sched/cputime: Fix invalid gtime in proc
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
1a687c2e 226 i = sched_feat_set(cmp);
5cd08fbf 227 mutex_unlock(&inode->i_mutex);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
fd99f91a
PZ
456/*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459#define fetch_or(ptr, val) \
460({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468})
469
e3baac47 470#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
471/*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476static bool set_nr_and_not_polling(struct task_struct *p)
477{
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480}
e3baac47
PZ
481
482/*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488static bool set_nr_if_polling(struct task_struct *p)
489{
490 struct thread_info *ti = task_thread_info(p);
316c1608 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504}
505
fd99f91a
PZ
506#else
507static bool set_nr_and_not_polling(struct task_struct *p)
508{
509 set_tsk_need_resched(p);
510 return true;
511}
e3baac47
PZ
512
513#ifdef CONFIG_SMP
514static bool set_nr_if_polling(struct task_struct *p)
515{
516 return false;
517}
518#endif
fd99f91a
PZ
519#endif
520
76751049
PZ
521void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522{
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543}
544
545void wake_up_q(struct wake_q_head *head)
546{
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565}
566
c24d20db 567/*
8875125e 568 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
8875125e 574void resched_curr(struct rq *rq)
c24d20db 575{
8875125e 576 struct task_struct *curr = rq->curr;
c24d20db
IM
577 int cpu;
578
8875125e 579 lockdep_assert_held(&rq->lock);
c24d20db 580
8875125e 581 if (test_tsk_need_resched(curr))
c24d20db
IM
582 return;
583
8875125e 584 cpu = cpu_of(rq);
fd99f91a 585
f27dde8d 586 if (cpu == smp_processor_id()) {
8875125e 587 set_tsk_need_resched(curr);
f27dde8d 588 set_preempt_need_resched();
c24d20db 589 return;
f27dde8d 590 }
c24d20db 591
8875125e 592 if (set_nr_and_not_polling(curr))
c24d20db 593 smp_send_reschedule(cpu);
dfc68f29
AL
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
596}
597
029632fb 598void resched_cpu(int cpu)
c24d20db
IM
599{
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
05fa785c 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 604 return;
8875125e 605 resched_curr(rq);
05fa785c 606 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 607}
06d8308c 608
b021fe3e 609#ifdef CONFIG_SMP
3451d024 610#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
611/*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
bc7a34b8 619int get_nohz_timer_target(void)
83cd4fe2 620{
bc7a34b8 621 int i, cpu = smp_processor_id();
83cd4fe2
VP
622 struct sched_domain *sd;
623
9642d18e 624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
625 return cpu;
626
057f3fad 627 rcu_read_lock();
83cd4fe2 628 for_each_domain(cpu, sd) {
057f3fad 629 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
631 cpu = i;
632 goto unlock;
633 }
634 }
83cd4fe2 635 }
9642d18e
VH
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
20f9cd2a 820 if (idle_policy(p->policy)) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
1de64443 830static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
1de64443
PZ
833 if (!(flags & ENQUEUE_RESTORE))
834 sched_info_queued(rq, p);
371fd7e7 835 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
836}
837
1de64443 838static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 839{
a64692a3 840 update_rq_clock(rq);
1de64443
PZ
841 if (!(flags & DEQUEUE_SAVE))
842 sched_info_dequeued(rq, p);
371fd7e7 843 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
844}
845
029632fb 846void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
847{
848 if (task_contributes_to_load(p))
849 rq->nr_uninterruptible--;
850
371fd7e7 851 enqueue_task(rq, p, flags);
1e3c88bd
PZ
852}
853
029632fb 854void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
855{
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible++;
858
371fd7e7 859 dequeue_task(rq, p, flags);
1e3c88bd
PZ
860}
861
fe44d621 862static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 863{
095c0aa8
GC
864/*
865 * In theory, the compile should just see 0 here, and optimize out the call
866 * to sched_rt_avg_update. But I don't trust it...
867 */
868#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 s64 steal = 0, irq_delta = 0;
870#endif
871#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 872 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
873
874 /*
875 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 * this case when a previous update_rq_clock() happened inside a
877 * {soft,}irq region.
878 *
879 * When this happens, we stop ->clock_task and only update the
880 * prev_irq_time stamp to account for the part that fit, so that a next
881 * update will consume the rest. This ensures ->clock_task is
882 * monotonic.
883 *
884 * It does however cause some slight miss-attribution of {soft,}irq
885 * time, a more accurate solution would be to update the irq_time using
886 * the current rq->clock timestamp, except that would require using
887 * atomic ops.
888 */
889 if (irq_delta > delta)
890 irq_delta = delta;
891
892 rq->prev_irq_time += irq_delta;
893 delta -= irq_delta;
095c0aa8
GC
894#endif
895#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 896 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
897 steal = paravirt_steal_clock(cpu_of(rq));
898 steal -= rq->prev_steal_time_rq;
899
900 if (unlikely(steal > delta))
901 steal = delta;
902
095c0aa8 903 rq->prev_steal_time_rq += steal;
095c0aa8
GC
904 delta -= steal;
905 }
906#endif
907
fe44d621
PZ
908 rq->clock_task += delta;
909
095c0aa8 910#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 911 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
912 sched_rt_avg_update(rq, irq_delta + steal);
913#endif
aa483808
VP
914}
915
34f971f6
PZ
916void sched_set_stop_task(int cpu, struct task_struct *stop)
917{
918 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 struct task_struct *old_stop = cpu_rq(cpu)->stop;
920
921 if (stop) {
922 /*
923 * Make it appear like a SCHED_FIFO task, its something
924 * userspace knows about and won't get confused about.
925 *
926 * Also, it will make PI more or less work without too
927 * much confusion -- but then, stop work should not
928 * rely on PI working anyway.
929 */
930 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931
932 stop->sched_class = &stop_sched_class;
933 }
934
935 cpu_rq(cpu)->stop = stop;
936
937 if (old_stop) {
938 /*
939 * Reset it back to a normal scheduling class so that
940 * it can die in pieces.
941 */
942 old_stop->sched_class = &rt_sched_class;
943 }
944}
945
14531189 946/*
dd41f596 947 * __normal_prio - return the priority that is based on the static prio
14531189 948 */
14531189
IM
949static inline int __normal_prio(struct task_struct *p)
950{
dd41f596 951 return p->static_prio;
14531189
IM
952}
953
b29739f9
IM
954/*
955 * Calculate the expected normal priority: i.e. priority
956 * without taking RT-inheritance into account. Might be
957 * boosted by interactivity modifiers. Changes upon fork,
958 * setprio syscalls, and whenever the interactivity
959 * estimator recalculates.
960 */
36c8b586 961static inline int normal_prio(struct task_struct *p)
b29739f9
IM
962{
963 int prio;
964
aab03e05
DF
965 if (task_has_dl_policy(p))
966 prio = MAX_DL_PRIO-1;
967 else if (task_has_rt_policy(p))
b29739f9
IM
968 prio = MAX_RT_PRIO-1 - p->rt_priority;
969 else
970 prio = __normal_prio(p);
971 return prio;
972}
973
974/*
975 * Calculate the current priority, i.e. the priority
976 * taken into account by the scheduler. This value might
977 * be boosted by RT tasks, or might be boosted by
978 * interactivity modifiers. Will be RT if the task got
979 * RT-boosted. If not then it returns p->normal_prio.
980 */
36c8b586 981static int effective_prio(struct task_struct *p)
b29739f9
IM
982{
983 p->normal_prio = normal_prio(p);
984 /*
985 * If we are RT tasks or we were boosted to RT priority,
986 * keep the priority unchanged. Otherwise, update priority
987 * to the normal priority:
988 */
989 if (!rt_prio(p->prio))
990 return p->normal_prio;
991 return p->prio;
992}
993
1da177e4
LT
994/**
995 * task_curr - is this task currently executing on a CPU?
996 * @p: the task in question.
e69f6186
YB
997 *
998 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 999 */
36c8b586 1000inline int task_curr(const struct task_struct *p)
1da177e4
LT
1001{
1002 return cpu_curr(task_cpu(p)) == p;
1003}
1004
67dfa1b7 1005/*
4c9a4bc8
PZ
1006 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007 * use the balance_callback list if you want balancing.
1008 *
1009 * this means any call to check_class_changed() must be followed by a call to
1010 * balance_callback().
67dfa1b7 1011 */
cb469845
SR
1012static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 const struct sched_class *prev_class,
da7a735e 1014 int oldprio)
cb469845
SR
1015{
1016 if (prev_class != p->sched_class) {
1017 if (prev_class->switched_from)
da7a735e 1018 prev_class->switched_from(rq, p);
4c9a4bc8 1019
da7a735e 1020 p->sched_class->switched_to(rq, p);
2d3d891d 1021 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1022 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1023}
1024
029632fb 1025void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1026{
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
8875125e 1036 resched_curr(rq);
1e5a7405
PZ
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
da0c1e65 1046 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1047 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1048}
1049
1da177e4 1050#ifdef CONFIG_SMP
5cc389bc
PZ
1051/*
1052 * This is how migration works:
1053 *
1054 * 1) we invoke migration_cpu_stop() on the target CPU using
1055 * stop_one_cpu().
1056 * 2) stopper starts to run (implicitly forcing the migrated thread
1057 * off the CPU)
1058 * 3) it checks whether the migrated task is still in the wrong runqueue.
1059 * 4) if it's in the wrong runqueue then the migration thread removes
1060 * it and puts it into the right queue.
1061 * 5) stopper completes and stop_one_cpu() returns and the migration
1062 * is done.
1063 */
1064
1065/*
1066 * move_queued_task - move a queued task to new rq.
1067 *
1068 * Returns (locked) new rq. Old rq's lock is released.
1069 */
5e16bbc2 1070static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1071{
5cc389bc
PZ
1072 lockdep_assert_held(&rq->lock);
1073
1074 dequeue_task(rq, p, 0);
1075 p->on_rq = TASK_ON_RQ_MIGRATING;
1076 set_task_cpu(p, new_cpu);
1077 raw_spin_unlock(&rq->lock);
1078
1079 rq = cpu_rq(new_cpu);
1080
1081 raw_spin_lock(&rq->lock);
1082 BUG_ON(task_cpu(p) != new_cpu);
1083 p->on_rq = TASK_ON_RQ_QUEUED;
1084 enqueue_task(rq, p, 0);
1085 check_preempt_curr(rq, p, 0);
1086
1087 return rq;
1088}
1089
1090struct migration_arg {
1091 struct task_struct *task;
1092 int dest_cpu;
1093};
1094
1095/*
1096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1097 * this because either it can't run here any more (set_cpus_allowed()
1098 * away from this CPU, or CPU going down), or because we're
1099 * attempting to rebalance this task on exec (sched_exec).
1100 *
1101 * So we race with normal scheduler movements, but that's OK, as long
1102 * as the task is no longer on this CPU.
5cc389bc 1103 */
5e16bbc2 1104static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1105{
5cc389bc 1106 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1107 return rq;
5cc389bc
PZ
1108
1109 /* Affinity changed (again). */
1110 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1111 return rq;
5cc389bc 1112
5e16bbc2
PZ
1113 rq = move_queued_task(rq, p, dest_cpu);
1114
1115 return rq;
5cc389bc
PZ
1116}
1117
1118/*
1119 * migration_cpu_stop - this will be executed by a highprio stopper thread
1120 * and performs thread migration by bumping thread off CPU then
1121 * 'pushing' onto another runqueue.
1122 */
1123static int migration_cpu_stop(void *data)
1124{
1125 struct migration_arg *arg = data;
5e16bbc2
PZ
1126 struct task_struct *p = arg->task;
1127 struct rq *rq = this_rq();
5cc389bc
PZ
1128
1129 /*
1130 * The original target cpu might have gone down and we might
1131 * be on another cpu but it doesn't matter.
1132 */
1133 local_irq_disable();
1134 /*
1135 * We need to explicitly wake pending tasks before running
1136 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 */
1139 sched_ttwu_pending();
5e16bbc2
PZ
1140
1141 raw_spin_lock(&p->pi_lock);
1142 raw_spin_lock(&rq->lock);
1143 /*
1144 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 * we're holding p->pi_lock.
1147 */
1148 if (task_rq(p) == rq && task_on_rq_queued(p))
1149 rq = __migrate_task(rq, p, arg->dest_cpu);
1150 raw_spin_unlock(&rq->lock);
1151 raw_spin_unlock(&p->pi_lock);
1152
5cc389bc
PZ
1153 local_irq_enable();
1154 return 0;
1155}
1156
c5b28038
PZ
1157/*
1158 * sched_class::set_cpus_allowed must do the below, but is not required to
1159 * actually call this function.
1160 */
1161void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1162{
5cc389bc
PZ
1163 cpumask_copy(&p->cpus_allowed, new_mask);
1164 p->nr_cpus_allowed = cpumask_weight(new_mask);
1165}
1166
c5b28038
PZ
1167void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168{
6c37067e
PZ
1169 struct rq *rq = task_rq(p);
1170 bool queued, running;
1171
c5b28038 1172 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1173
1174 queued = task_on_rq_queued(p);
1175 running = task_current(rq, p);
1176
1177 if (queued) {
1178 /*
1179 * Because __kthread_bind() calls this on blocked tasks without
1180 * holding rq->lock.
1181 */
1182 lockdep_assert_held(&rq->lock);
1de64443 1183 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1184 }
1185 if (running)
1186 put_prev_task(rq, p);
1187
c5b28038 1188 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1189
1190 if (running)
1191 p->sched_class->set_curr_task(rq);
1192 if (queued)
1de64443 1193 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1194}
1195
5cc389bc
PZ
1196/*
1197 * Change a given task's CPU affinity. Migrate the thread to a
1198 * proper CPU and schedule it away if the CPU it's executing on
1199 * is removed from the allowed bitmask.
1200 *
1201 * NOTE: the caller must have a valid reference to the task, the
1202 * task must not exit() & deallocate itself prematurely. The
1203 * call is not atomic; no spinlocks may be held.
1204 */
25834c73
PZ
1205static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1207{
1208 unsigned long flags;
1209 struct rq *rq;
1210 unsigned int dest_cpu;
1211 int ret = 0;
1212
1213 rq = task_rq_lock(p, &flags);
1214
25834c73
PZ
1215 /*
1216 * Must re-check here, to close a race against __kthread_bind(),
1217 * sched_setaffinity() is not guaranteed to observe the flag.
1218 */
1219 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223
5cc389bc
PZ
1224 if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 goto out;
1226
1227 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 ret = -EINVAL;
1229 goto out;
1230 }
1231
1232 do_set_cpus_allowed(p, new_mask);
1233
1234 /* Can the task run on the task's current CPU? If so, we're done */
1235 if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 goto out;
1237
1238 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 struct migration_arg arg = { p, dest_cpu };
1241 /* Need help from migration thread: drop lock and wait. */
1242 task_rq_unlock(rq, p, &flags);
1243 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 tlb_migrate_finish(p->mm);
1245 return 0;
cbce1a68
PZ
1246 } else if (task_on_rq_queued(p)) {
1247 /*
1248 * OK, since we're going to drop the lock immediately
1249 * afterwards anyway.
1250 */
1251 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1252 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1253 lockdep_pin_lock(&rq->lock);
1254 }
5cc389bc
PZ
1255out:
1256 task_rq_unlock(rq, p, &flags);
1257
1258 return ret;
1259}
25834c73
PZ
1260
1261int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262{
1263 return __set_cpus_allowed_ptr(p, new_mask, false);
1264}
5cc389bc
PZ
1265EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266
dd41f596 1267void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1268{
e2912009
PZ
1269#ifdef CONFIG_SCHED_DEBUG
1270 /*
1271 * We should never call set_task_cpu() on a blocked task,
1272 * ttwu() will sort out the placement.
1273 */
077614ee 1274 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1275 !p->on_rq);
0122ec5b
PZ
1276
1277#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1278 /*
1279 * The caller should hold either p->pi_lock or rq->lock, when changing
1280 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1281 *
1282 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1283 * see task_group().
6c6c54e1
PZ
1284 *
1285 * Furthermore, all task_rq users should acquire both locks, see
1286 * task_rq_lock().
1287 */
0122ec5b
PZ
1288 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1289 lockdep_is_held(&task_rq(p)->lock)));
1290#endif
e2912009
PZ
1291#endif
1292
de1d7286 1293 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1294
0c69774e 1295 if (task_cpu(p) != new_cpu) {
0a74bef8 1296 if (p->sched_class->migrate_task_rq)
5a4fd036 1297 p->sched_class->migrate_task_rq(p);
0c69774e 1298 p->se.nr_migrations++;
ff303e66 1299 perf_event_task_migrate(p);
0c69774e 1300 }
dd41f596
IM
1301
1302 __set_task_cpu(p, new_cpu);
c65cc870
IM
1303}
1304
ac66f547
PZ
1305static void __migrate_swap_task(struct task_struct *p, int cpu)
1306{
da0c1e65 1307 if (task_on_rq_queued(p)) {
ac66f547
PZ
1308 struct rq *src_rq, *dst_rq;
1309
1310 src_rq = task_rq(p);
1311 dst_rq = cpu_rq(cpu);
1312
1313 deactivate_task(src_rq, p, 0);
1314 set_task_cpu(p, cpu);
1315 activate_task(dst_rq, p, 0);
1316 check_preempt_curr(dst_rq, p, 0);
1317 } else {
1318 /*
1319 * Task isn't running anymore; make it appear like we migrated
1320 * it before it went to sleep. This means on wakeup we make the
1321 * previous cpu our targer instead of where it really is.
1322 */
1323 p->wake_cpu = cpu;
1324 }
1325}
1326
1327struct migration_swap_arg {
1328 struct task_struct *src_task, *dst_task;
1329 int src_cpu, dst_cpu;
1330};
1331
1332static int migrate_swap_stop(void *data)
1333{
1334 struct migration_swap_arg *arg = data;
1335 struct rq *src_rq, *dst_rq;
1336 int ret = -EAGAIN;
1337
62694cd5
PZ
1338 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1339 return -EAGAIN;
1340
ac66f547
PZ
1341 src_rq = cpu_rq(arg->src_cpu);
1342 dst_rq = cpu_rq(arg->dst_cpu);
1343
74602315
PZ
1344 double_raw_lock(&arg->src_task->pi_lock,
1345 &arg->dst_task->pi_lock);
ac66f547 1346 double_rq_lock(src_rq, dst_rq);
62694cd5 1347
ac66f547
PZ
1348 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1349 goto unlock;
1350
1351 if (task_cpu(arg->src_task) != arg->src_cpu)
1352 goto unlock;
1353
1354 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1355 goto unlock;
1356
1357 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1358 goto unlock;
1359
1360 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1361 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1362
1363 ret = 0;
1364
1365unlock:
1366 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1367 raw_spin_unlock(&arg->dst_task->pi_lock);
1368 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1369
1370 return ret;
1371}
1372
1373/*
1374 * Cross migrate two tasks
1375 */
1376int migrate_swap(struct task_struct *cur, struct task_struct *p)
1377{
1378 struct migration_swap_arg arg;
1379 int ret = -EINVAL;
1380
ac66f547
PZ
1381 arg = (struct migration_swap_arg){
1382 .src_task = cur,
1383 .src_cpu = task_cpu(cur),
1384 .dst_task = p,
1385 .dst_cpu = task_cpu(p),
1386 };
1387
1388 if (arg.src_cpu == arg.dst_cpu)
1389 goto out;
1390
6acce3ef
PZ
1391 /*
1392 * These three tests are all lockless; this is OK since all of them
1393 * will be re-checked with proper locks held further down the line.
1394 */
ac66f547
PZ
1395 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1396 goto out;
1397
1398 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1399 goto out;
1400
1401 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1402 goto out;
1403
286549dc 1404 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1405 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1406
1407out:
ac66f547
PZ
1408 return ret;
1409}
1410
1da177e4
LT
1411/*
1412 * wait_task_inactive - wait for a thread to unschedule.
1413 *
85ba2d86
RM
1414 * If @match_state is nonzero, it's the @p->state value just checked and
1415 * not expected to change. If it changes, i.e. @p might have woken up,
1416 * then return zero. When we succeed in waiting for @p to be off its CPU,
1417 * we return a positive number (its total switch count). If a second call
1418 * a short while later returns the same number, the caller can be sure that
1419 * @p has remained unscheduled the whole time.
1420 *
1da177e4
LT
1421 * The caller must ensure that the task *will* unschedule sometime soon,
1422 * else this function might spin for a *long* time. This function can't
1423 * be called with interrupts off, or it may introduce deadlock with
1424 * smp_call_function() if an IPI is sent by the same process we are
1425 * waiting to become inactive.
1426 */
85ba2d86 1427unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1428{
1429 unsigned long flags;
da0c1e65 1430 int running, queued;
85ba2d86 1431 unsigned long ncsw;
70b97a7f 1432 struct rq *rq;
1da177e4 1433
3a5c359a
AK
1434 for (;;) {
1435 /*
1436 * We do the initial early heuristics without holding
1437 * any task-queue locks at all. We'll only try to get
1438 * the runqueue lock when things look like they will
1439 * work out!
1440 */
1441 rq = task_rq(p);
fa490cfd 1442
3a5c359a
AK
1443 /*
1444 * If the task is actively running on another CPU
1445 * still, just relax and busy-wait without holding
1446 * any locks.
1447 *
1448 * NOTE! Since we don't hold any locks, it's not
1449 * even sure that "rq" stays as the right runqueue!
1450 * But we don't care, since "task_running()" will
1451 * return false if the runqueue has changed and p
1452 * is actually now running somewhere else!
1453 */
85ba2d86
RM
1454 while (task_running(rq, p)) {
1455 if (match_state && unlikely(p->state != match_state))
1456 return 0;
3a5c359a 1457 cpu_relax();
85ba2d86 1458 }
fa490cfd 1459
3a5c359a
AK
1460 /*
1461 * Ok, time to look more closely! We need the rq
1462 * lock now, to be *sure*. If we're wrong, we'll
1463 * just go back and repeat.
1464 */
1465 rq = task_rq_lock(p, &flags);
27a9da65 1466 trace_sched_wait_task(p);
3a5c359a 1467 running = task_running(rq, p);
da0c1e65 1468 queued = task_on_rq_queued(p);
85ba2d86 1469 ncsw = 0;
f31e11d8 1470 if (!match_state || p->state == match_state)
93dcf55f 1471 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1472 task_rq_unlock(rq, p, &flags);
fa490cfd 1473
85ba2d86
RM
1474 /*
1475 * If it changed from the expected state, bail out now.
1476 */
1477 if (unlikely(!ncsw))
1478 break;
1479
3a5c359a
AK
1480 /*
1481 * Was it really running after all now that we
1482 * checked with the proper locks actually held?
1483 *
1484 * Oops. Go back and try again..
1485 */
1486 if (unlikely(running)) {
1487 cpu_relax();
1488 continue;
1489 }
fa490cfd 1490
3a5c359a
AK
1491 /*
1492 * It's not enough that it's not actively running,
1493 * it must be off the runqueue _entirely_, and not
1494 * preempted!
1495 *
80dd99b3 1496 * So if it was still runnable (but just not actively
3a5c359a
AK
1497 * running right now), it's preempted, and we should
1498 * yield - it could be a while.
1499 */
da0c1e65 1500 if (unlikely(queued)) {
8eb90c30
TG
1501 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1502
1503 set_current_state(TASK_UNINTERRUPTIBLE);
1504 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1505 continue;
1506 }
fa490cfd 1507
3a5c359a
AK
1508 /*
1509 * Ahh, all good. It wasn't running, and it wasn't
1510 * runnable, which means that it will never become
1511 * running in the future either. We're all done!
1512 */
1513 break;
1514 }
85ba2d86
RM
1515
1516 return ncsw;
1da177e4
LT
1517}
1518
1519/***
1520 * kick_process - kick a running thread to enter/exit the kernel
1521 * @p: the to-be-kicked thread
1522 *
1523 * Cause a process which is running on another CPU to enter
1524 * kernel-mode, without any delay. (to get signals handled.)
1525 *
25985edc 1526 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1527 * because all it wants to ensure is that the remote task enters
1528 * the kernel. If the IPI races and the task has been migrated
1529 * to another CPU then no harm is done and the purpose has been
1530 * achieved as well.
1531 */
36c8b586 1532void kick_process(struct task_struct *p)
1da177e4
LT
1533{
1534 int cpu;
1535
1536 preempt_disable();
1537 cpu = task_cpu(p);
1538 if ((cpu != smp_processor_id()) && task_curr(p))
1539 smp_send_reschedule(cpu);
1540 preempt_enable();
1541}
b43e3521 1542EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1543
30da688e 1544/*
013fdb80 1545 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1546 */
5da9a0fb
PZ
1547static int select_fallback_rq(int cpu, struct task_struct *p)
1548{
aa00d89c
TC
1549 int nid = cpu_to_node(cpu);
1550 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1551 enum { cpuset, possible, fail } state = cpuset;
1552 int dest_cpu;
5da9a0fb 1553
aa00d89c
TC
1554 /*
1555 * If the node that the cpu is on has been offlined, cpu_to_node()
1556 * will return -1. There is no cpu on the node, and we should
1557 * select the cpu on the other node.
1558 */
1559 if (nid != -1) {
1560 nodemask = cpumask_of_node(nid);
1561
1562 /* Look for allowed, online CPU in same node. */
1563 for_each_cpu(dest_cpu, nodemask) {
1564 if (!cpu_online(dest_cpu))
1565 continue;
1566 if (!cpu_active(dest_cpu))
1567 continue;
1568 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1569 return dest_cpu;
1570 }
2baab4e9 1571 }
5da9a0fb 1572
2baab4e9
PZ
1573 for (;;) {
1574 /* Any allowed, online CPU? */
e3831edd 1575 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1576 if (!cpu_online(dest_cpu))
1577 continue;
1578 if (!cpu_active(dest_cpu))
1579 continue;
1580 goto out;
1581 }
5da9a0fb 1582
e73e85f0 1583 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1584 switch (state) {
1585 case cpuset:
e73e85f0
ON
1586 if (IS_ENABLED(CONFIG_CPUSETS)) {
1587 cpuset_cpus_allowed_fallback(p);
1588 state = possible;
1589 break;
1590 }
1591 /* fall-through */
2baab4e9
PZ
1592 case possible:
1593 do_set_cpus_allowed(p, cpu_possible_mask);
1594 state = fail;
1595 break;
1596
1597 case fail:
1598 BUG();
1599 break;
1600 }
1601 }
1602
1603out:
1604 if (state != cpuset) {
1605 /*
1606 * Don't tell them about moving exiting tasks or
1607 * kernel threads (both mm NULL), since they never
1608 * leave kernel.
1609 */
1610 if (p->mm && printk_ratelimit()) {
aac74dc4 1611 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1612 task_pid_nr(p), p->comm, cpu);
1613 }
5da9a0fb
PZ
1614 }
1615
1616 return dest_cpu;
1617}
1618
e2912009 1619/*
013fdb80 1620 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1621 */
970b13ba 1622static inline
ac66f547 1623int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1624{
cbce1a68
PZ
1625 lockdep_assert_held(&p->pi_lock);
1626
6c1d9410
WL
1627 if (p->nr_cpus_allowed > 1)
1628 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1629
1630 /*
1631 * In order not to call set_task_cpu() on a blocking task we need
1632 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1633 * cpu.
1634 *
1635 * Since this is common to all placement strategies, this lives here.
1636 *
1637 * [ this allows ->select_task() to simply return task_cpu(p) and
1638 * not worry about this generic constraint ]
1639 */
fa17b507 1640 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1641 !cpu_online(cpu)))
5da9a0fb 1642 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1643
1644 return cpu;
970b13ba 1645}
09a40af5
MG
1646
1647static void update_avg(u64 *avg, u64 sample)
1648{
1649 s64 diff = sample - *avg;
1650 *avg += diff >> 3;
1651}
25834c73
PZ
1652
1653#else
1654
1655static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1656 const struct cpumask *new_mask, bool check)
1657{
1658 return set_cpus_allowed_ptr(p, new_mask);
1659}
1660
5cc389bc 1661#endif /* CONFIG_SMP */
970b13ba 1662
d7c01d27 1663static void
b84cb5df 1664ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1665{
d7c01d27 1666#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1667 struct rq *rq = this_rq();
1668
d7c01d27
PZ
1669#ifdef CONFIG_SMP
1670 int this_cpu = smp_processor_id();
1671
1672 if (cpu == this_cpu) {
1673 schedstat_inc(rq, ttwu_local);
1674 schedstat_inc(p, se.statistics.nr_wakeups_local);
1675 } else {
1676 struct sched_domain *sd;
1677
1678 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1679 rcu_read_lock();
d7c01d27
PZ
1680 for_each_domain(this_cpu, sd) {
1681 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1682 schedstat_inc(sd, ttwu_wake_remote);
1683 break;
1684 }
1685 }
057f3fad 1686 rcu_read_unlock();
d7c01d27 1687 }
f339b9dc
PZ
1688
1689 if (wake_flags & WF_MIGRATED)
1690 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1691
d7c01d27
PZ
1692#endif /* CONFIG_SMP */
1693
1694 schedstat_inc(rq, ttwu_count);
9ed3811a 1695 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1696
1697 if (wake_flags & WF_SYNC)
9ed3811a 1698 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1699
d7c01d27
PZ
1700#endif /* CONFIG_SCHEDSTATS */
1701}
1702
1de64443 1703static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1704{
9ed3811a 1705 activate_task(rq, p, en_flags);
da0c1e65 1706 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1707
1708 /* if a worker is waking up, notify workqueue */
1709 if (p->flags & PF_WQ_WORKER)
1710 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1711}
1712
23f41eeb
PZ
1713/*
1714 * Mark the task runnable and perform wakeup-preemption.
1715 */
89363381 1716static void
23f41eeb 1717ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1718{
9ed3811a 1719 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1720 p->state = TASK_RUNNING;
fbd705a0
PZ
1721 trace_sched_wakeup(p);
1722
9ed3811a 1723#ifdef CONFIG_SMP
4c9a4bc8
PZ
1724 if (p->sched_class->task_woken) {
1725 /*
cbce1a68
PZ
1726 * Our task @p is fully woken up and running; so its safe to
1727 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1728 */
cbce1a68 1729 lockdep_unpin_lock(&rq->lock);
9ed3811a 1730 p->sched_class->task_woken(rq, p);
cbce1a68 1731 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1732 }
9ed3811a 1733
e69c6341 1734 if (rq->idle_stamp) {
78becc27 1735 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1736 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1737
abfafa54
JL
1738 update_avg(&rq->avg_idle, delta);
1739
1740 if (rq->avg_idle > max)
9ed3811a 1741 rq->avg_idle = max;
abfafa54 1742
9ed3811a
TH
1743 rq->idle_stamp = 0;
1744 }
1745#endif
1746}
1747
c05fbafb
PZ
1748static void
1749ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1750{
cbce1a68
PZ
1751 lockdep_assert_held(&rq->lock);
1752
c05fbafb
PZ
1753#ifdef CONFIG_SMP
1754 if (p->sched_contributes_to_load)
1755 rq->nr_uninterruptible--;
1756#endif
1757
1758 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1759 ttwu_do_wakeup(rq, p, wake_flags);
1760}
1761
1762/*
1763 * Called in case the task @p isn't fully descheduled from its runqueue,
1764 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1765 * since all we need to do is flip p->state to TASK_RUNNING, since
1766 * the task is still ->on_rq.
1767 */
1768static int ttwu_remote(struct task_struct *p, int wake_flags)
1769{
1770 struct rq *rq;
1771 int ret = 0;
1772
1773 rq = __task_rq_lock(p);
da0c1e65 1774 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1775 /* check_preempt_curr() may use rq clock */
1776 update_rq_clock(rq);
c05fbafb
PZ
1777 ttwu_do_wakeup(rq, p, wake_flags);
1778 ret = 1;
1779 }
1780 __task_rq_unlock(rq);
1781
1782 return ret;
1783}
1784
317f3941 1785#ifdef CONFIG_SMP
e3baac47 1786void sched_ttwu_pending(void)
317f3941
PZ
1787{
1788 struct rq *rq = this_rq();
fa14ff4a
PZ
1789 struct llist_node *llist = llist_del_all(&rq->wake_list);
1790 struct task_struct *p;
e3baac47 1791 unsigned long flags;
317f3941 1792
e3baac47
PZ
1793 if (!llist)
1794 return;
1795
1796 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1797 lockdep_pin_lock(&rq->lock);
317f3941 1798
fa14ff4a
PZ
1799 while (llist) {
1800 p = llist_entry(llist, struct task_struct, wake_entry);
1801 llist = llist_next(llist);
317f3941
PZ
1802 ttwu_do_activate(rq, p, 0);
1803 }
1804
cbce1a68 1805 lockdep_unpin_lock(&rq->lock);
e3baac47 1806 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1807}
1808
1809void scheduler_ipi(void)
1810{
f27dde8d
PZ
1811 /*
1812 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1813 * TIF_NEED_RESCHED remotely (for the first time) will also send
1814 * this IPI.
1815 */
8cb75e0c 1816 preempt_fold_need_resched();
f27dde8d 1817
fd2ac4f4 1818 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1819 return;
1820
1821 /*
1822 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1823 * traditionally all their work was done from the interrupt return
1824 * path. Now that we actually do some work, we need to make sure
1825 * we do call them.
1826 *
1827 * Some archs already do call them, luckily irq_enter/exit nest
1828 * properly.
1829 *
1830 * Arguably we should visit all archs and update all handlers,
1831 * however a fair share of IPIs are still resched only so this would
1832 * somewhat pessimize the simple resched case.
1833 */
1834 irq_enter();
fa14ff4a 1835 sched_ttwu_pending();
ca38062e
SS
1836
1837 /*
1838 * Check if someone kicked us for doing the nohz idle load balance.
1839 */
873b4c65 1840 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1841 this_rq()->idle_balance = 1;
ca38062e 1842 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1843 }
c5d753a5 1844 irq_exit();
317f3941
PZ
1845}
1846
1847static void ttwu_queue_remote(struct task_struct *p, int cpu)
1848{
e3baac47
PZ
1849 struct rq *rq = cpu_rq(cpu);
1850
1851 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1852 if (!set_nr_if_polling(rq->idle))
1853 smp_send_reschedule(cpu);
1854 else
1855 trace_sched_wake_idle_without_ipi(cpu);
1856 }
317f3941 1857}
d6aa8f85 1858
f6be8af1
CL
1859void wake_up_if_idle(int cpu)
1860{
1861 struct rq *rq = cpu_rq(cpu);
1862 unsigned long flags;
1863
fd7de1e8
AL
1864 rcu_read_lock();
1865
1866 if (!is_idle_task(rcu_dereference(rq->curr)))
1867 goto out;
f6be8af1
CL
1868
1869 if (set_nr_if_polling(rq->idle)) {
1870 trace_sched_wake_idle_without_ipi(cpu);
1871 } else {
1872 raw_spin_lock_irqsave(&rq->lock, flags);
1873 if (is_idle_task(rq->curr))
1874 smp_send_reschedule(cpu);
1875 /* Else cpu is not in idle, do nothing here */
1876 raw_spin_unlock_irqrestore(&rq->lock, flags);
1877 }
fd7de1e8
AL
1878
1879out:
1880 rcu_read_unlock();
f6be8af1
CL
1881}
1882
39be3501 1883bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1884{
1885 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1886}
d6aa8f85 1887#endif /* CONFIG_SMP */
317f3941 1888
c05fbafb
PZ
1889static void ttwu_queue(struct task_struct *p, int cpu)
1890{
1891 struct rq *rq = cpu_rq(cpu);
1892
17d9f311 1893#if defined(CONFIG_SMP)
39be3501 1894 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1895 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1896 ttwu_queue_remote(p, cpu);
1897 return;
1898 }
1899#endif
1900
c05fbafb 1901 raw_spin_lock(&rq->lock);
cbce1a68 1902 lockdep_pin_lock(&rq->lock);
c05fbafb 1903 ttwu_do_activate(rq, p, 0);
cbce1a68 1904 lockdep_unpin_lock(&rq->lock);
c05fbafb 1905 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1906}
1907
1908/**
1da177e4 1909 * try_to_wake_up - wake up a thread
9ed3811a 1910 * @p: the thread to be awakened
1da177e4 1911 * @state: the mask of task states that can be woken
9ed3811a 1912 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1913 *
1914 * Put it on the run-queue if it's not already there. The "current"
1915 * thread is always on the run-queue (except when the actual
1916 * re-schedule is in progress), and as such you're allowed to do
1917 * the simpler "current->state = TASK_RUNNING" to mark yourself
1918 * runnable without the overhead of this.
1919 *
e69f6186 1920 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1921 * or @state didn't match @p's state.
1da177e4 1922 */
e4a52bcb
PZ
1923static int
1924try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1925{
1da177e4 1926 unsigned long flags;
c05fbafb 1927 int cpu, success = 0;
2398f2c6 1928
e0acd0a6
ON
1929 /*
1930 * If we are going to wake up a thread waiting for CONDITION we
1931 * need to ensure that CONDITION=1 done by the caller can not be
1932 * reordered with p->state check below. This pairs with mb() in
1933 * set_current_state() the waiting thread does.
1934 */
1935 smp_mb__before_spinlock();
013fdb80 1936 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1937 if (!(p->state & state))
1da177e4
LT
1938 goto out;
1939
fbd705a0
PZ
1940 trace_sched_waking(p);
1941
c05fbafb 1942 success = 1; /* we're going to change ->state */
1da177e4 1943 cpu = task_cpu(p);
1da177e4 1944
c05fbafb
PZ
1945 if (p->on_rq && ttwu_remote(p, wake_flags))
1946 goto stat;
1da177e4 1947
1da177e4 1948#ifdef CONFIG_SMP
e9c84311 1949 /*
c05fbafb
PZ
1950 * If the owning (remote) cpu is still in the middle of schedule() with
1951 * this task as prev, wait until its done referencing the task.
e9c84311 1952 */
f3e94786 1953 while (p->on_cpu)
e4a52bcb 1954 cpu_relax();
0970d299 1955 /*
e4a52bcb 1956 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1957 */
e4a52bcb 1958 smp_rmb();
1da177e4 1959
a8e4f2ea 1960 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1961 p->state = TASK_WAKING;
e7693a36 1962
e4a52bcb 1963 if (p->sched_class->task_waking)
74f8e4b2 1964 p->sched_class->task_waking(p);
efbbd05a 1965
ac66f547 1966 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1967 if (task_cpu(p) != cpu) {
1968 wake_flags |= WF_MIGRATED;
e4a52bcb 1969 set_task_cpu(p, cpu);
f339b9dc 1970 }
1da177e4 1971#endif /* CONFIG_SMP */
1da177e4 1972
c05fbafb
PZ
1973 ttwu_queue(p, cpu);
1974stat:
b84cb5df 1975 ttwu_stat(p, cpu, wake_flags);
1da177e4 1976out:
013fdb80 1977 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1978
1979 return success;
1980}
1981
21aa9af0
TH
1982/**
1983 * try_to_wake_up_local - try to wake up a local task with rq lock held
1984 * @p: the thread to be awakened
1985 *
2acca55e 1986 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1987 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1988 * the current task.
21aa9af0
TH
1989 */
1990static void try_to_wake_up_local(struct task_struct *p)
1991{
1992 struct rq *rq = task_rq(p);
21aa9af0 1993
383efcd0
TH
1994 if (WARN_ON_ONCE(rq != this_rq()) ||
1995 WARN_ON_ONCE(p == current))
1996 return;
1997
21aa9af0
TH
1998 lockdep_assert_held(&rq->lock);
1999
2acca55e 2000 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2001 /*
2002 * This is OK, because current is on_cpu, which avoids it being
2003 * picked for load-balance and preemption/IRQs are still
2004 * disabled avoiding further scheduler activity on it and we've
2005 * not yet picked a replacement task.
2006 */
2007 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2008 raw_spin_unlock(&rq->lock);
2009 raw_spin_lock(&p->pi_lock);
2010 raw_spin_lock(&rq->lock);
cbce1a68 2011 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2012 }
2013
21aa9af0 2014 if (!(p->state & TASK_NORMAL))
2acca55e 2015 goto out;
21aa9af0 2016
fbd705a0
PZ
2017 trace_sched_waking(p);
2018
da0c1e65 2019 if (!task_on_rq_queued(p))
d7c01d27
PZ
2020 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2021
23f41eeb 2022 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2023 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2024out:
2025 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2026}
2027
50fa610a
DH
2028/**
2029 * wake_up_process - Wake up a specific process
2030 * @p: The process to be woken up.
2031 *
2032 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2033 * processes.
2034 *
2035 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2036 *
2037 * It may be assumed that this function implies a write memory barrier before
2038 * changing the task state if and only if any tasks are woken up.
2039 */
7ad5b3a5 2040int wake_up_process(struct task_struct *p)
1da177e4 2041{
9067ac85 2042 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2043}
1da177e4
LT
2044EXPORT_SYMBOL(wake_up_process);
2045
7ad5b3a5 2046int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2047{
2048 return try_to_wake_up(p, state, 0);
2049}
2050
a5e7be3b
JL
2051/*
2052 * This function clears the sched_dl_entity static params.
2053 */
2054void __dl_clear_params(struct task_struct *p)
2055{
2056 struct sched_dl_entity *dl_se = &p->dl;
2057
2058 dl_se->dl_runtime = 0;
2059 dl_se->dl_deadline = 0;
2060 dl_se->dl_period = 0;
2061 dl_se->flags = 0;
2062 dl_se->dl_bw = 0;
40767b0d
PZ
2063
2064 dl_se->dl_throttled = 0;
2065 dl_se->dl_new = 1;
2066 dl_se->dl_yielded = 0;
a5e7be3b
JL
2067}
2068
1da177e4
LT
2069/*
2070 * Perform scheduler related setup for a newly forked process p.
2071 * p is forked by current.
dd41f596
IM
2072 *
2073 * __sched_fork() is basic setup used by init_idle() too:
2074 */
5e1576ed 2075static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2076{
fd2f4419
PZ
2077 p->on_rq = 0;
2078
2079 p->se.on_rq = 0;
dd41f596
IM
2080 p->se.exec_start = 0;
2081 p->se.sum_exec_runtime = 0;
f6cf891c 2082 p->se.prev_sum_exec_runtime = 0;
6c594c21 2083 p->se.nr_migrations = 0;
da7a735e 2084 p->se.vruntime = 0;
fd2f4419 2085 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2086
2087#ifdef CONFIG_SCHEDSTATS
41acab88 2088 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2089#endif
476d139c 2090
aab03e05 2091 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2092 init_dl_task_timer(&p->dl);
a5e7be3b 2093 __dl_clear_params(p);
aab03e05 2094
fa717060 2095 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2096
e107be36
AK
2097#ifdef CONFIG_PREEMPT_NOTIFIERS
2098 INIT_HLIST_HEAD(&p->preempt_notifiers);
2099#endif
cbee9f88
PZ
2100
2101#ifdef CONFIG_NUMA_BALANCING
2102 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2103 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2104 p->mm->numa_scan_seq = 0;
2105 }
2106
5e1576ed
RR
2107 if (clone_flags & CLONE_VM)
2108 p->numa_preferred_nid = current->numa_preferred_nid;
2109 else
2110 p->numa_preferred_nid = -1;
2111
cbee9f88
PZ
2112 p->node_stamp = 0ULL;
2113 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2114 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2115 p->numa_work.next = &p->numa_work;
44dba3d5 2116 p->numa_faults = NULL;
7e2703e6
RR
2117 p->last_task_numa_placement = 0;
2118 p->last_sum_exec_runtime = 0;
8c8a743c 2119
8c8a743c 2120 p->numa_group = NULL;
cbee9f88 2121#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2122}
2123
2a595721
SD
2124DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2125
1a687c2e 2126#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2127
1a687c2e
MG
2128void set_numabalancing_state(bool enabled)
2129{
2130 if (enabled)
2a595721 2131 static_branch_enable(&sched_numa_balancing);
1a687c2e 2132 else
2a595721 2133 static_branch_disable(&sched_numa_balancing);
1a687c2e 2134}
54a43d54
AK
2135
2136#ifdef CONFIG_PROC_SYSCTL
2137int sysctl_numa_balancing(struct ctl_table *table, int write,
2138 void __user *buffer, size_t *lenp, loff_t *ppos)
2139{
2140 struct ctl_table t;
2141 int err;
2a595721 2142 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2143
2144 if (write && !capable(CAP_SYS_ADMIN))
2145 return -EPERM;
2146
2147 t = *table;
2148 t.data = &state;
2149 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2150 if (err < 0)
2151 return err;
2152 if (write)
2153 set_numabalancing_state(state);
2154 return err;
2155}
2156#endif
2157#endif
dd41f596
IM
2158
2159/*
2160 * fork()/clone()-time setup:
2161 */
aab03e05 2162int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2163{
0122ec5b 2164 unsigned long flags;
dd41f596
IM
2165 int cpu = get_cpu();
2166
5e1576ed 2167 __sched_fork(clone_flags, p);
06b83b5f 2168 /*
0017d735 2169 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2170 * nobody will actually run it, and a signal or other external
2171 * event cannot wake it up and insert it on the runqueue either.
2172 */
0017d735 2173 p->state = TASK_RUNNING;
dd41f596 2174
c350a04e
MG
2175 /*
2176 * Make sure we do not leak PI boosting priority to the child.
2177 */
2178 p->prio = current->normal_prio;
2179
b9dc29e7
MG
2180 /*
2181 * Revert to default priority/policy on fork if requested.
2182 */
2183 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2184 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2185 p->policy = SCHED_NORMAL;
6c697bdf 2186 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2187 p->rt_priority = 0;
2188 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2189 p->static_prio = NICE_TO_PRIO(0);
2190
2191 p->prio = p->normal_prio = __normal_prio(p);
2192 set_load_weight(p);
6c697bdf 2193
b9dc29e7
MG
2194 /*
2195 * We don't need the reset flag anymore after the fork. It has
2196 * fulfilled its duty:
2197 */
2198 p->sched_reset_on_fork = 0;
2199 }
ca94c442 2200
aab03e05
DF
2201 if (dl_prio(p->prio)) {
2202 put_cpu();
2203 return -EAGAIN;
2204 } else if (rt_prio(p->prio)) {
2205 p->sched_class = &rt_sched_class;
2206 } else {
2ddbf952 2207 p->sched_class = &fair_sched_class;
aab03e05 2208 }
b29739f9 2209
cd29fe6f
PZ
2210 if (p->sched_class->task_fork)
2211 p->sched_class->task_fork(p);
2212
86951599
PZ
2213 /*
2214 * The child is not yet in the pid-hash so no cgroup attach races,
2215 * and the cgroup is pinned to this child due to cgroup_fork()
2216 * is ran before sched_fork().
2217 *
2218 * Silence PROVE_RCU.
2219 */
0122ec5b 2220 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2221 set_task_cpu(p, cpu);
0122ec5b 2222 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2223
f6db8347 2224#ifdef CONFIG_SCHED_INFO
dd41f596 2225 if (likely(sched_info_on()))
52f17b6c 2226 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2227#endif
3ca7a440
PZ
2228#if defined(CONFIG_SMP)
2229 p->on_cpu = 0;
4866cde0 2230#endif
01028747 2231 init_task_preempt_count(p);
806c09a7 2232#ifdef CONFIG_SMP
917b627d 2233 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2234 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2235#endif
917b627d 2236
476d139c 2237 put_cpu();
aab03e05 2238 return 0;
1da177e4
LT
2239}
2240
332ac17e
DF
2241unsigned long to_ratio(u64 period, u64 runtime)
2242{
2243 if (runtime == RUNTIME_INF)
2244 return 1ULL << 20;
2245
2246 /*
2247 * Doing this here saves a lot of checks in all
2248 * the calling paths, and returning zero seems
2249 * safe for them anyway.
2250 */
2251 if (period == 0)
2252 return 0;
2253
2254 return div64_u64(runtime << 20, period);
2255}
2256
2257#ifdef CONFIG_SMP
2258inline struct dl_bw *dl_bw_of(int i)
2259{
f78f5b90
PM
2260 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2261 "sched RCU must be held");
332ac17e
DF
2262 return &cpu_rq(i)->rd->dl_bw;
2263}
2264
de212f18 2265static inline int dl_bw_cpus(int i)
332ac17e 2266{
de212f18
PZ
2267 struct root_domain *rd = cpu_rq(i)->rd;
2268 int cpus = 0;
2269
f78f5b90
PM
2270 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2271 "sched RCU must be held");
de212f18
PZ
2272 for_each_cpu_and(i, rd->span, cpu_active_mask)
2273 cpus++;
2274
2275 return cpus;
332ac17e
DF
2276}
2277#else
2278inline struct dl_bw *dl_bw_of(int i)
2279{
2280 return &cpu_rq(i)->dl.dl_bw;
2281}
2282
de212f18 2283static inline int dl_bw_cpus(int i)
332ac17e
DF
2284{
2285 return 1;
2286}
2287#endif
2288
332ac17e
DF
2289/*
2290 * We must be sure that accepting a new task (or allowing changing the
2291 * parameters of an existing one) is consistent with the bandwidth
2292 * constraints. If yes, this function also accordingly updates the currently
2293 * allocated bandwidth to reflect the new situation.
2294 *
2295 * This function is called while holding p's rq->lock.
40767b0d
PZ
2296 *
2297 * XXX we should delay bw change until the task's 0-lag point, see
2298 * __setparam_dl().
332ac17e
DF
2299 */
2300static int dl_overflow(struct task_struct *p, int policy,
2301 const struct sched_attr *attr)
2302{
2303
2304 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2305 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2306 u64 runtime = attr->sched_runtime;
2307 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2308 int cpus, err = -1;
332ac17e
DF
2309
2310 if (new_bw == p->dl.dl_bw)
2311 return 0;
2312
2313 /*
2314 * Either if a task, enters, leave, or stays -deadline but changes
2315 * its parameters, we may need to update accordingly the total
2316 * allocated bandwidth of the container.
2317 */
2318 raw_spin_lock(&dl_b->lock);
de212f18 2319 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2320 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2321 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2322 __dl_add(dl_b, new_bw);
2323 err = 0;
2324 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2325 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2326 __dl_clear(dl_b, p->dl.dl_bw);
2327 __dl_add(dl_b, new_bw);
2328 err = 0;
2329 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2330 __dl_clear(dl_b, p->dl.dl_bw);
2331 err = 0;
2332 }
2333 raw_spin_unlock(&dl_b->lock);
2334
2335 return err;
2336}
2337
2338extern void init_dl_bw(struct dl_bw *dl_b);
2339
1da177e4
LT
2340/*
2341 * wake_up_new_task - wake up a newly created task for the first time.
2342 *
2343 * This function will do some initial scheduler statistics housekeeping
2344 * that must be done for every newly created context, then puts the task
2345 * on the runqueue and wakes it.
2346 */
3e51e3ed 2347void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2348{
2349 unsigned long flags;
dd41f596 2350 struct rq *rq;
fabf318e 2351
ab2515c4 2352 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2353 /* Initialize new task's runnable average */
2354 init_entity_runnable_average(&p->se);
fabf318e
PZ
2355#ifdef CONFIG_SMP
2356 /*
2357 * Fork balancing, do it here and not earlier because:
2358 * - cpus_allowed can change in the fork path
2359 * - any previously selected cpu might disappear through hotplug
fabf318e 2360 */
ac66f547 2361 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2362#endif
2363
ab2515c4 2364 rq = __task_rq_lock(p);
cd29fe6f 2365 activate_task(rq, p, 0);
da0c1e65 2366 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2367 trace_sched_wakeup_new(p);
a7558e01 2368 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2369#ifdef CONFIG_SMP
0aaafaab
PZ
2370 if (p->sched_class->task_woken) {
2371 /*
2372 * Nothing relies on rq->lock after this, so its fine to
2373 * drop it.
2374 */
2375 lockdep_unpin_lock(&rq->lock);
efbbd05a 2376 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2377 lockdep_pin_lock(&rq->lock);
2378 }
9a897c5a 2379#endif
0122ec5b 2380 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2381}
2382
e107be36
AK
2383#ifdef CONFIG_PREEMPT_NOTIFIERS
2384
1cde2930
PZ
2385static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2386
2ecd9d29
PZ
2387void preempt_notifier_inc(void)
2388{
2389 static_key_slow_inc(&preempt_notifier_key);
2390}
2391EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2392
2393void preempt_notifier_dec(void)
2394{
2395 static_key_slow_dec(&preempt_notifier_key);
2396}
2397EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2398
e107be36 2399/**
80dd99b3 2400 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2401 * @notifier: notifier struct to register
e107be36
AK
2402 */
2403void preempt_notifier_register(struct preempt_notifier *notifier)
2404{
2ecd9d29
PZ
2405 if (!static_key_false(&preempt_notifier_key))
2406 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2407
e107be36
AK
2408 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2409}
2410EXPORT_SYMBOL_GPL(preempt_notifier_register);
2411
2412/**
2413 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2414 * @notifier: notifier struct to unregister
e107be36 2415 *
d84525a8 2416 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2417 */
2418void preempt_notifier_unregister(struct preempt_notifier *notifier)
2419{
2420 hlist_del(&notifier->link);
2421}
2422EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2423
1cde2930 2424static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2425{
2426 struct preempt_notifier *notifier;
e107be36 2427
b67bfe0d 2428 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2429 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2430}
2431
1cde2930
PZ
2432static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2433{
2434 if (static_key_false(&preempt_notifier_key))
2435 __fire_sched_in_preempt_notifiers(curr);
2436}
2437
e107be36 2438static void
1cde2930
PZ
2439__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2440 struct task_struct *next)
e107be36
AK
2441{
2442 struct preempt_notifier *notifier;
e107be36 2443
b67bfe0d 2444 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2445 notifier->ops->sched_out(notifier, next);
2446}
2447
1cde2930
PZ
2448static __always_inline void
2449fire_sched_out_preempt_notifiers(struct task_struct *curr,
2450 struct task_struct *next)
2451{
2452 if (static_key_false(&preempt_notifier_key))
2453 __fire_sched_out_preempt_notifiers(curr, next);
2454}
2455
6d6bc0ad 2456#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2457
1cde2930 2458static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2459{
2460}
2461
1cde2930 2462static inline void
e107be36
AK
2463fire_sched_out_preempt_notifiers(struct task_struct *curr,
2464 struct task_struct *next)
2465{
2466}
2467
6d6bc0ad 2468#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2469
4866cde0
NP
2470/**
2471 * prepare_task_switch - prepare to switch tasks
2472 * @rq: the runqueue preparing to switch
421cee29 2473 * @prev: the current task that is being switched out
4866cde0
NP
2474 * @next: the task we are going to switch to.
2475 *
2476 * This is called with the rq lock held and interrupts off. It must
2477 * be paired with a subsequent finish_task_switch after the context
2478 * switch.
2479 *
2480 * prepare_task_switch sets up locking and calls architecture specific
2481 * hooks.
2482 */
e107be36
AK
2483static inline void
2484prepare_task_switch(struct rq *rq, struct task_struct *prev,
2485 struct task_struct *next)
4866cde0 2486{
43148951 2487 sched_info_switch(rq, prev, next);
fe4b04fa 2488 perf_event_task_sched_out(prev, next);
e107be36 2489 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2490 prepare_lock_switch(rq, next);
2491 prepare_arch_switch(next);
2492}
2493
1da177e4
LT
2494/**
2495 * finish_task_switch - clean up after a task-switch
2496 * @prev: the thread we just switched away from.
2497 *
4866cde0
NP
2498 * finish_task_switch must be called after the context switch, paired
2499 * with a prepare_task_switch call before the context switch.
2500 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2501 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2502 *
2503 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2504 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2505 * with the lock held can cause deadlocks; see schedule() for
2506 * details.)
dfa50b60
ON
2507 *
2508 * The context switch have flipped the stack from under us and restored the
2509 * local variables which were saved when this task called schedule() in the
2510 * past. prev == current is still correct but we need to recalculate this_rq
2511 * because prev may have moved to another CPU.
1da177e4 2512 */
dfa50b60 2513static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2514 __releases(rq->lock)
2515{
dfa50b60 2516 struct rq *rq = this_rq();
1da177e4 2517 struct mm_struct *mm = rq->prev_mm;
55a101f8 2518 long prev_state;
1da177e4 2519
609ca066
PZ
2520 /*
2521 * The previous task will have left us with a preempt_count of 2
2522 * because it left us after:
2523 *
2524 * schedule()
2525 * preempt_disable(); // 1
2526 * __schedule()
2527 * raw_spin_lock_irq(&rq->lock) // 2
2528 *
2529 * Also, see FORK_PREEMPT_COUNT.
2530 */
e2bf1c4b
PZ
2531 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2532 "corrupted preempt_count: %s/%d/0x%x\n",
2533 current->comm, current->pid, preempt_count()))
2534 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2535
1da177e4
LT
2536 rq->prev_mm = NULL;
2537
2538 /*
2539 * A task struct has one reference for the use as "current".
c394cc9f 2540 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2541 * schedule one last time. The schedule call will never return, and
2542 * the scheduled task must drop that reference.
95913d97
PZ
2543 *
2544 * We must observe prev->state before clearing prev->on_cpu (in
2545 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2546 * running on another CPU and we could rave with its RUNNING -> DEAD
2547 * transition, resulting in a double drop.
1da177e4 2548 */
55a101f8 2549 prev_state = prev->state;
bf9fae9f 2550 vtime_task_switch(prev);
a8d757ef 2551 perf_event_task_sched_in(prev, current);
4866cde0 2552 finish_lock_switch(rq, prev);
01f23e16 2553 finish_arch_post_lock_switch();
e8fa1362 2554
e107be36 2555 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2556 if (mm)
2557 mmdrop(mm);
c394cc9f 2558 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2559 if (prev->sched_class->task_dead)
2560 prev->sched_class->task_dead(prev);
2561
c6fd91f0 2562 /*
2563 * Remove function-return probe instances associated with this
2564 * task and put them back on the free list.
9761eea8 2565 */
c6fd91f0 2566 kprobe_flush_task(prev);
1da177e4 2567 put_task_struct(prev);
c6fd91f0 2568 }
99e5ada9 2569
de734f89 2570 tick_nohz_task_switch();
dfa50b60 2571 return rq;
1da177e4
LT
2572}
2573
3f029d3c
GH
2574#ifdef CONFIG_SMP
2575
3f029d3c 2576/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2577static void __balance_callback(struct rq *rq)
3f029d3c 2578{
e3fca9e7
PZ
2579 struct callback_head *head, *next;
2580 void (*func)(struct rq *rq);
2581 unsigned long flags;
3f029d3c 2582
e3fca9e7
PZ
2583 raw_spin_lock_irqsave(&rq->lock, flags);
2584 head = rq->balance_callback;
2585 rq->balance_callback = NULL;
2586 while (head) {
2587 func = (void (*)(struct rq *))head->func;
2588 next = head->next;
2589 head->next = NULL;
2590 head = next;
3f029d3c 2591
e3fca9e7 2592 func(rq);
3f029d3c 2593 }
e3fca9e7
PZ
2594 raw_spin_unlock_irqrestore(&rq->lock, flags);
2595}
2596
2597static inline void balance_callback(struct rq *rq)
2598{
2599 if (unlikely(rq->balance_callback))
2600 __balance_callback(rq);
3f029d3c
GH
2601}
2602
2603#else
da19ab51 2604
e3fca9e7 2605static inline void balance_callback(struct rq *rq)
3f029d3c 2606{
1da177e4
LT
2607}
2608
3f029d3c
GH
2609#endif
2610
1da177e4
LT
2611/**
2612 * schedule_tail - first thing a freshly forked thread must call.
2613 * @prev: the thread we just switched away from.
2614 */
722a9f92 2615asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2616 __releases(rq->lock)
2617{
1a43a14a 2618 struct rq *rq;
da19ab51 2619
609ca066
PZ
2620 /*
2621 * New tasks start with FORK_PREEMPT_COUNT, see there and
2622 * finish_task_switch() for details.
2623 *
2624 * finish_task_switch() will drop rq->lock() and lower preempt_count
2625 * and the preempt_enable() will end up enabling preemption (on
2626 * PREEMPT_COUNT kernels).
2627 */
2628
dfa50b60 2629 rq = finish_task_switch(prev);
e3fca9e7 2630 balance_callback(rq);
1a43a14a 2631 preempt_enable();
70b97a7f 2632
1da177e4 2633 if (current->set_child_tid)
b488893a 2634 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2635}
2636
2637/*
dfa50b60 2638 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2639 */
dfa50b60 2640static inline struct rq *
70b97a7f 2641context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2642 struct task_struct *next)
1da177e4 2643{
dd41f596 2644 struct mm_struct *mm, *oldmm;
1da177e4 2645
e107be36 2646 prepare_task_switch(rq, prev, next);
fe4b04fa 2647
dd41f596
IM
2648 mm = next->mm;
2649 oldmm = prev->active_mm;
9226d125
ZA
2650 /*
2651 * For paravirt, this is coupled with an exit in switch_to to
2652 * combine the page table reload and the switch backend into
2653 * one hypercall.
2654 */
224101ed 2655 arch_start_context_switch(prev);
9226d125 2656
31915ab4 2657 if (!mm) {
1da177e4
LT
2658 next->active_mm = oldmm;
2659 atomic_inc(&oldmm->mm_count);
2660 enter_lazy_tlb(oldmm, next);
2661 } else
2662 switch_mm(oldmm, mm, next);
2663
31915ab4 2664 if (!prev->mm) {
1da177e4 2665 prev->active_mm = NULL;
1da177e4
LT
2666 rq->prev_mm = oldmm;
2667 }
3a5f5e48
IM
2668 /*
2669 * Since the runqueue lock will be released by the next
2670 * task (which is an invalid locking op but in the case
2671 * of the scheduler it's an obvious special-case), so we
2672 * do an early lockdep release here:
2673 */
cbce1a68 2674 lockdep_unpin_lock(&rq->lock);
8a25d5de 2675 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2676
2677 /* Here we just switch the register state and the stack. */
2678 switch_to(prev, next, prev);
dd41f596 2679 barrier();
dfa50b60
ON
2680
2681 return finish_task_switch(prev);
1da177e4
LT
2682}
2683
2684/*
1c3e8264 2685 * nr_running and nr_context_switches:
1da177e4
LT
2686 *
2687 * externally visible scheduler statistics: current number of runnable
1c3e8264 2688 * threads, total number of context switches performed since bootup.
1da177e4
LT
2689 */
2690unsigned long nr_running(void)
2691{
2692 unsigned long i, sum = 0;
2693
2694 for_each_online_cpu(i)
2695 sum += cpu_rq(i)->nr_running;
2696
2697 return sum;
f711f609 2698}
1da177e4 2699
2ee507c4
TC
2700/*
2701 * Check if only the current task is running on the cpu.
00cc1633
DD
2702 *
2703 * Caution: this function does not check that the caller has disabled
2704 * preemption, thus the result might have a time-of-check-to-time-of-use
2705 * race. The caller is responsible to use it correctly, for example:
2706 *
2707 * - from a non-preemptable section (of course)
2708 *
2709 * - from a thread that is bound to a single CPU
2710 *
2711 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2712 */
2713bool single_task_running(void)
2714{
00cc1633 2715 return raw_rq()->nr_running == 1;
2ee507c4
TC
2716}
2717EXPORT_SYMBOL(single_task_running);
2718
1da177e4 2719unsigned long long nr_context_switches(void)
46cb4b7c 2720{
cc94abfc
SR
2721 int i;
2722 unsigned long long sum = 0;
46cb4b7c 2723
0a945022 2724 for_each_possible_cpu(i)
1da177e4 2725 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2726
1da177e4
LT
2727 return sum;
2728}
483b4ee6 2729
1da177e4
LT
2730unsigned long nr_iowait(void)
2731{
2732 unsigned long i, sum = 0;
483b4ee6 2733
0a945022 2734 for_each_possible_cpu(i)
1da177e4 2735 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2736
1da177e4
LT
2737 return sum;
2738}
483b4ee6 2739
8c215bd3 2740unsigned long nr_iowait_cpu(int cpu)
69d25870 2741{
8c215bd3 2742 struct rq *this = cpu_rq(cpu);
69d25870
AV
2743 return atomic_read(&this->nr_iowait);
2744}
46cb4b7c 2745
372ba8cb
MG
2746void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2747{
3289bdb4
PZ
2748 struct rq *rq = this_rq();
2749 *nr_waiters = atomic_read(&rq->nr_iowait);
2750 *load = rq->load.weight;
372ba8cb
MG
2751}
2752
dd41f596 2753#ifdef CONFIG_SMP
8a0be9ef 2754
46cb4b7c 2755/*
38022906
PZ
2756 * sched_exec - execve() is a valuable balancing opportunity, because at
2757 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2758 */
38022906 2759void sched_exec(void)
46cb4b7c 2760{
38022906 2761 struct task_struct *p = current;
1da177e4 2762 unsigned long flags;
0017d735 2763 int dest_cpu;
46cb4b7c 2764
8f42ced9 2765 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2766 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2767 if (dest_cpu == smp_processor_id())
2768 goto unlock;
38022906 2769
8f42ced9 2770 if (likely(cpu_active(dest_cpu))) {
969c7921 2771 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2772
8f42ced9
PZ
2773 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2774 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2775 return;
2776 }
0017d735 2777unlock:
8f42ced9 2778 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2779}
dd41f596 2780
1da177e4
LT
2781#endif
2782
1da177e4 2783DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2784DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2785
2786EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2787EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2788
c5f8d995
HS
2789/*
2790 * Return accounted runtime for the task.
2791 * In case the task is currently running, return the runtime plus current's
2792 * pending runtime that have not been accounted yet.
2793 */
2794unsigned long long task_sched_runtime(struct task_struct *p)
2795{
2796 unsigned long flags;
2797 struct rq *rq;
6e998916 2798 u64 ns;
c5f8d995 2799
911b2898
PZ
2800#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2801 /*
2802 * 64-bit doesn't need locks to atomically read a 64bit value.
2803 * So we have a optimization chance when the task's delta_exec is 0.
2804 * Reading ->on_cpu is racy, but this is ok.
2805 *
2806 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2807 * If we race with it entering cpu, unaccounted time is 0. This is
2808 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2809 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2810 * been accounted, so we're correct here as well.
911b2898 2811 */
da0c1e65 2812 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2813 return p->se.sum_exec_runtime;
2814#endif
2815
c5f8d995 2816 rq = task_rq_lock(p, &flags);
6e998916
SG
2817 /*
2818 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2819 * project cycles that may never be accounted to this
2820 * thread, breaking clock_gettime().
2821 */
2822 if (task_current(rq, p) && task_on_rq_queued(p)) {
2823 update_rq_clock(rq);
2824 p->sched_class->update_curr(rq);
2825 }
2826 ns = p->se.sum_exec_runtime;
0122ec5b 2827 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2828
2829 return ns;
2830}
48f24c4d 2831
7835b98b
CL
2832/*
2833 * This function gets called by the timer code, with HZ frequency.
2834 * We call it with interrupts disabled.
7835b98b
CL
2835 */
2836void scheduler_tick(void)
2837{
7835b98b
CL
2838 int cpu = smp_processor_id();
2839 struct rq *rq = cpu_rq(cpu);
dd41f596 2840 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2841
2842 sched_clock_tick();
dd41f596 2843
05fa785c 2844 raw_spin_lock(&rq->lock);
3e51f33f 2845 update_rq_clock(rq);
fa85ae24 2846 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2847 update_cpu_load_active(rq);
3289bdb4 2848 calc_global_load_tick(rq);
05fa785c 2849 raw_spin_unlock(&rq->lock);
7835b98b 2850
e9d2b064 2851 perf_event_task_tick();
e220d2dc 2852
e418e1c2 2853#ifdef CONFIG_SMP
6eb57e0d 2854 rq->idle_balance = idle_cpu(cpu);
7caff66f 2855 trigger_load_balance(rq);
e418e1c2 2856#endif
265f22a9 2857 rq_last_tick_reset(rq);
1da177e4
LT
2858}
2859
265f22a9
FW
2860#ifdef CONFIG_NO_HZ_FULL
2861/**
2862 * scheduler_tick_max_deferment
2863 *
2864 * Keep at least one tick per second when a single
2865 * active task is running because the scheduler doesn't
2866 * yet completely support full dynticks environment.
2867 *
2868 * This makes sure that uptime, CFS vruntime, load
2869 * balancing, etc... continue to move forward, even
2870 * with a very low granularity.
e69f6186
YB
2871 *
2872 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2873 */
2874u64 scheduler_tick_max_deferment(void)
2875{
2876 struct rq *rq = this_rq();
316c1608 2877 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2878
2879 next = rq->last_sched_tick + HZ;
2880
2881 if (time_before_eq(next, now))
2882 return 0;
2883
8fe8ff09 2884 return jiffies_to_nsecs(next - now);
1da177e4 2885}
265f22a9 2886#endif
1da177e4 2887
132380a0 2888notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2889{
2890 if (in_lock_functions(addr)) {
2891 addr = CALLER_ADDR2;
2892 if (in_lock_functions(addr))
2893 addr = CALLER_ADDR3;
2894 }
2895 return addr;
2896}
1da177e4 2897
7e49fcce
SR
2898#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2899 defined(CONFIG_PREEMPT_TRACER))
2900
edafe3a5 2901void preempt_count_add(int val)
1da177e4 2902{
6cd8a4bb 2903#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2904 /*
2905 * Underflow?
2906 */
9a11b49a
IM
2907 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2908 return;
6cd8a4bb 2909#endif
bdb43806 2910 __preempt_count_add(val);
6cd8a4bb 2911#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2912 /*
2913 * Spinlock count overflowing soon?
2914 */
33859f7f
MOS
2915 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2916 PREEMPT_MASK - 10);
6cd8a4bb 2917#endif
8f47b187
TG
2918 if (preempt_count() == val) {
2919 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2920#ifdef CONFIG_DEBUG_PREEMPT
2921 current->preempt_disable_ip = ip;
2922#endif
2923 trace_preempt_off(CALLER_ADDR0, ip);
2924 }
1da177e4 2925}
bdb43806 2926EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2927NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2928
edafe3a5 2929void preempt_count_sub(int val)
1da177e4 2930{
6cd8a4bb 2931#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2932 /*
2933 * Underflow?
2934 */
01e3eb82 2935 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2936 return;
1da177e4
LT
2937 /*
2938 * Is the spinlock portion underflowing?
2939 */
9a11b49a
IM
2940 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2941 !(preempt_count() & PREEMPT_MASK)))
2942 return;
6cd8a4bb 2943#endif
9a11b49a 2944
6cd8a4bb
SR
2945 if (preempt_count() == val)
2946 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2947 __preempt_count_sub(val);
1da177e4 2948}
bdb43806 2949EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2950NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2951
2952#endif
2953
2954/*
dd41f596 2955 * Print scheduling while atomic bug:
1da177e4 2956 */
dd41f596 2957static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2958{
664dfa65
DJ
2959 if (oops_in_progress)
2960 return;
2961
3df0fc5b
PZ
2962 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2963 prev->comm, prev->pid, preempt_count());
838225b4 2964
dd41f596 2965 debug_show_held_locks(prev);
e21f5b15 2966 print_modules();
dd41f596
IM
2967 if (irqs_disabled())
2968 print_irqtrace_events(prev);
8f47b187
TG
2969#ifdef CONFIG_DEBUG_PREEMPT
2970 if (in_atomic_preempt_off()) {
2971 pr_err("Preemption disabled at:");
2972 print_ip_sym(current->preempt_disable_ip);
2973 pr_cont("\n");
2974 }
2975#endif
6135fc1e 2976 dump_stack();
373d4d09 2977 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2978}
1da177e4 2979
dd41f596
IM
2980/*
2981 * Various schedule()-time debugging checks and statistics:
2982 */
2983static inline void schedule_debug(struct task_struct *prev)
2984{
0d9e2632 2985#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 2986 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 2987#endif
b99def8b 2988
1dc0fffc 2989 if (unlikely(in_atomic_preempt_off())) {
dd41f596 2990 __schedule_bug(prev);
1dc0fffc
PZ
2991 preempt_count_set(PREEMPT_DISABLED);
2992 }
b3fbab05 2993 rcu_sleep_check();
dd41f596 2994
1da177e4
LT
2995 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2996
2d72376b 2997 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2998}
2999
3000/*
3001 * Pick up the highest-prio task:
3002 */
3003static inline struct task_struct *
606dba2e 3004pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3005{
37e117c0 3006 const struct sched_class *class = &fair_sched_class;
dd41f596 3007 struct task_struct *p;
1da177e4
LT
3008
3009 /*
dd41f596
IM
3010 * Optimization: we know that if all tasks are in
3011 * the fair class we can call that function directly:
1da177e4 3012 */
37e117c0 3013 if (likely(prev->sched_class == class &&
38033c37 3014 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3015 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3016 if (unlikely(p == RETRY_TASK))
3017 goto again;
3018
3019 /* assumes fair_sched_class->next == idle_sched_class */
3020 if (unlikely(!p))
3021 p = idle_sched_class.pick_next_task(rq, prev);
3022
3023 return p;
1da177e4
LT
3024 }
3025
37e117c0 3026again:
34f971f6 3027 for_each_class(class) {
606dba2e 3028 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3029 if (p) {
3030 if (unlikely(p == RETRY_TASK))
3031 goto again;
dd41f596 3032 return p;
37e117c0 3033 }
dd41f596 3034 }
34f971f6
PZ
3035
3036 BUG(); /* the idle class will always have a runnable task */
dd41f596 3037}
1da177e4 3038
dd41f596 3039/*
c259e01a 3040 * __schedule() is the main scheduler function.
edde96ea
PE
3041 *
3042 * The main means of driving the scheduler and thus entering this function are:
3043 *
3044 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3045 *
3046 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3047 * paths. For example, see arch/x86/entry_64.S.
3048 *
3049 * To drive preemption between tasks, the scheduler sets the flag in timer
3050 * interrupt handler scheduler_tick().
3051 *
3052 * 3. Wakeups don't really cause entry into schedule(). They add a
3053 * task to the run-queue and that's it.
3054 *
3055 * Now, if the new task added to the run-queue preempts the current
3056 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3057 * called on the nearest possible occasion:
3058 *
3059 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3060 *
3061 * - in syscall or exception context, at the next outmost
3062 * preempt_enable(). (this might be as soon as the wake_up()'s
3063 * spin_unlock()!)
3064 *
3065 * - in IRQ context, return from interrupt-handler to
3066 * preemptible context
3067 *
3068 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3069 * then at the next:
3070 *
3071 * - cond_resched() call
3072 * - explicit schedule() call
3073 * - return from syscall or exception to user-space
3074 * - return from interrupt-handler to user-space
bfd9b2b5 3075 *
b30f0e3f 3076 * WARNING: must be called with preemption disabled!
dd41f596 3077 */
499d7955 3078static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3079{
3080 struct task_struct *prev, *next;
67ca7bde 3081 unsigned long *switch_count;
dd41f596 3082 struct rq *rq;
31656519 3083 int cpu;
dd41f596 3084
dd41f596
IM
3085 cpu = smp_processor_id();
3086 rq = cpu_rq(cpu);
38200cf2 3087 rcu_note_context_switch();
dd41f596 3088 prev = rq->curr;
dd41f596 3089
b99def8b
PZ
3090 /*
3091 * do_exit() calls schedule() with preemption disabled as an exception;
3092 * however we must fix that up, otherwise the next task will see an
3093 * inconsistent (higher) preempt count.
3094 *
3095 * It also avoids the below schedule_debug() test from complaining
3096 * about this.
3097 */
3098 if (unlikely(prev->state == TASK_DEAD))
3099 preempt_enable_no_resched_notrace();
3100
dd41f596 3101 schedule_debug(prev);
1da177e4 3102
31656519 3103 if (sched_feat(HRTICK))
f333fdc9 3104 hrtick_clear(rq);
8f4d37ec 3105
e0acd0a6
ON
3106 /*
3107 * Make sure that signal_pending_state()->signal_pending() below
3108 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3109 * done by the caller to avoid the race with signal_wake_up().
3110 */
3111 smp_mb__before_spinlock();
05fa785c 3112 raw_spin_lock_irq(&rq->lock);
cbce1a68 3113 lockdep_pin_lock(&rq->lock);
1da177e4 3114
9edfbfed
PZ
3115 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3116
246d86b5 3117 switch_count = &prev->nivcsw;
fc13aeba 3118 if (!preempt && prev->state) {
21aa9af0 3119 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3120 prev->state = TASK_RUNNING;
21aa9af0 3121 } else {
2acca55e
PZ
3122 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3123 prev->on_rq = 0;
3124
21aa9af0 3125 /*
2acca55e
PZ
3126 * If a worker went to sleep, notify and ask workqueue
3127 * whether it wants to wake up a task to maintain
3128 * concurrency.
21aa9af0
TH
3129 */
3130 if (prev->flags & PF_WQ_WORKER) {
3131 struct task_struct *to_wakeup;
3132
3133 to_wakeup = wq_worker_sleeping(prev, cpu);
3134 if (to_wakeup)
3135 try_to_wake_up_local(to_wakeup);
3136 }
21aa9af0 3137 }
dd41f596 3138 switch_count = &prev->nvcsw;
1da177e4
LT
3139 }
3140
9edfbfed 3141 if (task_on_rq_queued(prev))
606dba2e
PZ
3142 update_rq_clock(rq);
3143
3144 next = pick_next_task(rq, prev);
f26f9aff 3145 clear_tsk_need_resched(prev);
f27dde8d 3146 clear_preempt_need_resched();
9edfbfed 3147 rq->clock_skip_update = 0;
1da177e4 3148
1da177e4 3149 if (likely(prev != next)) {
1da177e4
LT
3150 rq->nr_switches++;
3151 rq->curr = next;
3152 ++*switch_count;
3153
c73464b1 3154 trace_sched_switch(preempt, prev, next);
dfa50b60
ON
3155 rq = context_switch(rq, prev, next); /* unlocks the rq */
3156 cpu = cpu_of(rq);
cbce1a68
PZ
3157 } else {
3158 lockdep_unpin_lock(&rq->lock);
05fa785c 3159 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3160 }
1da177e4 3161
e3fca9e7 3162 balance_callback(rq);
1da177e4 3163}
c259e01a 3164
9c40cef2
TG
3165static inline void sched_submit_work(struct task_struct *tsk)
3166{
3c7d5184 3167 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3168 return;
3169 /*
3170 * If we are going to sleep and we have plugged IO queued,
3171 * make sure to submit it to avoid deadlocks.
3172 */
3173 if (blk_needs_flush_plug(tsk))
3174 blk_schedule_flush_plug(tsk);
3175}
3176
722a9f92 3177asmlinkage __visible void __sched schedule(void)
c259e01a 3178{
9c40cef2
TG
3179 struct task_struct *tsk = current;
3180
3181 sched_submit_work(tsk);
bfd9b2b5 3182 do {
b30f0e3f 3183 preempt_disable();
fc13aeba 3184 __schedule(false);
b30f0e3f 3185 sched_preempt_enable_no_resched();
bfd9b2b5 3186 } while (need_resched());
c259e01a 3187}
1da177e4
LT
3188EXPORT_SYMBOL(schedule);
3189
91d1aa43 3190#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3191asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3192{
3193 /*
3194 * If we come here after a random call to set_need_resched(),
3195 * or we have been woken up remotely but the IPI has not yet arrived,
3196 * we haven't yet exited the RCU idle mode. Do it here manually until
3197 * we find a better solution.
7cc78f8f
AL
3198 *
3199 * NB: There are buggy callers of this function. Ideally we
c467ea76 3200 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3201 * too frequently to make sense yet.
20ab65e3 3202 */
7cc78f8f 3203 enum ctx_state prev_state = exception_enter();
20ab65e3 3204 schedule();
7cc78f8f 3205 exception_exit(prev_state);
20ab65e3
FW
3206}
3207#endif
3208
c5491ea7
TG
3209/**
3210 * schedule_preempt_disabled - called with preemption disabled
3211 *
3212 * Returns with preemption disabled. Note: preempt_count must be 1
3213 */
3214void __sched schedule_preempt_disabled(void)
3215{
ba74c144 3216 sched_preempt_enable_no_resched();
c5491ea7
TG
3217 schedule();
3218 preempt_disable();
3219}
3220
06b1f808 3221static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3222{
3223 do {
499d7955 3224 preempt_disable_notrace();
fc13aeba 3225 __schedule(true);
499d7955 3226 preempt_enable_no_resched_notrace();
a18b5d01
FW
3227
3228 /*
3229 * Check again in case we missed a preemption opportunity
3230 * between schedule and now.
3231 */
a18b5d01
FW
3232 } while (need_resched());
3233}
3234
1da177e4
LT
3235#ifdef CONFIG_PREEMPT
3236/*
2ed6e34f 3237 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3238 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3239 * occur there and call schedule directly.
3240 */
722a9f92 3241asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3242{
1da177e4
LT
3243 /*
3244 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3245 * we do not want to preempt the current task. Just return..
1da177e4 3246 */
fbb00b56 3247 if (likely(!preemptible()))
1da177e4
LT
3248 return;
3249
a18b5d01 3250 preempt_schedule_common();
1da177e4 3251}
376e2424 3252NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3253EXPORT_SYMBOL(preempt_schedule);
009f60e2 3254
009f60e2 3255/**
4eaca0a8 3256 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3257 *
3258 * The tracing infrastructure uses preempt_enable_notrace to prevent
3259 * recursion and tracing preempt enabling caused by the tracing
3260 * infrastructure itself. But as tracing can happen in areas coming
3261 * from userspace or just about to enter userspace, a preempt enable
3262 * can occur before user_exit() is called. This will cause the scheduler
3263 * to be called when the system is still in usermode.
3264 *
3265 * To prevent this, the preempt_enable_notrace will use this function
3266 * instead of preempt_schedule() to exit user context if needed before
3267 * calling the scheduler.
3268 */
4eaca0a8 3269asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3270{
3271 enum ctx_state prev_ctx;
3272
3273 if (likely(!preemptible()))
3274 return;
3275
3276 do {
3d8f74dd 3277 preempt_disable_notrace();
009f60e2
ON
3278 /*
3279 * Needs preempt disabled in case user_exit() is traced
3280 * and the tracer calls preempt_enable_notrace() causing
3281 * an infinite recursion.
3282 */
3283 prev_ctx = exception_enter();
fc13aeba 3284 __schedule(true);
009f60e2
ON
3285 exception_exit(prev_ctx);
3286
3d8f74dd 3287 preempt_enable_no_resched_notrace();
009f60e2
ON
3288 } while (need_resched());
3289}
4eaca0a8 3290EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3291
32e475d7 3292#endif /* CONFIG_PREEMPT */
1da177e4
LT
3293
3294/*
2ed6e34f 3295 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3296 * off of irq context.
3297 * Note, that this is called and return with irqs disabled. This will
3298 * protect us against recursive calling from irq.
3299 */
722a9f92 3300asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3301{
b22366cd 3302 enum ctx_state prev_state;
6478d880 3303
2ed6e34f 3304 /* Catch callers which need to be fixed */
f27dde8d 3305 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3306
b22366cd
FW
3307 prev_state = exception_enter();
3308
3a5c359a 3309 do {
3d8f74dd 3310 preempt_disable();
3a5c359a 3311 local_irq_enable();
fc13aeba 3312 __schedule(true);
3a5c359a 3313 local_irq_disable();
3d8f74dd 3314 sched_preempt_enable_no_resched();
5ed0cec0 3315 } while (need_resched());
b22366cd
FW
3316
3317 exception_exit(prev_state);
1da177e4
LT
3318}
3319
63859d4f 3320int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3321 void *key)
1da177e4 3322{
63859d4f 3323 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3324}
1da177e4
LT
3325EXPORT_SYMBOL(default_wake_function);
3326
b29739f9
IM
3327#ifdef CONFIG_RT_MUTEXES
3328
3329/*
3330 * rt_mutex_setprio - set the current priority of a task
3331 * @p: task
3332 * @prio: prio value (kernel-internal form)
3333 *
3334 * This function changes the 'effective' priority of a task. It does
3335 * not touch ->normal_prio like __setscheduler().
3336 *
c365c292
TG
3337 * Used by the rt_mutex code to implement priority inheritance
3338 * logic. Call site only calls if the priority of the task changed.
b29739f9 3339 */
36c8b586 3340void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3341{
1de64443 3342 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
70b97a7f 3343 struct rq *rq;
83ab0aa0 3344 const struct sched_class *prev_class;
b29739f9 3345
aab03e05 3346 BUG_ON(prio > MAX_PRIO);
b29739f9 3347
0122ec5b 3348 rq = __task_rq_lock(p);
b29739f9 3349
1c4dd99b
TG
3350 /*
3351 * Idle task boosting is a nono in general. There is one
3352 * exception, when PREEMPT_RT and NOHZ is active:
3353 *
3354 * The idle task calls get_next_timer_interrupt() and holds
3355 * the timer wheel base->lock on the CPU and another CPU wants
3356 * to access the timer (probably to cancel it). We can safely
3357 * ignore the boosting request, as the idle CPU runs this code
3358 * with interrupts disabled and will complete the lock
3359 * protected section without being interrupted. So there is no
3360 * real need to boost.
3361 */
3362 if (unlikely(p == rq->idle)) {
3363 WARN_ON(p != rq->curr);
3364 WARN_ON(p->pi_blocked_on);
3365 goto out_unlock;
3366 }
3367
a8027073 3368 trace_sched_pi_setprio(p, prio);
d5f9f942 3369 oldprio = p->prio;
83ab0aa0 3370 prev_class = p->sched_class;
da0c1e65 3371 queued = task_on_rq_queued(p);
051a1d1a 3372 running = task_current(rq, p);
da0c1e65 3373 if (queued)
1de64443 3374 dequeue_task(rq, p, DEQUEUE_SAVE);
0e1f3483 3375 if (running)
f3cd1c4e 3376 put_prev_task(rq, p);
dd41f596 3377
2d3d891d
DF
3378 /*
3379 * Boosting condition are:
3380 * 1. -rt task is running and holds mutex A
3381 * --> -dl task blocks on mutex A
3382 *
3383 * 2. -dl task is running and holds mutex A
3384 * --> -dl task blocks on mutex A and could preempt the
3385 * running task
3386 */
3387 if (dl_prio(prio)) {
466af29b
ON
3388 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3389 if (!dl_prio(p->normal_prio) ||
3390 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3391 p->dl.dl_boosted = 1;
1de64443 3392 enqueue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3393 } else
3394 p->dl.dl_boosted = 0;
aab03e05 3395 p->sched_class = &dl_sched_class;
2d3d891d
DF
3396 } else if (rt_prio(prio)) {
3397 if (dl_prio(oldprio))
3398 p->dl.dl_boosted = 0;
3399 if (oldprio < prio)
1de64443 3400 enqueue_flag |= ENQUEUE_HEAD;
dd41f596 3401 p->sched_class = &rt_sched_class;
2d3d891d
DF
3402 } else {
3403 if (dl_prio(oldprio))
3404 p->dl.dl_boosted = 0;
746db944
BS
3405 if (rt_prio(oldprio))
3406 p->rt.timeout = 0;
dd41f596 3407 p->sched_class = &fair_sched_class;
2d3d891d 3408 }
dd41f596 3409
b29739f9
IM
3410 p->prio = prio;
3411
0e1f3483
HS
3412 if (running)
3413 p->sched_class->set_curr_task(rq);
da0c1e65 3414 if (queued)
2d3d891d 3415 enqueue_task(rq, p, enqueue_flag);
cb469845 3416
da7a735e 3417 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3418out_unlock:
4c9a4bc8 3419 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3420 __task_rq_unlock(rq);
4c9a4bc8
PZ
3421
3422 balance_callback(rq);
3423 preempt_enable();
b29739f9 3424}
b29739f9 3425#endif
d50dde5a 3426
36c8b586 3427void set_user_nice(struct task_struct *p, long nice)
1da177e4 3428{
da0c1e65 3429 int old_prio, delta, queued;
1da177e4 3430 unsigned long flags;
70b97a7f 3431 struct rq *rq;
1da177e4 3432
75e45d51 3433 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3434 return;
3435 /*
3436 * We have to be careful, if called from sys_setpriority(),
3437 * the task might be in the middle of scheduling on another CPU.
3438 */
3439 rq = task_rq_lock(p, &flags);
3440 /*
3441 * The RT priorities are set via sched_setscheduler(), but we still
3442 * allow the 'normal' nice value to be set - but as expected
3443 * it wont have any effect on scheduling until the task is
aab03e05 3444 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3445 */
aab03e05 3446 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3447 p->static_prio = NICE_TO_PRIO(nice);
3448 goto out_unlock;
3449 }
da0c1e65
KT
3450 queued = task_on_rq_queued(p);
3451 if (queued)
1de64443 3452 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3453
1da177e4 3454 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3455 set_load_weight(p);
b29739f9
IM
3456 old_prio = p->prio;
3457 p->prio = effective_prio(p);
3458 delta = p->prio - old_prio;
1da177e4 3459
da0c1e65 3460 if (queued) {
1de64443 3461 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3462 /*
d5f9f942
AM
3463 * If the task increased its priority or is running and
3464 * lowered its priority, then reschedule its CPU:
1da177e4 3465 */
d5f9f942 3466 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3467 resched_curr(rq);
1da177e4
LT
3468 }
3469out_unlock:
0122ec5b 3470 task_rq_unlock(rq, p, &flags);
1da177e4 3471}
1da177e4
LT
3472EXPORT_SYMBOL(set_user_nice);
3473
e43379f1
MM
3474/*
3475 * can_nice - check if a task can reduce its nice value
3476 * @p: task
3477 * @nice: nice value
3478 */
36c8b586 3479int can_nice(const struct task_struct *p, const int nice)
e43379f1 3480{
024f4747 3481 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3482 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3483
78d7d407 3484 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3485 capable(CAP_SYS_NICE));
3486}
3487
1da177e4
LT
3488#ifdef __ARCH_WANT_SYS_NICE
3489
3490/*
3491 * sys_nice - change the priority of the current process.
3492 * @increment: priority increment
3493 *
3494 * sys_setpriority is a more generic, but much slower function that
3495 * does similar things.
3496 */
5add95d4 3497SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3498{
48f24c4d 3499 long nice, retval;
1da177e4
LT
3500
3501 /*
3502 * Setpriority might change our priority at the same moment.
3503 * We don't have to worry. Conceptually one call occurs first
3504 * and we have a single winner.
3505 */
a9467fa3 3506 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3507 nice = task_nice(current) + increment;
1da177e4 3508
a9467fa3 3509 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3510 if (increment < 0 && !can_nice(current, nice))
3511 return -EPERM;
3512
1da177e4
LT
3513 retval = security_task_setnice(current, nice);
3514 if (retval)
3515 return retval;
3516
3517 set_user_nice(current, nice);
3518 return 0;
3519}
3520
3521#endif
3522
3523/**
3524 * task_prio - return the priority value of a given task.
3525 * @p: the task in question.
3526 *
e69f6186 3527 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3528 * RT tasks are offset by -200. Normal tasks are centered
3529 * around 0, value goes from -16 to +15.
3530 */
36c8b586 3531int task_prio(const struct task_struct *p)
1da177e4
LT
3532{
3533 return p->prio - MAX_RT_PRIO;
3534}
3535
1da177e4
LT
3536/**
3537 * idle_cpu - is a given cpu idle currently?
3538 * @cpu: the processor in question.
e69f6186
YB
3539 *
3540 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3541 */
3542int idle_cpu(int cpu)
3543{
908a3283
TG
3544 struct rq *rq = cpu_rq(cpu);
3545
3546 if (rq->curr != rq->idle)
3547 return 0;
3548
3549 if (rq->nr_running)
3550 return 0;
3551
3552#ifdef CONFIG_SMP
3553 if (!llist_empty(&rq->wake_list))
3554 return 0;
3555#endif
3556
3557 return 1;
1da177e4
LT
3558}
3559
1da177e4
LT
3560/**
3561 * idle_task - return the idle task for a given cpu.
3562 * @cpu: the processor in question.
e69f6186
YB
3563 *
3564 * Return: The idle task for the cpu @cpu.
1da177e4 3565 */
36c8b586 3566struct task_struct *idle_task(int cpu)
1da177e4
LT
3567{
3568 return cpu_rq(cpu)->idle;
3569}
3570
3571/**
3572 * find_process_by_pid - find a process with a matching PID value.
3573 * @pid: the pid in question.
e69f6186
YB
3574 *
3575 * The task of @pid, if found. %NULL otherwise.
1da177e4 3576 */
a9957449 3577static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3578{
228ebcbe 3579 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3580}
3581
aab03e05
DF
3582/*
3583 * This function initializes the sched_dl_entity of a newly becoming
3584 * SCHED_DEADLINE task.
3585 *
3586 * Only the static values are considered here, the actual runtime and the
3587 * absolute deadline will be properly calculated when the task is enqueued
3588 * for the first time with its new policy.
3589 */
3590static void
3591__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3592{
3593 struct sched_dl_entity *dl_se = &p->dl;
3594
aab03e05
DF
3595 dl_se->dl_runtime = attr->sched_runtime;
3596 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3597 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3598 dl_se->flags = attr->sched_flags;
332ac17e 3599 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3600
3601 /*
3602 * Changing the parameters of a task is 'tricky' and we're not doing
3603 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3604 *
3605 * What we SHOULD do is delay the bandwidth release until the 0-lag
3606 * point. This would include retaining the task_struct until that time
3607 * and change dl_overflow() to not immediately decrement the current
3608 * amount.
3609 *
3610 * Instead we retain the current runtime/deadline and let the new
3611 * parameters take effect after the current reservation period lapses.
3612 * This is safe (albeit pessimistic) because the 0-lag point is always
3613 * before the current scheduling deadline.
3614 *
3615 * We can still have temporary overloads because we do not delay the
3616 * change in bandwidth until that time; so admission control is
3617 * not on the safe side. It does however guarantee tasks will never
3618 * consume more than promised.
3619 */
aab03e05
DF
3620}
3621
c13db6b1
SR
3622/*
3623 * sched_setparam() passes in -1 for its policy, to let the functions
3624 * it calls know not to change it.
3625 */
3626#define SETPARAM_POLICY -1
3627
c365c292
TG
3628static void __setscheduler_params(struct task_struct *p,
3629 const struct sched_attr *attr)
1da177e4 3630{
d50dde5a
DF
3631 int policy = attr->sched_policy;
3632
c13db6b1 3633 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3634 policy = p->policy;
3635
1da177e4 3636 p->policy = policy;
d50dde5a 3637
aab03e05
DF
3638 if (dl_policy(policy))
3639 __setparam_dl(p, attr);
39fd8fd2 3640 else if (fair_policy(policy))
d50dde5a
DF
3641 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3642
39fd8fd2
PZ
3643 /*
3644 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3645 * !rt_policy. Always setting this ensures that things like
3646 * getparam()/getattr() don't report silly values for !rt tasks.
3647 */
3648 p->rt_priority = attr->sched_priority;
383afd09 3649 p->normal_prio = normal_prio(p);
c365c292
TG
3650 set_load_weight(p);
3651}
39fd8fd2 3652
c365c292
TG
3653/* Actually do priority change: must hold pi & rq lock. */
3654static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3655 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3656{
3657 __setscheduler_params(p, attr);
d50dde5a 3658
383afd09 3659 /*
0782e63b
TG
3660 * Keep a potential priority boosting if called from
3661 * sched_setscheduler().
383afd09 3662 */
0782e63b
TG
3663 if (keep_boost)
3664 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3665 else
3666 p->prio = normal_prio(p);
383afd09 3667
aab03e05
DF
3668 if (dl_prio(p->prio))
3669 p->sched_class = &dl_sched_class;
3670 else if (rt_prio(p->prio))
ffd44db5
PZ
3671 p->sched_class = &rt_sched_class;
3672 else
3673 p->sched_class = &fair_sched_class;
1da177e4 3674}
aab03e05
DF
3675
3676static void
3677__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3678{
3679 struct sched_dl_entity *dl_se = &p->dl;
3680
3681 attr->sched_priority = p->rt_priority;
3682 attr->sched_runtime = dl_se->dl_runtime;
3683 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3684 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3685 attr->sched_flags = dl_se->flags;
3686}
3687
3688/*
3689 * This function validates the new parameters of a -deadline task.
3690 * We ask for the deadline not being zero, and greater or equal
755378a4 3691 * than the runtime, as well as the period of being zero or
332ac17e 3692 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3693 * user parameters are above the internal resolution of 1us (we
3694 * check sched_runtime only since it is always the smaller one) and
3695 * below 2^63 ns (we have to check both sched_deadline and
3696 * sched_period, as the latter can be zero).
aab03e05
DF
3697 */
3698static bool
3699__checkparam_dl(const struct sched_attr *attr)
3700{
b0827819
JL
3701 /* deadline != 0 */
3702 if (attr->sched_deadline == 0)
3703 return false;
3704
3705 /*
3706 * Since we truncate DL_SCALE bits, make sure we're at least
3707 * that big.
3708 */
3709 if (attr->sched_runtime < (1ULL << DL_SCALE))
3710 return false;
3711
3712 /*
3713 * Since we use the MSB for wrap-around and sign issues, make
3714 * sure it's not set (mind that period can be equal to zero).
3715 */
3716 if (attr->sched_deadline & (1ULL << 63) ||
3717 attr->sched_period & (1ULL << 63))
3718 return false;
3719
3720 /* runtime <= deadline <= period (if period != 0) */
3721 if ((attr->sched_period != 0 &&
3722 attr->sched_period < attr->sched_deadline) ||
3723 attr->sched_deadline < attr->sched_runtime)
3724 return false;
3725
3726 return true;
aab03e05
DF
3727}
3728
c69e8d9c
DH
3729/*
3730 * check the target process has a UID that matches the current process's
3731 */
3732static bool check_same_owner(struct task_struct *p)
3733{
3734 const struct cred *cred = current_cred(), *pcred;
3735 bool match;
3736
3737 rcu_read_lock();
3738 pcred = __task_cred(p);
9c806aa0
EB
3739 match = (uid_eq(cred->euid, pcred->euid) ||
3740 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3741 rcu_read_unlock();
3742 return match;
3743}
3744
75381608
WL
3745static bool dl_param_changed(struct task_struct *p,
3746 const struct sched_attr *attr)
3747{
3748 struct sched_dl_entity *dl_se = &p->dl;
3749
3750 if (dl_se->dl_runtime != attr->sched_runtime ||
3751 dl_se->dl_deadline != attr->sched_deadline ||
3752 dl_se->dl_period != attr->sched_period ||
3753 dl_se->flags != attr->sched_flags)
3754 return true;
3755
3756 return false;
3757}
3758
d50dde5a
DF
3759static int __sched_setscheduler(struct task_struct *p,
3760 const struct sched_attr *attr,
dbc7f069 3761 bool user, bool pi)
1da177e4 3762{
383afd09
SR
3763 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3764 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3765 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3766 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3767 unsigned long flags;
83ab0aa0 3768 const struct sched_class *prev_class;
70b97a7f 3769 struct rq *rq;
ca94c442 3770 int reset_on_fork;
1da177e4 3771
66e5393a
SR
3772 /* may grab non-irq protected spin_locks */
3773 BUG_ON(in_interrupt());
1da177e4
LT
3774recheck:
3775 /* double check policy once rq lock held */
ca94c442
LP
3776 if (policy < 0) {
3777 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3778 policy = oldpolicy = p->policy;
ca94c442 3779 } else {
7479f3c9 3780 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3781
20f9cd2a 3782 if (!valid_policy(policy))
ca94c442
LP
3783 return -EINVAL;
3784 }
3785
7479f3c9
PZ
3786 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3787 return -EINVAL;
3788
1da177e4
LT
3789 /*
3790 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3791 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3792 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3793 */
0bb040a4 3794 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3795 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3796 return -EINVAL;
aab03e05
DF
3797 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3798 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3799 return -EINVAL;
3800
37e4ab3f
OC
3801 /*
3802 * Allow unprivileged RT tasks to decrease priority:
3803 */
961ccddd 3804 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3805 if (fair_policy(policy)) {
d0ea0268 3806 if (attr->sched_nice < task_nice(p) &&
eaad4513 3807 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3808 return -EPERM;
3809 }
3810
e05606d3 3811 if (rt_policy(policy)) {
a44702e8
ON
3812 unsigned long rlim_rtprio =
3813 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3814
3815 /* can't set/change the rt policy */
3816 if (policy != p->policy && !rlim_rtprio)
3817 return -EPERM;
3818
3819 /* can't increase priority */
d50dde5a
DF
3820 if (attr->sched_priority > p->rt_priority &&
3821 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3822 return -EPERM;
3823 }
c02aa73b 3824
d44753b8
JL
3825 /*
3826 * Can't set/change SCHED_DEADLINE policy at all for now
3827 * (safest behavior); in the future we would like to allow
3828 * unprivileged DL tasks to increase their relative deadline
3829 * or reduce their runtime (both ways reducing utilization)
3830 */
3831 if (dl_policy(policy))
3832 return -EPERM;
3833
dd41f596 3834 /*
c02aa73b
DH
3835 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3836 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3837 */
20f9cd2a 3838 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3839 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3840 return -EPERM;
3841 }
5fe1d75f 3842
37e4ab3f 3843 /* can't change other user's priorities */
c69e8d9c 3844 if (!check_same_owner(p))
37e4ab3f 3845 return -EPERM;
ca94c442
LP
3846
3847 /* Normal users shall not reset the sched_reset_on_fork flag */
3848 if (p->sched_reset_on_fork && !reset_on_fork)
3849 return -EPERM;
37e4ab3f 3850 }
1da177e4 3851
725aad24 3852 if (user) {
b0ae1981 3853 retval = security_task_setscheduler(p);
725aad24
JF
3854 if (retval)
3855 return retval;
3856 }
3857
b29739f9
IM
3858 /*
3859 * make sure no PI-waiters arrive (or leave) while we are
3860 * changing the priority of the task:
0122ec5b 3861 *
25985edc 3862 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3863 * runqueue lock must be held.
3864 */
0122ec5b 3865 rq = task_rq_lock(p, &flags);
dc61b1d6 3866
34f971f6
PZ
3867 /*
3868 * Changing the policy of the stop threads its a very bad idea
3869 */
3870 if (p == rq->stop) {
0122ec5b 3871 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3872 return -EINVAL;
3873 }
3874
a51e9198 3875 /*
d6b1e911
TG
3876 * If not changing anything there's no need to proceed further,
3877 * but store a possible modification of reset_on_fork.
a51e9198 3878 */
d50dde5a 3879 if (unlikely(policy == p->policy)) {
d0ea0268 3880 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3881 goto change;
3882 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3883 goto change;
75381608 3884 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3885 goto change;
d50dde5a 3886
d6b1e911 3887 p->sched_reset_on_fork = reset_on_fork;
45afb173 3888 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3889 return 0;
3890 }
d50dde5a 3891change:
a51e9198 3892
dc61b1d6 3893 if (user) {
332ac17e 3894#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3895 /*
3896 * Do not allow realtime tasks into groups that have no runtime
3897 * assigned.
3898 */
3899 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3900 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3901 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3902 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3903 return -EPERM;
3904 }
dc61b1d6 3905#endif
332ac17e
DF
3906#ifdef CONFIG_SMP
3907 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3908 cpumask_t *span = rq->rd->span;
332ac17e
DF
3909
3910 /*
3911 * Don't allow tasks with an affinity mask smaller than
3912 * the entire root_domain to become SCHED_DEADLINE. We
3913 * will also fail if there's no bandwidth available.
3914 */
e4099a5e
PZ
3915 if (!cpumask_subset(span, &p->cpus_allowed) ||
3916 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3917 task_rq_unlock(rq, p, &flags);
3918 return -EPERM;
3919 }
3920 }
3921#endif
3922 }
dc61b1d6 3923
1da177e4
LT
3924 /* recheck policy now with rq lock held */
3925 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3926 policy = oldpolicy = -1;
0122ec5b 3927 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3928 goto recheck;
3929 }
332ac17e
DF
3930
3931 /*
3932 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3933 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3934 * is available.
3935 */
e4099a5e 3936 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3937 task_rq_unlock(rq, p, &flags);
3938 return -EBUSY;
3939 }
3940
c365c292
TG
3941 p->sched_reset_on_fork = reset_on_fork;
3942 oldprio = p->prio;
3943
dbc7f069
PZ
3944 if (pi) {
3945 /*
3946 * Take priority boosted tasks into account. If the new
3947 * effective priority is unchanged, we just store the new
3948 * normal parameters and do not touch the scheduler class and
3949 * the runqueue. This will be done when the task deboost
3950 * itself.
3951 */
3952 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3953 if (new_effective_prio == oldprio) {
3954 __setscheduler_params(p, attr);
3955 task_rq_unlock(rq, p, &flags);
3956 return 0;
3957 }
c365c292
TG
3958 }
3959
da0c1e65 3960 queued = task_on_rq_queued(p);
051a1d1a 3961 running = task_current(rq, p);
da0c1e65 3962 if (queued)
1de64443 3963 dequeue_task(rq, p, DEQUEUE_SAVE);
0e1f3483 3964 if (running)
f3cd1c4e 3965 put_prev_task(rq, p);
f6b53205 3966
83ab0aa0 3967 prev_class = p->sched_class;
dbc7f069 3968 __setscheduler(rq, p, attr, pi);
f6b53205 3969
0e1f3483
HS
3970 if (running)
3971 p->sched_class->set_curr_task(rq);
da0c1e65 3972 if (queued) {
1de64443 3973 int enqueue_flags = ENQUEUE_RESTORE;
81a44c54
TG
3974 /*
3975 * We enqueue to tail when the priority of a task is
3976 * increased (user space view).
3977 */
1de64443
PZ
3978 if (oldprio <= p->prio)
3979 enqueue_flags |= ENQUEUE_HEAD;
3980
3981 enqueue_task(rq, p, enqueue_flags);
81a44c54 3982 }
cb469845 3983
da7a735e 3984 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3985 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3986 task_rq_unlock(rq, p, &flags);
b29739f9 3987
dbc7f069
PZ
3988 if (pi)
3989 rt_mutex_adjust_pi(p);
95e02ca9 3990
4c9a4bc8
PZ
3991 /*
3992 * Run balance callbacks after we've adjusted the PI chain.
3993 */
3994 balance_callback(rq);
3995 preempt_enable();
95e02ca9 3996
1da177e4
LT
3997 return 0;
3998}
961ccddd 3999
7479f3c9
PZ
4000static int _sched_setscheduler(struct task_struct *p, int policy,
4001 const struct sched_param *param, bool check)
4002{
4003 struct sched_attr attr = {
4004 .sched_policy = policy,
4005 .sched_priority = param->sched_priority,
4006 .sched_nice = PRIO_TO_NICE(p->static_prio),
4007 };
4008
c13db6b1
SR
4009 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4010 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4011 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4012 policy &= ~SCHED_RESET_ON_FORK;
4013 attr.sched_policy = policy;
4014 }
4015
dbc7f069 4016 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4017}
961ccddd
RR
4018/**
4019 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4020 * @p: the task in question.
4021 * @policy: new policy.
4022 * @param: structure containing the new RT priority.
4023 *
e69f6186
YB
4024 * Return: 0 on success. An error code otherwise.
4025 *
961ccddd
RR
4026 * NOTE that the task may be already dead.
4027 */
4028int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4029 const struct sched_param *param)
961ccddd 4030{
7479f3c9 4031 return _sched_setscheduler(p, policy, param, true);
961ccddd 4032}
1da177e4
LT
4033EXPORT_SYMBOL_GPL(sched_setscheduler);
4034
d50dde5a
DF
4035int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4036{
dbc7f069 4037 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4038}
4039EXPORT_SYMBOL_GPL(sched_setattr);
4040
961ccddd
RR
4041/**
4042 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4043 * @p: the task in question.
4044 * @policy: new policy.
4045 * @param: structure containing the new RT priority.
4046 *
4047 * Just like sched_setscheduler, only don't bother checking if the
4048 * current context has permission. For example, this is needed in
4049 * stop_machine(): we create temporary high priority worker threads,
4050 * but our caller might not have that capability.
e69f6186
YB
4051 *
4052 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4053 */
4054int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4055 const struct sched_param *param)
961ccddd 4056{
7479f3c9 4057 return _sched_setscheduler(p, policy, param, false);
961ccddd 4058}
84778472 4059EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4060
95cdf3b7
IM
4061static int
4062do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4063{
1da177e4
LT
4064 struct sched_param lparam;
4065 struct task_struct *p;
36c8b586 4066 int retval;
1da177e4
LT
4067
4068 if (!param || pid < 0)
4069 return -EINVAL;
4070 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4071 return -EFAULT;
5fe1d75f
ON
4072
4073 rcu_read_lock();
4074 retval = -ESRCH;
1da177e4 4075 p = find_process_by_pid(pid);
5fe1d75f
ON
4076 if (p != NULL)
4077 retval = sched_setscheduler(p, policy, &lparam);
4078 rcu_read_unlock();
36c8b586 4079
1da177e4
LT
4080 return retval;
4081}
4082
d50dde5a
DF
4083/*
4084 * Mimics kernel/events/core.c perf_copy_attr().
4085 */
4086static int sched_copy_attr(struct sched_attr __user *uattr,
4087 struct sched_attr *attr)
4088{
4089 u32 size;
4090 int ret;
4091
4092 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4093 return -EFAULT;
4094
4095 /*
4096 * zero the full structure, so that a short copy will be nice.
4097 */
4098 memset(attr, 0, sizeof(*attr));
4099
4100 ret = get_user(size, &uattr->size);
4101 if (ret)
4102 return ret;
4103
4104 if (size > PAGE_SIZE) /* silly large */
4105 goto err_size;
4106
4107 if (!size) /* abi compat */
4108 size = SCHED_ATTR_SIZE_VER0;
4109
4110 if (size < SCHED_ATTR_SIZE_VER0)
4111 goto err_size;
4112
4113 /*
4114 * If we're handed a bigger struct than we know of,
4115 * ensure all the unknown bits are 0 - i.e. new
4116 * user-space does not rely on any kernel feature
4117 * extensions we dont know about yet.
4118 */
4119 if (size > sizeof(*attr)) {
4120 unsigned char __user *addr;
4121 unsigned char __user *end;
4122 unsigned char val;
4123
4124 addr = (void __user *)uattr + sizeof(*attr);
4125 end = (void __user *)uattr + size;
4126
4127 for (; addr < end; addr++) {
4128 ret = get_user(val, addr);
4129 if (ret)
4130 return ret;
4131 if (val)
4132 goto err_size;
4133 }
4134 size = sizeof(*attr);
4135 }
4136
4137 ret = copy_from_user(attr, uattr, size);
4138 if (ret)
4139 return -EFAULT;
4140
4141 /*
4142 * XXX: do we want to be lenient like existing syscalls; or do we want
4143 * to be strict and return an error on out-of-bounds values?
4144 */
75e45d51 4145 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4146
e78c7bca 4147 return 0;
d50dde5a
DF
4148
4149err_size:
4150 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4151 return -E2BIG;
d50dde5a
DF
4152}
4153
1da177e4
LT
4154/**
4155 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4156 * @pid: the pid in question.
4157 * @policy: new policy.
4158 * @param: structure containing the new RT priority.
e69f6186
YB
4159 *
4160 * Return: 0 on success. An error code otherwise.
1da177e4 4161 */
5add95d4
HC
4162SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4163 struct sched_param __user *, param)
1da177e4 4164{
c21761f1
JB
4165 /* negative values for policy are not valid */
4166 if (policy < 0)
4167 return -EINVAL;
4168
1da177e4
LT
4169 return do_sched_setscheduler(pid, policy, param);
4170}
4171
4172/**
4173 * sys_sched_setparam - set/change the RT priority of a thread
4174 * @pid: the pid in question.
4175 * @param: structure containing the new RT priority.
e69f6186
YB
4176 *
4177 * Return: 0 on success. An error code otherwise.
1da177e4 4178 */
5add95d4 4179SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4180{
c13db6b1 4181 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4182}
4183
d50dde5a
DF
4184/**
4185 * sys_sched_setattr - same as above, but with extended sched_attr
4186 * @pid: the pid in question.
5778fccf 4187 * @uattr: structure containing the extended parameters.
db66d756 4188 * @flags: for future extension.
d50dde5a 4189 */
6d35ab48
PZ
4190SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4191 unsigned int, flags)
d50dde5a
DF
4192{
4193 struct sched_attr attr;
4194 struct task_struct *p;
4195 int retval;
4196
6d35ab48 4197 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4198 return -EINVAL;
4199
143cf23d
MK
4200 retval = sched_copy_attr(uattr, &attr);
4201 if (retval)
4202 return retval;
d50dde5a 4203
b14ed2c2 4204 if ((int)attr.sched_policy < 0)
dbdb2275 4205 return -EINVAL;
d50dde5a
DF
4206
4207 rcu_read_lock();
4208 retval = -ESRCH;
4209 p = find_process_by_pid(pid);
4210 if (p != NULL)
4211 retval = sched_setattr(p, &attr);
4212 rcu_read_unlock();
4213
4214 return retval;
4215}
4216
1da177e4
LT
4217/**
4218 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4219 * @pid: the pid in question.
e69f6186
YB
4220 *
4221 * Return: On success, the policy of the thread. Otherwise, a negative error
4222 * code.
1da177e4 4223 */
5add95d4 4224SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4225{
36c8b586 4226 struct task_struct *p;
3a5c359a 4227 int retval;
1da177e4
LT
4228
4229 if (pid < 0)
3a5c359a 4230 return -EINVAL;
1da177e4
LT
4231
4232 retval = -ESRCH;
5fe85be0 4233 rcu_read_lock();
1da177e4
LT
4234 p = find_process_by_pid(pid);
4235 if (p) {
4236 retval = security_task_getscheduler(p);
4237 if (!retval)
ca94c442
LP
4238 retval = p->policy
4239 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4240 }
5fe85be0 4241 rcu_read_unlock();
1da177e4
LT
4242 return retval;
4243}
4244
4245/**
ca94c442 4246 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4247 * @pid: the pid in question.
4248 * @param: structure containing the RT priority.
e69f6186
YB
4249 *
4250 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4251 * code.
1da177e4 4252 */
5add95d4 4253SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4254{
ce5f7f82 4255 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4256 struct task_struct *p;
3a5c359a 4257 int retval;
1da177e4
LT
4258
4259 if (!param || pid < 0)
3a5c359a 4260 return -EINVAL;
1da177e4 4261
5fe85be0 4262 rcu_read_lock();
1da177e4
LT
4263 p = find_process_by_pid(pid);
4264 retval = -ESRCH;
4265 if (!p)
4266 goto out_unlock;
4267
4268 retval = security_task_getscheduler(p);
4269 if (retval)
4270 goto out_unlock;
4271
ce5f7f82
PZ
4272 if (task_has_rt_policy(p))
4273 lp.sched_priority = p->rt_priority;
5fe85be0 4274 rcu_read_unlock();
1da177e4
LT
4275
4276 /*
4277 * This one might sleep, we cannot do it with a spinlock held ...
4278 */
4279 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4280
1da177e4
LT
4281 return retval;
4282
4283out_unlock:
5fe85be0 4284 rcu_read_unlock();
1da177e4
LT
4285 return retval;
4286}
4287
d50dde5a
DF
4288static int sched_read_attr(struct sched_attr __user *uattr,
4289 struct sched_attr *attr,
4290 unsigned int usize)
4291{
4292 int ret;
4293
4294 if (!access_ok(VERIFY_WRITE, uattr, usize))
4295 return -EFAULT;
4296
4297 /*
4298 * If we're handed a smaller struct than we know of,
4299 * ensure all the unknown bits are 0 - i.e. old
4300 * user-space does not get uncomplete information.
4301 */
4302 if (usize < sizeof(*attr)) {
4303 unsigned char *addr;
4304 unsigned char *end;
4305
4306 addr = (void *)attr + usize;
4307 end = (void *)attr + sizeof(*attr);
4308
4309 for (; addr < end; addr++) {
4310 if (*addr)
22400674 4311 return -EFBIG;
d50dde5a
DF
4312 }
4313
4314 attr->size = usize;
4315 }
4316
4efbc454 4317 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4318 if (ret)
4319 return -EFAULT;
4320
22400674 4321 return 0;
d50dde5a
DF
4322}
4323
4324/**
aab03e05 4325 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4326 * @pid: the pid in question.
5778fccf 4327 * @uattr: structure containing the extended parameters.
d50dde5a 4328 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4329 * @flags: for future extension.
d50dde5a 4330 */
6d35ab48
PZ
4331SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4332 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4333{
4334 struct sched_attr attr = {
4335 .size = sizeof(struct sched_attr),
4336 };
4337 struct task_struct *p;
4338 int retval;
4339
4340 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4341 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4342 return -EINVAL;
4343
4344 rcu_read_lock();
4345 p = find_process_by_pid(pid);
4346 retval = -ESRCH;
4347 if (!p)
4348 goto out_unlock;
4349
4350 retval = security_task_getscheduler(p);
4351 if (retval)
4352 goto out_unlock;
4353
4354 attr.sched_policy = p->policy;
7479f3c9
PZ
4355 if (p->sched_reset_on_fork)
4356 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4357 if (task_has_dl_policy(p))
4358 __getparam_dl(p, &attr);
4359 else if (task_has_rt_policy(p))
d50dde5a
DF
4360 attr.sched_priority = p->rt_priority;
4361 else
d0ea0268 4362 attr.sched_nice = task_nice(p);
d50dde5a
DF
4363
4364 rcu_read_unlock();
4365
4366 retval = sched_read_attr(uattr, &attr, size);
4367 return retval;
4368
4369out_unlock:
4370 rcu_read_unlock();
4371 return retval;
4372}
4373
96f874e2 4374long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4375{
5a16f3d3 4376 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4377 struct task_struct *p;
4378 int retval;
1da177e4 4379
23f5d142 4380 rcu_read_lock();
1da177e4
LT
4381
4382 p = find_process_by_pid(pid);
4383 if (!p) {
23f5d142 4384 rcu_read_unlock();
1da177e4
LT
4385 return -ESRCH;
4386 }
4387
23f5d142 4388 /* Prevent p going away */
1da177e4 4389 get_task_struct(p);
23f5d142 4390 rcu_read_unlock();
1da177e4 4391
14a40ffc
TH
4392 if (p->flags & PF_NO_SETAFFINITY) {
4393 retval = -EINVAL;
4394 goto out_put_task;
4395 }
5a16f3d3
RR
4396 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4397 retval = -ENOMEM;
4398 goto out_put_task;
4399 }
4400 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4401 retval = -ENOMEM;
4402 goto out_free_cpus_allowed;
4403 }
1da177e4 4404 retval = -EPERM;
4c44aaaf
EB
4405 if (!check_same_owner(p)) {
4406 rcu_read_lock();
4407 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4408 rcu_read_unlock();
16303ab2 4409 goto out_free_new_mask;
4c44aaaf
EB
4410 }
4411 rcu_read_unlock();
4412 }
1da177e4 4413
b0ae1981 4414 retval = security_task_setscheduler(p);
e7834f8f 4415 if (retval)
16303ab2 4416 goto out_free_new_mask;
e7834f8f 4417
e4099a5e
PZ
4418
4419 cpuset_cpus_allowed(p, cpus_allowed);
4420 cpumask_and(new_mask, in_mask, cpus_allowed);
4421
332ac17e
DF
4422 /*
4423 * Since bandwidth control happens on root_domain basis,
4424 * if admission test is enabled, we only admit -deadline
4425 * tasks allowed to run on all the CPUs in the task's
4426 * root_domain.
4427 */
4428#ifdef CONFIG_SMP
f1e3a093
KT
4429 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4430 rcu_read_lock();
4431 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4432 retval = -EBUSY;
f1e3a093 4433 rcu_read_unlock();
16303ab2 4434 goto out_free_new_mask;
332ac17e 4435 }
f1e3a093 4436 rcu_read_unlock();
332ac17e
DF
4437 }
4438#endif
49246274 4439again:
25834c73 4440 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4441
8707d8b8 4442 if (!retval) {
5a16f3d3
RR
4443 cpuset_cpus_allowed(p, cpus_allowed);
4444 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4445 /*
4446 * We must have raced with a concurrent cpuset
4447 * update. Just reset the cpus_allowed to the
4448 * cpuset's cpus_allowed
4449 */
5a16f3d3 4450 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4451 goto again;
4452 }
4453 }
16303ab2 4454out_free_new_mask:
5a16f3d3
RR
4455 free_cpumask_var(new_mask);
4456out_free_cpus_allowed:
4457 free_cpumask_var(cpus_allowed);
4458out_put_task:
1da177e4 4459 put_task_struct(p);
1da177e4
LT
4460 return retval;
4461}
4462
4463static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4464 struct cpumask *new_mask)
1da177e4 4465{
96f874e2
RR
4466 if (len < cpumask_size())
4467 cpumask_clear(new_mask);
4468 else if (len > cpumask_size())
4469 len = cpumask_size();
4470
1da177e4
LT
4471 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4472}
4473
4474/**
4475 * sys_sched_setaffinity - set the cpu affinity of a process
4476 * @pid: pid of the process
4477 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4478 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4479 *
4480 * Return: 0 on success. An error code otherwise.
1da177e4 4481 */
5add95d4
HC
4482SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4483 unsigned long __user *, user_mask_ptr)
1da177e4 4484{
5a16f3d3 4485 cpumask_var_t new_mask;
1da177e4
LT
4486 int retval;
4487
5a16f3d3
RR
4488 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4489 return -ENOMEM;
1da177e4 4490
5a16f3d3
RR
4491 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4492 if (retval == 0)
4493 retval = sched_setaffinity(pid, new_mask);
4494 free_cpumask_var(new_mask);
4495 return retval;
1da177e4
LT
4496}
4497
96f874e2 4498long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4499{
36c8b586 4500 struct task_struct *p;
31605683 4501 unsigned long flags;
1da177e4 4502 int retval;
1da177e4 4503
23f5d142 4504 rcu_read_lock();
1da177e4
LT
4505
4506 retval = -ESRCH;
4507 p = find_process_by_pid(pid);
4508 if (!p)
4509 goto out_unlock;
4510
e7834f8f
DQ
4511 retval = security_task_getscheduler(p);
4512 if (retval)
4513 goto out_unlock;
4514
013fdb80 4515 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4516 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4517 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4518
4519out_unlock:
23f5d142 4520 rcu_read_unlock();
1da177e4 4521
9531b62f 4522 return retval;
1da177e4
LT
4523}
4524
4525/**
4526 * sys_sched_getaffinity - get the cpu affinity of a process
4527 * @pid: pid of the process
4528 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4529 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4530 *
4531 * Return: 0 on success. An error code otherwise.
1da177e4 4532 */
5add95d4
HC
4533SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4534 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4535{
4536 int ret;
f17c8607 4537 cpumask_var_t mask;
1da177e4 4538
84fba5ec 4539 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4540 return -EINVAL;
4541 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4542 return -EINVAL;
4543
f17c8607
RR
4544 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4545 return -ENOMEM;
1da177e4 4546
f17c8607
RR
4547 ret = sched_getaffinity(pid, mask);
4548 if (ret == 0) {
8bc037fb 4549 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4550
4551 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4552 ret = -EFAULT;
4553 else
cd3d8031 4554 ret = retlen;
f17c8607
RR
4555 }
4556 free_cpumask_var(mask);
1da177e4 4557
f17c8607 4558 return ret;
1da177e4
LT
4559}
4560
4561/**
4562 * sys_sched_yield - yield the current processor to other threads.
4563 *
dd41f596
IM
4564 * This function yields the current CPU to other tasks. If there are no
4565 * other threads running on this CPU then this function will return.
e69f6186
YB
4566 *
4567 * Return: 0.
1da177e4 4568 */
5add95d4 4569SYSCALL_DEFINE0(sched_yield)
1da177e4 4570{
70b97a7f 4571 struct rq *rq = this_rq_lock();
1da177e4 4572
2d72376b 4573 schedstat_inc(rq, yld_count);
4530d7ab 4574 current->sched_class->yield_task(rq);
1da177e4
LT
4575
4576 /*
4577 * Since we are going to call schedule() anyway, there's
4578 * no need to preempt or enable interrupts:
4579 */
4580 __release(rq->lock);
8a25d5de 4581 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4582 do_raw_spin_unlock(&rq->lock);
ba74c144 4583 sched_preempt_enable_no_resched();
1da177e4
LT
4584
4585 schedule();
4586
4587 return 0;
4588}
4589
02b67cc3 4590int __sched _cond_resched(void)
1da177e4 4591{
fe32d3cd 4592 if (should_resched(0)) {
a18b5d01 4593 preempt_schedule_common();
1da177e4
LT
4594 return 1;
4595 }
4596 return 0;
4597}
02b67cc3 4598EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4599
4600/*
613afbf8 4601 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4602 * call schedule, and on return reacquire the lock.
4603 *
41a2d6cf 4604 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4605 * operations here to prevent schedule() from being called twice (once via
4606 * spin_unlock(), once by hand).
4607 */
613afbf8 4608int __cond_resched_lock(spinlock_t *lock)
1da177e4 4609{
fe32d3cd 4610 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4611 int ret = 0;
4612
f607c668
PZ
4613 lockdep_assert_held(lock);
4614
4a81e832 4615 if (spin_needbreak(lock) || resched) {
1da177e4 4616 spin_unlock(lock);
d86ee480 4617 if (resched)
a18b5d01 4618 preempt_schedule_common();
95c354fe
NP
4619 else
4620 cpu_relax();
6df3cecb 4621 ret = 1;
1da177e4 4622 spin_lock(lock);
1da177e4 4623 }
6df3cecb 4624 return ret;
1da177e4 4625}
613afbf8 4626EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4627
613afbf8 4628int __sched __cond_resched_softirq(void)
1da177e4
LT
4629{
4630 BUG_ON(!in_softirq());
4631
fe32d3cd 4632 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4633 local_bh_enable();
a18b5d01 4634 preempt_schedule_common();
1da177e4
LT
4635 local_bh_disable();
4636 return 1;
4637 }
4638 return 0;
4639}
613afbf8 4640EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4641
1da177e4
LT
4642/**
4643 * yield - yield the current processor to other threads.
4644 *
8e3fabfd
PZ
4645 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4646 *
4647 * The scheduler is at all times free to pick the calling task as the most
4648 * eligible task to run, if removing the yield() call from your code breaks
4649 * it, its already broken.
4650 *
4651 * Typical broken usage is:
4652 *
4653 * while (!event)
4654 * yield();
4655 *
4656 * where one assumes that yield() will let 'the other' process run that will
4657 * make event true. If the current task is a SCHED_FIFO task that will never
4658 * happen. Never use yield() as a progress guarantee!!
4659 *
4660 * If you want to use yield() to wait for something, use wait_event().
4661 * If you want to use yield() to be 'nice' for others, use cond_resched().
4662 * If you still want to use yield(), do not!
1da177e4
LT
4663 */
4664void __sched yield(void)
4665{
4666 set_current_state(TASK_RUNNING);
4667 sys_sched_yield();
4668}
1da177e4
LT
4669EXPORT_SYMBOL(yield);
4670
d95f4122
MG
4671/**
4672 * yield_to - yield the current processor to another thread in
4673 * your thread group, or accelerate that thread toward the
4674 * processor it's on.
16addf95
RD
4675 * @p: target task
4676 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4677 *
4678 * It's the caller's job to ensure that the target task struct
4679 * can't go away on us before we can do any checks.
4680 *
e69f6186 4681 * Return:
7b270f60
PZ
4682 * true (>0) if we indeed boosted the target task.
4683 * false (0) if we failed to boost the target.
4684 * -ESRCH if there's no task to yield to.
d95f4122 4685 */
fa93384f 4686int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4687{
4688 struct task_struct *curr = current;
4689 struct rq *rq, *p_rq;
4690 unsigned long flags;
c3c18640 4691 int yielded = 0;
d95f4122
MG
4692
4693 local_irq_save(flags);
4694 rq = this_rq();
4695
4696again:
4697 p_rq = task_rq(p);
7b270f60
PZ
4698 /*
4699 * If we're the only runnable task on the rq and target rq also
4700 * has only one task, there's absolutely no point in yielding.
4701 */
4702 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4703 yielded = -ESRCH;
4704 goto out_irq;
4705 }
4706
d95f4122 4707 double_rq_lock(rq, p_rq);
39e24d8f 4708 if (task_rq(p) != p_rq) {
d95f4122
MG
4709 double_rq_unlock(rq, p_rq);
4710 goto again;
4711 }
4712
4713 if (!curr->sched_class->yield_to_task)
7b270f60 4714 goto out_unlock;
d95f4122
MG
4715
4716 if (curr->sched_class != p->sched_class)
7b270f60 4717 goto out_unlock;
d95f4122
MG
4718
4719 if (task_running(p_rq, p) || p->state)
7b270f60 4720 goto out_unlock;
d95f4122
MG
4721
4722 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4723 if (yielded) {
d95f4122 4724 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4725 /*
4726 * Make p's CPU reschedule; pick_next_entity takes care of
4727 * fairness.
4728 */
4729 if (preempt && rq != p_rq)
8875125e 4730 resched_curr(p_rq);
6d1cafd8 4731 }
d95f4122 4732
7b270f60 4733out_unlock:
d95f4122 4734 double_rq_unlock(rq, p_rq);
7b270f60 4735out_irq:
d95f4122
MG
4736 local_irq_restore(flags);
4737
7b270f60 4738 if (yielded > 0)
d95f4122
MG
4739 schedule();
4740
4741 return yielded;
4742}
4743EXPORT_SYMBOL_GPL(yield_to);
4744
1da177e4 4745/*
41a2d6cf 4746 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4747 * that process accounting knows that this is a task in IO wait state.
1da177e4 4748 */
1da177e4
LT
4749long __sched io_schedule_timeout(long timeout)
4750{
9cff8ade
N
4751 int old_iowait = current->in_iowait;
4752 struct rq *rq;
1da177e4
LT
4753 long ret;
4754
9cff8ade 4755 current->in_iowait = 1;
10d784ea 4756 blk_schedule_flush_plug(current);
9cff8ade 4757
0ff92245 4758 delayacct_blkio_start();
9cff8ade 4759 rq = raw_rq();
1da177e4
LT
4760 atomic_inc(&rq->nr_iowait);
4761 ret = schedule_timeout(timeout);
9cff8ade 4762 current->in_iowait = old_iowait;
1da177e4 4763 atomic_dec(&rq->nr_iowait);
0ff92245 4764 delayacct_blkio_end();
9cff8ade 4765
1da177e4
LT
4766 return ret;
4767}
9cff8ade 4768EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4769
4770/**
4771 * sys_sched_get_priority_max - return maximum RT priority.
4772 * @policy: scheduling class.
4773 *
e69f6186
YB
4774 * Return: On success, this syscall returns the maximum
4775 * rt_priority that can be used by a given scheduling class.
4776 * On failure, a negative error code is returned.
1da177e4 4777 */
5add95d4 4778SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4779{
4780 int ret = -EINVAL;
4781
4782 switch (policy) {
4783 case SCHED_FIFO:
4784 case SCHED_RR:
4785 ret = MAX_USER_RT_PRIO-1;
4786 break;
aab03e05 4787 case SCHED_DEADLINE:
1da177e4 4788 case SCHED_NORMAL:
b0a9499c 4789 case SCHED_BATCH:
dd41f596 4790 case SCHED_IDLE:
1da177e4
LT
4791 ret = 0;
4792 break;
4793 }
4794 return ret;
4795}
4796
4797/**
4798 * sys_sched_get_priority_min - return minimum RT priority.
4799 * @policy: scheduling class.
4800 *
e69f6186
YB
4801 * Return: On success, this syscall returns the minimum
4802 * rt_priority that can be used by a given scheduling class.
4803 * On failure, a negative error code is returned.
1da177e4 4804 */
5add95d4 4805SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4806{
4807 int ret = -EINVAL;
4808
4809 switch (policy) {
4810 case SCHED_FIFO:
4811 case SCHED_RR:
4812 ret = 1;
4813 break;
aab03e05 4814 case SCHED_DEADLINE:
1da177e4 4815 case SCHED_NORMAL:
b0a9499c 4816 case SCHED_BATCH:
dd41f596 4817 case SCHED_IDLE:
1da177e4
LT
4818 ret = 0;
4819 }
4820 return ret;
4821}
4822
4823/**
4824 * sys_sched_rr_get_interval - return the default timeslice of a process.
4825 * @pid: pid of the process.
4826 * @interval: userspace pointer to the timeslice value.
4827 *
4828 * this syscall writes the default timeslice value of a given process
4829 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4830 *
4831 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4832 * an error code.
1da177e4 4833 */
17da2bd9 4834SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4835 struct timespec __user *, interval)
1da177e4 4836{
36c8b586 4837 struct task_struct *p;
a4ec24b4 4838 unsigned int time_slice;
dba091b9
TG
4839 unsigned long flags;
4840 struct rq *rq;
3a5c359a 4841 int retval;
1da177e4 4842 struct timespec t;
1da177e4
LT
4843
4844 if (pid < 0)
3a5c359a 4845 return -EINVAL;
1da177e4
LT
4846
4847 retval = -ESRCH;
1a551ae7 4848 rcu_read_lock();
1da177e4
LT
4849 p = find_process_by_pid(pid);
4850 if (!p)
4851 goto out_unlock;
4852
4853 retval = security_task_getscheduler(p);
4854 if (retval)
4855 goto out_unlock;
4856
dba091b9 4857 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4858 time_slice = 0;
4859 if (p->sched_class->get_rr_interval)
4860 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4861 task_rq_unlock(rq, p, &flags);
a4ec24b4 4862
1a551ae7 4863 rcu_read_unlock();
a4ec24b4 4864 jiffies_to_timespec(time_slice, &t);
1da177e4 4865 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4866 return retval;
3a5c359a 4867
1da177e4 4868out_unlock:
1a551ae7 4869 rcu_read_unlock();
1da177e4
LT
4870 return retval;
4871}
4872
7c731e0a 4873static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4874
82a1fcb9 4875void sched_show_task(struct task_struct *p)
1da177e4 4876{
1da177e4 4877 unsigned long free = 0;
4e79752c 4878 int ppid;
1f8a7633 4879 unsigned long state = p->state;
1da177e4 4880
1f8a7633
TH
4881 if (state)
4882 state = __ffs(state) + 1;
28d0686c 4883 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4884 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4885#if BITS_PER_LONG == 32
1da177e4 4886 if (state == TASK_RUNNING)
3df0fc5b 4887 printk(KERN_CONT " running ");
1da177e4 4888 else
3df0fc5b 4889 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4890#else
4891 if (state == TASK_RUNNING)
3df0fc5b 4892 printk(KERN_CONT " running task ");
1da177e4 4893 else
3df0fc5b 4894 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4895#endif
4896#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4897 free = stack_not_used(p);
1da177e4 4898#endif
a90e984c 4899 ppid = 0;
4e79752c 4900 rcu_read_lock();
a90e984c
ON
4901 if (pid_alive(p))
4902 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4903 rcu_read_unlock();
3df0fc5b 4904 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4905 task_pid_nr(p), ppid,
aa47b7e0 4906 (unsigned long)task_thread_info(p)->flags);
1da177e4 4907
3d1cb205 4908 print_worker_info(KERN_INFO, p);
5fb5e6de 4909 show_stack(p, NULL);
1da177e4
LT
4910}
4911
e59e2ae2 4912void show_state_filter(unsigned long state_filter)
1da177e4 4913{
36c8b586 4914 struct task_struct *g, *p;
1da177e4 4915
4bd77321 4916#if BITS_PER_LONG == 32
3df0fc5b
PZ
4917 printk(KERN_INFO
4918 " task PC stack pid father\n");
1da177e4 4919#else
3df0fc5b
PZ
4920 printk(KERN_INFO
4921 " task PC stack pid father\n");
1da177e4 4922#endif
510f5acc 4923 rcu_read_lock();
5d07f420 4924 for_each_process_thread(g, p) {
1da177e4
LT
4925 /*
4926 * reset the NMI-timeout, listing all files on a slow
25985edc 4927 * console might take a lot of time:
1da177e4
LT
4928 */
4929 touch_nmi_watchdog();
39bc89fd 4930 if (!state_filter || (p->state & state_filter))
82a1fcb9 4931 sched_show_task(p);
5d07f420 4932 }
1da177e4 4933
04c9167f
JF
4934 touch_all_softlockup_watchdogs();
4935
dd41f596
IM
4936#ifdef CONFIG_SCHED_DEBUG
4937 sysrq_sched_debug_show();
4938#endif
510f5acc 4939 rcu_read_unlock();
e59e2ae2
IM
4940 /*
4941 * Only show locks if all tasks are dumped:
4942 */
93335a21 4943 if (!state_filter)
e59e2ae2 4944 debug_show_all_locks();
1da177e4
LT
4945}
4946
0db0628d 4947void init_idle_bootup_task(struct task_struct *idle)
1df21055 4948{
dd41f596 4949 idle->sched_class = &idle_sched_class;
1df21055
IM
4950}
4951
f340c0d1
IM
4952/**
4953 * init_idle - set up an idle thread for a given CPU
4954 * @idle: task in question
4955 * @cpu: cpu the idle task belongs to
4956 *
4957 * NOTE: this function does not set the idle thread's NEED_RESCHED
4958 * flag, to make booting more robust.
4959 */
0db0628d 4960void init_idle(struct task_struct *idle, int cpu)
1da177e4 4961{
70b97a7f 4962 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4963 unsigned long flags;
4964
25834c73
PZ
4965 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4966 raw_spin_lock(&rq->lock);
5cbd54ef 4967
5e1576ed 4968 __sched_fork(0, idle);
06b83b5f 4969 idle->state = TASK_RUNNING;
dd41f596
IM
4970 idle->se.exec_start = sched_clock();
4971
de9b8f5d
PZ
4972#ifdef CONFIG_SMP
4973 /*
4974 * Its possible that init_idle() gets called multiple times on a task,
4975 * in that case do_set_cpus_allowed() will not do the right thing.
4976 *
4977 * And since this is boot we can forgo the serialization.
4978 */
4979 set_cpus_allowed_common(idle, cpumask_of(cpu));
4980#endif
6506cf6c
PZ
4981 /*
4982 * We're having a chicken and egg problem, even though we are
4983 * holding rq->lock, the cpu isn't yet set to this cpu so the
4984 * lockdep check in task_group() will fail.
4985 *
4986 * Similar case to sched_fork(). / Alternatively we could
4987 * use task_rq_lock() here and obtain the other rq->lock.
4988 *
4989 * Silence PROVE_RCU
4990 */
4991 rcu_read_lock();
dd41f596 4992 __set_task_cpu(idle, cpu);
6506cf6c 4993 rcu_read_unlock();
1da177e4 4994
1da177e4 4995 rq->curr = rq->idle = idle;
da0c1e65 4996 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 4997#ifdef CONFIG_SMP
3ca7a440 4998 idle->on_cpu = 1;
4866cde0 4999#endif
25834c73
PZ
5000 raw_spin_unlock(&rq->lock);
5001 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5002
5003 /* Set the preempt count _outside_ the spinlocks! */
01028747 5004 init_idle_preempt_count(idle, cpu);
55cd5340 5005
dd41f596
IM
5006 /*
5007 * The idle tasks have their own, simple scheduling class:
5008 */
5009 idle->sched_class = &idle_sched_class;
868baf07 5010 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5011 vtime_init_idle(idle, cpu);
de9b8f5d 5012#ifdef CONFIG_SMP
f1c6f1a7
CE
5013 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5014#endif
19978ca6
IM
5015}
5016
f82f8042
JL
5017int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5018 const struct cpumask *trial)
5019{
5020 int ret = 1, trial_cpus;
5021 struct dl_bw *cur_dl_b;
5022 unsigned long flags;
5023
bb2bc55a
MG
5024 if (!cpumask_weight(cur))
5025 return ret;
5026
75e23e49 5027 rcu_read_lock_sched();
f82f8042
JL
5028 cur_dl_b = dl_bw_of(cpumask_any(cur));
5029 trial_cpus = cpumask_weight(trial);
5030
5031 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5032 if (cur_dl_b->bw != -1 &&
5033 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5034 ret = 0;
5035 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5036 rcu_read_unlock_sched();
f82f8042
JL
5037
5038 return ret;
5039}
5040
7f51412a
JL
5041int task_can_attach(struct task_struct *p,
5042 const struct cpumask *cs_cpus_allowed)
5043{
5044 int ret = 0;
5045
5046 /*
5047 * Kthreads which disallow setaffinity shouldn't be moved
5048 * to a new cpuset; we don't want to change their cpu
5049 * affinity and isolating such threads by their set of
5050 * allowed nodes is unnecessary. Thus, cpusets are not
5051 * applicable for such threads. This prevents checking for
5052 * success of set_cpus_allowed_ptr() on all attached tasks
5053 * before cpus_allowed may be changed.
5054 */
5055 if (p->flags & PF_NO_SETAFFINITY) {
5056 ret = -EINVAL;
5057 goto out;
5058 }
5059
5060#ifdef CONFIG_SMP
5061 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5062 cs_cpus_allowed)) {
5063 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5064 cs_cpus_allowed);
75e23e49 5065 struct dl_bw *dl_b;
7f51412a
JL
5066 bool overflow;
5067 int cpus;
5068 unsigned long flags;
5069
75e23e49
JL
5070 rcu_read_lock_sched();
5071 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5072 raw_spin_lock_irqsave(&dl_b->lock, flags);
5073 cpus = dl_bw_cpus(dest_cpu);
5074 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5075 if (overflow)
5076 ret = -EBUSY;
5077 else {
5078 /*
5079 * We reserve space for this task in the destination
5080 * root_domain, as we can't fail after this point.
5081 * We will free resources in the source root_domain
5082 * later on (see set_cpus_allowed_dl()).
5083 */
5084 __dl_add(dl_b, p->dl.dl_bw);
5085 }
5086 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5087 rcu_read_unlock_sched();
7f51412a
JL
5088
5089 }
5090#endif
5091out:
5092 return ret;
5093}
5094
1da177e4 5095#ifdef CONFIG_SMP
1da177e4 5096
e6628d5b
MG
5097#ifdef CONFIG_NUMA_BALANCING
5098/* Migrate current task p to target_cpu */
5099int migrate_task_to(struct task_struct *p, int target_cpu)
5100{
5101 struct migration_arg arg = { p, target_cpu };
5102 int curr_cpu = task_cpu(p);
5103
5104 if (curr_cpu == target_cpu)
5105 return 0;
5106
5107 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5108 return -EINVAL;
5109
5110 /* TODO: This is not properly updating schedstats */
5111
286549dc 5112 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5113 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5114}
0ec8aa00
PZ
5115
5116/*
5117 * Requeue a task on a given node and accurately track the number of NUMA
5118 * tasks on the runqueues
5119 */
5120void sched_setnuma(struct task_struct *p, int nid)
5121{
5122 struct rq *rq;
5123 unsigned long flags;
da0c1e65 5124 bool queued, running;
0ec8aa00
PZ
5125
5126 rq = task_rq_lock(p, &flags);
da0c1e65 5127 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5128 running = task_current(rq, p);
5129
da0c1e65 5130 if (queued)
1de64443 5131 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5132 if (running)
f3cd1c4e 5133 put_prev_task(rq, p);
0ec8aa00
PZ
5134
5135 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5136
5137 if (running)
5138 p->sched_class->set_curr_task(rq);
da0c1e65 5139 if (queued)
1de64443 5140 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5141 task_rq_unlock(rq, p, &flags);
5142}
5cc389bc 5143#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5144
1da177e4 5145#ifdef CONFIG_HOTPLUG_CPU
054b9108 5146/*
48c5ccae
PZ
5147 * Ensures that the idle task is using init_mm right before its cpu goes
5148 * offline.
054b9108 5149 */
48c5ccae 5150void idle_task_exit(void)
1da177e4 5151{
48c5ccae 5152 struct mm_struct *mm = current->active_mm;
e76bd8d9 5153
48c5ccae 5154 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5155
a53efe5f 5156 if (mm != &init_mm) {
48c5ccae 5157 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5158 finish_arch_post_lock_switch();
5159 }
48c5ccae 5160 mmdrop(mm);
1da177e4
LT
5161}
5162
5163/*
5d180232
PZ
5164 * Since this CPU is going 'away' for a while, fold any nr_active delta
5165 * we might have. Assumes we're called after migrate_tasks() so that the
5166 * nr_active count is stable.
5167 *
5168 * Also see the comment "Global load-average calculations".
1da177e4 5169 */
5d180232 5170static void calc_load_migrate(struct rq *rq)
1da177e4 5171{
5d180232
PZ
5172 long delta = calc_load_fold_active(rq);
5173 if (delta)
5174 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5175}
5176
3f1d2a31
PZ
5177static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5178{
5179}
5180
5181static const struct sched_class fake_sched_class = {
5182 .put_prev_task = put_prev_task_fake,
5183};
5184
5185static struct task_struct fake_task = {
5186 /*
5187 * Avoid pull_{rt,dl}_task()
5188 */
5189 .prio = MAX_PRIO + 1,
5190 .sched_class = &fake_sched_class,
5191};
5192
48f24c4d 5193/*
48c5ccae
PZ
5194 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5195 * try_to_wake_up()->select_task_rq().
5196 *
5197 * Called with rq->lock held even though we'er in stop_machine() and
5198 * there's no concurrency possible, we hold the required locks anyway
5199 * because of lock validation efforts.
1da177e4 5200 */
5e16bbc2 5201static void migrate_tasks(struct rq *dead_rq)
1da177e4 5202{
5e16bbc2 5203 struct rq *rq = dead_rq;
48c5ccae
PZ
5204 struct task_struct *next, *stop = rq->stop;
5205 int dest_cpu;
1da177e4
LT
5206
5207 /*
48c5ccae
PZ
5208 * Fudge the rq selection such that the below task selection loop
5209 * doesn't get stuck on the currently eligible stop task.
5210 *
5211 * We're currently inside stop_machine() and the rq is either stuck
5212 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5213 * either way we should never end up calling schedule() until we're
5214 * done here.
1da177e4 5215 */
48c5ccae 5216 rq->stop = NULL;
48f24c4d 5217
77bd3970
FW
5218 /*
5219 * put_prev_task() and pick_next_task() sched
5220 * class method both need to have an up-to-date
5221 * value of rq->clock[_task]
5222 */
5223 update_rq_clock(rq);
5224
5e16bbc2 5225 for (;;) {
48c5ccae
PZ
5226 /*
5227 * There's this thread running, bail when that's the only
5228 * remaining thread.
5229 */
5230 if (rq->nr_running == 1)
dd41f596 5231 break;
48c5ccae 5232
cbce1a68 5233 /*
5473e0cc 5234 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5235 */
5236 lockdep_pin_lock(&rq->lock);
3f1d2a31 5237 next = pick_next_task(rq, &fake_task);
48c5ccae 5238 BUG_ON(!next);
79c53799 5239 next->sched_class->put_prev_task(rq, next);
e692ab53 5240
5473e0cc
WL
5241 /*
5242 * Rules for changing task_struct::cpus_allowed are holding
5243 * both pi_lock and rq->lock, such that holding either
5244 * stabilizes the mask.
5245 *
5246 * Drop rq->lock is not quite as disastrous as it usually is
5247 * because !cpu_active at this point, which means load-balance
5248 * will not interfere. Also, stop-machine.
5249 */
5250 lockdep_unpin_lock(&rq->lock);
5251 raw_spin_unlock(&rq->lock);
5252 raw_spin_lock(&next->pi_lock);
5253 raw_spin_lock(&rq->lock);
5254
5255 /*
5256 * Since we're inside stop-machine, _nothing_ should have
5257 * changed the task, WARN if weird stuff happened, because in
5258 * that case the above rq->lock drop is a fail too.
5259 */
5260 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5261 raw_spin_unlock(&next->pi_lock);
5262 continue;
5263 }
5264
48c5ccae 5265 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5266 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5267
5e16bbc2
PZ
5268 rq = __migrate_task(rq, next, dest_cpu);
5269 if (rq != dead_rq) {
5270 raw_spin_unlock(&rq->lock);
5271 rq = dead_rq;
5272 raw_spin_lock(&rq->lock);
5273 }
5473e0cc 5274 raw_spin_unlock(&next->pi_lock);
1da177e4 5275 }
dce48a84 5276
48c5ccae 5277 rq->stop = stop;
dce48a84 5278}
1da177e4
LT
5279#endif /* CONFIG_HOTPLUG_CPU */
5280
e692ab53
NP
5281#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5282
5283static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5284 {
5285 .procname = "sched_domain",
c57baf1e 5286 .mode = 0555,
e0361851 5287 },
56992309 5288 {}
e692ab53
NP
5289};
5290
5291static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5292 {
5293 .procname = "kernel",
c57baf1e 5294 .mode = 0555,
e0361851
AD
5295 .child = sd_ctl_dir,
5296 },
56992309 5297 {}
e692ab53
NP
5298};
5299
5300static struct ctl_table *sd_alloc_ctl_entry(int n)
5301{
5302 struct ctl_table *entry =
5cf9f062 5303 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5304
e692ab53
NP
5305 return entry;
5306}
5307
6382bc90
MM
5308static void sd_free_ctl_entry(struct ctl_table **tablep)
5309{
cd790076 5310 struct ctl_table *entry;
6382bc90 5311
cd790076
MM
5312 /*
5313 * In the intermediate directories, both the child directory and
5314 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5315 * will always be set. In the lowest directory the names are
cd790076
MM
5316 * static strings and all have proc handlers.
5317 */
5318 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5319 if (entry->child)
5320 sd_free_ctl_entry(&entry->child);
cd790076
MM
5321 if (entry->proc_handler == NULL)
5322 kfree(entry->procname);
5323 }
6382bc90
MM
5324
5325 kfree(*tablep);
5326 *tablep = NULL;
5327}
5328
201c373e 5329static int min_load_idx = 0;
fd9b86d3 5330static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5331
e692ab53 5332static void
e0361851 5333set_table_entry(struct ctl_table *entry,
e692ab53 5334 const char *procname, void *data, int maxlen,
201c373e
NK
5335 umode_t mode, proc_handler *proc_handler,
5336 bool load_idx)
e692ab53 5337{
e692ab53
NP
5338 entry->procname = procname;
5339 entry->data = data;
5340 entry->maxlen = maxlen;
5341 entry->mode = mode;
5342 entry->proc_handler = proc_handler;
201c373e
NK
5343
5344 if (load_idx) {
5345 entry->extra1 = &min_load_idx;
5346 entry->extra2 = &max_load_idx;
5347 }
e692ab53
NP
5348}
5349
5350static struct ctl_table *
5351sd_alloc_ctl_domain_table(struct sched_domain *sd)
5352{
37e6bae8 5353 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5354
ad1cdc1d
MM
5355 if (table == NULL)
5356 return NULL;
5357
e0361851 5358 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5359 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5360 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5361 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5362 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5363 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5364 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5365 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5366 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5367 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5368 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5369 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5370 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5371 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5372 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5373 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5374 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5375 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5376 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5377 &sd->cache_nice_tries,
201c373e 5378 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5379 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5380 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5381 set_table_entry(&table[11], "max_newidle_lb_cost",
5382 &sd->max_newidle_lb_cost,
5383 sizeof(long), 0644, proc_doulongvec_minmax, false);
5384 set_table_entry(&table[12], "name", sd->name,
201c373e 5385 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5386 /* &table[13] is terminator */
e692ab53
NP
5387
5388 return table;
5389}
5390
be7002e6 5391static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5392{
5393 struct ctl_table *entry, *table;
5394 struct sched_domain *sd;
5395 int domain_num = 0, i;
5396 char buf[32];
5397
5398 for_each_domain(cpu, sd)
5399 domain_num++;
5400 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5401 if (table == NULL)
5402 return NULL;
e692ab53
NP
5403
5404 i = 0;
5405 for_each_domain(cpu, sd) {
5406 snprintf(buf, 32, "domain%d", i);
e692ab53 5407 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5408 entry->mode = 0555;
e692ab53
NP
5409 entry->child = sd_alloc_ctl_domain_table(sd);
5410 entry++;
5411 i++;
5412 }
5413 return table;
5414}
5415
5416static struct ctl_table_header *sd_sysctl_header;
6382bc90 5417static void register_sched_domain_sysctl(void)
e692ab53 5418{
6ad4c188 5419 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5420 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5421 char buf[32];
5422
7378547f
MM
5423 WARN_ON(sd_ctl_dir[0].child);
5424 sd_ctl_dir[0].child = entry;
5425
ad1cdc1d
MM
5426 if (entry == NULL)
5427 return;
5428
6ad4c188 5429 for_each_possible_cpu(i) {
e692ab53 5430 snprintf(buf, 32, "cpu%d", i);
e692ab53 5431 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5432 entry->mode = 0555;
e692ab53 5433 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5434 entry++;
e692ab53 5435 }
7378547f
MM
5436
5437 WARN_ON(sd_sysctl_header);
e692ab53
NP
5438 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5439}
6382bc90 5440
7378547f 5441/* may be called multiple times per register */
6382bc90
MM
5442static void unregister_sched_domain_sysctl(void)
5443{
781b0203 5444 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5445 sd_sysctl_header = NULL;
7378547f
MM
5446 if (sd_ctl_dir[0].child)
5447 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5448}
e692ab53 5449#else
6382bc90
MM
5450static void register_sched_domain_sysctl(void)
5451{
5452}
5453static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5454{
5455}
5cc389bc 5456#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5457
1f11eb6a
GH
5458static void set_rq_online(struct rq *rq)
5459{
5460 if (!rq->online) {
5461 const struct sched_class *class;
5462
c6c4927b 5463 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5464 rq->online = 1;
5465
5466 for_each_class(class) {
5467 if (class->rq_online)
5468 class->rq_online(rq);
5469 }
5470 }
5471}
5472
5473static void set_rq_offline(struct rq *rq)
5474{
5475 if (rq->online) {
5476 const struct sched_class *class;
5477
5478 for_each_class(class) {
5479 if (class->rq_offline)
5480 class->rq_offline(rq);
5481 }
5482
c6c4927b 5483 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5484 rq->online = 0;
5485 }
5486}
5487
1da177e4
LT
5488/*
5489 * migration_call - callback that gets triggered when a CPU is added.
5490 * Here we can start up the necessary migration thread for the new CPU.
5491 */
0db0628d 5492static int
48f24c4d 5493migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5494{
48f24c4d 5495 int cpu = (long)hcpu;
1da177e4 5496 unsigned long flags;
969c7921 5497 struct rq *rq = cpu_rq(cpu);
1da177e4 5498
48c5ccae 5499 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5500
1da177e4 5501 case CPU_UP_PREPARE:
a468d389 5502 rq->calc_load_update = calc_load_update;
1da177e4 5503 break;
48f24c4d 5504
1da177e4 5505 case CPU_ONLINE:
1f94ef59 5506 /* Update our root-domain */
05fa785c 5507 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5508 if (rq->rd) {
c6c4927b 5509 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5510
5511 set_rq_online(rq);
1f94ef59 5512 }
05fa785c 5513 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5514 break;
48f24c4d 5515
1da177e4 5516#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5517 case CPU_DYING:
317f3941 5518 sched_ttwu_pending();
57d885fe 5519 /* Update our root-domain */
05fa785c 5520 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5521 if (rq->rd) {
c6c4927b 5522 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5523 set_rq_offline(rq);
57d885fe 5524 }
5e16bbc2 5525 migrate_tasks(rq);
48c5ccae 5526 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5527 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5528 break;
48c5ccae 5529
5d180232 5530 case CPU_DEAD:
f319da0c 5531 calc_load_migrate(rq);
57d885fe 5532 break;
1da177e4
LT
5533#endif
5534 }
49c022e6
PZ
5535
5536 update_max_interval();
5537
1da177e4
LT
5538 return NOTIFY_OK;
5539}
5540
f38b0820
PM
5541/*
5542 * Register at high priority so that task migration (migrate_all_tasks)
5543 * happens before everything else. This has to be lower priority than
cdd6c482 5544 * the notifier in the perf_event subsystem, though.
1da177e4 5545 */
0db0628d 5546static struct notifier_block migration_notifier = {
1da177e4 5547 .notifier_call = migration_call,
50a323b7 5548 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5549};
5550
6a82b60d 5551static void set_cpu_rq_start_time(void)
a803f026
CM
5552{
5553 int cpu = smp_processor_id();
5554 struct rq *rq = cpu_rq(cpu);
5555 rq->age_stamp = sched_clock_cpu(cpu);
5556}
5557
0db0628d 5558static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5559 unsigned long action, void *hcpu)
5560{
07f06cb3
PZ
5561 int cpu = (long)hcpu;
5562
3a101d05 5563 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5564 case CPU_STARTING:
5565 set_cpu_rq_start_time();
5566 return NOTIFY_OK;
07f06cb3 5567
dd9d3843
JS
5568 case CPU_ONLINE:
5569 /*
5570 * At this point a starting CPU has marked itself as online via
5571 * set_cpu_online(). But it might not yet have marked itself
5572 * as active, which is essential from here on.
dd9d3843 5573 */
07f06cb3
PZ
5574 set_cpu_active(cpu, true);
5575 stop_machine_unpark(cpu);
5576 return NOTIFY_OK;
5577
3a101d05 5578 case CPU_DOWN_FAILED:
07f06cb3 5579 set_cpu_active(cpu, true);
3a101d05 5580 return NOTIFY_OK;
07f06cb3 5581
3a101d05
TH
5582 default:
5583 return NOTIFY_DONE;
5584 }
5585}
5586
0db0628d 5587static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5588 unsigned long action, void *hcpu)
5589{
5590 switch (action & ~CPU_TASKS_FROZEN) {
5591 case CPU_DOWN_PREPARE:
3c18d447 5592 set_cpu_active((long)hcpu, false);
3a101d05 5593 return NOTIFY_OK;
3c18d447
JL
5594 default:
5595 return NOTIFY_DONE;
3a101d05
TH
5596 }
5597}
5598
7babe8db 5599static int __init migration_init(void)
1da177e4
LT
5600{
5601 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5602 int err;
48f24c4d 5603
3a101d05 5604 /* Initialize migration for the boot CPU */
07dccf33
AM
5605 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5606 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5607 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5608 register_cpu_notifier(&migration_notifier);
7babe8db 5609
3a101d05
TH
5610 /* Register cpu active notifiers */
5611 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5612 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5613
a004cd42 5614 return 0;
1da177e4 5615}
7babe8db 5616early_initcall(migration_init);
476f3534 5617
4cb98839
PZ
5618static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5619
3e9830dc 5620#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5621
d039ac60 5622static __read_mostly int sched_debug_enabled;
f6630114 5623
d039ac60 5624static int __init sched_debug_setup(char *str)
f6630114 5625{
d039ac60 5626 sched_debug_enabled = 1;
f6630114
MT
5627
5628 return 0;
5629}
d039ac60
PZ
5630early_param("sched_debug", sched_debug_setup);
5631
5632static inline bool sched_debug(void)
5633{
5634 return sched_debug_enabled;
5635}
f6630114 5636
7c16ec58 5637static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5638 struct cpumask *groupmask)
1da177e4 5639{
4dcf6aff 5640 struct sched_group *group = sd->groups;
1da177e4 5641
96f874e2 5642 cpumask_clear(groupmask);
4dcf6aff
IM
5643
5644 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5645
5646 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5647 printk("does not load-balance\n");
4dcf6aff 5648 if (sd->parent)
3df0fc5b
PZ
5649 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5650 " has parent");
4dcf6aff 5651 return -1;
41c7ce9a
NP
5652 }
5653
333470ee
TH
5654 printk(KERN_CONT "span %*pbl level %s\n",
5655 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5656
758b2cdc 5657 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5658 printk(KERN_ERR "ERROR: domain->span does not contain "
5659 "CPU%d\n", cpu);
4dcf6aff 5660 }
758b2cdc 5661 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5662 printk(KERN_ERR "ERROR: domain->groups does not contain"
5663 " CPU%d\n", cpu);
4dcf6aff 5664 }
1da177e4 5665
4dcf6aff 5666 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5667 do {
4dcf6aff 5668 if (!group) {
3df0fc5b
PZ
5669 printk("\n");
5670 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5671 break;
5672 }
5673
758b2cdc 5674 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5675 printk(KERN_CONT "\n");
5676 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5677 break;
5678 }
1da177e4 5679
cb83b629
PZ
5680 if (!(sd->flags & SD_OVERLAP) &&
5681 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5682 printk(KERN_CONT "\n");
5683 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5684 break;
5685 }
1da177e4 5686
758b2cdc 5687 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5688
333470ee
TH
5689 printk(KERN_CONT " %*pbl",
5690 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5691 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5692 printk(KERN_CONT " (cpu_capacity = %d)",
5693 group->sgc->capacity);
381512cf 5694 }
1da177e4 5695
4dcf6aff
IM
5696 group = group->next;
5697 } while (group != sd->groups);
3df0fc5b 5698 printk(KERN_CONT "\n");
1da177e4 5699
758b2cdc 5700 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5701 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5702
758b2cdc
RR
5703 if (sd->parent &&
5704 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5705 printk(KERN_ERR "ERROR: parent span is not a superset "
5706 "of domain->span\n");
4dcf6aff
IM
5707 return 0;
5708}
1da177e4 5709
4dcf6aff
IM
5710static void sched_domain_debug(struct sched_domain *sd, int cpu)
5711{
5712 int level = 0;
1da177e4 5713
d039ac60 5714 if (!sched_debug_enabled)
f6630114
MT
5715 return;
5716
4dcf6aff
IM
5717 if (!sd) {
5718 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5719 return;
5720 }
1da177e4 5721
4dcf6aff
IM
5722 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5723
5724 for (;;) {
4cb98839 5725 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5726 break;
1da177e4
LT
5727 level++;
5728 sd = sd->parent;
33859f7f 5729 if (!sd)
4dcf6aff
IM
5730 break;
5731 }
1da177e4 5732}
6d6bc0ad 5733#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5734# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5735static inline bool sched_debug(void)
5736{
5737 return false;
5738}
6d6bc0ad 5739#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5740
1a20ff27 5741static int sd_degenerate(struct sched_domain *sd)
245af2c7 5742{
758b2cdc 5743 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5744 return 1;
5745
5746 /* Following flags need at least 2 groups */
5747 if (sd->flags & (SD_LOAD_BALANCE |
5748 SD_BALANCE_NEWIDLE |
5749 SD_BALANCE_FORK |
89c4710e 5750 SD_BALANCE_EXEC |
5d4dfddd 5751 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5752 SD_SHARE_PKG_RESOURCES |
5753 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5754 if (sd->groups != sd->groups->next)
5755 return 0;
5756 }
5757
5758 /* Following flags don't use groups */
c88d5910 5759 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5760 return 0;
5761
5762 return 1;
5763}
5764
48f24c4d
IM
5765static int
5766sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5767{
5768 unsigned long cflags = sd->flags, pflags = parent->flags;
5769
5770 if (sd_degenerate(parent))
5771 return 1;
5772
758b2cdc 5773 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5774 return 0;
5775
245af2c7
SS
5776 /* Flags needing groups don't count if only 1 group in parent */
5777 if (parent->groups == parent->groups->next) {
5778 pflags &= ~(SD_LOAD_BALANCE |
5779 SD_BALANCE_NEWIDLE |
5780 SD_BALANCE_FORK |
89c4710e 5781 SD_BALANCE_EXEC |
5d4dfddd 5782 SD_SHARE_CPUCAPACITY |
10866e62 5783 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5784 SD_PREFER_SIBLING |
5785 SD_SHARE_POWERDOMAIN);
5436499e
KC
5786 if (nr_node_ids == 1)
5787 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5788 }
5789 if (~cflags & pflags)
5790 return 0;
5791
5792 return 1;
5793}
5794
dce840a0 5795static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5796{
dce840a0 5797 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5798
68e74568 5799 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5800 cpudl_cleanup(&rd->cpudl);
1baca4ce 5801 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5802 free_cpumask_var(rd->rto_mask);
5803 free_cpumask_var(rd->online);
5804 free_cpumask_var(rd->span);
5805 kfree(rd);
5806}
5807
57d885fe
GH
5808static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5809{
a0490fa3 5810 struct root_domain *old_rd = NULL;
57d885fe 5811 unsigned long flags;
57d885fe 5812
05fa785c 5813 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5814
5815 if (rq->rd) {
a0490fa3 5816 old_rd = rq->rd;
57d885fe 5817
c6c4927b 5818 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5819 set_rq_offline(rq);
57d885fe 5820
c6c4927b 5821 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5822
a0490fa3 5823 /*
0515973f 5824 * If we dont want to free the old_rd yet then
a0490fa3
IM
5825 * set old_rd to NULL to skip the freeing later
5826 * in this function:
5827 */
5828 if (!atomic_dec_and_test(&old_rd->refcount))
5829 old_rd = NULL;
57d885fe
GH
5830 }
5831
5832 atomic_inc(&rd->refcount);
5833 rq->rd = rd;
5834
c6c4927b 5835 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5836 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5837 set_rq_online(rq);
57d885fe 5838
05fa785c 5839 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5840
5841 if (old_rd)
dce840a0 5842 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5843}
5844
68c38fc3 5845static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5846{
5847 memset(rd, 0, sizeof(*rd));
5848
8295c699 5849 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5850 goto out;
8295c699 5851 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5852 goto free_span;
8295c699 5853 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5854 goto free_online;
8295c699 5855 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5856 goto free_dlo_mask;
6e0534f2 5857
332ac17e 5858 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5859 if (cpudl_init(&rd->cpudl) != 0)
5860 goto free_dlo_mask;
332ac17e 5861
68c38fc3 5862 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5863 goto free_rto_mask;
c6c4927b 5864 return 0;
6e0534f2 5865
68e74568
RR
5866free_rto_mask:
5867 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5868free_dlo_mask:
5869 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5870free_online:
5871 free_cpumask_var(rd->online);
5872free_span:
5873 free_cpumask_var(rd->span);
0c910d28 5874out:
c6c4927b 5875 return -ENOMEM;
57d885fe
GH
5876}
5877
029632fb
PZ
5878/*
5879 * By default the system creates a single root-domain with all cpus as
5880 * members (mimicking the global state we have today).
5881 */
5882struct root_domain def_root_domain;
5883
57d885fe
GH
5884static void init_defrootdomain(void)
5885{
68c38fc3 5886 init_rootdomain(&def_root_domain);
c6c4927b 5887
57d885fe
GH
5888 atomic_set(&def_root_domain.refcount, 1);
5889}
5890
dc938520 5891static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5892{
5893 struct root_domain *rd;
5894
5895 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5896 if (!rd)
5897 return NULL;
5898
68c38fc3 5899 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5900 kfree(rd);
5901 return NULL;
5902 }
57d885fe
GH
5903
5904 return rd;
5905}
5906
63b2ca30 5907static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5908{
5909 struct sched_group *tmp, *first;
5910
5911 if (!sg)
5912 return;
5913
5914 first = sg;
5915 do {
5916 tmp = sg->next;
5917
63b2ca30
NP
5918 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5919 kfree(sg->sgc);
e3589f6c
PZ
5920
5921 kfree(sg);
5922 sg = tmp;
5923 } while (sg != first);
5924}
5925
dce840a0
PZ
5926static void free_sched_domain(struct rcu_head *rcu)
5927{
5928 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5929
5930 /*
5931 * If its an overlapping domain it has private groups, iterate and
5932 * nuke them all.
5933 */
5934 if (sd->flags & SD_OVERLAP) {
5935 free_sched_groups(sd->groups, 1);
5936 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5937 kfree(sd->groups->sgc);
dce840a0 5938 kfree(sd->groups);
9c3f75cb 5939 }
dce840a0
PZ
5940 kfree(sd);
5941}
5942
5943static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5944{
5945 call_rcu(&sd->rcu, free_sched_domain);
5946}
5947
5948static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5949{
5950 for (; sd; sd = sd->parent)
5951 destroy_sched_domain(sd, cpu);
5952}
5953
518cd623
PZ
5954/*
5955 * Keep a special pointer to the highest sched_domain that has
5956 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5957 * allows us to avoid some pointer chasing select_idle_sibling().
5958 *
5959 * Also keep a unique ID per domain (we use the first cpu number in
5960 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5961 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5962 */
5963DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5964DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5965DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5966DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5967DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5968DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5969
5970static void update_top_cache_domain(int cpu)
5971{
5972 struct sched_domain *sd;
5d4cf996 5973 struct sched_domain *busy_sd = NULL;
518cd623 5974 int id = cpu;
7d9ffa89 5975 int size = 1;
518cd623
PZ
5976
5977 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5978 if (sd) {
518cd623 5979 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5980 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5981 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5982 }
5d4cf996 5983 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5984
5985 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5986 per_cpu(sd_llc_size, cpu) = size;
518cd623 5987 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5988
5989 sd = lowest_flag_domain(cpu, SD_NUMA);
5990 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5991
5992 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5993 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5994}
5995
1da177e4 5996/*
0eab9146 5997 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5998 * hold the hotplug lock.
5999 */
0eab9146
IM
6000static void
6001cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6002{
70b97a7f 6003 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6004 struct sched_domain *tmp;
6005
6006 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6007 for (tmp = sd; tmp; ) {
245af2c7
SS
6008 struct sched_domain *parent = tmp->parent;
6009 if (!parent)
6010 break;
f29c9b1c 6011
1a848870 6012 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6013 tmp->parent = parent->parent;
1a848870
SS
6014 if (parent->parent)
6015 parent->parent->child = tmp;
10866e62
PZ
6016 /*
6017 * Transfer SD_PREFER_SIBLING down in case of a
6018 * degenerate parent; the spans match for this
6019 * so the property transfers.
6020 */
6021 if (parent->flags & SD_PREFER_SIBLING)
6022 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 6023 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6024 } else
6025 tmp = tmp->parent;
245af2c7
SS
6026 }
6027
1a848870 6028 if (sd && sd_degenerate(sd)) {
dce840a0 6029 tmp = sd;
245af2c7 6030 sd = sd->parent;
dce840a0 6031 destroy_sched_domain(tmp, cpu);
1a848870
SS
6032 if (sd)
6033 sd->child = NULL;
6034 }
1da177e4 6035
4cb98839 6036 sched_domain_debug(sd, cpu);
1da177e4 6037
57d885fe 6038 rq_attach_root(rq, rd);
dce840a0 6039 tmp = rq->sd;
674311d5 6040 rcu_assign_pointer(rq->sd, sd);
dce840a0 6041 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6042
6043 update_top_cache_domain(cpu);
1da177e4
LT
6044}
6045
1da177e4
LT
6046/* Setup the mask of cpus configured for isolated domains */
6047static int __init isolated_cpu_setup(char *str)
6048{
bdddd296 6049 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6050 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6051 return 1;
6052}
6053
8927f494 6054__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6055
49a02c51 6056struct s_data {
21d42ccf 6057 struct sched_domain ** __percpu sd;
49a02c51
AH
6058 struct root_domain *rd;
6059};
6060
2109b99e 6061enum s_alloc {
2109b99e 6062 sa_rootdomain,
21d42ccf 6063 sa_sd,
dce840a0 6064 sa_sd_storage,
2109b99e
AH
6065 sa_none,
6066};
6067
c1174876
PZ
6068/*
6069 * Build an iteration mask that can exclude certain CPUs from the upwards
6070 * domain traversal.
6071 *
6072 * Asymmetric node setups can result in situations where the domain tree is of
6073 * unequal depth, make sure to skip domains that already cover the entire
6074 * range.
6075 *
6076 * In that case build_sched_domains() will have terminated the iteration early
6077 * and our sibling sd spans will be empty. Domains should always include the
6078 * cpu they're built on, so check that.
6079 *
6080 */
6081static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6082{
6083 const struct cpumask *span = sched_domain_span(sd);
6084 struct sd_data *sdd = sd->private;
6085 struct sched_domain *sibling;
6086 int i;
6087
6088 for_each_cpu(i, span) {
6089 sibling = *per_cpu_ptr(sdd->sd, i);
6090 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6091 continue;
6092
6093 cpumask_set_cpu(i, sched_group_mask(sg));
6094 }
6095}
6096
6097/*
6098 * Return the canonical balance cpu for this group, this is the first cpu
6099 * of this group that's also in the iteration mask.
6100 */
6101int group_balance_cpu(struct sched_group *sg)
6102{
6103 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6104}
6105
e3589f6c
PZ
6106static int
6107build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6108{
6109 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6110 const struct cpumask *span = sched_domain_span(sd);
6111 struct cpumask *covered = sched_domains_tmpmask;
6112 struct sd_data *sdd = sd->private;
aaecac4a 6113 struct sched_domain *sibling;
e3589f6c
PZ
6114 int i;
6115
6116 cpumask_clear(covered);
6117
6118 for_each_cpu(i, span) {
6119 struct cpumask *sg_span;
6120
6121 if (cpumask_test_cpu(i, covered))
6122 continue;
6123
aaecac4a 6124 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6125
6126 /* See the comment near build_group_mask(). */
aaecac4a 6127 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6128 continue;
6129
e3589f6c 6130 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6131 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6132
6133 if (!sg)
6134 goto fail;
6135
6136 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6137 if (sibling->child)
6138 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6139 else
e3589f6c
PZ
6140 cpumask_set_cpu(i, sg_span);
6141
6142 cpumask_or(covered, covered, sg_span);
6143
63b2ca30
NP
6144 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6145 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6146 build_group_mask(sd, sg);
6147
c3decf0d 6148 /*
63b2ca30 6149 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6150 * domains and no possible iteration will get us here, we won't
6151 * die on a /0 trap.
6152 */
ca8ce3d0 6153 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6154
c1174876
PZ
6155 /*
6156 * Make sure the first group of this domain contains the
6157 * canonical balance cpu. Otherwise the sched_domain iteration
6158 * breaks. See update_sg_lb_stats().
6159 */
74a5ce20 6160 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6161 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6162 groups = sg;
6163
6164 if (!first)
6165 first = sg;
6166 if (last)
6167 last->next = sg;
6168 last = sg;
6169 last->next = first;
6170 }
6171 sd->groups = groups;
6172
6173 return 0;
6174
6175fail:
6176 free_sched_groups(first, 0);
6177
6178 return -ENOMEM;
6179}
6180
dce840a0 6181static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6182{
dce840a0
PZ
6183 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6184 struct sched_domain *child = sd->child;
1da177e4 6185
dce840a0
PZ
6186 if (child)
6187 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6188
9c3f75cb 6189 if (sg) {
dce840a0 6190 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6191 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6192 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6193 }
dce840a0
PZ
6194
6195 return cpu;
1e9f28fa 6196}
1e9f28fa 6197
01a08546 6198/*
dce840a0
PZ
6199 * build_sched_groups will build a circular linked list of the groups
6200 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6201 * and ->cpu_capacity to 0.
e3589f6c
PZ
6202 *
6203 * Assumes the sched_domain tree is fully constructed
01a08546 6204 */
e3589f6c
PZ
6205static int
6206build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6207{
dce840a0
PZ
6208 struct sched_group *first = NULL, *last = NULL;
6209 struct sd_data *sdd = sd->private;
6210 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6211 struct cpumask *covered;
dce840a0 6212 int i;
9c1cfda2 6213
e3589f6c
PZ
6214 get_group(cpu, sdd, &sd->groups);
6215 atomic_inc(&sd->groups->ref);
6216
0936629f 6217 if (cpu != cpumask_first(span))
e3589f6c
PZ
6218 return 0;
6219
f96225fd
PZ
6220 lockdep_assert_held(&sched_domains_mutex);
6221 covered = sched_domains_tmpmask;
6222
dce840a0 6223 cpumask_clear(covered);
6711cab4 6224
dce840a0
PZ
6225 for_each_cpu(i, span) {
6226 struct sched_group *sg;
cd08e923 6227 int group, j;
6711cab4 6228
dce840a0
PZ
6229 if (cpumask_test_cpu(i, covered))
6230 continue;
6711cab4 6231
cd08e923 6232 group = get_group(i, sdd, &sg);
c1174876 6233 cpumask_setall(sched_group_mask(sg));
0601a88d 6234
dce840a0
PZ
6235 for_each_cpu(j, span) {
6236 if (get_group(j, sdd, NULL) != group)
6237 continue;
0601a88d 6238
dce840a0
PZ
6239 cpumask_set_cpu(j, covered);
6240 cpumask_set_cpu(j, sched_group_cpus(sg));
6241 }
0601a88d 6242
dce840a0
PZ
6243 if (!first)
6244 first = sg;
6245 if (last)
6246 last->next = sg;
6247 last = sg;
6248 }
6249 last->next = first;
e3589f6c
PZ
6250
6251 return 0;
0601a88d 6252}
51888ca2 6253
89c4710e 6254/*
63b2ca30 6255 * Initialize sched groups cpu_capacity.
89c4710e 6256 *
63b2ca30 6257 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6258 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6259 * Typically cpu_capacity for all the groups in a sched domain will be same
6260 * unless there are asymmetries in the topology. If there are asymmetries,
6261 * group having more cpu_capacity will pickup more load compared to the
6262 * group having less cpu_capacity.
89c4710e 6263 */
63b2ca30 6264static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6265{
e3589f6c 6266 struct sched_group *sg = sd->groups;
89c4710e 6267
94c95ba6 6268 WARN_ON(!sg);
e3589f6c
PZ
6269
6270 do {
6271 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6272 sg = sg->next;
6273 } while (sg != sd->groups);
89c4710e 6274
c1174876 6275 if (cpu != group_balance_cpu(sg))
e3589f6c 6276 return;
aae6d3dd 6277
63b2ca30
NP
6278 update_group_capacity(sd, cpu);
6279 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6280}
6281
7c16ec58
MT
6282/*
6283 * Initializers for schedule domains
6284 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6285 */
6286
1d3504fc 6287static int default_relax_domain_level = -1;
60495e77 6288int sched_domain_level_max;
1d3504fc
HS
6289
6290static int __init setup_relax_domain_level(char *str)
6291{
a841f8ce
DS
6292 if (kstrtoint(str, 0, &default_relax_domain_level))
6293 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6294
1d3504fc
HS
6295 return 1;
6296}
6297__setup("relax_domain_level=", setup_relax_domain_level);
6298
6299static void set_domain_attribute(struct sched_domain *sd,
6300 struct sched_domain_attr *attr)
6301{
6302 int request;
6303
6304 if (!attr || attr->relax_domain_level < 0) {
6305 if (default_relax_domain_level < 0)
6306 return;
6307 else
6308 request = default_relax_domain_level;
6309 } else
6310 request = attr->relax_domain_level;
6311 if (request < sd->level) {
6312 /* turn off idle balance on this domain */
c88d5910 6313 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6314 } else {
6315 /* turn on idle balance on this domain */
c88d5910 6316 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6317 }
6318}
6319
54ab4ff4
PZ
6320static void __sdt_free(const struct cpumask *cpu_map);
6321static int __sdt_alloc(const struct cpumask *cpu_map);
6322
2109b99e
AH
6323static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6324 const struct cpumask *cpu_map)
6325{
6326 switch (what) {
2109b99e 6327 case sa_rootdomain:
822ff793
PZ
6328 if (!atomic_read(&d->rd->refcount))
6329 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6330 case sa_sd:
6331 free_percpu(d->sd); /* fall through */
dce840a0 6332 case sa_sd_storage:
54ab4ff4 6333 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6334 case sa_none:
6335 break;
6336 }
6337}
3404c8d9 6338
2109b99e
AH
6339static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6340 const struct cpumask *cpu_map)
6341{
dce840a0
PZ
6342 memset(d, 0, sizeof(*d));
6343
54ab4ff4
PZ
6344 if (__sdt_alloc(cpu_map))
6345 return sa_sd_storage;
dce840a0
PZ
6346 d->sd = alloc_percpu(struct sched_domain *);
6347 if (!d->sd)
6348 return sa_sd_storage;
2109b99e 6349 d->rd = alloc_rootdomain();
dce840a0 6350 if (!d->rd)
21d42ccf 6351 return sa_sd;
2109b99e
AH
6352 return sa_rootdomain;
6353}
57d885fe 6354
dce840a0
PZ
6355/*
6356 * NULL the sd_data elements we've used to build the sched_domain and
6357 * sched_group structure so that the subsequent __free_domain_allocs()
6358 * will not free the data we're using.
6359 */
6360static void claim_allocations(int cpu, struct sched_domain *sd)
6361{
6362 struct sd_data *sdd = sd->private;
dce840a0
PZ
6363
6364 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6365 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6366
e3589f6c 6367 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6368 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6369
63b2ca30
NP
6370 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6371 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6372}
6373
cb83b629 6374#ifdef CONFIG_NUMA
cb83b629 6375static int sched_domains_numa_levels;
e3fe70b1 6376enum numa_topology_type sched_numa_topology_type;
cb83b629 6377static int *sched_domains_numa_distance;
9942f79b 6378int sched_max_numa_distance;
cb83b629
PZ
6379static struct cpumask ***sched_domains_numa_masks;
6380static int sched_domains_curr_level;
143e1e28 6381#endif
cb83b629 6382
143e1e28
VG
6383/*
6384 * SD_flags allowed in topology descriptions.
6385 *
5d4dfddd 6386 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6387 * SD_SHARE_PKG_RESOURCES - describes shared caches
6388 * SD_NUMA - describes NUMA topologies
d77b3ed5 6389 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6390 *
6391 * Odd one out:
6392 * SD_ASYM_PACKING - describes SMT quirks
6393 */
6394#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6395 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6396 SD_SHARE_PKG_RESOURCES | \
6397 SD_NUMA | \
d77b3ed5
VG
6398 SD_ASYM_PACKING | \
6399 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6400
6401static struct sched_domain *
143e1e28 6402sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6403{
6404 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6405 int sd_weight, sd_flags = 0;
6406
6407#ifdef CONFIG_NUMA
6408 /*
6409 * Ugly hack to pass state to sd_numa_mask()...
6410 */
6411 sched_domains_curr_level = tl->numa_level;
6412#endif
6413
6414 sd_weight = cpumask_weight(tl->mask(cpu));
6415
6416 if (tl->sd_flags)
6417 sd_flags = (*tl->sd_flags)();
6418 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6419 "wrong sd_flags in topology description\n"))
6420 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6421
6422 *sd = (struct sched_domain){
6423 .min_interval = sd_weight,
6424 .max_interval = 2*sd_weight,
6425 .busy_factor = 32,
870a0bb5 6426 .imbalance_pct = 125,
143e1e28
VG
6427
6428 .cache_nice_tries = 0,
6429 .busy_idx = 0,
6430 .idle_idx = 0,
cb83b629
PZ
6431 .newidle_idx = 0,
6432 .wake_idx = 0,
6433 .forkexec_idx = 0,
6434
6435 .flags = 1*SD_LOAD_BALANCE
6436 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6437 | 1*SD_BALANCE_EXEC
6438 | 1*SD_BALANCE_FORK
cb83b629 6439 | 0*SD_BALANCE_WAKE
143e1e28 6440 | 1*SD_WAKE_AFFINE
5d4dfddd 6441 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6442 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6443 | 0*SD_SERIALIZE
cb83b629 6444 | 0*SD_PREFER_SIBLING
143e1e28
VG
6445 | 0*SD_NUMA
6446 | sd_flags
cb83b629 6447 ,
143e1e28 6448
cb83b629
PZ
6449 .last_balance = jiffies,
6450 .balance_interval = sd_weight,
143e1e28 6451 .smt_gain = 0,
2b4cfe64
JL
6452 .max_newidle_lb_cost = 0,
6453 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6454#ifdef CONFIG_SCHED_DEBUG
6455 .name = tl->name,
6456#endif
cb83b629 6457 };
cb83b629
PZ
6458
6459 /*
143e1e28 6460 * Convert topological properties into behaviour.
cb83b629 6461 */
143e1e28 6462
5d4dfddd 6463 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6464 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6465 sd->imbalance_pct = 110;
6466 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6467
6468 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6469 sd->imbalance_pct = 117;
6470 sd->cache_nice_tries = 1;
6471 sd->busy_idx = 2;
6472
6473#ifdef CONFIG_NUMA
6474 } else if (sd->flags & SD_NUMA) {
6475 sd->cache_nice_tries = 2;
6476 sd->busy_idx = 3;
6477 sd->idle_idx = 2;
6478
6479 sd->flags |= SD_SERIALIZE;
6480 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6481 sd->flags &= ~(SD_BALANCE_EXEC |
6482 SD_BALANCE_FORK |
6483 SD_WAKE_AFFINE);
6484 }
6485
6486#endif
6487 } else {
6488 sd->flags |= SD_PREFER_SIBLING;
6489 sd->cache_nice_tries = 1;
6490 sd->busy_idx = 2;
6491 sd->idle_idx = 1;
6492 }
6493
6494 sd->private = &tl->data;
cb83b629
PZ
6495
6496 return sd;
6497}
6498
143e1e28
VG
6499/*
6500 * Topology list, bottom-up.
6501 */
6502static struct sched_domain_topology_level default_topology[] = {
6503#ifdef CONFIG_SCHED_SMT
6504 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6505#endif
6506#ifdef CONFIG_SCHED_MC
6507 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6508#endif
6509 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6510 { NULL, },
6511};
6512
c6e1e7b5
JG
6513static struct sched_domain_topology_level *sched_domain_topology =
6514 default_topology;
143e1e28
VG
6515
6516#define for_each_sd_topology(tl) \
6517 for (tl = sched_domain_topology; tl->mask; tl++)
6518
6519void set_sched_topology(struct sched_domain_topology_level *tl)
6520{
6521 sched_domain_topology = tl;
6522}
6523
6524#ifdef CONFIG_NUMA
6525
cb83b629
PZ
6526static const struct cpumask *sd_numa_mask(int cpu)
6527{
6528 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6529}
6530
d039ac60
PZ
6531static void sched_numa_warn(const char *str)
6532{
6533 static int done = false;
6534 int i,j;
6535
6536 if (done)
6537 return;
6538
6539 done = true;
6540
6541 printk(KERN_WARNING "ERROR: %s\n\n", str);
6542
6543 for (i = 0; i < nr_node_ids; i++) {
6544 printk(KERN_WARNING " ");
6545 for (j = 0; j < nr_node_ids; j++)
6546 printk(KERN_CONT "%02d ", node_distance(i,j));
6547 printk(KERN_CONT "\n");
6548 }
6549 printk(KERN_WARNING "\n");
6550}
6551
9942f79b 6552bool find_numa_distance(int distance)
d039ac60
PZ
6553{
6554 int i;
6555
6556 if (distance == node_distance(0, 0))
6557 return true;
6558
6559 for (i = 0; i < sched_domains_numa_levels; i++) {
6560 if (sched_domains_numa_distance[i] == distance)
6561 return true;
6562 }
6563
6564 return false;
6565}
6566
e3fe70b1
RR
6567/*
6568 * A system can have three types of NUMA topology:
6569 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6570 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6571 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6572 *
6573 * The difference between a glueless mesh topology and a backplane
6574 * topology lies in whether communication between not directly
6575 * connected nodes goes through intermediary nodes (where programs
6576 * could run), or through backplane controllers. This affects
6577 * placement of programs.
6578 *
6579 * The type of topology can be discerned with the following tests:
6580 * - If the maximum distance between any nodes is 1 hop, the system
6581 * is directly connected.
6582 * - If for two nodes A and B, located N > 1 hops away from each other,
6583 * there is an intermediary node C, which is < N hops away from both
6584 * nodes A and B, the system is a glueless mesh.
6585 */
6586static void init_numa_topology_type(void)
6587{
6588 int a, b, c, n;
6589
6590 n = sched_max_numa_distance;
6591
e237882b 6592 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6593 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6594 return;
6595 }
e3fe70b1
RR
6596
6597 for_each_online_node(a) {
6598 for_each_online_node(b) {
6599 /* Find two nodes furthest removed from each other. */
6600 if (node_distance(a, b) < n)
6601 continue;
6602
6603 /* Is there an intermediary node between a and b? */
6604 for_each_online_node(c) {
6605 if (node_distance(a, c) < n &&
6606 node_distance(b, c) < n) {
6607 sched_numa_topology_type =
6608 NUMA_GLUELESS_MESH;
6609 return;
6610 }
6611 }
6612
6613 sched_numa_topology_type = NUMA_BACKPLANE;
6614 return;
6615 }
6616 }
6617}
6618
cb83b629
PZ
6619static void sched_init_numa(void)
6620{
6621 int next_distance, curr_distance = node_distance(0, 0);
6622 struct sched_domain_topology_level *tl;
6623 int level = 0;
6624 int i, j, k;
6625
cb83b629
PZ
6626 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6627 if (!sched_domains_numa_distance)
6628 return;
6629
6630 /*
6631 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6632 * unique distances in the node_distance() table.
6633 *
6634 * Assumes node_distance(0,j) includes all distances in
6635 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6636 */
6637 next_distance = curr_distance;
6638 for (i = 0; i < nr_node_ids; i++) {
6639 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6640 for (k = 0; k < nr_node_ids; k++) {
6641 int distance = node_distance(i, k);
6642
6643 if (distance > curr_distance &&
6644 (distance < next_distance ||
6645 next_distance == curr_distance))
6646 next_distance = distance;
6647
6648 /*
6649 * While not a strong assumption it would be nice to know
6650 * about cases where if node A is connected to B, B is not
6651 * equally connected to A.
6652 */
6653 if (sched_debug() && node_distance(k, i) != distance)
6654 sched_numa_warn("Node-distance not symmetric");
6655
6656 if (sched_debug() && i && !find_numa_distance(distance))
6657 sched_numa_warn("Node-0 not representative");
6658 }
6659 if (next_distance != curr_distance) {
6660 sched_domains_numa_distance[level++] = next_distance;
6661 sched_domains_numa_levels = level;
6662 curr_distance = next_distance;
6663 } else break;
cb83b629 6664 }
d039ac60
PZ
6665
6666 /*
6667 * In case of sched_debug() we verify the above assumption.
6668 */
6669 if (!sched_debug())
6670 break;
cb83b629 6671 }
c123588b
AR
6672
6673 if (!level)
6674 return;
6675
cb83b629
PZ
6676 /*
6677 * 'level' contains the number of unique distances, excluding the
6678 * identity distance node_distance(i,i).
6679 *
28b4a521 6680 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6681 * numbers.
6682 */
6683
5f7865f3
TC
6684 /*
6685 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6686 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6687 * the array will contain less then 'level' members. This could be
6688 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6689 * in other functions.
6690 *
6691 * We reset it to 'level' at the end of this function.
6692 */
6693 sched_domains_numa_levels = 0;
6694
cb83b629
PZ
6695 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6696 if (!sched_domains_numa_masks)
6697 return;
6698
6699 /*
6700 * Now for each level, construct a mask per node which contains all
6701 * cpus of nodes that are that many hops away from us.
6702 */
6703 for (i = 0; i < level; i++) {
6704 sched_domains_numa_masks[i] =
6705 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6706 if (!sched_domains_numa_masks[i])
6707 return;
6708
6709 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6710 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6711 if (!mask)
6712 return;
6713
6714 sched_domains_numa_masks[i][j] = mask;
6715
6716 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6717 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6718 continue;
6719
6720 cpumask_or(mask, mask, cpumask_of_node(k));
6721 }
6722 }
6723 }
6724
143e1e28
VG
6725 /* Compute default topology size */
6726 for (i = 0; sched_domain_topology[i].mask; i++);
6727
c515db8c 6728 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6729 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6730 if (!tl)
6731 return;
6732
6733 /*
6734 * Copy the default topology bits..
6735 */
143e1e28
VG
6736 for (i = 0; sched_domain_topology[i].mask; i++)
6737 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6738
6739 /*
6740 * .. and append 'j' levels of NUMA goodness.
6741 */
6742 for (j = 0; j < level; i++, j++) {
6743 tl[i] = (struct sched_domain_topology_level){
cb83b629 6744 .mask = sd_numa_mask,
143e1e28 6745 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6746 .flags = SDTL_OVERLAP,
6747 .numa_level = j,
143e1e28 6748 SD_INIT_NAME(NUMA)
cb83b629
PZ
6749 };
6750 }
6751
6752 sched_domain_topology = tl;
5f7865f3
TC
6753
6754 sched_domains_numa_levels = level;
9942f79b 6755 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6756
6757 init_numa_topology_type();
cb83b629 6758}
301a5cba
TC
6759
6760static void sched_domains_numa_masks_set(int cpu)
6761{
6762 int i, j;
6763 int node = cpu_to_node(cpu);
6764
6765 for (i = 0; i < sched_domains_numa_levels; i++) {
6766 for (j = 0; j < nr_node_ids; j++) {
6767 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6768 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6769 }
6770 }
6771}
6772
6773static void sched_domains_numa_masks_clear(int cpu)
6774{
6775 int i, j;
6776 for (i = 0; i < sched_domains_numa_levels; i++) {
6777 for (j = 0; j < nr_node_ids; j++)
6778 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6779 }
6780}
6781
6782/*
6783 * Update sched_domains_numa_masks[level][node] array when new cpus
6784 * are onlined.
6785 */
6786static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6787 unsigned long action,
6788 void *hcpu)
6789{
6790 int cpu = (long)hcpu;
6791
6792 switch (action & ~CPU_TASKS_FROZEN) {
6793 case CPU_ONLINE:
6794 sched_domains_numa_masks_set(cpu);
6795 break;
6796
6797 case CPU_DEAD:
6798 sched_domains_numa_masks_clear(cpu);
6799 break;
6800
6801 default:
6802 return NOTIFY_DONE;
6803 }
6804
6805 return NOTIFY_OK;
cb83b629
PZ
6806}
6807#else
6808static inline void sched_init_numa(void)
6809{
6810}
301a5cba
TC
6811
6812static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6813 unsigned long action,
6814 void *hcpu)
6815{
6816 return 0;
6817}
cb83b629
PZ
6818#endif /* CONFIG_NUMA */
6819
54ab4ff4
PZ
6820static int __sdt_alloc(const struct cpumask *cpu_map)
6821{
6822 struct sched_domain_topology_level *tl;
6823 int j;
6824
27723a68 6825 for_each_sd_topology(tl) {
54ab4ff4
PZ
6826 struct sd_data *sdd = &tl->data;
6827
6828 sdd->sd = alloc_percpu(struct sched_domain *);
6829 if (!sdd->sd)
6830 return -ENOMEM;
6831
6832 sdd->sg = alloc_percpu(struct sched_group *);
6833 if (!sdd->sg)
6834 return -ENOMEM;
6835
63b2ca30
NP
6836 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6837 if (!sdd->sgc)
9c3f75cb
PZ
6838 return -ENOMEM;
6839
54ab4ff4
PZ
6840 for_each_cpu(j, cpu_map) {
6841 struct sched_domain *sd;
6842 struct sched_group *sg;
63b2ca30 6843 struct sched_group_capacity *sgc;
54ab4ff4 6844
5cc389bc 6845 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6846 GFP_KERNEL, cpu_to_node(j));
6847 if (!sd)
6848 return -ENOMEM;
6849
6850 *per_cpu_ptr(sdd->sd, j) = sd;
6851
6852 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6853 GFP_KERNEL, cpu_to_node(j));
6854 if (!sg)
6855 return -ENOMEM;
6856
30b4e9eb
IM
6857 sg->next = sg;
6858
54ab4ff4 6859 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6860
63b2ca30 6861 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6862 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6863 if (!sgc)
9c3f75cb
PZ
6864 return -ENOMEM;
6865
63b2ca30 6866 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6867 }
6868 }
6869
6870 return 0;
6871}
6872
6873static void __sdt_free(const struct cpumask *cpu_map)
6874{
6875 struct sched_domain_topology_level *tl;
6876 int j;
6877
27723a68 6878 for_each_sd_topology(tl) {
54ab4ff4
PZ
6879 struct sd_data *sdd = &tl->data;
6880
6881 for_each_cpu(j, cpu_map) {
fb2cf2c6 6882 struct sched_domain *sd;
6883
6884 if (sdd->sd) {
6885 sd = *per_cpu_ptr(sdd->sd, j);
6886 if (sd && (sd->flags & SD_OVERLAP))
6887 free_sched_groups(sd->groups, 0);
6888 kfree(*per_cpu_ptr(sdd->sd, j));
6889 }
6890
6891 if (sdd->sg)
6892 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6893 if (sdd->sgc)
6894 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6895 }
6896 free_percpu(sdd->sd);
fb2cf2c6 6897 sdd->sd = NULL;
54ab4ff4 6898 free_percpu(sdd->sg);
fb2cf2c6 6899 sdd->sg = NULL;
63b2ca30
NP
6900 free_percpu(sdd->sgc);
6901 sdd->sgc = NULL;
54ab4ff4
PZ
6902 }
6903}
6904
2c402dc3 6905struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6906 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6907 struct sched_domain *child, int cpu)
2c402dc3 6908{
143e1e28 6909 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6910 if (!sd)
d069b916 6911 return child;
2c402dc3 6912
2c402dc3 6913 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6914 if (child) {
6915 sd->level = child->level + 1;
6916 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6917 child->parent = sd;
c75e0128 6918 sd->child = child;
6ae72dff
PZ
6919
6920 if (!cpumask_subset(sched_domain_span(child),
6921 sched_domain_span(sd))) {
6922 pr_err("BUG: arch topology borken\n");
6923#ifdef CONFIG_SCHED_DEBUG
6924 pr_err(" the %s domain not a subset of the %s domain\n",
6925 child->name, sd->name);
6926#endif
6927 /* Fixup, ensure @sd has at least @child cpus. */
6928 cpumask_or(sched_domain_span(sd),
6929 sched_domain_span(sd),
6930 sched_domain_span(child));
6931 }
6932
60495e77 6933 }
a841f8ce 6934 set_domain_attribute(sd, attr);
2c402dc3
PZ
6935
6936 return sd;
6937}
6938
2109b99e
AH
6939/*
6940 * Build sched domains for a given set of cpus and attach the sched domains
6941 * to the individual cpus
6942 */
dce840a0
PZ
6943static int build_sched_domains(const struct cpumask *cpu_map,
6944 struct sched_domain_attr *attr)
2109b99e 6945{
1c632169 6946 enum s_alloc alloc_state;
dce840a0 6947 struct sched_domain *sd;
2109b99e 6948 struct s_data d;
822ff793 6949 int i, ret = -ENOMEM;
9c1cfda2 6950
2109b99e
AH
6951 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6952 if (alloc_state != sa_rootdomain)
6953 goto error;
9c1cfda2 6954
dce840a0 6955 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6956 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6957 struct sched_domain_topology_level *tl;
6958
3bd65a80 6959 sd = NULL;
27723a68 6960 for_each_sd_topology(tl) {
4a850cbe 6961 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6962 if (tl == sched_domain_topology)
6963 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6964 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6965 sd->flags |= SD_OVERLAP;
d110235d
PZ
6966 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6967 break;
e3589f6c 6968 }
dce840a0
PZ
6969 }
6970
6971 /* Build the groups for the domains */
6972 for_each_cpu(i, cpu_map) {
6973 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6974 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6975 if (sd->flags & SD_OVERLAP) {
6976 if (build_overlap_sched_groups(sd, i))
6977 goto error;
6978 } else {
6979 if (build_sched_groups(sd, i))
6980 goto error;
6981 }
1cf51902 6982 }
a06dadbe 6983 }
9c1cfda2 6984
ced549fa 6985 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6986 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6987 if (!cpumask_test_cpu(i, cpu_map))
6988 continue;
9c1cfda2 6989
dce840a0
PZ
6990 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6991 claim_allocations(i, sd);
63b2ca30 6992 init_sched_groups_capacity(i, sd);
dce840a0 6993 }
f712c0c7 6994 }
9c1cfda2 6995
1da177e4 6996 /* Attach the domains */
dce840a0 6997 rcu_read_lock();
abcd083a 6998 for_each_cpu(i, cpu_map) {
21d42ccf 6999 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7000 cpu_attach_domain(sd, d.rd, i);
1da177e4 7001 }
dce840a0 7002 rcu_read_unlock();
51888ca2 7003
822ff793 7004 ret = 0;
51888ca2 7005error:
2109b99e 7006 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7007 return ret;
1da177e4 7008}
029190c5 7009
acc3f5d7 7010static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7011static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7012static struct sched_domain_attr *dattr_cur;
7013 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7014
7015/*
7016 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7017 * cpumask) fails, then fallback to a single sched domain,
7018 * as determined by the single cpumask fallback_doms.
029190c5 7019 */
4212823f 7020static cpumask_var_t fallback_doms;
029190c5 7021
ee79d1bd
HC
7022/*
7023 * arch_update_cpu_topology lets virtualized architectures update the
7024 * cpu core maps. It is supposed to return 1 if the topology changed
7025 * or 0 if it stayed the same.
7026 */
52f5684c 7027int __weak arch_update_cpu_topology(void)
22e52b07 7028{
ee79d1bd 7029 return 0;
22e52b07
HC
7030}
7031
acc3f5d7
RR
7032cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7033{
7034 int i;
7035 cpumask_var_t *doms;
7036
7037 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7038 if (!doms)
7039 return NULL;
7040 for (i = 0; i < ndoms; i++) {
7041 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7042 free_sched_domains(doms, i);
7043 return NULL;
7044 }
7045 }
7046 return doms;
7047}
7048
7049void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7050{
7051 unsigned int i;
7052 for (i = 0; i < ndoms; i++)
7053 free_cpumask_var(doms[i]);
7054 kfree(doms);
7055}
7056
1a20ff27 7057/*
41a2d6cf 7058 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7059 * For now this just excludes isolated cpus, but could be used to
7060 * exclude other special cases in the future.
1a20ff27 7061 */
c4a8849a 7062static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7063{
7378547f
MM
7064 int err;
7065
22e52b07 7066 arch_update_cpu_topology();
029190c5 7067 ndoms_cur = 1;
acc3f5d7 7068 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7069 if (!doms_cur)
acc3f5d7
RR
7070 doms_cur = &fallback_doms;
7071 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7072 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7073 register_sched_domain_sysctl();
7378547f
MM
7074
7075 return err;
1a20ff27
DG
7076}
7077
1a20ff27
DG
7078/*
7079 * Detach sched domains from a group of cpus specified in cpu_map
7080 * These cpus will now be attached to the NULL domain
7081 */
96f874e2 7082static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7083{
7084 int i;
7085
dce840a0 7086 rcu_read_lock();
abcd083a 7087 for_each_cpu(i, cpu_map)
57d885fe 7088 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7089 rcu_read_unlock();
1a20ff27
DG
7090}
7091
1d3504fc
HS
7092/* handle null as "default" */
7093static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7094 struct sched_domain_attr *new, int idx_new)
7095{
7096 struct sched_domain_attr tmp;
7097
7098 /* fast path */
7099 if (!new && !cur)
7100 return 1;
7101
7102 tmp = SD_ATTR_INIT;
7103 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7104 new ? (new + idx_new) : &tmp,
7105 sizeof(struct sched_domain_attr));
7106}
7107
029190c5
PJ
7108/*
7109 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7110 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7111 * doms_new[] to the current sched domain partitioning, doms_cur[].
7112 * It destroys each deleted domain and builds each new domain.
7113 *
acc3f5d7 7114 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7115 * The masks don't intersect (don't overlap.) We should setup one
7116 * sched domain for each mask. CPUs not in any of the cpumasks will
7117 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7118 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7119 * it as it is.
7120 *
acc3f5d7
RR
7121 * The passed in 'doms_new' should be allocated using
7122 * alloc_sched_domains. This routine takes ownership of it and will
7123 * free_sched_domains it when done with it. If the caller failed the
7124 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7125 * and partition_sched_domains() will fallback to the single partition
7126 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7127 *
96f874e2 7128 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7129 * ndoms_new == 0 is a special case for destroying existing domains,
7130 * and it will not create the default domain.
dfb512ec 7131 *
029190c5
PJ
7132 * Call with hotplug lock held
7133 */
acc3f5d7 7134void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7135 struct sched_domain_attr *dattr_new)
029190c5 7136{
dfb512ec 7137 int i, j, n;
d65bd5ec 7138 int new_topology;
029190c5 7139
712555ee 7140 mutex_lock(&sched_domains_mutex);
a1835615 7141
7378547f
MM
7142 /* always unregister in case we don't destroy any domains */
7143 unregister_sched_domain_sysctl();
7144
d65bd5ec
HC
7145 /* Let architecture update cpu core mappings. */
7146 new_topology = arch_update_cpu_topology();
7147
dfb512ec 7148 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7149
7150 /* Destroy deleted domains */
7151 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7152 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7153 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7154 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7155 goto match1;
7156 }
7157 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7158 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7159match1:
7160 ;
7161 }
7162
c8d2d47a 7163 n = ndoms_cur;
e761b772 7164 if (doms_new == NULL) {
c8d2d47a 7165 n = 0;
acc3f5d7 7166 doms_new = &fallback_doms;
6ad4c188 7167 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7168 WARN_ON_ONCE(dattr_new);
e761b772
MK
7169 }
7170
029190c5
PJ
7171 /* Build new domains */
7172 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7173 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7174 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7175 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7176 goto match2;
7177 }
7178 /* no match - add a new doms_new */
dce840a0 7179 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7180match2:
7181 ;
7182 }
7183
7184 /* Remember the new sched domains */
acc3f5d7
RR
7185 if (doms_cur != &fallback_doms)
7186 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7187 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7188 doms_cur = doms_new;
1d3504fc 7189 dattr_cur = dattr_new;
029190c5 7190 ndoms_cur = ndoms_new;
7378547f
MM
7191
7192 register_sched_domain_sysctl();
a1835615 7193
712555ee 7194 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7195}
7196
d35be8ba
SB
7197static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7198
1da177e4 7199/*
3a101d05
TH
7200 * Update cpusets according to cpu_active mask. If cpusets are
7201 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7202 * around partition_sched_domains().
d35be8ba
SB
7203 *
7204 * If we come here as part of a suspend/resume, don't touch cpusets because we
7205 * want to restore it back to its original state upon resume anyway.
1da177e4 7206 */
0b2e918a
TH
7207static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7208 void *hcpu)
e761b772 7209{
d35be8ba
SB
7210 switch (action) {
7211 case CPU_ONLINE_FROZEN:
7212 case CPU_DOWN_FAILED_FROZEN:
7213
7214 /*
7215 * num_cpus_frozen tracks how many CPUs are involved in suspend
7216 * resume sequence. As long as this is not the last online
7217 * operation in the resume sequence, just build a single sched
7218 * domain, ignoring cpusets.
7219 */
7220 num_cpus_frozen--;
7221 if (likely(num_cpus_frozen)) {
7222 partition_sched_domains(1, NULL, NULL);
7223 break;
7224 }
7225
7226 /*
7227 * This is the last CPU online operation. So fall through and
7228 * restore the original sched domains by considering the
7229 * cpuset configurations.
7230 */
7231
e761b772 7232 case CPU_ONLINE:
7ddf96b0 7233 cpuset_update_active_cpus(true);
d35be8ba 7234 break;
3a101d05
TH
7235 default:
7236 return NOTIFY_DONE;
7237 }
d35be8ba 7238 return NOTIFY_OK;
3a101d05 7239}
e761b772 7240
0b2e918a
TH
7241static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7242 void *hcpu)
3a101d05 7243{
3c18d447
JL
7244 unsigned long flags;
7245 long cpu = (long)hcpu;
7246 struct dl_bw *dl_b;
533445c6
OS
7247 bool overflow;
7248 int cpus;
3c18d447 7249
533445c6 7250 switch (action) {
3a101d05 7251 case CPU_DOWN_PREPARE:
533445c6
OS
7252 rcu_read_lock_sched();
7253 dl_b = dl_bw_of(cpu);
3c18d447 7254
533445c6
OS
7255 raw_spin_lock_irqsave(&dl_b->lock, flags);
7256 cpus = dl_bw_cpus(cpu);
7257 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7258 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7259
533445c6 7260 rcu_read_unlock_sched();
3c18d447 7261
533445c6
OS
7262 if (overflow)
7263 return notifier_from_errno(-EBUSY);
7ddf96b0 7264 cpuset_update_active_cpus(false);
d35be8ba
SB
7265 break;
7266 case CPU_DOWN_PREPARE_FROZEN:
7267 num_cpus_frozen++;
7268 partition_sched_domains(1, NULL, NULL);
7269 break;
e761b772
MK
7270 default:
7271 return NOTIFY_DONE;
7272 }
d35be8ba 7273 return NOTIFY_OK;
e761b772 7274}
e761b772 7275
1da177e4
LT
7276void __init sched_init_smp(void)
7277{
dcc30a35
RR
7278 cpumask_var_t non_isolated_cpus;
7279
7280 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7281 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7282
cb83b629
PZ
7283 sched_init_numa();
7284
6acce3ef
PZ
7285 /*
7286 * There's no userspace yet to cause hotplug operations; hence all the
7287 * cpu masks are stable and all blatant races in the below code cannot
7288 * happen.
7289 */
712555ee 7290 mutex_lock(&sched_domains_mutex);
c4a8849a 7291 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7292 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7293 if (cpumask_empty(non_isolated_cpus))
7294 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7295 mutex_unlock(&sched_domains_mutex);
e761b772 7296
301a5cba 7297 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7298 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7299 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7300
b328ca18 7301 init_hrtick();
5c1e1767
NP
7302
7303 /* Move init over to a non-isolated CPU */
dcc30a35 7304 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7305 BUG();
19978ca6 7306 sched_init_granularity();
dcc30a35 7307 free_cpumask_var(non_isolated_cpus);
4212823f 7308
0e3900e6 7309 init_sched_rt_class();
1baca4ce 7310 init_sched_dl_class();
1da177e4
LT
7311}
7312#else
7313void __init sched_init_smp(void)
7314{
19978ca6 7315 sched_init_granularity();
1da177e4
LT
7316}
7317#endif /* CONFIG_SMP */
7318
7319int in_sched_functions(unsigned long addr)
7320{
1da177e4
LT
7321 return in_lock_functions(addr) ||
7322 (addr >= (unsigned long)__sched_text_start
7323 && addr < (unsigned long)__sched_text_end);
7324}
7325
029632fb 7326#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7327/*
7328 * Default task group.
7329 * Every task in system belongs to this group at bootup.
7330 */
029632fb 7331struct task_group root_task_group;
35cf4e50 7332LIST_HEAD(task_groups);
052f1dc7 7333#endif
6f505b16 7334
e6252c3e 7335DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7336
1da177e4
LT
7337void __init sched_init(void)
7338{
dd41f596 7339 int i, j;
434d53b0
MT
7340 unsigned long alloc_size = 0, ptr;
7341
7342#ifdef CONFIG_FAIR_GROUP_SCHED
7343 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7344#endif
7345#ifdef CONFIG_RT_GROUP_SCHED
7346 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7347#endif
434d53b0 7348 if (alloc_size) {
36b7b6d4 7349 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7350
7351#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7352 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7353 ptr += nr_cpu_ids * sizeof(void **);
7354
07e06b01 7355 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7356 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7357
6d6bc0ad 7358#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7359#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7360 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7361 ptr += nr_cpu_ids * sizeof(void **);
7362
07e06b01 7363 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7364 ptr += nr_cpu_ids * sizeof(void **);
7365
6d6bc0ad 7366#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7367 }
df7c8e84 7368#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7369 for_each_possible_cpu(i) {
7370 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7371 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7372 }
b74e6278 7373#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7374
332ac17e
DF
7375 init_rt_bandwidth(&def_rt_bandwidth,
7376 global_rt_period(), global_rt_runtime());
7377 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7378 global_rt_period(), global_rt_runtime());
332ac17e 7379
57d885fe
GH
7380#ifdef CONFIG_SMP
7381 init_defrootdomain();
7382#endif
7383
d0b27fa7 7384#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7385 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7386 global_rt_period(), global_rt_runtime());
6d6bc0ad 7387#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7388
7c941438 7389#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7390 list_add(&root_task_group.list, &task_groups);
7391 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7392 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7393 autogroup_init(&init_task);
54c707e9 7394
7c941438 7395#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7396
0a945022 7397 for_each_possible_cpu(i) {
70b97a7f 7398 struct rq *rq;
1da177e4
LT
7399
7400 rq = cpu_rq(i);
05fa785c 7401 raw_spin_lock_init(&rq->lock);
7897986b 7402 rq->nr_running = 0;
dce48a84
TG
7403 rq->calc_load_active = 0;
7404 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7405 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7406 init_rt_rq(&rq->rt);
7407 init_dl_rq(&rq->dl);
dd41f596 7408#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7409 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7410 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7411 /*
07e06b01 7412 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7413 *
7414 * In case of task-groups formed thr' the cgroup filesystem, it
7415 * gets 100% of the cpu resources in the system. This overall
7416 * system cpu resource is divided among the tasks of
07e06b01 7417 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7418 * based on each entity's (task or task-group's) weight
7419 * (se->load.weight).
7420 *
07e06b01 7421 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7422 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7423 * then A0's share of the cpu resource is:
7424 *
0d905bca 7425 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7426 *
07e06b01
YZ
7427 * We achieve this by letting root_task_group's tasks sit
7428 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7429 */
ab84d31e 7430 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7431 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7432#endif /* CONFIG_FAIR_GROUP_SCHED */
7433
7434 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7435#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7436 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7437#endif
1da177e4 7438
dd41f596
IM
7439 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7440 rq->cpu_load[j] = 0;
fdf3e95d
VP
7441
7442 rq->last_load_update_tick = jiffies;
7443
1da177e4 7444#ifdef CONFIG_SMP
41c7ce9a 7445 rq->sd = NULL;
57d885fe 7446 rq->rd = NULL;
ca6d75e6 7447 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7448 rq->balance_callback = NULL;
1da177e4 7449 rq->active_balance = 0;
dd41f596 7450 rq->next_balance = jiffies;
1da177e4 7451 rq->push_cpu = 0;
0a2966b4 7452 rq->cpu = i;
1f11eb6a 7453 rq->online = 0;
eae0c9df
MG
7454 rq->idle_stamp = 0;
7455 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7456 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7457
7458 INIT_LIST_HEAD(&rq->cfs_tasks);
7459
dc938520 7460 rq_attach_root(rq, &def_root_domain);
3451d024 7461#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7462 rq->nohz_flags = 0;
83cd4fe2 7463#endif
265f22a9
FW
7464#ifdef CONFIG_NO_HZ_FULL
7465 rq->last_sched_tick = 0;
7466#endif
1da177e4 7467#endif
8f4d37ec 7468 init_rq_hrtick(rq);
1da177e4 7469 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7470 }
7471
2dd73a4f 7472 set_load_weight(&init_task);
b50f60ce 7473
e107be36
AK
7474#ifdef CONFIG_PREEMPT_NOTIFIERS
7475 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7476#endif
7477
1da177e4
LT
7478 /*
7479 * The boot idle thread does lazy MMU switching as well:
7480 */
7481 atomic_inc(&init_mm.mm_count);
7482 enter_lazy_tlb(&init_mm, current);
7483
1b537c7d
YD
7484 /*
7485 * During early bootup we pretend to be a normal task:
7486 */
7487 current->sched_class = &fair_sched_class;
7488
1da177e4
LT
7489 /*
7490 * Make us the idle thread. Technically, schedule() should not be
7491 * called from this thread, however somewhere below it might be,
7492 * but because we are the idle thread, we just pick up running again
7493 * when this runqueue becomes "idle".
7494 */
7495 init_idle(current, smp_processor_id());
dce48a84
TG
7496
7497 calc_load_update = jiffies + LOAD_FREQ;
7498
bf4d83f6 7499#ifdef CONFIG_SMP
4cb98839 7500 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7501 /* May be allocated at isolcpus cmdline parse time */
7502 if (cpu_isolated_map == NULL)
7503 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7504 idle_thread_set_boot_cpu();
a803f026 7505 set_cpu_rq_start_time();
029632fb
PZ
7506#endif
7507 init_sched_fair_class();
6a7b3dc3 7508
6892b75e 7509 scheduler_running = 1;
1da177e4
LT
7510}
7511
d902db1e 7512#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7513static inline int preempt_count_equals(int preempt_offset)
7514{
da7142e2 7515 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7516
4ba8216c 7517 return (nested == preempt_offset);
e4aafea2
FW
7518}
7519
d894837f 7520void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7521{
8eb23b9f
PZ
7522 /*
7523 * Blocking primitives will set (and therefore destroy) current->state,
7524 * since we will exit with TASK_RUNNING make sure we enter with it,
7525 * otherwise we will destroy state.
7526 */
00845eb9 7527 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7528 "do not call blocking ops when !TASK_RUNNING; "
7529 "state=%lx set at [<%p>] %pS\n",
7530 current->state,
7531 (void *)current->task_state_change,
00845eb9 7532 (void *)current->task_state_change);
8eb23b9f 7533
3427445a
PZ
7534 ___might_sleep(file, line, preempt_offset);
7535}
7536EXPORT_SYMBOL(__might_sleep);
7537
7538void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7539{
1da177e4
LT
7540 static unsigned long prev_jiffy; /* ratelimiting */
7541
b3fbab05 7542 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7543 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7544 !is_idle_task(current)) ||
e4aafea2 7545 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7546 return;
7547 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7548 return;
7549 prev_jiffy = jiffies;
7550
3df0fc5b
PZ
7551 printk(KERN_ERR
7552 "BUG: sleeping function called from invalid context at %s:%d\n",
7553 file, line);
7554 printk(KERN_ERR
7555 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7556 in_atomic(), irqs_disabled(),
7557 current->pid, current->comm);
aef745fc 7558
a8b686b3
ES
7559 if (task_stack_end_corrupted(current))
7560 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7561
aef745fc
IM
7562 debug_show_held_locks(current);
7563 if (irqs_disabled())
7564 print_irqtrace_events(current);
8f47b187
TG
7565#ifdef CONFIG_DEBUG_PREEMPT
7566 if (!preempt_count_equals(preempt_offset)) {
7567 pr_err("Preemption disabled at:");
7568 print_ip_sym(current->preempt_disable_ip);
7569 pr_cont("\n");
7570 }
7571#endif
aef745fc 7572 dump_stack();
1da177e4 7573}
3427445a 7574EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7575#endif
7576
7577#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7578void normalize_rt_tasks(void)
3a5e4dc1 7579{
dbc7f069 7580 struct task_struct *g, *p;
d50dde5a
DF
7581 struct sched_attr attr = {
7582 .sched_policy = SCHED_NORMAL,
7583 };
1da177e4 7584
3472eaa1 7585 read_lock(&tasklist_lock);
5d07f420 7586 for_each_process_thread(g, p) {
178be793
IM
7587 /*
7588 * Only normalize user tasks:
7589 */
3472eaa1 7590 if (p->flags & PF_KTHREAD)
178be793
IM
7591 continue;
7592
6cfb0d5d 7593 p->se.exec_start = 0;
6cfb0d5d 7594#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7595 p->se.statistics.wait_start = 0;
7596 p->se.statistics.sleep_start = 0;
7597 p->se.statistics.block_start = 0;
6cfb0d5d 7598#endif
dd41f596 7599
aab03e05 7600 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7601 /*
7602 * Renice negative nice level userspace
7603 * tasks back to 0:
7604 */
3472eaa1 7605 if (task_nice(p) < 0)
dd41f596 7606 set_user_nice(p, 0);
1da177e4 7607 continue;
dd41f596 7608 }
1da177e4 7609
dbc7f069 7610 __sched_setscheduler(p, &attr, false, false);
5d07f420 7611 }
3472eaa1 7612 read_unlock(&tasklist_lock);
1da177e4
LT
7613}
7614
7615#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7616
67fc4e0c 7617#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7618/*
67fc4e0c 7619 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7620 *
7621 * They can only be called when the whole system has been
7622 * stopped - every CPU needs to be quiescent, and no scheduling
7623 * activity can take place. Using them for anything else would
7624 * be a serious bug, and as a result, they aren't even visible
7625 * under any other configuration.
7626 */
7627
7628/**
7629 * curr_task - return the current task for a given cpu.
7630 * @cpu: the processor in question.
7631 *
7632 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7633 *
7634 * Return: The current task for @cpu.
1df5c10a 7635 */
36c8b586 7636struct task_struct *curr_task(int cpu)
1df5c10a
LT
7637{
7638 return cpu_curr(cpu);
7639}
7640
67fc4e0c
JW
7641#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7642
7643#ifdef CONFIG_IA64
1df5c10a
LT
7644/**
7645 * set_curr_task - set the current task for a given cpu.
7646 * @cpu: the processor in question.
7647 * @p: the task pointer to set.
7648 *
7649 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7650 * are serviced on a separate stack. It allows the architecture to switch the
7651 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7652 * must be called with all CPU's synchronized, and interrupts disabled, the
7653 * and caller must save the original value of the current task (see
7654 * curr_task() above) and restore that value before reenabling interrupts and
7655 * re-starting the system.
7656 *
7657 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7658 */
36c8b586 7659void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7660{
7661 cpu_curr(cpu) = p;
7662}
7663
7664#endif
29f59db3 7665
7c941438 7666#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7667/* task_group_lock serializes the addition/removal of task groups */
7668static DEFINE_SPINLOCK(task_group_lock);
7669
bccbe08a
PZ
7670static void free_sched_group(struct task_group *tg)
7671{
7672 free_fair_sched_group(tg);
7673 free_rt_sched_group(tg);
e9aa1dd1 7674 autogroup_free(tg);
bccbe08a
PZ
7675 kfree(tg);
7676}
7677
7678/* allocate runqueue etc for a new task group */
ec7dc8ac 7679struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7680{
7681 struct task_group *tg;
bccbe08a
PZ
7682
7683 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7684 if (!tg)
7685 return ERR_PTR(-ENOMEM);
7686
ec7dc8ac 7687 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7688 goto err;
7689
ec7dc8ac 7690 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7691 goto err;
7692
ace783b9
LZ
7693 return tg;
7694
7695err:
7696 free_sched_group(tg);
7697 return ERR_PTR(-ENOMEM);
7698}
7699
7700void sched_online_group(struct task_group *tg, struct task_group *parent)
7701{
7702 unsigned long flags;
7703
8ed36996 7704 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7705 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7706
7707 WARN_ON(!parent); /* root should already exist */
7708
7709 tg->parent = parent;
f473aa5e 7710 INIT_LIST_HEAD(&tg->children);
09f2724a 7711 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7712 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7713}
7714
9b5b7751 7715/* rcu callback to free various structures associated with a task group */
6f505b16 7716static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7717{
29f59db3 7718 /* now it should be safe to free those cfs_rqs */
6f505b16 7719 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7720}
7721
9b5b7751 7722/* Destroy runqueue etc associated with a task group */
4cf86d77 7723void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7724{
7725 /* wait for possible concurrent references to cfs_rqs complete */
7726 call_rcu(&tg->rcu, free_sched_group_rcu);
7727}
7728
7729void sched_offline_group(struct task_group *tg)
29f59db3 7730{
8ed36996 7731 unsigned long flags;
9b5b7751 7732 int i;
29f59db3 7733
3d4b47b4
PZ
7734 /* end participation in shares distribution */
7735 for_each_possible_cpu(i)
bccbe08a 7736 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7737
7738 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7739 list_del_rcu(&tg->list);
f473aa5e 7740 list_del_rcu(&tg->siblings);
8ed36996 7741 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7742}
7743
9b5b7751 7744/* change task's runqueue when it moves between groups.
3a252015
IM
7745 * The caller of this function should have put the task in its new group
7746 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7747 * reflect its new group.
9b5b7751
SV
7748 */
7749void sched_move_task(struct task_struct *tsk)
29f59db3 7750{
8323f26c 7751 struct task_group *tg;
da0c1e65 7752 int queued, running;
29f59db3
SV
7753 unsigned long flags;
7754 struct rq *rq;
7755
7756 rq = task_rq_lock(tsk, &flags);
7757
051a1d1a 7758 running = task_current(rq, tsk);
da0c1e65 7759 queued = task_on_rq_queued(tsk);
29f59db3 7760
da0c1e65 7761 if (queued)
1de64443 7762 dequeue_task(rq, tsk, DEQUEUE_SAVE);
0e1f3483 7763 if (unlikely(running))
f3cd1c4e 7764 put_prev_task(rq, tsk);
29f59db3 7765
f7b8a47d
KT
7766 /*
7767 * All callers are synchronized by task_rq_lock(); we do not use RCU
7768 * which is pointless here. Thus, we pass "true" to task_css_check()
7769 * to prevent lockdep warnings.
7770 */
7771 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7772 struct task_group, css);
7773 tg = autogroup_task_group(tsk, tg);
7774 tsk->sched_task_group = tg;
7775
810b3817 7776#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7777 if (tsk->sched_class->task_move_group)
bc54da21 7778 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7779 else
810b3817 7780#endif
b2b5ce02 7781 set_task_rq(tsk, task_cpu(tsk));
810b3817 7782
0e1f3483
HS
7783 if (unlikely(running))
7784 tsk->sched_class->set_curr_task(rq);
da0c1e65 7785 if (queued)
1de64443 7786 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
29f59db3 7787
0122ec5b 7788 task_rq_unlock(rq, tsk, &flags);
29f59db3 7789}
7c941438 7790#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7791
a790de99
PT
7792#ifdef CONFIG_RT_GROUP_SCHED
7793/*
7794 * Ensure that the real time constraints are schedulable.
7795 */
7796static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7797
9a7e0b18
PZ
7798/* Must be called with tasklist_lock held */
7799static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7800{
9a7e0b18 7801 struct task_struct *g, *p;
b40b2e8e 7802
1fe89e1b
PZ
7803 /*
7804 * Autogroups do not have RT tasks; see autogroup_create().
7805 */
7806 if (task_group_is_autogroup(tg))
7807 return 0;
7808
5d07f420 7809 for_each_process_thread(g, p) {
8651c658 7810 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7811 return 1;
5d07f420 7812 }
b40b2e8e 7813
9a7e0b18
PZ
7814 return 0;
7815}
b40b2e8e 7816
9a7e0b18
PZ
7817struct rt_schedulable_data {
7818 struct task_group *tg;
7819 u64 rt_period;
7820 u64 rt_runtime;
7821};
b40b2e8e 7822
a790de99 7823static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7824{
7825 struct rt_schedulable_data *d = data;
7826 struct task_group *child;
7827 unsigned long total, sum = 0;
7828 u64 period, runtime;
b40b2e8e 7829
9a7e0b18
PZ
7830 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7831 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7832
9a7e0b18
PZ
7833 if (tg == d->tg) {
7834 period = d->rt_period;
7835 runtime = d->rt_runtime;
b40b2e8e 7836 }
b40b2e8e 7837
4653f803
PZ
7838 /*
7839 * Cannot have more runtime than the period.
7840 */
7841 if (runtime > period && runtime != RUNTIME_INF)
7842 return -EINVAL;
6f505b16 7843
4653f803
PZ
7844 /*
7845 * Ensure we don't starve existing RT tasks.
7846 */
9a7e0b18
PZ
7847 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7848 return -EBUSY;
6f505b16 7849
9a7e0b18 7850 total = to_ratio(period, runtime);
6f505b16 7851
4653f803
PZ
7852 /*
7853 * Nobody can have more than the global setting allows.
7854 */
7855 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7856 return -EINVAL;
6f505b16 7857
4653f803
PZ
7858 /*
7859 * The sum of our children's runtime should not exceed our own.
7860 */
9a7e0b18
PZ
7861 list_for_each_entry_rcu(child, &tg->children, siblings) {
7862 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7863 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7864
9a7e0b18
PZ
7865 if (child == d->tg) {
7866 period = d->rt_period;
7867 runtime = d->rt_runtime;
7868 }
6f505b16 7869
9a7e0b18 7870 sum += to_ratio(period, runtime);
9f0c1e56 7871 }
6f505b16 7872
9a7e0b18
PZ
7873 if (sum > total)
7874 return -EINVAL;
7875
7876 return 0;
6f505b16
PZ
7877}
7878
9a7e0b18 7879static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7880{
8277434e
PT
7881 int ret;
7882
9a7e0b18
PZ
7883 struct rt_schedulable_data data = {
7884 .tg = tg,
7885 .rt_period = period,
7886 .rt_runtime = runtime,
7887 };
7888
8277434e
PT
7889 rcu_read_lock();
7890 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7891 rcu_read_unlock();
7892
7893 return ret;
521f1a24
DG
7894}
7895
ab84d31e 7896static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7897 u64 rt_period, u64 rt_runtime)
6f505b16 7898{
ac086bc2 7899 int i, err = 0;
9f0c1e56 7900
2636ed5f
PZ
7901 /*
7902 * Disallowing the root group RT runtime is BAD, it would disallow the
7903 * kernel creating (and or operating) RT threads.
7904 */
7905 if (tg == &root_task_group && rt_runtime == 0)
7906 return -EINVAL;
7907
7908 /* No period doesn't make any sense. */
7909 if (rt_period == 0)
7910 return -EINVAL;
7911
9f0c1e56 7912 mutex_lock(&rt_constraints_mutex);
521f1a24 7913 read_lock(&tasklist_lock);
9a7e0b18
PZ
7914 err = __rt_schedulable(tg, rt_period, rt_runtime);
7915 if (err)
9f0c1e56 7916 goto unlock;
ac086bc2 7917
0986b11b 7918 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7919 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7920 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7921
7922 for_each_possible_cpu(i) {
7923 struct rt_rq *rt_rq = tg->rt_rq[i];
7924
0986b11b 7925 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7926 rt_rq->rt_runtime = rt_runtime;
0986b11b 7927 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7928 }
0986b11b 7929 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7930unlock:
521f1a24 7931 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7932 mutex_unlock(&rt_constraints_mutex);
7933
7934 return err;
6f505b16
PZ
7935}
7936
25cc7da7 7937static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7938{
7939 u64 rt_runtime, rt_period;
7940
7941 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7942 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7943 if (rt_runtime_us < 0)
7944 rt_runtime = RUNTIME_INF;
7945
ab84d31e 7946 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7947}
7948
25cc7da7 7949static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7950{
7951 u64 rt_runtime_us;
7952
d0b27fa7 7953 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7954 return -1;
7955
d0b27fa7 7956 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7957 do_div(rt_runtime_us, NSEC_PER_USEC);
7958 return rt_runtime_us;
7959}
d0b27fa7 7960
ce2f5fe4 7961static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7962{
7963 u64 rt_runtime, rt_period;
7964
ce2f5fe4 7965 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7966 rt_runtime = tg->rt_bandwidth.rt_runtime;
7967
ab84d31e 7968 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7969}
7970
25cc7da7 7971static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7972{
7973 u64 rt_period_us;
7974
7975 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7976 do_div(rt_period_us, NSEC_PER_USEC);
7977 return rt_period_us;
7978}
332ac17e 7979#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7980
332ac17e 7981#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7982static int sched_rt_global_constraints(void)
7983{
7984 int ret = 0;
7985
7986 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7987 read_lock(&tasklist_lock);
4653f803 7988 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7989 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7990 mutex_unlock(&rt_constraints_mutex);
7991
7992 return ret;
7993}
54e99124 7994
25cc7da7 7995static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7996{
7997 /* Don't accept realtime tasks when there is no way for them to run */
7998 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7999 return 0;
8000
8001 return 1;
8002}
8003
6d6bc0ad 8004#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8005static int sched_rt_global_constraints(void)
8006{
ac086bc2 8007 unsigned long flags;
332ac17e 8008 int i, ret = 0;
ec5d4989 8009
0986b11b 8010 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8011 for_each_possible_cpu(i) {
8012 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8013
0986b11b 8014 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8015 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8016 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8017 }
0986b11b 8018 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8019
332ac17e 8020 return ret;
d0b27fa7 8021}
6d6bc0ad 8022#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8023
a1963b81 8024static int sched_dl_global_validate(void)
332ac17e 8025{
1724813d
PZ
8026 u64 runtime = global_rt_runtime();
8027 u64 period = global_rt_period();
332ac17e 8028 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8029 struct dl_bw *dl_b;
1724813d 8030 int cpu, ret = 0;
49516342 8031 unsigned long flags;
332ac17e
DF
8032
8033 /*
8034 * Here we want to check the bandwidth not being set to some
8035 * value smaller than the currently allocated bandwidth in
8036 * any of the root_domains.
8037 *
8038 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8039 * cycling on root_domains... Discussion on different/better
8040 * solutions is welcome!
8041 */
1724813d 8042 for_each_possible_cpu(cpu) {
f10e00f4
KT
8043 rcu_read_lock_sched();
8044 dl_b = dl_bw_of(cpu);
332ac17e 8045
49516342 8046 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8047 if (new_bw < dl_b->total_bw)
8048 ret = -EBUSY;
49516342 8049 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8050
f10e00f4
KT
8051 rcu_read_unlock_sched();
8052
1724813d
PZ
8053 if (ret)
8054 break;
332ac17e
DF
8055 }
8056
1724813d 8057 return ret;
332ac17e
DF
8058}
8059
1724813d 8060static void sched_dl_do_global(void)
ce0dbbbb 8061{
1724813d 8062 u64 new_bw = -1;
f10e00f4 8063 struct dl_bw *dl_b;
1724813d 8064 int cpu;
49516342 8065 unsigned long flags;
ce0dbbbb 8066
1724813d
PZ
8067 def_dl_bandwidth.dl_period = global_rt_period();
8068 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8069
8070 if (global_rt_runtime() != RUNTIME_INF)
8071 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8072
8073 /*
8074 * FIXME: As above...
8075 */
8076 for_each_possible_cpu(cpu) {
f10e00f4
KT
8077 rcu_read_lock_sched();
8078 dl_b = dl_bw_of(cpu);
1724813d 8079
49516342 8080 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8081 dl_b->bw = new_bw;
49516342 8082 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8083
8084 rcu_read_unlock_sched();
ce0dbbbb 8085 }
1724813d
PZ
8086}
8087
8088static int sched_rt_global_validate(void)
8089{
8090 if (sysctl_sched_rt_period <= 0)
8091 return -EINVAL;
8092
e9e7cb38
JL
8093 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8094 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8095 return -EINVAL;
8096
8097 return 0;
8098}
8099
8100static void sched_rt_do_global(void)
8101{
8102 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8103 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8104}
8105
d0b27fa7 8106int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8107 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8108 loff_t *ppos)
8109{
d0b27fa7
PZ
8110 int old_period, old_runtime;
8111 static DEFINE_MUTEX(mutex);
1724813d 8112 int ret;
d0b27fa7
PZ
8113
8114 mutex_lock(&mutex);
8115 old_period = sysctl_sched_rt_period;
8116 old_runtime = sysctl_sched_rt_runtime;
8117
8d65af78 8118 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8119
8120 if (!ret && write) {
1724813d
PZ
8121 ret = sched_rt_global_validate();
8122 if (ret)
8123 goto undo;
8124
a1963b81 8125 ret = sched_dl_global_validate();
1724813d
PZ
8126 if (ret)
8127 goto undo;
8128
a1963b81 8129 ret = sched_rt_global_constraints();
1724813d
PZ
8130 if (ret)
8131 goto undo;
8132
8133 sched_rt_do_global();
8134 sched_dl_do_global();
8135 }
8136 if (0) {
8137undo:
8138 sysctl_sched_rt_period = old_period;
8139 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8140 }
8141 mutex_unlock(&mutex);
8142
8143 return ret;
8144}
68318b8e 8145
1724813d 8146int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8147 void __user *buffer, size_t *lenp,
8148 loff_t *ppos)
8149{
8150 int ret;
332ac17e 8151 static DEFINE_MUTEX(mutex);
332ac17e
DF
8152
8153 mutex_lock(&mutex);
332ac17e 8154 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8155 /* make sure that internally we keep jiffies */
8156 /* also, writing zero resets timeslice to default */
332ac17e 8157 if (!ret && write) {
1724813d
PZ
8158 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8159 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8160 }
8161 mutex_unlock(&mutex);
332ac17e
DF
8162 return ret;
8163}
8164
052f1dc7 8165#ifdef CONFIG_CGROUP_SCHED
68318b8e 8166
a7c6d554 8167static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8168{
a7c6d554 8169 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8170}
8171
eb95419b
TH
8172static struct cgroup_subsys_state *
8173cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8174{
eb95419b
TH
8175 struct task_group *parent = css_tg(parent_css);
8176 struct task_group *tg;
68318b8e 8177
eb95419b 8178 if (!parent) {
68318b8e 8179 /* This is early initialization for the top cgroup */
07e06b01 8180 return &root_task_group.css;
68318b8e
SV
8181 }
8182
ec7dc8ac 8183 tg = sched_create_group(parent);
68318b8e
SV
8184 if (IS_ERR(tg))
8185 return ERR_PTR(-ENOMEM);
8186
68318b8e
SV
8187 return &tg->css;
8188}
8189
eb95419b 8190static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8191{
eb95419b 8192 struct task_group *tg = css_tg(css);
5c9d535b 8193 struct task_group *parent = css_tg(css->parent);
ace783b9 8194
63876986
TH
8195 if (parent)
8196 sched_online_group(tg, parent);
ace783b9
LZ
8197 return 0;
8198}
8199
eb95419b 8200static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8201{
eb95419b 8202 struct task_group *tg = css_tg(css);
68318b8e
SV
8203
8204 sched_destroy_group(tg);
8205}
8206
eb95419b 8207static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8208{
eb95419b 8209 struct task_group *tg = css_tg(css);
ace783b9
LZ
8210
8211 sched_offline_group(tg);
8212}
8213
7e47682e 8214static void cpu_cgroup_fork(struct task_struct *task, void *private)
eeb61e53
KT
8215{
8216 sched_move_task(task);
8217}
8218
eb95419b 8219static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8220 struct cgroup_taskset *tset)
68318b8e 8221{
bb9d97b6
TH
8222 struct task_struct *task;
8223
924f0d9a 8224 cgroup_taskset_for_each(task, tset) {
b68aa230 8225#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8226 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8227 return -EINVAL;
b68aa230 8228#else
bb9d97b6
TH
8229 /* We don't support RT-tasks being in separate groups */
8230 if (task->sched_class != &fair_sched_class)
8231 return -EINVAL;
b68aa230 8232#endif
bb9d97b6 8233 }
be367d09
BB
8234 return 0;
8235}
68318b8e 8236
eb95419b 8237static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8238 struct cgroup_taskset *tset)
68318b8e 8239{
bb9d97b6
TH
8240 struct task_struct *task;
8241
924f0d9a 8242 cgroup_taskset_for_each(task, tset)
bb9d97b6 8243 sched_move_task(task);
68318b8e
SV
8244}
8245
052f1dc7 8246#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8247static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8248 struct cftype *cftype, u64 shareval)
68318b8e 8249{
182446d0 8250 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8251}
8252
182446d0
TH
8253static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8254 struct cftype *cft)
68318b8e 8255{
182446d0 8256 struct task_group *tg = css_tg(css);
68318b8e 8257
c8b28116 8258 return (u64) scale_load_down(tg->shares);
68318b8e 8259}
ab84d31e
PT
8260
8261#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8262static DEFINE_MUTEX(cfs_constraints_mutex);
8263
ab84d31e
PT
8264const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8265const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8266
a790de99
PT
8267static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8268
ab84d31e
PT
8269static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8270{
56f570e5 8271 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8272 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8273
8274 if (tg == &root_task_group)
8275 return -EINVAL;
8276
8277 /*
8278 * Ensure we have at some amount of bandwidth every period. This is
8279 * to prevent reaching a state of large arrears when throttled via
8280 * entity_tick() resulting in prolonged exit starvation.
8281 */
8282 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8283 return -EINVAL;
8284
8285 /*
8286 * Likewise, bound things on the otherside by preventing insane quota
8287 * periods. This also allows us to normalize in computing quota
8288 * feasibility.
8289 */
8290 if (period > max_cfs_quota_period)
8291 return -EINVAL;
8292
0e59bdae
KT
8293 /*
8294 * Prevent race between setting of cfs_rq->runtime_enabled and
8295 * unthrottle_offline_cfs_rqs().
8296 */
8297 get_online_cpus();
a790de99
PT
8298 mutex_lock(&cfs_constraints_mutex);
8299 ret = __cfs_schedulable(tg, period, quota);
8300 if (ret)
8301 goto out_unlock;
8302
58088ad0 8303 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8304 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8305 /*
8306 * If we need to toggle cfs_bandwidth_used, off->on must occur
8307 * before making related changes, and on->off must occur afterwards
8308 */
8309 if (runtime_enabled && !runtime_was_enabled)
8310 cfs_bandwidth_usage_inc();
ab84d31e
PT
8311 raw_spin_lock_irq(&cfs_b->lock);
8312 cfs_b->period = ns_to_ktime(period);
8313 cfs_b->quota = quota;
58088ad0 8314
a9cf55b2 8315 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8316 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8317 if (runtime_enabled)
8318 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8319 raw_spin_unlock_irq(&cfs_b->lock);
8320
0e59bdae 8321 for_each_online_cpu(i) {
ab84d31e 8322 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8323 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8324
8325 raw_spin_lock_irq(&rq->lock);
58088ad0 8326 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8327 cfs_rq->runtime_remaining = 0;
671fd9da 8328
029632fb 8329 if (cfs_rq->throttled)
671fd9da 8330 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8331 raw_spin_unlock_irq(&rq->lock);
8332 }
1ee14e6c
BS
8333 if (runtime_was_enabled && !runtime_enabled)
8334 cfs_bandwidth_usage_dec();
a790de99
PT
8335out_unlock:
8336 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8337 put_online_cpus();
ab84d31e 8338
a790de99 8339 return ret;
ab84d31e
PT
8340}
8341
8342int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8343{
8344 u64 quota, period;
8345
029632fb 8346 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8347 if (cfs_quota_us < 0)
8348 quota = RUNTIME_INF;
8349 else
8350 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8351
8352 return tg_set_cfs_bandwidth(tg, period, quota);
8353}
8354
8355long tg_get_cfs_quota(struct task_group *tg)
8356{
8357 u64 quota_us;
8358
029632fb 8359 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8360 return -1;
8361
029632fb 8362 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8363 do_div(quota_us, NSEC_PER_USEC);
8364
8365 return quota_us;
8366}
8367
8368int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8369{
8370 u64 quota, period;
8371
8372 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8373 quota = tg->cfs_bandwidth.quota;
ab84d31e 8374
ab84d31e
PT
8375 return tg_set_cfs_bandwidth(tg, period, quota);
8376}
8377
8378long tg_get_cfs_period(struct task_group *tg)
8379{
8380 u64 cfs_period_us;
8381
029632fb 8382 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8383 do_div(cfs_period_us, NSEC_PER_USEC);
8384
8385 return cfs_period_us;
8386}
8387
182446d0
TH
8388static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8389 struct cftype *cft)
ab84d31e 8390{
182446d0 8391 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8392}
8393
182446d0
TH
8394static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8395 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8396{
182446d0 8397 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8398}
8399
182446d0
TH
8400static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8401 struct cftype *cft)
ab84d31e 8402{
182446d0 8403 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8404}
8405
182446d0
TH
8406static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8407 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8408{
182446d0 8409 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8410}
8411
a790de99
PT
8412struct cfs_schedulable_data {
8413 struct task_group *tg;
8414 u64 period, quota;
8415};
8416
8417/*
8418 * normalize group quota/period to be quota/max_period
8419 * note: units are usecs
8420 */
8421static u64 normalize_cfs_quota(struct task_group *tg,
8422 struct cfs_schedulable_data *d)
8423{
8424 u64 quota, period;
8425
8426 if (tg == d->tg) {
8427 period = d->period;
8428 quota = d->quota;
8429 } else {
8430 period = tg_get_cfs_period(tg);
8431 quota = tg_get_cfs_quota(tg);
8432 }
8433
8434 /* note: these should typically be equivalent */
8435 if (quota == RUNTIME_INF || quota == -1)
8436 return RUNTIME_INF;
8437
8438 return to_ratio(period, quota);
8439}
8440
8441static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8442{
8443 struct cfs_schedulable_data *d = data;
029632fb 8444 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8445 s64 quota = 0, parent_quota = -1;
8446
8447 if (!tg->parent) {
8448 quota = RUNTIME_INF;
8449 } else {
029632fb 8450 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8451
8452 quota = normalize_cfs_quota(tg, d);
9c58c79a 8453 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8454
8455 /*
8456 * ensure max(child_quota) <= parent_quota, inherit when no
8457 * limit is set
8458 */
8459 if (quota == RUNTIME_INF)
8460 quota = parent_quota;
8461 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8462 return -EINVAL;
8463 }
9c58c79a 8464 cfs_b->hierarchical_quota = quota;
a790de99
PT
8465
8466 return 0;
8467}
8468
8469static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8470{
8277434e 8471 int ret;
a790de99
PT
8472 struct cfs_schedulable_data data = {
8473 .tg = tg,
8474 .period = period,
8475 .quota = quota,
8476 };
8477
8478 if (quota != RUNTIME_INF) {
8479 do_div(data.period, NSEC_PER_USEC);
8480 do_div(data.quota, NSEC_PER_USEC);
8481 }
8482
8277434e
PT
8483 rcu_read_lock();
8484 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8485 rcu_read_unlock();
8486
8487 return ret;
a790de99 8488}
e8da1b18 8489
2da8ca82 8490static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8491{
2da8ca82 8492 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8493 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8494
44ffc75b
TH
8495 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8496 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8497 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8498
8499 return 0;
8500}
ab84d31e 8501#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8502#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8503
052f1dc7 8504#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8505static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8506 struct cftype *cft, s64 val)
6f505b16 8507{
182446d0 8508 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8509}
8510
182446d0
TH
8511static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8512 struct cftype *cft)
6f505b16 8513{
182446d0 8514 return sched_group_rt_runtime(css_tg(css));
6f505b16 8515}
d0b27fa7 8516
182446d0
TH
8517static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8518 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8519{
182446d0 8520 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8521}
8522
182446d0
TH
8523static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8524 struct cftype *cft)
d0b27fa7 8525{
182446d0 8526 return sched_group_rt_period(css_tg(css));
d0b27fa7 8527}
6d6bc0ad 8528#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8529
fe5c7cc2 8530static struct cftype cpu_files[] = {
052f1dc7 8531#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8532 {
8533 .name = "shares",
f4c753b7
PM
8534 .read_u64 = cpu_shares_read_u64,
8535 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8536 },
052f1dc7 8537#endif
ab84d31e
PT
8538#ifdef CONFIG_CFS_BANDWIDTH
8539 {
8540 .name = "cfs_quota_us",
8541 .read_s64 = cpu_cfs_quota_read_s64,
8542 .write_s64 = cpu_cfs_quota_write_s64,
8543 },
8544 {
8545 .name = "cfs_period_us",
8546 .read_u64 = cpu_cfs_period_read_u64,
8547 .write_u64 = cpu_cfs_period_write_u64,
8548 },
e8da1b18
NR
8549 {
8550 .name = "stat",
2da8ca82 8551 .seq_show = cpu_stats_show,
e8da1b18 8552 },
ab84d31e 8553#endif
052f1dc7 8554#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8555 {
9f0c1e56 8556 .name = "rt_runtime_us",
06ecb27c
PM
8557 .read_s64 = cpu_rt_runtime_read,
8558 .write_s64 = cpu_rt_runtime_write,
6f505b16 8559 },
d0b27fa7
PZ
8560 {
8561 .name = "rt_period_us",
f4c753b7
PM
8562 .read_u64 = cpu_rt_period_read_uint,
8563 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8564 },
052f1dc7 8565#endif
4baf6e33 8566 { } /* terminate */
68318b8e
SV
8567};
8568
073219e9 8569struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8570 .css_alloc = cpu_cgroup_css_alloc,
8571 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8572 .css_online = cpu_cgroup_css_online,
8573 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8574 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8575 .can_attach = cpu_cgroup_can_attach,
8576 .attach = cpu_cgroup_attach,
5577964e 8577 .legacy_cftypes = cpu_files,
68318b8e
SV
8578 .early_init = 1,
8579};
8580
052f1dc7 8581#endif /* CONFIG_CGROUP_SCHED */
d842de87 8582
b637a328
PM
8583void dump_cpu_task(int cpu)
8584{
8585 pr_info("Task dump for CPU %d:\n", cpu);
8586 sched_show_task(cpu_curr(cpu));
8587}
This page took 2.79074 seconds and 5 git commands to generate.