case cpuset:
1579 /* No more Mr. Nice Guy. */
1580 cpuset_cpus_allowed_fallback(p);
1581 state = possible;
1582 break;
1583
1584 case possible:
1585 do_set_cpus_allowed(p, cpu_possible_mask);
1586 state = fail;
1587 break;
1588
1589 case fail:
1590 BUG();
1591 break;
1592 }
1593 }
1594
1595out:
1596 if (state != cpuset) {
1597 /*
1598 * Don't tell them about moving exiting tasks or
1599 * kernel threads (both mm NULL), since they never
1600 * leave kernel.
1601 */
1602 if (p->mm && printk_ratelimit()) {
aac74dc4 1603 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1604 task_pid_nr(p), p->comm, cpu);
1605 }
5da9a0fb
PZ
1606 }
1607
1608 return dest_cpu;
1609}
1610
e2912009 1611/*
013fdb80 1612 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1613 */
970b13ba 1614static inline
ac66f547 1615int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1616{
cbce1a68
PZ
1617 lockdep_assert_held(&p->pi_lock);
1618
6c1d9410
WL
1619 if (p->nr_cpus_allowed > 1)
1620 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1621
1622 /*
1623 * In order not to call set_task_cpu() on a blocking task we need
1624 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1625 * cpu.
1626 *
1627 * Since this is common to all placement strategies, this lives here.
1628 *
1629 * [ this allows ->select_task() to simply return task_cpu(p) and
1630 * not worry about this generic constraint ]
1631 */
fa17b507 1632 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1633 !cpu_online(cpu)))
5da9a0fb 1634 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1635
1636 return cpu;
970b13ba 1637}
09a40af5
MG
1638
1639static void update_avg(u64 *avg, u64 sample)
1640{
1641 s64 diff = sample - *avg;
1642 *avg += diff >> 3;
1643}
25834c73
PZ
1644
1645#else
1646
1647static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1648 const struct cpumask *new_mask, bool check)
1649{
1650 return set_cpus_allowed_ptr(p, new_mask);
1651}
1652
5cc389bc 1653#endif /* CONFIG_SMP */
970b13ba 1654
d7c01d27 1655static void
b84cb5df 1656ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1657{
d7c01d27 1658#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1659 struct rq *rq = this_rq();
1660
d7c01d27
PZ
1661#ifdef CONFIG_SMP
1662 int this_cpu = smp_processor_id();
1663
1664 if (cpu == this_cpu) {
1665 schedstat_inc(rq, ttwu_local);
1666 schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 } else {
1668 struct sched_domain *sd;
1669
1670 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1671 rcu_read_lock();
d7c01d27
PZ
1672 for_each_domain(this_cpu, sd) {
1673 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1674 schedstat_inc(sd, ttwu_wake_remote);
1675 break;
1676 }
1677 }
057f3fad 1678 rcu_read_unlock();
d7c01d27 1679 }
f339b9dc
PZ
1680
1681 if (wake_flags & WF_MIGRATED)
1682 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683
d7c01d27
PZ
1684#endif /* CONFIG_SMP */
1685
1686 schedstat_inc(rq, ttwu_count);
9ed3811a 1687 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1688
1689 if (wake_flags & WF_SYNC)
9ed3811a 1690 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1691
d7c01d27
PZ
1692#endif /* CONFIG_SCHEDSTATS */
1693}
1694
1695static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696{
9ed3811a 1697 activate_task(rq, p, en_flags);
da0c1e65 1698 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1699
1700 /* if a worker is waking up, notify workqueue */
1701 if (p->flags & PF_WQ_WORKER)
1702 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1703}
1704
23f41eeb
PZ
1705/*
1706 * Mark the task runnable and perform wakeup-preemption.
1707 */
89363381 1708static void
23f41eeb 1709ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1710{
9ed3811a 1711 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1712 p->state = TASK_RUNNING;
fbd705a0
PZ
1713 trace_sched_wakeup(p);
1714
9ed3811a 1715#ifdef CONFIG_SMP
4c9a4bc8
PZ
1716 if (p->sched_class->task_woken) {
1717 /*
cbce1a68
PZ
1718 * Our task @p is fully woken up and running; so its safe to
1719 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1720 */
cbce1a68 1721 lockdep_unpin_lock(&rq->lock);
9ed3811a 1722 p->sched_class->task_woken(rq, p);
cbce1a68 1723 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1724 }
9ed3811a 1725
e69c6341 1726 if (rq->idle_stamp) {
78becc27 1727 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1728 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1729
abfafa54
JL
1730 update_avg(&rq->avg_idle, delta);
1731
1732 if (rq->avg_idle > max)
9ed3811a 1733 rq->avg_idle = max;
abfafa54 1734
9ed3811a
TH
1735 rq->idle_stamp = 0;
1736 }
1737#endif
1738}
1739
c05fbafb
PZ
1740static void
1741ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742{
cbce1a68
PZ
1743 lockdep_assert_held(&rq->lock);
1744
c05fbafb
PZ
1745#ifdef CONFIG_SMP
1746 if (p->sched_contributes_to_load)
1747 rq->nr_uninterruptible--;
1748#endif
1749
1750 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1751 ttwu_do_wakeup(rq, p, wake_flags);
1752}
1753
1754/*
1755 * Called in case the task @p isn't fully descheduled from its runqueue,
1756 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1757 * since all we need to do is flip p->state to TASK_RUNNING, since
1758 * the task is still ->on_rq.
1759 */
1760static int ttwu_remote(struct task_struct *p, int wake_flags)
1761{
1762 struct rq *rq;
1763 int ret = 0;
1764
1765 rq = __task_rq_lock(p);
da0c1e65 1766 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1767 /* check_preempt_curr() may use rq clock */
1768 update_rq_clock(rq);
c05fbafb
PZ
1769 ttwu_do_wakeup(rq, p, wake_flags);
1770 ret = 1;
1771 }
1772 __task_rq_unlock(rq);
1773
1774 return ret;
1775}
1776
317f3941 1777#ifdef CONFIG_SMP
e3baac47 1778void sched_ttwu_pending(void)
317f3941
PZ
1779{
1780 struct rq *rq = this_rq();
fa14ff4a
PZ
1781 struct llist_node *llist = llist_del_all(&rq->wake_list);
1782 struct task_struct *p;
e3baac47 1783 unsigned long flags;
317f3941 1784
e3baac47
PZ
1785 if (!llist)
1786 return;
1787
1788 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1789 lockdep_pin_lock(&rq->lock);
317f3941 1790
fa14ff4a
PZ
1791 while (llist) {
1792 p = llist_entry(llist, struct task_struct, wake_entry);
1793 llist = llist_next(llist);
317f3941
PZ
1794 ttwu_do_activate(rq, p, 0);
1795 }
1796
cbce1a68 1797 lockdep_unpin_lock(&rq->lock);
e3baac47 1798 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1799}
1800
1801void scheduler_ipi(void)
1802{
f27dde8d
PZ
1803 /*
1804 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1805 * TIF_NEED_RESCHED remotely (for the first time) will also send
1806 * this IPI.
1807 */
8cb75e0c 1808 preempt_fold_need_resched();
f27dde8d 1809
fd2ac4f4 1810 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1811 return;
1812
1813 /*
1814 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1815 * traditionally all their work was done from the interrupt return
1816 * path. Now that we actually do some work, we need to make sure
1817 * we do call them.
1818 *
1819 * Some archs already do call them, luckily irq_enter/exit nest
1820 * properly.
1821 *
1822 * Arguably we should visit all archs and update all handlers,
1823 * however a fair share of IPIs are still resched only so this would
1824 * somewhat pessimize the simple resched case.
1825 */
1826 irq_enter();
fa14ff4a 1827 sched_ttwu_pending();
ca38062e
SS
1828
1829 /*
1830 * Check if someone kicked us for doing the nohz idle load balance.
1831 */
873b4c65 1832 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1833 this_rq()->idle_balance = 1;
ca38062e 1834 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1835 }
c5d753a5 1836 irq_exit();
317f3941
PZ
1837}
1838
1839static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840{
e3baac47
PZ
1841 struct rq *rq = cpu_rq(cpu);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
317f3941 1849}
d6aa8f85 1850
f6be8af1
CL
1851void wake_up_if_idle(int cpu)
1852{
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
fd7de1e8
AL
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
f6be8af1
CL
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
fd7de1e8
AL
1870
1871out:
1872 rcu_read_unlock();
f6be8af1
CL
1873}
1874
39be3501 1875bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1876{
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878}
d6aa8f85 1879#endif /* CONFIG_SMP */
317f3941 1880
c05fbafb
PZ
1881static void ttwu_queue(struct task_struct *p, int cpu)
1882{
1883 struct rq *rq = cpu_rq(cpu);
1884
17d9f311 1885#if defined(CONFIG_SMP)
39be3501 1886 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1887 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1888 ttwu_queue_remote(p, cpu);
1889 return;
1890 }
1891#endif
1892
c05fbafb 1893 raw_spin_lock(&rq->lock);
cbce1a68 1894 lockdep_pin_lock(&rq->lock);
c05fbafb 1895 ttwu_do_activate(rq, p, 0);
cbce1a68 1896 lockdep_unpin_lock(&rq->lock);
c05fbafb 1897 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1898}
1899
1900/**
1da177e4 1901 * try_to_wake_up - wake up a thread
9ed3811a 1902 * @p: the thread to be awakened
1da177e4 1903 * @state: the mask of task states that can be woken
9ed3811a 1904 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1905 *
1906 * Put it on the run-queue if it's not already there. The "current"
1907 * thread is always on the run-queue (except when the actual
1908 * re-schedule is in progress), and as such you're allowed to do
1909 * the simpler "current->state = TASK_RUNNING" to mark yourself
1910 * runnable without the overhead of this.
1911 *
e69f6186 1912 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1913 * or @state didn't match @p's state.
1da177e4 1914 */
e4a52bcb
PZ
1915static int
1916try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1917{
1da177e4 1918 unsigned long flags;
c05fbafb 1919 int cpu, success = 0;
2398f2c6 1920
e0acd0a6
ON
1921 /*
1922 * If we are going to wake up a thread waiting for CONDITION we
1923 * need to ensure that CONDITION=1 done by the caller can not be
1924 * reordered with p->state check below. This pairs with mb() in
1925 * set_current_state() the waiting thread does.
1926 */
1927 smp_mb__before_spinlock();
013fdb80 1928 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1929 if (!(p->state & state))
1da177e4
LT
1930 goto out;
1931
fbd705a0
PZ
1932 trace_sched_waking(p);
1933
c05fbafb 1934 success = 1; /* we're going to change ->state */
1da177e4 1935 cpu = task_cpu(p);
1da177e4 1936
c05fbafb
PZ
1937 if (p->on_rq && ttwu_remote(p, wake_flags))
1938 goto stat;
1da177e4 1939
1da177e4 1940#ifdef CONFIG_SMP
e9c84311 1941 /*
c05fbafb
PZ
1942 * If the owning (remote) cpu is still in the middle of schedule() with
1943 * this task as prev, wait until its done referencing the task.
e9c84311 1944 */
f3e94786 1945 while (p->on_cpu)
e4a52bcb 1946 cpu_relax();
0970d299 1947 /*
e4a52bcb 1948 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1949 */
e4a52bcb 1950 smp_rmb();
1da177e4 1951
a8e4f2ea 1952 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1953 p->state = TASK_WAKING;
e7693a36 1954
e4a52bcb 1955 if (p->sched_class->task_waking)
74f8e4b2 1956 p->sched_class->task_waking(p);
efbbd05a 1957
ac66f547 1958 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1959 if (task_cpu(p) != cpu) {
1960 wake_flags |= WF_MIGRATED;
e4a52bcb 1961 set_task_cpu(p, cpu);
f339b9dc 1962 }
1da177e4 1963#endif /* CONFIG_SMP */
1da177e4 1964
c05fbafb
PZ
1965 ttwu_queue(p, cpu);
1966stat:
b84cb5df 1967 ttwu_stat(p, cpu, wake_flags);
1da177e4 1968out:
013fdb80 1969 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1970
1971 return success;
1972}
1973
21aa9af0
TH
1974/**
1975 * try_to_wake_up_local - try to wake up a local task with rq lock held
1976 * @p: the thread to be awakened
1977 *
2acca55e 1978 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1979 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1980 * the current task.
21aa9af0
TH
1981 */
1982static void try_to_wake_up_local(struct task_struct *p)
1983{
1984 struct rq *rq = task_rq(p);
21aa9af0 1985
383efcd0
TH
1986 if (WARN_ON_ONCE(rq != this_rq()) ||
1987 WARN_ON_ONCE(p == current))
1988 return;
1989
21aa9af0
TH
1990 lockdep_assert_held(&rq->lock);
1991
2acca55e 1992 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
1993 /*
1994 * This is OK, because current is on_cpu, which avoids it being
1995 * picked for load-balance and preemption/IRQs are still
1996 * disabled avoiding further scheduler activity on it and we've
1997 * not yet picked a replacement task.
1998 */
1999 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2000 raw_spin_unlock(&rq->lock);
2001 raw_spin_lock(&p->pi_lock);
2002 raw_spin_lock(&rq->lock);
cbce1a68 2003 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2004 }
2005
21aa9af0 2006 if (!(p->state & TASK_NORMAL))
2acca55e 2007 goto out;
21aa9af0 2008
fbd705a0
PZ
2009 trace_sched_waking(p);
2010
da0c1e65 2011 if (!task_on_rq_queued(p))
d7c01d27
PZ
2012 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013
23f41eeb 2014 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2015 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2016out:
2017 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2018}
2019
50fa610a
DH
2020/**
2021 * wake_up_process - Wake up a specific process
2022 * @p: The process to be woken up.
2023 *
2024 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2025 * processes.
2026 *
2027 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2028 *
2029 * It may be assumed that this function implies a write memory barrier before
2030 * changing the task state if and only if any tasks are woken up.
2031 */
7ad5b3a5 2032int wake_up_process(struct task_struct *p)
1da177e4 2033{
9067ac85
ON
2034 WARN_ON(task_is_stopped_or_traced(p));
2035 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2036}
1da177e4
LT
2037EXPORT_SYMBOL(wake_up_process);
2038
7ad5b3a5 2039int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2040{
2041 return try_to_wake_up(p, state, 0);
2042}
2043
a5e7be3b
JL
2044/*
2045 * This function clears the sched_dl_entity static params.
2046 */
2047void __dl_clear_params(struct task_struct *p)
2048{
2049 struct sched_dl_entity *dl_se = &p->dl;
2050
2051 dl_se->dl_runtime = 0;
2052 dl_se->dl_deadline = 0;
2053 dl_se->dl_period = 0;
2054 dl_se->flags = 0;
2055 dl_se->dl_bw = 0;
40767b0d
PZ
2056
2057 dl_se->dl_throttled = 0;
2058 dl_se->dl_new = 1;
2059 dl_se->dl_yielded = 0;
a5e7be3b
JL
2060}
2061
1da177e4
LT
2062/*
2063 * Perform scheduler related setup for a newly forked process p.
2064 * p is forked by current.
dd41f596
IM
2065 *
2066 * __sched_fork() is basic setup used by init_idle() too:
2067 */
5e1576ed 2068static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2069{
fd2f4419
PZ
2070 p->on_rq = 0;
2071
2072 p->se.on_rq = 0;
dd41f596
IM
2073 p->se.exec_start = 0;
2074 p->se.sum_exec_runtime = 0;
f6cf891c 2075 p->se.prev_sum_exec_runtime = 0;
6c594c21 2076 p->se.nr_migrations = 0;
da7a735e 2077 p->se.vruntime = 0;
fd2f4419 2078 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2079
2080#ifdef CONFIG_SCHEDSTATS
41acab88 2081 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2082#endif
476d139c 2083
aab03e05 2084 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2085 init_dl_task_timer(&p->dl);
a5e7be3b 2086 __dl_clear_params(p);
aab03e05 2087
fa717060 2088 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2089
e107be36
AK
2090#ifdef CONFIG_PREEMPT_NOTIFIERS
2091 INIT_HLIST_HEAD(&p->preempt_notifiers);
2092#endif
cbee9f88
PZ
2093
2094#ifdef CONFIG_NUMA_BALANCING
2095 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2096 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2097 p->mm->numa_scan_seq = 0;
2098 }
2099
5e1576ed
RR
2100 if (clone_flags & CLONE_VM)
2101 p->numa_preferred_nid = current->numa_preferred_nid;
2102 else
2103 p->numa_preferred_nid = -1;
2104
cbee9f88
PZ
2105 p->node_stamp = 0ULL;
2106 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2107 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2108 p->numa_work.next = &p->numa_work;
44dba3d5 2109 p->numa_faults = NULL;
7e2703e6
RR
2110 p->last_task_numa_placement = 0;
2111 p->last_sum_exec_runtime = 0;
8c8a743c 2112
8c8a743c 2113 p->numa_group = NULL;
cbee9f88 2114#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2115}
2116
2a595721
SD
2117DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2118
1a687c2e 2119#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2120
1a687c2e
MG
2121void set_numabalancing_state(bool enabled)
2122{
2a595721
SD
2123 if (enabled)
2124 static_branch_enable(&sched_numa_balancing);
2125 else
2126 static_branch_disable(&sched_numa_balancing);
c3b9bc5b 2127}
54a43d54
AK
2128
2129#ifdef CONFIG_PROC_SYSCTL
2130int sysctl_numa_balancing(struct ctl_table *table, int write,
2131 void __user *buffer, size_t *lenp, loff_t *ppos)
2132{
2133 struct ctl_table t;
2134 int err;
2a595721 2135 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2136
2137 if (write && !capable(CAP_SYS_ADMIN))
2138 return -EPERM;
2139
2140 t = *table;
2141 t.data = &state;
2142 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2143 if (err < 0)
2144 return err;
2145 if (write)
2146 set_numabalancing_state(state);
2147 return err;
2148}
2149#endif
2150#endif
dd41f596
IM
2151
2152/*
2153 * fork()/clone()-time setup:
2154 */
aab03e05 2155int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2156{
0122ec5b 2157 unsigned long flags;
dd41f596
IM
2158 int cpu = get_cpu();
2159
5e1576ed 2160 __sched_fork(clone_flags, p);
06b83b5f 2161 /*
0017d735 2162 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2163 * nobody will actually run it, and a signal or other external
2164 * event cannot wake it up and insert it on the runqueue either.
2165 */
0017d735 2166 p->state = TASK_RUNNING;
dd41f596 2167
c350a04e
MG
2168 /*
2169 * Make sure we do not leak PI boosting priority to the child.
2170 */
2171 p->prio = current->normal_prio;
2172
b9dc29e7
MG
2173 /*
2174 * Revert to default priority/policy on fork if requested.
2175 */
2176 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2177 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2178 p->policy = SCHED_NORMAL;
6c697bdf 2179 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2180 p->rt_priority = 0;
2181 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2182 p->static_prio = NICE_TO_PRIO(0);
2183
2184 p->prio = p->normal_prio = __normal_prio(p);
2185 set_load_weight(p);
6c697bdf 2186
b9dc29e7
MG
2187 /*
2188 * We don't need the reset flag anymore after the fork. It has
2189 * fulfilled its duty:
2190 */
2191 p->sched_reset_on_fork = 0;
2192 }
ca94c442 2193
aab03e05
DF
2194 if (dl_prio(p->prio)) {
2195 put_cpu();
2196 return -EAGAIN;
2197 } else if (rt_prio(p->prio)) {
2198 p->sched_class = &rt_sched_class;
2199 } else {
2ddbf952 2200 p->sched_class = &fair_sched_class;
aab03e05 2201 }
b29739f9 2202
cd29fe6f
PZ
2203 if (p->sched_class->task_fork)
2204 p->sched_class->task_fork(p);
2205
86951599
PZ
2206 /*
2207 * The child is not yet in the pid-hash so no cgroup attach races,
2208 * and the cgroup is pinned to this child due to cgroup_fork()
2209 * is ran before sched_fork().
2210 *
2211 * Silence PROVE_RCU.
2212 */
0122ec5b 2213 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2214 set_task_cpu(p, cpu);
0122ec5b 2215 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2216
f6db8347 2217#ifdef CONFIG_SCHED_INFO
dd41f596 2218 if (likely(sched_info_on()))
52f17b6c 2219 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2220#endif
3ca7a440
PZ
2221#if defined(CONFIG_SMP)
2222 p->on_cpu = 0;
4866cde0 2223#endif
01028747 2224 init_task_preempt_count(p);
806c09a7 2225#ifdef CONFIG_SMP
917b627d 2226 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2227 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2228#endif
917b627d 2229
476d139c 2230 put_cpu();
aab03e05 2231 return 0;
1da177e4
LT
2232}
2233
332ac17e
DF
2234unsigned long to_ratio(u64 period, u64 runtime)
2235{
2236 if (runtime == RUNTIME_INF)
2237 return 1ULL << 20;
2238
2239 /*
2240 * Doing this here saves a lot of checks in all
2241 * the calling paths, and returning zero seems
2242 * safe for them anyway.
2243 */
2244 if (period == 0)
2245 return 0;
2246
2247 return div64_u64(runtime << 20, period);
2248}
2249
2250#ifdef CONFIG_SMP
2251inline struct dl_bw *dl_bw_of(int i)
2252{
f78f5b90
PM
2253 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2254 "sched RCU must be held");
332ac17e
DF
2255 return &cpu_rq(i)->rd->dl_bw;
2256}
2257
de212f18 2258static inline int dl_bw_cpus(int i)
332ac17e 2259{
de212f18
PZ
2260 struct root_domain *rd = cpu_rq(i)->rd;
2261 int cpus = 0;
2262
f78f5b90
PM
2263 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2264 "sched RCU must be held");
de212f18
PZ
2265 for_each_cpu_and(i, rd->span, cpu_active_mask)
2266 cpus++;
2267
2268 return cpus;
332ac17e
DF
2269}
2270#else
2271inline struct dl_bw *dl_bw_of(int i)
2272{
2273 return &cpu_rq(i)->dl.dl_bw;
2274}
2275
de212f18 2276static inline int dl_bw_cpus(int i)
332ac17e
DF
2277{
2278 return 1;
2279}
2280#endif
2281
332ac17e
DF
2282/*
2283 * We must be sure that accepting a new task (or allowing changing the
2284 * parameters of an existing one) is consistent with the bandwidth
2285 * constraints. If yes, this function also accordingly updates the currently
2286 * allocated bandwidth to reflect the new situation.
2287 *
2288 * This function is called while holding p's rq->lock.
40767b0d
PZ
2289 *
2290 * XXX we should delay bw change until the task's 0-lag point, see
2291 * __setparam_dl().
332ac17e
DF
2292 */
2293static int dl_overflow(struct task_struct *p, int policy,
2294 const struct sched_attr *attr)
2295{
2296
2297 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2298 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2299 u64 runtime = attr->sched_runtime;
2300 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2301 int cpus, err = -1;
332ac17e
DF
2302
2303 if (new_bw == p->dl.dl_bw)
2304 return 0;
2305
2306 /*
2307 * Either if a task, enters, leave, or stays -deadline but changes
2308 * its parameters, we may need to update accordingly the total
2309 * allocated bandwidth of the container.
2310 */
2311 raw_spin_lock(&dl_b->lock);
de212f18 2312 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2313 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2314 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2315 __dl_add(dl_b, new_bw);
2316 err = 0;
2317 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2318 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2319 __dl_clear(dl_b, p->dl.dl_bw);
2320 __dl_add(dl_b, new_bw);
2321 err = 0;
2322 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2323 __dl_clear(dl_b, p->dl.dl_bw);
2324 err = 0;
2325 }
2326 raw_spin_unlock(&dl_b->lock);
2327
2328 return err;
2329}
2330
2331extern void init_dl_bw(struct dl_bw *dl_b);
2332
1da177e4
LT
2333/*
2334 * wake_up_new_task - wake up a newly created task for the first time.
2335 *
2336 * This function will do some initial scheduler statistics housekeeping
2337 * that must be done for every newly created context, then puts the task
2338 * on the runqueue and wakes it.
2339 */
3e51e3ed 2340void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2341{
2342 unsigned long flags;
dd41f596 2343 struct rq *rq;
fabf318e 2344
ab2515c4 2345 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2346#ifdef CONFIG_SMP
2347 /*
2348 * Fork balancing, do it here and not earlier because:
2349 * - cpus_allowed can change in the fork path
2350 * - any previously selected cpu might disappear through hotplug
fabf318e 2351 */
ac66f547 2352 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2353#endif
2354
a75cdaa9 2355 /* Initialize new task's runnable average */
540247fb 2356 init_entity_runnable_average(&p->se);
ab2515c4 2357 rq = __task_rq_lock(p);
cd29fe6f 2358 activate_task(rq, p, 0);
da0c1e65 2359 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2360 trace_sched_wakeup_new(p);
a7558e01 2361 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2362#ifdef CONFIG_SMP
efbbd05a
PZ
2363 if (p->sched_class->task_woken)
2364 p->sched_class->task_woken(rq, p);
9a897c5a 2365#endif
0122ec5b 2366 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2367}
2368
e107be36
AK
2369#ifdef CONFIG_PREEMPT_NOTIFIERS
2370
1cde2930
PZ
2371static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2372
2ecd9d29
PZ
2373void preempt_notifier_inc(void)
2374{
2375 static_key_slow_inc(&preempt_notifier_key);
2376}
2377EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2378
2379void preempt_notifier_dec(void)
2380{
2381 static_key_slow_dec(&preempt_notifier_key);
2382}
2383EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2384
e107be36 2385/**
80dd99b3 2386 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2387 * @notifier: notifier struct to register
e107be36
AK
2388 */
2389void preempt_notifier_register(struct preempt_notifier *notifier)
2390{
2ecd9d29
PZ
2391 if (!static_key_false(&preempt_notifier_key))
2392 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2393
e107be36
AK
2394 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2395}
2396EXPORT_SYMBOL_GPL(preempt_notifier_register);
2397
2398/**
2399 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2400 * @notifier: notifier struct to unregister
e107be36 2401 *
d84525a8 2402 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2403 */
2404void preempt_notifier_unregister(struct preempt_notifier *notifier)
2405{
2406 hlist_del(&notifier->link);
2407}
2408EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2409
1cde2930 2410static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2411{
2412 struct preempt_notifier *notifier;
e107be36 2413
b67bfe0d 2414 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2415 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2416}
2417
1cde2930
PZ
2418static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2419{
2420 if (static_key_false(&preempt_notifier_key))
2421 __fire_sched_in_preempt_notifiers(curr);
2422}
2423
e107be36 2424static void
1cde2930
PZ
2425__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2426 struct task_struct *next)
e107be36
AK
2427{
2428 struct preempt_notifier *notifier;
e107be36 2429
b67bfe0d 2430 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2431 notifier->ops->sched_out(notifier, next);
2432}
2433
1cde2930
PZ
2434static __always_inline void
2435fire_sched_out_preempt_notifiers(struct task_struct *curr,
2436 struct task_struct *next)
2437{
2438 if (static_key_false(&preempt_notifier_key))
2439 __fire_sched_out_preempt_notifiers(curr, next);
2440}
2441
6d6bc0ad 2442#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2443
1cde2930 2444static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2445{
2446}
2447
1cde2930 2448static inline void
e107be36
AK
2449fire_sched_out_preempt_notifiers(struct task_struct *curr,
2450 struct task_struct *next)
2451{
2452}
2453
6d6bc0ad 2454#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2455
4866cde0
NP
2456/**
2457 * prepare_task_switch - prepare to switch tasks
2458 * @rq: the runqueue preparing to switch
421cee29 2459 * @prev: the current task that is being switched out
4866cde0
NP
2460 * @next: the task we are going to switch to.
2461 *
2462 * This is called with the rq lock held and interrupts off. It must
2463 * be paired with a subsequent finish_task_switch after the context
2464 * switch.
2465 *
2466 * prepare_task_switch sets up locking and calls architecture specific
2467 * hooks.
2468 */
e107be36
AK
2469static inline void
2470prepare_task_switch(struct rq *rq, struct task_struct *prev,
2471 struct task_struct *next)
4866cde0 2472{
895dd92c 2473 trace_sched_switch(prev, next);
43148951 2474 sched_info_switch(rq, prev, next);
fe4b04fa 2475 perf_event_task_sched_out(prev, next);
e107be36 2476 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2477 prepare_lock_switch(rq, next);
2478 prepare_arch_switch(next);
2479}
2480
1da177e4
LT
2481/**
2482 * finish_task_switch - clean up after a task-switch
2483 * @prev: the thread we just switched away from.
2484 *
4866cde0
NP
2485 * finish_task_switch must be called after the context switch, paired
2486 * with a prepare_task_switch call before the context switch.
2487 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2488 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2489 *
2490 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2491 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2492 * with the lock held can cause deadlocks; see schedule() for
2493 * details.)
dfa50b60
ON
2494 *
2495 * The context switch have flipped the stack from under us and restored the
2496 * local variables which were saved when this task called schedule() in the
2497 * past. prev == current is still correct but we need to recalculate this_rq
2498 * because prev may have moved to another CPU.
1da177e4 2499 */
dfa50b60 2500static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2501 __releases(rq->lock)
2502{
dfa50b60 2503 struct rq *rq = this_rq();
1da177e4 2504 struct mm_struct *mm = rq->prev_mm;
55a101f8 2505 long prev_state;
1da177e4
LT
2506
2507 rq->prev_mm = NULL;
2508
2509 /*
2510 * A task struct has one reference for the use as "current".
c394cc9f 2511 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2512 * schedule one last time. The schedule call will never return, and
2513 * the scheduled task must drop that reference.
c394cc9f 2514 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2515 * still held, otherwise prev could be scheduled on another cpu, die
2516 * there before we look at prev->state, and then the reference would
2517 * be dropped twice.
2518 * Manfred Spraul <manfred@colorfullife.com>
2519 */
55a101f8 2520 prev_state = prev->state;
bf9fae9f 2521 vtime_task_switch(prev);
a8d757ef 2522 perf_event_task_sched_in(prev, current);
4866cde0 2523 finish_lock_switch(rq, prev);
01f23e16 2524 finish_arch_post_lock_switch();
e8fa1362 2525
e107be36 2526 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2527 if (mm)
2528 mmdrop(mm);
c394cc9f 2529 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2530 if (prev->sched_class->task_dead)
2531 prev->sched_class->task_dead(prev);
2532
c6fd91f0 2533 /*
2534 * Remove function-return probe instances associated with this
2535 * task and put them back on the free list.
9761eea8 2536 */
c6fd91f0 2537 kprobe_flush_task(prev);
1da177e4 2538 put_task_struct(prev);
c6fd91f0 2539 }
99e5ada9 2540
de734f89 2541 tick_nohz_task_switch();
dfa50b60 2542 return rq;
1da177e4
LT
2543}
2544
3f029d3c
GH
2545#ifdef CONFIG_SMP
2546
3f029d3c 2547/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2548static void __balance_callback(struct rq *rq)
3f029d3c 2549{
e3fca9e7
PZ
2550 struct callback_head *head, *next;
2551 void (*func)(struct rq *rq);
2552 unsigned long flags;
3f029d3c 2553
e3fca9e7
PZ
2554 raw_spin_lock_irqsave(&rq->lock, flags);
2555 head = rq->balance_callback;
2556 rq->balance_callback = NULL;
2557 while (head) {
2558 func = (void (*)(struct rq *))head->func;
2559 next = head->next;
2560 head->next = NULL;
2561 head = next;
3f029d3c 2562
e3fca9e7 2563 func(rq);
3f029d3c 2564 }
e3fca9e7
PZ
2565 raw_spin_unlock_irqrestore(&rq->lock, flags);
2566}
2567
2568static inline void balance_callback(struct rq *rq)
2569{
2570 if (unlikely(rq->balance_callback))
2571 __balance_callback(rq);
3f029d3c
GH
2572}
2573
2574#else
da19ab51 2575
e3fca9e7 2576static inline void balance_callback(struct rq *rq)
3f029d3c 2577{
1da177e4
LT
2578}
2579
3f029d3c
GH
2580#endif
2581
1da177e4
LT
2582/**
2583 * schedule_tail - first thing a freshly forked thread must call.
2584 * @prev: the thread we just switched away from.
2585 */
722a9f92 2586asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2587 __releases(rq->lock)
2588{
1a43a14a 2589 struct rq *rq;
da19ab51 2590
1a43a14a
ON
2591 /* finish_task_switch() drops rq->lock and enables preemtion */
2592 preempt_disable();
dfa50b60 2593 rq = finish_task_switch(prev);
e3fca9e7 2594 balance_callback(rq);
1a43a14a 2595 preempt_enable();
70b97a7f 2596
1da177e4 2597 if (current->set_child_tid)
b488893a 2598 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2599}
2600
2601/*
dfa50b60 2602 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2603 */
dfa50b60 2604static inline struct rq *
70b97a7f 2605context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2606 struct task_struct *next)
1da177e4 2607{
dd41f596 2608 struct mm_struct *mm, *oldmm;
1da177e4 2609
e107be36 2610 prepare_task_switch(rq, prev, next);
fe4b04fa 2611
dd41f596
IM
2612 mm = next->mm;
2613 oldmm = prev->active_mm;
9226d125
ZA
2614 /*
2615 * For paravirt, this is coupled with an exit in switch_to to
2616 * combine the page table reload and the switch backend into
2617 * one hypercall.
2618 */
224101ed 2619 arch_start_context_switch(prev);
9226d125 2620
31915ab4 2621 if (!mm) {
1da177e4
LT
2622 next->active_mm = oldmm;
2623 atomic_inc(&oldmm->mm_count);
2624 enter_lazy_tlb(oldmm, next);
2625 } else
2626 switch_mm(oldmm, mm, next);
2627
31915ab4 2628 if (!prev->mm) {
1da177e4 2629 prev->active_mm = NULL;
1da177e4
LT
2630 rq->prev_mm = oldmm;
2631 }
3a5f5e48
IM
2632 /*
2633 * Since the runqueue lock will be released by the next
2634 * task (which is an invalid locking op but in the case
2635 * of the scheduler it's an obvious special-case), so we
2636 * do an early lockdep release here:
2637 */
cbce1a68 2638 lockdep_unpin_lock(&rq->lock);
8a25d5de 2639 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2640
2641 /* Here we just switch the register state and the stack. */
2642 switch_to(prev, next, prev);
dd41f596 2643 barrier();
dfa50b60
ON
2644
2645 return finish_task_switch(prev);
1da177e4
LT
2646}
2647
2648/*
1c3e8264 2649 * nr_running and nr_context_switches:
1da177e4
LT
2650 *
2651 * externally visible scheduler statistics: current number of runnable
1c3e8264 2652 * threads, total number of context switches performed since bootup.
1da177e4
LT
2653 */
2654unsigned long nr_running(void)
2655{
2656 unsigned long i, sum = 0;
2657
2658 for_each_online_cpu(i)
2659 sum += cpu_rq(i)->nr_running;
2660
2661 return sum;
f711f609 2662}
1da177e4 2663
2ee507c4
TC
2664/*
2665 * Check if only the current task is running on the cpu.
2666 */
2667bool single_task_running(void)
2668{
2669 if (cpu_rq(smp_processor_id())->nr_running == 1)
2670 return true;
2671 else
2672 return false;
2673}
2674EXPORT_SYMBOL(single_task_running);
2675
1da177e4 2676unsigned long long nr_context_switches(void)
46cb4b7c 2677{
cc94abfc
SR
2678 int i;
2679 unsigned long long sum = 0;
46cb4b7c 2680
0a945022 2681 for_each_possible_cpu(i)
1da177e4 2682 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2683
1da177e4
LT
2684 return sum;
2685}
483b4ee6 2686
1da177e4
LT
2687unsigned long nr_iowait(void)
2688{
2689 unsigned long i, sum = 0;
483b4ee6 2690
0a945022 2691 for_each_possible_cpu(i)
1da177e4 2692 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2693
1da177e4
LT
2694 return sum;
2695}
483b4ee6 2696
8c215bd3 2697unsigned long nr_iowait_cpu(int cpu)
69d25870 2698{
8c215bd3 2699 struct rq *this = cpu_rq(cpu);
69d25870
AV
2700 return atomic_read(&this->nr_iowait);
2701}
46cb4b7c 2702
372ba8cb
MG
2703void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2704{
3289bdb4
PZ
2705 struct rq *rq = this_rq();
2706 *nr_waiters = atomic_read(&rq->nr_iowait);
2707 *load = rq->load.weight;
372ba8cb
MG
2708}
2709
dd41f596 2710#ifdef CONFIG_SMP
8a0be9ef 2711
46cb4b7c 2712/*
38022906
PZ
2713 * sched_exec - execve() is a valuable balancing opportunity, because at
2714 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2715 */
38022906 2716void sched_exec(void)
46cb4b7c 2717{
38022906 2718 struct task_struct *p = current;
1da177e4 2719 unsigned long flags;
0017d735 2720 int dest_cpu;
46cb4b7c 2721
8f42ced9 2722 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2723 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2724 if (dest_cpu == smp_processor_id())
2725 goto unlock;
38022906 2726
8f42ced9 2727 if (likely(cpu_active(dest_cpu))) {
969c7921 2728 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2729
8f42ced9
PZ
2730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2731 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2732 return;
2733 }
0017d735 2734unlock:
8f42ced9 2735 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2736}
dd41f596 2737
1da177e4
LT
2738#endif
2739
1da177e4 2740DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2741DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2742
2743EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2744EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2745
c5f8d995
HS
2746/*
2747 * Return accounted runtime for the task.
2748 * In case the task is currently running, return the runtime plus current's
2749 * pending runtime that have not been accounted yet.
2750 */
2751unsigned long long task_sched_runtime(struct task_struct *p)
2752{
2753 unsigned long flags;
2754 struct rq *rq;
6e998916 2755 u64 ns;
c5f8d995 2756
911b2898
PZ
2757#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2758 /*
2759 * 64-bit doesn't need locks to atomically read a 64bit value.
2760 * So we have a optimization chance when the task's delta_exec is 0.
2761 * Reading ->on_cpu is racy, but this is ok.
2762 *
2763 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2764 * If we race with it entering cpu, unaccounted time is 0. This is
2765 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2766 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2767 * been accounted, so we're correct here as well.
911b2898 2768 */
da0c1e65 2769 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2770 return p->se.sum_exec_runtime;
2771#endif
2772
c5f8d995 2773 rq = task_rq_lock(p, &flags);
6e998916
SG
2774 /*
2775 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2776 * project cycles that may never be accounted to this
2777 * thread, breaking clock_gettime().
2778 */
2779 if (task_current(rq, p) && task_on_rq_queued(p)) {
2780 update_rq_clock(rq);
2781 p->sched_class->update_curr(rq);
2782 }
2783 ns = p->se.sum_exec_runtime;
0122ec5b 2784 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2785
2786 return ns;
2787}
48f24c4d 2788
7835b98b
CL
2789/*
2790 * This function gets called by the timer code, with HZ frequency.
2791 * We call it with interrupts disabled.
7835b98b
CL
2792 */
2793void scheduler_tick(void)
2794{
7835b98b
CL
2795 int cpu = smp_processor_id();
2796 struct rq *rq = cpu_rq(cpu);
dd41f596 2797 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2798
2799 sched_clock_tick();
dd41f596 2800
05fa785c 2801 raw_spin_lock(&rq->lock);
3e51f33f 2802 update_rq_clock(rq);
fa85ae24 2803 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2804 update_cpu_load_active(rq);
3289bdb4 2805 calc_global_load_tick(rq);
05fa785c 2806 raw_spin_unlock(&rq->lock);
7835b98b 2807
e9d2b064 2808 perf_event_task_tick();
e220d2dc 2809
e418e1c2 2810#ifdef CONFIG_SMP
6eb57e0d 2811 rq->idle_balance = idle_cpu(cpu);
7caff66f 2812 trigger_load_balance(rq);
e418e1c2 2813#endif
265f22a9 2814 rq_last_tick_reset(rq);
1da177e4
LT
2815}
2816
265f22a9
FW
2817#ifdef CONFIG_NO_HZ_FULL
2818/**
2819 * scheduler_tick_max_deferment
2820 *
2821 * Keep at least one tick per second when a single
2822 * active task is running because the scheduler doesn't
2823 * yet completely support full dynticks environment.
2824 *
2825 * This makes sure that uptime, CFS vruntime, load
2826 * balancing, etc... continue to move forward, even
2827 * with a very low granularity.
e69f6186
YB
2828 *
2829 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2830 */
2831u64 scheduler_tick_max_deferment(void)
2832{
2833 struct rq *rq = this_rq();
316c1608 2834 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2835
2836 next = rq->last_sched_tick + HZ;
2837
2838 if (time_before_eq(next, now))
2839 return 0;
2840
8fe8ff09 2841 return jiffies_to_nsecs(next - now);
1da177e4 2842}
265f22a9 2843#endif
1da177e4 2844
132380a0 2845notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2846{
2847 if (in_lock_functions(addr)) {
2848 addr = CALLER_ADDR2;
2849 if (in_lock_functions(addr))
2850 addr = CALLER_ADDR3;
2851 }
2852 return addr;
2853}
1da177e4 2854
7e49fcce
SR
2855#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2856 defined(CONFIG_PREEMPT_TRACER))
2857
edafe3a5 2858void preempt_count_add(int val)
1da177e4 2859{
6cd8a4bb 2860#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2861 /*
2862 * Underflow?
2863 */
9a11b49a
IM
2864 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2865 return;
6cd8a4bb 2866#endif
bdb43806 2867 __preempt_count_add(val);
6cd8a4bb 2868#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2869 /*
2870 * Spinlock count overflowing soon?
2871 */
33859f7f
MOS
2872 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2873 PREEMPT_MASK - 10);
6cd8a4bb 2874#endif
8f47b187
TG
2875 if (preempt_count() == val) {
2876 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2877#ifdef CONFIG_DEBUG_PREEMPT
2878 current->preempt_disable_ip = ip;
2879#endif
2880 trace_preempt_off(CALLER_ADDR0, ip);
2881 }
1da177e4 2882}
bdb43806 2883EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2884NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2885
edafe3a5 2886void preempt_count_sub(int val)
1da177e4 2887{
6cd8a4bb 2888#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2889 /*
2890 * Underflow?
2891 */
01e3eb82 2892 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2893 return;
1da177e4
LT
2894 /*
2895 * Is the spinlock portion underflowing?
2896 */
9a11b49a
IM
2897 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2898 !(preempt_count() & PREEMPT_MASK)))
2899 return;
6cd8a4bb 2900#endif
9a11b49a 2901
6cd8a4bb
SR
2902 if (preempt_count() == val)
2903 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2904 __preempt_count_sub(val);
1da177e4 2905}
bdb43806 2906EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2907NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2908
2909#endif
2910
2911/*
dd41f596 2912 * Print scheduling while atomic bug:
1da177e4 2913 */
dd41f596 2914static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2915{
664dfa65
DJ
2916 if (oops_in_progress)
2917 return;
2918
3df0fc5b
PZ
2919 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2920 prev->comm, prev->pid, preempt_count());
838225b4 2921
dd41f596 2922 debug_show_held_locks(prev);
e21f5b15 2923 print_modules();
dd41f596
IM
2924 if (irqs_disabled())
2925 print_irqtrace_events(prev);
8f47b187
TG
2926#ifdef CONFIG_DEBUG_PREEMPT
2927 if (in_atomic_preempt_off()) {
2928 pr_err("Preemption disabled at:");
2929 print_ip_sym(current->preempt_disable_ip);
2930 pr_cont("\n");
2931 }
2932#endif
6135fc1e 2933 dump_stack();
373d4d09 2934 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2935}
1da177e4 2936
dd41f596
IM
2937/*
2938 * Various schedule()-time debugging checks and statistics:
2939 */
2940static inline void schedule_debug(struct task_struct *prev)
2941{
0d9e2632
AT
2942#ifdef CONFIG_SCHED_STACK_END_CHECK
2943 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2944#endif
1da177e4 2945 /*
41a2d6cf 2946 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2947 * schedule() atomically, we ignore that path. Otherwise whine
2948 * if we are scheduling when we should not.
1da177e4 2949 */
192301e7 2950 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2951 __schedule_bug(prev);
b3fbab05 2952 rcu_sleep_check();
dd41f596 2953
1da177e4
LT
2954 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2955
2d72376b 2956 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2957}
2958
2959/*
2960 * Pick up the highest-prio task:
2961 */
2962static inline struct task_struct *
606dba2e 2963pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2964{
37e117c0 2965 const struct sched_class *class = &fair_sched_class;
dd41f596 2966 struct task_struct *p;
1da177e4
LT
2967
2968 /*
dd41f596
IM
2969 * Optimization: we know that if all tasks are in
2970 * the fair class we can call that function directly:
1da177e4 2971 */
37e117c0 2972 if (likely(prev->sched_class == class &&
38033c37 2973 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2974 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2975 if (unlikely(p == RETRY_TASK))
2976 goto again;
2977
2978 /* assumes fair_sched_class->next == idle_sched_class */
2979 if (unlikely(!p))
2980 p = idle_sched_class.pick_next_task(rq, prev);
2981
2982 return p;
1da177e4
LT
2983 }
2984
37e117c0 2985again:
34f971f6 2986 for_each_class(class) {
606dba2e 2987 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2988 if (p) {
2989 if (unlikely(p == RETRY_TASK))
2990 goto again;
dd41f596 2991 return p;
37e117c0 2992 }
dd41f596 2993 }
34f971f6
PZ
2994
2995 BUG(); /* the idle class will always have a runnable task */
dd41f596 2996}
1da177e4 2997
dd41f596 2998/*
c259e01a 2999 * __schedule() is the main scheduler function.
edde96ea
PE
3000 *
3001 * The main means of driving the scheduler and thus entering this function are:
3002 *
3003 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3004 *
3005 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3006 * paths. For example, see arch/x86/entry_64.S.
3007 *
3008 * To drive preemption between tasks, the scheduler sets the flag in timer
3009 * interrupt handler scheduler_tick().
3010 *
3011 * 3. Wakeups don't really cause entry into schedule(). They add a
3012 * task to the run-queue and that's it.
3013 *
3014 * Now, if the new task added to the run-queue preempts the current
3015 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3016 * called on the nearest possible occasion:
3017 *
3018 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3019 *
3020 * - in syscall or exception context, at the next outmost
3021 * preempt_enable(). (this might be as soon as the wake_up()'s
3022 * spin_unlock()!)
3023 *
3024 * - in IRQ context, return from interrupt-handler to
3025 * preemptible context
3026 *
3027 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3028 * then at the next:
3029 *
3030 * - cond_resched() call
3031 * - explicit schedule() call
3032 * - return from syscall or exception to user-space
3033 * - return from interrupt-handler to user-space
bfd9b2b5 3034 *
b30f0e3f 3035 * WARNING: must be called with preemption disabled!
dd41f596 3036 */
c259e01a 3037static void __sched __schedule(void)
dd41f596
IM
3038{
3039 struct task_struct *prev, *next;
67ca7bde 3040 unsigned long *switch_count;
dd41f596 3041 struct rq *rq;
31656519 3042 int cpu;
dd41f596 3043
dd41f596
IM
3044 cpu = smp_processor_id();
3045 rq = cpu_rq(cpu);
38200cf2 3046 rcu_note_context_switch();
dd41f596 3047 prev = rq->curr;
dd41f596 3048
dd41f596 3049 schedule_debug(prev);
1da177e4 3050
31656519 3051 if (sched_feat(HRTICK))
f333fdc9 3052 hrtick_clear(rq);
8f4d37ec 3053
e0acd0a6
ON
3054 /*
3055 * Make sure that signal_pending_state()->signal_pending() below
3056 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3057 * done by the caller to avoid the race with signal_wake_up().
3058 */
3059 smp_mb__before_spinlock();
05fa785c 3060 raw_spin_lock_irq(&rq->lock);
cbce1a68 3061 lockdep_pin_lock(&rq->lock);
1da177e4 3062
9edfbfed
PZ
3063 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3064
246d86b5 3065 switch_count = &prev->nivcsw;
1da177e4 3066 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3067 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3068 prev->state = TASK_RUNNING;
21aa9af0 3069 } else {
2acca55e
PZ
3070 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3071 prev->on_rq = 0;
3072
21aa9af0 3073 /*
2acca55e
PZ
3074 * If a worker went to sleep, notify and ask workqueue
3075 * whether it wants to wake up a task to maintain
3076 * concurrency.
21aa9af0
TH
3077 */
3078 if (prev->flags & PF_WQ_WORKER) {
3079 struct task_struct *to_wakeup;
3080
3081 to_wakeup = wq_worker_sleeping(prev, cpu);
3082 if (to_wakeup)
3083 try_to_wake_up_local(to_wakeup);
3084 }
21aa9af0 3085 }
dd41f596 3086 switch_count = &prev->nvcsw;
1da177e4
LT
3087 }
3088
9edfbfed 3089 if (task_on_rq_queued(prev))
606dba2e
PZ
3090 update_rq_clock(rq);
3091
3092 next = pick_next_task(rq, prev);
f26f9aff 3093 clear_tsk_need_resched(prev);
f27dde8d 3094 clear_preempt_need_resched();
9edfbfed 3095 rq->clock_skip_update = 0;
1da177e4 3096
1da177e4 3097 if (likely(prev != next)) {
1da177e4
LT
3098 rq->nr_switches++;
3099 rq->curr = next;
3100 ++*switch_count;
3101
dfa50b60
ON
3102 rq = context_switch(rq, prev, next); /* unlocks the rq */
3103 cpu = cpu_of(rq);
cbce1a68
PZ
3104 } else {
3105 lockdep_unpin_lock(&rq->lock);
05fa785c 3106 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3107 }
1da177e4 3108
e3fca9e7 3109 balance_callback(rq);
1da177e4 3110}
c259e01a 3111
9c40cef2
TG
3112static inline void sched_submit_work(struct task_struct *tsk)
3113{
3c7d5184 3114 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3115 return;
3116 /*
3117 * If we are going to sleep and we have plugged IO queued,
3118 * make sure to submit it to avoid deadlocks.
3119 */
3120 if (blk_needs_flush_plug(tsk))
3121 blk_schedule_flush_plug(tsk);
3122}
3123
722a9f92 3124asmlinkage __visible void __sched schedule(void)
c259e01a 3125{
9c40cef2
TG
3126 struct task_struct *tsk = current;
3127
3128 sched_submit_work(tsk);
bfd9b2b5 3129 do {
b30f0e3f 3130 preempt_disable();
bfd9b2b5 3131 __schedule();
b30f0e3f 3132 sched_preempt_enable_no_resched();
bfd9b2b5 3133 } while (need_resched());
c259e01a 3134}
1da177e4
LT
3135EXPORT_SYMBOL(schedule);
3136
91d1aa43 3137#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3138asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3139{
3140 /*
3141 * If we come here after a random call to set_need_resched(),
3142 * or we have been woken up remotely but the IPI has not yet arrived,
3143 * we haven't yet exited the RCU idle mode. Do it here manually until
3144 * we find a better solution.
7cc78f8f
AL
3145 *
3146 * NB: There are buggy callers of this function. Ideally we
c467ea76 3147 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3148 * too frequently to make sense yet.
20ab65e3 3149 */
7cc78f8f 3150 enum ctx_state prev_state = exception_enter();
20ab65e3 3151 schedule();
7cc78f8f 3152 exception_exit(prev_state);
20ab65e3
FW
3153}
3154#endif
3155
c5491ea7
TG
3156/**
3157 * schedule_preempt_disabled - called with preemption disabled
3158 *
3159 * Returns with preemption disabled. Note: preempt_count must be 1
3160 */
3161void __sched schedule_preempt_disabled(void)
3162{
ba74c144 3163 sched_preempt_enable_no_resched();
c5491ea7
TG
3164 schedule();
3165 preempt_disable();
3166}
3167
06b1f808 3168static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3169{
3170 do {
b30f0e3f 3171 preempt_active_enter();
a18b5d01 3172 __schedule();
b30f0e3f 3173 preempt_active_exit();
a18b5d01
FW
3174
3175 /*
3176 * Check again in case we missed a preemption opportunity
3177 * between schedule and now.
3178 */
a18b5d01
FW
3179 } while (need_resched());
3180}
3181
1da177e4
LT
3182#ifdef CONFIG_PREEMPT
3183/*
2ed6e34f 3184 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3185 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3186 * occur there and call schedule directly.
3187 */
722a9f92 3188asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3189{
1da177e4
LT
3190 /*
3191 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3192 * we do not want to preempt the current task. Just return..
1da177e4 3193 */
fbb00b56 3194 if (likely(!preemptible()))
1da177e4
LT
3195 return;
3196
a18b5d01 3197 preempt_schedule_common();
1da177e4 3198}
376e2424 3199NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3200EXPORT_SYMBOL(preempt_schedule);
009f60e2 3201
009f60e2 3202/**
4eaca0a8 3203 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3204 *
3205 * The tracing infrastructure uses preempt_enable_notrace to prevent
3206 * recursion and tracing preempt enabling caused by the tracing
3207 * infrastructure itself. But as tracing can happen in areas coming
3208 * from userspace or just about to enter userspace, a preempt enable
3209 * can occur before user_exit() is called. This will cause the scheduler
3210 * to be called when the system is still in usermode.
3211 *
3212 * To prevent this, the preempt_enable_notrace will use this function
3213 * instead of preempt_schedule() to exit user context if needed before
3214 * calling the scheduler.
3215 */
4eaca0a8 3216asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3217{
3218 enum ctx_state prev_ctx;
3219
3220 if (likely(!preemptible()))
3221 return;
3222
3223 do {
be690035
FW
3224 /*
3225 * Use raw __prempt_count() ops that don't call function.
3226 * We can't call functions before disabling preemption which
3227 * disarm preemption tracing recursions.
3228 */
3229 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3230 barrier();
009f60e2
ON
3231 /*
3232 * Needs preempt disabled in case user_exit() is traced
3233 * and the tracer calls preempt_enable_notrace() causing
3234 * an infinite recursion.
3235 */
3236 prev_ctx = exception_enter();
3237 __schedule();
3238 exception_exit(prev_ctx);
3239
009f60e2 3240 barrier();
be690035 3241 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
3242 } while (need_resched());
3243}
4eaca0a8 3244EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3245
32e475d7 3246#endif /* CONFIG_PREEMPT */
1da177e4
LT
3247
3248/*
2ed6e34f 3249 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3250 * off of irq context.
3251 * Note, that this is called and return with irqs disabled. This will
3252 * protect us against recursive calling from irq.
3253 */
722a9f92 3254asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3255{
b22366cd 3256 enum ctx_state prev_state;
6478d880 3257
2ed6e34f 3258 /* Catch callers which need to be fixed */
f27dde8d 3259 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3260
b22366cd
FW
3261 prev_state = exception_enter();
3262
3a5c359a 3263 do {
b30f0e3f 3264 preempt_active_enter();
3a5c359a 3265 local_irq_enable();
c259e01a 3266 __schedule();
3a5c359a 3267 local_irq_disable();
b30f0e3f 3268 preempt_active_exit();
5ed0cec0 3269 } while (need_resched());
b22366cd
FW
3270
3271 exception_exit(prev_state);
1da177e4
LT
3272}
3273
63859d4f 3274int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3275 void *key)
1da177e4 3276{
63859d4f 3277 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3278}
1da177e4
LT
3279EXPORT_SYMBOL(default_wake_function);
3280
b29739f9
IM
3281#ifdef CONFIG_RT_MUTEXES
3282
3283/*
3284 * rt_mutex_setprio - set the current priority of a task
3285 * @p: task
3286 * @prio: prio value (kernel-internal form)
3287 *
3288 * This function changes the 'effective' priority of a task. It does
3289 * not touch ->normal_prio like __setscheduler().
3290 *
c365c292
TG
3291 * Used by the rt_mutex code to implement priority inheritance
3292 * logic. Call site only calls if the priority of the task changed.
b29739f9 3293 */
36c8b586 3294void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3295{
da0c1e65 3296 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3297 struct rq *rq;
83ab0aa0 3298 const struct sched_class *prev_class;
b29739f9 3299
aab03e05 3300 BUG_ON(prio > MAX_PRIO);
b29739f9 3301
0122ec5b 3302 rq = __task_rq_lock(p);
b29739f9 3303
1c4dd99b
TG
3304 /*
3305 * Idle task boosting is a nono in general. There is one
3306 * exception, when PREEMPT_RT and NOHZ is active:
3307 *
3308 * The idle task calls get_next_timer_interrupt() and holds
3309 * the timer wheel base->lock on the CPU and another CPU wants
3310 * to access the timer (probably to cancel it). We can safely
3311 * ignore the boosting request, as the idle CPU runs this code
3312 * with interrupts disabled and will complete the lock
3313 * protected section without being interrupted. So there is no
3314 * real need to boost.
3315 */
3316 if (unlikely(p == rq->idle)) {
3317 WARN_ON(p != rq->curr);
3318 WARN_ON(p->pi_blocked_on);
3319 goto out_unlock;
3320 }
3321
a8027073 3322 trace_sched_pi_setprio(p, prio);
d5f9f942 3323 oldprio = p->prio;
83ab0aa0 3324 prev_class = p->sched_class;
da0c1e65 3325 queued = task_on_rq_queued(p);
051a1d1a 3326 running = task_current(rq, p);
da0c1e65 3327 if (queued)
69be72c1 3328 dequeue_task(rq, p, 0);
0e1f3483 3329 if (running)
f3cd1c4e 3330 put_prev_task(rq, p);
dd41f596 3331
2d3d891d
DF
3332 /*
3333 * Boosting condition are:
3334 * 1. -rt task is running and holds mutex A
3335 * --> -dl task blocks on mutex A
3336 *
3337 * 2. -dl task is running and holds mutex A
3338 * --> -dl task blocks on mutex A and could preempt the
3339 * running task
3340 */
3341 if (dl_prio(prio)) {
466af29b
ON
3342 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3343 if (!dl_prio(p->normal_prio) ||
3344 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3345 p->dl.dl_boosted = 1;
2d3d891d
DF
3346 enqueue_flag = ENQUEUE_REPLENISH;
3347 } else
3348 p->dl.dl_boosted = 0;
aab03e05 3349 p->sched_class = &dl_sched_class;
2d3d891d
DF
3350 } else if (rt_prio(prio)) {
3351 if (dl_prio(oldprio))
3352 p->dl.dl_boosted = 0;
3353 if (oldprio < prio)
3354 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3355 p->sched_class = &rt_sched_class;
2d3d891d
DF
3356 } else {
3357 if (dl_prio(oldprio))
3358 p->dl.dl_boosted = 0;
746db944
BS
3359 if (rt_prio(oldprio))
3360 p->rt.timeout = 0;
dd41f596 3361 p->sched_class = &fair_sched_class;
2d3d891d 3362 }
dd41f596 3363
b29739f9
IM
3364 p->prio = prio;
3365
0e1f3483
HS
3366 if (running)
3367 p->sched_class->set_curr_task(rq);
da0c1e65 3368 if (queued)
2d3d891d 3369 enqueue_task(rq, p, enqueue_flag);
cb469845 3370
da7a735e 3371 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3372out_unlock:
4c9a4bc8 3373 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3374 __task_rq_unlock(rq);
4c9a4bc8
PZ
3375
3376 balance_callback(rq);
3377 preempt_enable();
b29739f9 3378}
b29739f9 3379#endif
d50dde5a 3380
36c8b586 3381void set_user_nice(struct task_struct *p, long nice)
1da177e4 3382{
da0c1e65 3383 int old_prio, delta, queued;
1da177e4 3384 unsigned long flags;
70b97a7f 3385 struct rq *rq;
1da177e4 3386
75e45d51 3387 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3388 return;
3389 /*
3390 * We have to be careful, if called from sys_setpriority(),
3391 * the task might be in the middle of scheduling on another CPU.
3392 */
3393 rq = task_rq_lock(p, &flags);
3394 /*
3395 * The RT priorities are set via sched_setscheduler(), but we still
3396 * allow the 'normal' nice value to be set - but as expected
3397 * it wont have any effect on scheduling until the task is
aab03e05 3398 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3399 */
aab03e05 3400 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3401 p->static_prio = NICE_TO_PRIO(nice);
3402 goto out_unlock;
3403 }
da0c1e65
KT
3404 queued = task_on_rq_queued(p);
3405 if (queued)
69be72c1 3406 dequeue_task(rq, p, 0);
1da177e4 3407
1da177e4 3408 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3409 set_load_weight(p);
b29739f9
IM
3410 old_prio = p->prio;
3411 p->prio = effective_prio(p);
3412 delta = p->prio - old_prio;
1da177e4 3413
da0c1e65 3414 if (queued) {
371fd7e7 3415 enqueue_task(rq, p, 0);
1da177e4 3416 /*
d5f9f942
AM
3417 * If the task increased its priority or is running and
3418 * lowered its priority, then reschedule its CPU:
1da177e4 3419 */
d5f9f942 3420 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3421 resched_curr(rq);
1da177e4
LT
3422 }
3423out_unlock:
0122ec5b 3424 task_rq_unlock(rq, p, &flags);
1da177e4 3425}
1da177e4
LT
3426EXPORT_SYMBOL(set_user_nice);
3427
e43379f1
MM
3428/*
3429 * can_nice - check if a task can reduce its nice value
3430 * @p: task
3431 * @nice: nice value
3432 */
36c8b586 3433int can_nice(const struct task_struct *p, const int nice)
e43379f1 3434{
024f4747 3435 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3436 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3437
78d7d407 3438 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3439 capable(CAP_SYS_NICE));
3440}
3441
1da177e4
LT
3442#ifdef __ARCH_WANT_SYS_NICE
3443
3444/*
3445 * sys_nice - change the priority of the current process.
3446 * @increment: priority increment
3447 *
3448 * sys_setpriority is a more generic, but much slower function that
3449 * does similar things.
3450 */
5add95d4 3451SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3452{
48f24c4d 3453 long nice, retval;
1da177e4
LT
3454
3455 /*
3456 * Setpriority might change our priority at the same moment.
3457 * We don't have to worry. Conceptually one call occurs first
3458 * and we have a single winner.
3459 */
a9467fa3 3460 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3461 nice = task_nice(current) + increment;
1da177e4 3462
a9467fa3 3463 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3464 if (increment < 0 && !can_nice(current, nice))
3465 return -EPERM;
3466
1da177e4
LT
3467 retval = security_task_setnice(current, nice);
3468 if (retval)
3469 return retval;
3470
3471 set_user_nice(current, nice);
3472 return 0;
3473}
3474
3475#endif
3476
3477/**
3478 * task_prio - return the priority value of a given task.
3479 * @p: the task in question.
3480 *
e69f6186 3481 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3482 * RT tasks are offset by -200. Normal tasks are centered
3483 * around 0, value goes from -16 to +15.
3484 */
36c8b586 3485int task_prio(const struct task_struct *p)
1da177e4
LT
3486{
3487 return p->prio - MAX_RT_PRIO;
3488}
3489
1da177e4
LT
3490/**
3491 * idle_cpu - is a given cpu idle currently?
3492 * @cpu: the processor in question.
e69f6186
YB
3493 *
3494 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3495 */
3496int idle_cpu(int cpu)
3497{
908a3283
TG
3498 struct rq *rq = cpu_rq(cpu);
3499
3500 if (rq->curr != rq->idle)
3501 return 0;
3502
3503 if (rq->nr_running)
3504 return 0;
3505
3506#ifdef CONFIG_SMP
3507 if (!llist_empty(&rq->wake_list))
3508 return 0;
3509#endif
3510
3511 return 1;
1da177e4
LT
3512}
3513
1da177e4
LT
3514/**
3515 * idle_task - return the idle task for a given cpu.
3516 * @cpu: the processor in question.
e69f6186
YB
3517 *
3518 * Return: The idle task for the cpu @cpu.
1da177e4 3519 */
36c8b586 3520struct task_struct *idle_task(int cpu)
1da177e4
LT
3521{
3522 return cpu_rq(cpu)->idle;
3523}
3524
3525/**
3526 * find_process_by_pid - find a process with a matching PID value.
3527 * @pid: the pid in question.
e69f6186
YB
3528 *
3529 * The task of @pid, if found. %NULL otherwise.
1da177e4 3530 */
a9957449 3531static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3532{
228ebcbe 3533 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3534}
3535
aab03e05
DF
3536/*
3537 * This function initializes the sched_dl_entity of a newly becoming
3538 * SCHED_DEADLINE task.
3539 *
3540 * Only the static values are considered here, the actual runtime and the
3541 * absolute deadline will be properly calculated when the task is enqueued
3542 * for the first time with its new policy.
3543 */
3544static void
3545__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3546{
3547 struct sched_dl_entity *dl_se = &p->dl;
3548
aab03e05
DF
3549 dl_se->dl_runtime = attr->sched_runtime;
3550 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3551 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3552 dl_se->flags = attr->sched_flags;
332ac17e 3553 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3554
3555 /*
3556 * Changing the parameters of a task is 'tricky' and we're not doing
3557 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3558 *
3559 * What we SHOULD do is delay the bandwidth release until the 0-lag
3560 * point. This would include retaining the task_struct until that time
3561 * and change dl_overflow() to not immediately decrement the current
3562 * amount.
3563 *
3564 * Instead we retain the current runtime/deadline and let the new
3565 * parameters take effect after the current reservation period lapses.
3566 * This is safe (albeit pessimistic) because the 0-lag point is always
3567 * before the current scheduling deadline.
3568 *
3569 * We can still have temporary overloads because we do not delay the
3570 * change in bandwidth until that time; so admission control is
3571 * not on the safe side. It does however guarantee tasks will never
3572 * consume more than promised.
3573 */
aab03e05
DF
3574}
3575
c13db6b1
SR
3576/*
3577 * sched_setparam() passes in -1 for its policy, to let the functions
3578 * it calls know not to change it.
3579 */
3580#define SETPARAM_POLICY -1
3581
c365c292
TG
3582static void __setscheduler_params(struct task_struct *p,
3583 const struct sched_attr *attr)
1da177e4 3584{
d50dde5a
DF
3585 int policy = attr->sched_policy;
3586
c13db6b1 3587 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3588 policy = p->policy;
3589
1da177e4 3590 p->policy = policy;
d50dde5a 3591
aab03e05
DF
3592 if (dl_policy(policy))
3593 __setparam_dl(p, attr);
39fd8fd2 3594 else if (fair_policy(policy))
d50dde5a
DF
3595 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3596
39fd8fd2
PZ
3597 /*
3598 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3599 * !rt_policy. Always setting this ensures that things like
3600 * getparam()/getattr() don't report silly values for !rt tasks.
3601 */
3602 p->rt_priority = attr->sched_priority;
383afd09 3603 p->normal_prio = normal_prio(p);
c365c292
TG
3604 set_load_weight(p);
3605}
39fd8fd2 3606
c365c292
TG
3607/* Actually do priority change: must hold pi & rq lock. */
3608static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3609 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3610{
3611 __setscheduler_params(p, attr);
d50dde5a 3612
383afd09 3613 /*
0782e63b
TG
3614 * Keep a potential priority boosting if called from
3615 * sched_setscheduler().
383afd09 3616 */
0782e63b
TG
3617 if (keep_boost)
3618 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3619 else
3620 p->prio = normal_prio(p);
383afd09 3621
aab03e05
DF
3622 if (dl_prio(p->prio))
3623 p->sched_class = &dl_sched_class;
3624 else if (rt_prio(p->prio))
ffd44db5
PZ
3625 p->sched_class = &rt_sched_class;
3626 else
3627 p->sched_class = &fair_sched_class;
1da177e4 3628}
aab03e05
DF
3629
3630static void
3631__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3632{
3633 struct sched_dl_entity *dl_se = &p->dl;
3634
3635 attr->sched_priority = p->rt_priority;
3636 attr->sched_runtime = dl_se->dl_runtime;
3637 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3638 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3639 attr->sched_flags = dl_se->flags;
3640}
3641
3642/*
3643 * This function validates the new parameters of a -deadline task.
3644 * We ask for the deadline not being zero, and greater or equal
755378a4 3645 * than the runtime, as well as the period of being zero or
332ac17e 3646 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3647 * user parameters are above the internal resolution of 1us (we
3648 * check sched_runtime only since it is always the smaller one) and
3649 * below 2^63 ns (we have to check both sched_deadline and
3650 * sched_period, as the latter can be zero).
aab03e05
DF
3651 */
3652static bool
3653__checkparam_dl(const struct sched_attr *attr)
3654{
b0827819
JL
3655 /* deadline != 0 */
3656 if (attr->sched_deadline == 0)
3657 return false;
3658
3659 /*
3660 * Since we truncate DL_SCALE bits, make sure we're at least
3661 * that big.
3662 */
3663 if (attr->sched_runtime < (1ULL << DL_SCALE))
3664 return false;
3665
3666 /*
3667 * Since we use the MSB for wrap-around and sign issues, make
3668 * sure it's not set (mind that period can be equal to zero).
3669 */
3670 if (attr->sched_deadline & (1ULL << 63) ||
3671 attr->sched_period & (1ULL << 63))
3672 return false;
3673
3674 /* runtime <= deadline <= period (if period != 0) */
3675 if ((attr->sched_period != 0 &&
3676 attr->sched_period < attr->sched_deadline) ||
3677 attr->sched_deadline < attr->sched_runtime)
3678 return false;
3679
3680 return true;
aab03e05
DF
3681}
3682
c69e8d9c
DH
3683/*
3684 * check the target process has a UID that matches the current process's
3685 */
3686static bool check_same_owner(struct task_struct *p)
3687{
3688 const struct cred *cred = current_cred(), *pcred;
3689 bool match;
3690
3691 rcu_read_lock();
3692 pcred = __task_cred(p);
9c806aa0
EB
3693 match = (uid_eq(cred->euid, pcred->euid) ||
3694 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3695 rcu_read_unlock();
3696 return match;
3697}
3698
75381608
WL
3699static bool dl_param_changed(struct task_struct *p,
3700 const struct sched_attr *attr)
3701{
3702 struct sched_dl_entity *dl_se = &p->dl;
3703
3704 if (dl_se->dl_runtime != attr->sched_runtime ||
3705 dl_se->dl_deadline != attr->sched_deadline ||
3706 dl_se->dl_period != attr->sched_period ||
3707 dl_se->flags != attr->sched_flags)
3708 return true;
3709
3710 return false;
3711}
3712
d50dde5a
DF
3713static int __sched_setscheduler(struct task_struct *p,
3714 const struct sched_attr *attr,
dbc7f069 3715 bool user, bool pi)
1da177e4 3716{
383afd09
SR
3717 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3718 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3719 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3720 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3721 unsigned long flags;
83ab0aa0 3722 const struct sched_class *prev_class;
70b97a7f 3723 struct rq *rq;
ca94c442 3724 int reset_on_fork;
1da177e4 3725
66e5393a
SR
3726 /* may grab non-irq protected spin_locks */
3727 BUG_ON(in_interrupt());
1da177e4
LT
3728recheck:
3729 /* double check policy once rq lock held */
ca94c442
LP
3730 if (policy < 0) {
3731 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3732 policy = oldpolicy = p->policy;
ca94c442 3733 } else {
7479f3c9 3734 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3735
aab03e05
DF
3736 if (policy != SCHED_DEADLINE &&
3737 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3738 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3739 policy != SCHED_IDLE)
3740 return -EINVAL;
3741 }
3742
7479f3c9
PZ
3743 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3744 return -EINVAL;
3745
1da177e4
LT
3746 /*
3747 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3748 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3749 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3750 */
0bb040a4 3751 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3752 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3753 return -EINVAL;
aab03e05
DF
3754 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3755 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3756 return -EINVAL;
3757
37e4ab3f
OC
3758 /*
3759 * Allow unprivileged RT tasks to decrease priority:
3760 */
961ccddd 3761 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3762 if (fair_policy(policy)) {
d0ea0268 3763 if (attr->sched_nice < task_nice(p) &&
eaad4513 3764 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3765 return -EPERM;
3766 }
3767
e05606d3 3768 if (rt_policy(policy)) {
a44702e8
ON
3769 unsigned long rlim_rtprio =
3770 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3771
3772 /* can't set/change the rt policy */
3773 if (policy != p->policy && !rlim_rtprio)
3774 return -EPERM;
3775
3776 /* can't increase priority */
d50dde5a
DF
3777 if (attr->sched_priority > p->rt_priority &&
3778 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3779 return -EPERM;
3780 }
c02aa73b 3781
d44753b8
JL
3782 /*
3783 * Can't set/change SCHED_DEADLINE policy at all for now
3784 * (safest behavior); in the future we would like to allow
3785 * unprivileged DL tasks to increase their relative deadline
3786 * or reduce their runtime (both ways reducing utilization)
3787 */
3788 if (dl_policy(policy))
3789 return -EPERM;
3790
dd41f596 3791 /*
c02aa73b
DH
3792 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3793 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3794 */
c02aa73b 3795 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3796 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3797 return -EPERM;
3798 }
5fe1d75f 3799
37e4ab3f 3800 /* can't change other user's priorities */
c69e8d9c 3801 if (!check_same_owner(p))
37e4ab3f 3802 return -EPERM;
ca94c442
LP
3803
3804 /* Normal users shall not reset the sched_reset_on_fork flag */
3805 if (p->sched_reset_on_fork && !reset_on_fork)
3806 return -EPERM;
37e4ab3f 3807 }
1da177e4 3808
725aad24 3809 if (user) {
b0ae1981 3810 retval = security_task_setscheduler(p);
725aad24
JF
3811 if (retval)
3812 return retval;
3813 }
3814
b29739f9
IM
3815 /*
3816 * make sure no PI-waiters arrive (or leave) while we are
3817 * changing the priority of the task:
0122ec5b 3818 *
25985edc 3819 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3820 * runqueue lock must be held.
3821 */
0122ec5b 3822 rq = task_rq_lock(p, &flags);
dc61b1d6 3823
34f971f6
PZ
3824 /*
3825 * Changing the policy of the stop threads its a very bad idea
3826 */
3827 if (p == rq->stop) {
0122ec5b 3828 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3829 return -EINVAL;
3830 }
3831
a51e9198 3832 /*
d6b1e911
TG
3833 * If not changing anything there's no need to proceed further,
3834 * but store a possible modification of reset_on_fork.
a51e9198 3835 */
d50dde5a 3836 if (unlikely(policy == p->policy)) {
d0ea0268 3837 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3838 goto change;
3839 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3840 goto change;
75381608 3841 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3842 goto change;
d50dde5a 3843
d6b1e911 3844 p->sched_reset_on_fork = reset_on_fork;
45afb173 3845 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3846 return 0;
3847 }
d50dde5a 3848change:
a51e9198 3849
dc61b1d6 3850 if (user) {
332ac17e 3851#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3852 /*
3853 * Do not allow realtime tasks into groups that have no runtime
3854 * assigned.
3855 */
3856 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3857 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3858 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3859 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3860 return -EPERM;
3861 }
dc61b1d6 3862#endif
332ac17e
DF
3863#ifdef CONFIG_SMP
3864 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3865 cpumask_t *span = rq->rd->span;
332ac17e
DF
3866
3867 /*
3868 * Don't allow tasks with an affinity mask smaller than
3869 * the entire root_domain to become SCHED_DEADLINE. We
3870 * will also fail if there's no bandwidth available.
3871 */
e4099a5e
PZ
3872 if (!cpumask_subset(span, &p->cpus_allowed) ||
3873 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3874 task_rq_unlock(rq, p, &flags);
3875 return -EPERM;
3876 }
3877 }
3878#endif
3879 }
dc61b1d6 3880
1da177e4
LT
3881 /* recheck policy now with rq lock held */
3882 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3883 policy = oldpolicy = -1;
0122ec5b 3884 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3885 goto recheck;
3886 }
332ac17e
DF
3887
3888 /*
3889 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3890 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3891 * is available.
3892 */
e4099a5e 3893 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3894 task_rq_unlock(rq, p, &flags);
3895 return -EBUSY;
3896 }
3897
c365c292
TG
3898 p->sched_reset_on_fork = reset_on_fork;
3899 oldprio = p->prio;
3900
dbc7f069
PZ
3901 if (pi) {
3902 /*
3903 * Take priority boosted tasks into account. If the new
3904 * effective priority is unchanged, we just store the new
3905 * normal parameters and do not touch the scheduler class and
3906 * the runqueue. This will be done when the task deboost
3907 * itself.
3908 */
3909 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3910 if (new_effective_prio == oldprio) {
3911 __setscheduler_params(p, attr);
3912 task_rq_unlock(rq, p, &flags);
3913 return 0;
3914 }
c365c292
TG
3915 }
3916
da0c1e65 3917 queued = task_on_rq_queued(p);
051a1d1a 3918 running = task_current(rq, p);
da0c1e65 3919 if (queued)
4ca9b72b 3920 dequeue_task(rq, p, 0);
0e1f3483 3921 if (running)
f3cd1c4e 3922 put_prev_task(rq, p);
f6b53205 3923
83ab0aa0 3924 prev_class = p->sched_class;
dbc7f069 3925 __setscheduler(rq, p, attr, pi);
f6b53205 3926
0e1f3483
HS
3927 if (running)
3928 p->sched_class->set_curr_task(rq);
da0c1e65 3929 if (queued) {
81a44c54
TG
3930 /*
3931 * We enqueue to tail when the priority of a task is
3932 * increased (user space view).
3933 */
3934 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3935 }
cb469845 3936
da7a735e 3937 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3938 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3939 task_rq_unlock(rq, p, &flags);
b29739f9 3940
dbc7f069
PZ
3941 if (pi)
3942 rt_mutex_adjust_pi(p);
95e02ca9 3943
4c9a4bc8
PZ
3944 /*
3945 * Run balance callbacks after we've adjusted the PI chain.
3946 */
3947 balance_callback(rq);
3948 preempt_enable();
95e02ca9 3949
1da177e4
LT
3950 return 0;
3951}
961ccddd 3952
7479f3c9
PZ
3953static int _sched_setscheduler(struct task_struct *p, int policy,
3954 const struct sched_param *param, bool check)
3955{
3956 struct sched_attr attr = {
3957 .sched_policy = policy,
3958 .sched_priority = param->sched_priority,
3959 .sched_nice = PRIO_TO_NICE(p->static_prio),
3960 };
3961
c13db6b1
SR
3962 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3963 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3964 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3965 policy &= ~SCHED_RESET_ON_FORK;
3966 attr.sched_policy = policy;
3967 }
3968
dbc7f069 3969 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3970}
961ccddd
RR
3971/**
3972 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3973 * @p: the task in question.
3974 * @policy: new policy.
3975 * @param: structure containing the new RT priority.
3976 *
e69f6186
YB
3977 * Return: 0 on success. An error code otherwise.
3978 *
961ccddd
RR
3979 * NOTE that the task may be already dead.
3980 */
3981int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3982 const struct sched_param *param)
961ccddd 3983{
7479f3c9 3984 return _sched_setscheduler(p, policy, param, true);
961ccddd 3985}
1da177e4
LT
3986EXPORT_SYMBOL_GPL(sched_setscheduler);
3987
d50dde5a
DF
3988int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3989{
dbc7f069 3990 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
3991}
3992EXPORT_SYMBOL_GPL(sched_setattr);
3993
961ccddd
RR
3994/**
3995 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3996 * @p: the task in question.
3997 * @policy: new policy.
3998 * @param: structure containing the new RT priority.
3999 *
4000 * Just like sched_setscheduler, only don't bother checking if the
4001 * current context has permission. For example, this is needed in
4002 * stop_machine(): we create temporary high priority worker threads,
4003 * but our caller might not have that capability.
e69f6186
YB
4004 *
4005 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4006 */
4007int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4008 const struct sched_param *param)
961ccddd 4009{
7479f3c9 4010 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
4011}
4012
95cdf3b7
IM
4013static int
4014do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4015{
1da177e4
LT
4016 struct sched_param lparam;
4017 struct task_struct *p;
36c8b586 4018 int retval;
1da177e4
LT
4019
4020 if (!param || pid < 0)
4021 return -EINVAL;
4022 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4023 return -EFAULT;
5fe1d75f
ON
4024
4025 rcu_read_lock();
4026 retval = -ESRCH;
1da177e4 4027 p = find_process_by_pid(pid);
5fe1d75f
ON
4028 if (p != NULL)
4029 retval = sched_setscheduler(p, policy, &lparam);
4030 rcu_read_unlock();
36c8b586 4031
1da177e4
LT
4032 return retval;
4033}
4034
d50dde5a
DF
4035/*
4036 * Mimics kernel/events/core.c perf_copy_attr().
4037 */
4038static int sched_copy_attr(struct sched_attr __user *uattr,
4039 struct sched_attr *attr)
4040{
4041 u32 size;
4042 int ret;
4043
4044 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4045 return -EFAULT;
4046
4047 /*
4048 * zero the full structure, so that a short copy will be nice.
4049 */
4050 memset(attr, 0, sizeof(*attr));
4051
4052 ret = get_user(size, &uattr->size);
4053 if (ret)
4054 return ret;
4055
4056 if (size > PAGE_SIZE) /* silly large */
4057 goto err_size;
4058
4059 if (!size) /* abi compat */
4060 size = SCHED_ATTR_SIZE_VER0;
4061
4062 if (size < SCHED_ATTR_SIZE_VER0)
4063 goto err_size;
4064
4065 /*
4066 * If we're handed a bigger struct than we know of,
4067 * ensure all the unknown bits are 0 - i.e. new
4068 * user-space does not rely on any kernel feature
4069 * extensions we dont know about yet.
4070 */
4071 if (size > sizeof(*attr)) {
4072 unsigned char __user *addr;
4073 unsigned char __user *end;
4074 unsigned char val;
4075
4076 addr = (void __user *)uattr + sizeof(*attr);
4077 end = (void __user *)uattr + size;
4078
4079 for (; addr < end; addr++) {
4080 ret = get_user(val, addr);
4081 if (ret)
4082 return ret;
4083 if (val)
4084 goto err_size;
4085 }
4086 size = sizeof(*attr);
4087 }
4088
4089 ret = copy_from_user(attr, uattr, size);
4090 if (ret)
4091 return -EFAULT;
4092
4093 /*
4094 * XXX: do we want to be lenient like existing syscalls; or do we want
4095 * to be strict and return an error on out-of-bounds values?
4096 */
75e45d51 4097 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4098
e78c7bca 4099 return 0;
d50dde5a
DF
4100
4101err_size:
4102 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4103 return -E2BIG;
d50dde5a
DF
4104}
4105
1da177e4
LT
4106/**
4107 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4108 * @pid: the pid in question.
4109 * @policy: new policy.
4110 * @param: structure containing the new RT priority.
e69f6186
YB
4111 *
4112 * Return: 0 on success. An error code otherwise.
1da177e4 4113 */
5add95d4
HC
4114SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4115 struct sched_param __user *, param)
1da177e4 4116{
c21761f1
JB
4117 /* negative values for policy are not valid */
4118 if (policy < 0)
4119 return -EINVAL;
4120
1da177e4
LT
4121 return do_sched_setscheduler(pid, policy, param);
4122}
4123
4124/**
4125 * sys_sched_setparam - set/change the RT priority of a thread
4126 * @pid: the pid in question.
4127 * @param: structure containing the new RT priority.
e69f6186
YB
4128 *
4129 * Return: 0 on success. An error code otherwise.
1da177e4 4130 */
5add95d4 4131SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4132{
c13db6b1 4133 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4134}
4135
d50dde5a
DF
4136/**
4137 * sys_sched_setattr - same as above, but with extended sched_attr
4138 * @pid: the pid in question.
5778fccf 4139 * @uattr: structure containing the extended parameters.
db66d756 4140 * @flags: for future extension.
d50dde5a 4141 */
6d35ab48
PZ
4142SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4143 unsigned int, flags)
d50dde5a
DF
4144{
4145 struct sched_attr attr;
4146 struct task_struct *p;
4147 int retval;
4148
6d35ab48 4149 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4150 return -EINVAL;
4151
143cf23d
MK
4152 retval = sched_copy_attr(uattr, &attr);
4153 if (retval)
4154 return retval;
d50dde5a 4155
b14ed2c2 4156 if ((int)attr.sched_policy < 0)
dbdb2275 4157 return -EINVAL;
d50dde5a
DF
4158
4159 rcu_read_lock();
4160 retval = -ESRCH;
4161 p = find_process_by_pid(pid);
4162 if (p != NULL)
4163 retval = sched_setattr(p, &attr);
4164 rcu_read_unlock();
4165
4166 return retval;
4167}
4168
1da177e4
LT
4169/**
4170 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4171 * @pid: the pid in question.
e69f6186
YB
4172 *
4173 * Return: On success, the policy of the thread. Otherwise, a negative error
4174 * code.
1da177e4 4175 */
5add95d4 4176SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4177{
36c8b586 4178 struct task_struct *p;
3a5c359a 4179 int retval;
1da177e4
LT
4180
4181 if (pid < 0)
3a5c359a 4182 return -EINVAL;
1da177e4
LT
4183
4184 retval = -ESRCH;
5fe85be0 4185 rcu_read_lock();
1da177e4
LT
4186 p = find_process_by_pid(pid);
4187 if (p) {
4188 retval = security_task_getscheduler(p);
4189 if (!retval)
ca94c442
LP
4190 retval = p->policy
4191 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4192 }
5fe85be0 4193 rcu_read_unlock();
1da177e4
LT
4194 return retval;
4195}
4196
4197/**
ca94c442 4198 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4199 * @pid: the pid in question.
4200 * @param: structure containing the RT priority.
e69f6186
YB
4201 *
4202 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4203 * code.
1da177e4 4204 */
5add95d4 4205SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4206{
ce5f7f82 4207 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4208 struct task_struct *p;
3a5c359a 4209 int retval;
1da177e4
LT
4210
4211 if (!param || pid < 0)
3a5c359a 4212 return -EINVAL;
1da177e4 4213
5fe85be0 4214 rcu_read_lock();
1da177e4
LT
4215 p = find_process_by_pid(pid);
4216 retval = -ESRCH;
4217 if (!p)
4218 goto out_unlock;
4219
4220 retval = security_task_getscheduler(p);
4221 if (retval)
4222 goto out_unlock;
4223
ce5f7f82
PZ
4224 if (task_has_rt_policy(p))
4225 lp.sched_priority = p->rt_priority;
5fe85be0 4226 rcu_read_unlock();
1da177e4
LT
4227
4228 /*
4229 * This one might sleep, we cannot do it with a spinlock held ...
4230 */
4231 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4232
1da177e4
LT
4233 return retval;
4234
4235out_unlock:
5fe85be0 4236 rcu_read_unlock();
1da177e4
LT
4237 return retval;
4238}
4239
d50dde5a
DF
4240static int sched_read_attr(struct sched_attr __user *uattr,
4241 struct sched_attr *attr,
4242 unsigned int usize)
4243{
4244 int ret;
4245
4246 if (!access_ok(VERIFY_WRITE, uattr, usize))
4247 return -EFAULT;
4248
4249 /*
4250 * If we're handed a smaller struct than we know of,
4251 * ensure all the unknown bits are 0 - i.e. old
4252 * user-space does not get uncomplete information.
4253 */
4254 if (usize < sizeof(*attr)) {
4255 unsigned char *addr;
4256 unsigned char *end;
4257
4258 addr = (void *)attr + usize;
4259 end = (void *)attr + sizeof(*attr);
4260
4261 for (; addr < end; addr++) {
4262 if (*addr)
22400674 4263 return -EFBIG;
d50dde5a
DF
4264 }
4265
4266 attr->size = usize;
4267 }
4268
4efbc454 4269 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4270 if (ret)
4271 return -EFAULT;
4272
22400674 4273 return 0;
d50dde5a
DF
4274}
4275
4276/**
aab03e05 4277 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4278 * @pid: the pid in question.
5778fccf 4279 * @uattr: structure containing the extended parameters.
d50dde5a 4280 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4281 * @flags: for future extension.
d50dde5a 4282 */
6d35ab48
PZ
4283SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4284 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4285{
4286 struct sched_attr attr = {
4287 .size = sizeof(struct sched_attr),
4288 };
4289 struct task_struct *p;
4290 int retval;
4291
4292 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4293 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4294 return -EINVAL;
4295
4296 rcu_read_lock();
4297 p = find_process_by_pid(pid);
4298 retval = -ESRCH;
4299 if (!p)
4300 goto out_unlock;
4301
4302 retval = security_task_getscheduler(p);
4303 if (retval)
4304 goto out_unlock;
4305
4306 attr.sched_policy = p->policy;
7479f3c9
PZ
4307 if (p->sched_reset_on_fork)
4308 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4309 if (task_has_dl_policy(p))
4310 __getparam_dl(p, &attr);
4311 else if (task_has_rt_policy(p))
d50dde5a
DF
4312 attr.sched_priority = p->rt_priority;
4313 else
d0ea0268 4314 attr.sched_nice = task_nice(p);
d50dde5a
DF
4315
4316 rcu_read_unlock();
4317
4318 retval = sched_read_attr(uattr, &attr, size);
4319 return retval;
4320
4321out_unlock:
4322 rcu_read_unlock();
4323 return retval;
4324}
4325
96f874e2 4326long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4327{
5a16f3d3 4328 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4329 struct task_struct *p;
4330 int retval;
1da177e4 4331
23f5d142 4332 rcu_read_lock();
1da177e4
LT
4333
4334 p = find_process_by_pid(pid);
4335 if (!p) {
23f5d142 4336 rcu_read_unlock();
1da177e4
LT
4337 return -ESRCH;
4338 }
4339
23f5d142 4340 /* Prevent p going away */
1da177e4 4341 get_task_struct(p);
23f5d142 4342 rcu_read_unlock();
1da177e4 4343
14a40ffc
TH
4344 if (p->flags & PF_NO_SETAFFINITY) {
4345 retval = -EINVAL;
4346 goto out_put_task;
4347 }
5a16f3d3
RR
4348 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4349 retval = -ENOMEM;
4350 goto out_put_task;
4351 }
4352 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4353 retval = -ENOMEM;
4354 goto out_free_cpus_allowed;
4355 }
1da177e4 4356 retval = -EPERM;
4c44aaaf
EB
4357 if (!check_same_owner(p)) {
4358 rcu_read_lock();
4359 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4360 rcu_read_unlock();
16303ab2 4361 goto out_free_new_mask;
4c44aaaf
EB
4362 }
4363 rcu_read_unlock();
4364 }
1da177e4 4365
b0ae1981 4366 retval = security_task_setscheduler(p);
e7834f8f 4367 if (retval)
16303ab2 4368 goto out_free_new_mask;
e7834f8f 4369
e4099a5e
PZ
4370
4371 cpuset_cpus_allowed(p, cpus_allowed);
4372 cpumask_and(new_mask, in_mask, cpus_allowed);
4373
332ac17e
DF
4374 /*
4375 * Since bandwidth control happens on root_domain basis,
4376 * if admission test is enabled, we only admit -deadline
4377 * tasks allowed to run on all the CPUs in the task's
4378 * root_domain.
4379 */
4380#ifdef CONFIG_SMP
f1e3a093
KT
4381 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4382 rcu_read_lock();
4383 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4384 retval = -EBUSY;
f1e3a093 4385 rcu_read_unlock();
16303ab2 4386 goto out_free_new_mask;
332ac17e 4387 }
f1e3a093 4388 rcu_read_unlock();
332ac17e
DF
4389 }
4390#endif
49246274 4391again:
25834c73 4392 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4393
8707d8b8 4394 if (!retval) {
5a16f3d3
RR
4395 cpuset_cpus_allowed(p, cpus_allowed);
4396 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4397 /*
4398 * We must have raced with a concurrent cpuset
4399 * update. Just reset the cpus_allowed to the
4400 * cpuset's cpus_allowed
4401 */
5a16f3d3 4402 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4403 goto again;
4404 }
4405 }
16303ab2 4406out_free_new_mask:
5a16f3d3
RR
4407 free_cpumask_var(new_mask);
4408out_free_cpus_allowed:
4409 free_cpumask_var(cpus_allowed);
4410out_put_task:
1da177e4 4411 put_task_struct(p);
1da177e4
LT
4412 return retval;
4413}
4414
4415static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4416 struct cpumask *new_mask)
1da177e4 4417{
96f874e2
RR
4418 if (len < cpumask_size())
4419 cpumask_clear(new_mask);
4420 else if (len > cpumask_size())
4421 len = cpumask_size();
4422
1da177e4
LT
4423 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4424}
4425
4426/**
4427 * sys_sched_setaffinity - set the cpu affinity of a process
4428 * @pid: pid of the process
4429 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4430 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4431 *
4432 * Return: 0 on success. An error code otherwise.
1da177e4 4433 */
5add95d4
HC
4434SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4435 unsigned long __user *, user_mask_ptr)
1da177e4 4436{
5a16f3d3 4437 cpumask_var_t new_mask;
1da177e4
LT
4438 int retval;
4439
5a16f3d3
RR
4440 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4441 return -ENOMEM;
1da177e4 4442
5a16f3d3
RR
4443 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4444 if (retval == 0)
4445 retval = sched_setaffinity(pid, new_mask);
4446 free_cpumask_var(new_mask);
4447 return retval;
1da177e4
LT
4448}
4449
96f874e2 4450long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4451{
36c8b586 4452 struct task_struct *p;
31605683 4453 unsigned long flags;
1da177e4 4454 int retval;
1da177e4 4455
23f5d142 4456 rcu_read_lock();
1da177e4
LT
4457
4458 retval = -ESRCH;
4459 p = find_process_by_pid(pid);
4460 if (!p)
4461 goto out_unlock;
4462
e7834f8f
DQ
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4466
013fdb80 4467 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4468 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4469 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4470
4471out_unlock:
23f5d142 4472 rcu_read_unlock();
1da177e4 4473
9531b62f 4474 return retval;
1da177e4
LT
4475}
4476
4477/**
4478 * sys_sched_getaffinity - get the cpu affinity of a process
4479 * @pid: pid of the process
4480 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4481 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4482 *
4483 * Return: 0 on success. An error code otherwise.
1da177e4 4484 */
5add95d4
HC
4485SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4486 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4487{
4488 int ret;
f17c8607 4489 cpumask_var_t mask;
1da177e4 4490
84fba5ec 4491 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4492 return -EINVAL;
4493 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4494 return -EINVAL;
4495
f17c8607
RR
4496 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4497 return -ENOMEM;
1da177e4 4498
f17c8607
RR
4499 ret = sched_getaffinity(pid, mask);
4500 if (ret == 0) {
8bc037fb 4501 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4502
4503 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4504 ret = -EFAULT;
4505 else
cd3d8031 4506 ret = retlen;
f17c8607
RR
4507 }
4508 free_cpumask_var(mask);
1da177e4 4509
f17c8607 4510 return ret;
1da177e4
LT
4511}
4512
4513/**
4514 * sys_sched_yield - yield the current processor to other threads.
4515 *
dd41f596
IM
4516 * This function yields the current CPU to other tasks. If there are no
4517 * other threads running on this CPU then this function will return.
e69f6186
YB
4518 *
4519 * Return: 0.
1da177e4 4520 */
5add95d4 4521SYSCALL_DEFINE0(sched_yield)
1da177e4 4522{
70b97a7f 4523 struct rq *rq = this_rq_lock();
1da177e4 4524
2d72376b 4525 schedstat_inc(rq, yld_count);
4530d7ab 4526 current->sched_class->yield_task(rq);
1da177e4
LT
4527
4528 /*
4529 * Since we are going to call schedule() anyway, there's
4530 * no need to preempt or enable interrupts:
4531 */
4532 __release(rq->lock);
8a25d5de 4533 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4534 do_raw_spin_unlock(&rq->lock);
ba74c144 4535 sched_preempt_enable_no_resched();
1da177e4
LT
4536
4537 schedule();
4538
4539 return 0;
4540}
4541
02b67cc3 4542int __sched _cond_resched(void)
1da177e4 4543{
fe32d3cd 4544 if (should_resched(0)) {
a18b5d01 4545 preempt_schedule_common();
1da177e4
LT
4546 return 1;
4547 }
4548 return 0;
4549}
02b67cc3 4550EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4551
4552/*
613afbf8 4553 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4554 * call schedule, and on return reacquire the lock.
4555 *
41a2d6cf 4556 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4557 * operations here to prevent schedule() from being called twice (once via
4558 * spin_unlock(), once by hand).
4559 */
613afbf8 4560int __cond_resched_lock(spinlock_t *lock)
1da177e4 4561{
fe32d3cd 4562 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4563 int ret = 0;
4564
f607c668
PZ
4565 lockdep_assert_held(lock);
4566
4a81e832 4567 if (spin_needbreak(lock) || resched) {
1da177e4 4568 spin_unlock(lock);
d86ee480 4569 if (resched)
a18b5d01 4570 preempt_schedule_common();
95c354fe
NP
4571 else
4572 cpu_relax();
6df3cecb 4573 ret = 1;
1da177e4 4574 spin_lock(lock);
1da177e4 4575 }
6df3cecb 4576 return ret;
1da177e4 4577}
613afbf8 4578EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4579
613afbf8 4580int __sched __cond_resched_softirq(void)
1da177e4
LT
4581{
4582 BUG_ON(!in_softirq());
4583
fe32d3cd 4584 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4585 local_bh_enable();
a18b5d01 4586 preempt_schedule_common();
1da177e4
LT
4587 local_bh_disable();
4588 return 1;
4589 }
4590 return 0;
4591}
613afbf8 4592EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4593
1da177e4
LT
4594/**
4595 * yield - yield the current processor to other threads.
4596 *
8e3fabfd
PZ
4597 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4598 *
4599 * The scheduler is at all times free to pick the calling task as the most
4600 * eligible task to run, if removing the yield() call from your code breaks
4601 * it, its already broken.
4602 *
4603 * Typical broken usage is:
4604 *
4605 * while (!event)
4606 * yield();
4607 *
4608 * where one assumes that yield() will let 'the other' process run that will
4609 * make event true. If the current task is a SCHED_FIFO task that will never
4610 * happen. Never use yield() as a progress guarantee!!
4611 *
4612 * If you want to use yield() to wait for something, use wait_event().
4613 * If you want to use yield() to be 'nice' for others, use cond_resched().
4614 * If you still want to use yield(), do not!
1da177e4
LT
4615 */
4616void __sched yield(void)
4617{
4618 set_current_state(TASK_RUNNING);
4619 sys_sched_yield();
4620}
1da177e4
LT
4621EXPORT_SYMBOL(yield);
4622
d95f4122
MG
4623/**
4624 * yield_to - yield the current processor to another thread in
4625 * your thread group, or accelerate that thread toward the
4626 * processor it's on.
16addf95
RD
4627 * @p: target task
4628 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4629 *
4630 * It's the caller's job to ensure that the target task struct
4631 * can't go away on us before we can do any checks.
4632 *
e69f6186 4633 * Return:
7b270f60
PZ
4634 * true (>0) if we indeed boosted the target task.
4635 * false (0) if we failed to boost the target.
4636 * -ESRCH if there's no task to yield to.
d95f4122 4637 */
fa93384f 4638int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4639{
4640 struct task_struct *curr = current;
4641 struct rq *rq, *p_rq;
4642 unsigned long flags;
c3c18640 4643 int yielded = 0;
d95f4122
MG
4644
4645 local_irq_save(flags);
4646 rq = this_rq();
4647
4648again:
4649 p_rq = task_rq(p);
7b270f60
PZ
4650 /*
4651 * If we're the only runnable task on the rq and target rq also
4652 * has only one task, there's absolutely no point in yielding.
4653 */
4654 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4655 yielded = -ESRCH;
4656 goto out_irq;
4657 }
4658
d95f4122 4659 double_rq_lock(rq, p_rq);
39e24d8f 4660 if (task_rq(p) != p_rq) {
d95f4122
MG
4661 double_rq_unlock(rq, p_rq);
4662 goto again;
4663 }
4664
4665 if (!curr->sched_class->yield_to_task)
7b270f60 4666 goto out_unlock;
d95f4122
MG
4667
4668 if (curr->sched_class != p->sched_class)
7b270f60 4669 goto out_unlock;
d95f4122
MG
4670
4671 if (task_running(p_rq, p) || p->state)
7b270f60 4672 goto out_unlock;
d95f4122
MG
4673
4674 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4675 if (yielded) {
d95f4122 4676 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4677 /*
4678 * Make p's CPU reschedule; pick_next_entity takes care of
4679 * fairness.
4680 */
4681 if (preempt && rq != p_rq)
8875125e 4682 resched_curr(p_rq);
6d1cafd8 4683 }
d95f4122 4684
7b270f60 4685out_unlock:
d95f4122 4686 double_rq_unlock(rq, p_rq);
7b270f60 4687out_irq:
d95f4122
MG
4688 local_irq_restore(flags);
4689
7b270f60 4690 if (yielded > 0)
d95f4122
MG
4691 schedule();
4692
4693 return yielded;
4694}
4695EXPORT_SYMBOL_GPL(yield_to);
4696
1da177e4 4697/*
41a2d6cf 4698 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4699 * that process accounting knows that this is a task in IO wait state.
1da177e4 4700 */
1da177e4
LT
4701long __sched io_schedule_timeout(long timeout)
4702{
9cff8ade
N
4703 int old_iowait = current->in_iowait;
4704 struct rq *rq;
1da177e4
LT
4705 long ret;
4706
9cff8ade 4707 current->in_iowait = 1;
10d784ea 4708 blk_schedule_flush_plug(current);
9cff8ade 4709
0ff92245 4710 delayacct_blkio_start();
9cff8ade 4711 rq = raw_rq();
1da177e4
LT
4712 atomic_inc(&rq->nr_iowait);
4713 ret = schedule_timeout(timeout);
9cff8ade 4714 current->in_iowait = old_iowait;
1da177e4 4715 atomic_dec(&rq->nr_iowait);
0ff92245 4716 delayacct_blkio_end();
9cff8ade 4717
1da177e4
LT
4718 return ret;
4719}
9cff8ade 4720EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4721
4722/**
4723 * sys_sched_get_priority_max - return maximum RT priority.
4724 * @policy: scheduling class.
4725 *
e69f6186
YB
4726 * Return: On success, this syscall returns the maximum
4727 * rt_priority that can be used by a given scheduling class.
4728 * On failure, a negative error code is returned.
1da177e4 4729 */
5add95d4 4730SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4731{
4732 int ret = -EINVAL;
4733
4734 switch (policy) {
4735 case SCHED_FIFO:
4736 case SCHED_RR:
4737 ret = MAX_USER_RT_PRIO-1;
4738 break;
aab03e05 4739 case SCHED_DEADLINE:
1da177e4 4740 case SCHED_NORMAL:
b0a9499c 4741 case SCHED_BATCH:
dd41f596 4742 case SCHED_IDLE:
1da177e4
LT
4743 ret = 0;
4744 break;
4745 }
4746 return ret;
4747}
4748
4749/**
4750 * sys_sched_get_priority_min - return minimum RT priority.
4751 * @policy: scheduling class.
4752 *
e69f6186
YB
4753 * Return: On success, this syscall returns the minimum
4754 * rt_priority that can be used by a given scheduling class.
4755 * On failure, a negative error code is returned.
1da177e4 4756 */
5add95d4 4757SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4758{
4759 int ret = -EINVAL;
4760
4761 switch (policy) {
4762 case SCHED_FIFO:
4763 case SCHED_RR:
4764 ret = 1;
4765 break;
aab03e05 4766 case SCHED_DEADLINE:
1da177e4 4767 case SCHED_NORMAL:
b0a9499c 4768 case SCHED_BATCH:
dd41f596 4769 case SCHED_IDLE:
1da177e4
LT
4770 ret = 0;
4771 }
4772 return ret;
4773}
4774
4775/**
4776 * sys_sched_rr_get_interval - return the default timeslice of a process.
4777 * @pid: pid of the process.
4778 * @interval: userspace pointer to the timeslice value.
4779 *
4780 * this syscall writes the default timeslice value of a given process
4781 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4782 *
4783 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4784 * an error code.
1da177e4 4785 */
17da2bd9 4786SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4787 struct timespec __user *, interval)
1da177e4 4788{
36c8b586 4789 struct task_struct *p;
a4ec24b4 4790 unsigned int time_slice;
dba091b9
TG
4791 unsigned long flags;
4792 struct rq *rq;
3a5c359a 4793 int retval;
1da177e4 4794 struct timespec t;
1da177e4
LT
4795
4796 if (pid < 0)
3a5c359a 4797 return -EINVAL;
1da177e4
LT
4798
4799 retval = -ESRCH;
1a551ae7 4800 rcu_read_lock();
1da177e4
LT
4801 p = find_process_by_pid(pid);
4802 if (!p)
4803 goto out_unlock;
4804
4805 retval = security_task_getscheduler(p);
4806 if (retval)
4807 goto out_unlock;
4808
dba091b9 4809 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4810 time_slice = 0;
4811 if (p->sched_class->get_rr_interval)
4812 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4813 task_rq_unlock(rq, p, &flags);
a4ec24b4 4814
1a551ae7 4815 rcu_read_unlock();
a4ec24b4 4816 jiffies_to_timespec(time_slice, &t);
1da177e4 4817 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4818 return retval;
3a5c359a 4819
1da177e4 4820out_unlock:
1a551ae7 4821 rcu_read_unlock();
1da177e4
LT
4822 return retval;
4823}
4824
7c731e0a 4825static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4826
82a1fcb9 4827void sched_show_task(struct task_struct *p)
1da177e4 4828{
1da177e4 4829 unsigned long free = 0;
4e79752c 4830 int ppid;
1f8a7633 4831 unsigned long state = p->state;
1da177e4 4832
1f8a7633
TH
4833 if (state)
4834 state = __ffs(state) + 1;
28d0686c 4835 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4836 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4837#if BITS_PER_LONG == 32
1da177e4 4838 if (state == TASK_RUNNING)
3df0fc5b 4839 printk(KERN_CONT " running ");
1da177e4 4840 else
3df0fc5b 4841 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4842#else
4843 if (state == TASK_RUNNING)
3df0fc5b 4844 printk(KERN_CONT " running task ");
1da177e4 4845 else
3df0fc5b 4846 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4847#endif
4848#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4849 free = stack_not_used(p);
1da177e4 4850#endif
a90e984c 4851 ppid = 0;
4e79752c 4852 rcu_read_lock();
a90e984c
ON
4853 if (pid_alive(p))
4854 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4855 rcu_read_unlock();
3df0fc5b 4856 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4857 task_pid_nr(p), ppid,
aa47b7e0 4858 (unsigned long)task_thread_info(p)->flags);
1da177e4 4859
3d1cb205 4860 print_worker_info(KERN_INFO, p);
5fb5e6de 4861 show_stack(p, NULL);
1da177e4
LT
4862}
4863
e59e2ae2 4864void show_state_filter(unsigned long state_filter)
1da177e4 4865{
36c8b586 4866 struct task_struct *g, *p;
1da177e4 4867
4bd77321 4868#if BITS_PER_LONG == 32
3df0fc5b
PZ
4869 printk(KERN_INFO
4870 " task PC stack pid father\n");
1da177e4 4871#else
3df0fc5b
PZ
4872 printk(KERN_INFO
4873 " task PC stack pid father\n");
1da177e4 4874#endif
510f5acc 4875 rcu_read_lock();
5d07f420 4876 for_each_process_thread(g, p) {
1da177e4
LT
4877 /*
4878 * reset the NMI-timeout, listing all files on a slow
25985edc 4879 * console might take a lot of time:
1da177e4
LT
4880 */
4881 touch_nmi_watchdog();
39bc89fd 4882 if (!state_filter || (p->state & state_filter))
82a1fcb9 4883 sched_show_task(p);
5d07f420 4884 }
1da177e4 4885
04c9167f
JF
4886 touch_all_softlockup_watchdogs();
4887
dd41f596
IM
4888#ifdef CONFIG_SCHED_DEBUG
4889 sysrq_sched_debug_show();
4890#endif
510f5acc 4891 rcu_read_unlock();
e59e2ae2
IM
4892 /*
4893 * Only show locks if all tasks are dumped:
4894 */
93335a21 4895 if (!state_filter)
e59e2ae2 4896 debug_show_all_locks();
1da177e4
LT
4897}
4898
0db0628d 4899void init_idle_bootup_task(struct task_struct *idle)
1df21055 4900{
dd41f596 4901 idle->sched_class = &idle_sched_class;
1df21055
IM
4902}
4903
f340c0d1
IM
4904/**
4905 * init_idle - set up an idle thread for a given CPU
4906 * @idle: task in question
4907 * @cpu: cpu the idle task belongs to
4908 *
4909 * NOTE: this function does not set the idle thread's NEED_RESCHED
4910 * flag, to make booting more robust.
4911 */
0db0628d 4912void init_idle(struct task_struct *idle, int cpu)
1da177e4 4913{
70b97a7f 4914 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4915 unsigned long flags;
4916
25834c73
PZ
4917 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4918 raw_spin_lock(&rq->lock);
5cbd54ef 4919
5e1576ed 4920 __sched_fork(0, idle);
06b83b5f 4921 idle->state = TASK_RUNNING;
dd41f596
IM
4922 idle->se.exec_start = sched_clock();
4923
1e1b6c51 4924 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4925 /*
4926 * We're having a chicken and egg problem, even though we are
4927 * holding rq->lock, the cpu isn't yet set to this cpu so the
4928 * lockdep check in task_group() will fail.
4929 *
4930 * Similar case to sched_fork(). / Alternatively we could
4931 * use task_rq_lock() here and obtain the other rq->lock.
4932 *
4933 * Silence PROVE_RCU
4934 */
4935 rcu_read_lock();
dd41f596 4936 __set_task_cpu(idle, cpu);
6506cf6c 4937 rcu_read_unlock();
1da177e4 4938
1da177e4 4939 rq->curr = rq->idle = idle;
da0c1e65 4940 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4941#if defined(CONFIG_SMP)
4942 idle->on_cpu = 1;
4866cde0 4943#endif
25834c73
PZ
4944 raw_spin_unlock(&rq->lock);
4945 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
4946
4947 /* Set the preempt count _outside_ the spinlocks! */
01028747 4948 init_idle_preempt_count(idle, cpu);
55cd5340 4949
dd41f596
IM
4950 /*
4951 * The idle tasks have their own, simple scheduling class:
4952 */
4953 idle->sched_class = &idle_sched_class;
868baf07 4954 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4955 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4956#if defined(CONFIG_SMP)
4957 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4958#endif
19978ca6
IM
4959}
4960
f82f8042
JL
4961int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4962 const struct cpumask *trial)
4963{
4964 int ret = 1, trial_cpus;
4965 struct dl_bw *cur_dl_b;
4966 unsigned long flags;
4967
bb2bc55a
MG
4968 if (!cpumask_weight(cur))
4969 return ret;
4970
75e23e49 4971 rcu_read_lock_sched();
f82f8042
JL
4972 cur_dl_b = dl_bw_of(cpumask_any(cur));
4973 trial_cpus = cpumask_weight(trial);
4974
4975 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4976 if (cur_dl_b->bw != -1 &&
4977 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4978 ret = 0;
4979 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4980 rcu_read_unlock_sched();
f82f8042
JL
4981
4982 return ret;
4983}
4984
7f51412a
JL
4985int task_can_attach(struct task_struct *p,
4986 const struct cpumask *cs_cpus_allowed)
4987{
4988 int ret = 0;
4989
4990 /*
4991 * Kthreads which disallow setaffinity shouldn't be moved
4992 * to a new cpuset; we don't want to change their cpu
4993 * affinity and isolating such threads by their set of
4994 * allowed nodes is unnecessary. Thus, cpusets are not
4995 * applicable for such threads. This prevents checking for
4996 * success of set_cpus_allowed_ptr() on all attached tasks
4997 * before cpus_allowed may be changed.
4998 */
4999 if (p->flags & PF_NO_SETAFFINITY) {
5000 ret = -EINVAL;
5001 goto out;
5002 }
5003
5004#ifdef CONFIG_SMP
5005 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5006 cs_cpus_allowed)) {
5007 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5008 cs_cpus_allowed);
75e23e49 5009 struct dl_bw *dl_b;
7f51412a
JL
5010 bool overflow;
5011 int cpus;
5012 unsigned long flags;
5013
75e23e49
JL
5014 rcu_read_lock_sched();
5015 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5016 raw_spin_lock_irqsave(&dl_b->lock, flags);
5017 cpus = dl_bw_cpus(dest_cpu);
5018 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5019 if (overflow)
5020 ret = -EBUSY;
5021 else {
5022 /*
5023 * We reserve space for this task in the destination
5024 * root_domain, as we can't fail after this point.
5025 * We will free resources in the source root_domain
5026 * later on (see set_cpus_allowed_dl()).
5027 */
5028 __dl_add(dl_b, p->dl.dl_bw);
5029 }
5030 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5031 rcu_read_unlock_sched();
7f51412a
JL
5032
5033 }
5034#endif
5035out:
5036 return ret;
5037}
5038
1da177e4 5039#ifdef CONFIG_SMP
1da177e4 5040
e6628d5b
MG
5041#ifdef CONFIG_NUMA_BALANCING
5042/* Migrate current task p to target_cpu */
5043int migrate_task_to(struct task_struct *p, int target_cpu)
5044{
5045 struct migration_arg arg = { p, target_cpu };
5046 int curr_cpu = task_cpu(p);
5047
5048 if (curr_cpu == target_cpu)
5049 return 0;
5050
5051 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5052 return -EINVAL;
5053
5054 /* TODO: This is not properly updating schedstats */
5055
286549dc 5056 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5057 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5058}
0ec8aa00
PZ
5059
5060/*
5061 * Requeue a task on a given node and accurately track the number of NUMA
5062 * tasks on the runqueues
5063 */
5064void sched_setnuma(struct task_struct *p, int nid)
5065{
5066 struct rq *rq;
5067 unsigned long flags;
da0c1e65 5068 bool queued, running;
0ec8aa00
PZ
5069
5070 rq = task_rq_lock(p, &flags);
da0c1e65 5071 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5072 running = task_current(rq, p);
5073
da0c1e65 5074 if (queued)
0ec8aa00
PZ
5075 dequeue_task(rq, p, 0);
5076 if (running)
f3cd1c4e 5077 put_prev_task(rq, p);
0ec8aa00
PZ
5078
5079 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5080
5081 if (running)
5082 p->sched_class->set_curr_task(rq);
da0c1e65 5083 if (queued)
0ec8aa00
PZ
5084 enqueue_task(rq, p, 0);
5085 task_rq_unlock(rq, p, &flags);
5086}
5cc389bc 5087#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5088
1da177e4 5089#ifdef CONFIG_HOTPLUG_CPU
054b9108 5090/*
48c5ccae
PZ
5091 * Ensures that the idle task is using init_mm right before its cpu goes
5092 * offline.
054b9108 5093 */
48c5ccae 5094void idle_task_exit(void)
1da177e4 5095{
48c5ccae 5096 struct mm_struct *mm = current->active_mm;
e76bd8d9 5097
48c5ccae 5098 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5099
a53efe5f 5100 if (mm != &init_mm) {
48c5ccae 5101 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5102 finish_arch_post_lock_switch();
5103 }
48c5ccae 5104 mmdrop(mm);
1da177e4
LT
5105}
5106
5107/*
5d180232
PZ
5108 * Since this CPU is going 'away' for a while, fold any nr_active delta
5109 * we might have. Assumes we're called after migrate_tasks() so that the
5110 * nr_active count is stable.
5111 *
5112 * Also see the comment "Global load-average calculations".
1da177e4 5113 */
5d180232 5114static void calc_load_migrate(struct rq *rq)
1da177e4 5115{
5d180232
PZ
5116 long delta = calc_load_fold_active(rq);
5117 if (delta)
5118 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5119}
5120
3f1d2a31
PZ
5121static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5122{
5123}
5124
5125static const struct sched_class fake_sched_class = {
5126 .put_prev_task = put_prev_task_fake,
5127};
5128
5129static struct task_struct fake_task = {
5130 /*
5131 * Avoid pull_{rt,dl}_task()
5132 */
5133 .prio = MAX_PRIO + 1,
5134 .sched_class = &fake_sched_class,
5135};
5136
48f24c4d 5137/*
48c5ccae
PZ
5138 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5139 * try_to_wake_up()->select_task_rq().
5140 *
5141 * Called with rq->lock held even though we'er in stop_machine() and
5142 * there's no concurrency possible, we hold the required locks anyway
5143 * because of lock validation efforts.
1da177e4 5144 */
5e16bbc2 5145static void migrate_tasks(struct rq *dead_rq)
1da177e4 5146{
5e16bbc2 5147 struct rq *rq = dead_rq;
48c5ccae
PZ
5148 struct task_struct *next, *stop = rq->stop;
5149 int dest_cpu;
1da177e4
LT
5150
5151 /*
48c5ccae
PZ
5152 * Fudge the rq selection such that the below task selection loop
5153 * doesn't get stuck on the currently eligible stop task.
5154 *
5155 * We're currently inside stop_machine() and the rq is either stuck
5156 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5157 * either way we should never end up calling schedule() until we're
5158 * done here.
1da177e4 5159 */
48c5ccae 5160 rq->stop = NULL;
48f24c4d 5161
77bd3970
FW
5162 /*
5163 * put_prev_task() and pick_next_task() sched
5164 * class method both need to have an up-to-date
5165 * value of rq->clock[_task]
5166 */
5167 update_rq_clock(rq);
5168
5e16bbc2 5169 for (;;) {
48c5ccae
PZ
5170 /*
5171 * There's this thread running, bail when that's the only
5172 * remaining thread.
5173 */
5174 if (rq->nr_running == 1)
dd41f596 5175 break;
48c5ccae 5176
cbce1a68 5177 /*
5473e0cc 5178 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5179 */
5180 lockdep_pin_lock(&rq->lock);
3f1d2a31 5181 next = pick_next_task(rq, &fake_task);
48c5ccae 5182 BUG_ON(!next);
79c53799 5183 next->sched_class->put_prev_task(rq, next);
e692ab53 5184
5473e0cc
WL
5185 /*
5186 * Rules for changing task_struct::cpus_allowed are holding
5187 * both pi_lock and rq->lock, such that holding either
5188 * stabilizes the mask.
5189 *
5190 * Drop rq->lock is not quite as disastrous as it usually is
5191 * because !cpu_active at this point, which means load-balance
5192 * will not interfere. Also, stop-machine.
5193 */
5194 lockdep_unpin_lock(&rq->lock);
5195 raw_spin_unlock(&rq->lock);
5196 raw_spin_lock(&next->pi_lock);
5197 raw_spin_lock(&rq->lock);
5198
5199 /*
5200 * Since we're inside stop-machine, _nothing_ should have
5201 * changed the task, WARN if weird stuff happened, because in
5202 * that case the above rq->lock drop is a fail too.
5203 */
5204 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5205 raw_spin_unlock(&next->pi_lock);
5206 continue;
5207 }
5208
48c5ccae 5209 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5210 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5211
5e16bbc2
PZ
5212 rq = __migrate_task(rq, next, dest_cpu);
5213 if (rq != dead_rq) {
5214 raw_spin_unlock(&rq->lock);
5215 rq = dead_rq;
5216 raw_spin_lock(&rq->lock);
5217 }
5473e0cc 5218 raw_spin_unlock(&next->pi_lock);
1da177e4 5219 }
dce48a84 5220
48c5ccae 5221 rq->stop = stop;
dce48a84 5222}
1da177e4
LT
5223#endif /* CONFIG_HOTPLUG_CPU */
5224
e692ab53
NP
5225#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5226
5227static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5228 {
5229 .procname = "sched_domain",
c57baf1e 5230 .mode = 0555,
e0361851 5231 },
56992309 5232 {}
e692ab53
NP
5233};
5234
5235static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5236 {
5237 .procname = "kernel",
c57baf1e 5238 .mode = 0555,
e0361851
AD
5239 .child = sd_ctl_dir,
5240 },
56992309 5241 {}
e692ab53
NP
5242};
5243
5244static struct ctl_table *sd_alloc_ctl_entry(int n)
5245{
5246 struct ctl_table *entry =
5cf9f062 5247 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5248
e692ab53
NP
5249 return entry;
5250}
5251
6382bc90
MM
5252static void sd_free_ctl_entry(struct ctl_table **tablep)
5253{
cd790076 5254 struct ctl_table *entry;
6382bc90 5255
cd790076
MM
5256 /*
5257 * In the intermediate directories, both the child directory and
5258 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5259 * will always be set. In the lowest directory the names are
cd790076
MM
5260 * static strings and all have proc handlers.
5261 */
5262 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5263 if (entry->child)
5264 sd_free_ctl_entry(&entry->child);
cd790076
MM
5265 if (entry->proc_handler == NULL)
5266 kfree(entry->procname);
5267 }
6382bc90
MM
5268
5269 kfree(*tablep);
5270 *tablep = NULL;
5271}
5272
201c373e 5273static int min_load_idx = 0;
fd9b86d3 5274static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5275
e692ab53 5276static void
e0361851 5277set_table_entry(struct ctl_table *entry,
e692ab53 5278 const char *procname, void *data, int maxlen,
201c373e
NK
5279 umode_t mode, proc_handler *proc_handler,
5280 bool load_idx)
e692ab53 5281{
e692ab53
NP
5282 entry->procname = procname;
5283 entry->data = data;
5284 entry->maxlen = maxlen;
5285 entry->mode = mode;
5286 entry->proc_handler = proc_handler;
201c373e
NK
5287
5288 if (load_idx) {
5289 entry->extra1 = &min_load_idx;
5290 entry->extra2 = &max_load_idx;
5291 }
e692ab53
NP
5292}
5293
5294static struct ctl_table *
5295sd_alloc_ctl_domain_table(struct sched_domain *sd)
5296{
37e6bae8 5297 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5298
ad1cdc1d
MM
5299 if (table == NULL)
5300 return NULL;
5301
e0361851 5302 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5303 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5304 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5305 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5306 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5307 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5308 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5309 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5310 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5311 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5312 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5313 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5314 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5315 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5316 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5317 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5318 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5319 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5320 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5321 &sd->cache_nice_tries,
201c373e 5322 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5323 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5324 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5325 set_table_entry(&table[11], "max_newidle_lb_cost",
5326 &sd->max_newidle_lb_cost,
5327 sizeof(long), 0644, proc_doulongvec_minmax, false);
5328 set_table_entry(&table[12], "name", sd->name,
201c373e 5329 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5330 /* &table[13] is terminator */
e692ab53
NP
5331
5332 return table;
5333}
5334
be7002e6 5335static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5336{
5337 struct ctl_table *entry, *table;
5338 struct sched_domain *sd;
5339 int domain_num = 0, i;
5340 char buf[32];
5341
5342 for_each_domain(cpu, sd)
5343 domain_num++;
5344 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5345 if (table == NULL)
5346 return NULL;
e692ab53
NP
5347
5348 i = 0;
5349 for_each_domain(cpu, sd) {
5350 snprintf(buf, 32, "domain%d", i);
e692ab53 5351 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5352 entry->mode = 0555;
e692ab53
NP
5353 entry->child = sd_alloc_ctl_domain_table(sd);
5354 entry++;
5355 i++;
5356 }
5357 return table;
5358}
5359
5360static struct ctl_table_header *sd_sysctl_header;
6382bc90 5361static void register_sched_domain_sysctl(void)
e692ab53 5362{
6ad4c188 5363 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5364 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5365 char buf[32];
5366
7378547f
MM
5367 WARN_ON(sd_ctl_dir[0].child);
5368 sd_ctl_dir[0].child = entry;
5369
ad1cdc1d
MM
5370 if (entry == NULL)
5371 return;
5372
6ad4c188 5373 for_each_possible_cpu(i) {
e692ab53 5374 snprintf(buf, 32, "cpu%d", i);
e692ab53 5375 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5376 entry->mode = 0555;
e692ab53 5377 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5378 entry++;
e692ab53 5379 }
7378547f
MM
5380
5381 WARN_ON(sd_sysctl_header);
e692ab53
NP
5382 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5383}
6382bc90 5384
7378547f 5385/* may be called multiple times per register */
6382bc90
MM
5386static void unregister_sched_domain_sysctl(void)
5387{
781b0203 5388 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5389 sd_sysctl_header = NULL;
7378547f
MM
5390 if (sd_ctl_dir[0].child)
5391 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5392}
e692ab53 5393#else
6382bc90
MM
5394static void register_sched_domain_sysctl(void)
5395{
5396}
5397static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5398{
5399}
5cc389bc 5400#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5401
1f11eb6a
GH
5402static void set_rq_online(struct rq *rq)
5403{
5404 if (!rq->online) {
5405 const struct sched_class *class;
5406
c6c4927b 5407 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5408 rq->online = 1;
5409
5410 for_each_class(class) {
5411 if (class->rq_online)
5412 class->rq_online(rq);
5413 }
5414 }
5415}
5416
5417static void set_rq_offline(struct rq *rq)
5418{
5419 if (rq->online) {
5420 const struct sched_class *class;
5421
5422 for_each_class(class) {
5423 if (class->rq_offline)
5424 class->rq_offline(rq);
5425 }
5426
c6c4927b 5427 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5428 rq->online = 0;
5429 }
5430}
5431
1da177e4
LT
5432/*
5433 * migration_call - callback that gets triggered when a CPU is added.
5434 * Here we can start up the necessary migration thread for the new CPU.
5435 */
0db0628d 5436static int
48f24c4d 5437migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5438{
48f24c4d 5439 int cpu = (long)hcpu;
1da177e4 5440 unsigned long flags;
969c7921 5441 struct rq *rq = cpu_rq(cpu);
1da177e4 5442
48c5ccae 5443 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5444
1da177e4 5445 case CPU_UP_PREPARE:
a468d389 5446 rq->calc_load_update = calc_load_update;
1da177e4 5447 break;
48f24c4d 5448
1da177e4 5449 case CPU_ONLINE:
1f94ef59 5450 /* Update our root-domain */
05fa785c 5451 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5452 if (rq->rd) {
c6c4927b 5453 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5454
5455 set_rq_online(rq);
1f94ef59 5456 }
05fa785c 5457 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5458 break;
48f24c4d 5459
1da177e4 5460#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5461 case CPU_DYING:
317f3941 5462 sched_ttwu_pending();
57d885fe 5463 /* Update our root-domain */
05fa785c 5464 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5465 if (rq->rd) {
c6c4927b 5466 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5467 set_rq_offline(rq);
57d885fe 5468 }
5e16bbc2 5469 migrate_tasks(rq);
48c5ccae 5470 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5471 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5472 break;
48c5ccae 5473
5d180232 5474 case CPU_DEAD:
f319da0c 5475 calc_load_migrate(rq);
57d885fe 5476 break;
1da177e4
LT
5477#endif
5478 }
49c022e6
PZ
5479
5480 update_max_interval();
5481
1da177e4
LT
5482 return NOTIFY_OK;
5483}
5484
f38b0820
PM
5485/*
5486 * Register at high priority so that task migration (migrate_all_tasks)
5487 * happens before everything else. This has to be lower priority than
cdd6c482 5488 * the notifier in the perf_event subsystem, though.
1da177e4 5489 */
0db0628d 5490static struct notifier_block migration_notifier = {
1da177e4 5491 .notifier_call = migration_call,
50a323b7 5492 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5493};
5494
6a82b60d 5495static void set_cpu_rq_start_time(void)
a803f026
CM
5496{
5497 int cpu = smp_processor_id();
5498 struct rq *rq = cpu_rq(cpu);
5499 rq->age_stamp = sched_clock_cpu(cpu);
5500}
5501
0db0628d 5502static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5503 unsigned long action, void *hcpu)
5504{
5505 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5506 case CPU_STARTING:
5507 set_cpu_rq_start_time();
5508 return NOTIFY_OK;
dd9d3843
JS
5509 case CPU_ONLINE:
5510 /*
5511 * At this point a starting CPU has marked itself as online via
5512 * set_cpu_online(). But it might not yet have marked itself
5513 * as active, which is essential from here on.
5514 *
5515 * Thus, fall-through and help the starting CPU along.
5516 */
3a101d05
TH
5517 case CPU_DOWN_FAILED:
5518 set_cpu_active((long)hcpu, true);
5519 return NOTIFY_OK;
5520 default:
5521 return NOTIFY_DONE;
5522 }
5523}
5524
0db0628d 5525static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5526 unsigned long action, void *hcpu)
5527{
5528 switch (action & ~CPU_TASKS_FROZEN) {
5529 case CPU_DOWN_PREPARE:
3c18d447 5530 set_cpu_active((long)hcpu, false);
3a101d05 5531 return NOTIFY_OK;
3c18d447
JL
5532 default:
5533 return NOTIFY_DONE;
3a101d05
TH
5534 }
5535}
5536
7babe8db 5537static int __init migration_init(void)
1da177e4
LT
5538{
5539 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5540 int err;
48f24c4d 5541
3a101d05 5542 /* Initialize migration for the boot CPU */
07dccf33
AM
5543 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5544 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5545 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5546 register_cpu_notifier(&migration_notifier);
7babe8db 5547
3a101d05
TH
5548 /* Register cpu active notifiers */
5549 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5550 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5551
a004cd42 5552 return 0;
1da177e4 5553}
7babe8db 5554early_initcall(migration_init);
476f3534 5555
4cb98839
PZ
5556static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5557
3e9830dc 5558#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5559
d039ac60 5560static __read_mostly int sched_debug_enabled;
f6630114 5561
d039ac60 5562static int __init sched_debug_setup(char *str)
f6630114 5563{
d039ac60 5564 sched_debug_enabled = 1;
f6630114
MT
5565
5566 return 0;
5567}
d039ac60
PZ
5568early_param("sched_debug", sched_debug_setup);
5569
5570static inline bool sched_debug(void)
5571{
5572 return sched_debug_enabled;
5573}
f6630114 5574
7c16ec58 5575static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5576 struct cpumask *groupmask)
1da177e4 5577{
4dcf6aff 5578 struct sched_group *group = sd->groups;
1da177e4 5579
96f874e2 5580 cpumask_clear(groupmask);
4dcf6aff
IM
5581
5582 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5583
5584 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5585 printk("does not load-balance\n");
4dcf6aff 5586 if (sd->parent)
3df0fc5b
PZ
5587 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5588 " has parent");
4dcf6aff 5589 return -1;
41c7ce9a
NP
5590 }
5591
333470ee
TH
5592 printk(KERN_CONT "span %*pbl level %s\n",
5593 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5594
758b2cdc 5595 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5596 printk(KERN_ERR "ERROR: domain->span does not contain "
5597 "CPU%d\n", cpu);
4dcf6aff 5598 }
758b2cdc 5599 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5600 printk(KERN_ERR "ERROR: domain->groups does not contain"
5601 " CPU%d\n", cpu);
4dcf6aff 5602 }
1da177e4 5603
4dcf6aff 5604 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5605 do {
4dcf6aff 5606 if (!group) {
3df0fc5b
PZ
5607 printk("\n");
5608 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5609 break;
5610 }
5611
758b2cdc 5612 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5613 printk(KERN_CONT "\n");
5614 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5615 break;
5616 }
1da177e4 5617
cb83b629
PZ
5618 if (!(sd->flags & SD_OVERLAP) &&
5619 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5620 printk(KERN_CONT "\n");
5621 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5622 break;
5623 }
1da177e4 5624
758b2cdc 5625 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5626
333470ee
TH
5627 printk(KERN_CONT " %*pbl",
5628 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5629 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5630 printk(KERN_CONT " (cpu_capacity = %d)",
5631 group->sgc->capacity);
381512cf 5632 }
1da177e4 5633
4dcf6aff
IM
5634 group = group->next;
5635 } while (group != sd->groups);
3df0fc5b 5636 printk(KERN_CONT "\n");
1da177e4 5637
758b2cdc 5638 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5639 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5640
758b2cdc
RR
5641 if (sd->parent &&
5642 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5643 printk(KERN_ERR "ERROR: parent span is not a superset "
5644 "of domain->span\n");
4dcf6aff
IM
5645 return 0;
5646}
1da177e4 5647
4dcf6aff
IM
5648static void sched_domain_debug(struct sched_domain *sd, int cpu)
5649{
5650 int level = 0;
1da177e4 5651
d039ac60 5652 if (!sched_debug_enabled)
f6630114
MT
5653 return;
5654
4dcf6aff
IM
5655 if (!sd) {
5656 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5657 return;
5658 }
1da177e4 5659
4dcf6aff
IM
5660 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5661
5662 for (;;) {
4cb98839 5663 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5664 break;
1da177e4
LT
5665 level++;
5666 sd = sd->parent;
33859f7f 5667 if (!sd)
4dcf6aff
IM
5668 break;
5669 }
1da177e4 5670}
6d6bc0ad 5671#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5672# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5673static inline bool sched_debug(void)
5674{
5675 return false;
5676}
6d6bc0ad 5677#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5678
1a20ff27 5679static int sd_degenerate(struct sched_domain *sd)
245af2c7 5680{
758b2cdc 5681 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5682 return 1;
5683
5684 /* Following flags need at least 2 groups */
5685 if (sd->flags & (SD_LOAD_BALANCE |
5686 SD_BALANCE_NEWIDLE |
5687 SD_BALANCE_FORK |
89c4710e 5688 SD_BALANCE_EXEC |
5d4dfddd 5689 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5690 SD_SHARE_PKG_RESOURCES |
5691 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5692 if (sd->groups != sd->groups->next)
5693 return 0;
5694 }
5695
5696 /* Following flags don't use groups */
c88d5910 5697 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5698 return 0;
5699
5700 return 1;
5701}
5702
48f24c4d
IM
5703static int
5704sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5705{
5706 unsigned long cflags = sd->flags, pflags = parent->flags;
5707
5708 if (sd_degenerate(parent))
5709 return 1;
5710
758b2cdc 5711 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5712 return 0;
5713
245af2c7
SS
5714 /* Flags needing groups don't count if only 1 group in parent */
5715 if (parent->groups == parent->groups->next) {
5716 pflags &= ~(SD_LOAD_BALANCE |
5717 SD_BALANCE_NEWIDLE |
5718 SD_BALANCE_FORK |
89c4710e 5719 SD_BALANCE_EXEC |
5d4dfddd 5720 SD_SHARE_CPUCAPACITY |
10866e62 5721 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5722 SD_PREFER_SIBLING |
5723 SD_SHARE_POWERDOMAIN);
5436499e
KC
5724 if (nr_node_ids == 1)
5725 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5726 }
5727 if (~cflags & pflags)
5728 return 0;
5729
5730 return 1;
5731}
5732
dce840a0 5733static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5734{
dce840a0 5735 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5736
68e74568 5737 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5738 cpudl_cleanup(&rd->cpudl);
1baca4ce 5739 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5740 free_cpumask_var(rd->rto_mask);
5741 free_cpumask_var(rd->online);
5742 free_cpumask_var(rd->span);
5743 kfree(rd);
5744}
5745
57d885fe
GH
5746static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5747{
a0490fa3 5748 struct root_domain *old_rd = NULL;
57d885fe 5749 unsigned long flags;
57d885fe 5750
05fa785c 5751 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5752
5753 if (rq->rd) {
a0490fa3 5754 old_rd = rq->rd;
57d885fe 5755
c6c4927b 5756 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5757 set_rq_offline(rq);
57d885fe 5758
c6c4927b 5759 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5760
a0490fa3 5761 /*
0515973f 5762 * If we dont want to free the old_rd yet then
a0490fa3
IM
5763 * set old_rd to NULL to skip the freeing later
5764 * in this function:
5765 */
5766 if (!atomic_dec_and_test(&old_rd->refcount))
5767 old_rd = NULL;
57d885fe
GH
5768 }
5769
5770 atomic_inc(&rd->refcount);
5771 rq->rd = rd;
5772
c6c4927b 5773 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5774 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5775 set_rq_online(rq);
57d885fe 5776
05fa785c 5777 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5778
5779 if (old_rd)
dce840a0 5780 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5781}
5782
68c38fc3 5783static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5784{
5785 memset(rd, 0, sizeof(*rd));
5786
68c38fc3 5787 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5788 goto out;
68c38fc3 5789 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5790 goto free_span;
1baca4ce 5791 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5792 goto free_online;
1baca4ce
JL
5793 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5794 goto free_dlo_mask;
6e0534f2 5795
332ac17e 5796 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5797 if (cpudl_init(&rd->cpudl) != 0)
5798 goto free_dlo_mask;
332ac17e 5799
68c38fc3 5800 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5801 goto free_rto_mask;
c6c4927b 5802 return 0;
6e0534f2 5803
68e74568
RR
5804free_rto_mask:
5805 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5806free_dlo_mask:
5807 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5808free_online:
5809 free_cpumask_var(rd->online);
5810free_span:
5811 free_cpumask_var(rd->span);
0c910d28 5812out:
c6c4927b 5813 return -ENOMEM;
57d885fe
GH
5814}
5815
029632fb
PZ
5816/*
5817 * By default the system creates a single root-domain with all cpus as
5818 * members (mimicking the global state we have today).
5819 */
5820struct root_domain def_root_domain;
5821
57d885fe
GH
5822static void init_defrootdomain(void)
5823{
68c38fc3 5824 init_rootdomain(&def_root_domain);
c6c4927b 5825
57d885fe
GH
5826 atomic_set(&def_root_domain.refcount, 1);
5827}
5828
dc938520 5829static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5830{
5831 struct root_domain *rd;
5832
5833 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5834 if (!rd)
5835 return NULL;
5836
68c38fc3 5837 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5838 kfree(rd);
5839 return NULL;
5840 }
57d885fe
GH
5841
5842 return rd;
5843}
5844
63b2ca30 5845static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5846{
5847 struct sched_group *tmp, *first;
5848
5849 if (!sg)
5850 return;
5851
5852 first = sg;
5853 do {
5854 tmp = sg->next;
5855
63b2ca30
NP
5856 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5857 kfree(sg->sgc);
e3589f6c
PZ
5858
5859 kfree(sg);
5860 sg = tmp;
5861 } while (sg != first);
5862}
5863
dce840a0
PZ
5864static void free_sched_domain(struct rcu_head *rcu)
5865{
5866 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5867
5868 /*
5869 * If its an overlapping domain it has private groups, iterate and
5870 * nuke them all.
5871 */
5872 if (sd->flags & SD_OVERLAP) {
5873 free_sched_groups(sd->groups, 1);
5874 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5875 kfree(sd->groups->sgc);
dce840a0 5876 kfree(sd->groups);
9c3f75cb 5877 }
dce840a0
PZ
5878 kfree(sd);
5879}
5880
5881static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5882{
5883 call_rcu(&sd->rcu, free_sched_domain);
5884}
5885
5886static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5887{
5888 for (; sd; sd = sd->parent)
5889 destroy_sched_domain(sd, cpu);
5890}
5891
518cd623
PZ
5892/*
5893 * Keep a special pointer to the highest sched_domain that has
5894 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5895 * allows us to avoid some pointer chasing select_idle_sibling().
5896 *
5897 * Also keep a unique ID per domain (we use the first cpu number in
5898 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5899 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5900 */
5901DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5902DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5903DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5904DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5905DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5906DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5907
5908static void update_top_cache_domain(int cpu)
5909{
5910 struct sched_domain *sd;
5d4cf996 5911 struct sched_domain *busy_sd = NULL;
518cd623 5912 int id = cpu;
7d9ffa89 5913 int size = 1;
518cd623
PZ
5914
5915 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5916 if (sd) {
518cd623 5917 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5918 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5919 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5920 }
5d4cf996 5921 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5922
5923 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5924 per_cpu(sd_llc_size, cpu) = size;
518cd623 5925 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5926
5927 sd = lowest_flag_domain(cpu, SD_NUMA);
5928 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5929
5930 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5931 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5932}
5933
1da177e4 5934/*
0eab9146 5935 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5936 * hold the hotplug lock.
5937 */
0eab9146
IM
5938static void
5939cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5940{
70b97a7f 5941 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5942 struct sched_domain *tmp;
5943
5944 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5945 for (tmp = sd; tmp; ) {
245af2c7
SS
5946 struct sched_domain *parent = tmp->parent;
5947 if (!parent)
5948 break;
f29c9b1c 5949
1a848870 5950 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5951 tmp->parent = parent->parent;
1a848870
SS
5952 if (parent->parent)
5953 parent->parent->child = tmp;
10866e62
PZ
5954 /*
5955 * Transfer SD_PREFER_SIBLING down in case of a
5956 * degenerate parent; the spans match for this
5957 * so the property transfers.
5958 */
5959 if (parent->flags & SD_PREFER_SIBLING)
5960 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5961 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5962 } else
5963 tmp = tmp->parent;
245af2c7
SS
5964 }
5965
1a848870 5966 if (sd && sd_degenerate(sd)) {
dce840a0 5967 tmp = sd;
245af2c7 5968 sd = sd->parent;
dce840a0 5969 destroy_sched_domain(tmp, cpu);
1a848870
SS
5970 if (sd)
5971 sd->child = NULL;
5972 }
1da177e4 5973
4cb98839 5974 sched_domain_debug(sd, cpu);
1da177e4 5975
57d885fe 5976 rq_attach_root(rq, rd);
dce840a0 5977 tmp = rq->sd;
674311d5 5978 rcu_assign_pointer(rq->sd, sd);
dce840a0 5979 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5980
5981 update_top_cache_domain(cpu);
1da177e4
LT
5982}
5983
1da177e4
LT
5984/* Setup the mask of cpus configured for isolated domains */
5985static int __init isolated_cpu_setup(char *str)
5986{
bdddd296 5987 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5988 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5989 return 1;
5990}
5991
8927f494 5992__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5993
49a02c51 5994struct s_data {
21d42ccf 5995 struct sched_domain ** __percpu sd;
49a02c51
AH
5996 struct root_domain *rd;
5997};
5998
2109b99e 5999enum s_alloc {
2109b99e 6000 sa_rootdomain,
21d42ccf 6001 sa_sd,
dce840a0 6002 sa_sd_storage,
2109b99e
AH
6003 sa_none,
6004};
6005
c1174876
PZ
6006/*
6007 * Build an iteration mask that can exclude certain CPUs from the upwards
6008 * domain traversal.
6009 *
6010 * Asymmetric node setups can result in situations where the domain tree is of
6011 * unequal depth, make sure to skip domains that already cover the entire
6012 * range.
6013 *
6014 * In that case build_sched_domains() will have terminated the iteration early
6015 * and our sibling sd spans will be empty. Domains should always include the
6016 * cpu they're built on, so check that.
6017 *
6018 */
6019static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6020{
6021 const struct cpumask *span = sched_domain_span(sd);
6022 struct sd_data *sdd = sd->private;
6023 struct sched_domain *sibling;
6024 int i;
6025
6026 for_each_cpu(i, span) {
6027 sibling = *per_cpu_ptr(sdd->sd, i);
6028 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6029 continue;
6030
6031 cpumask_set_cpu(i, sched_group_mask(sg));
6032 }
6033}
6034
6035/*
6036 * Return the canonical balance cpu for this group, this is the first cpu
6037 * of this group that's also in the iteration mask.
6038 */
6039int group_balance_cpu(struct sched_group *sg)
6040{
6041 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6042}
6043
e3589f6c
PZ
6044static int
6045build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6046{
6047 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6048 const struct cpumask *span = sched_domain_span(sd);
6049 struct cpumask *covered = sched_domains_tmpmask;
6050 struct sd_data *sdd = sd->private;
aaecac4a 6051 struct sched_domain *sibling;
e3589f6c
PZ
6052 int i;
6053
6054 cpumask_clear(covered);
6055
6056 for_each_cpu(i, span) {
6057 struct cpumask *sg_span;
6058
6059 if (cpumask_test_cpu(i, covered))
6060 continue;
6061
aaecac4a 6062 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6063
6064 /* See the comment near build_group_mask(). */
aaecac4a 6065 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6066 continue;
6067
e3589f6c 6068 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6069 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6070
6071 if (!sg)
6072 goto fail;
6073
6074 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6075 if (sibling->child)
6076 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6077 else
e3589f6c
PZ
6078 cpumask_set_cpu(i, sg_span);
6079
6080 cpumask_or(covered, covered, sg_span);
6081
63b2ca30
NP
6082 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6083 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6084 build_group_mask(sd, sg);
6085
c3decf0d 6086 /*
63b2ca30 6087 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6088 * domains and no possible iteration will get us here, we won't
6089 * die on a /0 trap.
6090 */
ca8ce3d0 6091 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6092
c1174876
PZ
6093 /*
6094 * Make sure the first group of this domain contains the
6095 * canonical balance cpu. Otherwise the sched_domain iteration
6096 * breaks. See update_sg_lb_stats().
6097 */
74a5ce20 6098 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6099 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6100 groups = sg;
6101
6102 if (!first)
6103 first = sg;
6104 if (last)
6105 last->next = sg;
6106 last = sg;
6107 last->next = first;
6108 }
6109 sd->groups = groups;
6110
6111 return 0;
6112
6113fail:
6114 free_sched_groups(first, 0);
6115
6116 return -ENOMEM;
6117}
6118
dce840a0 6119static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6120{
dce840a0
PZ
6121 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6122 struct sched_domain *child = sd->child;
1da177e4 6123
dce840a0
PZ
6124 if (child)
6125 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6126
9c3f75cb 6127 if (sg) {
dce840a0 6128 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6129 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6130 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6131 }
dce840a0
PZ
6132
6133 return cpu;
1e9f28fa 6134}
1e9f28fa 6135
01a08546 6136/*
dce840a0
PZ
6137 * build_sched_groups will build a circular linked list of the groups
6138 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6139 * and ->cpu_capacity to 0.
e3589f6c
PZ
6140 *
6141 * Assumes the sched_domain tree is fully constructed
01a08546 6142 */
e3589f6c
PZ
6143static int
6144build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6145{
dce840a0
PZ
6146 struct sched_group *first = NULL, *last = NULL;
6147 struct sd_data *sdd = sd->private;
6148 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6149 struct cpumask *covered;
dce840a0 6150 int i;
9c1cfda2 6151
e3589f6c
PZ
6152 get_group(cpu, sdd, &sd->groups);
6153 atomic_inc(&sd->groups->ref);
6154
0936629f 6155 if (cpu != cpumask_first(span))
e3589f6c
PZ
6156 return 0;
6157
f96225fd
PZ
6158 lockdep_assert_held(&sched_domains_mutex);
6159 covered = sched_domains_tmpmask;
6160
dce840a0 6161 cpumask_clear(covered);
6711cab4 6162
dce840a0
PZ
6163 for_each_cpu(i, span) {
6164 struct sched_group *sg;
cd08e923 6165 int group, j;
6711cab4 6166
dce840a0
PZ
6167 if (cpumask_test_cpu(i, covered))
6168 continue;
6711cab4 6169
cd08e923 6170 group = get_group(i, sdd, &sg);
c1174876 6171 cpumask_setall(sched_group_mask(sg));
0601a88d 6172
dce840a0
PZ
6173 for_each_cpu(j, span) {
6174 if (get_group(j, sdd, NULL) != group)
6175 continue;
0601a88d 6176
dce840a0
PZ
6177 cpumask_set_cpu(j, covered);
6178 cpumask_set_cpu(j, sched_group_cpus(sg));
6179 }
0601a88d 6180
dce840a0
PZ
6181 if (!first)
6182 first = sg;
6183 if (last)
6184 last->next = sg;
6185 last = sg;
6186 }
6187 last->next = first;
e3589f6c
PZ
6188
6189 return 0;
0601a88d 6190}
51888ca2 6191
89c4710e 6192/*
63b2ca30 6193 * Initialize sched groups cpu_capacity.
89c4710e 6194 *
63b2ca30 6195 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6196 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6197 * Typically cpu_capacity for all the groups in a sched domain will be same
6198 * unless there are asymmetries in the topology. If there are asymmetries,
6199 * group having more cpu_capacity will pickup more load compared to the
6200 * group having less cpu_capacity.
89c4710e 6201 */
63b2ca30 6202static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6203{
e3589f6c 6204 struct sched_group *sg = sd->groups;
89c4710e 6205
94c95ba6 6206 WARN_ON(!sg);
e3589f6c
PZ
6207
6208 do {
6209 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6210 sg = sg->next;
6211 } while (sg != sd->groups);
89c4710e 6212
c1174876 6213 if (cpu != group_balance_cpu(sg))
e3589f6c 6214 return;
aae6d3dd 6215
63b2ca30
NP
6216 update_group_capacity(sd, cpu);
6217 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6218}
6219
7c16ec58
MT
6220/*
6221 * Initializers for schedule domains
6222 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6223 */
6224
1d3504fc 6225static int default_relax_domain_level = -1;
60495e77 6226int sched_domain_level_max;
1d3504fc
HS
6227
6228static int __init setup_relax_domain_level(char *str)
6229{
a841f8ce
DS
6230 if (kstrtoint(str, 0, &default_relax_domain_level))
6231 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6232
1d3504fc
HS
6233 return 1;
6234}
6235__setup("relax_domain_level=", setup_relax_domain_level);
6236
6237static void set_domain_attribute(struct sched_domain *sd,
6238 struct sched_domain_attr *attr)
6239{
6240 int request;
6241
6242 if (!attr || attr->relax_domain_level < 0) {
6243 if (default_relax_domain_level < 0)
6244 return;
6245 else
6246 request = default_relax_domain_level;
6247 } else
6248 request = attr->relax_domain_level;
6249 if (request < sd->level) {
6250 /* turn off idle balance on this domain */
c88d5910 6251 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6252 } else {
6253 /* turn on idle balance on this domain */
c88d5910 6254 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6255 }
6256}
6257
54ab4ff4
PZ
6258static void __sdt_free(const struct cpumask *cpu_map);
6259static int __sdt_alloc(const struct cpumask *cpu_map);
6260
2109b99e
AH
6261static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6262 const struct cpumask *cpu_map)
6263{
6264 switch (what) {
2109b99e 6265 case sa_rootdomain:
822ff793
PZ
6266 if (!atomic_read(&d->rd->refcount))
6267 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6268 case sa_sd:
6269 free_percpu(d->sd); /* fall through */
dce840a0 6270 case sa_sd_storage:
54ab4ff4 6271 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6272 case sa_none:
6273 break;
6274 }
6275}
3404c8d9 6276
2109b99e
AH
6277static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6278 const struct cpumask *cpu_map)
6279{
dce840a0
PZ
6280 memset(d, 0, sizeof(*d));
6281
54ab4ff4
PZ
6282 if (__sdt_alloc(cpu_map))
6283 return sa_sd_storage;
dce840a0
PZ
6284 d->sd = alloc_percpu(struct sched_domain *);
6285 if (!d->sd)
6286 return sa_sd_storage;
2109b99e 6287 d->rd = alloc_rootdomain();
dce840a0 6288 if (!d->rd)
21d42ccf 6289 return sa_sd;
2109b99e
AH
6290 return sa_rootdomain;
6291}
57d885fe 6292
dce840a0
PZ
6293/*
6294 * NULL the sd_data elements we've used to build the sched_domain and
6295 * sched_group structure so that the subsequent __free_domain_allocs()
6296 * will not free the data we're using.
6297 */
6298static void claim_allocations(int cpu, struct sched_domain *sd)
6299{
6300 struct sd_data *sdd = sd->private;
dce840a0
PZ
6301
6302 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6303 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6304
e3589f6c 6305 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6306 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6307
63b2ca30
NP
6308 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6309 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6310}
6311
cb83b629 6312#ifdef CONFIG_NUMA
cb83b629 6313static int sched_domains_numa_levels;
e3fe70b1 6314enum numa_topology_type sched_numa_topology_type;
cb83b629 6315static int *sched_domains_numa_distance;
9942f79b 6316int sched_max_numa_distance;
cb83b629
PZ
6317static struct cpumask ***sched_domains_numa_masks;
6318static int sched_domains_curr_level;
143e1e28 6319#endif
cb83b629 6320
143e1e28
VG
6321/*
6322 * SD_flags allowed in topology descriptions.
6323 *
5d4dfddd 6324 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6325 * SD_SHARE_PKG_RESOURCES - describes shared caches
6326 * SD_NUMA - describes NUMA topologies
d77b3ed5 6327 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6328 *
6329 * Odd one out:
6330 * SD_ASYM_PACKING - describes SMT quirks
6331 */
6332#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6333 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6334 SD_SHARE_PKG_RESOURCES | \
6335 SD_NUMA | \
d77b3ed5
VG
6336 SD_ASYM_PACKING | \
6337 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6338
6339static struct sched_domain *
143e1e28 6340sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6341{
6342 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6343 int sd_weight, sd_flags = 0;
6344
6345#ifdef CONFIG_NUMA
6346 /*
6347 * Ugly hack to pass state to sd_numa_mask()...
6348 */
6349 sched_domains_curr_level = tl->numa_level;
6350#endif
6351
6352 sd_weight = cpumask_weight(tl->mask(cpu));
6353
6354 if (tl->sd_flags)
6355 sd_flags = (*tl->sd_flags)();
6356 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6357 "wrong sd_flags in topology description\n"))
6358 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6359
6360 *sd = (struct sched_domain){
6361 .min_interval = sd_weight,
6362 .max_interval = 2*sd_weight,
6363 .busy_factor = 32,
870a0bb5 6364 .imbalance_pct = 125,
143e1e28
VG
6365
6366 .cache_nice_tries = 0,
6367 .busy_idx = 0,
6368 .idle_idx = 0,
cb83b629
PZ
6369 .newidle_idx = 0,
6370 .wake_idx = 0,
6371 .forkexec_idx = 0,
6372
6373 .flags = 1*SD_LOAD_BALANCE
6374 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6375 | 1*SD_BALANCE_EXEC
6376 | 1*SD_BALANCE_FORK
cb83b629 6377 | 0*SD_BALANCE_WAKE
143e1e28 6378 | 1*SD_WAKE_AFFINE
5d4dfddd 6379 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6380 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6381 | 0*SD_SERIALIZE
cb83b629 6382 | 0*SD_PREFER_SIBLING
143e1e28
VG
6383 | 0*SD_NUMA
6384 | sd_flags
cb83b629 6385 ,
143e1e28 6386
cb83b629
PZ
6387 .last_balance = jiffies,
6388 .balance_interval = sd_weight,
143e1e28 6389 .smt_gain = 0,
2b4cfe64
JL
6390 .max_newidle_lb_cost = 0,
6391 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6392#ifdef CONFIG_SCHED_DEBUG
6393 .name = tl->name,
6394#endif
cb83b629 6395 };
cb83b629
PZ
6396
6397 /*
143e1e28 6398 * Convert topological properties into behaviour.
cb83b629 6399 */
143e1e28 6400
5d4dfddd 6401 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6402 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6403 sd->imbalance_pct = 110;
6404 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6405
6406 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6407 sd->imbalance_pct = 117;
6408 sd->cache_nice_tries = 1;
6409 sd->busy_idx = 2;
6410
6411#ifdef CONFIG_NUMA
6412 } else if (sd->flags & SD_NUMA) {
6413 sd->cache_nice_tries = 2;
6414 sd->busy_idx = 3;
6415 sd->idle_idx = 2;
6416
6417 sd->flags |= SD_SERIALIZE;
6418 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6419 sd->flags &= ~(SD_BALANCE_EXEC |
6420 SD_BALANCE_FORK |
6421 SD_WAKE_AFFINE);
6422 }
6423
6424#endif
6425 } else {
6426 sd->flags |= SD_PREFER_SIBLING;
6427 sd->cache_nice_tries = 1;
6428 sd->busy_idx = 2;
6429 sd->idle_idx = 1;
6430 }
6431
6432 sd->private = &tl->data;
cb83b629
PZ
6433
6434 return sd;
6435}
6436
143e1e28
VG
6437/*
6438 * Topology list, bottom-up.
6439 */
6440static struct sched_domain_topology_level default_topology[] = {
6441#ifdef CONFIG_SCHED_SMT
6442 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6443#endif
6444#ifdef CONFIG_SCHED_MC
6445 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6446#endif
6447 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6448 { NULL, },
6449};
6450
6451struct sched_domain_topology_level *sched_domain_topology = default_topology;
6452
6453#define for_each_sd_topology(tl) \
6454 for (tl = sched_domain_topology; tl->mask; tl++)
6455
6456void set_sched_topology(struct sched_domain_topology_level *tl)
6457{
6458 sched_domain_topology = tl;
6459}
6460
6461#ifdef CONFIG_NUMA
6462
cb83b629
PZ
6463static const struct cpumask *sd_numa_mask(int cpu)
6464{
6465 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6466}
6467
d039ac60
PZ
6468static void sched_numa_warn(const char *str)
6469{
6470 static int done = false;
6471 int i,j;
6472
6473 if (done)
6474 return;
6475
6476 done = true;
6477
6478 printk(KERN_WARNING "ERROR: %s\n\n", str);
6479
6480 for (i = 0; i < nr_node_ids; i++) {
6481 printk(KERN_WARNING " ");
6482 for (j = 0; j < nr_node_ids; j++)
6483 printk(KERN_CONT "%02d ", node_distance(i,j));
6484 printk(KERN_CONT "\n");
6485 }
6486 printk(KERN_WARNING "\n");
6487}
6488
9942f79b 6489bool find_numa_distance(int distance)
d039ac60
PZ
6490{
6491 int i;
6492
6493 if (distance == node_distance(0, 0))
6494 return true;
6495
6496 for (i = 0; i < sched_domains_numa_levels; i++) {
6497 if (sched_domains_numa_distance[i] == distance)
6498 return true;
6499 }
6500
6501 return false;
6502}
6503
e3fe70b1
RR
6504/*
6505 * A system can have three types of NUMA topology:
6506 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6507 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6508 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6509 *
6510 * The difference between a glueless mesh topology and a backplane
6511 * topology lies in whether communication between not directly
6512 * connected nodes goes through intermediary nodes (where programs
6513 * could run), or through backplane controllers. This affects
6514 * placement of programs.
6515 *
6516 * The type of topology can be discerned with the following tests:
6517 * - If the maximum distance between any nodes is 1 hop, the system
6518 * is directly connected.
6519 * - If for two nodes A and B, located N > 1 hops away from each other,
6520 * there is an intermediary node C, which is < N hops away from both
6521 * nodes A and B, the system is a glueless mesh.
6522 */
6523static void init_numa_topology_type(void)
6524{
6525 int a, b, c, n;
6526
6527 n = sched_max_numa_distance;
6528
e237882b 6529 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6530 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6531 return;
6532 }
e3fe70b1
RR
6533
6534 for_each_online_node(a) {
6535 for_each_online_node(b) {
6536 /* Find two nodes furthest removed from each other. */
6537 if (node_distance(a, b) < n)
6538 continue;
6539
6540 /* Is there an intermediary node between a and b? */
6541 for_each_online_node(c) {
6542 if (node_distance(a, c) < n &&
6543 node_distance(b, c) < n) {
6544 sched_numa_topology_type =
6545 NUMA_GLUELESS_MESH;
6546 return;
6547 }
6548 }
6549
6550 sched_numa_topology_type = NUMA_BACKPLANE;
6551 return;
6552 }
6553 }
6554}
6555
cb83b629
PZ
6556static void sched_init_numa(void)
6557{
6558 int next_distance, curr_distance = node_distance(0, 0);
6559 struct sched_domain_topology_level *tl;
6560 int level = 0;
6561 int i, j, k;
6562
cb83b629
PZ
6563 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6564 if (!sched_domains_numa_distance)
6565 return;
6566
6567 /*
6568 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6569 * unique distances in the node_distance() table.
6570 *
6571 * Assumes node_distance(0,j) includes all distances in
6572 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6573 */
6574 next_distance = curr_distance;
6575 for (i = 0; i < nr_node_ids; i++) {
6576 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6577 for (k = 0; k < nr_node_ids; k++) {
6578 int distance = node_distance(i, k);
6579
6580 if (distance > curr_distance &&
6581 (distance < next_distance ||
6582 next_distance == curr_distance))
6583 next_distance = distance;
6584
6585 /*
6586 * While not a strong assumption it would be nice to know
6587 * about cases where if node A is connected to B, B is not
6588 * equally connected to A.
6589 */
6590 if (sched_debug() && node_distance(k, i) != distance)
6591 sched_numa_warn("Node-distance not symmetric");
6592
6593 if (sched_debug() && i && !find_numa_distance(distance))
6594 sched_numa_warn("Node-0 not representative");
6595 }
6596 if (next_distance != curr_distance) {
6597 sched_domains_numa_distance[level++] = next_distance;
6598 sched_domains_numa_levels = level;
6599 curr_distance = next_distance;
6600 } else break;
cb83b629 6601 }
d039ac60
PZ
6602
6603 /*
6604 * In case of sched_debug() we verify the above assumption.
6605 */
6606 if (!sched_debug())
6607 break;
cb83b629 6608 }
c123588b
AR
6609
6610 if (!level)
6611 return;
6612
cb83b629
PZ
6613 /*
6614 * 'level' contains the number of unique distances, excluding the
6615 * identity distance node_distance(i,i).
6616 *
28b4a521 6617 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6618 * numbers.
6619 */
6620
5f7865f3
TC
6621 /*
6622 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6623 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6624 * the array will contain less then 'level' members. This could be
6625 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6626 * in other functions.
6627 *
6628 * We reset it to 'level' at the end of this function.
6629 */
6630 sched_domains_numa_levels = 0;
6631
cb83b629
PZ
6632 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6633 if (!sched_domains_numa_masks)
6634 return;
6635
6636 /*
6637 * Now for each level, construct a mask per node which contains all
6638 * cpus of nodes that are that many hops away from us.
6639 */
6640 for (i = 0; i < level; i++) {
6641 sched_domains_numa_masks[i] =
6642 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6643 if (!sched_domains_numa_masks[i])
6644 return;
6645
6646 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6647 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6648 if (!mask)
6649 return;
6650
6651 sched_domains_numa_masks[i][j] = mask;
6652
6653 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6654 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6655 continue;
6656
6657 cpumask_or(mask, mask, cpumask_of_node(k));
6658 }
6659 }
6660 }
6661
143e1e28
VG
6662 /* Compute default topology size */
6663 for (i = 0; sched_domain_topology[i].mask; i++);
6664
c515db8c 6665 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6666 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6667 if (!tl)
6668 return;
6669
6670 /*
6671 * Copy the default topology bits..
6672 */
143e1e28
VG
6673 for (i = 0; sched_domain_topology[i].mask; i++)
6674 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6675
6676 /*
6677 * .. and append 'j' levels of NUMA goodness.
6678 */
6679 for (j = 0; j < level; i++, j++) {
6680 tl[i] = (struct sched_domain_topology_level){
cb83b629 6681 .mask = sd_numa_mask,
143e1e28 6682 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6683 .flags = SDTL_OVERLAP,
6684 .numa_level = j,
143e1e28 6685 SD_INIT_NAME(NUMA)
cb83b629
PZ
6686 };
6687 }
6688
6689 sched_domain_topology = tl;
5f7865f3
TC
6690
6691 sched_domains_numa_levels = level;
9942f79b 6692 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6693
6694 init_numa_topology_type();
cb83b629 6695}
301a5cba
TC
6696
6697static void sched_domains_numa_masks_set(int cpu)
6698{
6699 int i, j;
6700 int node = cpu_to_node(cpu);
6701
6702 for (i = 0; i < sched_domains_numa_levels; i++) {
6703 for (j = 0; j < nr_node_ids; j++) {
6704 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6705 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6706 }
6707 }
6708}
6709
6710static void sched_domains_numa_masks_clear(int cpu)
6711{
6712 int i, j;
6713 for (i = 0; i < sched_domains_numa_levels; i++) {
6714 for (j = 0; j < nr_node_ids; j++)
6715 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6716 }
6717}
6718
6719/*
6720 * Update sched_domains_numa_masks[level][node] array when new cpus
6721 * are onlined.
6722 */
6723static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6724 unsigned long action,
6725 void *hcpu)
6726{
6727 int cpu = (long)hcpu;
6728
6729 switch (action & ~CPU_TASKS_FROZEN) {
6730 case CPU_ONLINE:
6731 sched_domains_numa_masks_set(cpu);
6732 break;
6733
6734 case CPU_DEAD:
6735 sched_domains_numa_masks_clear(cpu);
6736 break;
6737
6738 default:
6739 return NOTIFY_DONE;
6740 }
6741
6742 return NOTIFY_OK;
cb83b629
PZ
6743}
6744#else
6745static inline void sched_init_numa(void)
6746{
6747}
301a5cba
TC
6748
6749static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6750 unsigned long action,
6751 void *hcpu)
6752{
6753 return 0;
6754}
cb83b629
PZ
6755#endif /* CONFIG_NUMA */
6756
54ab4ff4
PZ
6757static int __sdt_alloc(const struct cpumask *cpu_map)
6758{
6759 struct sched_domain_topology_level *tl;
6760 int j;
6761
27723a68 6762 for_each_sd_topology(tl) {
54ab4ff4
PZ
6763 struct sd_data *sdd = &tl->data;
6764
6765 sdd->sd = alloc_percpu(struct sched_domain *);
6766 if (!sdd->sd)
6767 return -ENOMEM;
6768
6769 sdd->sg = alloc_percpu(struct sched_group *);
6770 if (!sdd->sg)
6771 return -ENOMEM;
6772
63b2ca30
NP
6773 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6774 if (!sdd->sgc)
9c3f75cb
PZ
6775 return -ENOMEM;
6776
54ab4ff4
PZ
6777 for_each_cpu(j, cpu_map) {
6778 struct sched_domain *sd;
6779 struct sched_group *sg;
63b2ca30 6780 struct sched_group_capacity *sgc;
54ab4ff4 6781
5cc389bc 6782 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6783 GFP_KERNEL, cpu_to_node(j));
6784 if (!sd)
6785 return -ENOMEM;
6786
6787 *per_cpu_ptr(sdd->sd, j) = sd;
6788
6789 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6790 GFP_KERNEL, cpu_to_node(j));
6791 if (!sg)
6792 return -ENOMEM;
6793
30b4e9eb
IM
6794 sg->next = sg;
6795
54ab4ff4 6796 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6797
63b2ca30 6798 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6799 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6800 if (!sgc)
9c3f75cb
PZ
6801 return -ENOMEM;
6802
63b2ca30 6803 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6804 }
6805 }
6806
6807 return 0;
6808}
6809
6810static void __sdt_free(const struct cpumask *cpu_map)
6811{
6812 struct sched_domain_topology_level *tl;
6813 int j;
6814
27723a68 6815 for_each_sd_topology(tl) {
54ab4ff4
PZ
6816 struct sd_data *sdd = &tl->data;
6817
6818 for_each_cpu(j, cpu_map) {
fb2cf2c6 6819 struct sched_domain *sd;
6820
6821 if (sdd->sd) {
6822 sd = *per_cpu_ptr(sdd->sd, j);
6823 if (sd && (sd->flags & SD_OVERLAP))
6824 free_sched_groups(sd->groups, 0);
6825 kfree(*per_cpu_ptr(sdd->sd, j));
6826 }
6827
6828 if (sdd->sg)
6829 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6830 if (sdd->sgc)
6831 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6832 }
6833 free_percpu(sdd->sd);
fb2cf2c6 6834 sdd->sd = NULL;
54ab4ff4 6835 free_percpu(sdd->sg);
fb2cf2c6 6836 sdd->sg = NULL;
63b2ca30
NP
6837 free_percpu(sdd->sgc);
6838 sdd->sgc = NULL;
54ab4ff4
PZ
6839 }
6840}
6841
2c402dc3 6842struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6843 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6844 struct sched_domain *child, int cpu)
2c402dc3 6845{
143e1e28 6846 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6847 if (!sd)
d069b916 6848 return child;
2c402dc3 6849
2c402dc3 6850 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6851 if (child) {
6852 sd->level = child->level + 1;
6853 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6854 child->parent = sd;
c75e0128 6855 sd->child = child;
6ae72dff
PZ
6856
6857 if (!cpumask_subset(sched_domain_span(child),
6858 sched_domain_span(sd))) {
6859 pr_err("BUG: arch topology borken\n");
6860#ifdef CONFIG_SCHED_DEBUG
6861 pr_err(" the %s domain not a subset of the %s domain\n",
6862 child->name, sd->name);
6863#endif
6864 /* Fixup, ensure @sd has at least @child cpus. */
6865 cpumask_or(sched_domain_span(sd),
6866 sched_domain_span(sd),
6867 sched_domain_span(child));
6868 }
6869
60495e77 6870 }
a841f8ce 6871 set_domain_attribute(sd, attr);
2c402dc3
PZ
6872
6873 return sd;
6874}
6875
2109b99e
AH
6876/*
6877 * Build sched domains for a given set of cpus and attach the sched domains
6878 * to the individual cpus
6879 */
dce840a0
PZ
6880static int build_sched_domains(const struct cpumask *cpu_map,
6881 struct sched_domain_attr *attr)
2109b99e 6882{
1c632169 6883 enum s_alloc alloc_state;
dce840a0 6884 struct sched_domain *sd;
2109b99e 6885 struct s_data d;
822ff793 6886 int i, ret = -ENOMEM;
9c1cfda2 6887
2109b99e
AH
6888 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6889 if (alloc_state != sa_rootdomain)
6890 goto error;
9c1cfda2 6891
dce840a0 6892 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6893 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6894 struct sched_domain_topology_level *tl;
6895
3bd65a80 6896 sd = NULL;
27723a68 6897 for_each_sd_topology(tl) {
4a850cbe 6898 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6899 if (tl == sched_domain_topology)
6900 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6901 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6902 sd->flags |= SD_OVERLAP;
d110235d
PZ
6903 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6904 break;
e3589f6c 6905 }
dce840a0
PZ
6906 }
6907
6908 /* Build the groups for the domains */
6909 for_each_cpu(i, cpu_map) {
6910 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6911 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6912 if (sd->flags & SD_OVERLAP) {
6913 if (build_overlap_sched_groups(sd, i))
6914 goto error;
6915 } else {
6916 if (build_sched_groups(sd, i))
6917 goto error;
6918 }
1cf51902 6919 }
a06dadbe 6920 }
9c1cfda2 6921
ced549fa 6922 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6923 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6924 if (!cpumask_test_cpu(i, cpu_map))
6925 continue;
9c1cfda2 6926
dce840a0
PZ
6927 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6928 claim_allocations(i, sd);
63b2ca30 6929 init_sched_groups_capacity(i, sd);
dce840a0 6930 }
f712c0c7 6931 }
9c1cfda2 6932
1da177e4 6933 /* Attach the domains */
dce840a0 6934 rcu_read_lock();
abcd083a 6935 for_each_cpu(i, cpu_map) {
21d42ccf 6936 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6937 cpu_attach_domain(sd, d.rd, i);
1da177e4 6938 }
dce840a0 6939 rcu_read_unlock();
51888ca2 6940
822ff793 6941 ret = 0;
51888ca2 6942error:
2109b99e 6943 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6944 return ret;
1da177e4 6945}
029190c5 6946
acc3f5d7 6947static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6948static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6949static struct sched_domain_attr *dattr_cur;
6950 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6951
6952/*
6953 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6954 * cpumask) fails, then fallback to a single sched domain,
6955 * as determined by the single cpumask fallback_doms.
029190c5 6956 */
4212823f 6957static cpumask_var_t fallback_doms;
029190c5 6958
ee79d1bd
HC
6959/*
6960 * arch_update_cpu_topology lets virtualized architectures update the
6961 * cpu core maps. It is supposed to return 1 if the topology changed
6962 * or 0 if it stayed the same.
6963 */
52f5684c 6964int __weak arch_update_cpu_topology(void)
22e52b07 6965{
ee79d1bd 6966 return 0;
22e52b07
HC
6967}
6968
acc3f5d7
RR
6969cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6970{
6971 int i;
6972 cpumask_var_t *doms;
6973
6974 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6975 if (!doms)
6976 return NULL;
6977 for (i = 0; i < ndoms; i++) {
6978 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6979 free_sched_domains(doms, i);
6980 return NULL;
6981 }
6982 }
6983 return doms;
6984}
6985
6986void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6987{
6988 unsigned int i;
6989 for (i = 0; i < ndoms; i++)
6990 free_cpumask_var(doms[i]);
6991 kfree(doms);
6992}
6993
1a20ff27 6994/*
41a2d6cf 6995 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6996 * For now this just excludes isolated cpus, but could be used to
6997 * exclude other special cases in the future.
1a20ff27 6998 */
c4a8849a 6999static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7000{
7378547f
MM
7001 int err;
7002
22e52b07 7003 arch_update_cpu_topology();
029190c5 7004 ndoms_cur = 1;
acc3f5d7 7005 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7006 if (!doms_cur)
acc3f5d7
RR
7007 doms_cur = &fallback_doms;
7008 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7009 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7010 register_sched_domain_sysctl();
7378547f
MM
7011
7012 return err;
1a20ff27
DG
7013}
7014
1a20ff27
DG
7015/*
7016 * Detach sched domains from a group of cpus specified in cpu_map
7017 * These cpus will now be attached to the NULL domain
7018 */
96f874e2 7019static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7020{
7021 int i;
7022
dce840a0 7023 rcu_read_lock();
abcd083a 7024 for_each_cpu(i, cpu_map)
57d885fe 7025 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7026 rcu_read_unlock();
1a20ff27
DG
7027}
7028
1d3504fc
HS
7029/* handle null as "default" */
7030static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7031 struct sched_domain_attr *new, int idx_new)
7032{
7033 struct sched_domain_attr tmp;
7034
7035 /* fast path */
7036 if (!new && !cur)
7037 return 1;
7038
7039 tmp = SD_ATTR_INIT;
7040 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7041 new ? (new + idx_new) : &tmp,
7042 sizeof(struct sched_domain_attr));
7043}
7044
029190c5
PJ
7045/*
7046 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7047 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7048 * doms_new[] to the current sched domain partitioning, doms_cur[].
7049 * It destroys each deleted domain and builds each new domain.
7050 *
acc3f5d7 7051 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7052 * The masks don't intersect (don't overlap.) We should setup one
7053 * sched domain for each mask. CPUs not in any of the cpumasks will
7054 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7055 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7056 * it as it is.
7057 *
acc3f5d7
RR
7058 * The passed in 'doms_new' should be allocated using
7059 * alloc_sched_domains. This routine takes ownership of it and will
7060 * free_sched_domains it when done with it. If the caller failed the
7061 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7062 * and partition_sched_domains() will fallback to the single partition
7063 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7064 *
96f874e2 7065 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7066 * ndoms_new == 0 is a special case for destroying existing domains,
7067 * and it will not create the default domain.
dfb512ec 7068 *
029190c5
PJ
7069 * Call with hotplug lock held
7070 */
acc3f5d7 7071void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7072 struct sched_domain_attr *dattr_new)
029190c5 7073{
dfb512ec 7074 int i, j, n;
d65bd5ec 7075 int new_topology;
029190c5 7076
712555ee 7077 mutex_lock(&sched_domains_mutex);
a1835615 7078
7378547f
MM
7079 /* always unregister in case we don't destroy any domains */
7080 unregister_sched_domain_sysctl();
7081
d65bd5ec
HC
7082 /* Let architecture update cpu core mappings. */
7083 new_topology = arch_update_cpu_topology();
7084
dfb512ec 7085 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7086
7087 /* Destroy deleted domains */
7088 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7089 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7090 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7091 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7092 goto match1;
7093 }
7094 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7095 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7096match1:
7097 ;
7098 }
7099
c8d2d47a 7100 n = ndoms_cur;
e761b772 7101 if (doms_new == NULL) {
c8d2d47a 7102 n = 0;
acc3f5d7 7103 doms_new = &fallback_doms;
6ad4c188 7104 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7105 WARN_ON_ONCE(dattr_new);
e761b772
MK
7106 }
7107
029190c5
PJ
7108 /* Build new domains */
7109 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7110 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7111 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7112 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7113 goto match2;
7114 }
7115 /* no match - add a new doms_new */
dce840a0 7116 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7117match2:
7118 ;
7119 }
7120
7121 /* Remember the new sched domains */
acc3f5d7
RR
7122 if (doms_cur != &fallback_doms)
7123 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7124 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7125 doms_cur = doms_new;
1d3504fc 7126 dattr_cur = dattr_new;
029190c5 7127 ndoms_cur = ndoms_new;
7378547f
MM
7128
7129 register_sched_domain_sysctl();
a1835615 7130
712555ee 7131 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7132}
7133
d35be8ba
SB
7134static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7135
1da177e4 7136/*
3a101d05
TH
7137 * Update cpusets according to cpu_active mask. If cpusets are
7138 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7139 * around partition_sched_domains().
d35be8ba
SB
7140 *
7141 * If we come here as part of a suspend/resume, don't touch cpusets because we
7142 * want to restore it back to its original state upon resume anyway.
1da177e4 7143 */
0b2e918a
TH
7144static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7145 void *hcpu)
e761b772 7146{
d35be8ba
SB
7147 switch (action) {
7148 case CPU_ONLINE_FROZEN:
7149 case CPU_DOWN_FAILED_FROZEN:
7150
7151 /*
7152 * num_cpus_frozen tracks how many CPUs are involved in suspend
7153 * resume sequence. As long as this is not the last online
7154 * operation in the resume sequence, just build a single sched
7155 * domain, ignoring cpusets.
7156 */
7157 num_cpus_frozen--;
7158 if (likely(num_cpus_frozen)) {
7159 partition_sched_domains(1, NULL, NULL);
7160 break;
7161 }
7162
7163 /*
7164 * This is the last CPU online operation. So fall through and
7165 * restore the original sched domains by considering the
7166 * cpuset configurations.
7167 */
7168
e761b772 7169 case CPU_ONLINE:
7ddf96b0 7170 cpuset_update_active_cpus(true);
d35be8ba 7171 break;
3a101d05
TH
7172 default:
7173 return NOTIFY_DONE;
7174 }
d35be8ba 7175 return NOTIFY_OK;
3a101d05 7176}
e761b772 7177
0b2e918a
TH
7178static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7179 void *hcpu)
3a101d05 7180{
3c18d447
JL
7181 unsigned long flags;
7182 long cpu = (long)hcpu;
7183 struct dl_bw *dl_b;
533445c6
OS
7184 bool overflow;
7185 int cpus;
3c18d447 7186
533445c6 7187 switch (action) {
3a101d05 7188 case CPU_DOWN_PREPARE:
533445c6
OS
7189 rcu_read_lock_sched();
7190 dl_b = dl_bw_of(cpu);
3c18d447 7191
533445c6
OS
7192 raw_spin_lock_irqsave(&dl_b->lock, flags);
7193 cpus = dl_bw_cpus(cpu);
7194 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7195 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7196
533445c6 7197 rcu_read_unlock_sched();
3c18d447 7198
533445c6
OS
7199 if (overflow)
7200 return notifier_from_errno(-EBUSY);
7ddf96b0 7201 cpuset_update_active_cpus(false);
d35be8ba
SB
7202 break;
7203 case CPU_DOWN_PREPARE_FROZEN:
7204 num_cpus_frozen++;
7205 partition_sched_domains(1, NULL, NULL);
7206 break;
e761b772
MK
7207 default:
7208 return NOTIFY_DONE;
7209 }
d35be8ba 7210 return NOTIFY_OK;
e761b772 7211}
e761b772 7212
1da177e4
LT
7213void __init sched_init_smp(void)
7214{
dcc30a35
RR
7215 cpumask_var_t non_isolated_cpus;
7216
7217 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7218 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7219
8cb9764f
CM
7220 /* nohz_full won't take effect without isolating the cpus. */
7221 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7222
cb83b629
PZ
7223 sched_init_numa();
7224
6acce3ef
PZ
7225 /*
7226 * There's no userspace yet to cause hotplug operations; hence all the
7227 * cpu masks are stable and all blatant races in the below code cannot
7228 * happen.
7229 */
712555ee 7230 mutex_lock(&sched_domains_mutex);
c4a8849a 7231 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7232 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7233 if (cpumask_empty(non_isolated_cpus))
7234 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7235 mutex_unlock(&sched_domains_mutex);
e761b772 7236
301a5cba 7237 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7238 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7239 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7240
b328ca18 7241 init_hrtick();
5c1e1767
NP
7242
7243 /* Move init over to a non-isolated CPU */
dcc30a35 7244 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7245 BUG();
19978ca6 7246 sched_init_granularity();
dcc30a35 7247 free_cpumask_var(non_isolated_cpus);
4212823f 7248
0e3900e6 7249 init_sched_rt_class();
1baca4ce 7250 init_sched_dl_class();
1da177e4
LT
7251}
7252#else
7253void __init sched_init_smp(void)
7254{
19978ca6 7255 sched_init_granularity();
1da177e4
LT
7256}
7257#endif /* CONFIG_SMP */
7258
7259int in_sched_functions(unsigned long addr)
7260{
1da177e4
LT
7261 return in_lock_functions(addr) ||
7262 (addr >= (unsigned long)__sched_text_start
7263 && addr < (unsigned long)__sched_text_end);
7264}
7265
029632fb 7266#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7267/*
7268 * Default task group.
7269 * Every task in system belongs to this group at bootup.
7270 */
029632fb 7271struct task_group root_task_group;
35cf4e50 7272LIST_HEAD(task_groups);
052f1dc7 7273#endif
6f505b16 7274
e6252c3e 7275DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7276
1da177e4
LT
7277void __init sched_init(void)
7278{
dd41f596 7279 int i, j;
434d53b0
MT
7280 unsigned long alloc_size = 0, ptr;
7281
7282#ifdef CONFIG_FAIR_GROUP_SCHED
7283 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7284#endif
7285#ifdef CONFIG_RT_GROUP_SCHED
7286 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7287#endif
434d53b0 7288 if (alloc_size) {
36b7b6d4 7289 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7290
7291#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7292 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7293 ptr += nr_cpu_ids * sizeof(void **);
7294
07e06b01 7295 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7296 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7297
6d6bc0ad 7298#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7299#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7300 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7301 ptr += nr_cpu_ids * sizeof(void **);
7302
07e06b01 7303 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7304 ptr += nr_cpu_ids * sizeof(void **);
7305
6d6bc0ad 7306#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7307 }
df7c8e84 7308#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7309 for_each_possible_cpu(i) {
7310 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7311 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7312 }
b74e6278 7313#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7314
332ac17e
DF
7315 init_rt_bandwidth(&def_rt_bandwidth,
7316 global_rt_period(), global_rt_runtime());
7317 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7318 global_rt_period(), global_rt_runtime());
332ac17e 7319
57d885fe
GH
7320#ifdef CONFIG_SMP
7321 init_defrootdomain();
7322#endif
7323
d0b27fa7 7324#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7325 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7326 global_rt_period(), global_rt_runtime());
6d6bc0ad 7327#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7328
7c941438 7329#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7330 list_add(&root_task_group.list, &task_groups);
7331 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7332 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7333 autogroup_init(&init_task);
54c707e9 7334
7c941438 7335#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7336
0a945022 7337 for_each_possible_cpu(i) {
70b97a7f 7338 struct rq *rq;
1da177e4
LT
7339
7340 rq = cpu_rq(i);
05fa785c 7341 raw_spin_lock_init(&rq->lock);
7897986b 7342 rq->nr_running = 0;
dce48a84
TG
7343 rq->calc_load_active = 0;
7344 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7345 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7346 init_rt_rq(&rq->rt);
7347 init_dl_rq(&rq->dl);
dd41f596 7348#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7349 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7350 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7351 /*
07e06b01 7352 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7353 *
7354 * In case of task-groups formed thr' the cgroup filesystem, it
7355 * gets 100% of the cpu resources in the system. This overall
7356 * system cpu resource is divided among the tasks of
07e06b01 7357 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7358 * based on each entity's (task or task-group's) weight
7359 * (se->load.weight).
7360 *
07e06b01 7361 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7362 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7363 * then A0's share of the cpu resource is:
7364 *
0d905bca 7365 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7366 *
07e06b01
YZ
7367 * We achieve this by letting root_task_group's tasks sit
7368 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7369 */
ab84d31e 7370 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7371 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7372#endif /* CONFIG_FAIR_GROUP_SCHED */
7373
7374 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7375#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7376 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7377#endif
1da177e4 7378
dd41f596
IM
7379 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7380 rq->cpu_load[j] = 0;
fdf3e95d
VP
7381
7382 rq->last_load_update_tick = jiffies;
7383
1da177e4 7384#ifdef CONFIG_SMP
41c7ce9a 7385 rq->sd = NULL;
57d885fe 7386 rq->rd = NULL;
ca6d75e6 7387 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7388 rq->balance_callback = NULL;
1da177e4 7389 rq->active_balance = 0;
dd41f596 7390 rq->next_balance = jiffies;
1da177e4 7391 rq->push_cpu = 0;
0a2966b4 7392 rq->cpu = i;
1f11eb6a 7393 rq->online = 0;
eae0c9df
MG
7394 rq->idle_stamp = 0;
7395 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7396 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7397
7398 INIT_LIST_HEAD(&rq->cfs_tasks);
7399
dc938520 7400 rq_attach_root(rq, &def_root_domain);
3451d024 7401#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7402 rq->nohz_flags = 0;
83cd4fe2 7403#endif
265f22a9
FW
7404#ifdef CONFIG_NO_HZ_FULL
7405 rq->last_sched_tick = 0;
7406#endif
1da177e4 7407#endif
8f4d37ec 7408 init_rq_hrtick(rq);
1da177e4 7409 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7410 }
7411
2dd73a4f 7412 set_load_weight(&init_task);
b50f60ce 7413
e107be36
AK
7414#ifdef CONFIG_PREEMPT_NOTIFIERS
7415 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7416#endif
7417
1da177e4
LT
7418 /*
7419 * The boot idle thread does lazy MMU switching as well:
7420 */
7421 atomic_inc(&init_mm.mm_count);
7422 enter_lazy_tlb(&init_mm, current);
7423
1b537c7d
YD
7424 /*
7425 * During early bootup we pretend to be a normal task:
7426 */
7427 current->sched_class = &fair_sched_class;
7428
1da177e4
LT
7429 /*
7430 * Make us the idle thread. Technically, schedule() should not be
7431 * called from this thread, however somewhere below it might be,
7432 * but because we are the idle thread, we just pick up running again
7433 * when this runqueue becomes "idle".
7434 */
7435 init_idle(current, smp_processor_id());
dce48a84
TG
7436
7437 calc_load_update = jiffies + LOAD_FREQ;
7438
bf4d83f6 7439#ifdef CONFIG_SMP
4cb98839 7440 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7441 /* May be allocated at isolcpus cmdline parse time */
7442 if (cpu_isolated_map == NULL)
7443 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7444 idle_thread_set_boot_cpu();
a803f026 7445 set_cpu_rq_start_time();
029632fb
PZ
7446#endif
7447 init_sched_fair_class();
6a7b3dc3 7448
6892b75e 7449 scheduler_running = 1;
1da177e4
LT
7450}
7451
d902db1e 7452#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7453static inline int preempt_count_equals(int preempt_offset)
7454{
234da7bc 7455 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7456
4ba8216c 7457 return (nested == preempt_offset);
e4aafea2
FW
7458}
7459
d894837f 7460void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7461{
8eb23b9f
PZ
7462 /*
7463 * Blocking primitives will set (and therefore destroy) current->state,
7464 * since we will exit with TASK_RUNNING make sure we enter with it,
7465 * otherwise we will destroy state.
7466 */
00845eb9 7467 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7468 "do not call blocking ops when !TASK_RUNNING; "
7469 "state=%lx set at [<%p>] %pS\n",
7470 current->state,
7471 (void *)current->task_state_change,
00845eb9 7472 (void *)current->task_state_change);
8eb23b9f 7473
3427445a
PZ
7474 ___might_sleep(file, line, preempt_offset);
7475}
7476EXPORT_SYMBOL(__might_sleep);
7477
7478void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7479{
1da177e4
LT
7480 static unsigned long prev_jiffy; /* ratelimiting */
7481
b3fbab05 7482 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7483 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7484 !is_idle_task(current)) ||
e4aafea2 7485 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7486 return;
7487 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7488 return;
7489 prev_jiffy = jiffies;
7490
3df0fc5b
PZ
7491 printk(KERN_ERR
7492 "BUG: sleeping function called from invalid context at %s:%d\n",
7493 file, line);
7494 printk(KERN_ERR
7495 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7496 in_atomic(), irqs_disabled(),
7497 current->pid, current->comm);
aef745fc 7498
a8b686b3
ES
7499 if (task_stack_end_corrupted(current))
7500 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7501
aef745fc
IM
7502 debug_show_held_locks(current);
7503 if (irqs_disabled())
7504 print_irqtrace_events(current);
8f47b187
TG
7505#ifdef CONFIG_DEBUG_PREEMPT
7506 if (!preempt_count_equals(preempt_offset)) {
7507 pr_err("Preemption disabled at:");
7508 print_ip_sym(current->preempt_disable_ip);
7509 pr_cont("\n");
7510 }
7511#endif
aef745fc 7512 dump_stack();
1da177e4 7513}
3427445a 7514EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7515#endif
7516
7517#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7518void normalize_rt_tasks(void)
3a5e4dc1 7519{
dbc7f069 7520 struct task_struct *g, *p;
d50dde5a
DF
7521 struct sched_attr attr = {
7522 .sched_policy = SCHED_NORMAL,
7523 };
1da177e4 7524
3472eaa1 7525 read_lock(&tasklist_lock);
5d07f420 7526 for_each_process_thread(g, p) {
178be793
IM
7527 /*
7528 * Only normalize user tasks:
7529 */
3472eaa1 7530 if (p->flags & PF_KTHREAD)
178be793
IM
7531 continue;
7532
6cfb0d5d 7533 p->se.exec_start = 0;
6cfb0d5d 7534#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7535 p->se.statistics.wait_start = 0;
7536 p->se.statistics.sleep_start = 0;
7537 p->se.statistics.block_start = 0;
6cfb0d5d 7538#endif
dd41f596 7539
aab03e05 7540 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7541 /*
7542 * Renice negative nice level userspace
7543 * tasks back to 0:
7544 */
3472eaa1 7545 if (task_nice(p) < 0)
dd41f596 7546 set_user_nice(p, 0);
1da177e4 7547 continue;
dd41f596 7548 }
1da177e4 7549
dbc7f069 7550 __sched_setscheduler(p, &attr, false, false);
5d07f420 7551 }
3472eaa1 7552 read_unlock(&tasklist_lock);
1da177e4
LT
7553}
7554
7555#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7556
67fc4e0c 7557#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7558/*
67fc4e0c 7559 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7560 *
7561 * They can only be called when the whole system has been
7562 * stopped - every CPU needs to be quiescent, and no scheduling
7563 * activity can take place. Using them for anything else would
7564 * be a serious bug, and as a result, they aren't even visible
7565 * under any other configuration.
7566 */
7567
7568/**
7569 * curr_task - return the current task for a given cpu.
7570 * @cpu: the processor in question.
7571 *
7572 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7573 *
7574 * Return: The current task for @cpu.
1df5c10a 7575 */
36c8b586 7576struct task_struct *curr_task(int cpu)
1df5c10a
LT
7577{
7578 return cpu_curr(cpu);
7579}
7580
67fc4e0c
JW
7581#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7582
7583#ifdef CONFIG_IA64
1df5c10a
LT
7584/**
7585 * set_curr_task - set the current task for a given cpu.
7586 * @cpu: the processor in question.
7587 * @p: the task pointer to set.
7588 *
7589 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7590 * are serviced on a separate stack. It allows the architecture to switch the
7591 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7592 * must be called with all CPU's synchronized, and interrupts disabled, the
7593 * and caller must save the original value of the current task (see
7594 * curr_task() above) and restore that value before reenabling interrupts and
7595 * re-starting the system.
7596 *
7597 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7598 */
36c8b586 7599void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7600{
7601 cpu_curr(cpu) = p;
7602}
7603
7604#endif
29f59db3 7605
7c941438 7606#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7607/* task_group_lock serializes the addition/removal of task groups */
7608static DEFINE_SPINLOCK(task_group_lock);
7609
bccbe08a
PZ
7610static void free_sched_group(struct task_group *tg)
7611{
7612 free_fair_sched_group(tg);
7613 free_rt_sched_group(tg);
e9aa1dd1 7614 autogroup_free(tg);
bccbe08a
PZ
7615 kfree(tg);
7616}
7617
7618/* allocate runqueue etc for a new task group */
ec7dc8ac 7619struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7620{
7621 struct task_group *tg;
bccbe08a
PZ
7622
7623 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7624 if (!tg)
7625 return ERR_PTR(-ENOMEM);
7626
ec7dc8ac 7627 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7628 goto err;
7629
ec7dc8ac 7630 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7631 goto err;
7632
ace783b9
LZ
7633 return tg;
7634
7635err:
7636 free_sched_group(tg);
7637 return ERR_PTR(-ENOMEM);
7638}
7639
7640void sched_online_group(struct task_group *tg, struct task_group *parent)
7641{
7642 unsigned long flags;
7643
8ed36996 7644 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7645 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7646
7647 WARN_ON(!parent); /* root should already exist */
7648
7649 tg->parent = parent;
f473aa5e 7650 INIT_LIST_HEAD(&tg->children);
09f2724a 7651 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7652 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7653}
7654
9b5b7751 7655/* rcu callback to free various structures associated with a task group */
6f505b16 7656static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7657{
29f59db3 7658 /* now it should be safe to free those cfs_rqs */
6f505b16 7659 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7660}
7661
9b5b7751 7662/* Destroy runqueue etc associated with a task group */
4cf86d77 7663void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7664{
7665 /* wait for possible concurrent references to cfs_rqs complete */
7666 call_rcu(&tg->rcu, free_sched_group_rcu);
7667}
7668
7669void sched_offline_group(struct task_group *tg)
29f59db3 7670{
8ed36996 7671 unsigned long flags;
9b5b7751 7672 int i;
29f59db3 7673
3d4b47b4
PZ
7674 /* end participation in shares distribution */
7675 for_each_possible_cpu(i)
bccbe08a 7676 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7677
7678 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7679 list_del_rcu(&tg->list);
f473aa5e 7680 list_del_rcu(&tg->siblings);
8ed36996 7681 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7682}
7683
9b5b7751 7684/* change task's runqueue when it moves between groups.
3a252015
IM
7685 * The caller of this function should have put the task in its new group
7686 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7687 * reflect its new group.
9b5b7751
SV
7688 */
7689void sched_move_task(struct task_struct *tsk)
29f59db3 7690{
8323f26c 7691 struct task_group *tg;
da0c1e65 7692 int queued, running;
29f59db3
SV
7693 unsigned long flags;
7694 struct rq *rq;
7695
7696 rq = task_rq_lock(tsk, &flags);
7697
051a1d1a 7698 running = task_current(rq, tsk);
da0c1e65 7699 queued = task_on_rq_queued(tsk);
29f59db3 7700
da0c1e65 7701 if (queued)
29f59db3 7702 dequeue_task(rq, tsk, 0);
0e1f3483 7703 if (unlikely(running))
f3cd1c4e 7704 put_prev_task(rq, tsk);
29f59db3 7705
f7b8a47d
KT
7706 /*
7707 * All callers are synchronized by task_rq_lock(); we do not use RCU
7708 * which is pointless here. Thus, we pass "true" to task_css_check()
7709 * to prevent lockdep warnings.
7710 */
7711 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7712 struct task_group, css);
7713 tg = autogroup_task_group(tsk, tg);
7714 tsk->sched_task_group = tg;
7715
810b3817 7716#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7717 if (tsk->sched_class->task_move_group)
bc54da21 7718 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7719 else
810b3817 7720#endif
b2b5ce02 7721 set_task_rq(tsk, task_cpu(tsk));
810b3817 7722
0e1f3483
HS
7723 if (unlikely(running))
7724 tsk->sched_class->set_curr_task(rq);
da0c1e65 7725 if (queued)
371fd7e7 7726 enqueue_task(rq, tsk, 0);
29f59db3 7727
0122ec5b 7728 task_rq_unlock(rq, tsk, &flags);
29f59db3 7729}
7c941438 7730#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7731
a790de99
PT
7732#ifdef CONFIG_RT_GROUP_SCHED
7733/*
7734 * Ensure that the real time constraints are schedulable.
7735 */
7736static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7737
9a7e0b18
PZ
7738/* Must be called with tasklist_lock held */
7739static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7740{
9a7e0b18 7741 struct task_struct *g, *p;
b40b2e8e 7742
1fe89e1b
PZ
7743 /*
7744 * Autogroups do not have RT tasks; see autogroup_create().
7745 */
7746 if (task_group_is_autogroup(tg))
7747 return 0;
7748
5d07f420 7749 for_each_process_thread(g, p) {
8651c658 7750 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7751 return 1;
5d07f420 7752 }
b40b2e8e 7753
9a7e0b18
PZ
7754 return 0;
7755}
b40b2e8e 7756
9a7e0b18
PZ
7757struct rt_schedulable_data {
7758 struct task_group *tg;
7759 u64 rt_period;
7760 u64 rt_runtime;
7761};
b40b2e8e 7762
a790de99 7763static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7764{
7765 struct rt_schedulable_data *d = data;
7766 struct task_group *child;
7767 unsigned long total, sum = 0;
7768 u64 period, runtime;
b40b2e8e 7769
9a7e0b18
PZ
7770 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7771 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7772
9a7e0b18
PZ
7773 if (tg == d->tg) {
7774 period = d->rt_period;
7775 runtime = d->rt_runtime;
b40b2e8e 7776 }
b40b2e8e 7777
4653f803
PZ
7778 /*
7779 * Cannot have more runtime than the period.
7780 */
7781 if (runtime > period && runtime != RUNTIME_INF)
7782 return -EINVAL;
6f505b16 7783
4653f803
PZ
7784 /*
7785 * Ensure we don't starve existing RT tasks.
7786 */
9a7e0b18
PZ
7787 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7788 return -EBUSY;
6f505b16 7789
9a7e0b18 7790 total = to_ratio(period, runtime);
6f505b16 7791
4653f803
PZ
7792 /*
7793 * Nobody can have more than the global setting allows.
7794 */
7795 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7796 return -EINVAL;
6f505b16 7797
4653f803
PZ
7798 /*
7799 * The sum of our children's runtime should not exceed our own.
7800 */
9a7e0b18
PZ
7801 list_for_each_entry_rcu(child, &tg->children, siblings) {
7802 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7803 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7804
9a7e0b18
PZ
7805 if (child == d->tg) {
7806 period = d->rt_period;
7807 runtime = d->rt_runtime;
7808 }
6f505b16 7809
9a7e0b18 7810 sum += to_ratio(period, runtime);
9f0c1e56 7811 }
6f505b16 7812
9a7e0b18
PZ
7813 if (sum > total)
7814 return -EINVAL;
7815
7816 return 0;
6f505b16
PZ
7817}
7818
9a7e0b18 7819static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7820{
8277434e
PT
7821 int ret;
7822
9a7e0b18
PZ
7823 struct rt_schedulable_data data = {
7824 .tg = tg,
7825 .rt_period = period,
7826 .rt_runtime = runtime,
7827 };
7828
8277434e
PT
7829 rcu_read_lock();
7830 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7831 rcu_read_unlock();
7832
7833 return ret;
521f1a24
DG
7834}
7835
ab84d31e 7836static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7837 u64 rt_period, u64 rt_runtime)
6f505b16 7838{
ac086bc2 7839 int i, err = 0;
9f0c1e56 7840
2636ed5f
PZ
7841 /*
7842 * Disallowing the root group RT runtime is BAD, it would disallow the
7843 * kernel creating (and or operating) RT threads.
7844 */
7845 if (tg == &root_task_group && rt_runtime == 0)
7846 return -EINVAL;
7847
7848 /* No period doesn't make any sense. */
7849 if (rt_period == 0)
7850 return -EINVAL;
7851
9f0c1e56 7852 mutex_lock(&rt_constraints_mutex);
521f1a24 7853 read_lock(&tasklist_lock);
9a7e0b18
PZ
7854 err = __rt_schedulable(tg, rt_period, rt_runtime);
7855 if (err)
9f0c1e56 7856 goto unlock;
ac086bc2 7857
0986b11b 7858 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7859 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7860 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7861
7862 for_each_possible_cpu(i) {
7863 struct rt_rq *rt_rq = tg->rt_rq[i];
7864
0986b11b 7865 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7866 rt_rq->rt_runtime = rt_runtime;
0986b11b 7867 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7868 }
0986b11b 7869 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7870unlock:
521f1a24 7871 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7872 mutex_unlock(&rt_constraints_mutex);
7873
7874 return err;
6f505b16
PZ
7875}
7876
25cc7da7 7877static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7878{
7879 u64 rt_runtime, rt_period;
7880
7881 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7882 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7883 if (rt_runtime_us < 0)
7884 rt_runtime = RUNTIME_INF;
7885
ab84d31e 7886 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7887}
7888
25cc7da7 7889static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7890{
7891 u64 rt_runtime_us;
7892
d0b27fa7 7893 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7894 return -1;
7895
d0b27fa7 7896 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7897 do_div(rt_runtime_us, NSEC_PER_USEC);
7898 return rt_runtime_us;
7899}
d0b27fa7 7900
ce2f5fe4 7901static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7902{
7903 u64 rt_runtime, rt_period;
7904
ce2f5fe4 7905 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7906 rt_runtime = tg->rt_bandwidth.rt_runtime;
7907
ab84d31e 7908 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7909}
7910
25cc7da7 7911static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7912{
7913 u64 rt_period_us;
7914
7915 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7916 do_div(rt_period_us, NSEC_PER_USEC);
7917 return rt_period_us;
7918}
332ac17e 7919#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7920
332ac17e 7921#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7922static int sched_rt_global_constraints(void)
7923{
7924 int ret = 0;
7925
7926 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7927 read_lock(&tasklist_lock);
4653f803 7928 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7929 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7930 mutex_unlock(&rt_constraints_mutex);
7931
7932 return ret;
7933}
54e99124 7934
25cc7da7 7935static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7936{
7937 /* Don't accept realtime tasks when there is no way for them to run */
7938 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7939 return 0;
7940
7941 return 1;
7942}
7943
6d6bc0ad 7944#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7945static int sched_rt_global_constraints(void)
7946{
ac086bc2 7947 unsigned long flags;
332ac17e 7948 int i, ret = 0;
ec5d4989 7949
0986b11b 7950 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7951 for_each_possible_cpu(i) {
7952 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7953
0986b11b 7954 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7955 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7956 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7957 }
0986b11b 7958 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7959
332ac17e 7960 return ret;
d0b27fa7 7961}
6d6bc0ad 7962#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7963
a1963b81 7964static int sched_dl_global_validate(void)
332ac17e 7965{
1724813d
PZ
7966 u64 runtime = global_rt_runtime();
7967 u64 period = global_rt_period();
332ac17e 7968 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7969 struct dl_bw *dl_b;
1724813d 7970 int cpu, ret = 0;
49516342 7971 unsigned long flags;
332ac17e
DF
7972
7973 /*
7974 * Here we want to check the bandwidth not being set to some
7975 * value smaller than the currently allocated bandwidth in
7976 * any of the root_domains.
7977 *
7978 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7979 * cycling on root_domains... Discussion on different/better
7980 * solutions is welcome!
7981 */
1724813d 7982 for_each_possible_cpu(cpu) {
f10e00f4
KT
7983 rcu_read_lock_sched();
7984 dl_b = dl_bw_of(cpu);
332ac17e 7985
49516342 7986 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7987 if (new_bw < dl_b->total_bw)
7988 ret = -EBUSY;
49516342 7989 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7990
f10e00f4
KT
7991 rcu_read_unlock_sched();
7992
1724813d
PZ
7993 if (ret)
7994 break;
332ac17e
DF
7995 }
7996
1724813d 7997 return ret;
332ac17e
DF
7998}
7999
1724813d 8000static void sched_dl_do_global(void)
ce0dbbbb 8001{
1724813d 8002 u64 new_bw = -1;
f10e00f4 8003 struct dl_bw *dl_b;
1724813d 8004 int cpu;
49516342 8005 unsigned long flags;
ce0dbbbb 8006
1724813d
PZ
8007 def_dl_bandwidth.dl_period = global_rt_period();
8008 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8009
8010 if (global_rt_runtime() != RUNTIME_INF)
8011 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8012
8013 /*
8014 * FIXME: As above...
8015 */
8016 for_each_possible_cpu(cpu) {
f10e00f4
KT
8017 rcu_read_lock_sched();
8018 dl_b = dl_bw_of(cpu);
1724813d 8019
49516342 8020 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8021 dl_b->bw = new_bw;
49516342 8022 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8023
8024 rcu_read_unlock_sched();
ce0dbbbb 8025 }
1724813d
PZ
8026}
8027
8028static int sched_rt_global_validate(void)
8029{
8030 if (sysctl_sched_rt_period <= 0)
8031 return -EINVAL;
8032
e9e7cb38
JL
8033 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8034 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8035 return -EINVAL;
8036
8037 return 0;
8038}
8039
8040static void sched_rt_do_global(void)
8041{
8042 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8043 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8044}
8045
d0b27fa7 8046int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8047 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8048 loff_t *ppos)
8049{
d0b27fa7
PZ
8050 int old_period, old_runtime;
8051 static DEFINE_MUTEX(mutex);
1724813d 8052 int ret;
d0b27fa7
PZ
8053
8054 mutex_lock(&mutex);
8055 old_period = sysctl_sched_rt_period;
8056 old_runtime = sysctl_sched_rt_runtime;
8057
8d65af78 8058 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8059
8060 if (!ret && write) {
1724813d
PZ
8061 ret = sched_rt_global_validate();
8062 if (ret)
8063 goto undo;
8064
a1963b81 8065 ret = sched_dl_global_validate();
1724813d
PZ
8066 if (ret)
8067 goto undo;
8068
a1963b81 8069 ret = sched_rt_global_constraints();
1724813d
PZ
8070 if (ret)
8071 goto undo;
8072
8073 sched_rt_do_global();
8074 sched_dl_do_global();
8075 }
8076 if (0) {
8077undo:
8078 sysctl_sched_rt_period = old_period;
8079 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8080 }
8081 mutex_unlock(&mutex);
8082
8083 return ret;
8084}
68318b8e 8085
1724813d 8086int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8087 void __user *buffer, size_t *lenp,
8088 loff_t *ppos)
8089{
8090 int ret;
332ac17e 8091 static DEFINE_MUTEX(mutex);
332ac17e
DF
8092
8093 mutex_lock(&mutex);
332ac17e 8094 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8095 /* make sure that internally we keep jiffies */
8096 /* also, writing zero resets timeslice to default */
332ac17e 8097 if (!ret && write) {
1724813d
PZ
8098 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8099 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8100 }
8101 mutex_unlock(&mutex);
332ac17e
DF
8102 return ret;
8103}
8104
052f1dc7 8105#ifdef CONFIG_CGROUP_SCHED
68318b8e 8106
a7c6d554 8107static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8108{
a7c6d554 8109 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8110}
8111
eb95419b
TH
8112static struct cgroup_subsys_state *
8113cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8114{
eb95419b
TH
8115 struct task_group *parent = css_tg(parent_css);
8116 struct task_group *tg;
68318b8e 8117
eb95419b 8118 if (!parent) {
68318b8e 8119 /* This is early initialization for the top cgroup */
07e06b01 8120 return &root_task_group.css;
68318b8e
SV
8121 }
8122
ec7dc8ac 8123 tg = sched_create_group(parent);
68318b8e
SV
8124 if (IS_ERR(tg))
8125 return ERR_PTR(-ENOMEM);
8126
68318b8e
SV
8127 return &tg->css;
8128}
8129
eb95419b 8130static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8131{
eb95419b 8132 struct task_group *tg = css_tg(css);
5c9d535b 8133 struct task_group *parent = css_tg(css->parent);
ace783b9 8134
63876986
TH
8135 if (parent)
8136 sched_online_group(tg, parent);
ace783b9
LZ
8137 return 0;
8138}
8139
eb95419b 8140static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8141{
eb95419b 8142 struct task_group *tg = css_tg(css);
68318b8e
SV
8143
8144 sched_destroy_group(tg);
8145}
8146
eb95419b 8147static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8148{
eb95419b 8149 struct task_group *tg = css_tg(css);
ace783b9
LZ
8150
8151 sched_offline_group(tg);
8152}
8153
7e47682e 8154static void cpu_cgroup_fork(struct task_struct *task, void *private)
eeb61e53
KT
8155{
8156 sched_move_task(task);
8157}
8158
eb95419b 8159static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8160 struct cgroup_taskset *tset)
68318b8e 8161{
bb9d97b6
TH
8162 struct task_struct *task;
8163
924f0d9a 8164 cgroup_taskset_for_each(task, tset) {
b68aa230 8165#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8166 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8167 return -EINVAL;
b68aa230 8168#else
bb9d97b6
TH
8169 /* We don't support RT-tasks being in separate groups */
8170 if (task->sched_class != &fair_sched_class)
8171 return -EINVAL;
b68aa230 8172#endif
bb9d97b6 8173 }
be367d09
BB
8174 return 0;
8175}
68318b8e 8176
eb95419b 8177static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8178 struct cgroup_taskset *tset)
68318b8e 8179{
bb9d97b6
TH
8180 struct task_struct *task;
8181
924f0d9a 8182 cgroup_taskset_for_each(task, tset)
bb9d97b6 8183 sched_move_task(task);
68318b8e
SV
8184}
8185
eb95419b
TH
8186static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8187 struct cgroup_subsys_state *old_css,
8188 struct task_struct *task)
068c5cc5 8189{
068c5cc5
PZ
8190 sched_move_task(task);
8191}
8192
052f1dc7 8193#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8194static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8195 struct cftype *cftype, u64 shareval)
68318b8e 8196{
182446d0 8197 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8198}
8199
182446d0
TH
8200static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8201 struct cftype *cft)
68318b8e 8202{
182446d0 8203 struct task_group *tg = css_tg(css);
68318b8e 8204
c8b28116 8205 return (u64) scale_load_down(tg->shares);
68318b8e 8206}
ab84d31e
PT
8207
8208#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8209static DEFINE_MUTEX(cfs_constraints_mutex);
8210
ab84d31e
PT
8211const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8212const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8213
a790de99
PT
8214static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8215
ab84d31e
PT
8216static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8217{
56f570e5 8218 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8219 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8220
8221 if (tg == &root_task_group)
8222 return -EINVAL;
8223
8224 /*
8225 * Ensure we have at some amount of bandwidth every period. This is
8226 * to prevent reaching a state of large arrears when throttled via
8227 * entity_tick() resulting in prolonged exit starvation.
8228 */
8229 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8230 return -EINVAL;
8231
8232 /*
8233 * Likewise, bound things on the otherside by preventing insane quota
8234 * periods. This also allows us to normalize in computing quota
8235 * feasibility.
8236 */
8237 if (period > max_cfs_quota_period)
8238 return -EINVAL;
8239
0e59bdae
KT
8240 /*
8241 * Prevent race between setting of cfs_rq->runtime_enabled and
8242 * unthrottle_offline_cfs_rqs().
8243 */
8244 get_online_cpus();
a790de99
PT
8245 mutex_lock(&cfs_constraints_mutex);
8246 ret = __cfs_schedulable(tg, period, quota);
8247 if (ret)
8248 goto out_unlock;
8249
58088ad0 8250 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8251 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8252 /*
8253 * If we need to toggle cfs_bandwidth_used, off->on must occur
8254 * before making related changes, and on->off must occur afterwards
8255 */
8256 if (runtime_enabled && !runtime_was_enabled)
8257 cfs_bandwidth_usage_inc();
ab84d31e
PT
8258 raw_spin_lock_irq(&cfs_b->lock);
8259 cfs_b->period = ns_to_ktime(period);
8260 cfs_b->quota = quota;
58088ad0 8261
a9cf55b2 8262 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8263 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8264 if (runtime_enabled)
8265 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8266 raw_spin_unlock_irq(&cfs_b->lock);
8267
0e59bdae 8268 for_each_online_cpu(i) {
ab84d31e 8269 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8270 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8271
8272 raw_spin_lock_irq(&rq->lock);
58088ad0 8273 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8274 cfs_rq->runtime_remaining = 0;
671fd9da 8275
029632fb 8276 if (cfs_rq->throttled)
671fd9da 8277 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8278 raw_spin_unlock_irq(&rq->lock);
8279 }
1ee14e6c
BS
8280 if (runtime_was_enabled && !runtime_enabled)
8281 cfs_bandwidth_usage_dec();
a790de99
PT
8282out_unlock:
8283 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8284 put_online_cpus();
ab84d31e 8285
a790de99 8286 return ret;
ab84d31e
PT
8287}
8288
8289int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8290{
8291 u64 quota, period;
8292
029632fb 8293 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8294 if (cfs_quota_us < 0)
8295 quota = RUNTIME_INF;
8296 else
8297 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8298
8299 return tg_set_cfs_bandwidth(tg, period, quota);
8300}
8301
8302long tg_get_cfs_quota(struct task_group *tg)
8303{
8304 u64 quota_us;
8305
029632fb 8306 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8307 return -1;
8308
029632fb 8309 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8310 do_div(quota_us, NSEC_PER_USEC);
8311
8312 return quota_us;
8313}
8314
8315int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8316{
8317 u64 quota, period;
8318
8319 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8320 quota = tg->cfs_bandwidth.quota;
ab84d31e 8321
ab84d31e
PT
8322 return tg_set_cfs_bandwidth(tg, period, quota);
8323}
8324
8325long tg_get_cfs_period(struct task_group *tg)
8326{
8327 u64 cfs_period_us;
8328
029632fb 8329 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8330 do_div(cfs_period_us, NSEC_PER_USEC);
8331
8332 return cfs_period_us;
8333}
8334
182446d0
TH
8335static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8336 struct cftype *cft)
ab84d31e 8337{
182446d0 8338 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8339}
8340
182446d0
TH
8341static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8342 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8343{
182446d0 8344 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8345}
8346
182446d0
TH
8347static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8348 struct cftype *cft)
ab84d31e 8349{
182446d0 8350 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8351}
8352
182446d0
TH
8353static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8354 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8355{
182446d0 8356 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8357}
8358
a790de99
PT
8359struct cfs_schedulable_data {
8360 struct task_group *tg;
8361 u64 period, quota;
8362};
8363
8364/*
8365 * normalize group quota/period to be quota/max_period
8366 * note: units are usecs
8367 */
8368static u64 normalize_cfs_quota(struct task_group *tg,
8369 struct cfs_schedulable_data *d)
8370{
8371 u64 quota, period;
8372
8373 if (tg == d->tg) {
8374 period = d->period;
8375 quota = d->quota;
8376 } else {
8377 period = tg_get_cfs_period(tg);
8378 quota = tg_get_cfs_quota(tg);
8379 }
8380
8381 /* note: these should typically be equivalent */
8382 if (quota == RUNTIME_INF || quota == -1)
8383 return RUNTIME_INF;
8384
8385 return to_ratio(period, quota);
8386}
8387
8388static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8389{
8390 struct cfs_schedulable_data *d = data;
029632fb 8391 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8392 s64 quota = 0, parent_quota = -1;
8393
8394 if (!tg->parent) {
8395 quota = RUNTIME_INF;
8396 } else {
029632fb 8397 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8398
8399 quota = normalize_cfs_quota(tg, d);
9c58c79a 8400 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8401
8402 /*
8403 * ensure max(child_quota) <= parent_quota, inherit when no
8404 * limit is set
8405 */
8406 if (quota == RUNTIME_INF)
8407 quota = parent_quota;
8408 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8409 return -EINVAL;
8410 }
9c58c79a 8411 cfs_b->hierarchical_quota = quota;
a790de99
PT
8412
8413 return 0;
8414}
8415
8416static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8417{
8277434e 8418 int ret;
a790de99
PT
8419 struct cfs_schedulable_data data = {
8420 .tg = tg,
8421 .period = period,
8422 .quota = quota,
8423 };
8424
8425 if (quota != RUNTIME_INF) {
8426 do_div(data.period, NSEC_PER_USEC);
8427 do_div(data.quota, NSEC_PER_USEC);
8428 }
8429
8277434e
PT
8430 rcu_read_lock();
8431 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8432 rcu_read_unlock();
8433
8434 return ret;
a790de99 8435}
e8da1b18 8436
2da8ca82 8437static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8438{
2da8ca82 8439 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8440 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8441
44ffc75b
TH
8442 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8443 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8444 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8445
8446 return 0;
8447}
ab84d31e 8448#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8449#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8450
052f1dc7 8451#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8452static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8453 struct cftype *cft, s64 val)
6f505b16 8454{
182446d0 8455 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8456}
8457
182446d0
TH
8458static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8459 struct cftype *cft)
6f505b16 8460{
182446d0 8461 return sched_group_rt_runtime(css_tg(css));
6f505b16 8462}
d0b27fa7 8463
182446d0
TH
8464static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8465 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8466{
182446d0 8467 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8468}
8469
182446d0
TH
8470static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8471 struct cftype *cft)
d0b27fa7 8472{
182446d0 8473 return sched_group_rt_period(css_tg(css));
d0b27fa7 8474}
6d6bc0ad 8475#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8476
fe5c7cc2 8477static struct cftype cpu_files[] = {
052f1dc7 8478#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8479 {
8480 .name = "shares",
f4c753b7
PM
8481 .read_u64 = cpu_shares_read_u64,
8482 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8483 },
052f1dc7 8484#endif
ab84d31e
PT
8485#ifdef CONFIG_CFS_BANDWIDTH
8486 {
8487 .name = "cfs_quota_us",
8488 .read_s64 = cpu_cfs_quota_read_s64,
8489 .write_s64 = cpu_cfs_quota_write_s64,
8490 },
8491 {
8492 .name = "cfs_period_us",
8493 .read_u64 = cpu_cfs_period_read_u64,
8494 .write_u64 = cpu_cfs_period_write_u64,
8495 },
e8da1b18
NR
8496 {
8497 .name = "stat",
2da8ca82 8498 .seq_show = cpu_stats_show,
e8da1b18 8499 },
ab84d31e 8500#endif
052f1dc7 8501#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8502 {
9f0c1e56 8503 .name = "rt_runtime_us",
06ecb27c
PM
8504 .read_s64 = cpu_rt_runtime_read,
8505 .write_s64 = cpu_rt_runtime_write,
6f505b16 8506 },
d0b27fa7
PZ
8507 {
8508 .name = "rt_period_us",
f4c753b7
PM
8509 .read_u64 = cpu_rt_period_read_uint,
8510 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8511 },
052f1dc7 8512#endif
4baf6e33 8513 { } /* terminate */
68318b8e
SV
8514};
8515
073219e9 8516struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8517 .css_alloc = cpu_cgroup_css_alloc,
8518 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8519 .css_online = cpu_cgroup_css_online,
8520 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8521 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8522 .can_attach = cpu_cgroup_can_attach,
8523 .attach = cpu_cgroup_attach,
068c5cc5 8524 .exit = cpu_cgroup_exit,
5577964e 8525 .legacy_cftypes = cpu_files,
68318b8e
SV
8526 .early_init = 1,
8527};
8528
052f1dc7 8529#endif /* CONFIG_CGROUP_SCHED */
d842de87 8530
b637a328
PM
8531void dump_cpu_task(int cpu)
8532{
8533 pr_info("Task dump for CPU %d:\n", cpu);
8534 sched_show_task(cpu_curr(cpu));
8535}
This page took 2.713018 seconds and 5 git commands to generate.