sched/cputime: Convert vtime_seqlock to seqcount
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
1a687c2e 226 i = sched_feat_set(cmp);
5cd08fbf 227 mutex_unlock(&inode->i_mutex);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
fd99f91a
PZ
456/*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459#define fetch_or(ptr, val) \
460({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468})
469
e3baac47 470#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
471/*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476static bool set_nr_and_not_polling(struct task_struct *p)
477{
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480}
e3baac47
PZ
481
482/*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488static bool set_nr_if_polling(struct task_struct *p)
489{
490 struct thread_info *ti = task_thread_info(p);
316c1608 491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504}
505
fd99f91a
PZ
506#else
507static bool set_nr_and_not_polling(struct task_struct *p)
508{
509 set_tsk_need_resched(p);
510 return true;
511}
e3baac47
PZ
512
513#ifdef CONFIG_SMP
514static bool set_nr_if_polling(struct task_struct *p)
515{
516 return false;
517}
518#endif
fd99f91a
PZ
519#endif
520
76751049
PZ
521void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522{
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543}
544
545void wake_up_q(struct wake_q_head *head)
546{
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565}
566
c24d20db 567/*
8875125e 568 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
8875125e 574void resched_curr(struct rq *rq)
c24d20db 575{
8875125e 576 struct task_struct *curr = rq->curr;
c24d20db
IM
577 int cpu;
578
8875125e 579 lockdep_assert_held(&rq->lock);
c24d20db 580
8875125e 581 if (test_tsk_need_resched(curr))
c24d20db
IM
582 return;
583
8875125e 584 cpu = cpu_of(rq);
fd99f91a 585
f27dde8d 586 if (cpu == smp_processor_id()) {
8875125e 587 set_tsk_need_resched(curr);
f27dde8d 588 set_preempt_need_resched();
c24d20db 589 return;
f27dde8d 590 }
c24d20db 591
8875125e 592 if (set_nr_and_not_polling(curr))
c24d20db 593 smp_send_reschedule(cpu);
dfc68f29
AL
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
596}
597
029632fb 598void resched_cpu(int cpu)
c24d20db
IM
599{
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
05fa785c 603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 604 return;
8875125e 605 resched_curr(rq);
05fa785c 606 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 607}
06d8308c 608
b021fe3e 609#ifdef CONFIG_SMP
3451d024 610#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
611/*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
bc7a34b8 619int get_nohz_timer_target(void)
83cd4fe2 620{
bc7a34b8 621 int i, cpu = smp_processor_id();
83cd4fe2
VP
622 struct sched_domain *sd;
623
9642d18e 624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
625 return cpu;
626
057f3fad 627 rcu_read_lock();
83cd4fe2 628 for_each_domain(cpu, sd) {
057f3fad 629 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
631 cpu = i;
632 goto unlock;
633 }
634 }
83cd4fe2 635 }
9642d18e
VH
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
01783e0d 734 return list_is_singular(&rt_se->run_list);
1e78cdbd
RR
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
20f9cd2a 820 if (idle_policy(p->policy)) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
1de64443 830static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
1de64443
PZ
833 if (!(flags & ENQUEUE_RESTORE))
834 sched_info_queued(rq, p);
371fd7e7 835 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
836}
837
1de64443 838static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 839{
a64692a3 840 update_rq_clock(rq);
1de64443
PZ
841 if (!(flags & DEQUEUE_SAVE))
842 sched_info_dequeued(rq, p);
371fd7e7 843 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
844}
845
029632fb 846void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
847{
848 if (task_contributes_to_load(p))
849 rq->nr_uninterruptible--;
850
371fd7e7 851 enqueue_task(rq, p, flags);
1e3c88bd
PZ
852}
853
029632fb 854void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
855{
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible++;
858
371fd7e7 859 dequeue_task(rq, p, flags);
1e3c88bd
PZ
860}
861
fe44d621 862static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 863{
095c0aa8
GC
864/*
865 * In theory, the compile should just see 0 here, and optimize out the call
866 * to sched_rt_avg_update. But I don't trust it...
867 */
868#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 s64 steal = 0, irq_delta = 0;
870#endif
871#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 872 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
873
874 /*
875 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 * this case when a previous update_rq_clock() happened inside a
877 * {soft,}irq region.
878 *
879 * When this happens, we stop ->clock_task and only update the
880 * prev_irq_time stamp to account for the part that fit, so that a next
881 * update will consume the rest. This ensures ->clock_task is
882 * monotonic.
883 *
884 * It does however cause some slight miss-attribution of {soft,}irq
885 * time, a more accurate solution would be to update the irq_time using
886 * the current rq->clock timestamp, except that would require using
887 * atomic ops.
888 */
889 if (irq_delta > delta)
890 irq_delta = delta;
891
892 rq->prev_irq_time += irq_delta;
893 delta -= irq_delta;
095c0aa8
GC
894#endif
895#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 896 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
897 steal = paravirt_steal_clock(cpu_of(rq));
898 steal -= rq->prev_steal_time_rq;
899
900 if (unlikely(steal > delta))
901 steal = delta;
902
095c0aa8 903 rq->prev_steal_time_rq += steal;
095c0aa8
GC
904 delta -= steal;
905 }
906#endif
907
fe44d621
PZ
908 rq->clock_task += delta;
909
095c0aa8 910#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 911 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
912 sched_rt_avg_update(rq, irq_delta + steal);
913#endif
aa483808
VP
914}
915
34f971f6
PZ
916void sched_set_stop_task(int cpu, struct task_struct *stop)
917{
918 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 struct task_struct *old_stop = cpu_rq(cpu)->stop;
920
921 if (stop) {
922 /*
923 * Make it appear like a SCHED_FIFO task, its something
924 * userspace knows about and won't get confused about.
925 *
926 * Also, it will make PI more or less work without too
927 * much confusion -- but then, stop work should not
928 * rely on PI working anyway.
929 */
930 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931
932 stop->sched_class = &stop_sched_class;
933 }
934
935 cpu_rq(cpu)->stop = stop;
936
937 if (old_stop) {
938 /*
939 * Reset it back to a normal scheduling class so that
940 * it can die in pieces.
941 */
942 old_stop->sched_class = &rt_sched_class;
943 }
944}
945
14531189 946/*
dd41f596 947 * __normal_prio - return the priority that is based on the static prio
14531189 948 */
14531189
IM
949static inline int __normal_prio(struct task_struct *p)
950{
dd41f596 951 return p->static_prio;
14531189
IM
952}
953
b29739f9
IM
954/*
955 * Calculate the expected normal priority: i.e. priority
956 * without taking RT-inheritance into account. Might be
957 * boosted by interactivity modifiers. Changes upon fork,
958 * setprio syscalls, and whenever the interactivity
959 * estimator recalculates.
960 */
36c8b586 961static inline int normal_prio(struct task_struct *p)
b29739f9
IM
962{
963 int prio;
964
aab03e05
DF
965 if (task_has_dl_policy(p))
966 prio = MAX_DL_PRIO-1;
967 else if (task_has_rt_policy(p))
b29739f9
IM
968 prio = MAX_RT_PRIO-1 - p->rt_priority;
969 else
970 prio = __normal_prio(p);
971 return prio;
972}
973
974/*
975 * Calculate the current priority, i.e. the priority
976 * taken into account by the scheduler. This value might
977 * be boosted by RT tasks, or might be boosted by
978 * interactivity modifiers. Will be RT if the task got
979 * RT-boosted. If not then it returns p->normal_prio.
980 */
36c8b586 981static int effective_prio(struct task_struct *p)
b29739f9
IM
982{
983 p->normal_prio = normal_prio(p);
984 /*
985 * If we are RT tasks or we were boosted to RT priority,
986 * keep the priority unchanged. Otherwise, update priority
987 * to the normal priority:
988 */
989 if (!rt_prio(p->prio))
990 return p->normal_prio;
991 return p->prio;
992}
993
1da177e4
LT
994/**
995 * task_curr - is this task currently executing on a CPU?
996 * @p: the task in question.
e69f6186
YB
997 *
998 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 999 */
36c8b586 1000inline int task_curr(const struct task_struct *p)
1da177e4
LT
1001{
1002 return cpu_curr(task_cpu(p)) == p;
1003}
1004
67dfa1b7 1005/*
4c9a4bc8
PZ
1006 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007 * use the balance_callback list if you want balancing.
1008 *
1009 * this means any call to check_class_changed() must be followed by a call to
1010 * balance_callback().
67dfa1b7 1011 */
cb469845
SR
1012static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 const struct sched_class *prev_class,
da7a735e 1014 int oldprio)
cb469845
SR
1015{
1016 if (prev_class != p->sched_class) {
1017 if (prev_class->switched_from)
da7a735e 1018 prev_class->switched_from(rq, p);
4c9a4bc8 1019
da7a735e 1020 p->sched_class->switched_to(rq, p);
2d3d891d 1021 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1022 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1023}
1024
029632fb 1025void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1026{
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
8875125e 1036 resched_curr(rq);
1e5a7405
PZ
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
da0c1e65 1046 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1047 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1048}
1049
1da177e4 1050#ifdef CONFIG_SMP
5cc389bc
PZ
1051/*
1052 * This is how migration works:
1053 *
1054 * 1) we invoke migration_cpu_stop() on the target CPU using
1055 * stop_one_cpu().
1056 * 2) stopper starts to run (implicitly forcing the migrated thread
1057 * off the CPU)
1058 * 3) it checks whether the migrated task is still in the wrong runqueue.
1059 * 4) if it's in the wrong runqueue then the migration thread removes
1060 * it and puts it into the right queue.
1061 * 5) stopper completes and stop_one_cpu() returns and the migration
1062 * is done.
1063 */
1064
1065/*
1066 * move_queued_task - move a queued task to new rq.
1067 *
1068 * Returns (locked) new rq. Old rq's lock is released.
1069 */
5e16bbc2 1070static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1071{
5cc389bc
PZ
1072 lockdep_assert_held(&rq->lock);
1073
5cc389bc 1074 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1075 dequeue_task(rq, p, 0);
5cc389bc
PZ
1076 set_task_cpu(p, new_cpu);
1077 raw_spin_unlock(&rq->lock);
1078
1079 rq = cpu_rq(new_cpu);
1080
1081 raw_spin_lock(&rq->lock);
1082 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1083 enqueue_task(rq, p, 0);
3ea94de1 1084 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1085 check_preempt_curr(rq, p, 0);
1086
1087 return rq;
1088}
1089
1090struct migration_arg {
1091 struct task_struct *task;
1092 int dest_cpu;
1093};
1094
1095/*
1096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1097 * this because either it can't run here any more (set_cpus_allowed()
1098 * away from this CPU, or CPU going down), or because we're
1099 * attempting to rebalance this task on exec (sched_exec).
1100 *
1101 * So we race with normal scheduler movements, but that's OK, as long
1102 * as the task is no longer on this CPU.
5cc389bc 1103 */
5e16bbc2 1104static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1105{
5cc389bc 1106 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1107 return rq;
5cc389bc
PZ
1108
1109 /* Affinity changed (again). */
1110 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1111 return rq;
5cc389bc 1112
5e16bbc2
PZ
1113 rq = move_queued_task(rq, p, dest_cpu);
1114
1115 return rq;
5cc389bc
PZ
1116}
1117
1118/*
1119 * migration_cpu_stop - this will be executed by a highprio stopper thread
1120 * and performs thread migration by bumping thread off CPU then
1121 * 'pushing' onto another runqueue.
1122 */
1123static int migration_cpu_stop(void *data)
1124{
1125 struct migration_arg *arg = data;
5e16bbc2
PZ
1126 struct task_struct *p = arg->task;
1127 struct rq *rq = this_rq();
5cc389bc
PZ
1128
1129 /*
1130 * The original target cpu might have gone down and we might
1131 * be on another cpu but it doesn't matter.
1132 */
1133 local_irq_disable();
1134 /*
1135 * We need to explicitly wake pending tasks before running
1136 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 */
1139 sched_ttwu_pending();
5e16bbc2
PZ
1140
1141 raw_spin_lock(&p->pi_lock);
1142 raw_spin_lock(&rq->lock);
1143 /*
1144 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 * we're holding p->pi_lock.
1147 */
1148 if (task_rq(p) == rq && task_on_rq_queued(p))
1149 rq = __migrate_task(rq, p, arg->dest_cpu);
1150 raw_spin_unlock(&rq->lock);
1151 raw_spin_unlock(&p->pi_lock);
1152
5cc389bc
PZ
1153 local_irq_enable();
1154 return 0;
1155}
1156
c5b28038
PZ
1157/*
1158 * sched_class::set_cpus_allowed must do the below, but is not required to
1159 * actually call this function.
1160 */
1161void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1162{
5cc389bc
PZ
1163 cpumask_copy(&p->cpus_allowed, new_mask);
1164 p->nr_cpus_allowed = cpumask_weight(new_mask);
1165}
1166
c5b28038
PZ
1167void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168{
6c37067e
PZ
1169 struct rq *rq = task_rq(p);
1170 bool queued, running;
1171
c5b28038 1172 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1173
1174 queued = task_on_rq_queued(p);
1175 running = task_current(rq, p);
1176
1177 if (queued) {
1178 /*
1179 * Because __kthread_bind() calls this on blocked tasks without
1180 * holding rq->lock.
1181 */
1182 lockdep_assert_held(&rq->lock);
1de64443 1183 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1184 }
1185 if (running)
1186 put_prev_task(rq, p);
1187
c5b28038 1188 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1189
1190 if (running)
1191 p->sched_class->set_curr_task(rq);
1192 if (queued)
1de64443 1193 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1194}
1195
5cc389bc
PZ
1196/*
1197 * Change a given task's CPU affinity. Migrate the thread to a
1198 * proper CPU and schedule it away if the CPU it's executing on
1199 * is removed from the allowed bitmask.
1200 *
1201 * NOTE: the caller must have a valid reference to the task, the
1202 * task must not exit() & deallocate itself prematurely. The
1203 * call is not atomic; no spinlocks may be held.
1204 */
25834c73
PZ
1205static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1207{
1208 unsigned long flags;
1209 struct rq *rq;
1210 unsigned int dest_cpu;
1211 int ret = 0;
1212
1213 rq = task_rq_lock(p, &flags);
1214
25834c73
PZ
1215 /*
1216 * Must re-check here, to close a race against __kthread_bind(),
1217 * sched_setaffinity() is not guaranteed to observe the flag.
1218 */
1219 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223
5cc389bc
PZ
1224 if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 goto out;
1226
1227 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 ret = -EINVAL;
1229 goto out;
1230 }
1231
1232 do_set_cpus_allowed(p, new_mask);
1233
1234 /* Can the task run on the task's current CPU? If so, we're done */
1235 if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 goto out;
1237
1238 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 struct migration_arg arg = { p, dest_cpu };
1241 /* Need help from migration thread: drop lock and wait. */
1242 task_rq_unlock(rq, p, &flags);
1243 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 tlb_migrate_finish(p->mm);
1245 return 0;
cbce1a68
PZ
1246 } else if (task_on_rq_queued(p)) {
1247 /*
1248 * OK, since we're going to drop the lock immediately
1249 * afterwards anyway.
1250 */
1251 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1252 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1253 lockdep_pin_lock(&rq->lock);
1254 }
5cc389bc
PZ
1255out:
1256 task_rq_unlock(rq, p, &flags);
1257
1258 return ret;
1259}
25834c73
PZ
1260
1261int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262{
1263 return __set_cpus_allowed_ptr(p, new_mask, false);
1264}
5cc389bc
PZ
1265EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266
dd41f596 1267void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1268{
e2912009
PZ
1269#ifdef CONFIG_SCHED_DEBUG
1270 /*
1271 * We should never call set_task_cpu() on a blocked task,
1272 * ttwu() will sort out the placement.
1273 */
077614ee 1274 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1275 !p->on_rq);
0122ec5b 1276
3ea94de1
JP
1277 /*
1278 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1279 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1280 * time relying on p->on_rq.
1281 */
1282 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1283 p->sched_class == &fair_sched_class &&
1284 (p->on_rq && !task_on_rq_migrating(p)));
1285
0122ec5b 1286#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1287 /*
1288 * The caller should hold either p->pi_lock or rq->lock, when changing
1289 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1290 *
1291 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1292 * see task_group().
6c6c54e1
PZ
1293 *
1294 * Furthermore, all task_rq users should acquire both locks, see
1295 * task_rq_lock().
1296 */
0122ec5b
PZ
1297 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1298 lockdep_is_held(&task_rq(p)->lock)));
1299#endif
e2912009
PZ
1300#endif
1301
de1d7286 1302 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1303
0c69774e 1304 if (task_cpu(p) != new_cpu) {
0a74bef8 1305 if (p->sched_class->migrate_task_rq)
5a4fd036 1306 p->sched_class->migrate_task_rq(p);
0c69774e 1307 p->se.nr_migrations++;
ff303e66 1308 perf_event_task_migrate(p);
0c69774e 1309 }
dd41f596
IM
1310
1311 __set_task_cpu(p, new_cpu);
c65cc870
IM
1312}
1313
ac66f547
PZ
1314static void __migrate_swap_task(struct task_struct *p, int cpu)
1315{
da0c1e65 1316 if (task_on_rq_queued(p)) {
ac66f547
PZ
1317 struct rq *src_rq, *dst_rq;
1318
1319 src_rq = task_rq(p);
1320 dst_rq = cpu_rq(cpu);
1321
3ea94de1 1322 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1323 deactivate_task(src_rq, p, 0);
1324 set_task_cpu(p, cpu);
1325 activate_task(dst_rq, p, 0);
3ea94de1 1326 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1327 check_preempt_curr(dst_rq, p, 0);
1328 } else {
1329 /*
1330 * Task isn't running anymore; make it appear like we migrated
1331 * it before it went to sleep. This means on wakeup we make the
1332 * previous cpu our targer instead of where it really is.
1333 */
1334 p->wake_cpu = cpu;
1335 }
1336}
1337
1338struct migration_swap_arg {
1339 struct task_struct *src_task, *dst_task;
1340 int src_cpu, dst_cpu;
1341};
1342
1343static int migrate_swap_stop(void *data)
1344{
1345 struct migration_swap_arg *arg = data;
1346 struct rq *src_rq, *dst_rq;
1347 int ret = -EAGAIN;
1348
62694cd5
PZ
1349 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1350 return -EAGAIN;
1351
ac66f547
PZ
1352 src_rq = cpu_rq(arg->src_cpu);
1353 dst_rq = cpu_rq(arg->dst_cpu);
1354
74602315
PZ
1355 double_raw_lock(&arg->src_task->pi_lock,
1356 &arg->dst_task->pi_lock);
ac66f547 1357 double_rq_lock(src_rq, dst_rq);
62694cd5 1358
ac66f547
PZ
1359 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1360 goto unlock;
1361
1362 if (task_cpu(arg->src_task) != arg->src_cpu)
1363 goto unlock;
1364
1365 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1366 goto unlock;
1367
1368 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1369 goto unlock;
1370
1371 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1372 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1373
1374 ret = 0;
1375
1376unlock:
1377 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1378 raw_spin_unlock(&arg->dst_task->pi_lock);
1379 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1380
1381 return ret;
1382}
1383
1384/*
1385 * Cross migrate two tasks
1386 */
1387int migrate_swap(struct task_struct *cur, struct task_struct *p)
1388{
1389 struct migration_swap_arg arg;
1390 int ret = -EINVAL;
1391
ac66f547
PZ
1392 arg = (struct migration_swap_arg){
1393 .src_task = cur,
1394 .src_cpu = task_cpu(cur),
1395 .dst_task = p,
1396 .dst_cpu = task_cpu(p),
1397 };
1398
1399 if (arg.src_cpu == arg.dst_cpu)
1400 goto out;
1401
6acce3ef
PZ
1402 /*
1403 * These three tests are all lockless; this is OK since all of them
1404 * will be re-checked with proper locks held further down the line.
1405 */
ac66f547
PZ
1406 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1407 goto out;
1408
1409 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1410 goto out;
1411
1412 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1413 goto out;
1414
286549dc 1415 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1416 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1417
1418out:
ac66f547
PZ
1419 return ret;
1420}
1421
1da177e4
LT
1422/*
1423 * wait_task_inactive - wait for a thread to unschedule.
1424 *
85ba2d86
RM
1425 * If @match_state is nonzero, it's the @p->state value just checked and
1426 * not expected to change. If it changes, i.e. @p might have woken up,
1427 * then return zero. When we succeed in waiting for @p to be off its CPU,
1428 * we return a positive number (its total switch count). If a second call
1429 * a short while later returns the same number, the caller can be sure that
1430 * @p has remained unscheduled the whole time.
1431 *
1da177e4
LT
1432 * The caller must ensure that the task *will* unschedule sometime soon,
1433 * else this function might spin for a *long* time. This function can't
1434 * be called with interrupts off, or it may introduce deadlock with
1435 * smp_call_function() if an IPI is sent by the same process we are
1436 * waiting to become inactive.
1437 */
85ba2d86 1438unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1439{
1440 unsigned long flags;
da0c1e65 1441 int running, queued;
85ba2d86 1442 unsigned long ncsw;
70b97a7f 1443 struct rq *rq;
1da177e4 1444
3a5c359a
AK
1445 for (;;) {
1446 /*
1447 * We do the initial early heuristics without holding
1448 * any task-queue locks at all. We'll only try to get
1449 * the runqueue lock when things look like they will
1450 * work out!
1451 */
1452 rq = task_rq(p);
fa490cfd 1453
3a5c359a
AK
1454 /*
1455 * If the task is actively running on another CPU
1456 * still, just relax and busy-wait without holding
1457 * any locks.
1458 *
1459 * NOTE! Since we don't hold any locks, it's not
1460 * even sure that "rq" stays as the right runqueue!
1461 * But we don't care, since "task_running()" will
1462 * return false if the runqueue has changed and p
1463 * is actually now running somewhere else!
1464 */
85ba2d86
RM
1465 while (task_running(rq, p)) {
1466 if (match_state && unlikely(p->state != match_state))
1467 return 0;
3a5c359a 1468 cpu_relax();
85ba2d86 1469 }
fa490cfd 1470
3a5c359a
AK
1471 /*
1472 * Ok, time to look more closely! We need the rq
1473 * lock now, to be *sure*. If we're wrong, we'll
1474 * just go back and repeat.
1475 */
1476 rq = task_rq_lock(p, &flags);
27a9da65 1477 trace_sched_wait_task(p);
3a5c359a 1478 running = task_running(rq, p);
da0c1e65 1479 queued = task_on_rq_queued(p);
85ba2d86 1480 ncsw = 0;
f31e11d8 1481 if (!match_state || p->state == match_state)
93dcf55f 1482 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1483 task_rq_unlock(rq, p, &flags);
fa490cfd 1484
85ba2d86
RM
1485 /*
1486 * If it changed from the expected state, bail out now.
1487 */
1488 if (unlikely(!ncsw))
1489 break;
1490
3a5c359a
AK
1491 /*
1492 * Was it really running after all now that we
1493 * checked with the proper locks actually held?
1494 *
1495 * Oops. Go back and try again..
1496 */
1497 if (unlikely(running)) {
1498 cpu_relax();
1499 continue;
1500 }
fa490cfd 1501
3a5c359a
AK
1502 /*
1503 * It's not enough that it's not actively running,
1504 * it must be off the runqueue _entirely_, and not
1505 * preempted!
1506 *
80dd99b3 1507 * So if it was still runnable (but just not actively
3a5c359a
AK
1508 * running right now), it's preempted, and we should
1509 * yield - it could be a while.
1510 */
da0c1e65 1511 if (unlikely(queued)) {
8eb90c30
TG
1512 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1513
1514 set_current_state(TASK_UNINTERRUPTIBLE);
1515 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1516 continue;
1517 }
fa490cfd 1518
3a5c359a
AK
1519 /*
1520 * Ahh, all good. It wasn't running, and it wasn't
1521 * runnable, which means that it will never become
1522 * running in the future either. We're all done!
1523 */
1524 break;
1525 }
85ba2d86
RM
1526
1527 return ncsw;
1da177e4
LT
1528}
1529
1530/***
1531 * kick_process - kick a running thread to enter/exit the kernel
1532 * @p: the to-be-kicked thread
1533 *
1534 * Cause a process which is running on another CPU to enter
1535 * kernel-mode, without any delay. (to get signals handled.)
1536 *
25985edc 1537 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1538 * because all it wants to ensure is that the remote task enters
1539 * the kernel. If the IPI races and the task has been migrated
1540 * to another CPU then no harm is done and the purpose has been
1541 * achieved as well.
1542 */
36c8b586 1543void kick_process(struct task_struct *p)
1da177e4
LT
1544{
1545 int cpu;
1546
1547 preempt_disable();
1548 cpu = task_cpu(p);
1549 if ((cpu != smp_processor_id()) && task_curr(p))
1550 smp_send_reschedule(cpu);
1551 preempt_enable();
1552}
b43e3521 1553EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1554
30da688e 1555/*
013fdb80 1556 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1557 */
5da9a0fb
PZ
1558static int select_fallback_rq(int cpu, struct task_struct *p)
1559{
aa00d89c
TC
1560 int nid = cpu_to_node(cpu);
1561 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1562 enum { cpuset, possible, fail } state = cpuset;
1563 int dest_cpu;
5da9a0fb 1564
aa00d89c
TC
1565 /*
1566 * If the node that the cpu is on has been offlined, cpu_to_node()
1567 * will return -1. There is no cpu on the node, and we should
1568 * select the cpu on the other node.
1569 */
1570 if (nid != -1) {
1571 nodemask = cpumask_of_node(nid);
1572
1573 /* Look for allowed, online CPU in same node. */
1574 for_each_cpu(dest_cpu, nodemask) {
1575 if (!cpu_online(dest_cpu))
1576 continue;
1577 if (!cpu_active(dest_cpu))
1578 continue;
1579 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1580 return dest_cpu;
1581 }
2baab4e9 1582 }
5da9a0fb 1583
2baab4e9
PZ
1584 for (;;) {
1585 /* Any allowed, online CPU? */
e3831edd 1586 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1587 if (!cpu_online(dest_cpu))
1588 continue;
1589 if (!cpu_active(dest_cpu))
1590 continue;
1591 goto out;
1592 }
5da9a0fb 1593
e73e85f0 1594 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1595 switch (state) {
1596 case cpuset:
e73e85f0
ON
1597 if (IS_ENABLED(CONFIG_CPUSETS)) {
1598 cpuset_cpus_allowed_fallback(p);
1599 state = possible;
1600 break;
1601 }
1602 /* fall-through */
2baab4e9
PZ
1603 case possible:
1604 do_set_cpus_allowed(p, cpu_possible_mask);
1605 state = fail;
1606 break;
1607
1608 case fail:
1609 BUG();
1610 break;
1611 }
1612 }
1613
1614out:
1615 if (state != cpuset) {
1616 /*
1617 * Don't tell them about moving exiting tasks or
1618 * kernel threads (both mm NULL), since they never
1619 * leave kernel.
1620 */
1621 if (p->mm && printk_ratelimit()) {
aac74dc4 1622 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1623 task_pid_nr(p), p->comm, cpu);
1624 }
5da9a0fb
PZ
1625 }
1626
1627 return dest_cpu;
1628}
1629
e2912009 1630/*
013fdb80 1631 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1632 */
970b13ba 1633static inline
ac66f547 1634int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1635{
cbce1a68
PZ
1636 lockdep_assert_held(&p->pi_lock);
1637
6c1d9410
WL
1638 if (p->nr_cpus_allowed > 1)
1639 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1640
1641 /*
1642 * In order not to call set_task_cpu() on a blocking task we need
1643 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1644 * cpu.
1645 *
1646 * Since this is common to all placement strategies, this lives here.
1647 *
1648 * [ this allows ->select_task() to simply return task_cpu(p) and
1649 * not worry about this generic constraint ]
1650 */
fa17b507 1651 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1652 !cpu_online(cpu)))
5da9a0fb 1653 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1654
1655 return cpu;
970b13ba 1656}
09a40af5
MG
1657
1658static void update_avg(u64 *avg, u64 sample)
1659{
1660 s64 diff = sample - *avg;
1661 *avg += diff >> 3;
1662}
25834c73
PZ
1663
1664#else
1665
1666static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1667 const struct cpumask *new_mask, bool check)
1668{
1669 return set_cpus_allowed_ptr(p, new_mask);
1670}
1671
5cc389bc 1672#endif /* CONFIG_SMP */
970b13ba 1673
d7c01d27 1674static void
b84cb5df 1675ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1676{
d7c01d27 1677#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1678 struct rq *rq = this_rq();
1679
d7c01d27
PZ
1680#ifdef CONFIG_SMP
1681 int this_cpu = smp_processor_id();
1682
1683 if (cpu == this_cpu) {
1684 schedstat_inc(rq, ttwu_local);
1685 schedstat_inc(p, se.statistics.nr_wakeups_local);
1686 } else {
1687 struct sched_domain *sd;
1688
1689 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1690 rcu_read_lock();
d7c01d27
PZ
1691 for_each_domain(this_cpu, sd) {
1692 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1693 schedstat_inc(sd, ttwu_wake_remote);
1694 break;
1695 }
1696 }
057f3fad 1697 rcu_read_unlock();
d7c01d27 1698 }
f339b9dc
PZ
1699
1700 if (wake_flags & WF_MIGRATED)
1701 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1702
d7c01d27
PZ
1703#endif /* CONFIG_SMP */
1704
1705 schedstat_inc(rq, ttwu_count);
9ed3811a 1706 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1707
1708 if (wake_flags & WF_SYNC)
9ed3811a 1709 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1710
d7c01d27
PZ
1711#endif /* CONFIG_SCHEDSTATS */
1712}
1713
1de64443 1714static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1715{
9ed3811a 1716 activate_task(rq, p, en_flags);
da0c1e65 1717 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1718
1719 /* if a worker is waking up, notify workqueue */
1720 if (p->flags & PF_WQ_WORKER)
1721 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1722}
1723
23f41eeb
PZ
1724/*
1725 * Mark the task runnable and perform wakeup-preemption.
1726 */
89363381 1727static void
23f41eeb 1728ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1729{
9ed3811a 1730 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1731 p->state = TASK_RUNNING;
fbd705a0
PZ
1732 trace_sched_wakeup(p);
1733
9ed3811a 1734#ifdef CONFIG_SMP
4c9a4bc8
PZ
1735 if (p->sched_class->task_woken) {
1736 /*
cbce1a68
PZ
1737 * Our task @p is fully woken up and running; so its safe to
1738 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1739 */
cbce1a68 1740 lockdep_unpin_lock(&rq->lock);
9ed3811a 1741 p->sched_class->task_woken(rq, p);
cbce1a68 1742 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1743 }
9ed3811a 1744
e69c6341 1745 if (rq->idle_stamp) {
78becc27 1746 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1747 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1748
abfafa54
JL
1749 update_avg(&rq->avg_idle, delta);
1750
1751 if (rq->avg_idle > max)
9ed3811a 1752 rq->avg_idle = max;
abfafa54 1753
9ed3811a
TH
1754 rq->idle_stamp = 0;
1755 }
1756#endif
1757}
1758
c05fbafb
PZ
1759static void
1760ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1761{
cbce1a68
PZ
1762 lockdep_assert_held(&rq->lock);
1763
c05fbafb
PZ
1764#ifdef CONFIG_SMP
1765 if (p->sched_contributes_to_load)
1766 rq->nr_uninterruptible--;
1767#endif
1768
1769 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1770 ttwu_do_wakeup(rq, p, wake_flags);
1771}
1772
1773/*
1774 * Called in case the task @p isn't fully descheduled from its runqueue,
1775 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1776 * since all we need to do is flip p->state to TASK_RUNNING, since
1777 * the task is still ->on_rq.
1778 */
1779static int ttwu_remote(struct task_struct *p, int wake_flags)
1780{
1781 struct rq *rq;
1782 int ret = 0;
1783
1784 rq = __task_rq_lock(p);
da0c1e65 1785 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1786 /* check_preempt_curr() may use rq clock */
1787 update_rq_clock(rq);
c05fbafb
PZ
1788 ttwu_do_wakeup(rq, p, wake_flags);
1789 ret = 1;
1790 }
1791 __task_rq_unlock(rq);
1792
1793 return ret;
1794}
1795
317f3941 1796#ifdef CONFIG_SMP
e3baac47 1797void sched_ttwu_pending(void)
317f3941
PZ
1798{
1799 struct rq *rq = this_rq();
fa14ff4a
PZ
1800 struct llist_node *llist = llist_del_all(&rq->wake_list);
1801 struct task_struct *p;
e3baac47 1802 unsigned long flags;
317f3941 1803
e3baac47
PZ
1804 if (!llist)
1805 return;
1806
1807 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1808 lockdep_pin_lock(&rq->lock);
317f3941 1809
fa14ff4a
PZ
1810 while (llist) {
1811 p = llist_entry(llist, struct task_struct, wake_entry);
1812 llist = llist_next(llist);
317f3941
PZ
1813 ttwu_do_activate(rq, p, 0);
1814 }
1815
cbce1a68 1816 lockdep_unpin_lock(&rq->lock);
e3baac47 1817 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1818}
1819
1820void scheduler_ipi(void)
1821{
f27dde8d
PZ
1822 /*
1823 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1824 * TIF_NEED_RESCHED remotely (for the first time) will also send
1825 * this IPI.
1826 */
8cb75e0c 1827 preempt_fold_need_resched();
f27dde8d 1828
fd2ac4f4 1829 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1830 return;
1831
1832 /*
1833 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1834 * traditionally all their work was done from the interrupt return
1835 * path. Now that we actually do some work, we need to make sure
1836 * we do call them.
1837 *
1838 * Some archs already do call them, luckily irq_enter/exit nest
1839 * properly.
1840 *
1841 * Arguably we should visit all archs and update all handlers,
1842 * however a fair share of IPIs are still resched only so this would
1843 * somewhat pessimize the simple resched case.
1844 */
1845 irq_enter();
fa14ff4a 1846 sched_ttwu_pending();
ca38062e
SS
1847
1848 /*
1849 * Check if someone kicked us for doing the nohz idle load balance.
1850 */
873b4c65 1851 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1852 this_rq()->idle_balance = 1;
ca38062e 1853 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1854 }
c5d753a5 1855 irq_exit();
317f3941
PZ
1856}
1857
1858static void ttwu_queue_remote(struct task_struct *p, int cpu)
1859{
e3baac47
PZ
1860 struct rq *rq = cpu_rq(cpu);
1861
1862 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1863 if (!set_nr_if_polling(rq->idle))
1864 smp_send_reschedule(cpu);
1865 else
1866 trace_sched_wake_idle_without_ipi(cpu);
1867 }
317f3941 1868}
d6aa8f85 1869
f6be8af1
CL
1870void wake_up_if_idle(int cpu)
1871{
1872 struct rq *rq = cpu_rq(cpu);
1873 unsigned long flags;
1874
fd7de1e8
AL
1875 rcu_read_lock();
1876
1877 if (!is_idle_task(rcu_dereference(rq->curr)))
1878 goto out;
f6be8af1
CL
1879
1880 if (set_nr_if_polling(rq->idle)) {
1881 trace_sched_wake_idle_without_ipi(cpu);
1882 } else {
1883 raw_spin_lock_irqsave(&rq->lock, flags);
1884 if (is_idle_task(rq->curr))
1885 smp_send_reschedule(cpu);
1886 /* Else cpu is not in idle, do nothing here */
1887 raw_spin_unlock_irqrestore(&rq->lock, flags);
1888 }
fd7de1e8
AL
1889
1890out:
1891 rcu_read_unlock();
f6be8af1
CL
1892}
1893
39be3501 1894bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1895{
1896 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1897}
d6aa8f85 1898#endif /* CONFIG_SMP */
317f3941 1899
c05fbafb
PZ
1900static void ttwu_queue(struct task_struct *p, int cpu)
1901{
1902 struct rq *rq = cpu_rq(cpu);
1903
17d9f311 1904#if defined(CONFIG_SMP)
39be3501 1905 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1906 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1907 ttwu_queue_remote(p, cpu);
1908 return;
1909 }
1910#endif
1911
c05fbafb 1912 raw_spin_lock(&rq->lock);
cbce1a68 1913 lockdep_pin_lock(&rq->lock);
c05fbafb 1914 ttwu_do_activate(rq, p, 0);
cbce1a68 1915 lockdep_unpin_lock(&rq->lock);
c05fbafb 1916 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1917}
1918
1919/**
1da177e4 1920 * try_to_wake_up - wake up a thread
9ed3811a 1921 * @p: the thread to be awakened
1da177e4 1922 * @state: the mask of task states that can be woken
9ed3811a 1923 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1924 *
1925 * Put it on the run-queue if it's not already there. The "current"
1926 * thread is always on the run-queue (except when the actual
1927 * re-schedule is in progress), and as such you're allowed to do
1928 * the simpler "current->state = TASK_RUNNING" to mark yourself
1929 * runnable without the overhead of this.
1930 *
e69f6186 1931 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1932 * or @state didn't match @p's state.
1da177e4 1933 */
e4a52bcb
PZ
1934static int
1935try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1936{
1da177e4 1937 unsigned long flags;
c05fbafb 1938 int cpu, success = 0;
2398f2c6 1939
e0acd0a6
ON
1940 /*
1941 * If we are going to wake up a thread waiting for CONDITION we
1942 * need to ensure that CONDITION=1 done by the caller can not be
1943 * reordered with p->state check below. This pairs with mb() in
1944 * set_current_state() the waiting thread does.
1945 */
1946 smp_mb__before_spinlock();
013fdb80 1947 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1948 if (!(p->state & state))
1da177e4
LT
1949 goto out;
1950
fbd705a0
PZ
1951 trace_sched_waking(p);
1952
c05fbafb 1953 success = 1; /* we're going to change ->state */
1da177e4 1954 cpu = task_cpu(p);
1da177e4 1955
c05fbafb
PZ
1956 if (p->on_rq && ttwu_remote(p, wake_flags))
1957 goto stat;
1da177e4 1958
1da177e4 1959#ifdef CONFIG_SMP
ecf7d01c
PZ
1960 /*
1961 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1962 * possible to, falsely, observe p->on_cpu == 0.
1963 *
1964 * One must be running (->on_cpu == 1) in order to remove oneself
1965 * from the runqueue.
1966 *
1967 * [S] ->on_cpu = 1; [L] ->on_rq
1968 * UNLOCK rq->lock
1969 * RMB
1970 * LOCK rq->lock
1971 * [S] ->on_rq = 0; [L] ->on_cpu
1972 *
1973 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1974 * from the consecutive calls to schedule(); the first switching to our
1975 * task, the second putting it to sleep.
1976 */
1977 smp_rmb();
1978
e9c84311 1979 /*
c05fbafb
PZ
1980 * If the owning (remote) cpu is still in the middle of schedule() with
1981 * this task as prev, wait until its done referencing the task.
e9c84311 1982 */
f3e94786 1983 while (p->on_cpu)
e4a52bcb 1984 cpu_relax();
0970d299 1985 /*
b75a2253
PZ
1986 * Combined with the control dependency above, we have an effective
1987 * smp_load_acquire() without the need for full barriers.
1988 *
1989 * Pairs with the smp_store_release() in finish_lock_switch().
1990 *
1991 * This ensures that tasks getting woken will be fully ordered against
1992 * their previous state and preserve Program Order.
0970d299 1993 */
e4a52bcb 1994 smp_rmb();
1da177e4 1995
a8e4f2ea 1996 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1997 p->state = TASK_WAKING;
e7693a36 1998
e4a52bcb 1999 if (p->sched_class->task_waking)
74f8e4b2 2000 p->sched_class->task_waking(p);
efbbd05a 2001
ac66f547 2002 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2003 if (task_cpu(p) != cpu) {
2004 wake_flags |= WF_MIGRATED;
e4a52bcb 2005 set_task_cpu(p, cpu);
f339b9dc 2006 }
1da177e4 2007#endif /* CONFIG_SMP */
1da177e4 2008
c05fbafb
PZ
2009 ttwu_queue(p, cpu);
2010stat:
b84cb5df 2011 ttwu_stat(p, cpu, wake_flags);
1da177e4 2012out:
013fdb80 2013 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2014
2015 return success;
2016}
2017
21aa9af0
TH
2018/**
2019 * try_to_wake_up_local - try to wake up a local task with rq lock held
2020 * @p: the thread to be awakened
2021 *
2acca55e 2022 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2023 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2024 * the current task.
21aa9af0
TH
2025 */
2026static void try_to_wake_up_local(struct task_struct *p)
2027{
2028 struct rq *rq = task_rq(p);
21aa9af0 2029
383efcd0
TH
2030 if (WARN_ON_ONCE(rq != this_rq()) ||
2031 WARN_ON_ONCE(p == current))
2032 return;
2033
21aa9af0
TH
2034 lockdep_assert_held(&rq->lock);
2035
2acca55e 2036 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2037 /*
2038 * This is OK, because current is on_cpu, which avoids it being
2039 * picked for load-balance and preemption/IRQs are still
2040 * disabled avoiding further scheduler activity on it and we've
2041 * not yet picked a replacement task.
2042 */
2043 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2044 raw_spin_unlock(&rq->lock);
2045 raw_spin_lock(&p->pi_lock);
2046 raw_spin_lock(&rq->lock);
cbce1a68 2047 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2048 }
2049
21aa9af0 2050 if (!(p->state & TASK_NORMAL))
2acca55e 2051 goto out;
21aa9af0 2052
fbd705a0
PZ
2053 trace_sched_waking(p);
2054
da0c1e65 2055 if (!task_on_rq_queued(p))
d7c01d27
PZ
2056 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2057
23f41eeb 2058 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2059 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2060out:
2061 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2062}
2063
50fa610a
DH
2064/**
2065 * wake_up_process - Wake up a specific process
2066 * @p: The process to be woken up.
2067 *
2068 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2069 * processes.
2070 *
2071 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2072 *
2073 * It may be assumed that this function implies a write memory barrier before
2074 * changing the task state if and only if any tasks are woken up.
2075 */
7ad5b3a5 2076int wake_up_process(struct task_struct *p)
1da177e4 2077{
9067ac85 2078 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2079}
1da177e4
LT
2080EXPORT_SYMBOL(wake_up_process);
2081
7ad5b3a5 2082int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2083{
2084 return try_to_wake_up(p, state, 0);
2085}
2086
a5e7be3b
JL
2087/*
2088 * This function clears the sched_dl_entity static params.
2089 */
2090void __dl_clear_params(struct task_struct *p)
2091{
2092 struct sched_dl_entity *dl_se = &p->dl;
2093
2094 dl_se->dl_runtime = 0;
2095 dl_se->dl_deadline = 0;
2096 dl_se->dl_period = 0;
2097 dl_se->flags = 0;
2098 dl_se->dl_bw = 0;
40767b0d
PZ
2099
2100 dl_se->dl_throttled = 0;
2101 dl_se->dl_new = 1;
2102 dl_se->dl_yielded = 0;
a5e7be3b
JL
2103}
2104
1da177e4
LT
2105/*
2106 * Perform scheduler related setup for a newly forked process p.
2107 * p is forked by current.
dd41f596
IM
2108 *
2109 * __sched_fork() is basic setup used by init_idle() too:
2110 */
5e1576ed 2111static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2112{
fd2f4419
PZ
2113 p->on_rq = 0;
2114
2115 p->se.on_rq = 0;
dd41f596
IM
2116 p->se.exec_start = 0;
2117 p->se.sum_exec_runtime = 0;
f6cf891c 2118 p->se.prev_sum_exec_runtime = 0;
6c594c21 2119 p->se.nr_migrations = 0;
da7a735e 2120 p->se.vruntime = 0;
fd2f4419 2121 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2122
ad936d86
BP
2123#ifdef CONFIG_FAIR_GROUP_SCHED
2124 p->se.cfs_rq = NULL;
2125#endif
2126
6cfb0d5d 2127#ifdef CONFIG_SCHEDSTATS
41acab88 2128 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2129#endif
476d139c 2130
aab03e05 2131 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2132 init_dl_task_timer(&p->dl);
a5e7be3b 2133 __dl_clear_params(p);
aab03e05 2134
fa717060 2135 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2136
e107be36
AK
2137#ifdef CONFIG_PREEMPT_NOTIFIERS
2138 INIT_HLIST_HEAD(&p->preempt_notifiers);
2139#endif
cbee9f88
PZ
2140
2141#ifdef CONFIG_NUMA_BALANCING
2142 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2143 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2144 p->mm->numa_scan_seq = 0;
2145 }
2146
5e1576ed
RR
2147 if (clone_flags & CLONE_VM)
2148 p->numa_preferred_nid = current->numa_preferred_nid;
2149 else
2150 p->numa_preferred_nid = -1;
2151
cbee9f88
PZ
2152 p->node_stamp = 0ULL;
2153 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2154 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2155 p->numa_work.next = &p->numa_work;
44dba3d5 2156 p->numa_faults = NULL;
7e2703e6
RR
2157 p->last_task_numa_placement = 0;
2158 p->last_sum_exec_runtime = 0;
8c8a743c 2159
8c8a743c 2160 p->numa_group = NULL;
cbee9f88 2161#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2162}
2163
2a595721
SD
2164DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2165
1a687c2e 2166#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2167
1a687c2e
MG
2168void set_numabalancing_state(bool enabled)
2169{
2170 if (enabled)
2a595721 2171 static_branch_enable(&sched_numa_balancing);
1a687c2e 2172 else
2a595721 2173 static_branch_disable(&sched_numa_balancing);
1a687c2e 2174}
54a43d54
AK
2175
2176#ifdef CONFIG_PROC_SYSCTL
2177int sysctl_numa_balancing(struct ctl_table *table, int write,
2178 void __user *buffer, size_t *lenp, loff_t *ppos)
2179{
2180 struct ctl_table t;
2181 int err;
2a595721 2182 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2183
2184 if (write && !capable(CAP_SYS_ADMIN))
2185 return -EPERM;
2186
2187 t = *table;
2188 t.data = &state;
2189 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2190 if (err < 0)
2191 return err;
2192 if (write)
2193 set_numabalancing_state(state);
2194 return err;
2195}
2196#endif
2197#endif
dd41f596
IM
2198
2199/*
2200 * fork()/clone()-time setup:
2201 */
aab03e05 2202int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2203{
0122ec5b 2204 unsigned long flags;
dd41f596
IM
2205 int cpu = get_cpu();
2206
5e1576ed 2207 __sched_fork(clone_flags, p);
06b83b5f 2208 /*
0017d735 2209 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2210 * nobody will actually run it, and a signal or other external
2211 * event cannot wake it up and insert it on the runqueue either.
2212 */
0017d735 2213 p->state = TASK_RUNNING;
dd41f596 2214
c350a04e
MG
2215 /*
2216 * Make sure we do not leak PI boosting priority to the child.
2217 */
2218 p->prio = current->normal_prio;
2219
b9dc29e7
MG
2220 /*
2221 * Revert to default priority/policy on fork if requested.
2222 */
2223 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2224 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2225 p->policy = SCHED_NORMAL;
6c697bdf 2226 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2227 p->rt_priority = 0;
2228 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2229 p->static_prio = NICE_TO_PRIO(0);
2230
2231 p->prio = p->normal_prio = __normal_prio(p);
2232 set_load_weight(p);
6c697bdf 2233
b9dc29e7
MG
2234 /*
2235 * We don't need the reset flag anymore after the fork. It has
2236 * fulfilled its duty:
2237 */
2238 p->sched_reset_on_fork = 0;
2239 }
ca94c442 2240
aab03e05
DF
2241 if (dl_prio(p->prio)) {
2242 put_cpu();
2243 return -EAGAIN;
2244 } else if (rt_prio(p->prio)) {
2245 p->sched_class = &rt_sched_class;
2246 } else {
2ddbf952 2247 p->sched_class = &fair_sched_class;
aab03e05 2248 }
b29739f9 2249
cd29fe6f
PZ
2250 if (p->sched_class->task_fork)
2251 p->sched_class->task_fork(p);
2252
86951599
PZ
2253 /*
2254 * The child is not yet in the pid-hash so no cgroup attach races,
2255 * and the cgroup is pinned to this child due to cgroup_fork()
2256 * is ran before sched_fork().
2257 *
2258 * Silence PROVE_RCU.
2259 */
0122ec5b 2260 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2261 set_task_cpu(p, cpu);
0122ec5b 2262 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2263
f6db8347 2264#ifdef CONFIG_SCHED_INFO
dd41f596 2265 if (likely(sched_info_on()))
52f17b6c 2266 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2267#endif
3ca7a440
PZ
2268#if defined(CONFIG_SMP)
2269 p->on_cpu = 0;
4866cde0 2270#endif
01028747 2271 init_task_preempt_count(p);
806c09a7 2272#ifdef CONFIG_SMP
917b627d 2273 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2274 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2275#endif
917b627d 2276
476d139c 2277 put_cpu();
aab03e05 2278 return 0;
1da177e4
LT
2279}
2280
332ac17e
DF
2281unsigned long to_ratio(u64 period, u64 runtime)
2282{
2283 if (runtime == RUNTIME_INF)
2284 return 1ULL << 20;
2285
2286 /*
2287 * Doing this here saves a lot of checks in all
2288 * the calling paths, and returning zero seems
2289 * safe for them anyway.
2290 */
2291 if (period == 0)
2292 return 0;
2293
2294 return div64_u64(runtime << 20, period);
2295}
2296
2297#ifdef CONFIG_SMP
2298inline struct dl_bw *dl_bw_of(int i)
2299{
f78f5b90
PM
2300 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2301 "sched RCU must be held");
332ac17e
DF
2302 return &cpu_rq(i)->rd->dl_bw;
2303}
2304
de212f18 2305static inline int dl_bw_cpus(int i)
332ac17e 2306{
de212f18
PZ
2307 struct root_domain *rd = cpu_rq(i)->rd;
2308 int cpus = 0;
2309
f78f5b90
PM
2310 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2311 "sched RCU must be held");
de212f18
PZ
2312 for_each_cpu_and(i, rd->span, cpu_active_mask)
2313 cpus++;
2314
2315 return cpus;
332ac17e
DF
2316}
2317#else
2318inline struct dl_bw *dl_bw_of(int i)
2319{
2320 return &cpu_rq(i)->dl.dl_bw;
2321}
2322
de212f18 2323static inline int dl_bw_cpus(int i)
332ac17e
DF
2324{
2325 return 1;
2326}
2327#endif
2328
332ac17e
DF
2329/*
2330 * We must be sure that accepting a new task (or allowing changing the
2331 * parameters of an existing one) is consistent with the bandwidth
2332 * constraints. If yes, this function also accordingly updates the currently
2333 * allocated bandwidth to reflect the new situation.
2334 *
2335 * This function is called while holding p's rq->lock.
40767b0d
PZ
2336 *
2337 * XXX we should delay bw change until the task's 0-lag point, see
2338 * __setparam_dl().
332ac17e
DF
2339 */
2340static int dl_overflow(struct task_struct *p, int policy,
2341 const struct sched_attr *attr)
2342{
2343
2344 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2345 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2346 u64 runtime = attr->sched_runtime;
2347 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2348 int cpus, err = -1;
332ac17e
DF
2349
2350 if (new_bw == p->dl.dl_bw)
2351 return 0;
2352
2353 /*
2354 * Either if a task, enters, leave, or stays -deadline but changes
2355 * its parameters, we may need to update accordingly the total
2356 * allocated bandwidth of the container.
2357 */
2358 raw_spin_lock(&dl_b->lock);
de212f18 2359 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2360 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2361 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2362 __dl_add(dl_b, new_bw);
2363 err = 0;
2364 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2365 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2366 __dl_clear(dl_b, p->dl.dl_bw);
2367 __dl_add(dl_b, new_bw);
2368 err = 0;
2369 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2370 __dl_clear(dl_b, p->dl.dl_bw);
2371 err = 0;
2372 }
2373 raw_spin_unlock(&dl_b->lock);
2374
2375 return err;
2376}
2377
2378extern void init_dl_bw(struct dl_bw *dl_b);
2379
1da177e4
LT
2380/*
2381 * wake_up_new_task - wake up a newly created task for the first time.
2382 *
2383 * This function will do some initial scheduler statistics housekeeping
2384 * that must be done for every newly created context, then puts the task
2385 * on the runqueue and wakes it.
2386 */
3e51e3ed 2387void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2388{
2389 unsigned long flags;
dd41f596 2390 struct rq *rq;
fabf318e 2391
ab2515c4 2392 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2393 /* Initialize new task's runnable average */
2394 init_entity_runnable_average(&p->se);
fabf318e
PZ
2395#ifdef CONFIG_SMP
2396 /*
2397 * Fork balancing, do it here and not earlier because:
2398 * - cpus_allowed can change in the fork path
2399 * - any previously selected cpu might disappear through hotplug
fabf318e 2400 */
ac66f547 2401 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2402#endif
2403
ab2515c4 2404 rq = __task_rq_lock(p);
cd29fe6f 2405 activate_task(rq, p, 0);
da0c1e65 2406 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2407 trace_sched_wakeup_new(p);
a7558e01 2408 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2409#ifdef CONFIG_SMP
0aaafaab
PZ
2410 if (p->sched_class->task_woken) {
2411 /*
2412 * Nothing relies on rq->lock after this, so its fine to
2413 * drop it.
2414 */
2415 lockdep_unpin_lock(&rq->lock);
efbbd05a 2416 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2417 lockdep_pin_lock(&rq->lock);
2418 }
9a897c5a 2419#endif
0122ec5b 2420 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2421}
2422
e107be36
AK
2423#ifdef CONFIG_PREEMPT_NOTIFIERS
2424
1cde2930
PZ
2425static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2426
2ecd9d29
PZ
2427void preempt_notifier_inc(void)
2428{
2429 static_key_slow_inc(&preempt_notifier_key);
2430}
2431EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2432
2433void preempt_notifier_dec(void)
2434{
2435 static_key_slow_dec(&preempt_notifier_key);
2436}
2437EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2438
e107be36 2439/**
80dd99b3 2440 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2441 * @notifier: notifier struct to register
e107be36
AK
2442 */
2443void preempt_notifier_register(struct preempt_notifier *notifier)
2444{
2ecd9d29
PZ
2445 if (!static_key_false(&preempt_notifier_key))
2446 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2447
e107be36
AK
2448 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2449}
2450EXPORT_SYMBOL_GPL(preempt_notifier_register);
2451
2452/**
2453 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2454 * @notifier: notifier struct to unregister
e107be36 2455 *
d84525a8 2456 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2457 */
2458void preempt_notifier_unregister(struct preempt_notifier *notifier)
2459{
2460 hlist_del(&notifier->link);
2461}
2462EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2463
1cde2930 2464static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2465{
2466 struct preempt_notifier *notifier;
e107be36 2467
b67bfe0d 2468 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2469 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2470}
2471
1cde2930
PZ
2472static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2473{
2474 if (static_key_false(&preempt_notifier_key))
2475 __fire_sched_in_preempt_notifiers(curr);
2476}
2477
e107be36 2478static void
1cde2930
PZ
2479__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2480 struct task_struct *next)
e107be36
AK
2481{
2482 struct preempt_notifier *notifier;
e107be36 2483
b67bfe0d 2484 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2485 notifier->ops->sched_out(notifier, next);
2486}
2487
1cde2930
PZ
2488static __always_inline void
2489fire_sched_out_preempt_notifiers(struct task_struct *curr,
2490 struct task_struct *next)
2491{
2492 if (static_key_false(&preempt_notifier_key))
2493 __fire_sched_out_preempt_notifiers(curr, next);
2494}
2495
6d6bc0ad 2496#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2497
1cde2930 2498static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2499{
2500}
2501
1cde2930 2502static inline void
e107be36
AK
2503fire_sched_out_preempt_notifiers(struct task_struct *curr,
2504 struct task_struct *next)
2505{
2506}
2507
6d6bc0ad 2508#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2509
4866cde0
NP
2510/**
2511 * prepare_task_switch - prepare to switch tasks
2512 * @rq: the runqueue preparing to switch
421cee29 2513 * @prev: the current task that is being switched out
4866cde0
NP
2514 * @next: the task we are going to switch to.
2515 *
2516 * This is called with the rq lock held and interrupts off. It must
2517 * be paired with a subsequent finish_task_switch after the context
2518 * switch.
2519 *
2520 * prepare_task_switch sets up locking and calls architecture specific
2521 * hooks.
2522 */
e107be36
AK
2523static inline void
2524prepare_task_switch(struct rq *rq, struct task_struct *prev,
2525 struct task_struct *next)
4866cde0 2526{
43148951 2527 sched_info_switch(rq, prev, next);
fe4b04fa 2528 perf_event_task_sched_out(prev, next);
e107be36 2529 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2530 prepare_lock_switch(rq, next);
2531 prepare_arch_switch(next);
2532}
2533
1da177e4
LT
2534/**
2535 * finish_task_switch - clean up after a task-switch
2536 * @prev: the thread we just switched away from.
2537 *
4866cde0
NP
2538 * finish_task_switch must be called after the context switch, paired
2539 * with a prepare_task_switch call before the context switch.
2540 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2541 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2542 *
2543 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2544 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2545 * with the lock held can cause deadlocks; see schedule() for
2546 * details.)
dfa50b60
ON
2547 *
2548 * The context switch have flipped the stack from under us and restored the
2549 * local variables which were saved when this task called schedule() in the
2550 * past. prev == current is still correct but we need to recalculate this_rq
2551 * because prev may have moved to another CPU.
1da177e4 2552 */
dfa50b60 2553static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2554 __releases(rq->lock)
2555{
dfa50b60 2556 struct rq *rq = this_rq();
1da177e4 2557 struct mm_struct *mm = rq->prev_mm;
55a101f8 2558 long prev_state;
1da177e4 2559
609ca066
PZ
2560 /*
2561 * The previous task will have left us with a preempt_count of 2
2562 * because it left us after:
2563 *
2564 * schedule()
2565 * preempt_disable(); // 1
2566 * __schedule()
2567 * raw_spin_lock_irq(&rq->lock) // 2
2568 *
2569 * Also, see FORK_PREEMPT_COUNT.
2570 */
e2bf1c4b
PZ
2571 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2572 "corrupted preempt_count: %s/%d/0x%x\n",
2573 current->comm, current->pid, preempt_count()))
2574 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2575
1da177e4
LT
2576 rq->prev_mm = NULL;
2577
2578 /*
2579 * A task struct has one reference for the use as "current".
c394cc9f 2580 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2581 * schedule one last time. The schedule call will never return, and
2582 * the scheduled task must drop that reference.
95913d97
PZ
2583 *
2584 * We must observe prev->state before clearing prev->on_cpu (in
2585 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2586 * running on another CPU and we could rave with its RUNNING -> DEAD
2587 * transition, resulting in a double drop.
1da177e4 2588 */
55a101f8 2589 prev_state = prev->state;
bf9fae9f 2590 vtime_task_switch(prev);
a8d757ef 2591 perf_event_task_sched_in(prev, current);
4866cde0 2592 finish_lock_switch(rq, prev);
01f23e16 2593 finish_arch_post_lock_switch();
e8fa1362 2594
e107be36 2595 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2596 if (mm)
2597 mmdrop(mm);
c394cc9f 2598 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2599 if (prev->sched_class->task_dead)
2600 prev->sched_class->task_dead(prev);
2601
c6fd91f0 2602 /*
2603 * Remove function-return probe instances associated with this
2604 * task and put them back on the free list.
9761eea8 2605 */
c6fd91f0 2606 kprobe_flush_task(prev);
1da177e4 2607 put_task_struct(prev);
c6fd91f0 2608 }
99e5ada9 2609
de734f89 2610 tick_nohz_task_switch();
dfa50b60 2611 return rq;
1da177e4
LT
2612}
2613
3f029d3c
GH
2614#ifdef CONFIG_SMP
2615
3f029d3c 2616/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2617static void __balance_callback(struct rq *rq)
3f029d3c 2618{
e3fca9e7
PZ
2619 struct callback_head *head, *next;
2620 void (*func)(struct rq *rq);
2621 unsigned long flags;
3f029d3c 2622
e3fca9e7
PZ
2623 raw_spin_lock_irqsave(&rq->lock, flags);
2624 head = rq->balance_callback;
2625 rq->balance_callback = NULL;
2626 while (head) {
2627 func = (void (*)(struct rq *))head->func;
2628 next = head->next;
2629 head->next = NULL;
2630 head = next;
3f029d3c 2631
e3fca9e7 2632 func(rq);
3f029d3c 2633 }
e3fca9e7
PZ
2634 raw_spin_unlock_irqrestore(&rq->lock, flags);
2635}
2636
2637static inline void balance_callback(struct rq *rq)
2638{
2639 if (unlikely(rq->balance_callback))
2640 __balance_callback(rq);
3f029d3c
GH
2641}
2642
2643#else
da19ab51 2644
e3fca9e7 2645static inline void balance_callback(struct rq *rq)
3f029d3c 2646{
1da177e4
LT
2647}
2648
3f029d3c
GH
2649#endif
2650
1da177e4
LT
2651/**
2652 * schedule_tail - first thing a freshly forked thread must call.
2653 * @prev: the thread we just switched away from.
2654 */
722a9f92 2655asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2656 __releases(rq->lock)
2657{
1a43a14a 2658 struct rq *rq;
da19ab51 2659
609ca066
PZ
2660 /*
2661 * New tasks start with FORK_PREEMPT_COUNT, see there and
2662 * finish_task_switch() for details.
2663 *
2664 * finish_task_switch() will drop rq->lock() and lower preempt_count
2665 * and the preempt_enable() will end up enabling preemption (on
2666 * PREEMPT_COUNT kernels).
2667 */
2668
dfa50b60 2669 rq = finish_task_switch(prev);
e3fca9e7 2670 balance_callback(rq);
1a43a14a 2671 preempt_enable();
70b97a7f 2672
1da177e4 2673 if (current->set_child_tid)
b488893a 2674 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2675}
2676
2677/*
dfa50b60 2678 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2679 */
dfa50b60 2680static inline struct rq *
70b97a7f 2681context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2682 struct task_struct *next)
1da177e4 2683{
dd41f596 2684 struct mm_struct *mm, *oldmm;
1da177e4 2685
e107be36 2686 prepare_task_switch(rq, prev, next);
fe4b04fa 2687
dd41f596
IM
2688 mm = next->mm;
2689 oldmm = prev->active_mm;
9226d125
ZA
2690 /*
2691 * For paravirt, this is coupled with an exit in switch_to to
2692 * combine the page table reload and the switch backend into
2693 * one hypercall.
2694 */
224101ed 2695 arch_start_context_switch(prev);
9226d125 2696
31915ab4 2697 if (!mm) {
1da177e4
LT
2698 next->active_mm = oldmm;
2699 atomic_inc(&oldmm->mm_count);
2700 enter_lazy_tlb(oldmm, next);
2701 } else
2702 switch_mm(oldmm, mm, next);
2703
31915ab4 2704 if (!prev->mm) {
1da177e4 2705 prev->active_mm = NULL;
1da177e4
LT
2706 rq->prev_mm = oldmm;
2707 }
3a5f5e48
IM
2708 /*
2709 * Since the runqueue lock will be released by the next
2710 * task (which is an invalid locking op but in the case
2711 * of the scheduler it's an obvious special-case), so we
2712 * do an early lockdep release here:
2713 */
cbce1a68 2714 lockdep_unpin_lock(&rq->lock);
8a25d5de 2715 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2716
2717 /* Here we just switch the register state and the stack. */
2718 switch_to(prev, next, prev);
dd41f596 2719 barrier();
dfa50b60
ON
2720
2721 return finish_task_switch(prev);
1da177e4
LT
2722}
2723
2724/*
1c3e8264 2725 * nr_running and nr_context_switches:
1da177e4
LT
2726 *
2727 * externally visible scheduler statistics: current number of runnable
1c3e8264 2728 * threads, total number of context switches performed since bootup.
1da177e4
LT
2729 */
2730unsigned long nr_running(void)
2731{
2732 unsigned long i, sum = 0;
2733
2734 for_each_online_cpu(i)
2735 sum += cpu_rq(i)->nr_running;
2736
2737 return sum;
f711f609 2738}
1da177e4 2739
2ee507c4
TC
2740/*
2741 * Check if only the current task is running on the cpu.
00cc1633
DD
2742 *
2743 * Caution: this function does not check that the caller has disabled
2744 * preemption, thus the result might have a time-of-check-to-time-of-use
2745 * race. The caller is responsible to use it correctly, for example:
2746 *
2747 * - from a non-preemptable section (of course)
2748 *
2749 * - from a thread that is bound to a single CPU
2750 *
2751 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2752 */
2753bool single_task_running(void)
2754{
00cc1633 2755 return raw_rq()->nr_running == 1;
2ee507c4
TC
2756}
2757EXPORT_SYMBOL(single_task_running);
2758
1da177e4 2759unsigned long long nr_context_switches(void)
46cb4b7c 2760{
cc94abfc
SR
2761 int i;
2762 unsigned long long sum = 0;
46cb4b7c 2763
0a945022 2764 for_each_possible_cpu(i)
1da177e4 2765 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2766
1da177e4
LT
2767 return sum;
2768}
483b4ee6 2769
1da177e4
LT
2770unsigned long nr_iowait(void)
2771{
2772 unsigned long i, sum = 0;
483b4ee6 2773
0a945022 2774 for_each_possible_cpu(i)
1da177e4 2775 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2776
1da177e4
LT
2777 return sum;
2778}
483b4ee6 2779
8c215bd3 2780unsigned long nr_iowait_cpu(int cpu)
69d25870 2781{
8c215bd3 2782 struct rq *this = cpu_rq(cpu);
69d25870
AV
2783 return atomic_read(&this->nr_iowait);
2784}
46cb4b7c 2785
372ba8cb
MG
2786void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2787{
3289bdb4
PZ
2788 struct rq *rq = this_rq();
2789 *nr_waiters = atomic_read(&rq->nr_iowait);
2790 *load = rq->load.weight;
372ba8cb
MG
2791}
2792
dd41f596 2793#ifdef CONFIG_SMP
8a0be9ef 2794
46cb4b7c 2795/*
38022906
PZ
2796 * sched_exec - execve() is a valuable balancing opportunity, because at
2797 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2798 */
38022906 2799void sched_exec(void)
46cb4b7c 2800{
38022906 2801 struct task_struct *p = current;
1da177e4 2802 unsigned long flags;
0017d735 2803 int dest_cpu;
46cb4b7c 2804
8f42ced9 2805 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2806 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2807 if (dest_cpu == smp_processor_id())
2808 goto unlock;
38022906 2809
8f42ced9 2810 if (likely(cpu_active(dest_cpu))) {
969c7921 2811 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2812
8f42ced9
PZ
2813 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2814 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2815 return;
2816 }
0017d735 2817unlock:
8f42ced9 2818 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2819}
dd41f596 2820
1da177e4
LT
2821#endif
2822
1da177e4 2823DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2824DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2825
2826EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2827EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2828
c5f8d995
HS
2829/*
2830 * Return accounted runtime for the task.
2831 * In case the task is currently running, return the runtime plus current's
2832 * pending runtime that have not been accounted yet.
2833 */
2834unsigned long long task_sched_runtime(struct task_struct *p)
2835{
2836 unsigned long flags;
2837 struct rq *rq;
6e998916 2838 u64 ns;
c5f8d995 2839
911b2898
PZ
2840#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2841 /*
2842 * 64-bit doesn't need locks to atomically read a 64bit value.
2843 * So we have a optimization chance when the task's delta_exec is 0.
2844 * Reading ->on_cpu is racy, but this is ok.
2845 *
2846 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2847 * If we race with it entering cpu, unaccounted time is 0. This is
2848 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2849 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2850 * been accounted, so we're correct here as well.
911b2898 2851 */
da0c1e65 2852 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2853 return p->se.sum_exec_runtime;
2854#endif
2855
c5f8d995 2856 rq = task_rq_lock(p, &flags);
6e998916
SG
2857 /*
2858 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2859 * project cycles that may never be accounted to this
2860 * thread, breaking clock_gettime().
2861 */
2862 if (task_current(rq, p) && task_on_rq_queued(p)) {
2863 update_rq_clock(rq);
2864 p->sched_class->update_curr(rq);
2865 }
2866 ns = p->se.sum_exec_runtime;
0122ec5b 2867 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2868
2869 return ns;
2870}
48f24c4d 2871
7835b98b
CL
2872/*
2873 * This function gets called by the timer code, with HZ frequency.
2874 * We call it with interrupts disabled.
7835b98b
CL
2875 */
2876void scheduler_tick(void)
2877{
7835b98b
CL
2878 int cpu = smp_processor_id();
2879 struct rq *rq = cpu_rq(cpu);
dd41f596 2880 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2881
2882 sched_clock_tick();
dd41f596 2883
05fa785c 2884 raw_spin_lock(&rq->lock);
3e51f33f 2885 update_rq_clock(rq);
fa85ae24 2886 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2887 update_cpu_load_active(rq);
3289bdb4 2888 calc_global_load_tick(rq);
05fa785c 2889 raw_spin_unlock(&rq->lock);
7835b98b 2890
e9d2b064 2891 perf_event_task_tick();
e220d2dc 2892
e418e1c2 2893#ifdef CONFIG_SMP
6eb57e0d 2894 rq->idle_balance = idle_cpu(cpu);
7caff66f 2895 trigger_load_balance(rq);
e418e1c2 2896#endif
265f22a9 2897 rq_last_tick_reset(rq);
1da177e4
LT
2898}
2899
265f22a9
FW
2900#ifdef CONFIG_NO_HZ_FULL
2901/**
2902 * scheduler_tick_max_deferment
2903 *
2904 * Keep at least one tick per second when a single
2905 * active task is running because the scheduler doesn't
2906 * yet completely support full dynticks environment.
2907 *
2908 * This makes sure that uptime, CFS vruntime, load
2909 * balancing, etc... continue to move forward, even
2910 * with a very low granularity.
e69f6186
YB
2911 *
2912 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2913 */
2914u64 scheduler_tick_max_deferment(void)
2915{
2916 struct rq *rq = this_rq();
316c1608 2917 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2918
2919 next = rq->last_sched_tick + HZ;
2920
2921 if (time_before_eq(next, now))
2922 return 0;
2923
8fe8ff09 2924 return jiffies_to_nsecs(next - now);
1da177e4 2925}
265f22a9 2926#endif
1da177e4 2927
132380a0 2928notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2929{
2930 if (in_lock_functions(addr)) {
2931 addr = CALLER_ADDR2;
2932 if (in_lock_functions(addr))
2933 addr = CALLER_ADDR3;
2934 }
2935 return addr;
2936}
1da177e4 2937
7e49fcce
SR
2938#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2939 defined(CONFIG_PREEMPT_TRACER))
2940
edafe3a5 2941void preempt_count_add(int val)
1da177e4 2942{
6cd8a4bb 2943#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2944 /*
2945 * Underflow?
2946 */
9a11b49a
IM
2947 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2948 return;
6cd8a4bb 2949#endif
bdb43806 2950 __preempt_count_add(val);
6cd8a4bb 2951#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2952 /*
2953 * Spinlock count overflowing soon?
2954 */
33859f7f
MOS
2955 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2956 PREEMPT_MASK - 10);
6cd8a4bb 2957#endif
8f47b187
TG
2958 if (preempt_count() == val) {
2959 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2960#ifdef CONFIG_DEBUG_PREEMPT
2961 current->preempt_disable_ip = ip;
2962#endif
2963 trace_preempt_off(CALLER_ADDR0, ip);
2964 }
1da177e4 2965}
bdb43806 2966EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2967NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2968
edafe3a5 2969void preempt_count_sub(int val)
1da177e4 2970{
6cd8a4bb 2971#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2972 /*
2973 * Underflow?
2974 */
01e3eb82 2975 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2976 return;
1da177e4
LT
2977 /*
2978 * Is the spinlock portion underflowing?
2979 */
9a11b49a
IM
2980 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2981 !(preempt_count() & PREEMPT_MASK)))
2982 return;
6cd8a4bb 2983#endif
9a11b49a 2984
6cd8a4bb
SR
2985 if (preempt_count() == val)
2986 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2987 __preempt_count_sub(val);
1da177e4 2988}
bdb43806 2989EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2990NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2991
2992#endif
2993
2994/*
dd41f596 2995 * Print scheduling while atomic bug:
1da177e4 2996 */
dd41f596 2997static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2998{
664dfa65
DJ
2999 if (oops_in_progress)
3000 return;
3001
3df0fc5b
PZ
3002 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3003 prev->comm, prev->pid, preempt_count());
838225b4 3004
dd41f596 3005 debug_show_held_locks(prev);
e21f5b15 3006 print_modules();
dd41f596
IM
3007 if (irqs_disabled())
3008 print_irqtrace_events(prev);
8f47b187
TG
3009#ifdef CONFIG_DEBUG_PREEMPT
3010 if (in_atomic_preempt_off()) {
3011 pr_err("Preemption disabled at:");
3012 print_ip_sym(current->preempt_disable_ip);
3013 pr_cont("\n");
3014 }
3015#endif
6135fc1e 3016 dump_stack();
373d4d09 3017 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3018}
1da177e4 3019
dd41f596
IM
3020/*
3021 * Various schedule()-time debugging checks and statistics:
3022 */
3023static inline void schedule_debug(struct task_struct *prev)
3024{
0d9e2632 3025#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3026 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3027#endif
b99def8b 3028
1dc0fffc 3029 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3030 __schedule_bug(prev);
1dc0fffc
PZ
3031 preempt_count_set(PREEMPT_DISABLED);
3032 }
b3fbab05 3033 rcu_sleep_check();
dd41f596 3034
1da177e4
LT
3035 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3036
2d72376b 3037 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3038}
3039
3040/*
3041 * Pick up the highest-prio task:
3042 */
3043static inline struct task_struct *
606dba2e 3044pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3045{
37e117c0 3046 const struct sched_class *class = &fair_sched_class;
dd41f596 3047 struct task_struct *p;
1da177e4
LT
3048
3049 /*
dd41f596
IM
3050 * Optimization: we know that if all tasks are in
3051 * the fair class we can call that function directly:
1da177e4 3052 */
37e117c0 3053 if (likely(prev->sched_class == class &&
38033c37 3054 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3055 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3056 if (unlikely(p == RETRY_TASK))
3057 goto again;
3058
3059 /* assumes fair_sched_class->next == idle_sched_class */
3060 if (unlikely(!p))
3061 p = idle_sched_class.pick_next_task(rq, prev);
3062
3063 return p;
1da177e4
LT
3064 }
3065
37e117c0 3066again:
34f971f6 3067 for_each_class(class) {
606dba2e 3068 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3069 if (p) {
3070 if (unlikely(p == RETRY_TASK))
3071 goto again;
dd41f596 3072 return p;
37e117c0 3073 }
dd41f596 3074 }
34f971f6
PZ
3075
3076 BUG(); /* the idle class will always have a runnable task */
dd41f596 3077}
1da177e4 3078
dd41f596 3079/*
c259e01a 3080 * __schedule() is the main scheduler function.
edde96ea
PE
3081 *
3082 * The main means of driving the scheduler and thus entering this function are:
3083 *
3084 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3085 *
3086 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3087 * paths. For example, see arch/x86/entry_64.S.
3088 *
3089 * To drive preemption between tasks, the scheduler sets the flag in timer
3090 * interrupt handler scheduler_tick().
3091 *
3092 * 3. Wakeups don't really cause entry into schedule(). They add a
3093 * task to the run-queue and that's it.
3094 *
3095 * Now, if the new task added to the run-queue preempts the current
3096 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3097 * called on the nearest possible occasion:
3098 *
3099 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3100 *
3101 * - in syscall or exception context, at the next outmost
3102 * preempt_enable(). (this might be as soon as the wake_up()'s
3103 * spin_unlock()!)
3104 *
3105 * - in IRQ context, return from interrupt-handler to
3106 * preemptible context
3107 *
3108 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3109 * then at the next:
3110 *
3111 * - cond_resched() call
3112 * - explicit schedule() call
3113 * - return from syscall or exception to user-space
3114 * - return from interrupt-handler to user-space
bfd9b2b5 3115 *
b30f0e3f 3116 * WARNING: must be called with preemption disabled!
dd41f596 3117 */
499d7955 3118static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3119{
3120 struct task_struct *prev, *next;
67ca7bde 3121 unsigned long *switch_count;
dd41f596 3122 struct rq *rq;
31656519 3123 int cpu;
dd41f596 3124
dd41f596
IM
3125 cpu = smp_processor_id();
3126 rq = cpu_rq(cpu);
38200cf2 3127 rcu_note_context_switch();
dd41f596 3128 prev = rq->curr;
dd41f596 3129
b99def8b
PZ
3130 /*
3131 * do_exit() calls schedule() with preemption disabled as an exception;
3132 * however we must fix that up, otherwise the next task will see an
3133 * inconsistent (higher) preempt count.
3134 *
3135 * It also avoids the below schedule_debug() test from complaining
3136 * about this.
3137 */
3138 if (unlikely(prev->state == TASK_DEAD))
3139 preempt_enable_no_resched_notrace();
3140
dd41f596 3141 schedule_debug(prev);
1da177e4 3142
31656519 3143 if (sched_feat(HRTICK))
f333fdc9 3144 hrtick_clear(rq);
8f4d37ec 3145
e0acd0a6
ON
3146 /*
3147 * Make sure that signal_pending_state()->signal_pending() below
3148 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3149 * done by the caller to avoid the race with signal_wake_up().
3150 */
3151 smp_mb__before_spinlock();
05fa785c 3152 raw_spin_lock_irq(&rq->lock);
cbce1a68 3153 lockdep_pin_lock(&rq->lock);
1da177e4 3154
9edfbfed
PZ
3155 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3156
246d86b5 3157 switch_count = &prev->nivcsw;
fc13aeba 3158 if (!preempt && prev->state) {
21aa9af0 3159 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3160 prev->state = TASK_RUNNING;
21aa9af0 3161 } else {
2acca55e
PZ
3162 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3163 prev->on_rq = 0;
3164
21aa9af0 3165 /*
2acca55e
PZ
3166 * If a worker went to sleep, notify and ask workqueue
3167 * whether it wants to wake up a task to maintain
3168 * concurrency.
21aa9af0
TH
3169 */
3170 if (prev->flags & PF_WQ_WORKER) {
3171 struct task_struct *to_wakeup;
3172
3173 to_wakeup = wq_worker_sleeping(prev, cpu);
3174 if (to_wakeup)
3175 try_to_wake_up_local(to_wakeup);
3176 }
21aa9af0 3177 }
dd41f596 3178 switch_count = &prev->nvcsw;
1da177e4
LT
3179 }
3180
9edfbfed 3181 if (task_on_rq_queued(prev))
606dba2e
PZ
3182 update_rq_clock(rq);
3183
3184 next = pick_next_task(rq, prev);
f26f9aff 3185 clear_tsk_need_resched(prev);
f27dde8d 3186 clear_preempt_need_resched();
9edfbfed 3187 rq->clock_skip_update = 0;
1da177e4 3188
1da177e4 3189 if (likely(prev != next)) {
1da177e4
LT
3190 rq->nr_switches++;
3191 rq->curr = next;
3192 ++*switch_count;
3193
c73464b1 3194 trace_sched_switch(preempt, prev, next);
dfa50b60
ON
3195 rq = context_switch(rq, prev, next); /* unlocks the rq */
3196 cpu = cpu_of(rq);
cbce1a68
PZ
3197 } else {
3198 lockdep_unpin_lock(&rq->lock);
05fa785c 3199 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3200 }
1da177e4 3201
e3fca9e7 3202 balance_callback(rq);
1da177e4 3203}
c259e01a 3204
9c40cef2
TG
3205static inline void sched_submit_work(struct task_struct *tsk)
3206{
3c7d5184 3207 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3208 return;
3209 /*
3210 * If we are going to sleep and we have plugged IO queued,
3211 * make sure to submit it to avoid deadlocks.
3212 */
3213 if (blk_needs_flush_plug(tsk))
3214 blk_schedule_flush_plug(tsk);
3215}
3216
722a9f92 3217asmlinkage __visible void __sched schedule(void)
c259e01a 3218{
9c40cef2
TG
3219 struct task_struct *tsk = current;
3220
3221 sched_submit_work(tsk);
bfd9b2b5 3222 do {
b30f0e3f 3223 preempt_disable();
fc13aeba 3224 __schedule(false);
b30f0e3f 3225 sched_preempt_enable_no_resched();
bfd9b2b5 3226 } while (need_resched());
c259e01a 3227}
1da177e4
LT
3228EXPORT_SYMBOL(schedule);
3229
91d1aa43 3230#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3231asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3232{
3233 /*
3234 * If we come here after a random call to set_need_resched(),
3235 * or we have been woken up remotely but the IPI has not yet arrived,
3236 * we haven't yet exited the RCU idle mode. Do it here manually until
3237 * we find a better solution.
7cc78f8f
AL
3238 *
3239 * NB: There are buggy callers of this function. Ideally we
c467ea76 3240 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3241 * too frequently to make sense yet.
20ab65e3 3242 */
7cc78f8f 3243 enum ctx_state prev_state = exception_enter();
20ab65e3 3244 schedule();
7cc78f8f 3245 exception_exit(prev_state);
20ab65e3
FW
3246}
3247#endif
3248
c5491ea7
TG
3249/**
3250 * schedule_preempt_disabled - called with preemption disabled
3251 *
3252 * Returns with preemption disabled. Note: preempt_count must be 1
3253 */
3254void __sched schedule_preempt_disabled(void)
3255{
ba74c144 3256 sched_preempt_enable_no_resched();
c5491ea7
TG
3257 schedule();
3258 preempt_disable();
3259}
3260
06b1f808 3261static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3262{
3263 do {
499d7955 3264 preempt_disable_notrace();
fc13aeba 3265 __schedule(true);
499d7955 3266 preempt_enable_no_resched_notrace();
a18b5d01
FW
3267
3268 /*
3269 * Check again in case we missed a preemption opportunity
3270 * between schedule and now.
3271 */
a18b5d01
FW
3272 } while (need_resched());
3273}
3274
1da177e4
LT
3275#ifdef CONFIG_PREEMPT
3276/*
2ed6e34f 3277 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3278 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3279 * occur there and call schedule directly.
3280 */
722a9f92 3281asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3282{
1da177e4
LT
3283 /*
3284 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3285 * we do not want to preempt the current task. Just return..
1da177e4 3286 */
fbb00b56 3287 if (likely(!preemptible()))
1da177e4
LT
3288 return;
3289
a18b5d01 3290 preempt_schedule_common();
1da177e4 3291}
376e2424 3292NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3293EXPORT_SYMBOL(preempt_schedule);
009f60e2 3294
009f60e2 3295/**
4eaca0a8 3296 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3297 *
3298 * The tracing infrastructure uses preempt_enable_notrace to prevent
3299 * recursion and tracing preempt enabling caused by the tracing
3300 * infrastructure itself. But as tracing can happen in areas coming
3301 * from userspace or just about to enter userspace, a preempt enable
3302 * can occur before user_exit() is called. This will cause the scheduler
3303 * to be called when the system is still in usermode.
3304 *
3305 * To prevent this, the preempt_enable_notrace will use this function
3306 * instead of preempt_schedule() to exit user context if needed before
3307 * calling the scheduler.
3308 */
4eaca0a8 3309asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3310{
3311 enum ctx_state prev_ctx;
3312
3313 if (likely(!preemptible()))
3314 return;
3315
3316 do {
3d8f74dd 3317 preempt_disable_notrace();
009f60e2
ON
3318 /*
3319 * Needs preempt disabled in case user_exit() is traced
3320 * and the tracer calls preempt_enable_notrace() causing
3321 * an infinite recursion.
3322 */
3323 prev_ctx = exception_enter();
fc13aeba 3324 __schedule(true);
009f60e2
ON
3325 exception_exit(prev_ctx);
3326
3d8f74dd 3327 preempt_enable_no_resched_notrace();
009f60e2
ON
3328 } while (need_resched());
3329}
4eaca0a8 3330EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3331
32e475d7 3332#endif /* CONFIG_PREEMPT */
1da177e4
LT
3333
3334/*
2ed6e34f 3335 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3336 * off of irq context.
3337 * Note, that this is called and return with irqs disabled. This will
3338 * protect us against recursive calling from irq.
3339 */
722a9f92 3340asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3341{
b22366cd 3342 enum ctx_state prev_state;
6478d880 3343
2ed6e34f 3344 /* Catch callers which need to be fixed */
f27dde8d 3345 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3346
b22366cd
FW
3347 prev_state = exception_enter();
3348
3a5c359a 3349 do {
3d8f74dd 3350 preempt_disable();
3a5c359a 3351 local_irq_enable();
fc13aeba 3352 __schedule(true);
3a5c359a 3353 local_irq_disable();
3d8f74dd 3354 sched_preempt_enable_no_resched();
5ed0cec0 3355 } while (need_resched());
b22366cd
FW
3356
3357 exception_exit(prev_state);
1da177e4
LT
3358}
3359
63859d4f 3360int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3361 void *key)
1da177e4 3362{
63859d4f 3363 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3364}
1da177e4
LT
3365EXPORT_SYMBOL(default_wake_function);
3366
b29739f9
IM
3367#ifdef CONFIG_RT_MUTEXES
3368
3369/*
3370 * rt_mutex_setprio - set the current priority of a task
3371 * @p: task
3372 * @prio: prio value (kernel-internal form)
3373 *
3374 * This function changes the 'effective' priority of a task. It does
3375 * not touch ->normal_prio like __setscheduler().
3376 *
c365c292
TG
3377 * Used by the rt_mutex code to implement priority inheritance
3378 * logic. Call site only calls if the priority of the task changed.
b29739f9 3379 */
36c8b586 3380void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3381{
1de64443 3382 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
70b97a7f 3383 struct rq *rq;
83ab0aa0 3384 const struct sched_class *prev_class;
b29739f9 3385
aab03e05 3386 BUG_ON(prio > MAX_PRIO);
b29739f9 3387
0122ec5b 3388 rq = __task_rq_lock(p);
b29739f9 3389
1c4dd99b
TG
3390 /*
3391 * Idle task boosting is a nono in general. There is one
3392 * exception, when PREEMPT_RT and NOHZ is active:
3393 *
3394 * The idle task calls get_next_timer_interrupt() and holds
3395 * the timer wheel base->lock on the CPU and another CPU wants
3396 * to access the timer (probably to cancel it). We can safely
3397 * ignore the boosting request, as the idle CPU runs this code
3398 * with interrupts disabled and will complete the lock
3399 * protected section without being interrupted. So there is no
3400 * real need to boost.
3401 */
3402 if (unlikely(p == rq->idle)) {
3403 WARN_ON(p != rq->curr);
3404 WARN_ON(p->pi_blocked_on);
3405 goto out_unlock;
3406 }
3407
a8027073 3408 trace_sched_pi_setprio(p, prio);
d5f9f942 3409 oldprio = p->prio;
83ab0aa0 3410 prev_class = p->sched_class;
da0c1e65 3411 queued = task_on_rq_queued(p);
051a1d1a 3412 running = task_current(rq, p);
da0c1e65 3413 if (queued)
1de64443 3414 dequeue_task(rq, p, DEQUEUE_SAVE);
0e1f3483 3415 if (running)
f3cd1c4e 3416 put_prev_task(rq, p);
dd41f596 3417
2d3d891d
DF
3418 /*
3419 * Boosting condition are:
3420 * 1. -rt task is running and holds mutex A
3421 * --> -dl task blocks on mutex A
3422 *
3423 * 2. -dl task is running and holds mutex A
3424 * --> -dl task blocks on mutex A and could preempt the
3425 * running task
3426 */
3427 if (dl_prio(prio)) {
466af29b
ON
3428 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3429 if (!dl_prio(p->normal_prio) ||
3430 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3431 p->dl.dl_boosted = 1;
1de64443 3432 enqueue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3433 } else
3434 p->dl.dl_boosted = 0;
aab03e05 3435 p->sched_class = &dl_sched_class;
2d3d891d
DF
3436 } else if (rt_prio(prio)) {
3437 if (dl_prio(oldprio))
3438 p->dl.dl_boosted = 0;
3439 if (oldprio < prio)
1de64443 3440 enqueue_flag |= ENQUEUE_HEAD;
dd41f596 3441 p->sched_class = &rt_sched_class;
2d3d891d
DF
3442 } else {
3443 if (dl_prio(oldprio))
3444 p->dl.dl_boosted = 0;
746db944
BS
3445 if (rt_prio(oldprio))
3446 p->rt.timeout = 0;
dd41f596 3447 p->sched_class = &fair_sched_class;
2d3d891d 3448 }
dd41f596 3449
b29739f9
IM
3450 p->prio = prio;
3451
0e1f3483
HS
3452 if (running)
3453 p->sched_class->set_curr_task(rq);
da0c1e65 3454 if (queued)
2d3d891d 3455 enqueue_task(rq, p, enqueue_flag);
cb469845 3456
da7a735e 3457 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3458out_unlock:
4c9a4bc8 3459 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3460 __task_rq_unlock(rq);
4c9a4bc8
PZ
3461
3462 balance_callback(rq);
3463 preempt_enable();
b29739f9 3464}
b29739f9 3465#endif
d50dde5a 3466
36c8b586 3467void set_user_nice(struct task_struct *p, long nice)
1da177e4 3468{
da0c1e65 3469 int old_prio, delta, queued;
1da177e4 3470 unsigned long flags;
70b97a7f 3471 struct rq *rq;
1da177e4 3472
75e45d51 3473 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3474 return;
3475 /*
3476 * We have to be careful, if called from sys_setpriority(),
3477 * the task might be in the middle of scheduling on another CPU.
3478 */
3479 rq = task_rq_lock(p, &flags);
3480 /*
3481 * The RT priorities are set via sched_setscheduler(), but we still
3482 * allow the 'normal' nice value to be set - but as expected
3483 * it wont have any effect on scheduling until the task is
aab03e05 3484 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3485 */
aab03e05 3486 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3487 p->static_prio = NICE_TO_PRIO(nice);
3488 goto out_unlock;
3489 }
da0c1e65
KT
3490 queued = task_on_rq_queued(p);
3491 if (queued)
1de64443 3492 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3493
1da177e4 3494 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3495 set_load_weight(p);
b29739f9
IM
3496 old_prio = p->prio;
3497 p->prio = effective_prio(p);
3498 delta = p->prio - old_prio;
1da177e4 3499
da0c1e65 3500 if (queued) {
1de64443 3501 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3502 /*
d5f9f942
AM
3503 * If the task increased its priority or is running and
3504 * lowered its priority, then reschedule its CPU:
1da177e4 3505 */
d5f9f942 3506 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3507 resched_curr(rq);
1da177e4
LT
3508 }
3509out_unlock:
0122ec5b 3510 task_rq_unlock(rq, p, &flags);
1da177e4 3511}
1da177e4
LT
3512EXPORT_SYMBOL(set_user_nice);
3513
e43379f1
MM
3514/*
3515 * can_nice - check if a task can reduce its nice value
3516 * @p: task
3517 * @nice: nice value
3518 */
36c8b586 3519int can_nice(const struct task_struct *p, const int nice)
e43379f1 3520{
024f4747 3521 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3522 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3523
78d7d407 3524 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3525 capable(CAP_SYS_NICE));
3526}
3527
1da177e4
LT
3528#ifdef __ARCH_WANT_SYS_NICE
3529
3530/*
3531 * sys_nice - change the priority of the current process.
3532 * @increment: priority increment
3533 *
3534 * sys_setpriority is a more generic, but much slower function that
3535 * does similar things.
3536 */
5add95d4 3537SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3538{
48f24c4d 3539 long nice, retval;
1da177e4
LT
3540
3541 /*
3542 * Setpriority might change our priority at the same moment.
3543 * We don't have to worry. Conceptually one call occurs first
3544 * and we have a single winner.
3545 */
a9467fa3 3546 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3547 nice = task_nice(current) + increment;
1da177e4 3548
a9467fa3 3549 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3550 if (increment < 0 && !can_nice(current, nice))
3551 return -EPERM;
3552
1da177e4
LT
3553 retval = security_task_setnice(current, nice);
3554 if (retval)
3555 return retval;
3556
3557 set_user_nice(current, nice);
3558 return 0;
3559}
3560
3561#endif
3562
3563/**
3564 * task_prio - return the priority value of a given task.
3565 * @p: the task in question.
3566 *
e69f6186 3567 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3568 * RT tasks are offset by -200. Normal tasks are centered
3569 * around 0, value goes from -16 to +15.
3570 */
36c8b586 3571int task_prio(const struct task_struct *p)
1da177e4
LT
3572{
3573 return p->prio - MAX_RT_PRIO;
3574}
3575
1da177e4
LT
3576/**
3577 * idle_cpu - is a given cpu idle currently?
3578 * @cpu: the processor in question.
e69f6186
YB
3579 *
3580 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3581 */
3582int idle_cpu(int cpu)
3583{
908a3283
TG
3584 struct rq *rq = cpu_rq(cpu);
3585
3586 if (rq->curr != rq->idle)
3587 return 0;
3588
3589 if (rq->nr_running)
3590 return 0;
3591
3592#ifdef CONFIG_SMP
3593 if (!llist_empty(&rq->wake_list))
3594 return 0;
3595#endif
3596
3597 return 1;
1da177e4
LT
3598}
3599
1da177e4
LT
3600/**
3601 * idle_task - return the idle task for a given cpu.
3602 * @cpu: the processor in question.
e69f6186
YB
3603 *
3604 * Return: The idle task for the cpu @cpu.
1da177e4 3605 */
36c8b586 3606struct task_struct *idle_task(int cpu)
1da177e4
LT
3607{
3608 return cpu_rq(cpu)->idle;
3609}
3610
3611/**
3612 * find_process_by_pid - find a process with a matching PID value.
3613 * @pid: the pid in question.
e69f6186
YB
3614 *
3615 * The task of @pid, if found. %NULL otherwise.
1da177e4 3616 */
a9957449 3617static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3618{
228ebcbe 3619 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3620}
3621
aab03e05
DF
3622/*
3623 * This function initializes the sched_dl_entity of a newly becoming
3624 * SCHED_DEADLINE task.
3625 *
3626 * Only the static values are considered here, the actual runtime and the
3627 * absolute deadline will be properly calculated when the task is enqueued
3628 * for the first time with its new policy.
3629 */
3630static void
3631__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3632{
3633 struct sched_dl_entity *dl_se = &p->dl;
3634
aab03e05
DF
3635 dl_se->dl_runtime = attr->sched_runtime;
3636 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3637 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3638 dl_se->flags = attr->sched_flags;
332ac17e 3639 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3640
3641 /*
3642 * Changing the parameters of a task is 'tricky' and we're not doing
3643 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3644 *
3645 * What we SHOULD do is delay the bandwidth release until the 0-lag
3646 * point. This would include retaining the task_struct until that time
3647 * and change dl_overflow() to not immediately decrement the current
3648 * amount.
3649 *
3650 * Instead we retain the current runtime/deadline and let the new
3651 * parameters take effect after the current reservation period lapses.
3652 * This is safe (albeit pessimistic) because the 0-lag point is always
3653 * before the current scheduling deadline.
3654 *
3655 * We can still have temporary overloads because we do not delay the
3656 * change in bandwidth until that time; so admission control is
3657 * not on the safe side. It does however guarantee tasks will never
3658 * consume more than promised.
3659 */
aab03e05
DF
3660}
3661
c13db6b1
SR
3662/*
3663 * sched_setparam() passes in -1 for its policy, to let the functions
3664 * it calls know not to change it.
3665 */
3666#define SETPARAM_POLICY -1
3667
c365c292
TG
3668static void __setscheduler_params(struct task_struct *p,
3669 const struct sched_attr *attr)
1da177e4 3670{
d50dde5a
DF
3671 int policy = attr->sched_policy;
3672
c13db6b1 3673 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3674 policy = p->policy;
3675
1da177e4 3676 p->policy = policy;
d50dde5a 3677
aab03e05
DF
3678 if (dl_policy(policy))
3679 __setparam_dl(p, attr);
39fd8fd2 3680 else if (fair_policy(policy))
d50dde5a
DF
3681 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3682
39fd8fd2
PZ
3683 /*
3684 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3685 * !rt_policy. Always setting this ensures that things like
3686 * getparam()/getattr() don't report silly values for !rt tasks.
3687 */
3688 p->rt_priority = attr->sched_priority;
383afd09 3689 p->normal_prio = normal_prio(p);
c365c292
TG
3690 set_load_weight(p);
3691}
39fd8fd2 3692
c365c292
TG
3693/* Actually do priority change: must hold pi & rq lock. */
3694static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3695 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3696{
3697 __setscheduler_params(p, attr);
d50dde5a 3698
383afd09 3699 /*
0782e63b
TG
3700 * Keep a potential priority boosting if called from
3701 * sched_setscheduler().
383afd09 3702 */
0782e63b
TG
3703 if (keep_boost)
3704 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3705 else
3706 p->prio = normal_prio(p);
383afd09 3707
aab03e05
DF
3708 if (dl_prio(p->prio))
3709 p->sched_class = &dl_sched_class;
3710 else if (rt_prio(p->prio))
ffd44db5
PZ
3711 p->sched_class = &rt_sched_class;
3712 else
3713 p->sched_class = &fair_sched_class;
1da177e4 3714}
aab03e05
DF
3715
3716static void
3717__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3718{
3719 struct sched_dl_entity *dl_se = &p->dl;
3720
3721 attr->sched_priority = p->rt_priority;
3722 attr->sched_runtime = dl_se->dl_runtime;
3723 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3724 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3725 attr->sched_flags = dl_se->flags;
3726}
3727
3728/*
3729 * This function validates the new parameters of a -deadline task.
3730 * We ask for the deadline not being zero, and greater or equal
755378a4 3731 * than the runtime, as well as the period of being zero or
332ac17e 3732 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3733 * user parameters are above the internal resolution of 1us (we
3734 * check sched_runtime only since it is always the smaller one) and
3735 * below 2^63 ns (we have to check both sched_deadline and
3736 * sched_period, as the latter can be zero).
aab03e05
DF
3737 */
3738static bool
3739__checkparam_dl(const struct sched_attr *attr)
3740{
b0827819
JL
3741 /* deadline != 0 */
3742 if (attr->sched_deadline == 0)
3743 return false;
3744
3745 /*
3746 * Since we truncate DL_SCALE bits, make sure we're at least
3747 * that big.
3748 */
3749 if (attr->sched_runtime < (1ULL << DL_SCALE))
3750 return false;
3751
3752 /*
3753 * Since we use the MSB for wrap-around and sign issues, make
3754 * sure it's not set (mind that period can be equal to zero).
3755 */
3756 if (attr->sched_deadline & (1ULL << 63) ||
3757 attr->sched_period & (1ULL << 63))
3758 return false;
3759
3760 /* runtime <= deadline <= period (if period != 0) */
3761 if ((attr->sched_period != 0 &&
3762 attr->sched_period < attr->sched_deadline) ||
3763 attr->sched_deadline < attr->sched_runtime)
3764 return false;
3765
3766 return true;
aab03e05
DF
3767}
3768
c69e8d9c
DH
3769/*
3770 * check the target process has a UID that matches the current process's
3771 */
3772static bool check_same_owner(struct task_struct *p)
3773{
3774 const struct cred *cred = current_cred(), *pcred;
3775 bool match;
3776
3777 rcu_read_lock();
3778 pcred = __task_cred(p);
9c806aa0
EB
3779 match = (uid_eq(cred->euid, pcred->euid) ||
3780 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3781 rcu_read_unlock();
3782 return match;
3783}
3784
75381608
WL
3785static bool dl_param_changed(struct task_struct *p,
3786 const struct sched_attr *attr)
3787{
3788 struct sched_dl_entity *dl_se = &p->dl;
3789
3790 if (dl_se->dl_runtime != attr->sched_runtime ||
3791 dl_se->dl_deadline != attr->sched_deadline ||
3792 dl_se->dl_period != attr->sched_period ||
3793 dl_se->flags != attr->sched_flags)
3794 return true;
3795
3796 return false;
3797}
3798
d50dde5a
DF
3799static int __sched_setscheduler(struct task_struct *p,
3800 const struct sched_attr *attr,
dbc7f069 3801 bool user, bool pi)
1da177e4 3802{
383afd09
SR
3803 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3804 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3805 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3806 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3807 unsigned long flags;
83ab0aa0 3808 const struct sched_class *prev_class;
70b97a7f 3809 struct rq *rq;
ca94c442 3810 int reset_on_fork;
1da177e4 3811
66e5393a
SR
3812 /* may grab non-irq protected spin_locks */
3813 BUG_ON(in_interrupt());
1da177e4
LT
3814recheck:
3815 /* double check policy once rq lock held */
ca94c442
LP
3816 if (policy < 0) {
3817 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3818 policy = oldpolicy = p->policy;
ca94c442 3819 } else {
7479f3c9 3820 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3821
20f9cd2a 3822 if (!valid_policy(policy))
ca94c442
LP
3823 return -EINVAL;
3824 }
3825
7479f3c9
PZ
3826 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3827 return -EINVAL;
3828
1da177e4
LT
3829 /*
3830 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3831 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3832 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3833 */
0bb040a4 3834 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3835 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3836 return -EINVAL;
aab03e05
DF
3837 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3838 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3839 return -EINVAL;
3840
37e4ab3f
OC
3841 /*
3842 * Allow unprivileged RT tasks to decrease priority:
3843 */
961ccddd 3844 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3845 if (fair_policy(policy)) {
d0ea0268 3846 if (attr->sched_nice < task_nice(p) &&
eaad4513 3847 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3848 return -EPERM;
3849 }
3850
e05606d3 3851 if (rt_policy(policy)) {
a44702e8
ON
3852 unsigned long rlim_rtprio =
3853 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3854
3855 /* can't set/change the rt policy */
3856 if (policy != p->policy && !rlim_rtprio)
3857 return -EPERM;
3858
3859 /* can't increase priority */
d50dde5a
DF
3860 if (attr->sched_priority > p->rt_priority &&
3861 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3862 return -EPERM;
3863 }
c02aa73b 3864
d44753b8
JL
3865 /*
3866 * Can't set/change SCHED_DEADLINE policy at all for now
3867 * (safest behavior); in the future we would like to allow
3868 * unprivileged DL tasks to increase their relative deadline
3869 * or reduce their runtime (both ways reducing utilization)
3870 */
3871 if (dl_policy(policy))
3872 return -EPERM;
3873
dd41f596 3874 /*
c02aa73b
DH
3875 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3876 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3877 */
20f9cd2a 3878 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3879 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3880 return -EPERM;
3881 }
5fe1d75f 3882
37e4ab3f 3883 /* can't change other user's priorities */
c69e8d9c 3884 if (!check_same_owner(p))
37e4ab3f 3885 return -EPERM;
ca94c442
LP
3886
3887 /* Normal users shall not reset the sched_reset_on_fork flag */
3888 if (p->sched_reset_on_fork && !reset_on_fork)
3889 return -EPERM;
37e4ab3f 3890 }
1da177e4 3891
725aad24 3892 if (user) {
b0ae1981 3893 retval = security_task_setscheduler(p);
725aad24
JF
3894 if (retval)
3895 return retval;
3896 }
3897
b29739f9
IM
3898 /*
3899 * make sure no PI-waiters arrive (or leave) while we are
3900 * changing the priority of the task:
0122ec5b 3901 *
25985edc 3902 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3903 * runqueue lock must be held.
3904 */
0122ec5b 3905 rq = task_rq_lock(p, &flags);
dc61b1d6 3906
34f971f6
PZ
3907 /*
3908 * Changing the policy of the stop threads its a very bad idea
3909 */
3910 if (p == rq->stop) {
0122ec5b 3911 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3912 return -EINVAL;
3913 }
3914
a51e9198 3915 /*
d6b1e911
TG
3916 * If not changing anything there's no need to proceed further,
3917 * but store a possible modification of reset_on_fork.
a51e9198 3918 */
d50dde5a 3919 if (unlikely(policy == p->policy)) {
d0ea0268 3920 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3921 goto change;
3922 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3923 goto change;
75381608 3924 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3925 goto change;
d50dde5a 3926
d6b1e911 3927 p->sched_reset_on_fork = reset_on_fork;
45afb173 3928 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3929 return 0;
3930 }
d50dde5a 3931change:
a51e9198 3932
dc61b1d6 3933 if (user) {
332ac17e 3934#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3935 /*
3936 * Do not allow realtime tasks into groups that have no runtime
3937 * assigned.
3938 */
3939 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3940 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3941 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3942 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3943 return -EPERM;
3944 }
dc61b1d6 3945#endif
332ac17e
DF
3946#ifdef CONFIG_SMP
3947 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3948 cpumask_t *span = rq->rd->span;
332ac17e
DF
3949
3950 /*
3951 * Don't allow tasks with an affinity mask smaller than
3952 * the entire root_domain to become SCHED_DEADLINE. We
3953 * will also fail if there's no bandwidth available.
3954 */
e4099a5e
PZ
3955 if (!cpumask_subset(span, &p->cpus_allowed) ||
3956 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3957 task_rq_unlock(rq, p, &flags);
3958 return -EPERM;
3959 }
3960 }
3961#endif
3962 }
dc61b1d6 3963
1da177e4
LT
3964 /* recheck policy now with rq lock held */
3965 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3966 policy = oldpolicy = -1;
0122ec5b 3967 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3968 goto recheck;
3969 }
332ac17e
DF
3970
3971 /*
3972 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3973 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3974 * is available.
3975 */
e4099a5e 3976 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3977 task_rq_unlock(rq, p, &flags);
3978 return -EBUSY;
3979 }
3980
c365c292
TG
3981 p->sched_reset_on_fork = reset_on_fork;
3982 oldprio = p->prio;
3983
dbc7f069
PZ
3984 if (pi) {
3985 /*
3986 * Take priority boosted tasks into account. If the new
3987 * effective priority is unchanged, we just store the new
3988 * normal parameters and do not touch the scheduler class and
3989 * the runqueue. This will be done when the task deboost
3990 * itself.
3991 */
3992 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3993 if (new_effective_prio == oldprio) {
3994 __setscheduler_params(p, attr);
3995 task_rq_unlock(rq, p, &flags);
3996 return 0;
3997 }
c365c292
TG
3998 }
3999
da0c1e65 4000 queued = task_on_rq_queued(p);
051a1d1a 4001 running = task_current(rq, p);
da0c1e65 4002 if (queued)
1de64443 4003 dequeue_task(rq, p, DEQUEUE_SAVE);
0e1f3483 4004 if (running)
f3cd1c4e 4005 put_prev_task(rq, p);
f6b53205 4006
83ab0aa0 4007 prev_class = p->sched_class;
dbc7f069 4008 __setscheduler(rq, p, attr, pi);
f6b53205 4009
0e1f3483
HS
4010 if (running)
4011 p->sched_class->set_curr_task(rq);
da0c1e65 4012 if (queued) {
1de64443 4013 int enqueue_flags = ENQUEUE_RESTORE;
81a44c54
TG
4014 /*
4015 * We enqueue to tail when the priority of a task is
4016 * increased (user space view).
4017 */
1de64443
PZ
4018 if (oldprio <= p->prio)
4019 enqueue_flags |= ENQUEUE_HEAD;
4020
4021 enqueue_task(rq, p, enqueue_flags);
81a44c54 4022 }
cb469845 4023
da7a735e 4024 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4025 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4026 task_rq_unlock(rq, p, &flags);
b29739f9 4027
dbc7f069
PZ
4028 if (pi)
4029 rt_mutex_adjust_pi(p);
95e02ca9 4030
4c9a4bc8
PZ
4031 /*
4032 * Run balance callbacks after we've adjusted the PI chain.
4033 */
4034 balance_callback(rq);
4035 preempt_enable();
95e02ca9 4036
1da177e4
LT
4037 return 0;
4038}
961ccddd 4039
7479f3c9
PZ
4040static int _sched_setscheduler(struct task_struct *p, int policy,
4041 const struct sched_param *param, bool check)
4042{
4043 struct sched_attr attr = {
4044 .sched_policy = policy,
4045 .sched_priority = param->sched_priority,
4046 .sched_nice = PRIO_TO_NICE(p->static_prio),
4047 };
4048
c13db6b1
SR
4049 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4050 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4051 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4052 policy &= ~SCHED_RESET_ON_FORK;
4053 attr.sched_policy = policy;
4054 }
4055
dbc7f069 4056 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4057}
961ccddd
RR
4058/**
4059 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4060 * @p: the task in question.
4061 * @policy: new policy.
4062 * @param: structure containing the new RT priority.
4063 *
e69f6186
YB
4064 * Return: 0 on success. An error code otherwise.
4065 *
961ccddd
RR
4066 * NOTE that the task may be already dead.
4067 */
4068int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4069 const struct sched_param *param)
961ccddd 4070{
7479f3c9 4071 return _sched_setscheduler(p, policy, param, true);
961ccddd 4072}
1da177e4
LT
4073EXPORT_SYMBOL_GPL(sched_setscheduler);
4074
d50dde5a
DF
4075int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4076{
dbc7f069 4077 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4078}
4079EXPORT_SYMBOL_GPL(sched_setattr);
4080
961ccddd
RR
4081/**
4082 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4083 * @p: the task in question.
4084 * @policy: new policy.
4085 * @param: structure containing the new RT priority.
4086 *
4087 * Just like sched_setscheduler, only don't bother checking if the
4088 * current context has permission. For example, this is needed in
4089 * stop_machine(): we create temporary high priority worker threads,
4090 * but our caller might not have that capability.
e69f6186
YB
4091 *
4092 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4093 */
4094int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4095 const struct sched_param *param)
961ccddd 4096{
7479f3c9 4097 return _sched_setscheduler(p, policy, param, false);
961ccddd 4098}
84778472 4099EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4100
95cdf3b7
IM
4101static int
4102do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4103{
1da177e4
LT
4104 struct sched_param lparam;
4105 struct task_struct *p;
36c8b586 4106 int retval;
1da177e4
LT
4107
4108 if (!param || pid < 0)
4109 return -EINVAL;
4110 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4111 return -EFAULT;
5fe1d75f
ON
4112
4113 rcu_read_lock();
4114 retval = -ESRCH;
1da177e4 4115 p = find_process_by_pid(pid);
5fe1d75f
ON
4116 if (p != NULL)
4117 retval = sched_setscheduler(p, policy, &lparam);
4118 rcu_read_unlock();
36c8b586 4119
1da177e4
LT
4120 return retval;
4121}
4122
d50dde5a
DF
4123/*
4124 * Mimics kernel/events/core.c perf_copy_attr().
4125 */
4126static int sched_copy_attr(struct sched_attr __user *uattr,
4127 struct sched_attr *attr)
4128{
4129 u32 size;
4130 int ret;
4131
4132 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4133 return -EFAULT;
4134
4135 /*
4136 * zero the full structure, so that a short copy will be nice.
4137 */
4138 memset(attr, 0, sizeof(*attr));
4139
4140 ret = get_user(size, &uattr->size);
4141 if (ret)
4142 return ret;
4143
4144 if (size > PAGE_SIZE) /* silly large */
4145 goto err_size;
4146
4147 if (!size) /* abi compat */
4148 size = SCHED_ATTR_SIZE_VER0;
4149
4150 if (size < SCHED_ATTR_SIZE_VER0)
4151 goto err_size;
4152
4153 /*
4154 * If we're handed a bigger struct than we know of,
4155 * ensure all the unknown bits are 0 - i.e. new
4156 * user-space does not rely on any kernel feature
4157 * extensions we dont know about yet.
4158 */
4159 if (size > sizeof(*attr)) {
4160 unsigned char __user *addr;
4161 unsigned char __user *end;
4162 unsigned char val;
4163
4164 addr = (void __user *)uattr + sizeof(*attr);
4165 end = (void __user *)uattr + size;
4166
4167 for (; addr < end; addr++) {
4168 ret = get_user(val, addr);
4169 if (ret)
4170 return ret;
4171 if (val)
4172 goto err_size;
4173 }
4174 size = sizeof(*attr);
4175 }
4176
4177 ret = copy_from_user(attr, uattr, size);
4178 if (ret)
4179 return -EFAULT;
4180
4181 /*
4182 * XXX: do we want to be lenient like existing syscalls; or do we want
4183 * to be strict and return an error on out-of-bounds values?
4184 */
75e45d51 4185 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4186
e78c7bca 4187 return 0;
d50dde5a
DF
4188
4189err_size:
4190 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4191 return -E2BIG;
d50dde5a
DF
4192}
4193
1da177e4
LT
4194/**
4195 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4196 * @pid: the pid in question.
4197 * @policy: new policy.
4198 * @param: structure containing the new RT priority.
e69f6186
YB
4199 *
4200 * Return: 0 on success. An error code otherwise.
1da177e4 4201 */
5add95d4
HC
4202SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4203 struct sched_param __user *, param)
1da177e4 4204{
c21761f1
JB
4205 /* negative values for policy are not valid */
4206 if (policy < 0)
4207 return -EINVAL;
4208
1da177e4
LT
4209 return do_sched_setscheduler(pid, policy, param);
4210}
4211
4212/**
4213 * sys_sched_setparam - set/change the RT priority of a thread
4214 * @pid: the pid in question.
4215 * @param: structure containing the new RT priority.
e69f6186
YB
4216 *
4217 * Return: 0 on success. An error code otherwise.
1da177e4 4218 */
5add95d4 4219SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4220{
c13db6b1 4221 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4222}
4223
d50dde5a
DF
4224/**
4225 * sys_sched_setattr - same as above, but with extended sched_attr
4226 * @pid: the pid in question.
5778fccf 4227 * @uattr: structure containing the extended parameters.
db66d756 4228 * @flags: for future extension.
d50dde5a 4229 */
6d35ab48
PZ
4230SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4231 unsigned int, flags)
d50dde5a
DF
4232{
4233 struct sched_attr attr;
4234 struct task_struct *p;
4235 int retval;
4236
6d35ab48 4237 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4238 return -EINVAL;
4239
143cf23d
MK
4240 retval = sched_copy_attr(uattr, &attr);
4241 if (retval)
4242 return retval;
d50dde5a 4243
b14ed2c2 4244 if ((int)attr.sched_policy < 0)
dbdb2275 4245 return -EINVAL;
d50dde5a
DF
4246
4247 rcu_read_lock();
4248 retval = -ESRCH;
4249 p = find_process_by_pid(pid);
4250 if (p != NULL)
4251 retval = sched_setattr(p, &attr);
4252 rcu_read_unlock();
4253
4254 return retval;
4255}
4256
1da177e4
LT
4257/**
4258 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4259 * @pid: the pid in question.
e69f6186
YB
4260 *
4261 * Return: On success, the policy of the thread. Otherwise, a negative error
4262 * code.
1da177e4 4263 */
5add95d4 4264SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4265{
36c8b586 4266 struct task_struct *p;
3a5c359a 4267 int retval;
1da177e4
LT
4268
4269 if (pid < 0)
3a5c359a 4270 return -EINVAL;
1da177e4
LT
4271
4272 retval = -ESRCH;
5fe85be0 4273 rcu_read_lock();
1da177e4
LT
4274 p = find_process_by_pid(pid);
4275 if (p) {
4276 retval = security_task_getscheduler(p);
4277 if (!retval)
ca94c442
LP
4278 retval = p->policy
4279 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4280 }
5fe85be0 4281 rcu_read_unlock();
1da177e4
LT
4282 return retval;
4283}
4284
4285/**
ca94c442 4286 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4287 * @pid: the pid in question.
4288 * @param: structure containing the RT priority.
e69f6186
YB
4289 *
4290 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4291 * code.
1da177e4 4292 */
5add95d4 4293SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4294{
ce5f7f82 4295 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4296 struct task_struct *p;
3a5c359a 4297 int retval;
1da177e4
LT
4298
4299 if (!param || pid < 0)
3a5c359a 4300 return -EINVAL;
1da177e4 4301
5fe85be0 4302 rcu_read_lock();
1da177e4
LT
4303 p = find_process_by_pid(pid);
4304 retval = -ESRCH;
4305 if (!p)
4306 goto out_unlock;
4307
4308 retval = security_task_getscheduler(p);
4309 if (retval)
4310 goto out_unlock;
4311
ce5f7f82
PZ
4312 if (task_has_rt_policy(p))
4313 lp.sched_priority = p->rt_priority;
5fe85be0 4314 rcu_read_unlock();
1da177e4
LT
4315
4316 /*
4317 * This one might sleep, we cannot do it with a spinlock held ...
4318 */
4319 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4320
1da177e4
LT
4321 return retval;
4322
4323out_unlock:
5fe85be0 4324 rcu_read_unlock();
1da177e4
LT
4325 return retval;
4326}
4327
d50dde5a
DF
4328static int sched_read_attr(struct sched_attr __user *uattr,
4329 struct sched_attr *attr,
4330 unsigned int usize)
4331{
4332 int ret;
4333
4334 if (!access_ok(VERIFY_WRITE, uattr, usize))
4335 return -EFAULT;
4336
4337 /*
4338 * If we're handed a smaller struct than we know of,
4339 * ensure all the unknown bits are 0 - i.e. old
4340 * user-space does not get uncomplete information.
4341 */
4342 if (usize < sizeof(*attr)) {
4343 unsigned char *addr;
4344 unsigned char *end;
4345
4346 addr = (void *)attr + usize;
4347 end = (void *)attr + sizeof(*attr);
4348
4349 for (; addr < end; addr++) {
4350 if (*addr)
22400674 4351 return -EFBIG;
d50dde5a
DF
4352 }
4353
4354 attr->size = usize;
4355 }
4356
4efbc454 4357 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4358 if (ret)
4359 return -EFAULT;
4360
22400674 4361 return 0;
d50dde5a
DF
4362}
4363
4364/**
aab03e05 4365 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4366 * @pid: the pid in question.
5778fccf 4367 * @uattr: structure containing the extended parameters.
d50dde5a 4368 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4369 * @flags: for future extension.
d50dde5a 4370 */
6d35ab48
PZ
4371SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4372 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4373{
4374 struct sched_attr attr = {
4375 .size = sizeof(struct sched_attr),
4376 };
4377 struct task_struct *p;
4378 int retval;
4379
4380 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4381 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4382 return -EINVAL;
4383
4384 rcu_read_lock();
4385 p = find_process_by_pid(pid);
4386 retval = -ESRCH;
4387 if (!p)
4388 goto out_unlock;
4389
4390 retval = security_task_getscheduler(p);
4391 if (retval)
4392 goto out_unlock;
4393
4394 attr.sched_policy = p->policy;
7479f3c9
PZ
4395 if (p->sched_reset_on_fork)
4396 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4397 if (task_has_dl_policy(p))
4398 __getparam_dl(p, &attr);
4399 else if (task_has_rt_policy(p))
d50dde5a
DF
4400 attr.sched_priority = p->rt_priority;
4401 else
d0ea0268 4402 attr.sched_nice = task_nice(p);
d50dde5a
DF
4403
4404 rcu_read_unlock();
4405
4406 retval = sched_read_attr(uattr, &attr, size);
4407 return retval;
4408
4409out_unlock:
4410 rcu_read_unlock();
4411 return retval;
4412}
4413
96f874e2 4414long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4415{
5a16f3d3 4416 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4417 struct task_struct *p;
4418 int retval;
1da177e4 4419
23f5d142 4420 rcu_read_lock();
1da177e4
LT
4421
4422 p = find_process_by_pid(pid);
4423 if (!p) {
23f5d142 4424 rcu_read_unlock();
1da177e4
LT
4425 return -ESRCH;
4426 }
4427
23f5d142 4428 /* Prevent p going away */
1da177e4 4429 get_task_struct(p);
23f5d142 4430 rcu_read_unlock();
1da177e4 4431
14a40ffc
TH
4432 if (p->flags & PF_NO_SETAFFINITY) {
4433 retval = -EINVAL;
4434 goto out_put_task;
4435 }
5a16f3d3
RR
4436 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4437 retval = -ENOMEM;
4438 goto out_put_task;
4439 }
4440 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4441 retval = -ENOMEM;
4442 goto out_free_cpus_allowed;
4443 }
1da177e4 4444 retval = -EPERM;
4c44aaaf
EB
4445 if (!check_same_owner(p)) {
4446 rcu_read_lock();
4447 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4448 rcu_read_unlock();
16303ab2 4449 goto out_free_new_mask;
4c44aaaf
EB
4450 }
4451 rcu_read_unlock();
4452 }
1da177e4 4453
b0ae1981 4454 retval = security_task_setscheduler(p);
e7834f8f 4455 if (retval)
16303ab2 4456 goto out_free_new_mask;
e7834f8f 4457
e4099a5e
PZ
4458
4459 cpuset_cpus_allowed(p, cpus_allowed);
4460 cpumask_and(new_mask, in_mask, cpus_allowed);
4461
332ac17e
DF
4462 /*
4463 * Since bandwidth control happens on root_domain basis,
4464 * if admission test is enabled, we only admit -deadline
4465 * tasks allowed to run on all the CPUs in the task's
4466 * root_domain.
4467 */
4468#ifdef CONFIG_SMP
f1e3a093
KT
4469 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4470 rcu_read_lock();
4471 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4472 retval = -EBUSY;
f1e3a093 4473 rcu_read_unlock();
16303ab2 4474 goto out_free_new_mask;
332ac17e 4475 }
f1e3a093 4476 rcu_read_unlock();
332ac17e
DF
4477 }
4478#endif
49246274 4479again:
25834c73 4480 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4481
8707d8b8 4482 if (!retval) {
5a16f3d3
RR
4483 cpuset_cpus_allowed(p, cpus_allowed);
4484 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4485 /*
4486 * We must have raced with a concurrent cpuset
4487 * update. Just reset the cpus_allowed to the
4488 * cpuset's cpus_allowed
4489 */
5a16f3d3 4490 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4491 goto again;
4492 }
4493 }
16303ab2 4494out_free_new_mask:
5a16f3d3
RR
4495 free_cpumask_var(new_mask);
4496out_free_cpus_allowed:
4497 free_cpumask_var(cpus_allowed);
4498out_put_task:
1da177e4 4499 put_task_struct(p);
1da177e4
LT
4500 return retval;
4501}
4502
4503static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4504 struct cpumask *new_mask)
1da177e4 4505{
96f874e2
RR
4506 if (len < cpumask_size())
4507 cpumask_clear(new_mask);
4508 else if (len > cpumask_size())
4509 len = cpumask_size();
4510
1da177e4
LT
4511 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4512}
4513
4514/**
4515 * sys_sched_setaffinity - set the cpu affinity of a process
4516 * @pid: pid of the process
4517 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4518 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4519 *
4520 * Return: 0 on success. An error code otherwise.
1da177e4 4521 */
5add95d4
HC
4522SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4523 unsigned long __user *, user_mask_ptr)
1da177e4 4524{
5a16f3d3 4525 cpumask_var_t new_mask;
1da177e4
LT
4526 int retval;
4527
5a16f3d3
RR
4528 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4529 return -ENOMEM;
1da177e4 4530
5a16f3d3
RR
4531 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4532 if (retval == 0)
4533 retval = sched_setaffinity(pid, new_mask);
4534 free_cpumask_var(new_mask);
4535 return retval;
1da177e4
LT
4536}
4537
96f874e2 4538long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4539{
36c8b586 4540 struct task_struct *p;
31605683 4541 unsigned long flags;
1da177e4 4542 int retval;
1da177e4 4543
23f5d142 4544 rcu_read_lock();
1da177e4
LT
4545
4546 retval = -ESRCH;
4547 p = find_process_by_pid(pid);
4548 if (!p)
4549 goto out_unlock;
4550
e7834f8f
DQ
4551 retval = security_task_getscheduler(p);
4552 if (retval)
4553 goto out_unlock;
4554
013fdb80 4555 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4556 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4557 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4558
4559out_unlock:
23f5d142 4560 rcu_read_unlock();
1da177e4 4561
9531b62f 4562 return retval;
1da177e4
LT
4563}
4564
4565/**
4566 * sys_sched_getaffinity - get the cpu affinity of a process
4567 * @pid: pid of the process
4568 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4569 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4570 *
4571 * Return: 0 on success. An error code otherwise.
1da177e4 4572 */
5add95d4
HC
4573SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4574 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4575{
4576 int ret;
f17c8607 4577 cpumask_var_t mask;
1da177e4 4578
84fba5ec 4579 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4580 return -EINVAL;
4581 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4582 return -EINVAL;
4583
f17c8607
RR
4584 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4585 return -ENOMEM;
1da177e4 4586
f17c8607
RR
4587 ret = sched_getaffinity(pid, mask);
4588 if (ret == 0) {
8bc037fb 4589 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4590
4591 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4592 ret = -EFAULT;
4593 else
cd3d8031 4594 ret = retlen;
f17c8607
RR
4595 }
4596 free_cpumask_var(mask);
1da177e4 4597
f17c8607 4598 return ret;
1da177e4
LT
4599}
4600
4601/**
4602 * sys_sched_yield - yield the current processor to other threads.
4603 *
dd41f596
IM
4604 * This function yields the current CPU to other tasks. If there are no
4605 * other threads running on this CPU then this function will return.
e69f6186
YB
4606 *
4607 * Return: 0.
1da177e4 4608 */
5add95d4 4609SYSCALL_DEFINE0(sched_yield)
1da177e4 4610{
70b97a7f 4611 struct rq *rq = this_rq_lock();
1da177e4 4612
2d72376b 4613 schedstat_inc(rq, yld_count);
4530d7ab 4614 current->sched_class->yield_task(rq);
1da177e4
LT
4615
4616 /*
4617 * Since we are going to call schedule() anyway, there's
4618 * no need to preempt or enable interrupts:
4619 */
4620 __release(rq->lock);
8a25d5de 4621 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4622 do_raw_spin_unlock(&rq->lock);
ba74c144 4623 sched_preempt_enable_no_resched();
1da177e4
LT
4624
4625 schedule();
4626
4627 return 0;
4628}
4629
02b67cc3 4630int __sched _cond_resched(void)
1da177e4 4631{
fe32d3cd 4632 if (should_resched(0)) {
a18b5d01 4633 preempt_schedule_common();
1da177e4
LT
4634 return 1;
4635 }
4636 return 0;
4637}
02b67cc3 4638EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4639
4640/*
613afbf8 4641 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4642 * call schedule, and on return reacquire the lock.
4643 *
41a2d6cf 4644 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4645 * operations here to prevent schedule() from being called twice (once via
4646 * spin_unlock(), once by hand).
4647 */
613afbf8 4648int __cond_resched_lock(spinlock_t *lock)
1da177e4 4649{
fe32d3cd 4650 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4651 int ret = 0;
4652
f607c668
PZ
4653 lockdep_assert_held(lock);
4654
4a81e832 4655 if (spin_needbreak(lock) || resched) {
1da177e4 4656 spin_unlock(lock);
d86ee480 4657 if (resched)
a18b5d01 4658 preempt_schedule_common();
95c354fe
NP
4659 else
4660 cpu_relax();
6df3cecb 4661 ret = 1;
1da177e4 4662 spin_lock(lock);
1da177e4 4663 }
6df3cecb 4664 return ret;
1da177e4 4665}
613afbf8 4666EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4667
613afbf8 4668int __sched __cond_resched_softirq(void)
1da177e4
LT
4669{
4670 BUG_ON(!in_softirq());
4671
fe32d3cd 4672 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4673 local_bh_enable();
a18b5d01 4674 preempt_schedule_common();
1da177e4
LT
4675 local_bh_disable();
4676 return 1;
4677 }
4678 return 0;
4679}
613afbf8 4680EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4681
1da177e4
LT
4682/**
4683 * yield - yield the current processor to other threads.
4684 *
8e3fabfd
PZ
4685 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4686 *
4687 * The scheduler is at all times free to pick the calling task as the most
4688 * eligible task to run, if removing the yield() call from your code breaks
4689 * it, its already broken.
4690 *
4691 * Typical broken usage is:
4692 *
4693 * while (!event)
4694 * yield();
4695 *
4696 * where one assumes that yield() will let 'the other' process run that will
4697 * make event true. If the current task is a SCHED_FIFO task that will never
4698 * happen. Never use yield() as a progress guarantee!!
4699 *
4700 * If you want to use yield() to wait for something, use wait_event().
4701 * If you want to use yield() to be 'nice' for others, use cond_resched().
4702 * If you still want to use yield(), do not!
1da177e4
LT
4703 */
4704void __sched yield(void)
4705{
4706 set_current_state(TASK_RUNNING);
4707 sys_sched_yield();
4708}
1da177e4
LT
4709EXPORT_SYMBOL(yield);
4710
d95f4122
MG
4711/**
4712 * yield_to - yield the current processor to another thread in
4713 * your thread group, or accelerate that thread toward the
4714 * processor it's on.
16addf95
RD
4715 * @p: target task
4716 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4717 *
4718 * It's the caller's job to ensure that the target task struct
4719 * can't go away on us before we can do any checks.
4720 *
e69f6186 4721 * Return:
7b270f60
PZ
4722 * true (>0) if we indeed boosted the target task.
4723 * false (0) if we failed to boost the target.
4724 * -ESRCH if there's no task to yield to.
d95f4122 4725 */
fa93384f 4726int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4727{
4728 struct task_struct *curr = current;
4729 struct rq *rq, *p_rq;
4730 unsigned long flags;
c3c18640 4731 int yielded = 0;
d95f4122
MG
4732
4733 local_irq_save(flags);
4734 rq = this_rq();
4735
4736again:
4737 p_rq = task_rq(p);
7b270f60
PZ
4738 /*
4739 * If we're the only runnable task on the rq and target rq also
4740 * has only one task, there's absolutely no point in yielding.
4741 */
4742 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4743 yielded = -ESRCH;
4744 goto out_irq;
4745 }
4746
d95f4122 4747 double_rq_lock(rq, p_rq);
39e24d8f 4748 if (task_rq(p) != p_rq) {
d95f4122
MG
4749 double_rq_unlock(rq, p_rq);
4750 goto again;
4751 }
4752
4753 if (!curr->sched_class->yield_to_task)
7b270f60 4754 goto out_unlock;
d95f4122
MG
4755
4756 if (curr->sched_class != p->sched_class)
7b270f60 4757 goto out_unlock;
d95f4122
MG
4758
4759 if (task_running(p_rq, p) || p->state)
7b270f60 4760 goto out_unlock;
d95f4122
MG
4761
4762 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4763 if (yielded) {
d95f4122 4764 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4765 /*
4766 * Make p's CPU reschedule; pick_next_entity takes care of
4767 * fairness.
4768 */
4769 if (preempt && rq != p_rq)
8875125e 4770 resched_curr(p_rq);
6d1cafd8 4771 }
d95f4122 4772
7b270f60 4773out_unlock:
d95f4122 4774 double_rq_unlock(rq, p_rq);
7b270f60 4775out_irq:
d95f4122
MG
4776 local_irq_restore(flags);
4777
7b270f60 4778 if (yielded > 0)
d95f4122
MG
4779 schedule();
4780
4781 return yielded;
4782}
4783EXPORT_SYMBOL_GPL(yield_to);
4784
1da177e4 4785/*
41a2d6cf 4786 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4787 * that process accounting knows that this is a task in IO wait state.
1da177e4 4788 */
1da177e4
LT
4789long __sched io_schedule_timeout(long timeout)
4790{
9cff8ade
N
4791 int old_iowait = current->in_iowait;
4792 struct rq *rq;
1da177e4
LT
4793 long ret;
4794
9cff8ade 4795 current->in_iowait = 1;
10d784ea 4796 blk_schedule_flush_plug(current);
9cff8ade 4797
0ff92245 4798 delayacct_blkio_start();
9cff8ade 4799 rq = raw_rq();
1da177e4
LT
4800 atomic_inc(&rq->nr_iowait);
4801 ret = schedule_timeout(timeout);
9cff8ade 4802 current->in_iowait = old_iowait;
1da177e4 4803 atomic_dec(&rq->nr_iowait);
0ff92245 4804 delayacct_blkio_end();
9cff8ade 4805
1da177e4
LT
4806 return ret;
4807}
9cff8ade 4808EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4809
4810/**
4811 * sys_sched_get_priority_max - return maximum RT priority.
4812 * @policy: scheduling class.
4813 *
e69f6186
YB
4814 * Return: On success, this syscall returns the maximum
4815 * rt_priority that can be used by a given scheduling class.
4816 * On failure, a negative error code is returned.
1da177e4 4817 */
5add95d4 4818SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4819{
4820 int ret = -EINVAL;
4821
4822 switch (policy) {
4823 case SCHED_FIFO:
4824 case SCHED_RR:
4825 ret = MAX_USER_RT_PRIO-1;
4826 break;
aab03e05 4827 case SCHED_DEADLINE:
1da177e4 4828 case SCHED_NORMAL:
b0a9499c 4829 case SCHED_BATCH:
dd41f596 4830 case SCHED_IDLE:
1da177e4
LT
4831 ret = 0;
4832 break;
4833 }
4834 return ret;
4835}
4836
4837/**
4838 * sys_sched_get_priority_min - return minimum RT priority.
4839 * @policy: scheduling class.
4840 *
e69f6186
YB
4841 * Return: On success, this syscall returns the minimum
4842 * rt_priority that can be used by a given scheduling class.
4843 * On failure, a negative error code is returned.
1da177e4 4844 */
5add95d4 4845SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4846{
4847 int ret = -EINVAL;
4848
4849 switch (policy) {
4850 case SCHED_FIFO:
4851 case SCHED_RR:
4852 ret = 1;
4853 break;
aab03e05 4854 case SCHED_DEADLINE:
1da177e4 4855 case SCHED_NORMAL:
b0a9499c 4856 case SCHED_BATCH:
dd41f596 4857 case SCHED_IDLE:
1da177e4
LT
4858 ret = 0;
4859 }
4860 return ret;
4861}
4862
4863/**
4864 * sys_sched_rr_get_interval - return the default timeslice of a process.
4865 * @pid: pid of the process.
4866 * @interval: userspace pointer to the timeslice value.
4867 *
4868 * this syscall writes the default timeslice value of a given process
4869 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4870 *
4871 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4872 * an error code.
1da177e4 4873 */
17da2bd9 4874SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4875 struct timespec __user *, interval)
1da177e4 4876{
36c8b586 4877 struct task_struct *p;
a4ec24b4 4878 unsigned int time_slice;
dba091b9
TG
4879 unsigned long flags;
4880 struct rq *rq;
3a5c359a 4881 int retval;
1da177e4 4882 struct timespec t;
1da177e4
LT
4883
4884 if (pid < 0)
3a5c359a 4885 return -EINVAL;
1da177e4
LT
4886
4887 retval = -ESRCH;
1a551ae7 4888 rcu_read_lock();
1da177e4
LT
4889 p = find_process_by_pid(pid);
4890 if (!p)
4891 goto out_unlock;
4892
4893 retval = security_task_getscheduler(p);
4894 if (retval)
4895 goto out_unlock;
4896
dba091b9 4897 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4898 time_slice = 0;
4899 if (p->sched_class->get_rr_interval)
4900 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4901 task_rq_unlock(rq, p, &flags);
a4ec24b4 4902
1a551ae7 4903 rcu_read_unlock();
a4ec24b4 4904 jiffies_to_timespec(time_slice, &t);
1da177e4 4905 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4906 return retval;
3a5c359a 4907
1da177e4 4908out_unlock:
1a551ae7 4909 rcu_read_unlock();
1da177e4
LT
4910 return retval;
4911}
4912
7c731e0a 4913static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4914
82a1fcb9 4915void sched_show_task(struct task_struct *p)
1da177e4 4916{
1da177e4 4917 unsigned long free = 0;
4e79752c 4918 int ppid;
1f8a7633 4919 unsigned long state = p->state;
1da177e4 4920
1f8a7633
TH
4921 if (state)
4922 state = __ffs(state) + 1;
28d0686c 4923 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4924 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4925#if BITS_PER_LONG == 32
1da177e4 4926 if (state == TASK_RUNNING)
3df0fc5b 4927 printk(KERN_CONT " running ");
1da177e4 4928 else
3df0fc5b 4929 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4930#else
4931 if (state == TASK_RUNNING)
3df0fc5b 4932 printk(KERN_CONT " running task ");
1da177e4 4933 else
3df0fc5b 4934 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4935#endif
4936#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4937 free = stack_not_used(p);
1da177e4 4938#endif
a90e984c 4939 ppid = 0;
4e79752c 4940 rcu_read_lock();
a90e984c
ON
4941 if (pid_alive(p))
4942 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4943 rcu_read_unlock();
3df0fc5b 4944 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4945 task_pid_nr(p), ppid,
aa47b7e0 4946 (unsigned long)task_thread_info(p)->flags);
1da177e4 4947
3d1cb205 4948 print_worker_info(KERN_INFO, p);
5fb5e6de 4949 show_stack(p, NULL);
1da177e4
LT
4950}
4951
e59e2ae2 4952void show_state_filter(unsigned long state_filter)
1da177e4 4953{
36c8b586 4954 struct task_struct *g, *p;
1da177e4 4955
4bd77321 4956#if BITS_PER_LONG == 32
3df0fc5b
PZ
4957 printk(KERN_INFO
4958 " task PC stack pid father\n");
1da177e4 4959#else
3df0fc5b
PZ
4960 printk(KERN_INFO
4961 " task PC stack pid father\n");
1da177e4 4962#endif
510f5acc 4963 rcu_read_lock();
5d07f420 4964 for_each_process_thread(g, p) {
1da177e4
LT
4965 /*
4966 * reset the NMI-timeout, listing all files on a slow
25985edc 4967 * console might take a lot of time:
1da177e4
LT
4968 */
4969 touch_nmi_watchdog();
39bc89fd 4970 if (!state_filter || (p->state & state_filter))
82a1fcb9 4971 sched_show_task(p);
5d07f420 4972 }
1da177e4 4973
04c9167f
JF
4974 touch_all_softlockup_watchdogs();
4975
dd41f596
IM
4976#ifdef CONFIG_SCHED_DEBUG
4977 sysrq_sched_debug_show();
4978#endif
510f5acc 4979 rcu_read_unlock();
e59e2ae2
IM
4980 /*
4981 * Only show locks if all tasks are dumped:
4982 */
93335a21 4983 if (!state_filter)
e59e2ae2 4984 debug_show_all_locks();
1da177e4
LT
4985}
4986
0db0628d 4987void init_idle_bootup_task(struct task_struct *idle)
1df21055 4988{
dd41f596 4989 idle->sched_class = &idle_sched_class;
1df21055
IM
4990}
4991
f340c0d1
IM
4992/**
4993 * init_idle - set up an idle thread for a given CPU
4994 * @idle: task in question
4995 * @cpu: cpu the idle task belongs to
4996 *
4997 * NOTE: this function does not set the idle thread's NEED_RESCHED
4998 * flag, to make booting more robust.
4999 */
0db0628d 5000void init_idle(struct task_struct *idle, int cpu)
1da177e4 5001{
70b97a7f 5002 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5003 unsigned long flags;
5004
25834c73
PZ
5005 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5006 raw_spin_lock(&rq->lock);
5cbd54ef 5007
5e1576ed 5008 __sched_fork(0, idle);
06b83b5f 5009 idle->state = TASK_RUNNING;
dd41f596
IM
5010 idle->se.exec_start = sched_clock();
5011
de9b8f5d
PZ
5012#ifdef CONFIG_SMP
5013 /*
5014 * Its possible that init_idle() gets called multiple times on a task,
5015 * in that case do_set_cpus_allowed() will not do the right thing.
5016 *
5017 * And since this is boot we can forgo the serialization.
5018 */
5019 set_cpus_allowed_common(idle, cpumask_of(cpu));
5020#endif
6506cf6c
PZ
5021 /*
5022 * We're having a chicken and egg problem, even though we are
5023 * holding rq->lock, the cpu isn't yet set to this cpu so the
5024 * lockdep check in task_group() will fail.
5025 *
5026 * Similar case to sched_fork(). / Alternatively we could
5027 * use task_rq_lock() here and obtain the other rq->lock.
5028 *
5029 * Silence PROVE_RCU
5030 */
5031 rcu_read_lock();
dd41f596 5032 __set_task_cpu(idle, cpu);
6506cf6c 5033 rcu_read_unlock();
1da177e4 5034
1da177e4 5035 rq->curr = rq->idle = idle;
da0c1e65 5036 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5037#ifdef CONFIG_SMP
3ca7a440 5038 idle->on_cpu = 1;
4866cde0 5039#endif
25834c73
PZ
5040 raw_spin_unlock(&rq->lock);
5041 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5042
5043 /* Set the preempt count _outside_ the spinlocks! */
01028747 5044 init_idle_preempt_count(idle, cpu);
55cd5340 5045
dd41f596
IM
5046 /*
5047 * The idle tasks have their own, simple scheduling class:
5048 */
5049 idle->sched_class = &idle_sched_class;
868baf07 5050 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5051 vtime_init_idle(idle, cpu);
de9b8f5d 5052#ifdef CONFIG_SMP
f1c6f1a7
CE
5053 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5054#endif
19978ca6
IM
5055}
5056
f82f8042
JL
5057int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5058 const struct cpumask *trial)
5059{
5060 int ret = 1, trial_cpus;
5061 struct dl_bw *cur_dl_b;
5062 unsigned long flags;
5063
bb2bc55a
MG
5064 if (!cpumask_weight(cur))
5065 return ret;
5066
75e23e49 5067 rcu_read_lock_sched();
f82f8042
JL
5068 cur_dl_b = dl_bw_of(cpumask_any(cur));
5069 trial_cpus = cpumask_weight(trial);
5070
5071 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5072 if (cur_dl_b->bw != -1 &&
5073 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5074 ret = 0;
5075 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5076 rcu_read_unlock_sched();
f82f8042
JL
5077
5078 return ret;
5079}
5080
7f51412a
JL
5081int task_can_attach(struct task_struct *p,
5082 const struct cpumask *cs_cpus_allowed)
5083{
5084 int ret = 0;
5085
5086 /*
5087 * Kthreads which disallow setaffinity shouldn't be moved
5088 * to a new cpuset; we don't want to change their cpu
5089 * affinity and isolating such threads by their set of
5090 * allowed nodes is unnecessary. Thus, cpusets are not
5091 * applicable for such threads. This prevents checking for
5092 * success of set_cpus_allowed_ptr() on all attached tasks
5093 * before cpus_allowed may be changed.
5094 */
5095 if (p->flags & PF_NO_SETAFFINITY) {
5096 ret = -EINVAL;
5097 goto out;
5098 }
5099
5100#ifdef CONFIG_SMP
5101 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5102 cs_cpus_allowed)) {
5103 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5104 cs_cpus_allowed);
75e23e49 5105 struct dl_bw *dl_b;
7f51412a
JL
5106 bool overflow;
5107 int cpus;
5108 unsigned long flags;
5109
75e23e49
JL
5110 rcu_read_lock_sched();
5111 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5112 raw_spin_lock_irqsave(&dl_b->lock, flags);
5113 cpus = dl_bw_cpus(dest_cpu);
5114 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5115 if (overflow)
5116 ret = -EBUSY;
5117 else {
5118 /*
5119 * We reserve space for this task in the destination
5120 * root_domain, as we can't fail after this point.
5121 * We will free resources in the source root_domain
5122 * later on (see set_cpus_allowed_dl()).
5123 */
5124 __dl_add(dl_b, p->dl.dl_bw);
5125 }
5126 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5127 rcu_read_unlock_sched();
7f51412a
JL
5128
5129 }
5130#endif
5131out:
5132 return ret;
5133}
5134
1da177e4 5135#ifdef CONFIG_SMP
1da177e4 5136
e6628d5b
MG
5137#ifdef CONFIG_NUMA_BALANCING
5138/* Migrate current task p to target_cpu */
5139int migrate_task_to(struct task_struct *p, int target_cpu)
5140{
5141 struct migration_arg arg = { p, target_cpu };
5142 int curr_cpu = task_cpu(p);
5143
5144 if (curr_cpu == target_cpu)
5145 return 0;
5146
5147 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5148 return -EINVAL;
5149
5150 /* TODO: This is not properly updating schedstats */
5151
286549dc 5152 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5153 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5154}
0ec8aa00
PZ
5155
5156/*
5157 * Requeue a task on a given node and accurately track the number of NUMA
5158 * tasks on the runqueues
5159 */
5160void sched_setnuma(struct task_struct *p, int nid)
5161{
5162 struct rq *rq;
5163 unsigned long flags;
da0c1e65 5164 bool queued, running;
0ec8aa00
PZ
5165
5166 rq = task_rq_lock(p, &flags);
da0c1e65 5167 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5168 running = task_current(rq, p);
5169
da0c1e65 5170 if (queued)
1de64443 5171 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5172 if (running)
f3cd1c4e 5173 put_prev_task(rq, p);
0ec8aa00
PZ
5174
5175 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5176
5177 if (running)
5178 p->sched_class->set_curr_task(rq);
da0c1e65 5179 if (queued)
1de64443 5180 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5181 task_rq_unlock(rq, p, &flags);
5182}
5cc389bc 5183#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5184
1da177e4 5185#ifdef CONFIG_HOTPLUG_CPU
054b9108 5186/*
48c5ccae
PZ
5187 * Ensures that the idle task is using init_mm right before its cpu goes
5188 * offline.
054b9108 5189 */
48c5ccae 5190void idle_task_exit(void)
1da177e4 5191{
48c5ccae 5192 struct mm_struct *mm = current->active_mm;
e76bd8d9 5193
48c5ccae 5194 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5195
a53efe5f 5196 if (mm != &init_mm) {
48c5ccae 5197 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5198 finish_arch_post_lock_switch();
5199 }
48c5ccae 5200 mmdrop(mm);
1da177e4
LT
5201}
5202
5203/*
5d180232
PZ
5204 * Since this CPU is going 'away' for a while, fold any nr_active delta
5205 * we might have. Assumes we're called after migrate_tasks() so that the
5206 * nr_active count is stable.
5207 *
5208 * Also see the comment "Global load-average calculations".
1da177e4 5209 */
5d180232 5210static void calc_load_migrate(struct rq *rq)
1da177e4 5211{
5d180232
PZ
5212 long delta = calc_load_fold_active(rq);
5213 if (delta)
5214 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5215}
5216
3f1d2a31
PZ
5217static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5218{
5219}
5220
5221static const struct sched_class fake_sched_class = {
5222 .put_prev_task = put_prev_task_fake,
5223};
5224
5225static struct task_struct fake_task = {
5226 /*
5227 * Avoid pull_{rt,dl}_task()
5228 */
5229 .prio = MAX_PRIO + 1,
5230 .sched_class = &fake_sched_class,
5231};
5232
48f24c4d 5233/*
48c5ccae
PZ
5234 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5235 * try_to_wake_up()->select_task_rq().
5236 *
5237 * Called with rq->lock held even though we'er in stop_machine() and
5238 * there's no concurrency possible, we hold the required locks anyway
5239 * because of lock validation efforts.
1da177e4 5240 */
5e16bbc2 5241static void migrate_tasks(struct rq *dead_rq)
1da177e4 5242{
5e16bbc2 5243 struct rq *rq = dead_rq;
48c5ccae
PZ
5244 struct task_struct *next, *stop = rq->stop;
5245 int dest_cpu;
1da177e4
LT
5246
5247 /*
48c5ccae
PZ
5248 * Fudge the rq selection such that the below task selection loop
5249 * doesn't get stuck on the currently eligible stop task.
5250 *
5251 * We're currently inside stop_machine() and the rq is either stuck
5252 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5253 * either way we should never end up calling schedule() until we're
5254 * done here.
1da177e4 5255 */
48c5ccae 5256 rq->stop = NULL;
48f24c4d 5257
77bd3970
FW
5258 /*
5259 * put_prev_task() and pick_next_task() sched
5260 * class method both need to have an up-to-date
5261 * value of rq->clock[_task]
5262 */
5263 update_rq_clock(rq);
5264
5e16bbc2 5265 for (;;) {
48c5ccae
PZ
5266 /*
5267 * There's this thread running, bail when that's the only
5268 * remaining thread.
5269 */
5270 if (rq->nr_running == 1)
dd41f596 5271 break;
48c5ccae 5272
cbce1a68 5273 /*
5473e0cc 5274 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5275 */
5276 lockdep_pin_lock(&rq->lock);
3f1d2a31 5277 next = pick_next_task(rq, &fake_task);
48c5ccae 5278 BUG_ON(!next);
79c53799 5279 next->sched_class->put_prev_task(rq, next);
e692ab53 5280
5473e0cc
WL
5281 /*
5282 * Rules for changing task_struct::cpus_allowed are holding
5283 * both pi_lock and rq->lock, such that holding either
5284 * stabilizes the mask.
5285 *
5286 * Drop rq->lock is not quite as disastrous as it usually is
5287 * because !cpu_active at this point, which means load-balance
5288 * will not interfere. Also, stop-machine.
5289 */
5290 lockdep_unpin_lock(&rq->lock);
5291 raw_spin_unlock(&rq->lock);
5292 raw_spin_lock(&next->pi_lock);
5293 raw_spin_lock(&rq->lock);
5294
5295 /*
5296 * Since we're inside stop-machine, _nothing_ should have
5297 * changed the task, WARN if weird stuff happened, because in
5298 * that case the above rq->lock drop is a fail too.
5299 */
5300 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5301 raw_spin_unlock(&next->pi_lock);
5302 continue;
5303 }
5304
48c5ccae 5305 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5306 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5307
5e16bbc2
PZ
5308 rq = __migrate_task(rq, next, dest_cpu);
5309 if (rq != dead_rq) {
5310 raw_spin_unlock(&rq->lock);
5311 rq = dead_rq;
5312 raw_spin_lock(&rq->lock);
5313 }
5473e0cc 5314 raw_spin_unlock(&next->pi_lock);
1da177e4 5315 }
dce48a84 5316
48c5ccae 5317 rq->stop = stop;
dce48a84 5318}
1da177e4
LT
5319#endif /* CONFIG_HOTPLUG_CPU */
5320
e692ab53
NP
5321#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5322
5323static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5324 {
5325 .procname = "sched_domain",
c57baf1e 5326 .mode = 0555,
e0361851 5327 },
56992309 5328 {}
e692ab53
NP
5329};
5330
5331static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5332 {
5333 .procname = "kernel",
c57baf1e 5334 .mode = 0555,
e0361851
AD
5335 .child = sd_ctl_dir,
5336 },
56992309 5337 {}
e692ab53
NP
5338};
5339
5340static struct ctl_table *sd_alloc_ctl_entry(int n)
5341{
5342 struct ctl_table *entry =
5cf9f062 5343 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5344
e692ab53
NP
5345 return entry;
5346}
5347
6382bc90
MM
5348static void sd_free_ctl_entry(struct ctl_table **tablep)
5349{
cd790076 5350 struct ctl_table *entry;
6382bc90 5351
cd790076
MM
5352 /*
5353 * In the intermediate directories, both the child directory and
5354 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5355 * will always be set. In the lowest directory the names are
cd790076
MM
5356 * static strings and all have proc handlers.
5357 */
5358 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5359 if (entry->child)
5360 sd_free_ctl_entry(&entry->child);
cd790076
MM
5361 if (entry->proc_handler == NULL)
5362 kfree(entry->procname);
5363 }
6382bc90
MM
5364
5365 kfree(*tablep);
5366 *tablep = NULL;
5367}
5368
201c373e 5369static int min_load_idx = 0;
fd9b86d3 5370static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5371
e692ab53 5372static void
e0361851 5373set_table_entry(struct ctl_table *entry,
e692ab53 5374 const char *procname, void *data, int maxlen,
201c373e
NK
5375 umode_t mode, proc_handler *proc_handler,
5376 bool load_idx)
e692ab53 5377{
e692ab53
NP
5378 entry->procname = procname;
5379 entry->data = data;
5380 entry->maxlen = maxlen;
5381 entry->mode = mode;
5382 entry->proc_handler = proc_handler;
201c373e
NK
5383
5384 if (load_idx) {
5385 entry->extra1 = &min_load_idx;
5386 entry->extra2 = &max_load_idx;
5387 }
e692ab53
NP
5388}
5389
5390static struct ctl_table *
5391sd_alloc_ctl_domain_table(struct sched_domain *sd)
5392{
37e6bae8 5393 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5394
ad1cdc1d
MM
5395 if (table == NULL)
5396 return NULL;
5397
e0361851 5398 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5399 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5400 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5401 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5402 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5403 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5404 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5405 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5406 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5407 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5408 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5409 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5410 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5411 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5412 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5413 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5414 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5415 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5416 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5417 &sd->cache_nice_tries,
201c373e 5418 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5419 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5420 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5421 set_table_entry(&table[11], "max_newidle_lb_cost",
5422 &sd->max_newidle_lb_cost,
5423 sizeof(long), 0644, proc_doulongvec_minmax, false);
5424 set_table_entry(&table[12], "name", sd->name,
201c373e 5425 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5426 /* &table[13] is terminator */
e692ab53
NP
5427
5428 return table;
5429}
5430
be7002e6 5431static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5432{
5433 struct ctl_table *entry, *table;
5434 struct sched_domain *sd;
5435 int domain_num = 0, i;
5436 char buf[32];
5437
5438 for_each_domain(cpu, sd)
5439 domain_num++;
5440 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5441 if (table == NULL)
5442 return NULL;
e692ab53
NP
5443
5444 i = 0;
5445 for_each_domain(cpu, sd) {
5446 snprintf(buf, 32, "domain%d", i);
e692ab53 5447 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5448 entry->mode = 0555;
e692ab53
NP
5449 entry->child = sd_alloc_ctl_domain_table(sd);
5450 entry++;
5451 i++;
5452 }
5453 return table;
5454}
5455
5456static struct ctl_table_header *sd_sysctl_header;
6382bc90 5457static void register_sched_domain_sysctl(void)
e692ab53 5458{
6ad4c188 5459 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5460 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5461 char buf[32];
5462
7378547f
MM
5463 WARN_ON(sd_ctl_dir[0].child);
5464 sd_ctl_dir[0].child = entry;
5465
ad1cdc1d
MM
5466 if (entry == NULL)
5467 return;
5468
6ad4c188 5469 for_each_possible_cpu(i) {
e692ab53 5470 snprintf(buf, 32, "cpu%d", i);
e692ab53 5471 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5472 entry->mode = 0555;
e692ab53 5473 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5474 entry++;
e692ab53 5475 }
7378547f
MM
5476
5477 WARN_ON(sd_sysctl_header);
e692ab53
NP
5478 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5479}
6382bc90 5480
7378547f 5481/* may be called multiple times per register */
6382bc90
MM
5482static void unregister_sched_domain_sysctl(void)
5483{
781b0203 5484 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5485 sd_sysctl_header = NULL;
7378547f
MM
5486 if (sd_ctl_dir[0].child)
5487 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5488}
e692ab53 5489#else
6382bc90
MM
5490static void register_sched_domain_sysctl(void)
5491{
5492}
5493static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5494{
5495}
5cc389bc 5496#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5497
1f11eb6a
GH
5498static void set_rq_online(struct rq *rq)
5499{
5500 if (!rq->online) {
5501 const struct sched_class *class;
5502
c6c4927b 5503 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5504 rq->online = 1;
5505
5506 for_each_class(class) {
5507 if (class->rq_online)
5508 class->rq_online(rq);
5509 }
5510 }
5511}
5512
5513static void set_rq_offline(struct rq *rq)
5514{
5515 if (rq->online) {
5516 const struct sched_class *class;
5517
5518 for_each_class(class) {
5519 if (class->rq_offline)
5520 class->rq_offline(rq);
5521 }
5522
c6c4927b 5523 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5524 rq->online = 0;
5525 }
5526}
5527
1da177e4
LT
5528/*
5529 * migration_call - callback that gets triggered when a CPU is added.
5530 * Here we can start up the necessary migration thread for the new CPU.
5531 */
0db0628d 5532static int
48f24c4d 5533migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5534{
48f24c4d 5535 int cpu = (long)hcpu;
1da177e4 5536 unsigned long flags;
969c7921 5537 struct rq *rq = cpu_rq(cpu);
1da177e4 5538
48c5ccae 5539 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5540
1da177e4 5541 case CPU_UP_PREPARE:
a468d389 5542 rq->calc_load_update = calc_load_update;
1da177e4 5543 break;
48f24c4d 5544
1da177e4 5545 case CPU_ONLINE:
1f94ef59 5546 /* Update our root-domain */
05fa785c 5547 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5548 if (rq->rd) {
c6c4927b 5549 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5550
5551 set_rq_online(rq);
1f94ef59 5552 }
05fa785c 5553 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5554 break;
48f24c4d 5555
1da177e4 5556#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5557 case CPU_DYING:
317f3941 5558 sched_ttwu_pending();
57d885fe 5559 /* Update our root-domain */
05fa785c 5560 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5561 if (rq->rd) {
c6c4927b 5562 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5563 set_rq_offline(rq);
57d885fe 5564 }
5e16bbc2 5565 migrate_tasks(rq);
48c5ccae 5566 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5567 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5568 break;
48c5ccae 5569
5d180232 5570 case CPU_DEAD:
f319da0c 5571 calc_load_migrate(rq);
57d885fe 5572 break;
1da177e4
LT
5573#endif
5574 }
49c022e6
PZ
5575
5576 update_max_interval();
5577
1da177e4
LT
5578 return NOTIFY_OK;
5579}
5580
f38b0820
PM
5581/*
5582 * Register at high priority so that task migration (migrate_all_tasks)
5583 * happens before everything else. This has to be lower priority than
cdd6c482 5584 * the notifier in the perf_event subsystem, though.
1da177e4 5585 */
0db0628d 5586static struct notifier_block migration_notifier = {
1da177e4 5587 .notifier_call = migration_call,
50a323b7 5588 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5589};
5590
6a82b60d 5591static void set_cpu_rq_start_time(void)
a803f026
CM
5592{
5593 int cpu = smp_processor_id();
5594 struct rq *rq = cpu_rq(cpu);
5595 rq->age_stamp = sched_clock_cpu(cpu);
5596}
5597
0db0628d 5598static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5599 unsigned long action, void *hcpu)
5600{
07f06cb3
PZ
5601 int cpu = (long)hcpu;
5602
3a101d05 5603 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5604 case CPU_STARTING:
5605 set_cpu_rq_start_time();
5606 return NOTIFY_OK;
07f06cb3 5607
dd9d3843
JS
5608 case CPU_ONLINE:
5609 /*
5610 * At this point a starting CPU has marked itself as online via
5611 * set_cpu_online(). But it might not yet have marked itself
5612 * as active, which is essential from here on.
dd9d3843 5613 */
07f06cb3
PZ
5614 set_cpu_active(cpu, true);
5615 stop_machine_unpark(cpu);
5616 return NOTIFY_OK;
5617
3a101d05 5618 case CPU_DOWN_FAILED:
07f06cb3 5619 set_cpu_active(cpu, true);
3a101d05 5620 return NOTIFY_OK;
07f06cb3 5621
3a101d05
TH
5622 default:
5623 return NOTIFY_DONE;
5624 }
5625}
5626
0db0628d 5627static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5628 unsigned long action, void *hcpu)
5629{
5630 switch (action & ~CPU_TASKS_FROZEN) {
5631 case CPU_DOWN_PREPARE:
3c18d447 5632 set_cpu_active((long)hcpu, false);
3a101d05 5633 return NOTIFY_OK;
3c18d447
JL
5634 default:
5635 return NOTIFY_DONE;
3a101d05
TH
5636 }
5637}
5638
7babe8db 5639static int __init migration_init(void)
1da177e4
LT
5640{
5641 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5642 int err;
48f24c4d 5643
3a101d05 5644 /* Initialize migration for the boot CPU */
07dccf33
AM
5645 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5646 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5647 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5648 register_cpu_notifier(&migration_notifier);
7babe8db 5649
3a101d05
TH
5650 /* Register cpu active notifiers */
5651 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5652 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5653
a004cd42 5654 return 0;
1da177e4 5655}
7babe8db 5656early_initcall(migration_init);
476f3534 5657
4cb98839
PZ
5658static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5659
3e9830dc 5660#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5661
d039ac60 5662static __read_mostly int sched_debug_enabled;
f6630114 5663
d039ac60 5664static int __init sched_debug_setup(char *str)
f6630114 5665{
d039ac60 5666 sched_debug_enabled = 1;
f6630114
MT
5667
5668 return 0;
5669}
d039ac60
PZ
5670early_param("sched_debug", sched_debug_setup);
5671
5672static inline bool sched_debug(void)
5673{
5674 return sched_debug_enabled;
5675}
f6630114 5676
7c16ec58 5677static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5678 struct cpumask *groupmask)
1da177e4 5679{
4dcf6aff 5680 struct sched_group *group = sd->groups;
1da177e4 5681
96f874e2 5682 cpumask_clear(groupmask);
4dcf6aff
IM
5683
5684 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5685
5686 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5687 printk("does not load-balance\n");
4dcf6aff 5688 if (sd->parent)
3df0fc5b
PZ
5689 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5690 " has parent");
4dcf6aff 5691 return -1;
41c7ce9a
NP
5692 }
5693
333470ee
TH
5694 printk(KERN_CONT "span %*pbl level %s\n",
5695 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5696
758b2cdc 5697 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5698 printk(KERN_ERR "ERROR: domain->span does not contain "
5699 "CPU%d\n", cpu);
4dcf6aff 5700 }
758b2cdc 5701 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5702 printk(KERN_ERR "ERROR: domain->groups does not contain"
5703 " CPU%d\n", cpu);
4dcf6aff 5704 }
1da177e4 5705
4dcf6aff 5706 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5707 do {
4dcf6aff 5708 if (!group) {
3df0fc5b
PZ
5709 printk("\n");
5710 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5711 break;
5712 }
5713
758b2cdc 5714 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5715 printk(KERN_CONT "\n");
5716 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5717 break;
5718 }
1da177e4 5719
cb83b629
PZ
5720 if (!(sd->flags & SD_OVERLAP) &&
5721 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5722 printk(KERN_CONT "\n");
5723 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5724 break;
5725 }
1da177e4 5726
758b2cdc 5727 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5728
333470ee
TH
5729 printk(KERN_CONT " %*pbl",
5730 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5731 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5732 printk(KERN_CONT " (cpu_capacity = %d)",
5733 group->sgc->capacity);
381512cf 5734 }
1da177e4 5735
4dcf6aff
IM
5736 group = group->next;
5737 } while (group != sd->groups);
3df0fc5b 5738 printk(KERN_CONT "\n");
1da177e4 5739
758b2cdc 5740 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5741 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5742
758b2cdc
RR
5743 if (sd->parent &&
5744 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5745 printk(KERN_ERR "ERROR: parent span is not a superset "
5746 "of domain->span\n");
4dcf6aff
IM
5747 return 0;
5748}
1da177e4 5749
4dcf6aff
IM
5750static void sched_domain_debug(struct sched_domain *sd, int cpu)
5751{
5752 int level = 0;
1da177e4 5753
d039ac60 5754 if (!sched_debug_enabled)
f6630114
MT
5755 return;
5756
4dcf6aff
IM
5757 if (!sd) {
5758 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5759 return;
5760 }
1da177e4 5761
4dcf6aff
IM
5762 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5763
5764 for (;;) {
4cb98839 5765 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5766 break;
1da177e4
LT
5767 level++;
5768 sd = sd->parent;
33859f7f 5769 if (!sd)
4dcf6aff
IM
5770 break;
5771 }
1da177e4 5772}
6d6bc0ad 5773#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5774# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5775static inline bool sched_debug(void)
5776{
5777 return false;
5778}
6d6bc0ad 5779#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5780
1a20ff27 5781static int sd_degenerate(struct sched_domain *sd)
245af2c7 5782{
758b2cdc 5783 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5784 return 1;
5785
5786 /* Following flags need at least 2 groups */
5787 if (sd->flags & (SD_LOAD_BALANCE |
5788 SD_BALANCE_NEWIDLE |
5789 SD_BALANCE_FORK |
89c4710e 5790 SD_BALANCE_EXEC |
5d4dfddd 5791 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5792 SD_SHARE_PKG_RESOURCES |
5793 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5794 if (sd->groups != sd->groups->next)
5795 return 0;
5796 }
5797
5798 /* Following flags don't use groups */
c88d5910 5799 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5800 return 0;
5801
5802 return 1;
5803}
5804
48f24c4d
IM
5805static int
5806sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5807{
5808 unsigned long cflags = sd->flags, pflags = parent->flags;
5809
5810 if (sd_degenerate(parent))
5811 return 1;
5812
758b2cdc 5813 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5814 return 0;
5815
245af2c7
SS
5816 /* Flags needing groups don't count if only 1 group in parent */
5817 if (parent->groups == parent->groups->next) {
5818 pflags &= ~(SD_LOAD_BALANCE |
5819 SD_BALANCE_NEWIDLE |
5820 SD_BALANCE_FORK |
89c4710e 5821 SD_BALANCE_EXEC |
5d4dfddd 5822 SD_SHARE_CPUCAPACITY |
10866e62 5823 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5824 SD_PREFER_SIBLING |
5825 SD_SHARE_POWERDOMAIN);
5436499e
KC
5826 if (nr_node_ids == 1)
5827 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5828 }
5829 if (~cflags & pflags)
5830 return 0;
5831
5832 return 1;
5833}
5834
dce840a0 5835static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5836{
dce840a0 5837 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5838
68e74568 5839 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5840 cpudl_cleanup(&rd->cpudl);
1baca4ce 5841 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5842 free_cpumask_var(rd->rto_mask);
5843 free_cpumask_var(rd->online);
5844 free_cpumask_var(rd->span);
5845 kfree(rd);
5846}
5847
57d885fe
GH
5848static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5849{
a0490fa3 5850 struct root_domain *old_rd = NULL;
57d885fe 5851 unsigned long flags;
57d885fe 5852
05fa785c 5853 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5854
5855 if (rq->rd) {
a0490fa3 5856 old_rd = rq->rd;
57d885fe 5857
c6c4927b 5858 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5859 set_rq_offline(rq);
57d885fe 5860
c6c4927b 5861 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5862
a0490fa3 5863 /*
0515973f 5864 * If we dont want to free the old_rd yet then
a0490fa3
IM
5865 * set old_rd to NULL to skip the freeing later
5866 * in this function:
5867 */
5868 if (!atomic_dec_and_test(&old_rd->refcount))
5869 old_rd = NULL;
57d885fe
GH
5870 }
5871
5872 atomic_inc(&rd->refcount);
5873 rq->rd = rd;
5874
c6c4927b 5875 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5876 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5877 set_rq_online(rq);
57d885fe 5878
05fa785c 5879 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5880
5881 if (old_rd)
dce840a0 5882 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5883}
5884
68c38fc3 5885static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5886{
5887 memset(rd, 0, sizeof(*rd));
5888
8295c699 5889 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5890 goto out;
8295c699 5891 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5892 goto free_span;
8295c699 5893 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5894 goto free_online;
8295c699 5895 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5896 goto free_dlo_mask;
6e0534f2 5897
332ac17e 5898 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5899 if (cpudl_init(&rd->cpudl) != 0)
5900 goto free_dlo_mask;
332ac17e 5901
68c38fc3 5902 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5903 goto free_rto_mask;
c6c4927b 5904 return 0;
6e0534f2 5905
68e74568
RR
5906free_rto_mask:
5907 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5908free_dlo_mask:
5909 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5910free_online:
5911 free_cpumask_var(rd->online);
5912free_span:
5913 free_cpumask_var(rd->span);
0c910d28 5914out:
c6c4927b 5915 return -ENOMEM;
57d885fe
GH
5916}
5917
029632fb
PZ
5918/*
5919 * By default the system creates a single root-domain with all cpus as
5920 * members (mimicking the global state we have today).
5921 */
5922struct root_domain def_root_domain;
5923
57d885fe
GH
5924static void init_defrootdomain(void)
5925{
68c38fc3 5926 init_rootdomain(&def_root_domain);
c6c4927b 5927
57d885fe
GH
5928 atomic_set(&def_root_domain.refcount, 1);
5929}
5930
dc938520 5931static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5932{
5933 struct root_domain *rd;
5934
5935 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5936 if (!rd)
5937 return NULL;
5938
68c38fc3 5939 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5940 kfree(rd);
5941 return NULL;
5942 }
57d885fe
GH
5943
5944 return rd;
5945}
5946
63b2ca30 5947static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5948{
5949 struct sched_group *tmp, *first;
5950
5951 if (!sg)
5952 return;
5953
5954 first = sg;
5955 do {
5956 tmp = sg->next;
5957
63b2ca30
NP
5958 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5959 kfree(sg->sgc);
e3589f6c
PZ
5960
5961 kfree(sg);
5962 sg = tmp;
5963 } while (sg != first);
5964}
5965
dce840a0
PZ
5966static void free_sched_domain(struct rcu_head *rcu)
5967{
5968 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5969
5970 /*
5971 * If its an overlapping domain it has private groups, iterate and
5972 * nuke them all.
5973 */
5974 if (sd->flags & SD_OVERLAP) {
5975 free_sched_groups(sd->groups, 1);
5976 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5977 kfree(sd->groups->sgc);
dce840a0 5978 kfree(sd->groups);
9c3f75cb 5979 }
dce840a0
PZ
5980 kfree(sd);
5981}
5982
5983static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5984{
5985 call_rcu(&sd->rcu, free_sched_domain);
5986}
5987
5988static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5989{
5990 for (; sd; sd = sd->parent)
5991 destroy_sched_domain(sd, cpu);
5992}
5993
518cd623
PZ
5994/*
5995 * Keep a special pointer to the highest sched_domain that has
5996 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5997 * allows us to avoid some pointer chasing select_idle_sibling().
5998 *
5999 * Also keep a unique ID per domain (we use the first cpu number in
6000 * the cpumask of the domain), this allows us to quickly tell if
39be3501 6001 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
6002 */
6003DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 6004DEFINE_PER_CPU(int, sd_llc_size);
518cd623 6005DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 6006DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
6007DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6008DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
6009
6010static void update_top_cache_domain(int cpu)
6011{
6012 struct sched_domain *sd;
5d4cf996 6013 struct sched_domain *busy_sd = NULL;
518cd623 6014 int id = cpu;
7d9ffa89 6015 int size = 1;
518cd623
PZ
6016
6017 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 6018 if (sd) {
518cd623 6019 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 6020 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 6021 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 6022 }
5d4cf996 6023 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
6024
6025 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6026 per_cpu(sd_llc_size, cpu) = size;
518cd623 6027 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
6028
6029 sd = lowest_flag_domain(cpu, SD_NUMA);
6030 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6031
6032 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6033 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6034}
6035
1da177e4 6036/*
0eab9146 6037 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6038 * hold the hotplug lock.
6039 */
0eab9146
IM
6040static void
6041cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6042{
70b97a7f 6043 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6044 struct sched_domain *tmp;
6045
6046 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6047 for (tmp = sd; tmp; ) {
245af2c7
SS
6048 struct sched_domain *parent = tmp->parent;
6049 if (!parent)
6050 break;
f29c9b1c 6051
1a848870 6052 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6053 tmp->parent = parent->parent;
1a848870
SS
6054 if (parent->parent)
6055 parent->parent->child = tmp;
10866e62
PZ
6056 /*
6057 * Transfer SD_PREFER_SIBLING down in case of a
6058 * degenerate parent; the spans match for this
6059 * so the property transfers.
6060 */
6061 if (parent->flags & SD_PREFER_SIBLING)
6062 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 6063 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6064 } else
6065 tmp = tmp->parent;
245af2c7
SS
6066 }
6067
1a848870 6068 if (sd && sd_degenerate(sd)) {
dce840a0 6069 tmp = sd;
245af2c7 6070 sd = sd->parent;
dce840a0 6071 destroy_sched_domain(tmp, cpu);
1a848870
SS
6072 if (sd)
6073 sd->child = NULL;
6074 }
1da177e4 6075
4cb98839 6076 sched_domain_debug(sd, cpu);
1da177e4 6077
57d885fe 6078 rq_attach_root(rq, rd);
dce840a0 6079 tmp = rq->sd;
674311d5 6080 rcu_assign_pointer(rq->sd, sd);
dce840a0 6081 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6082
6083 update_top_cache_domain(cpu);
1da177e4
LT
6084}
6085
1da177e4
LT
6086/* Setup the mask of cpus configured for isolated domains */
6087static int __init isolated_cpu_setup(char *str)
6088{
bdddd296 6089 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6090 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6091 return 1;
6092}
6093
8927f494 6094__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6095
49a02c51 6096struct s_data {
21d42ccf 6097 struct sched_domain ** __percpu sd;
49a02c51
AH
6098 struct root_domain *rd;
6099};
6100
2109b99e 6101enum s_alloc {
2109b99e 6102 sa_rootdomain,
21d42ccf 6103 sa_sd,
dce840a0 6104 sa_sd_storage,
2109b99e
AH
6105 sa_none,
6106};
6107
c1174876
PZ
6108/*
6109 * Build an iteration mask that can exclude certain CPUs from the upwards
6110 * domain traversal.
6111 *
6112 * Asymmetric node setups can result in situations where the domain tree is of
6113 * unequal depth, make sure to skip domains that already cover the entire
6114 * range.
6115 *
6116 * In that case build_sched_domains() will have terminated the iteration early
6117 * and our sibling sd spans will be empty. Domains should always include the
6118 * cpu they're built on, so check that.
6119 *
6120 */
6121static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6122{
6123 const struct cpumask *span = sched_domain_span(sd);
6124 struct sd_data *sdd = sd->private;
6125 struct sched_domain *sibling;
6126 int i;
6127
6128 for_each_cpu(i, span) {
6129 sibling = *per_cpu_ptr(sdd->sd, i);
6130 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6131 continue;
6132
6133 cpumask_set_cpu(i, sched_group_mask(sg));
6134 }
6135}
6136
6137/*
6138 * Return the canonical balance cpu for this group, this is the first cpu
6139 * of this group that's also in the iteration mask.
6140 */
6141int group_balance_cpu(struct sched_group *sg)
6142{
6143 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6144}
6145
e3589f6c
PZ
6146static int
6147build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6148{
6149 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6150 const struct cpumask *span = sched_domain_span(sd);
6151 struct cpumask *covered = sched_domains_tmpmask;
6152 struct sd_data *sdd = sd->private;
aaecac4a 6153 struct sched_domain *sibling;
e3589f6c
PZ
6154 int i;
6155
6156 cpumask_clear(covered);
6157
6158 for_each_cpu(i, span) {
6159 struct cpumask *sg_span;
6160
6161 if (cpumask_test_cpu(i, covered))
6162 continue;
6163
aaecac4a 6164 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6165
6166 /* See the comment near build_group_mask(). */
aaecac4a 6167 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6168 continue;
6169
e3589f6c 6170 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6171 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6172
6173 if (!sg)
6174 goto fail;
6175
6176 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6177 if (sibling->child)
6178 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6179 else
e3589f6c
PZ
6180 cpumask_set_cpu(i, sg_span);
6181
6182 cpumask_or(covered, covered, sg_span);
6183
63b2ca30
NP
6184 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6185 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6186 build_group_mask(sd, sg);
6187
c3decf0d 6188 /*
63b2ca30 6189 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6190 * domains and no possible iteration will get us here, we won't
6191 * die on a /0 trap.
6192 */
ca8ce3d0 6193 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6194
c1174876
PZ
6195 /*
6196 * Make sure the first group of this domain contains the
6197 * canonical balance cpu. Otherwise the sched_domain iteration
6198 * breaks. See update_sg_lb_stats().
6199 */
74a5ce20 6200 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6201 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6202 groups = sg;
6203
6204 if (!first)
6205 first = sg;
6206 if (last)
6207 last->next = sg;
6208 last = sg;
6209 last->next = first;
6210 }
6211 sd->groups = groups;
6212
6213 return 0;
6214
6215fail:
6216 free_sched_groups(first, 0);
6217
6218 return -ENOMEM;
6219}
6220
dce840a0 6221static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6222{
dce840a0
PZ
6223 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6224 struct sched_domain *child = sd->child;
1da177e4 6225
dce840a0
PZ
6226 if (child)
6227 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6228
9c3f75cb 6229 if (sg) {
dce840a0 6230 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6231 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6232 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6233 }
dce840a0
PZ
6234
6235 return cpu;
1e9f28fa 6236}
1e9f28fa 6237
01a08546 6238/*
dce840a0
PZ
6239 * build_sched_groups will build a circular linked list of the groups
6240 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6241 * and ->cpu_capacity to 0.
e3589f6c
PZ
6242 *
6243 * Assumes the sched_domain tree is fully constructed
01a08546 6244 */
e3589f6c
PZ
6245static int
6246build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6247{
dce840a0
PZ
6248 struct sched_group *first = NULL, *last = NULL;
6249 struct sd_data *sdd = sd->private;
6250 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6251 struct cpumask *covered;
dce840a0 6252 int i;
9c1cfda2 6253
e3589f6c
PZ
6254 get_group(cpu, sdd, &sd->groups);
6255 atomic_inc(&sd->groups->ref);
6256
0936629f 6257 if (cpu != cpumask_first(span))
e3589f6c
PZ
6258 return 0;
6259
f96225fd
PZ
6260 lockdep_assert_held(&sched_domains_mutex);
6261 covered = sched_domains_tmpmask;
6262
dce840a0 6263 cpumask_clear(covered);
6711cab4 6264
dce840a0
PZ
6265 for_each_cpu(i, span) {
6266 struct sched_group *sg;
cd08e923 6267 int group, j;
6711cab4 6268
dce840a0
PZ
6269 if (cpumask_test_cpu(i, covered))
6270 continue;
6711cab4 6271
cd08e923 6272 group = get_group(i, sdd, &sg);
c1174876 6273 cpumask_setall(sched_group_mask(sg));
0601a88d 6274
dce840a0
PZ
6275 for_each_cpu(j, span) {
6276 if (get_group(j, sdd, NULL) != group)
6277 continue;
0601a88d 6278
dce840a0
PZ
6279 cpumask_set_cpu(j, covered);
6280 cpumask_set_cpu(j, sched_group_cpus(sg));
6281 }
0601a88d 6282
dce840a0
PZ
6283 if (!first)
6284 first = sg;
6285 if (last)
6286 last->next = sg;
6287 last = sg;
6288 }
6289 last->next = first;
e3589f6c
PZ
6290
6291 return 0;
0601a88d 6292}
51888ca2 6293
89c4710e 6294/*
63b2ca30 6295 * Initialize sched groups cpu_capacity.
89c4710e 6296 *
63b2ca30 6297 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6298 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6299 * Typically cpu_capacity for all the groups in a sched domain will be same
6300 * unless there are asymmetries in the topology. If there are asymmetries,
6301 * group having more cpu_capacity will pickup more load compared to the
6302 * group having less cpu_capacity.
89c4710e 6303 */
63b2ca30 6304static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6305{
e3589f6c 6306 struct sched_group *sg = sd->groups;
89c4710e 6307
94c95ba6 6308 WARN_ON(!sg);
e3589f6c
PZ
6309
6310 do {
6311 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6312 sg = sg->next;
6313 } while (sg != sd->groups);
89c4710e 6314
c1174876 6315 if (cpu != group_balance_cpu(sg))
e3589f6c 6316 return;
aae6d3dd 6317
63b2ca30
NP
6318 update_group_capacity(sd, cpu);
6319 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6320}
6321
7c16ec58
MT
6322/*
6323 * Initializers for schedule domains
6324 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6325 */
6326
1d3504fc 6327static int default_relax_domain_level = -1;
60495e77 6328int sched_domain_level_max;
1d3504fc
HS
6329
6330static int __init setup_relax_domain_level(char *str)
6331{
a841f8ce
DS
6332 if (kstrtoint(str, 0, &default_relax_domain_level))
6333 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6334
1d3504fc
HS
6335 return 1;
6336}
6337__setup("relax_domain_level=", setup_relax_domain_level);
6338
6339static void set_domain_attribute(struct sched_domain *sd,
6340 struct sched_domain_attr *attr)
6341{
6342 int request;
6343
6344 if (!attr || attr->relax_domain_level < 0) {
6345 if (default_relax_domain_level < 0)
6346 return;
6347 else
6348 request = default_relax_domain_level;
6349 } else
6350 request = attr->relax_domain_level;
6351 if (request < sd->level) {
6352 /* turn off idle balance on this domain */
c88d5910 6353 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6354 } else {
6355 /* turn on idle balance on this domain */
c88d5910 6356 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6357 }
6358}
6359
54ab4ff4
PZ
6360static void __sdt_free(const struct cpumask *cpu_map);
6361static int __sdt_alloc(const struct cpumask *cpu_map);
6362
2109b99e
AH
6363static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6364 const struct cpumask *cpu_map)
6365{
6366 switch (what) {
2109b99e 6367 case sa_rootdomain:
822ff793
PZ
6368 if (!atomic_read(&d->rd->refcount))
6369 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6370 case sa_sd:
6371 free_percpu(d->sd); /* fall through */
dce840a0 6372 case sa_sd_storage:
54ab4ff4 6373 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6374 case sa_none:
6375 break;
6376 }
6377}
3404c8d9 6378
2109b99e
AH
6379static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6380 const struct cpumask *cpu_map)
6381{
dce840a0
PZ
6382 memset(d, 0, sizeof(*d));
6383
54ab4ff4
PZ
6384 if (__sdt_alloc(cpu_map))
6385 return sa_sd_storage;
dce840a0
PZ
6386 d->sd = alloc_percpu(struct sched_domain *);
6387 if (!d->sd)
6388 return sa_sd_storage;
2109b99e 6389 d->rd = alloc_rootdomain();
dce840a0 6390 if (!d->rd)
21d42ccf 6391 return sa_sd;
2109b99e
AH
6392 return sa_rootdomain;
6393}
57d885fe 6394
dce840a0
PZ
6395/*
6396 * NULL the sd_data elements we've used to build the sched_domain and
6397 * sched_group structure so that the subsequent __free_domain_allocs()
6398 * will not free the data we're using.
6399 */
6400static void claim_allocations(int cpu, struct sched_domain *sd)
6401{
6402 struct sd_data *sdd = sd->private;
dce840a0
PZ
6403
6404 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6405 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6406
e3589f6c 6407 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6408 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6409
63b2ca30
NP
6410 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6411 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6412}
6413
cb83b629 6414#ifdef CONFIG_NUMA
cb83b629 6415static int sched_domains_numa_levels;
e3fe70b1 6416enum numa_topology_type sched_numa_topology_type;
cb83b629 6417static int *sched_domains_numa_distance;
9942f79b 6418int sched_max_numa_distance;
cb83b629
PZ
6419static struct cpumask ***sched_domains_numa_masks;
6420static int sched_domains_curr_level;
143e1e28 6421#endif
cb83b629 6422
143e1e28
VG
6423/*
6424 * SD_flags allowed in topology descriptions.
6425 *
5d4dfddd 6426 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6427 * SD_SHARE_PKG_RESOURCES - describes shared caches
6428 * SD_NUMA - describes NUMA topologies
d77b3ed5 6429 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6430 *
6431 * Odd one out:
6432 * SD_ASYM_PACKING - describes SMT quirks
6433 */
6434#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6435 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6436 SD_SHARE_PKG_RESOURCES | \
6437 SD_NUMA | \
d77b3ed5
VG
6438 SD_ASYM_PACKING | \
6439 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6440
6441static struct sched_domain *
143e1e28 6442sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6443{
6444 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6445 int sd_weight, sd_flags = 0;
6446
6447#ifdef CONFIG_NUMA
6448 /*
6449 * Ugly hack to pass state to sd_numa_mask()...
6450 */
6451 sched_domains_curr_level = tl->numa_level;
6452#endif
6453
6454 sd_weight = cpumask_weight(tl->mask(cpu));
6455
6456 if (tl->sd_flags)
6457 sd_flags = (*tl->sd_flags)();
6458 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6459 "wrong sd_flags in topology description\n"))
6460 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6461
6462 *sd = (struct sched_domain){
6463 .min_interval = sd_weight,
6464 .max_interval = 2*sd_weight,
6465 .busy_factor = 32,
870a0bb5 6466 .imbalance_pct = 125,
143e1e28
VG
6467
6468 .cache_nice_tries = 0,
6469 .busy_idx = 0,
6470 .idle_idx = 0,
cb83b629
PZ
6471 .newidle_idx = 0,
6472 .wake_idx = 0,
6473 .forkexec_idx = 0,
6474
6475 .flags = 1*SD_LOAD_BALANCE
6476 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6477 | 1*SD_BALANCE_EXEC
6478 | 1*SD_BALANCE_FORK
cb83b629 6479 | 0*SD_BALANCE_WAKE
143e1e28 6480 | 1*SD_WAKE_AFFINE
5d4dfddd 6481 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6482 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6483 | 0*SD_SERIALIZE
cb83b629 6484 | 0*SD_PREFER_SIBLING
143e1e28
VG
6485 | 0*SD_NUMA
6486 | sd_flags
cb83b629 6487 ,
143e1e28 6488
cb83b629
PZ
6489 .last_balance = jiffies,
6490 .balance_interval = sd_weight,
143e1e28 6491 .smt_gain = 0,
2b4cfe64
JL
6492 .max_newidle_lb_cost = 0,
6493 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6494#ifdef CONFIG_SCHED_DEBUG
6495 .name = tl->name,
6496#endif
cb83b629 6497 };
cb83b629
PZ
6498
6499 /*
143e1e28 6500 * Convert topological properties into behaviour.
cb83b629 6501 */
143e1e28 6502
5d4dfddd 6503 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6504 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6505 sd->imbalance_pct = 110;
6506 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6507
6508 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6509 sd->imbalance_pct = 117;
6510 sd->cache_nice_tries = 1;
6511 sd->busy_idx = 2;
6512
6513#ifdef CONFIG_NUMA
6514 } else if (sd->flags & SD_NUMA) {
6515 sd->cache_nice_tries = 2;
6516 sd->busy_idx = 3;
6517 sd->idle_idx = 2;
6518
6519 sd->flags |= SD_SERIALIZE;
6520 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6521 sd->flags &= ~(SD_BALANCE_EXEC |
6522 SD_BALANCE_FORK |
6523 SD_WAKE_AFFINE);
6524 }
6525
6526#endif
6527 } else {
6528 sd->flags |= SD_PREFER_SIBLING;
6529 sd->cache_nice_tries = 1;
6530 sd->busy_idx = 2;
6531 sd->idle_idx = 1;
6532 }
6533
6534 sd->private = &tl->data;
cb83b629
PZ
6535
6536 return sd;
6537}
6538
143e1e28
VG
6539/*
6540 * Topology list, bottom-up.
6541 */
6542static struct sched_domain_topology_level default_topology[] = {
6543#ifdef CONFIG_SCHED_SMT
6544 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6545#endif
6546#ifdef CONFIG_SCHED_MC
6547 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6548#endif
6549 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6550 { NULL, },
6551};
6552
c6e1e7b5
JG
6553static struct sched_domain_topology_level *sched_domain_topology =
6554 default_topology;
143e1e28
VG
6555
6556#define for_each_sd_topology(tl) \
6557 for (tl = sched_domain_topology; tl->mask; tl++)
6558
6559void set_sched_topology(struct sched_domain_topology_level *tl)
6560{
6561 sched_domain_topology = tl;
6562}
6563
6564#ifdef CONFIG_NUMA
6565
cb83b629
PZ
6566static const struct cpumask *sd_numa_mask(int cpu)
6567{
6568 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6569}
6570
d039ac60
PZ
6571static void sched_numa_warn(const char *str)
6572{
6573 static int done = false;
6574 int i,j;
6575
6576 if (done)
6577 return;
6578
6579 done = true;
6580
6581 printk(KERN_WARNING "ERROR: %s\n\n", str);
6582
6583 for (i = 0; i < nr_node_ids; i++) {
6584 printk(KERN_WARNING " ");
6585 for (j = 0; j < nr_node_ids; j++)
6586 printk(KERN_CONT "%02d ", node_distance(i,j));
6587 printk(KERN_CONT "\n");
6588 }
6589 printk(KERN_WARNING "\n");
6590}
6591
9942f79b 6592bool find_numa_distance(int distance)
d039ac60
PZ
6593{
6594 int i;
6595
6596 if (distance == node_distance(0, 0))
6597 return true;
6598
6599 for (i = 0; i < sched_domains_numa_levels; i++) {
6600 if (sched_domains_numa_distance[i] == distance)
6601 return true;
6602 }
6603
6604 return false;
6605}
6606
e3fe70b1
RR
6607/*
6608 * A system can have three types of NUMA topology:
6609 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6610 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6611 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6612 *
6613 * The difference between a glueless mesh topology and a backplane
6614 * topology lies in whether communication between not directly
6615 * connected nodes goes through intermediary nodes (where programs
6616 * could run), or through backplane controllers. This affects
6617 * placement of programs.
6618 *
6619 * The type of topology can be discerned with the following tests:
6620 * - If the maximum distance between any nodes is 1 hop, the system
6621 * is directly connected.
6622 * - If for two nodes A and B, located N > 1 hops away from each other,
6623 * there is an intermediary node C, which is < N hops away from both
6624 * nodes A and B, the system is a glueless mesh.
6625 */
6626static void init_numa_topology_type(void)
6627{
6628 int a, b, c, n;
6629
6630 n = sched_max_numa_distance;
6631
e237882b 6632 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6633 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6634 return;
6635 }
e3fe70b1
RR
6636
6637 for_each_online_node(a) {
6638 for_each_online_node(b) {
6639 /* Find two nodes furthest removed from each other. */
6640 if (node_distance(a, b) < n)
6641 continue;
6642
6643 /* Is there an intermediary node between a and b? */
6644 for_each_online_node(c) {
6645 if (node_distance(a, c) < n &&
6646 node_distance(b, c) < n) {
6647 sched_numa_topology_type =
6648 NUMA_GLUELESS_MESH;
6649 return;
6650 }
6651 }
6652
6653 sched_numa_topology_type = NUMA_BACKPLANE;
6654 return;
6655 }
6656 }
6657}
6658
cb83b629
PZ
6659static void sched_init_numa(void)
6660{
6661 int next_distance, curr_distance = node_distance(0, 0);
6662 struct sched_domain_topology_level *tl;
6663 int level = 0;
6664 int i, j, k;
6665
cb83b629
PZ
6666 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6667 if (!sched_domains_numa_distance)
6668 return;
6669
6670 /*
6671 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6672 * unique distances in the node_distance() table.
6673 *
6674 * Assumes node_distance(0,j) includes all distances in
6675 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6676 */
6677 next_distance = curr_distance;
6678 for (i = 0; i < nr_node_ids; i++) {
6679 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6680 for (k = 0; k < nr_node_ids; k++) {
6681 int distance = node_distance(i, k);
6682
6683 if (distance > curr_distance &&
6684 (distance < next_distance ||
6685 next_distance == curr_distance))
6686 next_distance = distance;
6687
6688 /*
6689 * While not a strong assumption it would be nice to know
6690 * about cases where if node A is connected to B, B is not
6691 * equally connected to A.
6692 */
6693 if (sched_debug() && node_distance(k, i) != distance)
6694 sched_numa_warn("Node-distance not symmetric");
6695
6696 if (sched_debug() && i && !find_numa_distance(distance))
6697 sched_numa_warn("Node-0 not representative");
6698 }
6699 if (next_distance != curr_distance) {
6700 sched_domains_numa_distance[level++] = next_distance;
6701 sched_domains_numa_levels = level;
6702 curr_distance = next_distance;
6703 } else break;
cb83b629 6704 }
d039ac60
PZ
6705
6706 /*
6707 * In case of sched_debug() we verify the above assumption.
6708 */
6709 if (!sched_debug())
6710 break;
cb83b629 6711 }
c123588b
AR
6712
6713 if (!level)
6714 return;
6715
cb83b629
PZ
6716 /*
6717 * 'level' contains the number of unique distances, excluding the
6718 * identity distance node_distance(i,i).
6719 *
28b4a521 6720 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6721 * numbers.
6722 */
6723
5f7865f3
TC
6724 /*
6725 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6726 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6727 * the array will contain less then 'level' members. This could be
6728 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6729 * in other functions.
6730 *
6731 * We reset it to 'level' at the end of this function.
6732 */
6733 sched_domains_numa_levels = 0;
6734
cb83b629
PZ
6735 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6736 if (!sched_domains_numa_masks)
6737 return;
6738
6739 /*
6740 * Now for each level, construct a mask per node which contains all
6741 * cpus of nodes that are that many hops away from us.
6742 */
6743 for (i = 0; i < level; i++) {
6744 sched_domains_numa_masks[i] =
6745 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6746 if (!sched_domains_numa_masks[i])
6747 return;
6748
6749 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6750 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6751 if (!mask)
6752 return;
6753
6754 sched_domains_numa_masks[i][j] = mask;
6755
6756 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6757 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6758 continue;
6759
6760 cpumask_or(mask, mask, cpumask_of_node(k));
6761 }
6762 }
6763 }
6764
143e1e28
VG
6765 /* Compute default topology size */
6766 for (i = 0; sched_domain_topology[i].mask; i++);
6767
c515db8c 6768 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6769 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6770 if (!tl)
6771 return;
6772
6773 /*
6774 * Copy the default topology bits..
6775 */
143e1e28
VG
6776 for (i = 0; sched_domain_topology[i].mask; i++)
6777 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6778
6779 /*
6780 * .. and append 'j' levels of NUMA goodness.
6781 */
6782 for (j = 0; j < level; i++, j++) {
6783 tl[i] = (struct sched_domain_topology_level){
cb83b629 6784 .mask = sd_numa_mask,
143e1e28 6785 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6786 .flags = SDTL_OVERLAP,
6787 .numa_level = j,
143e1e28 6788 SD_INIT_NAME(NUMA)
cb83b629
PZ
6789 };
6790 }
6791
6792 sched_domain_topology = tl;
5f7865f3
TC
6793
6794 sched_domains_numa_levels = level;
9942f79b 6795 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6796
6797 init_numa_topology_type();
cb83b629 6798}
301a5cba
TC
6799
6800static void sched_domains_numa_masks_set(int cpu)
6801{
6802 int i, j;
6803 int node = cpu_to_node(cpu);
6804
6805 for (i = 0; i < sched_domains_numa_levels; i++) {
6806 for (j = 0; j < nr_node_ids; j++) {
6807 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6808 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6809 }
6810 }
6811}
6812
6813static void sched_domains_numa_masks_clear(int cpu)
6814{
6815 int i, j;
6816 for (i = 0; i < sched_domains_numa_levels; i++) {
6817 for (j = 0; j < nr_node_ids; j++)
6818 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6819 }
6820}
6821
6822/*
6823 * Update sched_domains_numa_masks[level][node] array when new cpus
6824 * are onlined.
6825 */
6826static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6827 unsigned long action,
6828 void *hcpu)
6829{
6830 int cpu = (long)hcpu;
6831
6832 switch (action & ~CPU_TASKS_FROZEN) {
6833 case CPU_ONLINE:
6834 sched_domains_numa_masks_set(cpu);
6835 break;
6836
6837 case CPU_DEAD:
6838 sched_domains_numa_masks_clear(cpu);
6839 break;
6840
6841 default:
6842 return NOTIFY_DONE;
6843 }
6844
6845 return NOTIFY_OK;
cb83b629
PZ
6846}
6847#else
6848static inline void sched_init_numa(void)
6849{
6850}
301a5cba
TC
6851
6852static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6853 unsigned long action,
6854 void *hcpu)
6855{
6856 return 0;
6857}
cb83b629
PZ
6858#endif /* CONFIG_NUMA */
6859
54ab4ff4
PZ
6860static int __sdt_alloc(const struct cpumask *cpu_map)
6861{
6862 struct sched_domain_topology_level *tl;
6863 int j;
6864
27723a68 6865 for_each_sd_topology(tl) {
54ab4ff4
PZ
6866 struct sd_data *sdd = &tl->data;
6867
6868 sdd->sd = alloc_percpu(struct sched_domain *);
6869 if (!sdd->sd)
6870 return -ENOMEM;
6871
6872 sdd->sg = alloc_percpu(struct sched_group *);
6873 if (!sdd->sg)
6874 return -ENOMEM;
6875
63b2ca30
NP
6876 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6877 if (!sdd->sgc)
9c3f75cb
PZ
6878 return -ENOMEM;
6879
54ab4ff4
PZ
6880 for_each_cpu(j, cpu_map) {
6881 struct sched_domain *sd;
6882 struct sched_group *sg;
63b2ca30 6883 struct sched_group_capacity *sgc;
54ab4ff4 6884
5cc389bc 6885 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6886 GFP_KERNEL, cpu_to_node(j));
6887 if (!sd)
6888 return -ENOMEM;
6889
6890 *per_cpu_ptr(sdd->sd, j) = sd;
6891
6892 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6893 GFP_KERNEL, cpu_to_node(j));
6894 if (!sg)
6895 return -ENOMEM;
6896
30b4e9eb
IM
6897 sg->next = sg;
6898
54ab4ff4 6899 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6900
63b2ca30 6901 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6902 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6903 if (!sgc)
9c3f75cb
PZ
6904 return -ENOMEM;
6905
63b2ca30 6906 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6907 }
6908 }
6909
6910 return 0;
6911}
6912
6913static void __sdt_free(const struct cpumask *cpu_map)
6914{
6915 struct sched_domain_topology_level *tl;
6916 int j;
6917
27723a68 6918 for_each_sd_topology(tl) {
54ab4ff4
PZ
6919 struct sd_data *sdd = &tl->data;
6920
6921 for_each_cpu(j, cpu_map) {
fb2cf2c6 6922 struct sched_domain *sd;
6923
6924 if (sdd->sd) {
6925 sd = *per_cpu_ptr(sdd->sd, j);
6926 if (sd && (sd->flags & SD_OVERLAP))
6927 free_sched_groups(sd->groups, 0);
6928 kfree(*per_cpu_ptr(sdd->sd, j));
6929 }
6930
6931 if (sdd->sg)
6932 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6933 if (sdd->sgc)
6934 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6935 }
6936 free_percpu(sdd->sd);
fb2cf2c6 6937 sdd->sd = NULL;
54ab4ff4 6938 free_percpu(sdd->sg);
fb2cf2c6 6939 sdd->sg = NULL;
63b2ca30
NP
6940 free_percpu(sdd->sgc);
6941 sdd->sgc = NULL;
54ab4ff4
PZ
6942 }
6943}
6944
2c402dc3 6945struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6946 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6947 struct sched_domain *child, int cpu)
2c402dc3 6948{
143e1e28 6949 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6950 if (!sd)
d069b916 6951 return child;
2c402dc3 6952
2c402dc3 6953 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6954 if (child) {
6955 sd->level = child->level + 1;
6956 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6957 child->parent = sd;
c75e0128 6958 sd->child = child;
6ae72dff
PZ
6959
6960 if (!cpumask_subset(sched_domain_span(child),
6961 sched_domain_span(sd))) {
6962 pr_err("BUG: arch topology borken\n");
6963#ifdef CONFIG_SCHED_DEBUG
6964 pr_err(" the %s domain not a subset of the %s domain\n",
6965 child->name, sd->name);
6966#endif
6967 /* Fixup, ensure @sd has at least @child cpus. */
6968 cpumask_or(sched_domain_span(sd),
6969 sched_domain_span(sd),
6970 sched_domain_span(child));
6971 }
6972
60495e77 6973 }
a841f8ce 6974 set_domain_attribute(sd, attr);
2c402dc3
PZ
6975
6976 return sd;
6977}
6978
2109b99e
AH
6979/*
6980 * Build sched domains for a given set of cpus and attach the sched domains
6981 * to the individual cpus
6982 */
dce840a0
PZ
6983static int build_sched_domains(const struct cpumask *cpu_map,
6984 struct sched_domain_attr *attr)
2109b99e 6985{
1c632169 6986 enum s_alloc alloc_state;
dce840a0 6987 struct sched_domain *sd;
2109b99e 6988 struct s_data d;
822ff793 6989 int i, ret = -ENOMEM;
9c1cfda2 6990
2109b99e
AH
6991 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6992 if (alloc_state != sa_rootdomain)
6993 goto error;
9c1cfda2 6994
dce840a0 6995 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6996 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6997 struct sched_domain_topology_level *tl;
6998
3bd65a80 6999 sd = NULL;
27723a68 7000 for_each_sd_topology(tl) {
4a850cbe 7001 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
7002 if (tl == sched_domain_topology)
7003 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
7004 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7005 sd->flags |= SD_OVERLAP;
d110235d
PZ
7006 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7007 break;
e3589f6c 7008 }
dce840a0
PZ
7009 }
7010
7011 /* Build the groups for the domains */
7012 for_each_cpu(i, cpu_map) {
7013 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7014 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7015 if (sd->flags & SD_OVERLAP) {
7016 if (build_overlap_sched_groups(sd, i))
7017 goto error;
7018 } else {
7019 if (build_sched_groups(sd, i))
7020 goto error;
7021 }
1cf51902 7022 }
a06dadbe 7023 }
9c1cfda2 7024
ced549fa 7025 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7026 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7027 if (!cpumask_test_cpu(i, cpu_map))
7028 continue;
9c1cfda2 7029
dce840a0
PZ
7030 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7031 claim_allocations(i, sd);
63b2ca30 7032 init_sched_groups_capacity(i, sd);
dce840a0 7033 }
f712c0c7 7034 }
9c1cfda2 7035
1da177e4 7036 /* Attach the domains */
dce840a0 7037 rcu_read_lock();
abcd083a 7038 for_each_cpu(i, cpu_map) {
21d42ccf 7039 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7040 cpu_attach_domain(sd, d.rd, i);
1da177e4 7041 }
dce840a0 7042 rcu_read_unlock();
51888ca2 7043
822ff793 7044 ret = 0;
51888ca2 7045error:
2109b99e 7046 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7047 return ret;
1da177e4 7048}
029190c5 7049
acc3f5d7 7050static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7051static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7052static struct sched_domain_attr *dattr_cur;
7053 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7054
7055/*
7056 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7057 * cpumask) fails, then fallback to a single sched domain,
7058 * as determined by the single cpumask fallback_doms.
029190c5 7059 */
4212823f 7060static cpumask_var_t fallback_doms;
029190c5 7061
ee79d1bd
HC
7062/*
7063 * arch_update_cpu_topology lets virtualized architectures update the
7064 * cpu core maps. It is supposed to return 1 if the topology changed
7065 * or 0 if it stayed the same.
7066 */
52f5684c 7067int __weak arch_update_cpu_topology(void)
22e52b07 7068{
ee79d1bd 7069 return 0;
22e52b07
HC
7070}
7071
acc3f5d7
RR
7072cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7073{
7074 int i;
7075 cpumask_var_t *doms;
7076
7077 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7078 if (!doms)
7079 return NULL;
7080 for (i = 0; i < ndoms; i++) {
7081 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7082 free_sched_domains(doms, i);
7083 return NULL;
7084 }
7085 }
7086 return doms;
7087}
7088
7089void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7090{
7091 unsigned int i;
7092 for (i = 0; i < ndoms; i++)
7093 free_cpumask_var(doms[i]);
7094 kfree(doms);
7095}
7096
1a20ff27 7097/*
41a2d6cf 7098 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7099 * For now this just excludes isolated cpus, but could be used to
7100 * exclude other special cases in the future.
1a20ff27 7101 */
c4a8849a 7102static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7103{
7378547f
MM
7104 int err;
7105
22e52b07 7106 arch_update_cpu_topology();
029190c5 7107 ndoms_cur = 1;
acc3f5d7 7108 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7109 if (!doms_cur)
acc3f5d7
RR
7110 doms_cur = &fallback_doms;
7111 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7112 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7113 register_sched_domain_sysctl();
7378547f
MM
7114
7115 return err;
1a20ff27
DG
7116}
7117
1a20ff27
DG
7118/*
7119 * Detach sched domains from a group of cpus specified in cpu_map
7120 * These cpus will now be attached to the NULL domain
7121 */
96f874e2 7122static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7123{
7124 int i;
7125
dce840a0 7126 rcu_read_lock();
abcd083a 7127 for_each_cpu(i, cpu_map)
57d885fe 7128 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7129 rcu_read_unlock();
1a20ff27
DG
7130}
7131
1d3504fc
HS
7132/* handle null as "default" */
7133static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7134 struct sched_domain_attr *new, int idx_new)
7135{
7136 struct sched_domain_attr tmp;
7137
7138 /* fast path */
7139 if (!new && !cur)
7140 return 1;
7141
7142 tmp = SD_ATTR_INIT;
7143 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7144 new ? (new + idx_new) : &tmp,
7145 sizeof(struct sched_domain_attr));
7146}
7147
029190c5
PJ
7148/*
7149 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7150 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7151 * doms_new[] to the current sched domain partitioning, doms_cur[].
7152 * It destroys each deleted domain and builds each new domain.
7153 *
acc3f5d7 7154 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7155 * The masks don't intersect (don't overlap.) We should setup one
7156 * sched domain for each mask. CPUs not in any of the cpumasks will
7157 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7158 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7159 * it as it is.
7160 *
acc3f5d7
RR
7161 * The passed in 'doms_new' should be allocated using
7162 * alloc_sched_domains. This routine takes ownership of it and will
7163 * free_sched_domains it when done with it. If the caller failed the
7164 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7165 * and partition_sched_domains() will fallback to the single partition
7166 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7167 *
96f874e2 7168 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7169 * ndoms_new == 0 is a special case for destroying existing domains,
7170 * and it will not create the default domain.
dfb512ec 7171 *
029190c5
PJ
7172 * Call with hotplug lock held
7173 */
acc3f5d7 7174void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7175 struct sched_domain_attr *dattr_new)
029190c5 7176{
dfb512ec 7177 int i, j, n;
d65bd5ec 7178 int new_topology;
029190c5 7179
712555ee 7180 mutex_lock(&sched_domains_mutex);
a1835615 7181
7378547f
MM
7182 /* always unregister in case we don't destroy any domains */
7183 unregister_sched_domain_sysctl();
7184
d65bd5ec
HC
7185 /* Let architecture update cpu core mappings. */
7186 new_topology = arch_update_cpu_topology();
7187
dfb512ec 7188 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7189
7190 /* Destroy deleted domains */
7191 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7192 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7193 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7194 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7195 goto match1;
7196 }
7197 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7198 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7199match1:
7200 ;
7201 }
7202
c8d2d47a 7203 n = ndoms_cur;
e761b772 7204 if (doms_new == NULL) {
c8d2d47a 7205 n = 0;
acc3f5d7 7206 doms_new = &fallback_doms;
6ad4c188 7207 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7208 WARN_ON_ONCE(dattr_new);
e761b772
MK
7209 }
7210
029190c5
PJ
7211 /* Build new domains */
7212 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7213 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7214 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7215 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7216 goto match2;
7217 }
7218 /* no match - add a new doms_new */
dce840a0 7219 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7220match2:
7221 ;
7222 }
7223
7224 /* Remember the new sched domains */
acc3f5d7
RR
7225 if (doms_cur != &fallback_doms)
7226 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7227 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7228 doms_cur = doms_new;
1d3504fc 7229 dattr_cur = dattr_new;
029190c5 7230 ndoms_cur = ndoms_new;
7378547f
MM
7231
7232 register_sched_domain_sysctl();
a1835615 7233
712555ee 7234 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7235}
7236
d35be8ba
SB
7237static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7238
1da177e4 7239/*
3a101d05
TH
7240 * Update cpusets according to cpu_active mask. If cpusets are
7241 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7242 * around partition_sched_domains().
d35be8ba
SB
7243 *
7244 * If we come here as part of a suspend/resume, don't touch cpusets because we
7245 * want to restore it back to its original state upon resume anyway.
1da177e4 7246 */
0b2e918a
TH
7247static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7248 void *hcpu)
e761b772 7249{
d35be8ba
SB
7250 switch (action) {
7251 case CPU_ONLINE_FROZEN:
7252 case CPU_DOWN_FAILED_FROZEN:
7253
7254 /*
7255 * num_cpus_frozen tracks how many CPUs are involved in suspend
7256 * resume sequence. As long as this is not the last online
7257 * operation in the resume sequence, just build a single sched
7258 * domain, ignoring cpusets.
7259 */
7260 num_cpus_frozen--;
7261 if (likely(num_cpus_frozen)) {
7262 partition_sched_domains(1, NULL, NULL);
7263 break;
7264 }
7265
7266 /*
7267 * This is the last CPU online operation. So fall through and
7268 * restore the original sched domains by considering the
7269 * cpuset configurations.
7270 */
7271
e761b772 7272 case CPU_ONLINE:
7ddf96b0 7273 cpuset_update_active_cpus(true);
d35be8ba 7274 break;
3a101d05
TH
7275 default:
7276 return NOTIFY_DONE;
7277 }
d35be8ba 7278 return NOTIFY_OK;
3a101d05 7279}
e761b772 7280
0b2e918a
TH
7281static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7282 void *hcpu)
3a101d05 7283{
3c18d447
JL
7284 unsigned long flags;
7285 long cpu = (long)hcpu;
7286 struct dl_bw *dl_b;
533445c6
OS
7287 bool overflow;
7288 int cpus;
3c18d447 7289
533445c6 7290 switch (action) {
3a101d05 7291 case CPU_DOWN_PREPARE:
533445c6
OS
7292 rcu_read_lock_sched();
7293 dl_b = dl_bw_of(cpu);
3c18d447 7294
533445c6
OS
7295 raw_spin_lock_irqsave(&dl_b->lock, flags);
7296 cpus = dl_bw_cpus(cpu);
7297 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7298 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7299
533445c6 7300 rcu_read_unlock_sched();
3c18d447 7301
533445c6
OS
7302 if (overflow)
7303 return notifier_from_errno(-EBUSY);
7ddf96b0 7304 cpuset_update_active_cpus(false);
d35be8ba
SB
7305 break;
7306 case CPU_DOWN_PREPARE_FROZEN:
7307 num_cpus_frozen++;
7308 partition_sched_domains(1, NULL, NULL);
7309 break;
e761b772
MK
7310 default:
7311 return NOTIFY_DONE;
7312 }
d35be8ba 7313 return NOTIFY_OK;
e761b772 7314}
e761b772 7315
1da177e4
LT
7316void __init sched_init_smp(void)
7317{
dcc30a35
RR
7318 cpumask_var_t non_isolated_cpus;
7319
7320 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7321 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7322
cb83b629
PZ
7323 sched_init_numa();
7324
6acce3ef
PZ
7325 /*
7326 * There's no userspace yet to cause hotplug operations; hence all the
7327 * cpu masks are stable and all blatant races in the below code cannot
7328 * happen.
7329 */
712555ee 7330 mutex_lock(&sched_domains_mutex);
c4a8849a 7331 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7332 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7333 if (cpumask_empty(non_isolated_cpus))
7334 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7335 mutex_unlock(&sched_domains_mutex);
e761b772 7336
301a5cba 7337 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7338 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7339 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7340
b328ca18 7341 init_hrtick();
5c1e1767
NP
7342
7343 /* Move init over to a non-isolated CPU */
dcc30a35 7344 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7345 BUG();
19978ca6 7346 sched_init_granularity();
dcc30a35 7347 free_cpumask_var(non_isolated_cpus);
4212823f 7348
0e3900e6 7349 init_sched_rt_class();
1baca4ce 7350 init_sched_dl_class();
1da177e4
LT
7351}
7352#else
7353void __init sched_init_smp(void)
7354{
19978ca6 7355 sched_init_granularity();
1da177e4
LT
7356}
7357#endif /* CONFIG_SMP */
7358
7359int in_sched_functions(unsigned long addr)
7360{
1da177e4
LT
7361 return in_lock_functions(addr) ||
7362 (addr >= (unsigned long)__sched_text_start
7363 && addr < (unsigned long)__sched_text_end);
7364}
7365
029632fb 7366#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7367/*
7368 * Default task group.
7369 * Every task in system belongs to this group at bootup.
7370 */
029632fb 7371struct task_group root_task_group;
35cf4e50 7372LIST_HEAD(task_groups);
052f1dc7 7373#endif
6f505b16 7374
e6252c3e 7375DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7376
1da177e4
LT
7377void __init sched_init(void)
7378{
dd41f596 7379 int i, j;
434d53b0
MT
7380 unsigned long alloc_size = 0, ptr;
7381
7382#ifdef CONFIG_FAIR_GROUP_SCHED
7383 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7384#endif
7385#ifdef CONFIG_RT_GROUP_SCHED
7386 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7387#endif
434d53b0 7388 if (alloc_size) {
36b7b6d4 7389 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7390
7391#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7392 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7393 ptr += nr_cpu_ids * sizeof(void **);
7394
07e06b01 7395 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7396 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7397
6d6bc0ad 7398#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7399#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7400 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7401 ptr += nr_cpu_ids * sizeof(void **);
7402
07e06b01 7403 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7404 ptr += nr_cpu_ids * sizeof(void **);
7405
6d6bc0ad 7406#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7407 }
df7c8e84 7408#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7409 for_each_possible_cpu(i) {
7410 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7411 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7412 }
b74e6278 7413#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7414
332ac17e
DF
7415 init_rt_bandwidth(&def_rt_bandwidth,
7416 global_rt_period(), global_rt_runtime());
7417 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7418 global_rt_period(), global_rt_runtime());
332ac17e 7419
57d885fe
GH
7420#ifdef CONFIG_SMP
7421 init_defrootdomain();
7422#endif
7423
d0b27fa7 7424#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7425 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7426 global_rt_period(), global_rt_runtime());
6d6bc0ad 7427#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7428
7c941438 7429#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7430 list_add(&root_task_group.list, &task_groups);
7431 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7432 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7433 autogroup_init(&init_task);
54c707e9 7434
7c941438 7435#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7436
0a945022 7437 for_each_possible_cpu(i) {
70b97a7f 7438 struct rq *rq;
1da177e4
LT
7439
7440 rq = cpu_rq(i);
05fa785c 7441 raw_spin_lock_init(&rq->lock);
7897986b 7442 rq->nr_running = 0;
dce48a84
TG
7443 rq->calc_load_active = 0;
7444 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7445 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7446 init_rt_rq(&rq->rt);
7447 init_dl_rq(&rq->dl);
dd41f596 7448#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7449 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7450 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7451 /*
07e06b01 7452 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7453 *
7454 * In case of task-groups formed thr' the cgroup filesystem, it
7455 * gets 100% of the cpu resources in the system. This overall
7456 * system cpu resource is divided among the tasks of
07e06b01 7457 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7458 * based on each entity's (task or task-group's) weight
7459 * (se->load.weight).
7460 *
07e06b01 7461 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7462 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7463 * then A0's share of the cpu resource is:
7464 *
0d905bca 7465 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7466 *
07e06b01
YZ
7467 * We achieve this by letting root_task_group's tasks sit
7468 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7469 */
ab84d31e 7470 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7471 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7472#endif /* CONFIG_FAIR_GROUP_SCHED */
7473
7474 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7475#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7476 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7477#endif
1da177e4 7478
dd41f596
IM
7479 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7480 rq->cpu_load[j] = 0;
fdf3e95d
VP
7481
7482 rq->last_load_update_tick = jiffies;
7483
1da177e4 7484#ifdef CONFIG_SMP
41c7ce9a 7485 rq->sd = NULL;
57d885fe 7486 rq->rd = NULL;
ca6d75e6 7487 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7488 rq->balance_callback = NULL;
1da177e4 7489 rq->active_balance = 0;
dd41f596 7490 rq->next_balance = jiffies;
1da177e4 7491 rq->push_cpu = 0;
0a2966b4 7492 rq->cpu = i;
1f11eb6a 7493 rq->online = 0;
eae0c9df
MG
7494 rq->idle_stamp = 0;
7495 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7496 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7497
7498 INIT_LIST_HEAD(&rq->cfs_tasks);
7499
dc938520 7500 rq_attach_root(rq, &def_root_domain);
3451d024 7501#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7502 rq->nohz_flags = 0;
83cd4fe2 7503#endif
265f22a9
FW
7504#ifdef CONFIG_NO_HZ_FULL
7505 rq->last_sched_tick = 0;
7506#endif
1da177e4 7507#endif
8f4d37ec 7508 init_rq_hrtick(rq);
1da177e4 7509 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7510 }
7511
2dd73a4f 7512 set_load_weight(&init_task);
b50f60ce 7513
e107be36
AK
7514#ifdef CONFIG_PREEMPT_NOTIFIERS
7515 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7516#endif
7517
1da177e4
LT
7518 /*
7519 * The boot idle thread does lazy MMU switching as well:
7520 */
7521 atomic_inc(&init_mm.mm_count);
7522 enter_lazy_tlb(&init_mm, current);
7523
1b537c7d
YD
7524 /*
7525 * During early bootup we pretend to be a normal task:
7526 */
7527 current->sched_class = &fair_sched_class;
7528
1da177e4
LT
7529 /*
7530 * Make us the idle thread. Technically, schedule() should not be
7531 * called from this thread, however somewhere below it might be,
7532 * but because we are the idle thread, we just pick up running again
7533 * when this runqueue becomes "idle".
7534 */
7535 init_idle(current, smp_processor_id());
dce48a84
TG
7536
7537 calc_load_update = jiffies + LOAD_FREQ;
7538
bf4d83f6 7539#ifdef CONFIG_SMP
4cb98839 7540 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7541 /* May be allocated at isolcpus cmdline parse time */
7542 if (cpu_isolated_map == NULL)
7543 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7544 idle_thread_set_boot_cpu();
a803f026 7545 set_cpu_rq_start_time();
029632fb
PZ
7546#endif
7547 init_sched_fair_class();
6a7b3dc3 7548
6892b75e 7549 scheduler_running = 1;
1da177e4
LT
7550}
7551
d902db1e 7552#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7553static inline int preempt_count_equals(int preempt_offset)
7554{
da7142e2 7555 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7556
4ba8216c 7557 return (nested == preempt_offset);
e4aafea2
FW
7558}
7559
d894837f 7560void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7561{
8eb23b9f
PZ
7562 /*
7563 * Blocking primitives will set (and therefore destroy) current->state,
7564 * since we will exit with TASK_RUNNING make sure we enter with it,
7565 * otherwise we will destroy state.
7566 */
00845eb9 7567 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7568 "do not call blocking ops when !TASK_RUNNING; "
7569 "state=%lx set at [<%p>] %pS\n",
7570 current->state,
7571 (void *)current->task_state_change,
00845eb9 7572 (void *)current->task_state_change);
8eb23b9f 7573
3427445a
PZ
7574 ___might_sleep(file, line, preempt_offset);
7575}
7576EXPORT_SYMBOL(__might_sleep);
7577
7578void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7579{
1da177e4
LT
7580 static unsigned long prev_jiffy; /* ratelimiting */
7581
b3fbab05 7582 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7583 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7584 !is_idle_task(current)) ||
e4aafea2 7585 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7586 return;
7587 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7588 return;
7589 prev_jiffy = jiffies;
7590
3df0fc5b
PZ
7591 printk(KERN_ERR
7592 "BUG: sleeping function called from invalid context at %s:%d\n",
7593 file, line);
7594 printk(KERN_ERR
7595 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7596 in_atomic(), irqs_disabled(),
7597 current->pid, current->comm);
aef745fc 7598
a8b686b3
ES
7599 if (task_stack_end_corrupted(current))
7600 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7601
aef745fc
IM
7602 debug_show_held_locks(current);
7603 if (irqs_disabled())
7604 print_irqtrace_events(current);
8f47b187
TG
7605#ifdef CONFIG_DEBUG_PREEMPT
7606 if (!preempt_count_equals(preempt_offset)) {
7607 pr_err("Preemption disabled at:");
7608 print_ip_sym(current->preempt_disable_ip);
7609 pr_cont("\n");
7610 }
7611#endif
aef745fc 7612 dump_stack();
1da177e4 7613}
3427445a 7614EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7615#endif
7616
7617#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7618void normalize_rt_tasks(void)
3a5e4dc1 7619{
dbc7f069 7620 struct task_struct *g, *p;
d50dde5a
DF
7621 struct sched_attr attr = {
7622 .sched_policy = SCHED_NORMAL,
7623 };
1da177e4 7624
3472eaa1 7625 read_lock(&tasklist_lock);
5d07f420 7626 for_each_process_thread(g, p) {
178be793
IM
7627 /*
7628 * Only normalize user tasks:
7629 */
3472eaa1 7630 if (p->flags & PF_KTHREAD)
178be793
IM
7631 continue;
7632
6cfb0d5d 7633 p->se.exec_start = 0;
6cfb0d5d 7634#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7635 p->se.statistics.wait_start = 0;
7636 p->se.statistics.sleep_start = 0;
7637 p->se.statistics.block_start = 0;
6cfb0d5d 7638#endif
dd41f596 7639
aab03e05 7640 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7641 /*
7642 * Renice negative nice level userspace
7643 * tasks back to 0:
7644 */
3472eaa1 7645 if (task_nice(p) < 0)
dd41f596 7646 set_user_nice(p, 0);
1da177e4 7647 continue;
dd41f596 7648 }
1da177e4 7649
dbc7f069 7650 __sched_setscheduler(p, &attr, false, false);
5d07f420 7651 }
3472eaa1 7652 read_unlock(&tasklist_lock);
1da177e4
LT
7653}
7654
7655#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7656
67fc4e0c 7657#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7658/*
67fc4e0c 7659 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7660 *
7661 * They can only be called when the whole system has been
7662 * stopped - every CPU needs to be quiescent, and no scheduling
7663 * activity can take place. Using them for anything else would
7664 * be a serious bug, and as a result, they aren't even visible
7665 * under any other configuration.
7666 */
7667
7668/**
7669 * curr_task - return the current task for a given cpu.
7670 * @cpu: the processor in question.
7671 *
7672 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7673 *
7674 * Return: The current task for @cpu.
1df5c10a 7675 */
36c8b586 7676struct task_struct *curr_task(int cpu)
1df5c10a
LT
7677{
7678 return cpu_curr(cpu);
7679}
7680
67fc4e0c
JW
7681#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7682
7683#ifdef CONFIG_IA64
1df5c10a
LT
7684/**
7685 * set_curr_task - set the current task for a given cpu.
7686 * @cpu: the processor in question.
7687 * @p: the task pointer to set.
7688 *
7689 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7690 * are serviced on a separate stack. It allows the architecture to switch the
7691 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7692 * must be called with all CPU's synchronized, and interrupts disabled, the
7693 * and caller must save the original value of the current task (see
7694 * curr_task() above) and restore that value before reenabling interrupts and
7695 * re-starting the system.
7696 *
7697 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7698 */
36c8b586 7699void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7700{
7701 cpu_curr(cpu) = p;
7702}
7703
7704#endif
29f59db3 7705
7c941438 7706#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7707/* task_group_lock serializes the addition/removal of task groups */
7708static DEFINE_SPINLOCK(task_group_lock);
7709
bccbe08a
PZ
7710static void free_sched_group(struct task_group *tg)
7711{
7712 free_fair_sched_group(tg);
7713 free_rt_sched_group(tg);
e9aa1dd1 7714 autogroup_free(tg);
bccbe08a
PZ
7715 kfree(tg);
7716}
7717
7718/* allocate runqueue etc for a new task group */
ec7dc8ac 7719struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7720{
7721 struct task_group *tg;
bccbe08a
PZ
7722
7723 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7724 if (!tg)
7725 return ERR_PTR(-ENOMEM);
7726
ec7dc8ac 7727 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7728 goto err;
7729
ec7dc8ac 7730 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7731 goto err;
7732
ace783b9
LZ
7733 return tg;
7734
7735err:
7736 free_sched_group(tg);
7737 return ERR_PTR(-ENOMEM);
7738}
7739
7740void sched_online_group(struct task_group *tg, struct task_group *parent)
7741{
7742 unsigned long flags;
7743
8ed36996 7744 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7745 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7746
7747 WARN_ON(!parent); /* root should already exist */
7748
7749 tg->parent = parent;
f473aa5e 7750 INIT_LIST_HEAD(&tg->children);
09f2724a 7751 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7752 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7753}
7754
9b5b7751 7755/* rcu callback to free various structures associated with a task group */
6f505b16 7756static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7757{
29f59db3 7758 /* now it should be safe to free those cfs_rqs */
6f505b16 7759 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7760}
7761
9b5b7751 7762/* Destroy runqueue etc associated with a task group */
4cf86d77 7763void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7764{
7765 /* wait for possible concurrent references to cfs_rqs complete */
7766 call_rcu(&tg->rcu, free_sched_group_rcu);
7767}
7768
7769void sched_offline_group(struct task_group *tg)
29f59db3 7770{
8ed36996 7771 unsigned long flags;
9b5b7751 7772 int i;
29f59db3 7773
3d4b47b4
PZ
7774 /* end participation in shares distribution */
7775 for_each_possible_cpu(i)
bccbe08a 7776 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7777
7778 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7779 list_del_rcu(&tg->list);
f473aa5e 7780 list_del_rcu(&tg->siblings);
8ed36996 7781 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7782}
7783
9b5b7751 7784/* change task's runqueue when it moves between groups.
3a252015
IM
7785 * The caller of this function should have put the task in its new group
7786 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7787 * reflect its new group.
9b5b7751
SV
7788 */
7789void sched_move_task(struct task_struct *tsk)
29f59db3 7790{
8323f26c 7791 struct task_group *tg;
da0c1e65 7792 int queued, running;
29f59db3
SV
7793 unsigned long flags;
7794 struct rq *rq;
7795
7796 rq = task_rq_lock(tsk, &flags);
7797
051a1d1a 7798 running = task_current(rq, tsk);
da0c1e65 7799 queued = task_on_rq_queued(tsk);
29f59db3 7800
da0c1e65 7801 if (queued)
1de64443 7802 dequeue_task(rq, tsk, DEQUEUE_SAVE);
0e1f3483 7803 if (unlikely(running))
f3cd1c4e 7804 put_prev_task(rq, tsk);
29f59db3 7805
f7b8a47d
KT
7806 /*
7807 * All callers are synchronized by task_rq_lock(); we do not use RCU
7808 * which is pointless here. Thus, we pass "true" to task_css_check()
7809 * to prevent lockdep warnings.
7810 */
7811 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7812 struct task_group, css);
7813 tg = autogroup_task_group(tsk, tg);
7814 tsk->sched_task_group = tg;
7815
810b3817 7816#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7817 if (tsk->sched_class->task_move_group)
bc54da21 7818 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7819 else
810b3817 7820#endif
b2b5ce02 7821 set_task_rq(tsk, task_cpu(tsk));
810b3817 7822
0e1f3483
HS
7823 if (unlikely(running))
7824 tsk->sched_class->set_curr_task(rq);
da0c1e65 7825 if (queued)
1de64443 7826 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
29f59db3 7827
0122ec5b 7828 task_rq_unlock(rq, tsk, &flags);
29f59db3 7829}
7c941438 7830#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7831
a790de99
PT
7832#ifdef CONFIG_RT_GROUP_SCHED
7833/*
7834 * Ensure that the real time constraints are schedulable.
7835 */
7836static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7837
9a7e0b18
PZ
7838/* Must be called with tasklist_lock held */
7839static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7840{
9a7e0b18 7841 struct task_struct *g, *p;
b40b2e8e 7842
1fe89e1b
PZ
7843 /*
7844 * Autogroups do not have RT tasks; see autogroup_create().
7845 */
7846 if (task_group_is_autogroup(tg))
7847 return 0;
7848
5d07f420 7849 for_each_process_thread(g, p) {
8651c658 7850 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7851 return 1;
5d07f420 7852 }
b40b2e8e 7853
9a7e0b18
PZ
7854 return 0;
7855}
b40b2e8e 7856
9a7e0b18
PZ
7857struct rt_schedulable_data {
7858 struct task_group *tg;
7859 u64 rt_period;
7860 u64 rt_runtime;
7861};
b40b2e8e 7862
a790de99 7863static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7864{
7865 struct rt_schedulable_data *d = data;
7866 struct task_group *child;
7867 unsigned long total, sum = 0;
7868 u64 period, runtime;
b40b2e8e 7869
9a7e0b18
PZ
7870 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7871 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7872
9a7e0b18
PZ
7873 if (tg == d->tg) {
7874 period = d->rt_period;
7875 runtime = d->rt_runtime;
b40b2e8e 7876 }
b40b2e8e 7877
4653f803
PZ
7878 /*
7879 * Cannot have more runtime than the period.
7880 */
7881 if (runtime > period && runtime != RUNTIME_INF)
7882 return -EINVAL;
6f505b16 7883
4653f803
PZ
7884 /*
7885 * Ensure we don't starve existing RT tasks.
7886 */
9a7e0b18
PZ
7887 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7888 return -EBUSY;
6f505b16 7889
9a7e0b18 7890 total = to_ratio(period, runtime);
6f505b16 7891
4653f803
PZ
7892 /*
7893 * Nobody can have more than the global setting allows.
7894 */
7895 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7896 return -EINVAL;
6f505b16 7897
4653f803
PZ
7898 /*
7899 * The sum of our children's runtime should not exceed our own.
7900 */
9a7e0b18
PZ
7901 list_for_each_entry_rcu(child, &tg->children, siblings) {
7902 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7903 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7904
9a7e0b18
PZ
7905 if (child == d->tg) {
7906 period = d->rt_period;
7907 runtime = d->rt_runtime;
7908 }
6f505b16 7909
9a7e0b18 7910 sum += to_ratio(period, runtime);
9f0c1e56 7911 }
6f505b16 7912
9a7e0b18
PZ
7913 if (sum > total)
7914 return -EINVAL;
7915
7916 return 0;
6f505b16
PZ
7917}
7918
9a7e0b18 7919static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7920{
8277434e
PT
7921 int ret;
7922
9a7e0b18
PZ
7923 struct rt_schedulable_data data = {
7924 .tg = tg,
7925 .rt_period = period,
7926 .rt_runtime = runtime,
7927 };
7928
8277434e
PT
7929 rcu_read_lock();
7930 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7931 rcu_read_unlock();
7932
7933 return ret;
521f1a24
DG
7934}
7935
ab84d31e 7936static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7937 u64 rt_period, u64 rt_runtime)
6f505b16 7938{
ac086bc2 7939 int i, err = 0;
9f0c1e56 7940
2636ed5f
PZ
7941 /*
7942 * Disallowing the root group RT runtime is BAD, it would disallow the
7943 * kernel creating (and or operating) RT threads.
7944 */
7945 if (tg == &root_task_group && rt_runtime == 0)
7946 return -EINVAL;
7947
7948 /* No period doesn't make any sense. */
7949 if (rt_period == 0)
7950 return -EINVAL;
7951
9f0c1e56 7952 mutex_lock(&rt_constraints_mutex);
521f1a24 7953 read_lock(&tasklist_lock);
9a7e0b18
PZ
7954 err = __rt_schedulable(tg, rt_period, rt_runtime);
7955 if (err)
9f0c1e56 7956 goto unlock;
ac086bc2 7957
0986b11b 7958 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7959 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7960 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7961
7962 for_each_possible_cpu(i) {
7963 struct rt_rq *rt_rq = tg->rt_rq[i];
7964
0986b11b 7965 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7966 rt_rq->rt_runtime = rt_runtime;
0986b11b 7967 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7968 }
0986b11b 7969 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7970unlock:
521f1a24 7971 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7972 mutex_unlock(&rt_constraints_mutex);
7973
7974 return err;
6f505b16
PZ
7975}
7976
25cc7da7 7977static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7978{
7979 u64 rt_runtime, rt_period;
7980
7981 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7982 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7983 if (rt_runtime_us < 0)
7984 rt_runtime = RUNTIME_INF;
7985
ab84d31e 7986 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7987}
7988
25cc7da7 7989static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7990{
7991 u64 rt_runtime_us;
7992
d0b27fa7 7993 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7994 return -1;
7995
d0b27fa7 7996 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7997 do_div(rt_runtime_us, NSEC_PER_USEC);
7998 return rt_runtime_us;
7999}
d0b27fa7 8000
ce2f5fe4 8001static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8002{
8003 u64 rt_runtime, rt_period;
8004
ce2f5fe4 8005 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8006 rt_runtime = tg->rt_bandwidth.rt_runtime;
8007
ab84d31e 8008 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8009}
8010
25cc7da7 8011static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8012{
8013 u64 rt_period_us;
8014
8015 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8016 do_div(rt_period_us, NSEC_PER_USEC);
8017 return rt_period_us;
8018}
332ac17e 8019#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8020
332ac17e 8021#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8022static int sched_rt_global_constraints(void)
8023{
8024 int ret = 0;
8025
8026 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8027 read_lock(&tasklist_lock);
4653f803 8028 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8029 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8030 mutex_unlock(&rt_constraints_mutex);
8031
8032 return ret;
8033}
54e99124 8034
25cc7da7 8035static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8036{
8037 /* Don't accept realtime tasks when there is no way for them to run */
8038 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8039 return 0;
8040
8041 return 1;
8042}
8043
6d6bc0ad 8044#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8045static int sched_rt_global_constraints(void)
8046{
ac086bc2 8047 unsigned long flags;
332ac17e 8048 int i, ret = 0;
ec5d4989 8049
0986b11b 8050 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8051 for_each_possible_cpu(i) {
8052 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8053
0986b11b 8054 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8055 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8056 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8057 }
0986b11b 8058 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8059
332ac17e 8060 return ret;
d0b27fa7 8061}
6d6bc0ad 8062#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8063
a1963b81 8064static int sched_dl_global_validate(void)
332ac17e 8065{
1724813d
PZ
8066 u64 runtime = global_rt_runtime();
8067 u64 period = global_rt_period();
332ac17e 8068 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8069 struct dl_bw *dl_b;
1724813d 8070 int cpu, ret = 0;
49516342 8071 unsigned long flags;
332ac17e
DF
8072
8073 /*
8074 * Here we want to check the bandwidth not being set to some
8075 * value smaller than the currently allocated bandwidth in
8076 * any of the root_domains.
8077 *
8078 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8079 * cycling on root_domains... Discussion on different/better
8080 * solutions is welcome!
8081 */
1724813d 8082 for_each_possible_cpu(cpu) {
f10e00f4
KT
8083 rcu_read_lock_sched();
8084 dl_b = dl_bw_of(cpu);
332ac17e 8085
49516342 8086 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8087 if (new_bw < dl_b->total_bw)
8088 ret = -EBUSY;
49516342 8089 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8090
f10e00f4
KT
8091 rcu_read_unlock_sched();
8092
1724813d
PZ
8093 if (ret)
8094 break;
332ac17e
DF
8095 }
8096
1724813d 8097 return ret;
332ac17e
DF
8098}
8099
1724813d 8100static void sched_dl_do_global(void)
ce0dbbbb 8101{
1724813d 8102 u64 new_bw = -1;
f10e00f4 8103 struct dl_bw *dl_b;
1724813d 8104 int cpu;
49516342 8105 unsigned long flags;
ce0dbbbb 8106
1724813d
PZ
8107 def_dl_bandwidth.dl_period = global_rt_period();
8108 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8109
8110 if (global_rt_runtime() != RUNTIME_INF)
8111 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8112
8113 /*
8114 * FIXME: As above...
8115 */
8116 for_each_possible_cpu(cpu) {
f10e00f4
KT
8117 rcu_read_lock_sched();
8118 dl_b = dl_bw_of(cpu);
1724813d 8119
49516342 8120 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8121 dl_b->bw = new_bw;
49516342 8122 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8123
8124 rcu_read_unlock_sched();
ce0dbbbb 8125 }
1724813d
PZ
8126}
8127
8128static int sched_rt_global_validate(void)
8129{
8130 if (sysctl_sched_rt_period <= 0)
8131 return -EINVAL;
8132
e9e7cb38
JL
8133 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8134 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8135 return -EINVAL;
8136
8137 return 0;
8138}
8139
8140static void sched_rt_do_global(void)
8141{
8142 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8143 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8144}
8145
d0b27fa7 8146int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8147 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8148 loff_t *ppos)
8149{
d0b27fa7
PZ
8150 int old_period, old_runtime;
8151 static DEFINE_MUTEX(mutex);
1724813d 8152 int ret;
d0b27fa7
PZ
8153
8154 mutex_lock(&mutex);
8155 old_period = sysctl_sched_rt_period;
8156 old_runtime = sysctl_sched_rt_runtime;
8157
8d65af78 8158 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8159
8160 if (!ret && write) {
1724813d
PZ
8161 ret = sched_rt_global_validate();
8162 if (ret)
8163 goto undo;
8164
a1963b81 8165 ret = sched_dl_global_validate();
1724813d
PZ
8166 if (ret)
8167 goto undo;
8168
a1963b81 8169 ret = sched_rt_global_constraints();
1724813d
PZ
8170 if (ret)
8171 goto undo;
8172
8173 sched_rt_do_global();
8174 sched_dl_do_global();
8175 }
8176 if (0) {
8177undo:
8178 sysctl_sched_rt_period = old_period;
8179 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8180 }
8181 mutex_unlock(&mutex);
8182
8183 return ret;
8184}
68318b8e 8185
1724813d 8186int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8187 void __user *buffer, size_t *lenp,
8188 loff_t *ppos)
8189{
8190 int ret;
332ac17e 8191 static DEFINE_MUTEX(mutex);
332ac17e
DF
8192
8193 mutex_lock(&mutex);
332ac17e 8194 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8195 /* make sure that internally we keep jiffies */
8196 /* also, writing zero resets timeslice to default */
332ac17e 8197 if (!ret && write) {
1724813d
PZ
8198 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8199 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8200 }
8201 mutex_unlock(&mutex);
332ac17e
DF
8202 return ret;
8203}
8204
052f1dc7 8205#ifdef CONFIG_CGROUP_SCHED
68318b8e 8206
a7c6d554 8207static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8208{
a7c6d554 8209 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8210}
8211
eb95419b
TH
8212static struct cgroup_subsys_state *
8213cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8214{
eb95419b
TH
8215 struct task_group *parent = css_tg(parent_css);
8216 struct task_group *tg;
68318b8e 8217
eb95419b 8218 if (!parent) {
68318b8e 8219 /* This is early initialization for the top cgroup */
07e06b01 8220 return &root_task_group.css;
68318b8e
SV
8221 }
8222
ec7dc8ac 8223 tg = sched_create_group(parent);
68318b8e
SV
8224 if (IS_ERR(tg))
8225 return ERR_PTR(-ENOMEM);
8226
68318b8e
SV
8227 return &tg->css;
8228}
8229
eb95419b 8230static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8231{
eb95419b 8232 struct task_group *tg = css_tg(css);
5c9d535b 8233 struct task_group *parent = css_tg(css->parent);
ace783b9 8234
63876986
TH
8235 if (parent)
8236 sched_online_group(tg, parent);
ace783b9
LZ
8237 return 0;
8238}
8239
eb95419b 8240static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8241{
eb95419b 8242 struct task_group *tg = css_tg(css);
68318b8e
SV
8243
8244 sched_destroy_group(tg);
8245}
8246
eb95419b 8247static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8248{
eb95419b 8249 struct task_group *tg = css_tg(css);
ace783b9
LZ
8250
8251 sched_offline_group(tg);
8252}
8253
7e47682e 8254static void cpu_cgroup_fork(struct task_struct *task, void *private)
eeb61e53
KT
8255{
8256 sched_move_task(task);
8257}
8258
eb95419b 8259static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8260 struct cgroup_taskset *tset)
68318b8e 8261{
bb9d97b6
TH
8262 struct task_struct *task;
8263
924f0d9a 8264 cgroup_taskset_for_each(task, tset) {
b68aa230 8265#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8266 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8267 return -EINVAL;
b68aa230 8268#else
bb9d97b6
TH
8269 /* We don't support RT-tasks being in separate groups */
8270 if (task->sched_class != &fair_sched_class)
8271 return -EINVAL;
b68aa230 8272#endif
bb9d97b6 8273 }
be367d09
BB
8274 return 0;
8275}
68318b8e 8276
eb95419b 8277static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8278 struct cgroup_taskset *tset)
68318b8e 8279{
bb9d97b6
TH
8280 struct task_struct *task;
8281
924f0d9a 8282 cgroup_taskset_for_each(task, tset)
bb9d97b6 8283 sched_move_task(task);
68318b8e
SV
8284}
8285
052f1dc7 8286#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8287static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8288 struct cftype *cftype, u64 shareval)
68318b8e 8289{
182446d0 8290 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8291}
8292
182446d0
TH
8293static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8294 struct cftype *cft)
68318b8e 8295{
182446d0 8296 struct task_group *tg = css_tg(css);
68318b8e 8297
c8b28116 8298 return (u64) scale_load_down(tg->shares);
68318b8e 8299}
ab84d31e
PT
8300
8301#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8302static DEFINE_MUTEX(cfs_constraints_mutex);
8303
ab84d31e
PT
8304const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8305const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8306
a790de99
PT
8307static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8308
ab84d31e
PT
8309static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8310{
56f570e5 8311 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8312 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8313
8314 if (tg == &root_task_group)
8315 return -EINVAL;
8316
8317 /*
8318 * Ensure we have at some amount of bandwidth every period. This is
8319 * to prevent reaching a state of large arrears when throttled via
8320 * entity_tick() resulting in prolonged exit starvation.
8321 */
8322 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8323 return -EINVAL;
8324
8325 /*
8326 * Likewise, bound things on the otherside by preventing insane quota
8327 * periods. This also allows us to normalize in computing quota
8328 * feasibility.
8329 */
8330 if (period > max_cfs_quota_period)
8331 return -EINVAL;
8332
0e59bdae
KT
8333 /*
8334 * Prevent race between setting of cfs_rq->runtime_enabled and
8335 * unthrottle_offline_cfs_rqs().
8336 */
8337 get_online_cpus();
a790de99
PT
8338 mutex_lock(&cfs_constraints_mutex);
8339 ret = __cfs_schedulable(tg, period, quota);
8340 if (ret)
8341 goto out_unlock;
8342
58088ad0 8343 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8344 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8345 /*
8346 * If we need to toggle cfs_bandwidth_used, off->on must occur
8347 * before making related changes, and on->off must occur afterwards
8348 */
8349 if (runtime_enabled && !runtime_was_enabled)
8350 cfs_bandwidth_usage_inc();
ab84d31e
PT
8351 raw_spin_lock_irq(&cfs_b->lock);
8352 cfs_b->period = ns_to_ktime(period);
8353 cfs_b->quota = quota;
58088ad0 8354
a9cf55b2 8355 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8356 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8357 if (runtime_enabled)
8358 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8359 raw_spin_unlock_irq(&cfs_b->lock);
8360
0e59bdae 8361 for_each_online_cpu(i) {
ab84d31e 8362 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8363 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8364
8365 raw_spin_lock_irq(&rq->lock);
58088ad0 8366 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8367 cfs_rq->runtime_remaining = 0;
671fd9da 8368
029632fb 8369 if (cfs_rq->throttled)
671fd9da 8370 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8371 raw_spin_unlock_irq(&rq->lock);
8372 }
1ee14e6c
BS
8373 if (runtime_was_enabled && !runtime_enabled)
8374 cfs_bandwidth_usage_dec();
a790de99
PT
8375out_unlock:
8376 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8377 put_online_cpus();
ab84d31e 8378
a790de99 8379 return ret;
ab84d31e
PT
8380}
8381
8382int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8383{
8384 u64 quota, period;
8385
029632fb 8386 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8387 if (cfs_quota_us < 0)
8388 quota = RUNTIME_INF;
8389 else
8390 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8391
8392 return tg_set_cfs_bandwidth(tg, period, quota);
8393}
8394
8395long tg_get_cfs_quota(struct task_group *tg)
8396{
8397 u64 quota_us;
8398
029632fb 8399 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8400 return -1;
8401
029632fb 8402 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8403 do_div(quota_us, NSEC_PER_USEC);
8404
8405 return quota_us;
8406}
8407
8408int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8409{
8410 u64 quota, period;
8411
8412 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8413 quota = tg->cfs_bandwidth.quota;
ab84d31e 8414
ab84d31e
PT
8415 return tg_set_cfs_bandwidth(tg, period, quota);
8416}
8417
8418long tg_get_cfs_period(struct task_group *tg)
8419{
8420 u64 cfs_period_us;
8421
029632fb 8422 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8423 do_div(cfs_period_us, NSEC_PER_USEC);
8424
8425 return cfs_period_us;
8426}
8427
182446d0
TH
8428static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8429 struct cftype *cft)
ab84d31e 8430{
182446d0 8431 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8432}
8433
182446d0
TH
8434static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8435 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8436{
182446d0 8437 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8438}
8439
182446d0
TH
8440static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8441 struct cftype *cft)
ab84d31e 8442{
182446d0 8443 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8444}
8445
182446d0
TH
8446static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8447 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8448{
182446d0 8449 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8450}
8451
a790de99
PT
8452struct cfs_schedulable_data {
8453 struct task_group *tg;
8454 u64 period, quota;
8455};
8456
8457/*
8458 * normalize group quota/period to be quota/max_period
8459 * note: units are usecs
8460 */
8461static u64 normalize_cfs_quota(struct task_group *tg,
8462 struct cfs_schedulable_data *d)
8463{
8464 u64 quota, period;
8465
8466 if (tg == d->tg) {
8467 period = d->period;
8468 quota = d->quota;
8469 } else {
8470 period = tg_get_cfs_period(tg);
8471 quota = tg_get_cfs_quota(tg);
8472 }
8473
8474 /* note: these should typically be equivalent */
8475 if (quota == RUNTIME_INF || quota == -1)
8476 return RUNTIME_INF;
8477
8478 return to_ratio(period, quota);
8479}
8480
8481static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8482{
8483 struct cfs_schedulable_data *d = data;
029632fb 8484 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8485 s64 quota = 0, parent_quota = -1;
8486
8487 if (!tg->parent) {
8488 quota = RUNTIME_INF;
8489 } else {
029632fb 8490 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8491
8492 quota = normalize_cfs_quota(tg, d);
9c58c79a 8493 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8494
8495 /*
8496 * ensure max(child_quota) <= parent_quota, inherit when no
8497 * limit is set
8498 */
8499 if (quota == RUNTIME_INF)
8500 quota = parent_quota;
8501 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8502 return -EINVAL;
8503 }
9c58c79a 8504 cfs_b->hierarchical_quota = quota;
a790de99
PT
8505
8506 return 0;
8507}
8508
8509static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8510{
8277434e 8511 int ret;
a790de99
PT
8512 struct cfs_schedulable_data data = {
8513 .tg = tg,
8514 .period = period,
8515 .quota = quota,
8516 };
8517
8518 if (quota != RUNTIME_INF) {
8519 do_div(data.period, NSEC_PER_USEC);
8520 do_div(data.quota, NSEC_PER_USEC);
8521 }
8522
8277434e
PT
8523 rcu_read_lock();
8524 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8525 rcu_read_unlock();
8526
8527 return ret;
a790de99 8528}
e8da1b18 8529
2da8ca82 8530static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8531{
2da8ca82 8532 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8533 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8534
44ffc75b
TH
8535 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8536 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8537 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8538
8539 return 0;
8540}
ab84d31e 8541#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8542#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8543
052f1dc7 8544#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8545static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8546 struct cftype *cft, s64 val)
6f505b16 8547{
182446d0 8548 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8549}
8550
182446d0
TH
8551static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8552 struct cftype *cft)
6f505b16 8553{
182446d0 8554 return sched_group_rt_runtime(css_tg(css));
6f505b16 8555}
d0b27fa7 8556
182446d0
TH
8557static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8558 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8559{
182446d0 8560 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8561}
8562
182446d0
TH
8563static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8564 struct cftype *cft)
d0b27fa7 8565{
182446d0 8566 return sched_group_rt_period(css_tg(css));
d0b27fa7 8567}
6d6bc0ad 8568#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8569
fe5c7cc2 8570static struct cftype cpu_files[] = {
052f1dc7 8571#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8572 {
8573 .name = "shares",
f4c753b7
PM
8574 .read_u64 = cpu_shares_read_u64,
8575 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8576 },
052f1dc7 8577#endif
ab84d31e
PT
8578#ifdef CONFIG_CFS_BANDWIDTH
8579 {
8580 .name = "cfs_quota_us",
8581 .read_s64 = cpu_cfs_quota_read_s64,
8582 .write_s64 = cpu_cfs_quota_write_s64,
8583 },
8584 {
8585 .name = "cfs_period_us",
8586 .read_u64 = cpu_cfs_period_read_u64,
8587 .write_u64 = cpu_cfs_period_write_u64,
8588 },
e8da1b18
NR
8589 {
8590 .name = "stat",
2da8ca82 8591 .seq_show = cpu_stats_show,
e8da1b18 8592 },
ab84d31e 8593#endif
052f1dc7 8594#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8595 {
9f0c1e56 8596 .name = "rt_runtime_us",
06ecb27c
PM
8597 .read_s64 = cpu_rt_runtime_read,
8598 .write_s64 = cpu_rt_runtime_write,
6f505b16 8599 },
d0b27fa7
PZ
8600 {
8601 .name = "rt_period_us",
f4c753b7
PM
8602 .read_u64 = cpu_rt_period_read_uint,
8603 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8604 },
052f1dc7 8605#endif
4baf6e33 8606 { } /* terminate */
68318b8e
SV
8607};
8608
073219e9 8609struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8610 .css_alloc = cpu_cgroup_css_alloc,
8611 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8612 .css_online = cpu_cgroup_css_online,
8613 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8614 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8615 .can_attach = cpu_cgroup_can_attach,
8616 .attach = cpu_cgroup_attach,
5577964e 8617 .legacy_cftypes = cpu_files,
68318b8e
SV
8618 .early_init = 1,
8619};
8620
052f1dc7 8621#endif /* CONFIG_CGROUP_SCHED */
d842de87 8622
b637a328
PM
8623void dump_cpu_task(int cpu)
8624{
8625 pr_info("Task dump for CPU %d:\n", cpu);
8626 sched_show_task(cpu_curr(cpu));
8627}
This page took 2.763796 seconds and 5 git commands to generate.