Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying new...
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
8f4d37ec
PZ
173#ifdef CONFIG_SCHED_HRTICK
174/*
175 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 176 */
8f4d37ec 177
8f4d37ec
PZ
178static void hrtick_clear(struct rq *rq)
179{
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182}
183
8f4d37ec
PZ
184/*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188static enum hrtimer_restart hrtick(struct hrtimer *timer)
189{
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
05fa785c 194 raw_spin_lock(&rq->lock);
3e51f33f 195 update_rq_clock(rq);
8f4d37ec 196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 197 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
198
199 return HRTIMER_NORESTART;
200}
201
95e904c7 202#ifdef CONFIG_SMP
971ee28c 203
4961b6e1 204static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
205{
206 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 207
4961b6e1 208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
209}
210
31656519
PZ
211/*
212 * called from hardirq (IPI) context
213 */
214static void __hrtick_start(void *arg)
b328ca18 215{
31656519 216 struct rq *rq = arg;
b328ca18 217
05fa785c 218 raw_spin_lock(&rq->lock);
971ee28c 219 __hrtick_restart(rq);
31656519 220 rq->hrtick_csd_pending = 0;
05fa785c 221 raw_spin_unlock(&rq->lock);
b328ca18
PZ
222}
223
31656519
PZ
224/*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
029632fb 229void hrtick_start(struct rq *rq, u64 delay)
b328ca18 230{
31656519 231 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 241
cc584b21 242 hrtimer_set_expires(timer, time);
31656519
PZ
243
244 if (rq == this_rq()) {
971ee28c 245 __hrtick_restart(rq);
31656519 246 } else if (!rq->hrtick_csd_pending) {
c46fff2a 247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
248 rq->hrtick_csd_pending = 1;
249 }
b328ca18
PZ
250}
251
252static int
253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254{
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
31656519 264 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269}
270
fa748203 271static __init void init_hrtick(void)
b328ca18
PZ
272{
273 hotcpu_notifier(hotplug_hrtick, 0);
274}
31656519
PZ
275#else
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
029632fb 281void hrtick_start(struct rq *rq, u64 delay)
31656519 282{
86893335
WL
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
31656519 290}
b328ca18 291
006c75f1 292static inline void init_hrtick(void)
8f4d37ec 293{
8f4d37ec 294}
31656519 295#endif /* CONFIG_SMP */
8f4d37ec 296
31656519 297static void init_rq_hrtick(struct rq *rq)
8f4d37ec 298{
31656519
PZ
299#ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
8f4d37ec 301
31656519
PZ
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305#endif
8f4d37ec 306
31656519
PZ
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
8f4d37ec 309}
006c75f1 310#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
311static inline void hrtick_clear(struct rq *rq)
312{
313}
314
8f4d37ec
PZ
315static inline void init_rq_hrtick(struct rq *rq)
316{
317}
318
b328ca18
PZ
319static inline void init_hrtick(void)
320{
321}
006c75f1 322#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 323
5529578a
FW
324/*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327#define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340})
341
e3baac47 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
343/*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348static bool set_nr_and_not_polling(struct task_struct *p)
349{
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352}
e3baac47
PZ
353
354/*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360static bool set_nr_if_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
316c1608 363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376}
377
fd99f91a
PZ
378#else
379static bool set_nr_and_not_polling(struct task_struct *p)
380{
381 set_tsk_need_resched(p);
382 return true;
383}
e3baac47
PZ
384
385#ifdef CONFIG_SMP
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 return false;
389}
390#endif
fd99f91a
PZ
391#endif
392
76751049
PZ
393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394{
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415}
416
417void wake_up_q(struct wake_q_head *head)
418{
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437}
438
c24d20db 439/*
8875125e 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
8875125e 446void resched_curr(struct rq *rq)
c24d20db 447{
8875125e 448 struct task_struct *curr = rq->curr;
c24d20db
IM
449 int cpu;
450
8875125e 451 lockdep_assert_held(&rq->lock);
c24d20db 452
8875125e 453 if (test_tsk_need_resched(curr))
c24d20db
IM
454 return;
455
8875125e 456 cpu = cpu_of(rq);
fd99f91a 457
f27dde8d 458 if (cpu == smp_processor_id()) {
8875125e 459 set_tsk_need_resched(curr);
f27dde8d 460 set_preempt_need_resched();
c24d20db 461 return;
f27dde8d 462 }
c24d20db 463
8875125e 464 if (set_nr_and_not_polling(curr))
c24d20db 465 smp_send_reschedule(cpu);
dfc68f29
AL
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
468}
469
029632fb 470void resched_cpu(int cpu)
c24d20db
IM
471{
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
05fa785c 475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 476 return;
8875125e 477 resched_curr(rq);
05fa785c 478 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 479}
06d8308c 480
b021fe3e 481#ifdef CONFIG_SMP
3451d024 482#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
483/*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
bc7a34b8 491int get_nohz_timer_target(void)
83cd4fe2 492{
bc7a34b8 493 int i, cpu = smp_processor_id();
83cd4fe2
VP
494 struct sched_domain *sd;
495
9642d18e 496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
497 return cpu;
498
057f3fad 499 rcu_read_lock();
83cd4fe2 500 for_each_domain(cpu, sd) {
057f3fad 501 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
503 cpu = i;
504 goto unlock;
505 }
506 }
83cd4fe2 507 }
9642d18e
VH
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
057f3fad
PZ
511unlock:
512 rcu_read_unlock();
83cd4fe2
VP
513 return cpu;
514}
06d8308c
TG
515/*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
1c20091e 525static void wake_up_idle_cpu(int cpu)
06d8308c
TG
526{
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
67b9ca70 532 if (set_nr_and_not_polling(rq->idle))
06d8308c 533 smp_send_reschedule(cpu);
dfc68f29
AL
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
536}
537
c5bfece2 538static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 539{
53c5fa16
FW
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
c5bfece2 546 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
53c5fa16 549 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
550 return true;
551 }
552
553 return false;
554}
555
556void wake_up_nohz_cpu(int cpu)
557{
c5bfece2 558 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
559 wake_up_idle_cpu(cpu);
560}
561
ca38062e 562static inline bool got_nohz_idle_kick(void)
45bf76df 563{
1c792db7 564 int cpu = smp_processor_id();
873b4c65
VG
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
45bf76df
IM
578}
579
3451d024 580#else /* CONFIG_NO_HZ_COMMON */
45bf76df 581
ca38062e 582static inline bool got_nohz_idle_kick(void)
2069dd75 583{
ca38062e 584 return false;
2069dd75
PZ
585}
586
3451d024 587#endif /* CONFIG_NO_HZ_COMMON */
d842de87 588
ce831b38 589#ifdef CONFIG_NO_HZ_FULL
76d92ac3 590bool sched_can_stop_tick(struct rq *rq)
ce831b38 591{
76d92ac3
FW
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
1e78cdbd 598 /*
2548d546
PZ
599 * If there are more than one RR tasks, we need the tick to effect the
600 * actual RR behaviour.
1e78cdbd 601 */
76d92ac3
FW
602 if (rq->rt.rr_nr_running) {
603 if (rq->rt.rr_nr_running == 1)
604 return true;
605 else
606 return false;
1e78cdbd
RR
607 }
608
2548d546
PZ
609 /*
610 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
611 * forced preemption between FIFO tasks.
612 */
613 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
614 if (fifo_nr_running)
615 return true;
616
617 /*
618 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
619 * if there's more than one we need the tick for involuntary
620 * preemption.
621 */
622 if (rq->nr_running > 1)
541b8264 623 return false;
ce831b38 624
541b8264 625 return true;
ce831b38
FW
626}
627#endif /* CONFIG_NO_HZ_FULL */
d842de87 628
029632fb 629void sched_avg_update(struct rq *rq)
18d95a28 630{
e9e9250b
PZ
631 s64 period = sched_avg_period();
632
78becc27 633 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
634 /*
635 * Inline assembly required to prevent the compiler
636 * optimising this loop into a divmod call.
637 * See __iter_div_u64_rem() for another example of this.
638 */
639 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
640 rq->age_stamp += period;
641 rq->rt_avg /= 2;
642 }
18d95a28
PZ
643}
644
6d6bc0ad 645#endif /* CONFIG_SMP */
18d95a28 646
a790de99
PT
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 649/*
8277434e
PT
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 654 */
029632fb 655int walk_tg_tree_from(struct task_group *from,
8277434e 656 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
657{
658 struct task_group *parent, *child;
eb755805 659 int ret;
c09595f6 660
8277434e
PT
661 parent = from;
662
c09595f6 663down:
eb755805
PZ
664 ret = (*down)(parent, data);
665 if (ret)
8277434e 666 goto out;
c09595f6
PZ
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
eb755805 674 ret = (*up)(parent, data);
8277434e
PT
675 if (ret || parent == from)
676 goto out;
c09595f6
PZ
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
8277434e 682out:
eb755805 683 return ret;
c09595f6
PZ
684}
685
029632fb 686int tg_nop(struct task_group *tg, void *data)
eb755805 687{
e2b245f8 688 return 0;
eb755805 689}
18d95a28
PZ
690#endif
691
45bf76df
IM
692static void set_load_weight(struct task_struct *p)
693{
f05998d4
NR
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
dd41f596
IM
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
20f9cd2a 700 if (idle_policy(p->policy)) {
c8b28116 701 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 702 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
703 return;
704 }
71f8bd46 705
ed82b8a1
AK
706 load->weight = scale_load(sched_prio_to_weight[prio]);
707 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
708}
709
1de64443 710static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 711{
a64692a3 712 update_rq_clock(rq);
1de64443
PZ
713 if (!(flags & ENQUEUE_RESTORE))
714 sched_info_queued(rq, p);
371fd7e7 715 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
716}
717
1de64443 718static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 719{
a64692a3 720 update_rq_clock(rq);
1de64443
PZ
721 if (!(flags & DEQUEUE_SAVE))
722 sched_info_dequeued(rq, p);
371fd7e7 723 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
724}
725
029632fb 726void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
727{
728 if (task_contributes_to_load(p))
729 rq->nr_uninterruptible--;
730
371fd7e7 731 enqueue_task(rq, p, flags);
1e3c88bd
PZ
732}
733
029632fb 734void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
735{
736 if (task_contributes_to_load(p))
737 rq->nr_uninterruptible++;
738
371fd7e7 739 dequeue_task(rq, p, flags);
1e3c88bd
PZ
740}
741
fe44d621 742static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 743{
095c0aa8
GC
744/*
745 * In theory, the compile should just see 0 here, and optimize out the call
746 * to sched_rt_avg_update. But I don't trust it...
747 */
748#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
749 s64 steal = 0, irq_delta = 0;
750#endif
751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
753
754 /*
755 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 * this case when a previous update_rq_clock() happened inside a
757 * {soft,}irq region.
758 *
759 * When this happens, we stop ->clock_task and only update the
760 * prev_irq_time stamp to account for the part that fit, so that a next
761 * update will consume the rest. This ensures ->clock_task is
762 * monotonic.
763 *
764 * It does however cause some slight miss-attribution of {soft,}irq
765 * time, a more accurate solution would be to update the irq_time using
766 * the current rq->clock timestamp, except that would require using
767 * atomic ops.
768 */
769 if (irq_delta > delta)
770 irq_delta = delta;
771
772 rq->prev_irq_time += irq_delta;
773 delta -= irq_delta;
095c0aa8
GC
774#endif
775#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 776 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
777 steal = paravirt_steal_clock(cpu_of(rq));
778 steal -= rq->prev_steal_time_rq;
779
780 if (unlikely(steal > delta))
781 steal = delta;
782
095c0aa8 783 rq->prev_steal_time_rq += steal;
095c0aa8
GC
784 delta -= steal;
785 }
786#endif
787
fe44d621
PZ
788 rq->clock_task += delta;
789
095c0aa8 790#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 791 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
792 sched_rt_avg_update(rq, irq_delta + steal);
793#endif
aa483808
VP
794}
795
34f971f6
PZ
796void sched_set_stop_task(int cpu, struct task_struct *stop)
797{
798 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
799 struct task_struct *old_stop = cpu_rq(cpu)->stop;
800
801 if (stop) {
802 /*
803 * Make it appear like a SCHED_FIFO task, its something
804 * userspace knows about and won't get confused about.
805 *
806 * Also, it will make PI more or less work without too
807 * much confusion -- but then, stop work should not
808 * rely on PI working anyway.
809 */
810 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
811
812 stop->sched_class = &stop_sched_class;
813 }
814
815 cpu_rq(cpu)->stop = stop;
816
817 if (old_stop) {
818 /*
819 * Reset it back to a normal scheduling class so that
820 * it can die in pieces.
821 */
822 old_stop->sched_class = &rt_sched_class;
823 }
824}
825
14531189 826/*
dd41f596 827 * __normal_prio - return the priority that is based on the static prio
14531189 828 */
14531189
IM
829static inline int __normal_prio(struct task_struct *p)
830{
dd41f596 831 return p->static_prio;
14531189
IM
832}
833
b29739f9
IM
834/*
835 * Calculate the expected normal priority: i.e. priority
836 * without taking RT-inheritance into account. Might be
837 * boosted by interactivity modifiers. Changes upon fork,
838 * setprio syscalls, and whenever the interactivity
839 * estimator recalculates.
840 */
36c8b586 841static inline int normal_prio(struct task_struct *p)
b29739f9
IM
842{
843 int prio;
844
aab03e05
DF
845 if (task_has_dl_policy(p))
846 prio = MAX_DL_PRIO-1;
847 else if (task_has_rt_policy(p))
b29739f9
IM
848 prio = MAX_RT_PRIO-1 - p->rt_priority;
849 else
850 prio = __normal_prio(p);
851 return prio;
852}
853
854/*
855 * Calculate the current priority, i.e. the priority
856 * taken into account by the scheduler. This value might
857 * be boosted by RT tasks, or might be boosted by
858 * interactivity modifiers. Will be RT if the task got
859 * RT-boosted. If not then it returns p->normal_prio.
860 */
36c8b586 861static int effective_prio(struct task_struct *p)
b29739f9
IM
862{
863 p->normal_prio = normal_prio(p);
864 /*
865 * If we are RT tasks or we were boosted to RT priority,
866 * keep the priority unchanged. Otherwise, update priority
867 * to the normal priority:
868 */
869 if (!rt_prio(p->prio))
870 return p->normal_prio;
871 return p->prio;
872}
873
1da177e4
LT
874/**
875 * task_curr - is this task currently executing on a CPU?
876 * @p: the task in question.
e69f6186
YB
877 *
878 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 879 */
36c8b586 880inline int task_curr(const struct task_struct *p)
1da177e4
LT
881{
882 return cpu_curr(task_cpu(p)) == p;
883}
884
67dfa1b7 885/*
4c9a4bc8
PZ
886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
887 * use the balance_callback list if you want balancing.
888 *
889 * this means any call to check_class_changed() must be followed by a call to
890 * balance_callback().
67dfa1b7 891 */
cb469845
SR
892static inline void check_class_changed(struct rq *rq, struct task_struct *p,
893 const struct sched_class *prev_class,
da7a735e 894 int oldprio)
cb469845
SR
895{
896 if (prev_class != p->sched_class) {
897 if (prev_class->switched_from)
da7a735e 898 prev_class->switched_from(rq, p);
4c9a4bc8 899
da7a735e 900 p->sched_class->switched_to(rq, p);
2d3d891d 901 } else if (oldprio != p->prio || dl_task(p))
da7a735e 902 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
903}
904
029632fb 905void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
906{
907 const struct sched_class *class;
908
909 if (p->sched_class == rq->curr->sched_class) {
910 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
911 } else {
912 for_each_class(class) {
913 if (class == rq->curr->sched_class)
914 break;
915 if (class == p->sched_class) {
8875125e 916 resched_curr(rq);
1e5a7405
PZ
917 break;
918 }
919 }
920 }
921
922 /*
923 * A queue event has occurred, and we're going to schedule. In
924 * this case, we can save a useless back to back clock update.
925 */
da0c1e65 926 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 927 rq_clock_skip_update(rq, true);
1e5a7405
PZ
928}
929
1da177e4 930#ifdef CONFIG_SMP
5cc389bc
PZ
931/*
932 * This is how migration works:
933 *
934 * 1) we invoke migration_cpu_stop() on the target CPU using
935 * stop_one_cpu().
936 * 2) stopper starts to run (implicitly forcing the migrated thread
937 * off the CPU)
938 * 3) it checks whether the migrated task is still in the wrong runqueue.
939 * 4) if it's in the wrong runqueue then the migration thread removes
940 * it and puts it into the right queue.
941 * 5) stopper completes and stop_one_cpu() returns and the migration
942 * is done.
943 */
944
945/*
946 * move_queued_task - move a queued task to new rq.
947 *
948 * Returns (locked) new rq. Old rq's lock is released.
949 */
5e16bbc2 950static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 951{
5cc389bc
PZ
952 lockdep_assert_held(&rq->lock);
953
5cc389bc 954 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 955 dequeue_task(rq, p, 0);
5cc389bc
PZ
956 set_task_cpu(p, new_cpu);
957 raw_spin_unlock(&rq->lock);
958
959 rq = cpu_rq(new_cpu);
960
961 raw_spin_lock(&rq->lock);
962 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 963 enqueue_task(rq, p, 0);
3ea94de1 964 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
965 check_preempt_curr(rq, p, 0);
966
967 return rq;
968}
969
970struct migration_arg {
971 struct task_struct *task;
972 int dest_cpu;
973};
974
975/*
976 * Move (not current) task off this cpu, onto dest cpu. We're doing
977 * this because either it can't run here any more (set_cpus_allowed()
978 * away from this CPU, or CPU going down), or because we're
979 * attempting to rebalance this task on exec (sched_exec).
980 *
981 * So we race with normal scheduler movements, but that's OK, as long
982 * as the task is no longer on this CPU.
5cc389bc 983 */
5e16bbc2 984static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 985{
5cc389bc 986 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 987 return rq;
5cc389bc
PZ
988
989 /* Affinity changed (again). */
990 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 991 return rq;
5cc389bc 992
5e16bbc2
PZ
993 rq = move_queued_task(rq, p, dest_cpu);
994
995 return rq;
5cc389bc
PZ
996}
997
998/*
999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003static int migration_cpu_stop(void *data)
1004{
1005 struct migration_arg *arg = data;
5e16bbc2
PZ
1006 struct task_struct *p = arg->task;
1007 struct rq *rq = this_rq();
5cc389bc
PZ
1008
1009 /*
1010 * The original target cpu might have gone down and we might
1011 * be on another cpu but it doesn't matter.
1012 */
1013 local_irq_disable();
1014 /*
1015 * We need to explicitly wake pending tasks before running
1016 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018 */
1019 sched_ttwu_pending();
5e16bbc2
PZ
1020
1021 raw_spin_lock(&p->pi_lock);
1022 raw_spin_lock(&rq->lock);
1023 /*
1024 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026 * we're holding p->pi_lock.
1027 */
1028 if (task_rq(p) == rq && task_on_rq_queued(p))
1029 rq = __migrate_task(rq, p, arg->dest_cpu);
1030 raw_spin_unlock(&rq->lock);
1031 raw_spin_unlock(&p->pi_lock);
1032
5cc389bc
PZ
1033 local_irq_enable();
1034 return 0;
1035}
1036
c5b28038
PZ
1037/*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1042{
5cc389bc
PZ
1043 cpumask_copy(&p->cpus_allowed, new_mask);
1044 p->nr_cpus_allowed = cpumask_weight(new_mask);
1045}
1046
c5b28038
PZ
1047void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1048{
6c37067e
PZ
1049 struct rq *rq = task_rq(p);
1050 bool queued, running;
1051
c5b28038 1052 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1053
1054 queued = task_on_rq_queued(p);
1055 running = task_current(rq, p);
1056
1057 if (queued) {
1058 /*
1059 * Because __kthread_bind() calls this on blocked tasks without
1060 * holding rq->lock.
1061 */
1062 lockdep_assert_held(&rq->lock);
1de64443 1063 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1064 }
1065 if (running)
1066 put_prev_task(rq, p);
1067
c5b28038 1068 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1069
1070 if (running)
1071 p->sched_class->set_curr_task(rq);
1072 if (queued)
1de64443 1073 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1074}
1075
5cc389bc
PZ
1076/*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
1084 */
25834c73
PZ
1085static int __set_cpus_allowed_ptr(struct task_struct *p,
1086 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1087{
1088 unsigned long flags;
1089 struct rq *rq;
1090 unsigned int dest_cpu;
1091 int ret = 0;
1092
1093 rq = task_rq_lock(p, &flags);
1094
25834c73
PZ
1095 /*
1096 * Must re-check here, to close a race against __kthread_bind(),
1097 * sched_setaffinity() is not guaranteed to observe the flag.
1098 */
1099 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100 ret = -EINVAL;
1101 goto out;
1102 }
1103
5cc389bc
PZ
1104 if (cpumask_equal(&p->cpus_allowed, new_mask))
1105 goto out;
1106
1107 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1108 ret = -EINVAL;
1109 goto out;
1110 }
1111
1112 do_set_cpus_allowed(p, new_mask);
1113
1114 /* Can the task run on the task's current CPU? If so, we're done */
1115 if (cpumask_test_cpu(task_cpu(p), new_mask))
1116 goto out;
1117
1118 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119 if (task_running(rq, p) || p->state == TASK_WAKING) {
1120 struct migration_arg arg = { p, dest_cpu };
1121 /* Need help from migration thread: drop lock and wait. */
1122 task_rq_unlock(rq, p, &flags);
1123 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124 tlb_migrate_finish(p->mm);
1125 return 0;
cbce1a68
PZ
1126 } else if (task_on_rq_queued(p)) {
1127 /*
1128 * OK, since we're going to drop the lock immediately
1129 * afterwards anyway.
1130 */
1131 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1132 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1133 lockdep_pin_lock(&rq->lock);
1134 }
5cc389bc
PZ
1135out:
1136 task_rq_unlock(rq, p, &flags);
1137
1138 return ret;
1139}
25834c73
PZ
1140
1141int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142{
1143 return __set_cpus_allowed_ptr(p, new_mask, false);
1144}
5cc389bc
PZ
1145EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
dd41f596 1147void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1148{
e2912009
PZ
1149#ifdef CONFIG_SCHED_DEBUG
1150 /*
1151 * We should never call set_task_cpu() on a blocked task,
1152 * ttwu() will sort out the placement.
1153 */
077614ee 1154 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1155 !p->on_rq);
0122ec5b 1156
3ea94de1
JP
1157 /*
1158 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160 * time relying on p->on_rq.
1161 */
1162 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163 p->sched_class == &fair_sched_class &&
1164 (p->on_rq && !task_on_rq_migrating(p)));
1165
0122ec5b 1166#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1167 /*
1168 * The caller should hold either p->pi_lock or rq->lock, when changing
1169 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170 *
1171 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1172 * see task_group().
6c6c54e1
PZ
1173 *
1174 * Furthermore, all task_rq users should acquire both locks, see
1175 * task_rq_lock().
1176 */
0122ec5b
PZ
1177 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178 lockdep_is_held(&task_rq(p)->lock)));
1179#endif
e2912009
PZ
1180#endif
1181
de1d7286 1182 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1183
0c69774e 1184 if (task_cpu(p) != new_cpu) {
0a74bef8 1185 if (p->sched_class->migrate_task_rq)
5a4fd036 1186 p->sched_class->migrate_task_rq(p);
0c69774e 1187 p->se.nr_migrations++;
ff303e66 1188 perf_event_task_migrate(p);
0c69774e 1189 }
dd41f596
IM
1190
1191 __set_task_cpu(p, new_cpu);
c65cc870
IM
1192}
1193
ac66f547
PZ
1194static void __migrate_swap_task(struct task_struct *p, int cpu)
1195{
da0c1e65 1196 if (task_on_rq_queued(p)) {
ac66f547
PZ
1197 struct rq *src_rq, *dst_rq;
1198
1199 src_rq = task_rq(p);
1200 dst_rq = cpu_rq(cpu);
1201
3ea94de1 1202 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1203 deactivate_task(src_rq, p, 0);
1204 set_task_cpu(p, cpu);
1205 activate_task(dst_rq, p, 0);
3ea94de1 1206 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1207 check_preempt_curr(dst_rq, p, 0);
1208 } else {
1209 /*
1210 * Task isn't running anymore; make it appear like we migrated
1211 * it before it went to sleep. This means on wakeup we make the
1212 * previous cpu our targer instead of where it really is.
1213 */
1214 p->wake_cpu = cpu;
1215 }
1216}
1217
1218struct migration_swap_arg {
1219 struct task_struct *src_task, *dst_task;
1220 int src_cpu, dst_cpu;
1221};
1222
1223static int migrate_swap_stop(void *data)
1224{
1225 struct migration_swap_arg *arg = data;
1226 struct rq *src_rq, *dst_rq;
1227 int ret = -EAGAIN;
1228
62694cd5
PZ
1229 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230 return -EAGAIN;
1231
ac66f547
PZ
1232 src_rq = cpu_rq(arg->src_cpu);
1233 dst_rq = cpu_rq(arg->dst_cpu);
1234
74602315
PZ
1235 double_raw_lock(&arg->src_task->pi_lock,
1236 &arg->dst_task->pi_lock);
ac66f547 1237 double_rq_lock(src_rq, dst_rq);
62694cd5 1238
ac66f547
PZ
1239 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240 goto unlock;
1241
1242 if (task_cpu(arg->src_task) != arg->src_cpu)
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246 goto unlock;
1247
1248 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249 goto unlock;
1250
1251 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1252 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254 ret = 0;
1255
1256unlock:
1257 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1258 raw_spin_unlock(&arg->dst_task->pi_lock);
1259 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1260
1261 return ret;
1262}
1263
1264/*
1265 * Cross migrate two tasks
1266 */
1267int migrate_swap(struct task_struct *cur, struct task_struct *p)
1268{
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1271
ac66f547
PZ
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
1274 .src_cpu = task_cpu(cur),
1275 .dst_task = p,
1276 .dst_cpu = task_cpu(p),
1277 };
1278
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1281
6acce3ef
PZ
1282 /*
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1285 */
ac66f547
PZ
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290 goto out;
1291
1292 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293 goto out;
1294
286549dc 1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
ac66f547
PZ
1299 return ret;
1300}
1301
1da177e4
LT
1302/*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
85ba2d86
RM
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change. If it changes, i.e. @p might have woken up,
1307 * then return zero. When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count). If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1da177e4
LT
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
85ba2d86 1318unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1319{
1320 unsigned long flags;
da0c1e65 1321 int running, queued;
85ba2d86 1322 unsigned long ncsw;
70b97a7f 1323 struct rq *rq;
1da177e4 1324
3a5c359a
AK
1325 for (;;) {
1326 /*
1327 * We do the initial early heuristics without holding
1328 * any task-queue locks at all. We'll only try to get
1329 * the runqueue lock when things look like they will
1330 * work out!
1331 */
1332 rq = task_rq(p);
fa490cfd 1333
3a5c359a
AK
1334 /*
1335 * If the task is actively running on another CPU
1336 * still, just relax and busy-wait without holding
1337 * any locks.
1338 *
1339 * NOTE! Since we don't hold any locks, it's not
1340 * even sure that "rq" stays as the right runqueue!
1341 * But we don't care, since "task_running()" will
1342 * return false if the runqueue has changed and p
1343 * is actually now running somewhere else!
1344 */
85ba2d86
RM
1345 while (task_running(rq, p)) {
1346 if (match_state && unlikely(p->state != match_state))
1347 return 0;
3a5c359a 1348 cpu_relax();
85ba2d86 1349 }
fa490cfd 1350
3a5c359a
AK
1351 /*
1352 * Ok, time to look more closely! We need the rq
1353 * lock now, to be *sure*. If we're wrong, we'll
1354 * just go back and repeat.
1355 */
1356 rq = task_rq_lock(p, &flags);
27a9da65 1357 trace_sched_wait_task(p);
3a5c359a 1358 running = task_running(rq, p);
da0c1e65 1359 queued = task_on_rq_queued(p);
85ba2d86 1360 ncsw = 0;
f31e11d8 1361 if (!match_state || p->state == match_state)
93dcf55f 1362 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1363 task_rq_unlock(rq, p, &flags);
fa490cfd 1364
85ba2d86
RM
1365 /*
1366 * If it changed from the expected state, bail out now.
1367 */
1368 if (unlikely(!ncsw))
1369 break;
1370
3a5c359a
AK
1371 /*
1372 * Was it really running after all now that we
1373 * checked with the proper locks actually held?
1374 *
1375 * Oops. Go back and try again..
1376 */
1377 if (unlikely(running)) {
1378 cpu_relax();
1379 continue;
1380 }
fa490cfd 1381
3a5c359a
AK
1382 /*
1383 * It's not enough that it's not actively running,
1384 * it must be off the runqueue _entirely_, and not
1385 * preempted!
1386 *
80dd99b3 1387 * So if it was still runnable (but just not actively
3a5c359a
AK
1388 * running right now), it's preempted, and we should
1389 * yield - it could be a while.
1390 */
da0c1e65 1391 if (unlikely(queued)) {
8eb90c30
TG
1392 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394 set_current_state(TASK_UNINTERRUPTIBLE);
1395 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1396 continue;
1397 }
fa490cfd 1398
3a5c359a
AK
1399 /*
1400 * Ahh, all good. It wasn't running, and it wasn't
1401 * runnable, which means that it will never become
1402 * running in the future either. We're all done!
1403 */
1404 break;
1405 }
85ba2d86
RM
1406
1407 return ncsw;
1da177e4
LT
1408}
1409
1410/***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
25985edc 1417 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
36c8b586 1423void kick_process(struct task_struct *p)
1da177e4
LT
1424{
1425 int cpu;
1426
1427 preempt_disable();
1428 cpu = task_cpu(p);
1429 if ((cpu != smp_processor_id()) && task_curr(p))
1430 smp_send_reschedule(cpu);
1431 preempt_enable();
1432}
b43e3521 1433EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1434
30da688e 1435/*
013fdb80 1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1437 */
5da9a0fb
PZ
1438static int select_fallback_rq(int cpu, struct task_struct *p)
1439{
aa00d89c
TC
1440 int nid = cpu_to_node(cpu);
1441 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1442 enum { cpuset, possible, fail } state = cpuset;
1443 int dest_cpu;
5da9a0fb 1444
aa00d89c
TC
1445 /*
1446 * If the node that the cpu is on has been offlined, cpu_to_node()
1447 * will return -1. There is no cpu on the node, and we should
1448 * select the cpu on the other node.
1449 */
1450 if (nid != -1) {
1451 nodemask = cpumask_of_node(nid);
1452
1453 /* Look for allowed, online CPU in same node. */
1454 for_each_cpu(dest_cpu, nodemask) {
1455 if (!cpu_online(dest_cpu))
1456 continue;
1457 if (!cpu_active(dest_cpu))
1458 continue;
1459 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460 return dest_cpu;
1461 }
2baab4e9 1462 }
5da9a0fb 1463
2baab4e9
PZ
1464 for (;;) {
1465 /* Any allowed, online CPU? */
e3831edd 1466 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1467 if (!cpu_online(dest_cpu))
1468 continue;
1469 if (!cpu_active(dest_cpu))
1470 continue;
1471 goto out;
1472 }
5da9a0fb 1473
e73e85f0 1474 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1475 switch (state) {
1476 case cpuset:
e73e85f0
ON
1477 if (IS_ENABLED(CONFIG_CPUSETS)) {
1478 cpuset_cpus_allowed_fallback(p);
1479 state = possible;
1480 break;
1481 }
1482 /* fall-through */
2baab4e9
PZ
1483 case possible:
1484 do_set_cpus_allowed(p, cpu_possible_mask);
1485 state = fail;
1486 break;
1487
1488 case fail:
1489 BUG();
1490 break;
1491 }
1492 }
1493
1494out:
1495 if (state != cpuset) {
1496 /*
1497 * Don't tell them about moving exiting tasks or
1498 * kernel threads (both mm NULL), since they never
1499 * leave kernel.
1500 */
1501 if (p->mm && printk_ratelimit()) {
aac74dc4 1502 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1503 task_pid_nr(p), p->comm, cpu);
1504 }
5da9a0fb
PZ
1505 }
1506
1507 return dest_cpu;
1508}
1509
e2912009 1510/*
013fdb80 1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1512 */
970b13ba 1513static inline
ac66f547 1514int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1515{
cbce1a68
PZ
1516 lockdep_assert_held(&p->pi_lock);
1517
6c1d9410
WL
1518 if (p->nr_cpus_allowed > 1)
1519 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1520
1521 /*
1522 * In order not to call set_task_cpu() on a blocking task we need
1523 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524 * cpu.
1525 *
1526 * Since this is common to all placement strategies, this lives here.
1527 *
1528 * [ this allows ->select_task() to simply return task_cpu(p) and
1529 * not worry about this generic constraint ]
1530 */
fa17b507 1531 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1532 !cpu_online(cpu)))
5da9a0fb 1533 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1534
1535 return cpu;
970b13ba 1536}
09a40af5
MG
1537
1538static void update_avg(u64 *avg, u64 sample)
1539{
1540 s64 diff = sample - *avg;
1541 *avg += diff >> 3;
1542}
25834c73
PZ
1543
1544#else
1545
1546static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547 const struct cpumask *new_mask, bool check)
1548{
1549 return set_cpus_allowed_ptr(p, new_mask);
1550}
1551
5cc389bc 1552#endif /* CONFIG_SMP */
970b13ba 1553
d7c01d27 1554static void
b84cb5df 1555ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1556{
d7c01d27 1557#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1558 struct rq *rq = this_rq();
1559
d7c01d27
PZ
1560#ifdef CONFIG_SMP
1561 int this_cpu = smp_processor_id();
1562
1563 if (cpu == this_cpu) {
1564 schedstat_inc(rq, ttwu_local);
1565 schedstat_inc(p, se.statistics.nr_wakeups_local);
1566 } else {
1567 struct sched_domain *sd;
1568
1569 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1570 rcu_read_lock();
d7c01d27
PZ
1571 for_each_domain(this_cpu, sd) {
1572 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573 schedstat_inc(sd, ttwu_wake_remote);
1574 break;
1575 }
1576 }
057f3fad 1577 rcu_read_unlock();
d7c01d27 1578 }
f339b9dc
PZ
1579
1580 if (wake_flags & WF_MIGRATED)
1581 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
d7c01d27
PZ
1583#endif /* CONFIG_SMP */
1584
1585 schedstat_inc(rq, ttwu_count);
9ed3811a 1586 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1587
1588 if (wake_flags & WF_SYNC)
9ed3811a 1589 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1590
d7c01d27
PZ
1591#endif /* CONFIG_SCHEDSTATS */
1592}
1593
1de64443 1594static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1595{
9ed3811a 1596 activate_task(rq, p, en_flags);
da0c1e65 1597 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1598
1599 /* if a worker is waking up, notify workqueue */
1600 if (p->flags & PF_WQ_WORKER)
1601 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1602}
1603
23f41eeb
PZ
1604/*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
89363381 1607static void
23f41eeb 1608ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1609{
9ed3811a 1610 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1611 p->state = TASK_RUNNING;
fbd705a0
PZ
1612 trace_sched_wakeup(p);
1613
9ed3811a 1614#ifdef CONFIG_SMP
4c9a4bc8
PZ
1615 if (p->sched_class->task_woken) {
1616 /*
cbce1a68
PZ
1617 * Our task @p is fully woken up and running; so its safe to
1618 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1619 */
cbce1a68 1620 lockdep_unpin_lock(&rq->lock);
9ed3811a 1621 p->sched_class->task_woken(rq, p);
cbce1a68 1622 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1623 }
9ed3811a 1624
e69c6341 1625 if (rq->idle_stamp) {
78becc27 1626 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1627 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1628
abfafa54
JL
1629 update_avg(&rq->avg_idle, delta);
1630
1631 if (rq->avg_idle > max)
9ed3811a 1632 rq->avg_idle = max;
abfafa54 1633
9ed3811a
TH
1634 rq->idle_stamp = 0;
1635 }
1636#endif
1637}
1638
c05fbafb
PZ
1639static void
1640ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1641{
cbce1a68
PZ
1642 lockdep_assert_held(&rq->lock);
1643
c05fbafb
PZ
1644#ifdef CONFIG_SMP
1645 if (p->sched_contributes_to_load)
1646 rq->nr_uninterruptible--;
1647#endif
1648
1649 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650 ttwu_do_wakeup(rq, p, wake_flags);
1651}
1652
1653/*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
1658 */
1659static int ttwu_remote(struct task_struct *p, int wake_flags)
1660{
1661 struct rq *rq;
1662 int ret = 0;
1663
1664 rq = __task_rq_lock(p);
da0c1e65 1665 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1666 /* check_preempt_curr() may use rq clock */
1667 update_rq_clock(rq);
c05fbafb
PZ
1668 ttwu_do_wakeup(rq, p, wake_flags);
1669 ret = 1;
1670 }
1671 __task_rq_unlock(rq);
1672
1673 return ret;
1674}
1675
317f3941 1676#ifdef CONFIG_SMP
e3baac47 1677void sched_ttwu_pending(void)
317f3941
PZ
1678{
1679 struct rq *rq = this_rq();
fa14ff4a
PZ
1680 struct llist_node *llist = llist_del_all(&rq->wake_list);
1681 struct task_struct *p;
e3baac47 1682 unsigned long flags;
317f3941 1683
e3baac47
PZ
1684 if (!llist)
1685 return;
1686
1687 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1688 lockdep_pin_lock(&rq->lock);
317f3941 1689
fa14ff4a
PZ
1690 while (llist) {
1691 p = llist_entry(llist, struct task_struct, wake_entry);
1692 llist = llist_next(llist);
317f3941
PZ
1693 ttwu_do_activate(rq, p, 0);
1694 }
1695
cbce1a68 1696 lockdep_unpin_lock(&rq->lock);
e3baac47 1697 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1698}
1699
1700void scheduler_ipi(void)
1701{
f27dde8d
PZ
1702 /*
1703 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705 * this IPI.
1706 */
8cb75e0c 1707 preempt_fold_need_resched();
f27dde8d 1708
fd2ac4f4 1709 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1710 return;
1711
1712 /*
1713 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714 * traditionally all their work was done from the interrupt return
1715 * path. Now that we actually do some work, we need to make sure
1716 * we do call them.
1717 *
1718 * Some archs already do call them, luckily irq_enter/exit nest
1719 * properly.
1720 *
1721 * Arguably we should visit all archs and update all handlers,
1722 * however a fair share of IPIs are still resched only so this would
1723 * somewhat pessimize the simple resched case.
1724 */
1725 irq_enter();
fa14ff4a 1726 sched_ttwu_pending();
ca38062e
SS
1727
1728 /*
1729 * Check if someone kicked us for doing the nohz idle load balance.
1730 */
873b4c65 1731 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1732 this_rq()->idle_balance = 1;
ca38062e 1733 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1734 }
c5d753a5 1735 irq_exit();
317f3941
PZ
1736}
1737
1738static void ttwu_queue_remote(struct task_struct *p, int cpu)
1739{
e3baac47
PZ
1740 struct rq *rq = cpu_rq(cpu);
1741
1742 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743 if (!set_nr_if_polling(rq->idle))
1744 smp_send_reschedule(cpu);
1745 else
1746 trace_sched_wake_idle_without_ipi(cpu);
1747 }
317f3941 1748}
d6aa8f85 1749
f6be8af1
CL
1750void wake_up_if_idle(int cpu)
1751{
1752 struct rq *rq = cpu_rq(cpu);
1753 unsigned long flags;
1754
fd7de1e8
AL
1755 rcu_read_lock();
1756
1757 if (!is_idle_task(rcu_dereference(rq->curr)))
1758 goto out;
f6be8af1
CL
1759
1760 if (set_nr_if_polling(rq->idle)) {
1761 trace_sched_wake_idle_without_ipi(cpu);
1762 } else {
1763 raw_spin_lock_irqsave(&rq->lock, flags);
1764 if (is_idle_task(rq->curr))
1765 smp_send_reschedule(cpu);
1766 /* Else cpu is not in idle, do nothing here */
1767 raw_spin_unlock_irqrestore(&rq->lock, flags);
1768 }
fd7de1e8
AL
1769
1770out:
1771 rcu_read_unlock();
f6be8af1
CL
1772}
1773
39be3501 1774bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1775{
1776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777}
d6aa8f85 1778#endif /* CONFIG_SMP */
317f3941 1779
c05fbafb
PZ
1780static void ttwu_queue(struct task_struct *p, int cpu)
1781{
1782 struct rq *rq = cpu_rq(cpu);
1783
17d9f311 1784#if defined(CONFIG_SMP)
39be3501 1785 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1786 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1787 ttwu_queue_remote(p, cpu);
1788 return;
1789 }
1790#endif
1791
c05fbafb 1792 raw_spin_lock(&rq->lock);
cbce1a68 1793 lockdep_pin_lock(&rq->lock);
c05fbafb 1794 ttwu_do_activate(rq, p, 0);
cbce1a68 1795 lockdep_unpin_lock(&rq->lock);
c05fbafb 1796 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1797}
1798
8643cda5
PZ
1799/*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 * MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 * rq(c1)->lock (if not at the same time, then in that order).
1813 * C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 * CPU0 CPU1 CPU2
1822 *
1823 * LOCK rq(0)->lock
1824 * sched-out X
1825 * sched-in Y
1826 * UNLOCK rq(0)->lock
1827 *
1828 * LOCK rq(0)->lock // orders against CPU0
1829 * dequeue X
1830 * UNLOCK rq(0)->lock
1831 *
1832 * LOCK rq(1)->lock
1833 * enqueue X
1834 * UNLOCK rq(1)->lock
1835 *
1836 * LOCK rq(1)->lock // orders against CPU2
1837 * sched-out Z
1838 * sched-in X
1839 * UNLOCK rq(1)->lock
1840 *
1841 *
1842 * BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 * 1) smp_store_release(X->on_cpu, 0)
1849 * 2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 * LOCK rq(0)->lock LOCK X->pi_lock
1856 * dequeue X
1857 * sched-out X
1858 * smp_store_release(X->on_cpu, 0);
1859 *
1860 * smp_cond_acquire(!X->on_cpu);
1861 * X->state = WAKING
1862 * set_task_cpu(X,2)
1863 *
1864 * LOCK rq(2)->lock
1865 * enqueue X
1866 * X->state = RUNNING
1867 * UNLOCK rq(2)->lock
1868 *
1869 * LOCK rq(2)->lock // orders against CPU1
1870 * sched-out Z
1871 * sched-in X
1872 * UNLOCK rq(2)->lock
1873 *
1874 * UNLOCK X->pi_lock
1875 * UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
9ed3811a 1890/**
1da177e4 1891 * try_to_wake_up - wake up a thread
9ed3811a 1892 * @p: the thread to be awakened
1da177e4 1893 * @state: the mask of task states that can be woken
9ed3811a 1894 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
1901 *
e69f6186 1902 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1903 * or @state didn't match @p's state.
1da177e4 1904 */
e4a52bcb
PZ
1905static int
1906try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1907{
1da177e4 1908 unsigned long flags;
c05fbafb 1909 int cpu, success = 0;
2398f2c6 1910
e0acd0a6
ON
1911 /*
1912 * If we are going to wake up a thread waiting for CONDITION we
1913 * need to ensure that CONDITION=1 done by the caller can not be
1914 * reordered with p->state check below. This pairs with mb() in
1915 * set_current_state() the waiting thread does.
1916 */
1917 smp_mb__before_spinlock();
013fdb80 1918 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1919 if (!(p->state & state))
1da177e4
LT
1920 goto out;
1921
fbd705a0
PZ
1922 trace_sched_waking(p);
1923
c05fbafb 1924 success = 1; /* we're going to change ->state */
1da177e4 1925 cpu = task_cpu(p);
1da177e4 1926
c05fbafb
PZ
1927 if (p->on_rq && ttwu_remote(p, wake_flags))
1928 goto stat;
1da177e4 1929
1da177e4 1930#ifdef CONFIG_SMP
ecf7d01c
PZ
1931 /*
1932 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933 * possible to, falsely, observe p->on_cpu == 0.
1934 *
1935 * One must be running (->on_cpu == 1) in order to remove oneself
1936 * from the runqueue.
1937 *
1938 * [S] ->on_cpu = 1; [L] ->on_rq
1939 * UNLOCK rq->lock
1940 * RMB
1941 * LOCK rq->lock
1942 * [S] ->on_rq = 0; [L] ->on_cpu
1943 *
1944 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945 * from the consecutive calls to schedule(); the first switching to our
1946 * task, the second putting it to sleep.
1947 */
1948 smp_rmb();
1949
e9c84311 1950 /*
c05fbafb
PZ
1951 * If the owning (remote) cpu is still in the middle of schedule() with
1952 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
1953 *
1954 * Pairs with the smp_store_release() in finish_lock_switch().
1955 *
1956 * This ensures that tasks getting woken will be fully ordered against
1957 * their previous state and preserve Program Order.
0970d299 1958 */
b3e0b1b6 1959 smp_cond_acquire(!p->on_cpu);
1da177e4 1960
a8e4f2ea 1961 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1962 p->state = TASK_WAKING;
e7693a36 1963
e4a52bcb 1964 if (p->sched_class->task_waking)
74f8e4b2 1965 p->sched_class->task_waking(p);
efbbd05a 1966
ac66f547 1967 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1968 if (task_cpu(p) != cpu) {
1969 wake_flags |= WF_MIGRATED;
e4a52bcb 1970 set_task_cpu(p, cpu);
f339b9dc 1971 }
1da177e4 1972#endif /* CONFIG_SMP */
1da177e4 1973
c05fbafb
PZ
1974 ttwu_queue(p, cpu);
1975stat:
cb251765
MG
1976 if (schedstat_enabled())
1977 ttwu_stat(p, cpu, wake_flags);
1da177e4 1978out:
013fdb80 1979 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1980
1981 return success;
1982}
1983
21aa9af0
TH
1984/**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
1987 *
2acca55e 1988 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1990 * the current task.
21aa9af0
TH
1991 */
1992static void try_to_wake_up_local(struct task_struct *p)
1993{
1994 struct rq *rq = task_rq(p);
21aa9af0 1995
383efcd0
TH
1996 if (WARN_ON_ONCE(rq != this_rq()) ||
1997 WARN_ON_ONCE(p == current))
1998 return;
1999
21aa9af0
TH
2000 lockdep_assert_held(&rq->lock);
2001
2acca55e 2002 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2003 /*
2004 * This is OK, because current is on_cpu, which avoids it being
2005 * picked for load-balance and preemption/IRQs are still
2006 * disabled avoiding further scheduler activity on it and we've
2007 * not yet picked a replacement task.
2008 */
2009 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2010 raw_spin_unlock(&rq->lock);
2011 raw_spin_lock(&p->pi_lock);
2012 raw_spin_lock(&rq->lock);
cbce1a68 2013 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2014 }
2015
21aa9af0 2016 if (!(p->state & TASK_NORMAL))
2acca55e 2017 goto out;
21aa9af0 2018
fbd705a0
PZ
2019 trace_sched_waking(p);
2020
da0c1e65 2021 if (!task_on_rq_queued(p))
d7c01d27
PZ
2022 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023
23f41eeb 2024 ttwu_do_wakeup(rq, p, 0);
cb251765
MG
2025 if (schedstat_enabled())
2026 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2027out:
2028 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2029}
2030
50fa610a
DH
2031/**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
7ad5b3a5 2043int wake_up_process(struct task_struct *p)
1da177e4 2044{
9067ac85 2045 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2046}
1da177e4
LT
2047EXPORT_SYMBOL(wake_up_process);
2048
7ad5b3a5 2049int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2050{
2051 return try_to_wake_up(p, state, 0);
2052}
2053
a5e7be3b
JL
2054/*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057void __dl_clear_params(struct task_struct *p)
2058{
2059 struct sched_dl_entity *dl_se = &p->dl;
2060
2061 dl_se->dl_runtime = 0;
2062 dl_se->dl_deadline = 0;
2063 dl_se->dl_period = 0;
2064 dl_se->flags = 0;
2065 dl_se->dl_bw = 0;
40767b0d
PZ
2066
2067 dl_se->dl_throttled = 0;
40767b0d 2068 dl_se->dl_yielded = 0;
a5e7be3b
JL
2069}
2070
1da177e4
LT
2071/*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
dd41f596
IM
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
2076 */
5e1576ed 2077static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2078{
fd2f4419
PZ
2079 p->on_rq = 0;
2080
2081 p->se.on_rq = 0;
dd41f596
IM
2082 p->se.exec_start = 0;
2083 p->se.sum_exec_runtime = 0;
f6cf891c 2084 p->se.prev_sum_exec_runtime = 0;
6c594c21 2085 p->se.nr_migrations = 0;
da7a735e 2086 p->se.vruntime = 0;
fd2f4419 2087 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2088
ad936d86
BP
2089#ifdef CONFIG_FAIR_GROUP_SCHED
2090 p->se.cfs_rq = NULL;
2091#endif
2092
6cfb0d5d 2093#ifdef CONFIG_SCHEDSTATS
cb251765 2094 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2095 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2096#endif
476d139c 2097
aab03e05 2098 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2099 init_dl_task_timer(&p->dl);
a5e7be3b 2100 __dl_clear_params(p);
aab03e05 2101
fa717060 2102 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2103 p->rt.timeout = 0;
2104 p->rt.time_slice = sched_rr_timeslice;
2105 p->rt.on_rq = 0;
2106 p->rt.on_list = 0;
476d139c 2107
e107be36
AK
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109 INIT_HLIST_HEAD(&p->preempt_notifiers);
2110#endif
cbee9f88
PZ
2111
2112#ifdef CONFIG_NUMA_BALANCING
2113 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2114 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2115 p->mm->numa_scan_seq = 0;
2116 }
2117
5e1576ed
RR
2118 if (clone_flags & CLONE_VM)
2119 p->numa_preferred_nid = current->numa_preferred_nid;
2120 else
2121 p->numa_preferred_nid = -1;
2122
cbee9f88
PZ
2123 p->node_stamp = 0ULL;
2124 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2125 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2126 p->numa_work.next = &p->numa_work;
44dba3d5 2127 p->numa_faults = NULL;
7e2703e6
RR
2128 p->last_task_numa_placement = 0;
2129 p->last_sum_exec_runtime = 0;
8c8a743c 2130
8c8a743c 2131 p->numa_group = NULL;
cbee9f88 2132#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2133}
2134
2a595721
SD
2135DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
1a687c2e 2137#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2138
1a687c2e
MG
2139void set_numabalancing_state(bool enabled)
2140{
2141 if (enabled)
2a595721 2142 static_branch_enable(&sched_numa_balancing);
1a687c2e 2143 else
2a595721 2144 static_branch_disable(&sched_numa_balancing);
1a687c2e 2145}
54a43d54
AK
2146
2147#ifdef CONFIG_PROC_SYSCTL
2148int sysctl_numa_balancing(struct ctl_table *table, int write,
2149 void __user *buffer, size_t *lenp, loff_t *ppos)
2150{
2151 struct ctl_table t;
2152 int err;
2a595721 2153 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2154
2155 if (write && !capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 t = *table;
2159 t.data = &state;
2160 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161 if (err < 0)
2162 return err;
2163 if (write)
2164 set_numabalancing_state(state);
2165 return err;
2166}
2167#endif
2168#endif
dd41f596 2169
cb251765
MG
2170DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171
2172#ifdef CONFIG_SCHEDSTATS
2173static void set_schedstats(bool enabled)
2174{
2175 if (enabled)
2176 static_branch_enable(&sched_schedstats);
2177 else
2178 static_branch_disable(&sched_schedstats);
2179}
2180
2181void force_schedstat_enabled(void)
2182{
2183 if (!schedstat_enabled()) {
2184 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185 static_branch_enable(&sched_schedstats);
2186 }
2187}
2188
2189static int __init setup_schedstats(char *str)
2190{
2191 int ret = 0;
2192 if (!str)
2193 goto out;
2194
2195 if (!strcmp(str, "enable")) {
2196 set_schedstats(true);
2197 ret = 1;
2198 } else if (!strcmp(str, "disable")) {
2199 set_schedstats(false);
2200 ret = 1;
2201 }
2202out:
2203 if (!ret)
2204 pr_warn("Unable to parse schedstats=\n");
2205
2206 return ret;
2207}
2208__setup("schedstats=", setup_schedstats);
2209
2210#ifdef CONFIG_PROC_SYSCTL
2211int sysctl_schedstats(struct ctl_table *table, int write,
2212 void __user *buffer, size_t *lenp, loff_t *ppos)
2213{
2214 struct ctl_table t;
2215 int err;
2216 int state = static_branch_likely(&sched_schedstats);
2217
2218 if (write && !capable(CAP_SYS_ADMIN))
2219 return -EPERM;
2220
2221 t = *table;
2222 t.data = &state;
2223 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224 if (err < 0)
2225 return err;
2226 if (write)
2227 set_schedstats(state);
2228 return err;
2229}
2230#endif
2231#endif
dd41f596
IM
2232
2233/*
2234 * fork()/clone()-time setup:
2235 */
aab03e05 2236int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2237{
0122ec5b 2238 unsigned long flags;
dd41f596
IM
2239 int cpu = get_cpu();
2240
5e1576ed 2241 __sched_fork(clone_flags, p);
06b83b5f 2242 /*
0017d735 2243 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2244 * nobody will actually run it, and a signal or other external
2245 * event cannot wake it up and insert it on the runqueue either.
2246 */
0017d735 2247 p->state = TASK_RUNNING;
dd41f596 2248
c350a04e
MG
2249 /*
2250 * Make sure we do not leak PI boosting priority to the child.
2251 */
2252 p->prio = current->normal_prio;
2253
b9dc29e7
MG
2254 /*
2255 * Revert to default priority/policy on fork if requested.
2256 */
2257 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2258 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2259 p->policy = SCHED_NORMAL;
6c697bdf 2260 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2261 p->rt_priority = 0;
2262 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2263 p->static_prio = NICE_TO_PRIO(0);
2264
2265 p->prio = p->normal_prio = __normal_prio(p);
2266 set_load_weight(p);
6c697bdf 2267
b9dc29e7
MG
2268 /*
2269 * We don't need the reset flag anymore after the fork. It has
2270 * fulfilled its duty:
2271 */
2272 p->sched_reset_on_fork = 0;
2273 }
ca94c442 2274
aab03e05
DF
2275 if (dl_prio(p->prio)) {
2276 put_cpu();
2277 return -EAGAIN;
2278 } else if (rt_prio(p->prio)) {
2279 p->sched_class = &rt_sched_class;
2280 } else {
2ddbf952 2281 p->sched_class = &fair_sched_class;
aab03e05 2282 }
b29739f9 2283
cd29fe6f
PZ
2284 if (p->sched_class->task_fork)
2285 p->sched_class->task_fork(p);
2286
86951599
PZ
2287 /*
2288 * The child is not yet in the pid-hash so no cgroup attach races,
2289 * and the cgroup is pinned to this child due to cgroup_fork()
2290 * is ran before sched_fork().
2291 *
2292 * Silence PROVE_RCU.
2293 */
0122ec5b 2294 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2295 set_task_cpu(p, cpu);
0122ec5b 2296 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2297
f6db8347 2298#ifdef CONFIG_SCHED_INFO
dd41f596 2299 if (likely(sched_info_on()))
52f17b6c 2300 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2301#endif
3ca7a440
PZ
2302#if defined(CONFIG_SMP)
2303 p->on_cpu = 0;
4866cde0 2304#endif
01028747 2305 init_task_preempt_count(p);
806c09a7 2306#ifdef CONFIG_SMP
917b627d 2307 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2308 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2309#endif
917b627d 2310
476d139c 2311 put_cpu();
aab03e05 2312 return 0;
1da177e4
LT
2313}
2314
332ac17e
DF
2315unsigned long to_ratio(u64 period, u64 runtime)
2316{
2317 if (runtime == RUNTIME_INF)
2318 return 1ULL << 20;
2319
2320 /*
2321 * Doing this here saves a lot of checks in all
2322 * the calling paths, and returning zero seems
2323 * safe for them anyway.
2324 */
2325 if (period == 0)
2326 return 0;
2327
2328 return div64_u64(runtime << 20, period);
2329}
2330
2331#ifdef CONFIG_SMP
2332inline struct dl_bw *dl_bw_of(int i)
2333{
f78f5b90
PM
2334 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2335 "sched RCU must be held");
332ac17e
DF
2336 return &cpu_rq(i)->rd->dl_bw;
2337}
2338
de212f18 2339static inline int dl_bw_cpus(int i)
332ac17e 2340{
de212f18
PZ
2341 struct root_domain *rd = cpu_rq(i)->rd;
2342 int cpus = 0;
2343
f78f5b90
PM
2344 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2345 "sched RCU must be held");
de212f18
PZ
2346 for_each_cpu_and(i, rd->span, cpu_active_mask)
2347 cpus++;
2348
2349 return cpus;
332ac17e
DF
2350}
2351#else
2352inline struct dl_bw *dl_bw_of(int i)
2353{
2354 return &cpu_rq(i)->dl.dl_bw;
2355}
2356
de212f18 2357static inline int dl_bw_cpus(int i)
332ac17e
DF
2358{
2359 return 1;
2360}
2361#endif
2362
332ac17e
DF
2363/*
2364 * We must be sure that accepting a new task (or allowing changing the
2365 * parameters of an existing one) is consistent with the bandwidth
2366 * constraints. If yes, this function also accordingly updates the currently
2367 * allocated bandwidth to reflect the new situation.
2368 *
2369 * This function is called while holding p's rq->lock.
40767b0d
PZ
2370 *
2371 * XXX we should delay bw change until the task's 0-lag point, see
2372 * __setparam_dl().
332ac17e
DF
2373 */
2374static int dl_overflow(struct task_struct *p, int policy,
2375 const struct sched_attr *attr)
2376{
2377
2378 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2379 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2380 u64 runtime = attr->sched_runtime;
2381 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2382 int cpus, err = -1;
332ac17e 2383
fec148c0
XP
2384 /* !deadline task may carry old deadline bandwidth */
2385 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2386 return 0;
2387
2388 /*
2389 * Either if a task, enters, leave, or stays -deadline but changes
2390 * its parameters, we may need to update accordingly the total
2391 * allocated bandwidth of the container.
2392 */
2393 raw_spin_lock(&dl_b->lock);
de212f18 2394 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2395 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2396 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2397 __dl_add(dl_b, new_bw);
2398 err = 0;
2399 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2400 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2401 __dl_clear(dl_b, p->dl.dl_bw);
2402 __dl_add(dl_b, new_bw);
2403 err = 0;
2404 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2405 __dl_clear(dl_b, p->dl.dl_bw);
2406 err = 0;
2407 }
2408 raw_spin_unlock(&dl_b->lock);
2409
2410 return err;
2411}
2412
2413extern void init_dl_bw(struct dl_bw *dl_b);
2414
1da177e4
LT
2415/*
2416 * wake_up_new_task - wake up a newly created task for the first time.
2417 *
2418 * This function will do some initial scheduler statistics housekeeping
2419 * that must be done for every newly created context, then puts the task
2420 * on the runqueue and wakes it.
2421 */
3e51e3ed 2422void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2423{
2424 unsigned long flags;
dd41f596 2425 struct rq *rq;
fabf318e 2426
ab2515c4 2427 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2428 /* Initialize new task's runnable average */
2429 init_entity_runnable_average(&p->se);
fabf318e
PZ
2430#ifdef CONFIG_SMP
2431 /*
2432 * Fork balancing, do it here and not earlier because:
2433 * - cpus_allowed can change in the fork path
2434 * - any previously selected cpu might disappear through hotplug
fabf318e 2435 */
ac66f547 2436 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2437#endif
2b8c41da
YD
2438 /* Post initialize new task's util average when its cfs_rq is set */
2439 post_init_entity_util_avg(&p->se);
0017d735 2440
ab2515c4 2441 rq = __task_rq_lock(p);
cd29fe6f 2442 activate_task(rq, p, 0);
da0c1e65 2443 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2444 trace_sched_wakeup_new(p);
a7558e01 2445 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2446#ifdef CONFIG_SMP
0aaafaab
PZ
2447 if (p->sched_class->task_woken) {
2448 /*
2449 * Nothing relies on rq->lock after this, so its fine to
2450 * drop it.
2451 */
2452 lockdep_unpin_lock(&rq->lock);
efbbd05a 2453 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2454 lockdep_pin_lock(&rq->lock);
2455 }
9a897c5a 2456#endif
0122ec5b 2457 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2458}
2459
e107be36
AK
2460#ifdef CONFIG_PREEMPT_NOTIFIERS
2461
1cde2930
PZ
2462static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2463
2ecd9d29
PZ
2464void preempt_notifier_inc(void)
2465{
2466 static_key_slow_inc(&preempt_notifier_key);
2467}
2468EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2469
2470void preempt_notifier_dec(void)
2471{
2472 static_key_slow_dec(&preempt_notifier_key);
2473}
2474EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2475
e107be36 2476/**
80dd99b3 2477 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2478 * @notifier: notifier struct to register
e107be36
AK
2479 */
2480void preempt_notifier_register(struct preempt_notifier *notifier)
2481{
2ecd9d29
PZ
2482 if (!static_key_false(&preempt_notifier_key))
2483 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2484
e107be36
AK
2485 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2486}
2487EXPORT_SYMBOL_GPL(preempt_notifier_register);
2488
2489/**
2490 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2491 * @notifier: notifier struct to unregister
e107be36 2492 *
d84525a8 2493 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2494 */
2495void preempt_notifier_unregister(struct preempt_notifier *notifier)
2496{
2497 hlist_del(&notifier->link);
2498}
2499EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2500
1cde2930 2501static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2502{
2503 struct preempt_notifier *notifier;
e107be36 2504
b67bfe0d 2505 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2506 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2507}
2508
1cde2930
PZ
2509static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2510{
2511 if (static_key_false(&preempt_notifier_key))
2512 __fire_sched_in_preempt_notifiers(curr);
2513}
2514
e107be36 2515static void
1cde2930
PZ
2516__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2517 struct task_struct *next)
e107be36
AK
2518{
2519 struct preempt_notifier *notifier;
e107be36 2520
b67bfe0d 2521 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2522 notifier->ops->sched_out(notifier, next);
2523}
2524
1cde2930
PZ
2525static __always_inline void
2526fire_sched_out_preempt_notifiers(struct task_struct *curr,
2527 struct task_struct *next)
2528{
2529 if (static_key_false(&preempt_notifier_key))
2530 __fire_sched_out_preempt_notifiers(curr, next);
2531}
2532
6d6bc0ad 2533#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2534
1cde2930 2535static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2536{
2537}
2538
1cde2930 2539static inline void
e107be36
AK
2540fire_sched_out_preempt_notifiers(struct task_struct *curr,
2541 struct task_struct *next)
2542{
2543}
2544
6d6bc0ad 2545#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2546
4866cde0
NP
2547/**
2548 * prepare_task_switch - prepare to switch tasks
2549 * @rq: the runqueue preparing to switch
421cee29 2550 * @prev: the current task that is being switched out
4866cde0
NP
2551 * @next: the task we are going to switch to.
2552 *
2553 * This is called with the rq lock held and interrupts off. It must
2554 * be paired with a subsequent finish_task_switch after the context
2555 * switch.
2556 *
2557 * prepare_task_switch sets up locking and calls architecture specific
2558 * hooks.
2559 */
e107be36
AK
2560static inline void
2561prepare_task_switch(struct rq *rq, struct task_struct *prev,
2562 struct task_struct *next)
4866cde0 2563{
43148951 2564 sched_info_switch(rq, prev, next);
fe4b04fa 2565 perf_event_task_sched_out(prev, next);
e107be36 2566 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2567 prepare_lock_switch(rq, next);
2568 prepare_arch_switch(next);
2569}
2570
1da177e4
LT
2571/**
2572 * finish_task_switch - clean up after a task-switch
2573 * @prev: the thread we just switched away from.
2574 *
4866cde0
NP
2575 * finish_task_switch must be called after the context switch, paired
2576 * with a prepare_task_switch call before the context switch.
2577 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2578 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2579 *
2580 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2581 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2582 * with the lock held can cause deadlocks; see schedule() for
2583 * details.)
dfa50b60
ON
2584 *
2585 * The context switch have flipped the stack from under us and restored the
2586 * local variables which were saved when this task called schedule() in the
2587 * past. prev == current is still correct but we need to recalculate this_rq
2588 * because prev may have moved to another CPU.
1da177e4 2589 */
dfa50b60 2590static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2591 __releases(rq->lock)
2592{
dfa50b60 2593 struct rq *rq = this_rq();
1da177e4 2594 struct mm_struct *mm = rq->prev_mm;
55a101f8 2595 long prev_state;
1da177e4 2596
609ca066
PZ
2597 /*
2598 * The previous task will have left us with a preempt_count of 2
2599 * because it left us after:
2600 *
2601 * schedule()
2602 * preempt_disable(); // 1
2603 * __schedule()
2604 * raw_spin_lock_irq(&rq->lock) // 2
2605 *
2606 * Also, see FORK_PREEMPT_COUNT.
2607 */
e2bf1c4b
PZ
2608 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2609 "corrupted preempt_count: %s/%d/0x%x\n",
2610 current->comm, current->pid, preempt_count()))
2611 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2612
1da177e4
LT
2613 rq->prev_mm = NULL;
2614
2615 /*
2616 * A task struct has one reference for the use as "current".
c394cc9f 2617 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2618 * schedule one last time. The schedule call will never return, and
2619 * the scheduled task must drop that reference.
95913d97
PZ
2620 *
2621 * We must observe prev->state before clearing prev->on_cpu (in
2622 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2623 * running on another CPU and we could rave with its RUNNING -> DEAD
2624 * transition, resulting in a double drop.
1da177e4 2625 */
55a101f8 2626 prev_state = prev->state;
bf9fae9f 2627 vtime_task_switch(prev);
a8d757ef 2628 perf_event_task_sched_in(prev, current);
4866cde0 2629 finish_lock_switch(rq, prev);
01f23e16 2630 finish_arch_post_lock_switch();
e8fa1362 2631
e107be36 2632 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2633 if (mm)
2634 mmdrop(mm);
c394cc9f 2635 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2636 if (prev->sched_class->task_dead)
2637 prev->sched_class->task_dead(prev);
2638
c6fd91f0 2639 /*
2640 * Remove function-return probe instances associated with this
2641 * task and put them back on the free list.
9761eea8 2642 */
c6fd91f0 2643 kprobe_flush_task(prev);
1da177e4 2644 put_task_struct(prev);
c6fd91f0 2645 }
99e5ada9 2646
de734f89 2647 tick_nohz_task_switch();
dfa50b60 2648 return rq;
1da177e4
LT
2649}
2650
3f029d3c
GH
2651#ifdef CONFIG_SMP
2652
3f029d3c 2653/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2654static void __balance_callback(struct rq *rq)
3f029d3c 2655{
e3fca9e7
PZ
2656 struct callback_head *head, *next;
2657 void (*func)(struct rq *rq);
2658 unsigned long flags;
3f029d3c 2659
e3fca9e7
PZ
2660 raw_spin_lock_irqsave(&rq->lock, flags);
2661 head = rq->balance_callback;
2662 rq->balance_callback = NULL;
2663 while (head) {
2664 func = (void (*)(struct rq *))head->func;
2665 next = head->next;
2666 head->next = NULL;
2667 head = next;
3f029d3c 2668
e3fca9e7 2669 func(rq);
3f029d3c 2670 }
e3fca9e7
PZ
2671 raw_spin_unlock_irqrestore(&rq->lock, flags);
2672}
2673
2674static inline void balance_callback(struct rq *rq)
2675{
2676 if (unlikely(rq->balance_callback))
2677 __balance_callback(rq);
3f029d3c
GH
2678}
2679
2680#else
da19ab51 2681
e3fca9e7 2682static inline void balance_callback(struct rq *rq)
3f029d3c 2683{
1da177e4
LT
2684}
2685
3f029d3c
GH
2686#endif
2687
1da177e4
LT
2688/**
2689 * schedule_tail - first thing a freshly forked thread must call.
2690 * @prev: the thread we just switched away from.
2691 */
722a9f92 2692asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2693 __releases(rq->lock)
2694{
1a43a14a 2695 struct rq *rq;
da19ab51 2696
609ca066
PZ
2697 /*
2698 * New tasks start with FORK_PREEMPT_COUNT, see there and
2699 * finish_task_switch() for details.
2700 *
2701 * finish_task_switch() will drop rq->lock() and lower preempt_count
2702 * and the preempt_enable() will end up enabling preemption (on
2703 * PREEMPT_COUNT kernels).
2704 */
2705
dfa50b60 2706 rq = finish_task_switch(prev);
e3fca9e7 2707 balance_callback(rq);
1a43a14a 2708 preempt_enable();
70b97a7f 2709
1da177e4 2710 if (current->set_child_tid)
b488893a 2711 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2712}
2713
2714/*
dfa50b60 2715 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2716 */
04936948 2717static __always_inline struct rq *
70b97a7f 2718context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2719 struct task_struct *next)
1da177e4 2720{
dd41f596 2721 struct mm_struct *mm, *oldmm;
1da177e4 2722
e107be36 2723 prepare_task_switch(rq, prev, next);
fe4b04fa 2724
dd41f596
IM
2725 mm = next->mm;
2726 oldmm = prev->active_mm;
9226d125
ZA
2727 /*
2728 * For paravirt, this is coupled with an exit in switch_to to
2729 * combine the page table reload and the switch backend into
2730 * one hypercall.
2731 */
224101ed 2732 arch_start_context_switch(prev);
9226d125 2733
31915ab4 2734 if (!mm) {
1da177e4
LT
2735 next->active_mm = oldmm;
2736 atomic_inc(&oldmm->mm_count);
2737 enter_lazy_tlb(oldmm, next);
2738 } else
f98db601 2739 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2740
31915ab4 2741 if (!prev->mm) {
1da177e4 2742 prev->active_mm = NULL;
1da177e4
LT
2743 rq->prev_mm = oldmm;
2744 }
3a5f5e48
IM
2745 /*
2746 * Since the runqueue lock will be released by the next
2747 * task (which is an invalid locking op but in the case
2748 * of the scheduler it's an obvious special-case), so we
2749 * do an early lockdep release here:
2750 */
cbce1a68 2751 lockdep_unpin_lock(&rq->lock);
8a25d5de 2752 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2753
2754 /* Here we just switch the register state and the stack. */
2755 switch_to(prev, next, prev);
dd41f596 2756 barrier();
dfa50b60
ON
2757
2758 return finish_task_switch(prev);
1da177e4
LT
2759}
2760
2761/*
1c3e8264 2762 * nr_running and nr_context_switches:
1da177e4
LT
2763 *
2764 * externally visible scheduler statistics: current number of runnable
1c3e8264 2765 * threads, total number of context switches performed since bootup.
1da177e4
LT
2766 */
2767unsigned long nr_running(void)
2768{
2769 unsigned long i, sum = 0;
2770
2771 for_each_online_cpu(i)
2772 sum += cpu_rq(i)->nr_running;
2773
2774 return sum;
f711f609 2775}
1da177e4 2776
2ee507c4
TC
2777/*
2778 * Check if only the current task is running on the cpu.
00cc1633
DD
2779 *
2780 * Caution: this function does not check that the caller has disabled
2781 * preemption, thus the result might have a time-of-check-to-time-of-use
2782 * race. The caller is responsible to use it correctly, for example:
2783 *
2784 * - from a non-preemptable section (of course)
2785 *
2786 * - from a thread that is bound to a single CPU
2787 *
2788 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2789 */
2790bool single_task_running(void)
2791{
00cc1633 2792 return raw_rq()->nr_running == 1;
2ee507c4
TC
2793}
2794EXPORT_SYMBOL(single_task_running);
2795
1da177e4 2796unsigned long long nr_context_switches(void)
46cb4b7c 2797{
cc94abfc
SR
2798 int i;
2799 unsigned long long sum = 0;
46cb4b7c 2800
0a945022 2801 for_each_possible_cpu(i)
1da177e4 2802 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2803
1da177e4
LT
2804 return sum;
2805}
483b4ee6 2806
1da177e4
LT
2807unsigned long nr_iowait(void)
2808{
2809 unsigned long i, sum = 0;
483b4ee6 2810
0a945022 2811 for_each_possible_cpu(i)
1da177e4 2812 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2813
1da177e4
LT
2814 return sum;
2815}
483b4ee6 2816
8c215bd3 2817unsigned long nr_iowait_cpu(int cpu)
69d25870 2818{
8c215bd3 2819 struct rq *this = cpu_rq(cpu);
69d25870
AV
2820 return atomic_read(&this->nr_iowait);
2821}
46cb4b7c 2822
372ba8cb
MG
2823void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2824{
3289bdb4
PZ
2825 struct rq *rq = this_rq();
2826 *nr_waiters = atomic_read(&rq->nr_iowait);
2827 *load = rq->load.weight;
372ba8cb
MG
2828}
2829
dd41f596 2830#ifdef CONFIG_SMP
8a0be9ef 2831
46cb4b7c 2832/*
38022906
PZ
2833 * sched_exec - execve() is a valuable balancing opportunity, because at
2834 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2835 */
38022906 2836void sched_exec(void)
46cb4b7c 2837{
38022906 2838 struct task_struct *p = current;
1da177e4 2839 unsigned long flags;
0017d735 2840 int dest_cpu;
46cb4b7c 2841
8f42ced9 2842 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2843 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2844 if (dest_cpu == smp_processor_id())
2845 goto unlock;
38022906 2846
8f42ced9 2847 if (likely(cpu_active(dest_cpu))) {
969c7921 2848 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2849
8f42ced9
PZ
2850 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2851 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2852 return;
2853 }
0017d735 2854unlock:
8f42ced9 2855 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2856}
dd41f596 2857
1da177e4
LT
2858#endif
2859
1da177e4 2860DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2861DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2862
2863EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2864EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2865
c5f8d995
HS
2866/*
2867 * Return accounted runtime for the task.
2868 * In case the task is currently running, return the runtime plus current's
2869 * pending runtime that have not been accounted yet.
2870 */
2871unsigned long long task_sched_runtime(struct task_struct *p)
2872{
2873 unsigned long flags;
2874 struct rq *rq;
6e998916 2875 u64 ns;
c5f8d995 2876
911b2898
PZ
2877#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2878 /*
2879 * 64-bit doesn't need locks to atomically read a 64bit value.
2880 * So we have a optimization chance when the task's delta_exec is 0.
2881 * Reading ->on_cpu is racy, but this is ok.
2882 *
2883 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2884 * If we race with it entering cpu, unaccounted time is 0. This is
2885 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2886 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2887 * been accounted, so we're correct here as well.
911b2898 2888 */
da0c1e65 2889 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2890 return p->se.sum_exec_runtime;
2891#endif
2892
c5f8d995 2893 rq = task_rq_lock(p, &flags);
6e998916
SG
2894 /*
2895 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2896 * project cycles that may never be accounted to this
2897 * thread, breaking clock_gettime().
2898 */
2899 if (task_current(rq, p) && task_on_rq_queued(p)) {
2900 update_rq_clock(rq);
2901 p->sched_class->update_curr(rq);
2902 }
2903 ns = p->se.sum_exec_runtime;
0122ec5b 2904 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2905
2906 return ns;
2907}
48f24c4d 2908
7835b98b
CL
2909/*
2910 * This function gets called by the timer code, with HZ frequency.
2911 * We call it with interrupts disabled.
7835b98b
CL
2912 */
2913void scheduler_tick(void)
2914{
7835b98b
CL
2915 int cpu = smp_processor_id();
2916 struct rq *rq = cpu_rq(cpu);
dd41f596 2917 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2918
2919 sched_clock_tick();
dd41f596 2920
05fa785c 2921 raw_spin_lock(&rq->lock);
3e51f33f 2922 update_rq_clock(rq);
fa85ae24 2923 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 2924 cpu_load_update_active(rq);
3289bdb4 2925 calc_global_load_tick(rq);
05fa785c 2926 raw_spin_unlock(&rq->lock);
7835b98b 2927
e9d2b064 2928 perf_event_task_tick();
e220d2dc 2929
e418e1c2 2930#ifdef CONFIG_SMP
6eb57e0d 2931 rq->idle_balance = idle_cpu(cpu);
7caff66f 2932 trigger_load_balance(rq);
e418e1c2 2933#endif
265f22a9 2934 rq_last_tick_reset(rq);
1da177e4
LT
2935}
2936
265f22a9
FW
2937#ifdef CONFIG_NO_HZ_FULL
2938/**
2939 * scheduler_tick_max_deferment
2940 *
2941 * Keep at least one tick per second when a single
2942 * active task is running because the scheduler doesn't
2943 * yet completely support full dynticks environment.
2944 *
2945 * This makes sure that uptime, CFS vruntime, load
2946 * balancing, etc... continue to move forward, even
2947 * with a very low granularity.
e69f6186
YB
2948 *
2949 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2950 */
2951u64 scheduler_tick_max_deferment(void)
2952{
2953 struct rq *rq = this_rq();
316c1608 2954 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2955
2956 next = rq->last_sched_tick + HZ;
2957
2958 if (time_before_eq(next, now))
2959 return 0;
2960
8fe8ff09 2961 return jiffies_to_nsecs(next - now);
1da177e4 2962}
265f22a9 2963#endif
1da177e4 2964
7e49fcce
SR
2965#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2966 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
2967/*
2968 * If the value passed in is equal to the current preempt count
2969 * then we just disabled preemption. Start timing the latency.
2970 */
2971static inline void preempt_latency_start(int val)
2972{
2973 if (preempt_count() == val) {
2974 unsigned long ip = get_lock_parent_ip();
2975#ifdef CONFIG_DEBUG_PREEMPT
2976 current->preempt_disable_ip = ip;
2977#endif
2978 trace_preempt_off(CALLER_ADDR0, ip);
2979 }
2980}
7e49fcce 2981
edafe3a5 2982void preempt_count_add(int val)
1da177e4 2983{
6cd8a4bb 2984#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2985 /*
2986 * Underflow?
2987 */
9a11b49a
IM
2988 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2989 return;
6cd8a4bb 2990#endif
bdb43806 2991 __preempt_count_add(val);
6cd8a4bb 2992#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2993 /*
2994 * Spinlock count overflowing soon?
2995 */
33859f7f
MOS
2996 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2997 PREEMPT_MASK - 10);
6cd8a4bb 2998#endif
47252cfb 2999 preempt_latency_start(val);
1da177e4 3000}
bdb43806 3001EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3002NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3003
47252cfb
SR
3004/*
3005 * If the value passed in equals to the current preempt count
3006 * then we just enabled preemption. Stop timing the latency.
3007 */
3008static inline void preempt_latency_stop(int val)
3009{
3010 if (preempt_count() == val)
3011 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3012}
3013
edafe3a5 3014void preempt_count_sub(int val)
1da177e4 3015{
6cd8a4bb 3016#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3017 /*
3018 * Underflow?
3019 */
01e3eb82 3020 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3021 return;
1da177e4
LT
3022 /*
3023 * Is the spinlock portion underflowing?
3024 */
9a11b49a
IM
3025 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3026 !(preempt_count() & PREEMPT_MASK)))
3027 return;
6cd8a4bb 3028#endif
9a11b49a 3029
47252cfb 3030 preempt_latency_stop(val);
bdb43806 3031 __preempt_count_sub(val);
1da177e4 3032}
bdb43806 3033EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3034NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3035
47252cfb
SR
3036#else
3037static inline void preempt_latency_start(int val) { }
3038static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3039#endif
3040
3041/*
dd41f596 3042 * Print scheduling while atomic bug:
1da177e4 3043 */
dd41f596 3044static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3045{
664dfa65
DJ
3046 if (oops_in_progress)
3047 return;
3048
3df0fc5b
PZ
3049 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3050 prev->comm, prev->pid, preempt_count());
838225b4 3051
dd41f596 3052 debug_show_held_locks(prev);
e21f5b15 3053 print_modules();
dd41f596
IM
3054 if (irqs_disabled())
3055 print_irqtrace_events(prev);
8f47b187
TG
3056#ifdef CONFIG_DEBUG_PREEMPT
3057 if (in_atomic_preempt_off()) {
3058 pr_err("Preemption disabled at:");
3059 print_ip_sym(current->preempt_disable_ip);
3060 pr_cont("\n");
3061 }
3062#endif
6135fc1e 3063 dump_stack();
373d4d09 3064 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3065}
1da177e4 3066
dd41f596
IM
3067/*
3068 * Various schedule()-time debugging checks and statistics:
3069 */
3070static inline void schedule_debug(struct task_struct *prev)
3071{
0d9e2632 3072#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3073 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3074#endif
b99def8b 3075
1dc0fffc 3076 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3077 __schedule_bug(prev);
1dc0fffc
PZ
3078 preempt_count_set(PREEMPT_DISABLED);
3079 }
b3fbab05 3080 rcu_sleep_check();
dd41f596 3081
1da177e4
LT
3082 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3083
2d72376b 3084 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3085}
3086
3087/*
3088 * Pick up the highest-prio task:
3089 */
3090static inline struct task_struct *
606dba2e 3091pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3092{
37e117c0 3093 const struct sched_class *class = &fair_sched_class;
dd41f596 3094 struct task_struct *p;
1da177e4
LT
3095
3096 /*
dd41f596
IM
3097 * Optimization: we know that if all tasks are in
3098 * the fair class we can call that function directly:
1da177e4 3099 */
37e117c0 3100 if (likely(prev->sched_class == class &&
38033c37 3101 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3102 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3103 if (unlikely(p == RETRY_TASK))
3104 goto again;
3105
3106 /* assumes fair_sched_class->next == idle_sched_class */
3107 if (unlikely(!p))
3108 p = idle_sched_class.pick_next_task(rq, prev);
3109
3110 return p;
1da177e4
LT
3111 }
3112
37e117c0 3113again:
34f971f6 3114 for_each_class(class) {
606dba2e 3115 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3116 if (p) {
3117 if (unlikely(p == RETRY_TASK))
3118 goto again;
dd41f596 3119 return p;
37e117c0 3120 }
dd41f596 3121 }
34f971f6
PZ
3122
3123 BUG(); /* the idle class will always have a runnable task */
dd41f596 3124}
1da177e4 3125
dd41f596 3126/*
c259e01a 3127 * __schedule() is the main scheduler function.
edde96ea
PE
3128 *
3129 * The main means of driving the scheduler and thus entering this function are:
3130 *
3131 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3132 *
3133 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3134 * paths. For example, see arch/x86/entry_64.S.
3135 *
3136 * To drive preemption between tasks, the scheduler sets the flag in timer
3137 * interrupt handler scheduler_tick().
3138 *
3139 * 3. Wakeups don't really cause entry into schedule(). They add a
3140 * task to the run-queue and that's it.
3141 *
3142 * Now, if the new task added to the run-queue preempts the current
3143 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3144 * called on the nearest possible occasion:
3145 *
3146 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3147 *
3148 * - in syscall or exception context, at the next outmost
3149 * preempt_enable(). (this might be as soon as the wake_up()'s
3150 * spin_unlock()!)
3151 *
3152 * - in IRQ context, return from interrupt-handler to
3153 * preemptible context
3154 *
3155 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3156 * then at the next:
3157 *
3158 * - cond_resched() call
3159 * - explicit schedule() call
3160 * - return from syscall or exception to user-space
3161 * - return from interrupt-handler to user-space
bfd9b2b5 3162 *
b30f0e3f 3163 * WARNING: must be called with preemption disabled!
dd41f596 3164 */
499d7955 3165static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3166{
3167 struct task_struct *prev, *next;
67ca7bde 3168 unsigned long *switch_count;
dd41f596 3169 struct rq *rq;
31656519 3170 int cpu;
dd41f596 3171
dd41f596
IM
3172 cpu = smp_processor_id();
3173 rq = cpu_rq(cpu);
dd41f596 3174 prev = rq->curr;
dd41f596 3175
b99def8b
PZ
3176 /*
3177 * do_exit() calls schedule() with preemption disabled as an exception;
3178 * however we must fix that up, otherwise the next task will see an
3179 * inconsistent (higher) preempt count.
3180 *
3181 * It also avoids the below schedule_debug() test from complaining
3182 * about this.
3183 */
3184 if (unlikely(prev->state == TASK_DEAD))
3185 preempt_enable_no_resched_notrace();
3186
dd41f596 3187 schedule_debug(prev);
1da177e4 3188
31656519 3189 if (sched_feat(HRTICK))
f333fdc9 3190 hrtick_clear(rq);
8f4d37ec 3191
46a5d164
PM
3192 local_irq_disable();
3193 rcu_note_context_switch();
3194
e0acd0a6
ON
3195 /*
3196 * Make sure that signal_pending_state()->signal_pending() below
3197 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3198 * done by the caller to avoid the race with signal_wake_up().
3199 */
3200 smp_mb__before_spinlock();
46a5d164 3201 raw_spin_lock(&rq->lock);
cbce1a68 3202 lockdep_pin_lock(&rq->lock);
1da177e4 3203
9edfbfed
PZ
3204 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3205
246d86b5 3206 switch_count = &prev->nivcsw;
fc13aeba 3207 if (!preempt && prev->state) {
21aa9af0 3208 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3209 prev->state = TASK_RUNNING;
21aa9af0 3210 } else {
2acca55e
PZ
3211 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3212 prev->on_rq = 0;
3213
21aa9af0 3214 /*
2acca55e
PZ
3215 * If a worker went to sleep, notify and ask workqueue
3216 * whether it wants to wake up a task to maintain
3217 * concurrency.
21aa9af0
TH
3218 */
3219 if (prev->flags & PF_WQ_WORKER) {
3220 struct task_struct *to_wakeup;
3221
9b7f6597 3222 to_wakeup = wq_worker_sleeping(prev);
21aa9af0
TH
3223 if (to_wakeup)
3224 try_to_wake_up_local(to_wakeup);
3225 }
21aa9af0 3226 }
dd41f596 3227 switch_count = &prev->nvcsw;
1da177e4
LT
3228 }
3229
9edfbfed 3230 if (task_on_rq_queued(prev))
606dba2e
PZ
3231 update_rq_clock(rq);
3232
3233 next = pick_next_task(rq, prev);
f26f9aff 3234 clear_tsk_need_resched(prev);
f27dde8d 3235 clear_preempt_need_resched();
9edfbfed 3236 rq->clock_skip_update = 0;
1da177e4 3237
1da177e4 3238 if (likely(prev != next)) {
1da177e4
LT
3239 rq->nr_switches++;
3240 rq->curr = next;
3241 ++*switch_count;
3242
c73464b1 3243 trace_sched_switch(preempt, prev, next);
dfa50b60 3244 rq = context_switch(rq, prev, next); /* unlocks the rq */
cbce1a68
PZ
3245 } else {
3246 lockdep_unpin_lock(&rq->lock);
05fa785c 3247 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3248 }
1da177e4 3249
e3fca9e7 3250 balance_callback(rq);
1da177e4 3251}
8e05e96a 3252STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3253
9c40cef2
TG
3254static inline void sched_submit_work(struct task_struct *tsk)
3255{
3c7d5184 3256 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3257 return;
3258 /*
3259 * If we are going to sleep and we have plugged IO queued,
3260 * make sure to submit it to avoid deadlocks.
3261 */
3262 if (blk_needs_flush_plug(tsk))
3263 blk_schedule_flush_plug(tsk);
3264}
3265
722a9f92 3266asmlinkage __visible void __sched schedule(void)
c259e01a 3267{
9c40cef2
TG
3268 struct task_struct *tsk = current;
3269
3270 sched_submit_work(tsk);
bfd9b2b5 3271 do {
b30f0e3f 3272 preempt_disable();
fc13aeba 3273 __schedule(false);
b30f0e3f 3274 sched_preempt_enable_no_resched();
bfd9b2b5 3275 } while (need_resched());
c259e01a 3276}
1da177e4
LT
3277EXPORT_SYMBOL(schedule);
3278
91d1aa43 3279#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3280asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3281{
3282 /*
3283 * If we come here after a random call to set_need_resched(),
3284 * or we have been woken up remotely but the IPI has not yet arrived,
3285 * we haven't yet exited the RCU idle mode. Do it here manually until
3286 * we find a better solution.
7cc78f8f
AL
3287 *
3288 * NB: There are buggy callers of this function. Ideally we
c467ea76 3289 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3290 * too frequently to make sense yet.
20ab65e3 3291 */
7cc78f8f 3292 enum ctx_state prev_state = exception_enter();
20ab65e3 3293 schedule();
7cc78f8f 3294 exception_exit(prev_state);
20ab65e3
FW
3295}
3296#endif
3297
c5491ea7
TG
3298/**
3299 * schedule_preempt_disabled - called with preemption disabled
3300 *
3301 * Returns with preemption disabled. Note: preempt_count must be 1
3302 */
3303void __sched schedule_preempt_disabled(void)
3304{
ba74c144 3305 sched_preempt_enable_no_resched();
c5491ea7
TG
3306 schedule();
3307 preempt_disable();
3308}
3309
06b1f808 3310static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3311{
3312 do {
47252cfb
SR
3313 /*
3314 * Because the function tracer can trace preempt_count_sub()
3315 * and it also uses preempt_enable/disable_notrace(), if
3316 * NEED_RESCHED is set, the preempt_enable_notrace() called
3317 * by the function tracer will call this function again and
3318 * cause infinite recursion.
3319 *
3320 * Preemption must be disabled here before the function
3321 * tracer can trace. Break up preempt_disable() into two
3322 * calls. One to disable preemption without fear of being
3323 * traced. The other to still record the preemption latency,
3324 * which can also be traced by the function tracer.
3325 */
499d7955 3326 preempt_disable_notrace();
47252cfb 3327 preempt_latency_start(1);
fc13aeba 3328 __schedule(true);
47252cfb 3329 preempt_latency_stop(1);
499d7955 3330 preempt_enable_no_resched_notrace();
a18b5d01
FW
3331
3332 /*
3333 * Check again in case we missed a preemption opportunity
3334 * between schedule and now.
3335 */
a18b5d01
FW
3336 } while (need_resched());
3337}
3338
1da177e4
LT
3339#ifdef CONFIG_PREEMPT
3340/*
2ed6e34f 3341 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3342 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3343 * occur there and call schedule directly.
3344 */
722a9f92 3345asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3346{
1da177e4
LT
3347 /*
3348 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3349 * we do not want to preempt the current task. Just return..
1da177e4 3350 */
fbb00b56 3351 if (likely(!preemptible()))
1da177e4
LT
3352 return;
3353
a18b5d01 3354 preempt_schedule_common();
1da177e4 3355}
376e2424 3356NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3357EXPORT_SYMBOL(preempt_schedule);
009f60e2 3358
009f60e2 3359/**
4eaca0a8 3360 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3361 *
3362 * The tracing infrastructure uses preempt_enable_notrace to prevent
3363 * recursion and tracing preempt enabling caused by the tracing
3364 * infrastructure itself. But as tracing can happen in areas coming
3365 * from userspace or just about to enter userspace, a preempt enable
3366 * can occur before user_exit() is called. This will cause the scheduler
3367 * to be called when the system is still in usermode.
3368 *
3369 * To prevent this, the preempt_enable_notrace will use this function
3370 * instead of preempt_schedule() to exit user context if needed before
3371 * calling the scheduler.
3372 */
4eaca0a8 3373asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3374{
3375 enum ctx_state prev_ctx;
3376
3377 if (likely(!preemptible()))
3378 return;
3379
3380 do {
47252cfb
SR
3381 /*
3382 * Because the function tracer can trace preempt_count_sub()
3383 * and it also uses preempt_enable/disable_notrace(), if
3384 * NEED_RESCHED is set, the preempt_enable_notrace() called
3385 * by the function tracer will call this function again and
3386 * cause infinite recursion.
3387 *
3388 * Preemption must be disabled here before the function
3389 * tracer can trace. Break up preempt_disable() into two
3390 * calls. One to disable preemption without fear of being
3391 * traced. The other to still record the preemption latency,
3392 * which can also be traced by the function tracer.
3393 */
3d8f74dd 3394 preempt_disable_notrace();
47252cfb 3395 preempt_latency_start(1);
009f60e2
ON
3396 /*
3397 * Needs preempt disabled in case user_exit() is traced
3398 * and the tracer calls preempt_enable_notrace() causing
3399 * an infinite recursion.
3400 */
3401 prev_ctx = exception_enter();
fc13aeba 3402 __schedule(true);
009f60e2
ON
3403 exception_exit(prev_ctx);
3404
47252cfb 3405 preempt_latency_stop(1);
3d8f74dd 3406 preempt_enable_no_resched_notrace();
009f60e2
ON
3407 } while (need_resched());
3408}
4eaca0a8 3409EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3410
32e475d7 3411#endif /* CONFIG_PREEMPT */
1da177e4
LT
3412
3413/*
2ed6e34f 3414 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3415 * off of irq context.
3416 * Note, that this is called and return with irqs disabled. This will
3417 * protect us against recursive calling from irq.
3418 */
722a9f92 3419asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3420{
b22366cd 3421 enum ctx_state prev_state;
6478d880 3422
2ed6e34f 3423 /* Catch callers which need to be fixed */
f27dde8d 3424 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3425
b22366cd
FW
3426 prev_state = exception_enter();
3427
3a5c359a 3428 do {
3d8f74dd 3429 preempt_disable();
3a5c359a 3430 local_irq_enable();
fc13aeba 3431 __schedule(true);
3a5c359a 3432 local_irq_disable();
3d8f74dd 3433 sched_preempt_enable_no_resched();
5ed0cec0 3434 } while (need_resched());
b22366cd
FW
3435
3436 exception_exit(prev_state);
1da177e4
LT
3437}
3438
63859d4f 3439int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3440 void *key)
1da177e4 3441{
63859d4f 3442 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3443}
1da177e4
LT
3444EXPORT_SYMBOL(default_wake_function);
3445
b29739f9
IM
3446#ifdef CONFIG_RT_MUTEXES
3447
3448/*
3449 * rt_mutex_setprio - set the current priority of a task
3450 * @p: task
3451 * @prio: prio value (kernel-internal form)
3452 *
3453 * This function changes the 'effective' priority of a task. It does
3454 * not touch ->normal_prio like __setscheduler().
3455 *
c365c292
TG
3456 * Used by the rt_mutex code to implement priority inheritance
3457 * logic. Call site only calls if the priority of the task changed.
b29739f9 3458 */
36c8b586 3459void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3460{
ff77e468 3461 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
70b97a7f 3462 struct rq *rq;
83ab0aa0 3463 const struct sched_class *prev_class;
b29739f9 3464
aab03e05 3465 BUG_ON(prio > MAX_PRIO);
b29739f9 3466
0122ec5b 3467 rq = __task_rq_lock(p);
b29739f9 3468
1c4dd99b
TG
3469 /*
3470 * Idle task boosting is a nono in general. There is one
3471 * exception, when PREEMPT_RT and NOHZ is active:
3472 *
3473 * The idle task calls get_next_timer_interrupt() and holds
3474 * the timer wheel base->lock on the CPU and another CPU wants
3475 * to access the timer (probably to cancel it). We can safely
3476 * ignore the boosting request, as the idle CPU runs this code
3477 * with interrupts disabled and will complete the lock
3478 * protected section without being interrupted. So there is no
3479 * real need to boost.
3480 */
3481 if (unlikely(p == rq->idle)) {
3482 WARN_ON(p != rq->curr);
3483 WARN_ON(p->pi_blocked_on);
3484 goto out_unlock;
3485 }
3486
a8027073 3487 trace_sched_pi_setprio(p, prio);
d5f9f942 3488 oldprio = p->prio;
ff77e468
PZ
3489
3490 if (oldprio == prio)
3491 queue_flag &= ~DEQUEUE_MOVE;
3492
83ab0aa0 3493 prev_class = p->sched_class;
da0c1e65 3494 queued = task_on_rq_queued(p);
051a1d1a 3495 running = task_current(rq, p);
da0c1e65 3496 if (queued)
ff77e468 3497 dequeue_task(rq, p, queue_flag);
0e1f3483 3498 if (running)
f3cd1c4e 3499 put_prev_task(rq, p);
dd41f596 3500
2d3d891d
DF
3501 /*
3502 * Boosting condition are:
3503 * 1. -rt task is running and holds mutex A
3504 * --> -dl task blocks on mutex A
3505 *
3506 * 2. -dl task is running and holds mutex A
3507 * --> -dl task blocks on mutex A and could preempt the
3508 * running task
3509 */
3510 if (dl_prio(prio)) {
466af29b
ON
3511 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3512 if (!dl_prio(p->normal_prio) ||
3513 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3514 p->dl.dl_boosted = 1;
ff77e468 3515 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3516 } else
3517 p->dl.dl_boosted = 0;
aab03e05 3518 p->sched_class = &dl_sched_class;
2d3d891d
DF
3519 } else if (rt_prio(prio)) {
3520 if (dl_prio(oldprio))
3521 p->dl.dl_boosted = 0;
3522 if (oldprio < prio)
ff77e468 3523 queue_flag |= ENQUEUE_HEAD;
dd41f596 3524 p->sched_class = &rt_sched_class;
2d3d891d
DF
3525 } else {
3526 if (dl_prio(oldprio))
3527 p->dl.dl_boosted = 0;
746db944
BS
3528 if (rt_prio(oldprio))
3529 p->rt.timeout = 0;
dd41f596 3530 p->sched_class = &fair_sched_class;
2d3d891d 3531 }
dd41f596 3532
b29739f9
IM
3533 p->prio = prio;
3534
0e1f3483
HS
3535 if (running)
3536 p->sched_class->set_curr_task(rq);
da0c1e65 3537 if (queued)
ff77e468 3538 enqueue_task(rq, p, queue_flag);
cb469845 3539
da7a735e 3540 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3541out_unlock:
4c9a4bc8 3542 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3543 __task_rq_unlock(rq);
4c9a4bc8
PZ
3544
3545 balance_callback(rq);
3546 preempt_enable();
b29739f9 3547}
b29739f9 3548#endif
d50dde5a 3549
36c8b586 3550void set_user_nice(struct task_struct *p, long nice)
1da177e4 3551{
da0c1e65 3552 int old_prio, delta, queued;
1da177e4 3553 unsigned long flags;
70b97a7f 3554 struct rq *rq;
1da177e4 3555
75e45d51 3556 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3557 return;
3558 /*
3559 * We have to be careful, if called from sys_setpriority(),
3560 * the task might be in the middle of scheduling on another CPU.
3561 */
3562 rq = task_rq_lock(p, &flags);
3563 /*
3564 * The RT priorities are set via sched_setscheduler(), but we still
3565 * allow the 'normal' nice value to be set - but as expected
3566 * it wont have any effect on scheduling until the task is
aab03e05 3567 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3568 */
aab03e05 3569 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3570 p->static_prio = NICE_TO_PRIO(nice);
3571 goto out_unlock;
3572 }
da0c1e65
KT
3573 queued = task_on_rq_queued(p);
3574 if (queued)
1de64443 3575 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3576
1da177e4 3577 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3578 set_load_weight(p);
b29739f9
IM
3579 old_prio = p->prio;
3580 p->prio = effective_prio(p);
3581 delta = p->prio - old_prio;
1da177e4 3582
da0c1e65 3583 if (queued) {
1de64443 3584 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3585 /*
d5f9f942
AM
3586 * If the task increased its priority or is running and
3587 * lowered its priority, then reschedule its CPU:
1da177e4 3588 */
d5f9f942 3589 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3590 resched_curr(rq);
1da177e4
LT
3591 }
3592out_unlock:
0122ec5b 3593 task_rq_unlock(rq, p, &flags);
1da177e4 3594}
1da177e4
LT
3595EXPORT_SYMBOL(set_user_nice);
3596
e43379f1
MM
3597/*
3598 * can_nice - check if a task can reduce its nice value
3599 * @p: task
3600 * @nice: nice value
3601 */
36c8b586 3602int can_nice(const struct task_struct *p, const int nice)
e43379f1 3603{
024f4747 3604 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3605 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3606
78d7d407 3607 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3608 capable(CAP_SYS_NICE));
3609}
3610
1da177e4
LT
3611#ifdef __ARCH_WANT_SYS_NICE
3612
3613/*
3614 * sys_nice - change the priority of the current process.
3615 * @increment: priority increment
3616 *
3617 * sys_setpriority is a more generic, but much slower function that
3618 * does similar things.
3619 */
5add95d4 3620SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3621{
48f24c4d 3622 long nice, retval;
1da177e4
LT
3623
3624 /*
3625 * Setpriority might change our priority at the same moment.
3626 * We don't have to worry. Conceptually one call occurs first
3627 * and we have a single winner.
3628 */
a9467fa3 3629 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3630 nice = task_nice(current) + increment;
1da177e4 3631
a9467fa3 3632 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3633 if (increment < 0 && !can_nice(current, nice))
3634 return -EPERM;
3635
1da177e4
LT
3636 retval = security_task_setnice(current, nice);
3637 if (retval)
3638 return retval;
3639
3640 set_user_nice(current, nice);
3641 return 0;
3642}
3643
3644#endif
3645
3646/**
3647 * task_prio - return the priority value of a given task.
3648 * @p: the task in question.
3649 *
e69f6186 3650 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3651 * RT tasks are offset by -200. Normal tasks are centered
3652 * around 0, value goes from -16 to +15.
3653 */
36c8b586 3654int task_prio(const struct task_struct *p)
1da177e4
LT
3655{
3656 return p->prio - MAX_RT_PRIO;
3657}
3658
1da177e4
LT
3659/**
3660 * idle_cpu - is a given cpu idle currently?
3661 * @cpu: the processor in question.
e69f6186
YB
3662 *
3663 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3664 */
3665int idle_cpu(int cpu)
3666{
908a3283
TG
3667 struct rq *rq = cpu_rq(cpu);
3668
3669 if (rq->curr != rq->idle)
3670 return 0;
3671
3672 if (rq->nr_running)
3673 return 0;
3674
3675#ifdef CONFIG_SMP
3676 if (!llist_empty(&rq->wake_list))
3677 return 0;
3678#endif
3679
3680 return 1;
1da177e4
LT
3681}
3682
1da177e4
LT
3683/**
3684 * idle_task - return the idle task for a given cpu.
3685 * @cpu: the processor in question.
e69f6186
YB
3686 *
3687 * Return: The idle task for the cpu @cpu.
1da177e4 3688 */
36c8b586 3689struct task_struct *idle_task(int cpu)
1da177e4
LT
3690{
3691 return cpu_rq(cpu)->idle;
3692}
3693
3694/**
3695 * find_process_by_pid - find a process with a matching PID value.
3696 * @pid: the pid in question.
e69f6186
YB
3697 *
3698 * The task of @pid, if found. %NULL otherwise.
1da177e4 3699 */
a9957449 3700static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3701{
228ebcbe 3702 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3703}
3704
aab03e05
DF
3705/*
3706 * This function initializes the sched_dl_entity of a newly becoming
3707 * SCHED_DEADLINE task.
3708 *
3709 * Only the static values are considered here, the actual runtime and the
3710 * absolute deadline will be properly calculated when the task is enqueued
3711 * for the first time with its new policy.
3712 */
3713static void
3714__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3715{
3716 struct sched_dl_entity *dl_se = &p->dl;
3717
aab03e05
DF
3718 dl_se->dl_runtime = attr->sched_runtime;
3719 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3720 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3721 dl_se->flags = attr->sched_flags;
332ac17e 3722 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3723
3724 /*
3725 * Changing the parameters of a task is 'tricky' and we're not doing
3726 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3727 *
3728 * What we SHOULD do is delay the bandwidth release until the 0-lag
3729 * point. This would include retaining the task_struct until that time
3730 * and change dl_overflow() to not immediately decrement the current
3731 * amount.
3732 *
3733 * Instead we retain the current runtime/deadline and let the new
3734 * parameters take effect after the current reservation period lapses.
3735 * This is safe (albeit pessimistic) because the 0-lag point is always
3736 * before the current scheduling deadline.
3737 *
3738 * We can still have temporary overloads because we do not delay the
3739 * change in bandwidth until that time; so admission control is
3740 * not on the safe side. It does however guarantee tasks will never
3741 * consume more than promised.
3742 */
aab03e05
DF
3743}
3744
c13db6b1
SR
3745/*
3746 * sched_setparam() passes in -1 for its policy, to let the functions
3747 * it calls know not to change it.
3748 */
3749#define SETPARAM_POLICY -1
3750
c365c292
TG
3751static void __setscheduler_params(struct task_struct *p,
3752 const struct sched_attr *attr)
1da177e4 3753{
d50dde5a
DF
3754 int policy = attr->sched_policy;
3755
c13db6b1 3756 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3757 policy = p->policy;
3758
1da177e4 3759 p->policy = policy;
d50dde5a 3760
aab03e05
DF
3761 if (dl_policy(policy))
3762 __setparam_dl(p, attr);
39fd8fd2 3763 else if (fair_policy(policy))
d50dde5a
DF
3764 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3765
39fd8fd2
PZ
3766 /*
3767 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3768 * !rt_policy. Always setting this ensures that things like
3769 * getparam()/getattr() don't report silly values for !rt tasks.
3770 */
3771 p->rt_priority = attr->sched_priority;
383afd09 3772 p->normal_prio = normal_prio(p);
c365c292
TG
3773 set_load_weight(p);
3774}
39fd8fd2 3775
c365c292
TG
3776/* Actually do priority change: must hold pi & rq lock. */
3777static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3778 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3779{
3780 __setscheduler_params(p, attr);
d50dde5a 3781
383afd09 3782 /*
0782e63b
TG
3783 * Keep a potential priority boosting if called from
3784 * sched_setscheduler().
383afd09 3785 */
0782e63b
TG
3786 if (keep_boost)
3787 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3788 else
3789 p->prio = normal_prio(p);
383afd09 3790
aab03e05
DF
3791 if (dl_prio(p->prio))
3792 p->sched_class = &dl_sched_class;
3793 else if (rt_prio(p->prio))
ffd44db5
PZ
3794 p->sched_class = &rt_sched_class;
3795 else
3796 p->sched_class = &fair_sched_class;
1da177e4 3797}
aab03e05
DF
3798
3799static void
3800__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3801{
3802 struct sched_dl_entity *dl_se = &p->dl;
3803
3804 attr->sched_priority = p->rt_priority;
3805 attr->sched_runtime = dl_se->dl_runtime;
3806 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3807 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3808 attr->sched_flags = dl_se->flags;
3809}
3810
3811/*
3812 * This function validates the new parameters of a -deadline task.
3813 * We ask for the deadline not being zero, and greater or equal
755378a4 3814 * than the runtime, as well as the period of being zero or
332ac17e 3815 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3816 * user parameters are above the internal resolution of 1us (we
3817 * check sched_runtime only since it is always the smaller one) and
3818 * below 2^63 ns (we have to check both sched_deadline and
3819 * sched_period, as the latter can be zero).
aab03e05
DF
3820 */
3821static bool
3822__checkparam_dl(const struct sched_attr *attr)
3823{
b0827819
JL
3824 /* deadline != 0 */
3825 if (attr->sched_deadline == 0)
3826 return false;
3827
3828 /*
3829 * Since we truncate DL_SCALE bits, make sure we're at least
3830 * that big.
3831 */
3832 if (attr->sched_runtime < (1ULL << DL_SCALE))
3833 return false;
3834
3835 /*
3836 * Since we use the MSB for wrap-around and sign issues, make
3837 * sure it's not set (mind that period can be equal to zero).
3838 */
3839 if (attr->sched_deadline & (1ULL << 63) ||
3840 attr->sched_period & (1ULL << 63))
3841 return false;
3842
3843 /* runtime <= deadline <= period (if period != 0) */
3844 if ((attr->sched_period != 0 &&
3845 attr->sched_period < attr->sched_deadline) ||
3846 attr->sched_deadline < attr->sched_runtime)
3847 return false;
3848
3849 return true;
aab03e05
DF
3850}
3851
c69e8d9c
DH
3852/*
3853 * check the target process has a UID that matches the current process's
3854 */
3855static bool check_same_owner(struct task_struct *p)
3856{
3857 const struct cred *cred = current_cred(), *pcred;
3858 bool match;
3859
3860 rcu_read_lock();
3861 pcred = __task_cred(p);
9c806aa0
EB
3862 match = (uid_eq(cred->euid, pcred->euid) ||
3863 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3864 rcu_read_unlock();
3865 return match;
3866}
3867
75381608
WL
3868static bool dl_param_changed(struct task_struct *p,
3869 const struct sched_attr *attr)
3870{
3871 struct sched_dl_entity *dl_se = &p->dl;
3872
3873 if (dl_se->dl_runtime != attr->sched_runtime ||
3874 dl_se->dl_deadline != attr->sched_deadline ||
3875 dl_se->dl_period != attr->sched_period ||
3876 dl_se->flags != attr->sched_flags)
3877 return true;
3878
3879 return false;
3880}
3881
d50dde5a
DF
3882static int __sched_setscheduler(struct task_struct *p,
3883 const struct sched_attr *attr,
dbc7f069 3884 bool user, bool pi)
1da177e4 3885{
383afd09
SR
3886 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3887 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3888 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3889 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3890 unsigned long flags;
83ab0aa0 3891 const struct sched_class *prev_class;
70b97a7f 3892 struct rq *rq;
ca94c442 3893 int reset_on_fork;
ff77e468 3894 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
1da177e4 3895
66e5393a
SR
3896 /* may grab non-irq protected spin_locks */
3897 BUG_ON(in_interrupt());
1da177e4
LT
3898recheck:
3899 /* double check policy once rq lock held */
ca94c442
LP
3900 if (policy < 0) {
3901 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3902 policy = oldpolicy = p->policy;
ca94c442 3903 } else {
7479f3c9 3904 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3905
20f9cd2a 3906 if (!valid_policy(policy))
ca94c442
LP
3907 return -EINVAL;
3908 }
3909
7479f3c9
PZ
3910 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3911 return -EINVAL;
3912
1da177e4
LT
3913 /*
3914 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3915 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3916 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3917 */
0bb040a4 3918 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3919 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3920 return -EINVAL;
aab03e05
DF
3921 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3922 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3923 return -EINVAL;
3924
37e4ab3f
OC
3925 /*
3926 * Allow unprivileged RT tasks to decrease priority:
3927 */
961ccddd 3928 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3929 if (fair_policy(policy)) {
d0ea0268 3930 if (attr->sched_nice < task_nice(p) &&
eaad4513 3931 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3932 return -EPERM;
3933 }
3934
e05606d3 3935 if (rt_policy(policy)) {
a44702e8
ON
3936 unsigned long rlim_rtprio =
3937 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3938
3939 /* can't set/change the rt policy */
3940 if (policy != p->policy && !rlim_rtprio)
3941 return -EPERM;
3942
3943 /* can't increase priority */
d50dde5a
DF
3944 if (attr->sched_priority > p->rt_priority &&
3945 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3946 return -EPERM;
3947 }
c02aa73b 3948
d44753b8
JL
3949 /*
3950 * Can't set/change SCHED_DEADLINE policy at all for now
3951 * (safest behavior); in the future we would like to allow
3952 * unprivileged DL tasks to increase their relative deadline
3953 * or reduce their runtime (both ways reducing utilization)
3954 */
3955 if (dl_policy(policy))
3956 return -EPERM;
3957
dd41f596 3958 /*
c02aa73b
DH
3959 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3960 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3961 */
20f9cd2a 3962 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3963 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3964 return -EPERM;
3965 }
5fe1d75f 3966
37e4ab3f 3967 /* can't change other user's priorities */
c69e8d9c 3968 if (!check_same_owner(p))
37e4ab3f 3969 return -EPERM;
ca94c442
LP
3970
3971 /* Normal users shall not reset the sched_reset_on_fork flag */
3972 if (p->sched_reset_on_fork && !reset_on_fork)
3973 return -EPERM;
37e4ab3f 3974 }
1da177e4 3975
725aad24 3976 if (user) {
b0ae1981 3977 retval = security_task_setscheduler(p);
725aad24
JF
3978 if (retval)
3979 return retval;
3980 }
3981
b29739f9
IM
3982 /*
3983 * make sure no PI-waiters arrive (or leave) while we are
3984 * changing the priority of the task:
0122ec5b 3985 *
25985edc 3986 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3987 * runqueue lock must be held.
3988 */
0122ec5b 3989 rq = task_rq_lock(p, &flags);
dc61b1d6 3990
34f971f6
PZ
3991 /*
3992 * Changing the policy of the stop threads its a very bad idea
3993 */
3994 if (p == rq->stop) {
0122ec5b 3995 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3996 return -EINVAL;
3997 }
3998
a51e9198 3999 /*
d6b1e911
TG
4000 * If not changing anything there's no need to proceed further,
4001 * but store a possible modification of reset_on_fork.
a51e9198 4002 */
d50dde5a 4003 if (unlikely(policy == p->policy)) {
d0ea0268 4004 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4005 goto change;
4006 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4007 goto change;
75381608 4008 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4009 goto change;
d50dde5a 4010
d6b1e911 4011 p->sched_reset_on_fork = reset_on_fork;
45afb173 4012 task_rq_unlock(rq, p, &flags);
a51e9198
DF
4013 return 0;
4014 }
d50dde5a 4015change:
a51e9198 4016
dc61b1d6 4017 if (user) {
332ac17e 4018#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4019 /*
4020 * Do not allow realtime tasks into groups that have no runtime
4021 * assigned.
4022 */
4023 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4024 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4025 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4026 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4027 return -EPERM;
4028 }
dc61b1d6 4029#endif
332ac17e
DF
4030#ifdef CONFIG_SMP
4031 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4032 cpumask_t *span = rq->rd->span;
332ac17e
DF
4033
4034 /*
4035 * Don't allow tasks with an affinity mask smaller than
4036 * the entire root_domain to become SCHED_DEADLINE. We
4037 * will also fail if there's no bandwidth available.
4038 */
e4099a5e
PZ
4039 if (!cpumask_subset(span, &p->cpus_allowed) ||
4040 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
4041 task_rq_unlock(rq, p, &flags);
4042 return -EPERM;
4043 }
4044 }
4045#endif
4046 }
dc61b1d6 4047
1da177e4
LT
4048 /* recheck policy now with rq lock held */
4049 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4050 policy = oldpolicy = -1;
0122ec5b 4051 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4052 goto recheck;
4053 }
332ac17e
DF
4054
4055 /*
4056 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4057 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4058 * is available.
4059 */
e4099a5e 4060 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
4061 task_rq_unlock(rq, p, &flags);
4062 return -EBUSY;
4063 }
4064
c365c292
TG
4065 p->sched_reset_on_fork = reset_on_fork;
4066 oldprio = p->prio;
4067
dbc7f069
PZ
4068 if (pi) {
4069 /*
4070 * Take priority boosted tasks into account. If the new
4071 * effective priority is unchanged, we just store the new
4072 * normal parameters and do not touch the scheduler class and
4073 * the runqueue. This will be done when the task deboost
4074 * itself.
4075 */
4076 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4077 if (new_effective_prio == oldprio)
4078 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4079 }
4080
da0c1e65 4081 queued = task_on_rq_queued(p);
051a1d1a 4082 running = task_current(rq, p);
da0c1e65 4083 if (queued)
ff77e468 4084 dequeue_task(rq, p, queue_flags);
0e1f3483 4085 if (running)
f3cd1c4e 4086 put_prev_task(rq, p);
f6b53205 4087
83ab0aa0 4088 prev_class = p->sched_class;
dbc7f069 4089 __setscheduler(rq, p, attr, pi);
f6b53205 4090
0e1f3483
HS
4091 if (running)
4092 p->sched_class->set_curr_task(rq);
da0c1e65 4093 if (queued) {
81a44c54
TG
4094 /*
4095 * We enqueue to tail when the priority of a task is
4096 * increased (user space view).
4097 */
ff77e468
PZ
4098 if (oldprio < p->prio)
4099 queue_flags |= ENQUEUE_HEAD;
1de64443 4100
ff77e468 4101 enqueue_task(rq, p, queue_flags);
81a44c54 4102 }
cb469845 4103
da7a735e 4104 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4105 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4106 task_rq_unlock(rq, p, &flags);
b29739f9 4107
dbc7f069
PZ
4108 if (pi)
4109 rt_mutex_adjust_pi(p);
95e02ca9 4110
4c9a4bc8
PZ
4111 /*
4112 * Run balance callbacks after we've adjusted the PI chain.
4113 */
4114 balance_callback(rq);
4115 preempt_enable();
95e02ca9 4116
1da177e4
LT
4117 return 0;
4118}
961ccddd 4119
7479f3c9
PZ
4120static int _sched_setscheduler(struct task_struct *p, int policy,
4121 const struct sched_param *param, bool check)
4122{
4123 struct sched_attr attr = {
4124 .sched_policy = policy,
4125 .sched_priority = param->sched_priority,
4126 .sched_nice = PRIO_TO_NICE(p->static_prio),
4127 };
4128
c13db6b1
SR
4129 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4130 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4131 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4132 policy &= ~SCHED_RESET_ON_FORK;
4133 attr.sched_policy = policy;
4134 }
4135
dbc7f069 4136 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4137}
961ccddd
RR
4138/**
4139 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4140 * @p: the task in question.
4141 * @policy: new policy.
4142 * @param: structure containing the new RT priority.
4143 *
e69f6186
YB
4144 * Return: 0 on success. An error code otherwise.
4145 *
961ccddd
RR
4146 * NOTE that the task may be already dead.
4147 */
4148int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4149 const struct sched_param *param)
961ccddd 4150{
7479f3c9 4151 return _sched_setscheduler(p, policy, param, true);
961ccddd 4152}
1da177e4
LT
4153EXPORT_SYMBOL_GPL(sched_setscheduler);
4154
d50dde5a
DF
4155int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4156{
dbc7f069 4157 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4158}
4159EXPORT_SYMBOL_GPL(sched_setattr);
4160
961ccddd
RR
4161/**
4162 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4163 * @p: the task in question.
4164 * @policy: new policy.
4165 * @param: structure containing the new RT priority.
4166 *
4167 * Just like sched_setscheduler, only don't bother checking if the
4168 * current context has permission. For example, this is needed in
4169 * stop_machine(): we create temporary high priority worker threads,
4170 * but our caller might not have that capability.
e69f6186
YB
4171 *
4172 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4173 */
4174int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4175 const struct sched_param *param)
961ccddd 4176{
7479f3c9 4177 return _sched_setscheduler(p, policy, param, false);
961ccddd 4178}
84778472 4179EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4180
95cdf3b7
IM
4181static int
4182do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4183{
1da177e4
LT
4184 struct sched_param lparam;
4185 struct task_struct *p;
36c8b586 4186 int retval;
1da177e4
LT
4187
4188 if (!param || pid < 0)
4189 return -EINVAL;
4190 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4191 return -EFAULT;
5fe1d75f
ON
4192
4193 rcu_read_lock();
4194 retval = -ESRCH;
1da177e4 4195 p = find_process_by_pid(pid);
5fe1d75f
ON
4196 if (p != NULL)
4197 retval = sched_setscheduler(p, policy, &lparam);
4198 rcu_read_unlock();
36c8b586 4199
1da177e4
LT
4200 return retval;
4201}
4202
d50dde5a
DF
4203/*
4204 * Mimics kernel/events/core.c perf_copy_attr().
4205 */
4206static int sched_copy_attr(struct sched_attr __user *uattr,
4207 struct sched_attr *attr)
4208{
4209 u32 size;
4210 int ret;
4211
4212 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4213 return -EFAULT;
4214
4215 /*
4216 * zero the full structure, so that a short copy will be nice.
4217 */
4218 memset(attr, 0, sizeof(*attr));
4219
4220 ret = get_user(size, &uattr->size);
4221 if (ret)
4222 return ret;
4223
4224 if (size > PAGE_SIZE) /* silly large */
4225 goto err_size;
4226
4227 if (!size) /* abi compat */
4228 size = SCHED_ATTR_SIZE_VER0;
4229
4230 if (size < SCHED_ATTR_SIZE_VER0)
4231 goto err_size;
4232
4233 /*
4234 * If we're handed a bigger struct than we know of,
4235 * ensure all the unknown bits are 0 - i.e. new
4236 * user-space does not rely on any kernel feature
4237 * extensions we dont know about yet.
4238 */
4239 if (size > sizeof(*attr)) {
4240 unsigned char __user *addr;
4241 unsigned char __user *end;
4242 unsigned char val;
4243
4244 addr = (void __user *)uattr + sizeof(*attr);
4245 end = (void __user *)uattr + size;
4246
4247 for (; addr < end; addr++) {
4248 ret = get_user(val, addr);
4249 if (ret)
4250 return ret;
4251 if (val)
4252 goto err_size;
4253 }
4254 size = sizeof(*attr);
4255 }
4256
4257 ret = copy_from_user(attr, uattr, size);
4258 if (ret)
4259 return -EFAULT;
4260
4261 /*
4262 * XXX: do we want to be lenient like existing syscalls; or do we want
4263 * to be strict and return an error on out-of-bounds values?
4264 */
75e45d51 4265 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4266
e78c7bca 4267 return 0;
d50dde5a
DF
4268
4269err_size:
4270 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4271 return -E2BIG;
d50dde5a
DF
4272}
4273
1da177e4
LT
4274/**
4275 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4276 * @pid: the pid in question.
4277 * @policy: new policy.
4278 * @param: structure containing the new RT priority.
e69f6186
YB
4279 *
4280 * Return: 0 on success. An error code otherwise.
1da177e4 4281 */
5add95d4
HC
4282SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4283 struct sched_param __user *, param)
1da177e4 4284{
c21761f1
JB
4285 /* negative values for policy are not valid */
4286 if (policy < 0)
4287 return -EINVAL;
4288
1da177e4
LT
4289 return do_sched_setscheduler(pid, policy, param);
4290}
4291
4292/**
4293 * sys_sched_setparam - set/change the RT priority of a thread
4294 * @pid: the pid in question.
4295 * @param: structure containing the new RT priority.
e69f6186
YB
4296 *
4297 * Return: 0 on success. An error code otherwise.
1da177e4 4298 */
5add95d4 4299SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4300{
c13db6b1 4301 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4302}
4303
d50dde5a
DF
4304/**
4305 * sys_sched_setattr - same as above, but with extended sched_attr
4306 * @pid: the pid in question.
5778fccf 4307 * @uattr: structure containing the extended parameters.
db66d756 4308 * @flags: for future extension.
d50dde5a 4309 */
6d35ab48
PZ
4310SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4311 unsigned int, flags)
d50dde5a
DF
4312{
4313 struct sched_attr attr;
4314 struct task_struct *p;
4315 int retval;
4316
6d35ab48 4317 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4318 return -EINVAL;
4319
143cf23d
MK
4320 retval = sched_copy_attr(uattr, &attr);
4321 if (retval)
4322 return retval;
d50dde5a 4323
b14ed2c2 4324 if ((int)attr.sched_policy < 0)
dbdb2275 4325 return -EINVAL;
d50dde5a
DF
4326
4327 rcu_read_lock();
4328 retval = -ESRCH;
4329 p = find_process_by_pid(pid);
4330 if (p != NULL)
4331 retval = sched_setattr(p, &attr);
4332 rcu_read_unlock();
4333
4334 return retval;
4335}
4336
1da177e4
LT
4337/**
4338 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4339 * @pid: the pid in question.
e69f6186
YB
4340 *
4341 * Return: On success, the policy of the thread. Otherwise, a negative error
4342 * code.
1da177e4 4343 */
5add95d4 4344SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4345{
36c8b586 4346 struct task_struct *p;
3a5c359a 4347 int retval;
1da177e4
LT
4348
4349 if (pid < 0)
3a5c359a 4350 return -EINVAL;
1da177e4
LT
4351
4352 retval = -ESRCH;
5fe85be0 4353 rcu_read_lock();
1da177e4
LT
4354 p = find_process_by_pid(pid);
4355 if (p) {
4356 retval = security_task_getscheduler(p);
4357 if (!retval)
ca94c442
LP
4358 retval = p->policy
4359 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4360 }
5fe85be0 4361 rcu_read_unlock();
1da177e4
LT
4362 return retval;
4363}
4364
4365/**
ca94c442 4366 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4367 * @pid: the pid in question.
4368 * @param: structure containing the RT priority.
e69f6186
YB
4369 *
4370 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4371 * code.
1da177e4 4372 */
5add95d4 4373SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4374{
ce5f7f82 4375 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4376 struct task_struct *p;
3a5c359a 4377 int retval;
1da177e4
LT
4378
4379 if (!param || pid < 0)
3a5c359a 4380 return -EINVAL;
1da177e4 4381
5fe85be0 4382 rcu_read_lock();
1da177e4
LT
4383 p = find_process_by_pid(pid);
4384 retval = -ESRCH;
4385 if (!p)
4386 goto out_unlock;
4387
4388 retval = security_task_getscheduler(p);
4389 if (retval)
4390 goto out_unlock;
4391
ce5f7f82
PZ
4392 if (task_has_rt_policy(p))
4393 lp.sched_priority = p->rt_priority;
5fe85be0 4394 rcu_read_unlock();
1da177e4
LT
4395
4396 /*
4397 * This one might sleep, we cannot do it with a spinlock held ...
4398 */
4399 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4400
1da177e4
LT
4401 return retval;
4402
4403out_unlock:
5fe85be0 4404 rcu_read_unlock();
1da177e4
LT
4405 return retval;
4406}
4407
d50dde5a
DF
4408static int sched_read_attr(struct sched_attr __user *uattr,
4409 struct sched_attr *attr,
4410 unsigned int usize)
4411{
4412 int ret;
4413
4414 if (!access_ok(VERIFY_WRITE, uattr, usize))
4415 return -EFAULT;
4416
4417 /*
4418 * If we're handed a smaller struct than we know of,
4419 * ensure all the unknown bits are 0 - i.e. old
4420 * user-space does not get uncomplete information.
4421 */
4422 if (usize < sizeof(*attr)) {
4423 unsigned char *addr;
4424 unsigned char *end;
4425
4426 addr = (void *)attr + usize;
4427 end = (void *)attr + sizeof(*attr);
4428
4429 for (; addr < end; addr++) {
4430 if (*addr)
22400674 4431 return -EFBIG;
d50dde5a
DF
4432 }
4433
4434 attr->size = usize;
4435 }
4436
4efbc454 4437 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4438 if (ret)
4439 return -EFAULT;
4440
22400674 4441 return 0;
d50dde5a
DF
4442}
4443
4444/**
aab03e05 4445 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4446 * @pid: the pid in question.
5778fccf 4447 * @uattr: structure containing the extended parameters.
d50dde5a 4448 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4449 * @flags: for future extension.
d50dde5a 4450 */
6d35ab48
PZ
4451SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4452 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4453{
4454 struct sched_attr attr = {
4455 .size = sizeof(struct sched_attr),
4456 };
4457 struct task_struct *p;
4458 int retval;
4459
4460 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4461 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4462 return -EINVAL;
4463
4464 rcu_read_lock();
4465 p = find_process_by_pid(pid);
4466 retval = -ESRCH;
4467 if (!p)
4468 goto out_unlock;
4469
4470 retval = security_task_getscheduler(p);
4471 if (retval)
4472 goto out_unlock;
4473
4474 attr.sched_policy = p->policy;
7479f3c9
PZ
4475 if (p->sched_reset_on_fork)
4476 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4477 if (task_has_dl_policy(p))
4478 __getparam_dl(p, &attr);
4479 else if (task_has_rt_policy(p))
d50dde5a
DF
4480 attr.sched_priority = p->rt_priority;
4481 else
d0ea0268 4482 attr.sched_nice = task_nice(p);
d50dde5a
DF
4483
4484 rcu_read_unlock();
4485
4486 retval = sched_read_attr(uattr, &attr, size);
4487 return retval;
4488
4489out_unlock:
4490 rcu_read_unlock();
4491 return retval;
4492}
4493
96f874e2 4494long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4495{
5a16f3d3 4496 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4497 struct task_struct *p;
4498 int retval;
1da177e4 4499
23f5d142 4500 rcu_read_lock();
1da177e4
LT
4501
4502 p = find_process_by_pid(pid);
4503 if (!p) {
23f5d142 4504 rcu_read_unlock();
1da177e4
LT
4505 return -ESRCH;
4506 }
4507
23f5d142 4508 /* Prevent p going away */
1da177e4 4509 get_task_struct(p);
23f5d142 4510 rcu_read_unlock();
1da177e4 4511
14a40ffc
TH
4512 if (p->flags & PF_NO_SETAFFINITY) {
4513 retval = -EINVAL;
4514 goto out_put_task;
4515 }
5a16f3d3
RR
4516 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4517 retval = -ENOMEM;
4518 goto out_put_task;
4519 }
4520 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4521 retval = -ENOMEM;
4522 goto out_free_cpus_allowed;
4523 }
1da177e4 4524 retval = -EPERM;
4c44aaaf
EB
4525 if (!check_same_owner(p)) {
4526 rcu_read_lock();
4527 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4528 rcu_read_unlock();
16303ab2 4529 goto out_free_new_mask;
4c44aaaf
EB
4530 }
4531 rcu_read_unlock();
4532 }
1da177e4 4533
b0ae1981 4534 retval = security_task_setscheduler(p);
e7834f8f 4535 if (retval)
16303ab2 4536 goto out_free_new_mask;
e7834f8f 4537
e4099a5e
PZ
4538
4539 cpuset_cpus_allowed(p, cpus_allowed);
4540 cpumask_and(new_mask, in_mask, cpus_allowed);
4541
332ac17e
DF
4542 /*
4543 * Since bandwidth control happens on root_domain basis,
4544 * if admission test is enabled, we only admit -deadline
4545 * tasks allowed to run on all the CPUs in the task's
4546 * root_domain.
4547 */
4548#ifdef CONFIG_SMP
f1e3a093
KT
4549 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4550 rcu_read_lock();
4551 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4552 retval = -EBUSY;
f1e3a093 4553 rcu_read_unlock();
16303ab2 4554 goto out_free_new_mask;
332ac17e 4555 }
f1e3a093 4556 rcu_read_unlock();
332ac17e
DF
4557 }
4558#endif
49246274 4559again:
25834c73 4560 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4561
8707d8b8 4562 if (!retval) {
5a16f3d3
RR
4563 cpuset_cpus_allowed(p, cpus_allowed);
4564 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4565 /*
4566 * We must have raced with a concurrent cpuset
4567 * update. Just reset the cpus_allowed to the
4568 * cpuset's cpus_allowed
4569 */
5a16f3d3 4570 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4571 goto again;
4572 }
4573 }
16303ab2 4574out_free_new_mask:
5a16f3d3
RR
4575 free_cpumask_var(new_mask);
4576out_free_cpus_allowed:
4577 free_cpumask_var(cpus_allowed);
4578out_put_task:
1da177e4 4579 put_task_struct(p);
1da177e4
LT
4580 return retval;
4581}
4582
4583static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4584 struct cpumask *new_mask)
1da177e4 4585{
96f874e2
RR
4586 if (len < cpumask_size())
4587 cpumask_clear(new_mask);
4588 else if (len > cpumask_size())
4589 len = cpumask_size();
4590
1da177e4
LT
4591 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4592}
4593
4594/**
4595 * sys_sched_setaffinity - set the cpu affinity of a process
4596 * @pid: pid of the process
4597 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4598 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4599 *
4600 * Return: 0 on success. An error code otherwise.
1da177e4 4601 */
5add95d4
HC
4602SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4603 unsigned long __user *, user_mask_ptr)
1da177e4 4604{
5a16f3d3 4605 cpumask_var_t new_mask;
1da177e4
LT
4606 int retval;
4607
5a16f3d3
RR
4608 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4609 return -ENOMEM;
1da177e4 4610
5a16f3d3
RR
4611 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4612 if (retval == 0)
4613 retval = sched_setaffinity(pid, new_mask);
4614 free_cpumask_var(new_mask);
4615 return retval;
1da177e4
LT
4616}
4617
96f874e2 4618long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4619{
36c8b586 4620 struct task_struct *p;
31605683 4621 unsigned long flags;
1da177e4 4622 int retval;
1da177e4 4623
23f5d142 4624 rcu_read_lock();
1da177e4
LT
4625
4626 retval = -ESRCH;
4627 p = find_process_by_pid(pid);
4628 if (!p)
4629 goto out_unlock;
4630
e7834f8f
DQ
4631 retval = security_task_getscheduler(p);
4632 if (retval)
4633 goto out_unlock;
4634
013fdb80 4635 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4636 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4638
4639out_unlock:
23f5d142 4640 rcu_read_unlock();
1da177e4 4641
9531b62f 4642 return retval;
1da177e4
LT
4643}
4644
4645/**
4646 * sys_sched_getaffinity - get the cpu affinity of a process
4647 * @pid: pid of the process
4648 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4649 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4650 *
4651 * Return: 0 on success. An error code otherwise.
1da177e4 4652 */
5add95d4
HC
4653SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4654 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4655{
4656 int ret;
f17c8607 4657 cpumask_var_t mask;
1da177e4 4658
84fba5ec 4659 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4660 return -EINVAL;
4661 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4662 return -EINVAL;
4663
f17c8607
RR
4664 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4665 return -ENOMEM;
1da177e4 4666
f17c8607
RR
4667 ret = sched_getaffinity(pid, mask);
4668 if (ret == 0) {
8bc037fb 4669 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4670
4671 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4672 ret = -EFAULT;
4673 else
cd3d8031 4674 ret = retlen;
f17c8607
RR
4675 }
4676 free_cpumask_var(mask);
1da177e4 4677
f17c8607 4678 return ret;
1da177e4
LT
4679}
4680
4681/**
4682 * sys_sched_yield - yield the current processor to other threads.
4683 *
dd41f596
IM
4684 * This function yields the current CPU to other tasks. If there are no
4685 * other threads running on this CPU then this function will return.
e69f6186
YB
4686 *
4687 * Return: 0.
1da177e4 4688 */
5add95d4 4689SYSCALL_DEFINE0(sched_yield)
1da177e4 4690{
70b97a7f 4691 struct rq *rq = this_rq_lock();
1da177e4 4692
2d72376b 4693 schedstat_inc(rq, yld_count);
4530d7ab 4694 current->sched_class->yield_task(rq);
1da177e4
LT
4695
4696 /*
4697 * Since we are going to call schedule() anyway, there's
4698 * no need to preempt or enable interrupts:
4699 */
4700 __release(rq->lock);
8a25d5de 4701 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4702 do_raw_spin_unlock(&rq->lock);
ba74c144 4703 sched_preempt_enable_no_resched();
1da177e4
LT
4704
4705 schedule();
4706
4707 return 0;
4708}
4709
02b67cc3 4710int __sched _cond_resched(void)
1da177e4 4711{
fe32d3cd 4712 if (should_resched(0)) {
a18b5d01 4713 preempt_schedule_common();
1da177e4
LT
4714 return 1;
4715 }
4716 return 0;
4717}
02b67cc3 4718EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4719
4720/*
613afbf8 4721 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4722 * call schedule, and on return reacquire the lock.
4723 *
41a2d6cf 4724 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4725 * operations here to prevent schedule() from being called twice (once via
4726 * spin_unlock(), once by hand).
4727 */
613afbf8 4728int __cond_resched_lock(spinlock_t *lock)
1da177e4 4729{
fe32d3cd 4730 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4731 int ret = 0;
4732
f607c668
PZ
4733 lockdep_assert_held(lock);
4734
4a81e832 4735 if (spin_needbreak(lock) || resched) {
1da177e4 4736 spin_unlock(lock);
d86ee480 4737 if (resched)
a18b5d01 4738 preempt_schedule_common();
95c354fe
NP
4739 else
4740 cpu_relax();
6df3cecb 4741 ret = 1;
1da177e4 4742 spin_lock(lock);
1da177e4 4743 }
6df3cecb 4744 return ret;
1da177e4 4745}
613afbf8 4746EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4747
613afbf8 4748int __sched __cond_resched_softirq(void)
1da177e4
LT
4749{
4750 BUG_ON(!in_softirq());
4751
fe32d3cd 4752 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4753 local_bh_enable();
a18b5d01 4754 preempt_schedule_common();
1da177e4
LT
4755 local_bh_disable();
4756 return 1;
4757 }
4758 return 0;
4759}
613afbf8 4760EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4761
1da177e4
LT
4762/**
4763 * yield - yield the current processor to other threads.
4764 *
8e3fabfd
PZ
4765 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4766 *
4767 * The scheduler is at all times free to pick the calling task as the most
4768 * eligible task to run, if removing the yield() call from your code breaks
4769 * it, its already broken.
4770 *
4771 * Typical broken usage is:
4772 *
4773 * while (!event)
4774 * yield();
4775 *
4776 * where one assumes that yield() will let 'the other' process run that will
4777 * make event true. If the current task is a SCHED_FIFO task that will never
4778 * happen. Never use yield() as a progress guarantee!!
4779 *
4780 * If you want to use yield() to wait for something, use wait_event().
4781 * If you want to use yield() to be 'nice' for others, use cond_resched().
4782 * If you still want to use yield(), do not!
1da177e4
LT
4783 */
4784void __sched yield(void)
4785{
4786 set_current_state(TASK_RUNNING);
4787 sys_sched_yield();
4788}
1da177e4
LT
4789EXPORT_SYMBOL(yield);
4790
d95f4122
MG
4791/**
4792 * yield_to - yield the current processor to another thread in
4793 * your thread group, or accelerate that thread toward the
4794 * processor it's on.
16addf95
RD
4795 * @p: target task
4796 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4797 *
4798 * It's the caller's job to ensure that the target task struct
4799 * can't go away on us before we can do any checks.
4800 *
e69f6186 4801 * Return:
7b270f60
PZ
4802 * true (>0) if we indeed boosted the target task.
4803 * false (0) if we failed to boost the target.
4804 * -ESRCH if there's no task to yield to.
d95f4122 4805 */
fa93384f 4806int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4807{
4808 struct task_struct *curr = current;
4809 struct rq *rq, *p_rq;
4810 unsigned long flags;
c3c18640 4811 int yielded = 0;
d95f4122
MG
4812
4813 local_irq_save(flags);
4814 rq = this_rq();
4815
4816again:
4817 p_rq = task_rq(p);
7b270f60
PZ
4818 /*
4819 * If we're the only runnable task on the rq and target rq also
4820 * has only one task, there's absolutely no point in yielding.
4821 */
4822 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4823 yielded = -ESRCH;
4824 goto out_irq;
4825 }
4826
d95f4122 4827 double_rq_lock(rq, p_rq);
39e24d8f 4828 if (task_rq(p) != p_rq) {
d95f4122
MG
4829 double_rq_unlock(rq, p_rq);
4830 goto again;
4831 }
4832
4833 if (!curr->sched_class->yield_to_task)
7b270f60 4834 goto out_unlock;
d95f4122
MG
4835
4836 if (curr->sched_class != p->sched_class)
7b270f60 4837 goto out_unlock;
d95f4122
MG
4838
4839 if (task_running(p_rq, p) || p->state)
7b270f60 4840 goto out_unlock;
d95f4122
MG
4841
4842 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4843 if (yielded) {
d95f4122 4844 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4845 /*
4846 * Make p's CPU reschedule; pick_next_entity takes care of
4847 * fairness.
4848 */
4849 if (preempt && rq != p_rq)
8875125e 4850 resched_curr(p_rq);
6d1cafd8 4851 }
d95f4122 4852
7b270f60 4853out_unlock:
d95f4122 4854 double_rq_unlock(rq, p_rq);
7b270f60 4855out_irq:
d95f4122
MG
4856 local_irq_restore(flags);
4857
7b270f60 4858 if (yielded > 0)
d95f4122
MG
4859 schedule();
4860
4861 return yielded;
4862}
4863EXPORT_SYMBOL_GPL(yield_to);
4864
1da177e4 4865/*
41a2d6cf 4866 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4867 * that process accounting knows that this is a task in IO wait state.
1da177e4 4868 */
1da177e4
LT
4869long __sched io_schedule_timeout(long timeout)
4870{
9cff8ade
N
4871 int old_iowait = current->in_iowait;
4872 struct rq *rq;
1da177e4
LT
4873 long ret;
4874
9cff8ade 4875 current->in_iowait = 1;
10d784ea 4876 blk_schedule_flush_plug(current);
9cff8ade 4877
0ff92245 4878 delayacct_blkio_start();
9cff8ade 4879 rq = raw_rq();
1da177e4
LT
4880 atomic_inc(&rq->nr_iowait);
4881 ret = schedule_timeout(timeout);
9cff8ade 4882 current->in_iowait = old_iowait;
1da177e4 4883 atomic_dec(&rq->nr_iowait);
0ff92245 4884 delayacct_blkio_end();
9cff8ade 4885
1da177e4
LT
4886 return ret;
4887}
9cff8ade 4888EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4889
4890/**
4891 * sys_sched_get_priority_max - return maximum RT priority.
4892 * @policy: scheduling class.
4893 *
e69f6186
YB
4894 * Return: On success, this syscall returns the maximum
4895 * rt_priority that can be used by a given scheduling class.
4896 * On failure, a negative error code is returned.
1da177e4 4897 */
5add95d4 4898SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4899{
4900 int ret = -EINVAL;
4901
4902 switch (policy) {
4903 case SCHED_FIFO:
4904 case SCHED_RR:
4905 ret = MAX_USER_RT_PRIO-1;
4906 break;
aab03e05 4907 case SCHED_DEADLINE:
1da177e4 4908 case SCHED_NORMAL:
b0a9499c 4909 case SCHED_BATCH:
dd41f596 4910 case SCHED_IDLE:
1da177e4
LT
4911 ret = 0;
4912 break;
4913 }
4914 return ret;
4915}
4916
4917/**
4918 * sys_sched_get_priority_min - return minimum RT priority.
4919 * @policy: scheduling class.
4920 *
e69f6186
YB
4921 * Return: On success, this syscall returns the minimum
4922 * rt_priority that can be used by a given scheduling class.
4923 * On failure, a negative error code is returned.
1da177e4 4924 */
5add95d4 4925SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4926{
4927 int ret = -EINVAL;
4928
4929 switch (policy) {
4930 case SCHED_FIFO:
4931 case SCHED_RR:
4932 ret = 1;
4933 break;
aab03e05 4934 case SCHED_DEADLINE:
1da177e4 4935 case SCHED_NORMAL:
b0a9499c 4936 case SCHED_BATCH:
dd41f596 4937 case SCHED_IDLE:
1da177e4
LT
4938 ret = 0;
4939 }
4940 return ret;
4941}
4942
4943/**
4944 * sys_sched_rr_get_interval - return the default timeslice of a process.
4945 * @pid: pid of the process.
4946 * @interval: userspace pointer to the timeslice value.
4947 *
4948 * this syscall writes the default timeslice value of a given process
4949 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4950 *
4951 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4952 * an error code.
1da177e4 4953 */
17da2bd9 4954SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4955 struct timespec __user *, interval)
1da177e4 4956{
36c8b586 4957 struct task_struct *p;
a4ec24b4 4958 unsigned int time_slice;
dba091b9
TG
4959 unsigned long flags;
4960 struct rq *rq;
3a5c359a 4961 int retval;
1da177e4 4962 struct timespec t;
1da177e4
LT
4963
4964 if (pid < 0)
3a5c359a 4965 return -EINVAL;
1da177e4
LT
4966
4967 retval = -ESRCH;
1a551ae7 4968 rcu_read_lock();
1da177e4
LT
4969 p = find_process_by_pid(pid);
4970 if (!p)
4971 goto out_unlock;
4972
4973 retval = security_task_getscheduler(p);
4974 if (retval)
4975 goto out_unlock;
4976
dba091b9 4977 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4978 time_slice = 0;
4979 if (p->sched_class->get_rr_interval)
4980 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4981 task_rq_unlock(rq, p, &flags);
a4ec24b4 4982
1a551ae7 4983 rcu_read_unlock();
a4ec24b4 4984 jiffies_to_timespec(time_slice, &t);
1da177e4 4985 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4986 return retval;
3a5c359a 4987
1da177e4 4988out_unlock:
1a551ae7 4989 rcu_read_unlock();
1da177e4
LT
4990 return retval;
4991}
4992
7c731e0a 4993static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4994
82a1fcb9 4995void sched_show_task(struct task_struct *p)
1da177e4 4996{
1da177e4 4997 unsigned long free = 0;
4e79752c 4998 int ppid;
1f8a7633 4999 unsigned long state = p->state;
1da177e4 5000
1f8a7633
TH
5001 if (state)
5002 state = __ffs(state) + 1;
28d0686c 5003 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5004 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5005#if BITS_PER_LONG == 32
1da177e4 5006 if (state == TASK_RUNNING)
3df0fc5b 5007 printk(KERN_CONT " running ");
1da177e4 5008 else
3df0fc5b 5009 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5010#else
5011 if (state == TASK_RUNNING)
3df0fc5b 5012 printk(KERN_CONT " running task ");
1da177e4 5013 else
3df0fc5b 5014 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5015#endif
5016#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5017 free = stack_not_used(p);
1da177e4 5018#endif
a90e984c 5019 ppid = 0;
4e79752c 5020 rcu_read_lock();
a90e984c
ON
5021 if (pid_alive(p))
5022 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5023 rcu_read_unlock();
3df0fc5b 5024 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5025 task_pid_nr(p), ppid,
aa47b7e0 5026 (unsigned long)task_thread_info(p)->flags);
1da177e4 5027
3d1cb205 5028 print_worker_info(KERN_INFO, p);
5fb5e6de 5029 show_stack(p, NULL);
1da177e4
LT
5030}
5031
e59e2ae2 5032void show_state_filter(unsigned long state_filter)
1da177e4 5033{
36c8b586 5034 struct task_struct *g, *p;
1da177e4 5035
4bd77321 5036#if BITS_PER_LONG == 32
3df0fc5b
PZ
5037 printk(KERN_INFO
5038 " task PC stack pid father\n");
1da177e4 5039#else
3df0fc5b
PZ
5040 printk(KERN_INFO
5041 " task PC stack pid father\n");
1da177e4 5042#endif
510f5acc 5043 rcu_read_lock();
5d07f420 5044 for_each_process_thread(g, p) {
1da177e4
LT
5045 /*
5046 * reset the NMI-timeout, listing all files on a slow
25985edc 5047 * console might take a lot of time:
1da177e4
LT
5048 */
5049 touch_nmi_watchdog();
39bc89fd 5050 if (!state_filter || (p->state & state_filter))
82a1fcb9 5051 sched_show_task(p);
5d07f420 5052 }
1da177e4 5053
04c9167f
JF
5054 touch_all_softlockup_watchdogs();
5055
dd41f596 5056#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5057 if (!state_filter)
5058 sysrq_sched_debug_show();
dd41f596 5059#endif
510f5acc 5060 rcu_read_unlock();
e59e2ae2
IM
5061 /*
5062 * Only show locks if all tasks are dumped:
5063 */
93335a21 5064 if (!state_filter)
e59e2ae2 5065 debug_show_all_locks();
1da177e4
LT
5066}
5067
0db0628d 5068void init_idle_bootup_task(struct task_struct *idle)
1df21055 5069{
dd41f596 5070 idle->sched_class = &idle_sched_class;
1df21055
IM
5071}
5072
f340c0d1
IM
5073/**
5074 * init_idle - set up an idle thread for a given CPU
5075 * @idle: task in question
5076 * @cpu: cpu the idle task belongs to
5077 *
5078 * NOTE: this function does not set the idle thread's NEED_RESCHED
5079 * flag, to make booting more robust.
5080 */
0db0628d 5081void init_idle(struct task_struct *idle, int cpu)
1da177e4 5082{
70b97a7f 5083 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5084 unsigned long flags;
5085
25834c73
PZ
5086 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5087 raw_spin_lock(&rq->lock);
5cbd54ef 5088
5e1576ed 5089 __sched_fork(0, idle);
06b83b5f 5090 idle->state = TASK_RUNNING;
dd41f596
IM
5091 idle->se.exec_start = sched_clock();
5092
e1b77c92
MR
5093 kasan_unpoison_task_stack(idle);
5094
de9b8f5d
PZ
5095#ifdef CONFIG_SMP
5096 /*
5097 * Its possible that init_idle() gets called multiple times on a task,
5098 * in that case do_set_cpus_allowed() will not do the right thing.
5099 *
5100 * And since this is boot we can forgo the serialization.
5101 */
5102 set_cpus_allowed_common(idle, cpumask_of(cpu));
5103#endif
6506cf6c
PZ
5104 /*
5105 * We're having a chicken and egg problem, even though we are
5106 * holding rq->lock, the cpu isn't yet set to this cpu so the
5107 * lockdep check in task_group() will fail.
5108 *
5109 * Similar case to sched_fork(). / Alternatively we could
5110 * use task_rq_lock() here and obtain the other rq->lock.
5111 *
5112 * Silence PROVE_RCU
5113 */
5114 rcu_read_lock();
dd41f596 5115 __set_task_cpu(idle, cpu);
6506cf6c 5116 rcu_read_unlock();
1da177e4 5117
1da177e4 5118 rq->curr = rq->idle = idle;
da0c1e65 5119 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5120#ifdef CONFIG_SMP
3ca7a440 5121 idle->on_cpu = 1;
4866cde0 5122#endif
25834c73
PZ
5123 raw_spin_unlock(&rq->lock);
5124 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5125
5126 /* Set the preempt count _outside_ the spinlocks! */
01028747 5127 init_idle_preempt_count(idle, cpu);
55cd5340 5128
dd41f596
IM
5129 /*
5130 * The idle tasks have their own, simple scheduling class:
5131 */
5132 idle->sched_class = &idle_sched_class;
868baf07 5133 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5134 vtime_init_idle(idle, cpu);
de9b8f5d 5135#ifdef CONFIG_SMP
f1c6f1a7
CE
5136 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5137#endif
19978ca6
IM
5138}
5139
f82f8042
JL
5140int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5141 const struct cpumask *trial)
5142{
5143 int ret = 1, trial_cpus;
5144 struct dl_bw *cur_dl_b;
5145 unsigned long flags;
5146
bb2bc55a
MG
5147 if (!cpumask_weight(cur))
5148 return ret;
5149
75e23e49 5150 rcu_read_lock_sched();
f82f8042
JL
5151 cur_dl_b = dl_bw_of(cpumask_any(cur));
5152 trial_cpus = cpumask_weight(trial);
5153
5154 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5155 if (cur_dl_b->bw != -1 &&
5156 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5157 ret = 0;
5158 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5159 rcu_read_unlock_sched();
f82f8042
JL
5160
5161 return ret;
5162}
5163
7f51412a
JL
5164int task_can_attach(struct task_struct *p,
5165 const struct cpumask *cs_cpus_allowed)
5166{
5167 int ret = 0;
5168
5169 /*
5170 * Kthreads which disallow setaffinity shouldn't be moved
5171 * to a new cpuset; we don't want to change their cpu
5172 * affinity and isolating such threads by their set of
5173 * allowed nodes is unnecessary. Thus, cpusets are not
5174 * applicable for such threads. This prevents checking for
5175 * success of set_cpus_allowed_ptr() on all attached tasks
5176 * before cpus_allowed may be changed.
5177 */
5178 if (p->flags & PF_NO_SETAFFINITY) {
5179 ret = -EINVAL;
5180 goto out;
5181 }
5182
5183#ifdef CONFIG_SMP
5184 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5185 cs_cpus_allowed)) {
5186 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5187 cs_cpus_allowed);
75e23e49 5188 struct dl_bw *dl_b;
7f51412a
JL
5189 bool overflow;
5190 int cpus;
5191 unsigned long flags;
5192
75e23e49
JL
5193 rcu_read_lock_sched();
5194 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5195 raw_spin_lock_irqsave(&dl_b->lock, flags);
5196 cpus = dl_bw_cpus(dest_cpu);
5197 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5198 if (overflow)
5199 ret = -EBUSY;
5200 else {
5201 /*
5202 * We reserve space for this task in the destination
5203 * root_domain, as we can't fail after this point.
5204 * We will free resources in the source root_domain
5205 * later on (see set_cpus_allowed_dl()).
5206 */
5207 __dl_add(dl_b, p->dl.dl_bw);
5208 }
5209 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5210 rcu_read_unlock_sched();
7f51412a
JL
5211
5212 }
5213#endif
5214out:
5215 return ret;
5216}
5217
1da177e4 5218#ifdef CONFIG_SMP
1da177e4 5219
e6628d5b
MG
5220#ifdef CONFIG_NUMA_BALANCING
5221/* Migrate current task p to target_cpu */
5222int migrate_task_to(struct task_struct *p, int target_cpu)
5223{
5224 struct migration_arg arg = { p, target_cpu };
5225 int curr_cpu = task_cpu(p);
5226
5227 if (curr_cpu == target_cpu)
5228 return 0;
5229
5230 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5231 return -EINVAL;
5232
5233 /* TODO: This is not properly updating schedstats */
5234
286549dc 5235 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5236 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5237}
0ec8aa00
PZ
5238
5239/*
5240 * Requeue a task on a given node and accurately track the number of NUMA
5241 * tasks on the runqueues
5242 */
5243void sched_setnuma(struct task_struct *p, int nid)
5244{
5245 struct rq *rq;
5246 unsigned long flags;
da0c1e65 5247 bool queued, running;
0ec8aa00
PZ
5248
5249 rq = task_rq_lock(p, &flags);
da0c1e65 5250 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5251 running = task_current(rq, p);
5252
da0c1e65 5253 if (queued)
1de64443 5254 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5255 if (running)
f3cd1c4e 5256 put_prev_task(rq, p);
0ec8aa00
PZ
5257
5258 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5259
5260 if (running)
5261 p->sched_class->set_curr_task(rq);
da0c1e65 5262 if (queued)
1de64443 5263 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5264 task_rq_unlock(rq, p, &flags);
5265}
5cc389bc 5266#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5267
1da177e4 5268#ifdef CONFIG_HOTPLUG_CPU
054b9108 5269/*
48c5ccae
PZ
5270 * Ensures that the idle task is using init_mm right before its cpu goes
5271 * offline.
054b9108 5272 */
48c5ccae 5273void idle_task_exit(void)
1da177e4 5274{
48c5ccae 5275 struct mm_struct *mm = current->active_mm;
e76bd8d9 5276
48c5ccae 5277 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5278
a53efe5f 5279 if (mm != &init_mm) {
f98db601 5280 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5281 finish_arch_post_lock_switch();
5282 }
48c5ccae 5283 mmdrop(mm);
1da177e4
LT
5284}
5285
5286/*
5d180232
PZ
5287 * Since this CPU is going 'away' for a while, fold any nr_active delta
5288 * we might have. Assumes we're called after migrate_tasks() so that the
5289 * nr_active count is stable.
5290 *
5291 * Also see the comment "Global load-average calculations".
1da177e4 5292 */
5d180232 5293static void calc_load_migrate(struct rq *rq)
1da177e4 5294{
5d180232
PZ
5295 long delta = calc_load_fold_active(rq);
5296 if (delta)
5297 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5298}
5299
3f1d2a31
PZ
5300static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5301{
5302}
5303
5304static const struct sched_class fake_sched_class = {
5305 .put_prev_task = put_prev_task_fake,
5306};
5307
5308static struct task_struct fake_task = {
5309 /*
5310 * Avoid pull_{rt,dl}_task()
5311 */
5312 .prio = MAX_PRIO + 1,
5313 .sched_class = &fake_sched_class,
5314};
5315
48f24c4d 5316/*
48c5ccae
PZ
5317 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5318 * try_to_wake_up()->select_task_rq().
5319 *
5320 * Called with rq->lock held even though we'er in stop_machine() and
5321 * there's no concurrency possible, we hold the required locks anyway
5322 * because of lock validation efforts.
1da177e4 5323 */
5e16bbc2 5324static void migrate_tasks(struct rq *dead_rq)
1da177e4 5325{
5e16bbc2 5326 struct rq *rq = dead_rq;
48c5ccae
PZ
5327 struct task_struct *next, *stop = rq->stop;
5328 int dest_cpu;
1da177e4
LT
5329
5330 /*
48c5ccae
PZ
5331 * Fudge the rq selection such that the below task selection loop
5332 * doesn't get stuck on the currently eligible stop task.
5333 *
5334 * We're currently inside stop_machine() and the rq is either stuck
5335 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5336 * either way we should never end up calling schedule() until we're
5337 * done here.
1da177e4 5338 */
48c5ccae 5339 rq->stop = NULL;
48f24c4d 5340
77bd3970
FW
5341 /*
5342 * put_prev_task() and pick_next_task() sched
5343 * class method both need to have an up-to-date
5344 * value of rq->clock[_task]
5345 */
5346 update_rq_clock(rq);
5347
5e16bbc2 5348 for (;;) {
48c5ccae
PZ
5349 /*
5350 * There's this thread running, bail when that's the only
5351 * remaining thread.
5352 */
5353 if (rq->nr_running == 1)
dd41f596 5354 break;
48c5ccae 5355
cbce1a68 5356 /*
5473e0cc 5357 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5358 */
5359 lockdep_pin_lock(&rq->lock);
3f1d2a31 5360 next = pick_next_task(rq, &fake_task);
48c5ccae 5361 BUG_ON(!next);
79c53799 5362 next->sched_class->put_prev_task(rq, next);
e692ab53 5363
5473e0cc
WL
5364 /*
5365 * Rules for changing task_struct::cpus_allowed are holding
5366 * both pi_lock and rq->lock, such that holding either
5367 * stabilizes the mask.
5368 *
5369 * Drop rq->lock is not quite as disastrous as it usually is
5370 * because !cpu_active at this point, which means load-balance
5371 * will not interfere. Also, stop-machine.
5372 */
5373 lockdep_unpin_lock(&rq->lock);
5374 raw_spin_unlock(&rq->lock);
5375 raw_spin_lock(&next->pi_lock);
5376 raw_spin_lock(&rq->lock);
5377
5378 /*
5379 * Since we're inside stop-machine, _nothing_ should have
5380 * changed the task, WARN if weird stuff happened, because in
5381 * that case the above rq->lock drop is a fail too.
5382 */
5383 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5384 raw_spin_unlock(&next->pi_lock);
5385 continue;
5386 }
5387
48c5ccae 5388 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5389 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5390
5e16bbc2
PZ
5391 rq = __migrate_task(rq, next, dest_cpu);
5392 if (rq != dead_rq) {
5393 raw_spin_unlock(&rq->lock);
5394 rq = dead_rq;
5395 raw_spin_lock(&rq->lock);
5396 }
5473e0cc 5397 raw_spin_unlock(&next->pi_lock);
1da177e4 5398 }
dce48a84 5399
48c5ccae 5400 rq->stop = stop;
dce48a84 5401}
1da177e4
LT
5402#endif /* CONFIG_HOTPLUG_CPU */
5403
1f11eb6a
GH
5404static void set_rq_online(struct rq *rq)
5405{
5406 if (!rq->online) {
5407 const struct sched_class *class;
5408
c6c4927b 5409 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5410 rq->online = 1;
5411
5412 for_each_class(class) {
5413 if (class->rq_online)
5414 class->rq_online(rq);
5415 }
5416 }
5417}
5418
5419static void set_rq_offline(struct rq *rq)
5420{
5421 if (rq->online) {
5422 const struct sched_class *class;
5423
5424 for_each_class(class) {
5425 if (class->rq_offline)
5426 class->rq_offline(rq);
5427 }
5428
c6c4927b 5429 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5430 rq->online = 0;
5431 }
5432}
5433
1da177e4
LT
5434/*
5435 * migration_call - callback that gets triggered when a CPU is added.
5436 * Here we can start up the necessary migration thread for the new CPU.
5437 */
0db0628d 5438static int
48f24c4d 5439migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5440{
48f24c4d 5441 int cpu = (long)hcpu;
1da177e4 5442 unsigned long flags;
969c7921 5443 struct rq *rq = cpu_rq(cpu);
1da177e4 5444
48c5ccae 5445 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5446
1da177e4 5447 case CPU_UP_PREPARE:
a468d389 5448 rq->calc_load_update = calc_load_update;
e9532e69 5449 account_reset_rq(rq);
1da177e4 5450 break;
48f24c4d 5451
1da177e4 5452 case CPU_ONLINE:
1f94ef59 5453 /* Update our root-domain */
05fa785c 5454 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5455 if (rq->rd) {
c6c4927b 5456 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5457
5458 set_rq_online(rq);
1f94ef59 5459 }
05fa785c 5460 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5461 break;
48f24c4d 5462
1da177e4 5463#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5464 case CPU_DYING:
317f3941 5465 sched_ttwu_pending();
57d885fe 5466 /* Update our root-domain */
05fa785c 5467 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5468 if (rq->rd) {
c6c4927b 5469 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5470 set_rq_offline(rq);
57d885fe 5471 }
5e16bbc2 5472 migrate_tasks(rq);
48c5ccae 5473 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5474 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5475 break;
48c5ccae 5476
5d180232 5477 case CPU_DEAD:
f319da0c 5478 calc_load_migrate(rq);
57d885fe 5479 break;
1da177e4
LT
5480#endif
5481 }
49c022e6
PZ
5482
5483 update_max_interval();
5484
1da177e4
LT
5485 return NOTIFY_OK;
5486}
5487
f38b0820
PM
5488/*
5489 * Register at high priority so that task migration (migrate_all_tasks)
5490 * happens before everything else. This has to be lower priority than
cdd6c482 5491 * the notifier in the perf_event subsystem, though.
1da177e4 5492 */
0db0628d 5493static struct notifier_block migration_notifier = {
1da177e4 5494 .notifier_call = migration_call,
50a323b7 5495 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5496};
5497
6a82b60d 5498static void set_cpu_rq_start_time(void)
a803f026
CM
5499{
5500 int cpu = smp_processor_id();
5501 struct rq *rq = cpu_rq(cpu);
5502 rq->age_stamp = sched_clock_cpu(cpu);
5503}
5504
0db0628d 5505static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5506 unsigned long action, void *hcpu)
5507{
07f06cb3
PZ
5508 int cpu = (long)hcpu;
5509
3a101d05 5510 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5511 case CPU_STARTING:
5512 set_cpu_rq_start_time();
5513 return NOTIFY_OK;
07f06cb3 5514
3a101d05 5515 case CPU_DOWN_FAILED:
07f06cb3 5516 set_cpu_active(cpu, true);
3a101d05 5517 return NOTIFY_OK;
07f06cb3 5518
3a101d05
TH
5519 default:
5520 return NOTIFY_DONE;
5521 }
5522}
5523
0db0628d 5524static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5525 unsigned long action, void *hcpu)
5526{
5527 switch (action & ~CPU_TASKS_FROZEN) {
5528 case CPU_DOWN_PREPARE:
3c18d447 5529 set_cpu_active((long)hcpu, false);
3a101d05 5530 return NOTIFY_OK;
3c18d447
JL
5531 default:
5532 return NOTIFY_DONE;
3a101d05
TH
5533 }
5534}
5535
7babe8db 5536static int __init migration_init(void)
1da177e4
LT
5537{
5538 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5539 int err;
48f24c4d 5540
3a101d05 5541 /* Initialize migration for the boot CPU */
07dccf33
AM
5542 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5543 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5544 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5545 register_cpu_notifier(&migration_notifier);
7babe8db 5546
3a101d05
TH
5547 /* Register cpu active notifiers */
5548 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5549 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5550
a004cd42 5551 return 0;
1da177e4 5552}
7babe8db 5553early_initcall(migration_init);
476f3534 5554
4cb98839
PZ
5555static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5556
3e9830dc 5557#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5558
d039ac60 5559static __read_mostly int sched_debug_enabled;
f6630114 5560
d039ac60 5561static int __init sched_debug_setup(char *str)
f6630114 5562{
d039ac60 5563 sched_debug_enabled = 1;
f6630114
MT
5564
5565 return 0;
5566}
d039ac60
PZ
5567early_param("sched_debug", sched_debug_setup);
5568
5569static inline bool sched_debug(void)
5570{
5571 return sched_debug_enabled;
5572}
f6630114 5573
7c16ec58 5574static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5575 struct cpumask *groupmask)
1da177e4 5576{
4dcf6aff 5577 struct sched_group *group = sd->groups;
1da177e4 5578
96f874e2 5579 cpumask_clear(groupmask);
4dcf6aff
IM
5580
5581 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5582
5583 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5584 printk("does not load-balance\n");
4dcf6aff 5585 if (sd->parent)
3df0fc5b
PZ
5586 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5587 " has parent");
4dcf6aff 5588 return -1;
41c7ce9a
NP
5589 }
5590
333470ee
TH
5591 printk(KERN_CONT "span %*pbl level %s\n",
5592 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5593
758b2cdc 5594 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5595 printk(KERN_ERR "ERROR: domain->span does not contain "
5596 "CPU%d\n", cpu);
4dcf6aff 5597 }
758b2cdc 5598 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5599 printk(KERN_ERR "ERROR: domain->groups does not contain"
5600 " CPU%d\n", cpu);
4dcf6aff 5601 }
1da177e4 5602
4dcf6aff 5603 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5604 do {
4dcf6aff 5605 if (!group) {
3df0fc5b
PZ
5606 printk("\n");
5607 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5608 break;
5609 }
5610
758b2cdc 5611 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5612 printk(KERN_CONT "\n");
5613 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5614 break;
5615 }
1da177e4 5616
cb83b629
PZ
5617 if (!(sd->flags & SD_OVERLAP) &&
5618 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5619 printk(KERN_CONT "\n");
5620 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5621 break;
5622 }
1da177e4 5623
758b2cdc 5624 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5625
333470ee
TH
5626 printk(KERN_CONT " %*pbl",
5627 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5628 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5629 printk(KERN_CONT " (cpu_capacity = %d)",
5630 group->sgc->capacity);
381512cf 5631 }
1da177e4 5632
4dcf6aff
IM
5633 group = group->next;
5634 } while (group != sd->groups);
3df0fc5b 5635 printk(KERN_CONT "\n");
1da177e4 5636
758b2cdc 5637 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5638 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5639
758b2cdc
RR
5640 if (sd->parent &&
5641 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5642 printk(KERN_ERR "ERROR: parent span is not a superset "
5643 "of domain->span\n");
4dcf6aff
IM
5644 return 0;
5645}
1da177e4 5646
4dcf6aff
IM
5647static void sched_domain_debug(struct sched_domain *sd, int cpu)
5648{
5649 int level = 0;
1da177e4 5650
d039ac60 5651 if (!sched_debug_enabled)
f6630114
MT
5652 return;
5653
4dcf6aff
IM
5654 if (!sd) {
5655 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5656 return;
5657 }
1da177e4 5658
4dcf6aff
IM
5659 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5660
5661 for (;;) {
4cb98839 5662 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5663 break;
1da177e4
LT
5664 level++;
5665 sd = sd->parent;
33859f7f 5666 if (!sd)
4dcf6aff
IM
5667 break;
5668 }
1da177e4 5669}
6d6bc0ad 5670#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5671# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5672static inline bool sched_debug(void)
5673{
5674 return false;
5675}
6d6bc0ad 5676#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5677
1a20ff27 5678static int sd_degenerate(struct sched_domain *sd)
245af2c7 5679{
758b2cdc 5680 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5681 return 1;
5682
5683 /* Following flags need at least 2 groups */
5684 if (sd->flags & (SD_LOAD_BALANCE |
5685 SD_BALANCE_NEWIDLE |
5686 SD_BALANCE_FORK |
89c4710e 5687 SD_BALANCE_EXEC |
5d4dfddd 5688 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5689 SD_SHARE_PKG_RESOURCES |
5690 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5691 if (sd->groups != sd->groups->next)
5692 return 0;
5693 }
5694
5695 /* Following flags don't use groups */
c88d5910 5696 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5697 return 0;
5698
5699 return 1;
5700}
5701
48f24c4d
IM
5702static int
5703sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5704{
5705 unsigned long cflags = sd->flags, pflags = parent->flags;
5706
5707 if (sd_degenerate(parent))
5708 return 1;
5709
758b2cdc 5710 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5711 return 0;
5712
245af2c7
SS
5713 /* Flags needing groups don't count if only 1 group in parent */
5714 if (parent->groups == parent->groups->next) {
5715 pflags &= ~(SD_LOAD_BALANCE |
5716 SD_BALANCE_NEWIDLE |
5717 SD_BALANCE_FORK |
89c4710e 5718 SD_BALANCE_EXEC |
5d4dfddd 5719 SD_SHARE_CPUCAPACITY |
10866e62 5720 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5721 SD_PREFER_SIBLING |
5722 SD_SHARE_POWERDOMAIN);
5436499e
KC
5723 if (nr_node_ids == 1)
5724 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5725 }
5726 if (~cflags & pflags)
5727 return 0;
5728
5729 return 1;
5730}
5731
dce840a0 5732static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5733{
dce840a0 5734 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5735
68e74568 5736 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5737 cpudl_cleanup(&rd->cpudl);
1baca4ce 5738 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5739 free_cpumask_var(rd->rto_mask);
5740 free_cpumask_var(rd->online);
5741 free_cpumask_var(rd->span);
5742 kfree(rd);
5743}
5744
57d885fe
GH
5745static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5746{
a0490fa3 5747 struct root_domain *old_rd = NULL;
57d885fe 5748 unsigned long flags;
57d885fe 5749
05fa785c 5750 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5751
5752 if (rq->rd) {
a0490fa3 5753 old_rd = rq->rd;
57d885fe 5754
c6c4927b 5755 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5756 set_rq_offline(rq);
57d885fe 5757
c6c4927b 5758 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5759
a0490fa3 5760 /*
0515973f 5761 * If we dont want to free the old_rd yet then
a0490fa3
IM
5762 * set old_rd to NULL to skip the freeing later
5763 * in this function:
5764 */
5765 if (!atomic_dec_and_test(&old_rd->refcount))
5766 old_rd = NULL;
57d885fe
GH
5767 }
5768
5769 atomic_inc(&rd->refcount);
5770 rq->rd = rd;
5771
c6c4927b 5772 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5773 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5774 set_rq_online(rq);
57d885fe 5775
05fa785c 5776 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5777
5778 if (old_rd)
dce840a0 5779 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5780}
5781
68c38fc3 5782static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5783{
5784 memset(rd, 0, sizeof(*rd));
5785
8295c699 5786 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5787 goto out;
8295c699 5788 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5789 goto free_span;
8295c699 5790 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5791 goto free_online;
8295c699 5792 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5793 goto free_dlo_mask;
6e0534f2 5794
332ac17e 5795 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5796 if (cpudl_init(&rd->cpudl) != 0)
5797 goto free_dlo_mask;
332ac17e 5798
68c38fc3 5799 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5800 goto free_rto_mask;
c6c4927b 5801 return 0;
6e0534f2 5802
68e74568
RR
5803free_rto_mask:
5804 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5805free_dlo_mask:
5806 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5807free_online:
5808 free_cpumask_var(rd->online);
5809free_span:
5810 free_cpumask_var(rd->span);
0c910d28 5811out:
c6c4927b 5812 return -ENOMEM;
57d885fe
GH
5813}
5814
029632fb
PZ
5815/*
5816 * By default the system creates a single root-domain with all cpus as
5817 * members (mimicking the global state we have today).
5818 */
5819struct root_domain def_root_domain;
5820
57d885fe
GH
5821static void init_defrootdomain(void)
5822{
68c38fc3 5823 init_rootdomain(&def_root_domain);
c6c4927b 5824
57d885fe
GH
5825 atomic_set(&def_root_domain.refcount, 1);
5826}
5827
dc938520 5828static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5829{
5830 struct root_domain *rd;
5831
5832 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5833 if (!rd)
5834 return NULL;
5835
68c38fc3 5836 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5837 kfree(rd);
5838 return NULL;
5839 }
57d885fe
GH
5840
5841 return rd;
5842}
5843
63b2ca30 5844static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5845{
5846 struct sched_group *tmp, *first;
5847
5848 if (!sg)
5849 return;
5850
5851 first = sg;
5852 do {
5853 tmp = sg->next;
5854
63b2ca30
NP
5855 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5856 kfree(sg->sgc);
e3589f6c
PZ
5857
5858 kfree(sg);
5859 sg = tmp;
5860 } while (sg != first);
5861}
5862
dce840a0
PZ
5863static void free_sched_domain(struct rcu_head *rcu)
5864{
5865 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5866
5867 /*
5868 * If its an overlapping domain it has private groups, iterate and
5869 * nuke them all.
5870 */
5871 if (sd->flags & SD_OVERLAP) {
5872 free_sched_groups(sd->groups, 1);
5873 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5874 kfree(sd->groups->sgc);
dce840a0 5875 kfree(sd->groups);
9c3f75cb 5876 }
dce840a0
PZ
5877 kfree(sd);
5878}
5879
5880static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5881{
5882 call_rcu(&sd->rcu, free_sched_domain);
5883}
5884
5885static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5886{
5887 for (; sd; sd = sd->parent)
5888 destroy_sched_domain(sd, cpu);
5889}
5890
518cd623
PZ
5891/*
5892 * Keep a special pointer to the highest sched_domain that has
5893 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5894 * allows us to avoid some pointer chasing select_idle_sibling().
5895 *
5896 * Also keep a unique ID per domain (we use the first cpu number in
5897 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5898 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5899 */
5900DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5901DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5902DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5903DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5904DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5905DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5906
5907static void update_top_cache_domain(int cpu)
5908{
5909 struct sched_domain *sd;
5d4cf996 5910 struct sched_domain *busy_sd = NULL;
518cd623 5911 int id = cpu;
7d9ffa89 5912 int size = 1;
518cd623
PZ
5913
5914 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5915 if (sd) {
518cd623 5916 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5917 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5918 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5919 }
5d4cf996 5920 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5921
5922 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5923 per_cpu(sd_llc_size, cpu) = size;
518cd623 5924 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5925
5926 sd = lowest_flag_domain(cpu, SD_NUMA);
5927 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5928
5929 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5930 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5931}
5932
1da177e4 5933/*
0eab9146 5934 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5935 * hold the hotplug lock.
5936 */
0eab9146
IM
5937static void
5938cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5939{
70b97a7f 5940 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5941 struct sched_domain *tmp;
5942
5943 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5944 for (tmp = sd; tmp; ) {
245af2c7
SS
5945 struct sched_domain *parent = tmp->parent;
5946 if (!parent)
5947 break;
f29c9b1c 5948
1a848870 5949 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5950 tmp->parent = parent->parent;
1a848870
SS
5951 if (parent->parent)
5952 parent->parent->child = tmp;
10866e62
PZ
5953 /*
5954 * Transfer SD_PREFER_SIBLING down in case of a
5955 * degenerate parent; the spans match for this
5956 * so the property transfers.
5957 */
5958 if (parent->flags & SD_PREFER_SIBLING)
5959 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5960 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5961 } else
5962 tmp = tmp->parent;
245af2c7
SS
5963 }
5964
1a848870 5965 if (sd && sd_degenerate(sd)) {
dce840a0 5966 tmp = sd;
245af2c7 5967 sd = sd->parent;
dce840a0 5968 destroy_sched_domain(tmp, cpu);
1a848870
SS
5969 if (sd)
5970 sd->child = NULL;
5971 }
1da177e4 5972
4cb98839 5973 sched_domain_debug(sd, cpu);
1da177e4 5974
57d885fe 5975 rq_attach_root(rq, rd);
dce840a0 5976 tmp = rq->sd;
674311d5 5977 rcu_assign_pointer(rq->sd, sd);
dce840a0 5978 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5979
5980 update_top_cache_domain(cpu);
1da177e4
LT
5981}
5982
1da177e4
LT
5983/* Setup the mask of cpus configured for isolated domains */
5984static int __init isolated_cpu_setup(char *str)
5985{
a6e4491c
PB
5986 int ret;
5987
bdddd296 5988 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5989 ret = cpulist_parse(str, cpu_isolated_map);
5990 if (ret) {
5991 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5992 return 0;
5993 }
1da177e4
LT
5994 return 1;
5995}
8927f494 5996__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5997
49a02c51 5998struct s_data {
21d42ccf 5999 struct sched_domain ** __percpu sd;
49a02c51
AH
6000 struct root_domain *rd;
6001};
6002
2109b99e 6003enum s_alloc {
2109b99e 6004 sa_rootdomain,
21d42ccf 6005 sa_sd,
dce840a0 6006 sa_sd_storage,
2109b99e
AH
6007 sa_none,
6008};
6009
c1174876
PZ
6010/*
6011 * Build an iteration mask that can exclude certain CPUs from the upwards
6012 * domain traversal.
6013 *
6014 * Asymmetric node setups can result in situations where the domain tree is of
6015 * unequal depth, make sure to skip domains that already cover the entire
6016 * range.
6017 *
6018 * In that case build_sched_domains() will have terminated the iteration early
6019 * and our sibling sd spans will be empty. Domains should always include the
6020 * cpu they're built on, so check that.
6021 *
6022 */
6023static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6024{
6025 const struct cpumask *span = sched_domain_span(sd);
6026 struct sd_data *sdd = sd->private;
6027 struct sched_domain *sibling;
6028 int i;
6029
6030 for_each_cpu(i, span) {
6031 sibling = *per_cpu_ptr(sdd->sd, i);
6032 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6033 continue;
6034
6035 cpumask_set_cpu(i, sched_group_mask(sg));
6036 }
6037}
6038
6039/*
6040 * Return the canonical balance cpu for this group, this is the first cpu
6041 * of this group that's also in the iteration mask.
6042 */
6043int group_balance_cpu(struct sched_group *sg)
6044{
6045 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6046}
6047
e3589f6c
PZ
6048static int
6049build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6050{
6051 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6052 const struct cpumask *span = sched_domain_span(sd);
6053 struct cpumask *covered = sched_domains_tmpmask;
6054 struct sd_data *sdd = sd->private;
aaecac4a 6055 struct sched_domain *sibling;
e3589f6c
PZ
6056 int i;
6057
6058 cpumask_clear(covered);
6059
6060 for_each_cpu(i, span) {
6061 struct cpumask *sg_span;
6062
6063 if (cpumask_test_cpu(i, covered))
6064 continue;
6065
aaecac4a 6066 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6067
6068 /* See the comment near build_group_mask(). */
aaecac4a 6069 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6070 continue;
6071
e3589f6c 6072 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6073 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6074
6075 if (!sg)
6076 goto fail;
6077
6078 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6079 if (sibling->child)
6080 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6081 else
e3589f6c
PZ
6082 cpumask_set_cpu(i, sg_span);
6083
6084 cpumask_or(covered, covered, sg_span);
6085
63b2ca30
NP
6086 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6087 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6088 build_group_mask(sd, sg);
6089
c3decf0d 6090 /*
63b2ca30 6091 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6092 * domains and no possible iteration will get us here, we won't
6093 * die on a /0 trap.
6094 */
ca8ce3d0 6095 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6096
c1174876
PZ
6097 /*
6098 * Make sure the first group of this domain contains the
6099 * canonical balance cpu. Otherwise the sched_domain iteration
6100 * breaks. See update_sg_lb_stats().
6101 */
74a5ce20 6102 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6103 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6104 groups = sg;
6105
6106 if (!first)
6107 first = sg;
6108 if (last)
6109 last->next = sg;
6110 last = sg;
6111 last->next = first;
6112 }
6113 sd->groups = groups;
6114
6115 return 0;
6116
6117fail:
6118 free_sched_groups(first, 0);
6119
6120 return -ENOMEM;
6121}
6122
dce840a0 6123static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6124{
dce840a0
PZ
6125 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6126 struct sched_domain *child = sd->child;
1da177e4 6127
dce840a0
PZ
6128 if (child)
6129 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6130
9c3f75cb 6131 if (sg) {
dce840a0 6132 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6133 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6134 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6135 }
dce840a0
PZ
6136
6137 return cpu;
1e9f28fa 6138}
1e9f28fa 6139
01a08546 6140/*
dce840a0
PZ
6141 * build_sched_groups will build a circular linked list of the groups
6142 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6143 * and ->cpu_capacity to 0.
e3589f6c
PZ
6144 *
6145 * Assumes the sched_domain tree is fully constructed
01a08546 6146 */
e3589f6c
PZ
6147static int
6148build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6149{
dce840a0
PZ
6150 struct sched_group *first = NULL, *last = NULL;
6151 struct sd_data *sdd = sd->private;
6152 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6153 struct cpumask *covered;
dce840a0 6154 int i;
9c1cfda2 6155
e3589f6c
PZ
6156 get_group(cpu, sdd, &sd->groups);
6157 atomic_inc(&sd->groups->ref);
6158
0936629f 6159 if (cpu != cpumask_first(span))
e3589f6c
PZ
6160 return 0;
6161
f96225fd
PZ
6162 lockdep_assert_held(&sched_domains_mutex);
6163 covered = sched_domains_tmpmask;
6164
dce840a0 6165 cpumask_clear(covered);
6711cab4 6166
dce840a0
PZ
6167 for_each_cpu(i, span) {
6168 struct sched_group *sg;
cd08e923 6169 int group, j;
6711cab4 6170
dce840a0
PZ
6171 if (cpumask_test_cpu(i, covered))
6172 continue;
6711cab4 6173
cd08e923 6174 group = get_group(i, sdd, &sg);
c1174876 6175 cpumask_setall(sched_group_mask(sg));
0601a88d 6176
dce840a0
PZ
6177 for_each_cpu(j, span) {
6178 if (get_group(j, sdd, NULL) != group)
6179 continue;
0601a88d 6180
dce840a0
PZ
6181 cpumask_set_cpu(j, covered);
6182 cpumask_set_cpu(j, sched_group_cpus(sg));
6183 }
0601a88d 6184
dce840a0
PZ
6185 if (!first)
6186 first = sg;
6187 if (last)
6188 last->next = sg;
6189 last = sg;
6190 }
6191 last->next = first;
e3589f6c
PZ
6192
6193 return 0;
0601a88d 6194}
51888ca2 6195
89c4710e 6196/*
63b2ca30 6197 * Initialize sched groups cpu_capacity.
89c4710e 6198 *
63b2ca30 6199 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6200 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6201 * Typically cpu_capacity for all the groups in a sched domain will be same
6202 * unless there are asymmetries in the topology. If there are asymmetries,
6203 * group having more cpu_capacity will pickup more load compared to the
6204 * group having less cpu_capacity.
89c4710e 6205 */
63b2ca30 6206static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6207{
e3589f6c 6208 struct sched_group *sg = sd->groups;
89c4710e 6209
94c95ba6 6210 WARN_ON(!sg);
e3589f6c
PZ
6211
6212 do {
6213 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6214 sg = sg->next;
6215 } while (sg != sd->groups);
89c4710e 6216
c1174876 6217 if (cpu != group_balance_cpu(sg))
e3589f6c 6218 return;
aae6d3dd 6219
63b2ca30
NP
6220 update_group_capacity(sd, cpu);
6221 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6222}
6223
7c16ec58
MT
6224/*
6225 * Initializers for schedule domains
6226 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6227 */
6228
1d3504fc 6229static int default_relax_domain_level = -1;
60495e77 6230int sched_domain_level_max;
1d3504fc
HS
6231
6232static int __init setup_relax_domain_level(char *str)
6233{
a841f8ce
DS
6234 if (kstrtoint(str, 0, &default_relax_domain_level))
6235 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6236
1d3504fc
HS
6237 return 1;
6238}
6239__setup("relax_domain_level=", setup_relax_domain_level);
6240
6241static void set_domain_attribute(struct sched_domain *sd,
6242 struct sched_domain_attr *attr)
6243{
6244 int request;
6245
6246 if (!attr || attr->relax_domain_level < 0) {
6247 if (default_relax_domain_level < 0)
6248 return;
6249 else
6250 request = default_relax_domain_level;
6251 } else
6252 request = attr->relax_domain_level;
6253 if (request < sd->level) {
6254 /* turn off idle balance on this domain */
c88d5910 6255 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6256 } else {
6257 /* turn on idle balance on this domain */
c88d5910 6258 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6259 }
6260}
6261
54ab4ff4
PZ
6262static void __sdt_free(const struct cpumask *cpu_map);
6263static int __sdt_alloc(const struct cpumask *cpu_map);
6264
2109b99e
AH
6265static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6266 const struct cpumask *cpu_map)
6267{
6268 switch (what) {
2109b99e 6269 case sa_rootdomain:
822ff793
PZ
6270 if (!atomic_read(&d->rd->refcount))
6271 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6272 case sa_sd:
6273 free_percpu(d->sd); /* fall through */
dce840a0 6274 case sa_sd_storage:
54ab4ff4 6275 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6276 case sa_none:
6277 break;
6278 }
6279}
3404c8d9 6280
2109b99e
AH
6281static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6282 const struct cpumask *cpu_map)
6283{
dce840a0
PZ
6284 memset(d, 0, sizeof(*d));
6285
54ab4ff4
PZ
6286 if (__sdt_alloc(cpu_map))
6287 return sa_sd_storage;
dce840a0
PZ
6288 d->sd = alloc_percpu(struct sched_domain *);
6289 if (!d->sd)
6290 return sa_sd_storage;
2109b99e 6291 d->rd = alloc_rootdomain();
dce840a0 6292 if (!d->rd)
21d42ccf 6293 return sa_sd;
2109b99e
AH
6294 return sa_rootdomain;
6295}
57d885fe 6296
dce840a0
PZ
6297/*
6298 * NULL the sd_data elements we've used to build the sched_domain and
6299 * sched_group structure so that the subsequent __free_domain_allocs()
6300 * will not free the data we're using.
6301 */
6302static void claim_allocations(int cpu, struct sched_domain *sd)
6303{
6304 struct sd_data *sdd = sd->private;
dce840a0
PZ
6305
6306 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6307 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6308
e3589f6c 6309 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6310 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6311
63b2ca30
NP
6312 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6313 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6314}
6315
cb83b629 6316#ifdef CONFIG_NUMA
cb83b629 6317static int sched_domains_numa_levels;
e3fe70b1 6318enum numa_topology_type sched_numa_topology_type;
cb83b629 6319static int *sched_domains_numa_distance;
9942f79b 6320int sched_max_numa_distance;
cb83b629
PZ
6321static struct cpumask ***sched_domains_numa_masks;
6322static int sched_domains_curr_level;
143e1e28 6323#endif
cb83b629 6324
143e1e28
VG
6325/*
6326 * SD_flags allowed in topology descriptions.
6327 *
5d4dfddd 6328 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6329 * SD_SHARE_PKG_RESOURCES - describes shared caches
6330 * SD_NUMA - describes NUMA topologies
d77b3ed5 6331 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6332 *
6333 * Odd one out:
6334 * SD_ASYM_PACKING - describes SMT quirks
6335 */
6336#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6337 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6338 SD_SHARE_PKG_RESOURCES | \
6339 SD_NUMA | \
d77b3ed5
VG
6340 SD_ASYM_PACKING | \
6341 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6342
6343static struct sched_domain *
143e1e28 6344sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6345{
6346 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6347 int sd_weight, sd_flags = 0;
6348
6349#ifdef CONFIG_NUMA
6350 /*
6351 * Ugly hack to pass state to sd_numa_mask()...
6352 */
6353 sched_domains_curr_level = tl->numa_level;
6354#endif
6355
6356 sd_weight = cpumask_weight(tl->mask(cpu));
6357
6358 if (tl->sd_flags)
6359 sd_flags = (*tl->sd_flags)();
6360 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6361 "wrong sd_flags in topology description\n"))
6362 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6363
6364 *sd = (struct sched_domain){
6365 .min_interval = sd_weight,
6366 .max_interval = 2*sd_weight,
6367 .busy_factor = 32,
870a0bb5 6368 .imbalance_pct = 125,
143e1e28
VG
6369
6370 .cache_nice_tries = 0,
6371 .busy_idx = 0,
6372 .idle_idx = 0,
cb83b629
PZ
6373 .newidle_idx = 0,
6374 .wake_idx = 0,
6375 .forkexec_idx = 0,
6376
6377 .flags = 1*SD_LOAD_BALANCE
6378 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6379 | 1*SD_BALANCE_EXEC
6380 | 1*SD_BALANCE_FORK
cb83b629 6381 | 0*SD_BALANCE_WAKE
143e1e28 6382 | 1*SD_WAKE_AFFINE
5d4dfddd 6383 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6384 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6385 | 0*SD_SERIALIZE
cb83b629 6386 | 0*SD_PREFER_SIBLING
143e1e28
VG
6387 | 0*SD_NUMA
6388 | sd_flags
cb83b629 6389 ,
143e1e28 6390
cb83b629
PZ
6391 .last_balance = jiffies,
6392 .balance_interval = sd_weight,
143e1e28 6393 .smt_gain = 0,
2b4cfe64
JL
6394 .max_newidle_lb_cost = 0,
6395 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6396#ifdef CONFIG_SCHED_DEBUG
6397 .name = tl->name,
6398#endif
cb83b629 6399 };
cb83b629
PZ
6400
6401 /*
143e1e28 6402 * Convert topological properties into behaviour.
cb83b629 6403 */
143e1e28 6404
5d4dfddd 6405 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6406 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6407 sd->imbalance_pct = 110;
6408 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6409
6410 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6411 sd->imbalance_pct = 117;
6412 sd->cache_nice_tries = 1;
6413 sd->busy_idx = 2;
6414
6415#ifdef CONFIG_NUMA
6416 } else if (sd->flags & SD_NUMA) {
6417 sd->cache_nice_tries = 2;
6418 sd->busy_idx = 3;
6419 sd->idle_idx = 2;
6420
6421 sd->flags |= SD_SERIALIZE;
6422 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6423 sd->flags &= ~(SD_BALANCE_EXEC |
6424 SD_BALANCE_FORK |
6425 SD_WAKE_AFFINE);
6426 }
6427
6428#endif
6429 } else {
6430 sd->flags |= SD_PREFER_SIBLING;
6431 sd->cache_nice_tries = 1;
6432 sd->busy_idx = 2;
6433 sd->idle_idx = 1;
6434 }
6435
6436 sd->private = &tl->data;
cb83b629
PZ
6437
6438 return sd;
6439}
6440
143e1e28
VG
6441/*
6442 * Topology list, bottom-up.
6443 */
6444static struct sched_domain_topology_level default_topology[] = {
6445#ifdef CONFIG_SCHED_SMT
6446 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6447#endif
6448#ifdef CONFIG_SCHED_MC
6449 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6450#endif
6451 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6452 { NULL, },
6453};
6454
c6e1e7b5
JG
6455static struct sched_domain_topology_level *sched_domain_topology =
6456 default_topology;
143e1e28
VG
6457
6458#define for_each_sd_topology(tl) \
6459 for (tl = sched_domain_topology; tl->mask; tl++)
6460
6461void set_sched_topology(struct sched_domain_topology_level *tl)
6462{
6463 sched_domain_topology = tl;
6464}
6465
6466#ifdef CONFIG_NUMA
6467
cb83b629
PZ
6468static const struct cpumask *sd_numa_mask(int cpu)
6469{
6470 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6471}
6472
d039ac60
PZ
6473static void sched_numa_warn(const char *str)
6474{
6475 static int done = false;
6476 int i,j;
6477
6478 if (done)
6479 return;
6480
6481 done = true;
6482
6483 printk(KERN_WARNING "ERROR: %s\n\n", str);
6484
6485 for (i = 0; i < nr_node_ids; i++) {
6486 printk(KERN_WARNING " ");
6487 for (j = 0; j < nr_node_ids; j++)
6488 printk(KERN_CONT "%02d ", node_distance(i,j));
6489 printk(KERN_CONT "\n");
6490 }
6491 printk(KERN_WARNING "\n");
6492}
6493
9942f79b 6494bool find_numa_distance(int distance)
d039ac60
PZ
6495{
6496 int i;
6497
6498 if (distance == node_distance(0, 0))
6499 return true;
6500
6501 for (i = 0; i < sched_domains_numa_levels; i++) {
6502 if (sched_domains_numa_distance[i] == distance)
6503 return true;
6504 }
6505
6506 return false;
6507}
6508
e3fe70b1
RR
6509/*
6510 * A system can have three types of NUMA topology:
6511 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6512 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6513 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6514 *
6515 * The difference between a glueless mesh topology and a backplane
6516 * topology lies in whether communication between not directly
6517 * connected nodes goes through intermediary nodes (where programs
6518 * could run), or through backplane controllers. This affects
6519 * placement of programs.
6520 *
6521 * The type of topology can be discerned with the following tests:
6522 * - If the maximum distance between any nodes is 1 hop, the system
6523 * is directly connected.
6524 * - If for two nodes A and B, located N > 1 hops away from each other,
6525 * there is an intermediary node C, which is < N hops away from both
6526 * nodes A and B, the system is a glueless mesh.
6527 */
6528static void init_numa_topology_type(void)
6529{
6530 int a, b, c, n;
6531
6532 n = sched_max_numa_distance;
6533
e237882b 6534 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6535 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6536 return;
6537 }
e3fe70b1
RR
6538
6539 for_each_online_node(a) {
6540 for_each_online_node(b) {
6541 /* Find two nodes furthest removed from each other. */
6542 if (node_distance(a, b) < n)
6543 continue;
6544
6545 /* Is there an intermediary node between a and b? */
6546 for_each_online_node(c) {
6547 if (node_distance(a, c) < n &&
6548 node_distance(b, c) < n) {
6549 sched_numa_topology_type =
6550 NUMA_GLUELESS_MESH;
6551 return;
6552 }
6553 }
6554
6555 sched_numa_topology_type = NUMA_BACKPLANE;
6556 return;
6557 }
6558 }
6559}
6560
cb83b629
PZ
6561static void sched_init_numa(void)
6562{
6563 int next_distance, curr_distance = node_distance(0, 0);
6564 struct sched_domain_topology_level *tl;
6565 int level = 0;
6566 int i, j, k;
6567
cb83b629
PZ
6568 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6569 if (!sched_domains_numa_distance)
6570 return;
6571
6572 /*
6573 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6574 * unique distances in the node_distance() table.
6575 *
6576 * Assumes node_distance(0,j) includes all distances in
6577 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6578 */
6579 next_distance = curr_distance;
6580 for (i = 0; i < nr_node_ids; i++) {
6581 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6582 for (k = 0; k < nr_node_ids; k++) {
6583 int distance = node_distance(i, k);
6584
6585 if (distance > curr_distance &&
6586 (distance < next_distance ||
6587 next_distance == curr_distance))
6588 next_distance = distance;
6589
6590 /*
6591 * While not a strong assumption it would be nice to know
6592 * about cases where if node A is connected to B, B is not
6593 * equally connected to A.
6594 */
6595 if (sched_debug() && node_distance(k, i) != distance)
6596 sched_numa_warn("Node-distance not symmetric");
6597
6598 if (sched_debug() && i && !find_numa_distance(distance))
6599 sched_numa_warn("Node-0 not representative");
6600 }
6601 if (next_distance != curr_distance) {
6602 sched_domains_numa_distance[level++] = next_distance;
6603 sched_domains_numa_levels = level;
6604 curr_distance = next_distance;
6605 } else break;
cb83b629 6606 }
d039ac60
PZ
6607
6608 /*
6609 * In case of sched_debug() we verify the above assumption.
6610 */
6611 if (!sched_debug())
6612 break;
cb83b629 6613 }
c123588b
AR
6614
6615 if (!level)
6616 return;
6617
cb83b629
PZ
6618 /*
6619 * 'level' contains the number of unique distances, excluding the
6620 * identity distance node_distance(i,i).
6621 *
28b4a521 6622 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6623 * numbers.
6624 */
6625
5f7865f3
TC
6626 /*
6627 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6628 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6629 * the array will contain less then 'level' members. This could be
6630 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6631 * in other functions.
6632 *
6633 * We reset it to 'level' at the end of this function.
6634 */
6635 sched_domains_numa_levels = 0;
6636
cb83b629
PZ
6637 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6638 if (!sched_domains_numa_masks)
6639 return;
6640
6641 /*
6642 * Now for each level, construct a mask per node which contains all
6643 * cpus of nodes that are that many hops away from us.
6644 */
6645 for (i = 0; i < level; i++) {
6646 sched_domains_numa_masks[i] =
6647 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6648 if (!sched_domains_numa_masks[i])
6649 return;
6650
6651 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6652 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6653 if (!mask)
6654 return;
6655
6656 sched_domains_numa_masks[i][j] = mask;
6657
9c03ee14 6658 for_each_node(k) {
dd7d8634 6659 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6660 continue;
6661
6662 cpumask_or(mask, mask, cpumask_of_node(k));
6663 }
6664 }
6665 }
6666
143e1e28
VG
6667 /* Compute default topology size */
6668 for (i = 0; sched_domain_topology[i].mask; i++);
6669
c515db8c 6670 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6671 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6672 if (!tl)
6673 return;
6674
6675 /*
6676 * Copy the default topology bits..
6677 */
143e1e28
VG
6678 for (i = 0; sched_domain_topology[i].mask; i++)
6679 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6680
6681 /*
6682 * .. and append 'j' levels of NUMA goodness.
6683 */
6684 for (j = 0; j < level; i++, j++) {
6685 tl[i] = (struct sched_domain_topology_level){
cb83b629 6686 .mask = sd_numa_mask,
143e1e28 6687 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6688 .flags = SDTL_OVERLAP,
6689 .numa_level = j,
143e1e28 6690 SD_INIT_NAME(NUMA)
cb83b629
PZ
6691 };
6692 }
6693
6694 sched_domain_topology = tl;
5f7865f3
TC
6695
6696 sched_domains_numa_levels = level;
9942f79b 6697 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6698
6699 init_numa_topology_type();
cb83b629 6700}
301a5cba
TC
6701
6702static void sched_domains_numa_masks_set(int cpu)
6703{
6704 int i, j;
6705 int node = cpu_to_node(cpu);
6706
6707 for (i = 0; i < sched_domains_numa_levels; i++) {
6708 for (j = 0; j < nr_node_ids; j++) {
6709 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6710 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6711 }
6712 }
6713}
6714
6715static void sched_domains_numa_masks_clear(int cpu)
6716{
6717 int i, j;
6718 for (i = 0; i < sched_domains_numa_levels; i++) {
6719 for (j = 0; j < nr_node_ids; j++)
6720 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6721 }
6722}
6723
6724/*
6725 * Update sched_domains_numa_masks[level][node] array when new cpus
6726 * are onlined.
6727 */
6728static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6729 unsigned long action,
6730 void *hcpu)
6731{
6732 int cpu = (long)hcpu;
6733
6734 switch (action & ~CPU_TASKS_FROZEN) {
6735 case CPU_ONLINE:
6736 sched_domains_numa_masks_set(cpu);
6737 break;
6738
6739 case CPU_DEAD:
6740 sched_domains_numa_masks_clear(cpu);
6741 break;
6742
6743 default:
6744 return NOTIFY_DONE;
6745 }
6746
6747 return NOTIFY_OK;
cb83b629
PZ
6748}
6749#else
6750static inline void sched_init_numa(void)
6751{
6752}
301a5cba
TC
6753
6754static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6755 unsigned long action,
6756 void *hcpu)
6757{
6758 return 0;
6759}
cb83b629
PZ
6760#endif /* CONFIG_NUMA */
6761
54ab4ff4
PZ
6762static int __sdt_alloc(const struct cpumask *cpu_map)
6763{
6764 struct sched_domain_topology_level *tl;
6765 int j;
6766
27723a68 6767 for_each_sd_topology(tl) {
54ab4ff4
PZ
6768 struct sd_data *sdd = &tl->data;
6769
6770 sdd->sd = alloc_percpu(struct sched_domain *);
6771 if (!sdd->sd)
6772 return -ENOMEM;
6773
6774 sdd->sg = alloc_percpu(struct sched_group *);
6775 if (!sdd->sg)
6776 return -ENOMEM;
6777
63b2ca30
NP
6778 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6779 if (!sdd->sgc)
9c3f75cb
PZ
6780 return -ENOMEM;
6781
54ab4ff4
PZ
6782 for_each_cpu(j, cpu_map) {
6783 struct sched_domain *sd;
6784 struct sched_group *sg;
63b2ca30 6785 struct sched_group_capacity *sgc;
54ab4ff4 6786
5cc389bc 6787 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6788 GFP_KERNEL, cpu_to_node(j));
6789 if (!sd)
6790 return -ENOMEM;
6791
6792 *per_cpu_ptr(sdd->sd, j) = sd;
6793
6794 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6795 GFP_KERNEL, cpu_to_node(j));
6796 if (!sg)
6797 return -ENOMEM;
6798
30b4e9eb
IM
6799 sg->next = sg;
6800
54ab4ff4 6801 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6802
63b2ca30 6803 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6804 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6805 if (!sgc)
9c3f75cb
PZ
6806 return -ENOMEM;
6807
63b2ca30 6808 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6809 }
6810 }
6811
6812 return 0;
6813}
6814
6815static void __sdt_free(const struct cpumask *cpu_map)
6816{
6817 struct sched_domain_topology_level *tl;
6818 int j;
6819
27723a68 6820 for_each_sd_topology(tl) {
54ab4ff4
PZ
6821 struct sd_data *sdd = &tl->data;
6822
6823 for_each_cpu(j, cpu_map) {
fb2cf2c6 6824 struct sched_domain *sd;
6825
6826 if (sdd->sd) {
6827 sd = *per_cpu_ptr(sdd->sd, j);
6828 if (sd && (sd->flags & SD_OVERLAP))
6829 free_sched_groups(sd->groups, 0);
6830 kfree(*per_cpu_ptr(sdd->sd, j));
6831 }
6832
6833 if (sdd->sg)
6834 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6835 if (sdd->sgc)
6836 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6837 }
6838 free_percpu(sdd->sd);
fb2cf2c6 6839 sdd->sd = NULL;
54ab4ff4 6840 free_percpu(sdd->sg);
fb2cf2c6 6841 sdd->sg = NULL;
63b2ca30
NP
6842 free_percpu(sdd->sgc);
6843 sdd->sgc = NULL;
54ab4ff4
PZ
6844 }
6845}
6846
2c402dc3 6847struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6848 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6849 struct sched_domain *child, int cpu)
2c402dc3 6850{
143e1e28 6851 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6852 if (!sd)
d069b916 6853 return child;
2c402dc3 6854
2c402dc3 6855 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6856 if (child) {
6857 sd->level = child->level + 1;
6858 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6859 child->parent = sd;
c75e0128 6860 sd->child = child;
6ae72dff
PZ
6861
6862 if (!cpumask_subset(sched_domain_span(child),
6863 sched_domain_span(sd))) {
6864 pr_err("BUG: arch topology borken\n");
6865#ifdef CONFIG_SCHED_DEBUG
6866 pr_err(" the %s domain not a subset of the %s domain\n",
6867 child->name, sd->name);
6868#endif
6869 /* Fixup, ensure @sd has at least @child cpus. */
6870 cpumask_or(sched_domain_span(sd),
6871 sched_domain_span(sd),
6872 sched_domain_span(child));
6873 }
6874
60495e77 6875 }
a841f8ce 6876 set_domain_attribute(sd, attr);
2c402dc3
PZ
6877
6878 return sd;
6879}
6880
2109b99e
AH
6881/*
6882 * Build sched domains for a given set of cpus and attach the sched domains
6883 * to the individual cpus
6884 */
dce840a0
PZ
6885static int build_sched_domains(const struct cpumask *cpu_map,
6886 struct sched_domain_attr *attr)
2109b99e 6887{
1c632169 6888 enum s_alloc alloc_state;
dce840a0 6889 struct sched_domain *sd;
2109b99e 6890 struct s_data d;
822ff793 6891 int i, ret = -ENOMEM;
9c1cfda2 6892
2109b99e
AH
6893 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6894 if (alloc_state != sa_rootdomain)
6895 goto error;
9c1cfda2 6896
dce840a0 6897 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6898 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6899 struct sched_domain_topology_level *tl;
6900
3bd65a80 6901 sd = NULL;
27723a68 6902 for_each_sd_topology(tl) {
4a850cbe 6903 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6904 if (tl == sched_domain_topology)
6905 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6906 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6907 sd->flags |= SD_OVERLAP;
d110235d
PZ
6908 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6909 break;
e3589f6c 6910 }
dce840a0
PZ
6911 }
6912
6913 /* Build the groups for the domains */
6914 for_each_cpu(i, cpu_map) {
6915 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6916 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6917 if (sd->flags & SD_OVERLAP) {
6918 if (build_overlap_sched_groups(sd, i))
6919 goto error;
6920 } else {
6921 if (build_sched_groups(sd, i))
6922 goto error;
6923 }
1cf51902 6924 }
a06dadbe 6925 }
9c1cfda2 6926
ced549fa 6927 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6928 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6929 if (!cpumask_test_cpu(i, cpu_map))
6930 continue;
9c1cfda2 6931
dce840a0
PZ
6932 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6933 claim_allocations(i, sd);
63b2ca30 6934 init_sched_groups_capacity(i, sd);
dce840a0 6935 }
f712c0c7 6936 }
9c1cfda2 6937
1da177e4 6938 /* Attach the domains */
dce840a0 6939 rcu_read_lock();
abcd083a 6940 for_each_cpu(i, cpu_map) {
21d42ccf 6941 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6942 cpu_attach_domain(sd, d.rd, i);
1da177e4 6943 }
dce840a0 6944 rcu_read_unlock();
51888ca2 6945
822ff793 6946 ret = 0;
51888ca2 6947error:
2109b99e 6948 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6949 return ret;
1da177e4 6950}
029190c5 6951
acc3f5d7 6952static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6953static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6954static struct sched_domain_attr *dattr_cur;
6955 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6956
6957/*
6958 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6959 * cpumask) fails, then fallback to a single sched domain,
6960 * as determined by the single cpumask fallback_doms.
029190c5 6961 */
4212823f 6962static cpumask_var_t fallback_doms;
029190c5 6963
ee79d1bd
HC
6964/*
6965 * arch_update_cpu_topology lets virtualized architectures update the
6966 * cpu core maps. It is supposed to return 1 if the topology changed
6967 * or 0 if it stayed the same.
6968 */
52f5684c 6969int __weak arch_update_cpu_topology(void)
22e52b07 6970{
ee79d1bd 6971 return 0;
22e52b07
HC
6972}
6973
acc3f5d7
RR
6974cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6975{
6976 int i;
6977 cpumask_var_t *doms;
6978
6979 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6980 if (!doms)
6981 return NULL;
6982 for (i = 0; i < ndoms; i++) {
6983 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6984 free_sched_domains(doms, i);
6985 return NULL;
6986 }
6987 }
6988 return doms;
6989}
6990
6991void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6992{
6993 unsigned int i;
6994 for (i = 0; i < ndoms; i++)
6995 free_cpumask_var(doms[i]);
6996 kfree(doms);
6997}
6998
1a20ff27 6999/*
41a2d6cf 7000 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7001 * For now this just excludes isolated cpus, but could be used to
7002 * exclude other special cases in the future.
1a20ff27 7003 */
c4a8849a 7004static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7005{
7378547f
MM
7006 int err;
7007
22e52b07 7008 arch_update_cpu_topology();
029190c5 7009 ndoms_cur = 1;
acc3f5d7 7010 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7011 if (!doms_cur)
acc3f5d7
RR
7012 doms_cur = &fallback_doms;
7013 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7014 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7015 register_sched_domain_sysctl();
7378547f
MM
7016
7017 return err;
1a20ff27
DG
7018}
7019
1a20ff27
DG
7020/*
7021 * Detach sched domains from a group of cpus specified in cpu_map
7022 * These cpus will now be attached to the NULL domain
7023 */
96f874e2 7024static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7025{
7026 int i;
7027
dce840a0 7028 rcu_read_lock();
abcd083a 7029 for_each_cpu(i, cpu_map)
57d885fe 7030 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7031 rcu_read_unlock();
1a20ff27
DG
7032}
7033
1d3504fc
HS
7034/* handle null as "default" */
7035static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7036 struct sched_domain_attr *new, int idx_new)
7037{
7038 struct sched_domain_attr tmp;
7039
7040 /* fast path */
7041 if (!new && !cur)
7042 return 1;
7043
7044 tmp = SD_ATTR_INIT;
7045 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7046 new ? (new + idx_new) : &tmp,
7047 sizeof(struct sched_domain_attr));
7048}
7049
029190c5
PJ
7050/*
7051 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7052 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7053 * doms_new[] to the current sched domain partitioning, doms_cur[].
7054 * It destroys each deleted domain and builds each new domain.
7055 *
acc3f5d7 7056 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7057 * The masks don't intersect (don't overlap.) We should setup one
7058 * sched domain for each mask. CPUs not in any of the cpumasks will
7059 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7060 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7061 * it as it is.
7062 *
acc3f5d7
RR
7063 * The passed in 'doms_new' should be allocated using
7064 * alloc_sched_domains. This routine takes ownership of it and will
7065 * free_sched_domains it when done with it. If the caller failed the
7066 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7067 * and partition_sched_domains() will fallback to the single partition
7068 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7069 *
96f874e2 7070 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7071 * ndoms_new == 0 is a special case for destroying existing domains,
7072 * and it will not create the default domain.
dfb512ec 7073 *
029190c5
PJ
7074 * Call with hotplug lock held
7075 */
acc3f5d7 7076void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7077 struct sched_domain_attr *dattr_new)
029190c5 7078{
dfb512ec 7079 int i, j, n;
d65bd5ec 7080 int new_topology;
029190c5 7081
712555ee 7082 mutex_lock(&sched_domains_mutex);
a1835615 7083
7378547f
MM
7084 /* always unregister in case we don't destroy any domains */
7085 unregister_sched_domain_sysctl();
7086
d65bd5ec
HC
7087 /* Let architecture update cpu core mappings. */
7088 new_topology = arch_update_cpu_topology();
7089
dfb512ec 7090 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7091
7092 /* Destroy deleted domains */
7093 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7094 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7095 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7096 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7097 goto match1;
7098 }
7099 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7100 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7101match1:
7102 ;
7103 }
7104
c8d2d47a 7105 n = ndoms_cur;
e761b772 7106 if (doms_new == NULL) {
c8d2d47a 7107 n = 0;
acc3f5d7 7108 doms_new = &fallback_doms;
6ad4c188 7109 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7110 WARN_ON_ONCE(dattr_new);
e761b772
MK
7111 }
7112
029190c5
PJ
7113 /* Build new domains */
7114 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7115 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7116 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7117 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7118 goto match2;
7119 }
7120 /* no match - add a new doms_new */
dce840a0 7121 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7122match2:
7123 ;
7124 }
7125
7126 /* Remember the new sched domains */
acc3f5d7
RR
7127 if (doms_cur != &fallback_doms)
7128 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7129 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7130 doms_cur = doms_new;
1d3504fc 7131 dattr_cur = dattr_new;
029190c5 7132 ndoms_cur = ndoms_new;
7378547f
MM
7133
7134 register_sched_domain_sysctl();
a1835615 7135
712555ee 7136 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7137}
7138
d35be8ba
SB
7139static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7140
1da177e4 7141/*
3a101d05
TH
7142 * Update cpusets according to cpu_active mask. If cpusets are
7143 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7144 * around partition_sched_domains().
d35be8ba
SB
7145 *
7146 * If we come here as part of a suspend/resume, don't touch cpusets because we
7147 * want to restore it back to its original state upon resume anyway.
1da177e4 7148 */
0b2e918a
TH
7149static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7150 void *hcpu)
e761b772 7151{
d35be8ba
SB
7152 switch (action) {
7153 case CPU_ONLINE_FROZEN:
7154 case CPU_DOWN_FAILED_FROZEN:
7155
7156 /*
7157 * num_cpus_frozen tracks how many CPUs are involved in suspend
7158 * resume sequence. As long as this is not the last online
7159 * operation in the resume sequence, just build a single sched
7160 * domain, ignoring cpusets.
7161 */
7162 num_cpus_frozen--;
7163 if (likely(num_cpus_frozen)) {
7164 partition_sched_domains(1, NULL, NULL);
7165 break;
7166 }
7167
7168 /*
7169 * This is the last CPU online operation. So fall through and
7170 * restore the original sched domains by considering the
7171 * cpuset configurations.
7172 */
7173
e761b772 7174 case CPU_ONLINE:
7ddf96b0 7175 cpuset_update_active_cpus(true);
d35be8ba 7176 break;
3a101d05
TH
7177 default:
7178 return NOTIFY_DONE;
7179 }
d35be8ba 7180 return NOTIFY_OK;
3a101d05 7181}
e761b772 7182
0b2e918a
TH
7183static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7184 void *hcpu)
3a101d05 7185{
3c18d447
JL
7186 unsigned long flags;
7187 long cpu = (long)hcpu;
7188 struct dl_bw *dl_b;
533445c6
OS
7189 bool overflow;
7190 int cpus;
3c18d447 7191
533445c6 7192 switch (action) {
3a101d05 7193 case CPU_DOWN_PREPARE:
533445c6
OS
7194 rcu_read_lock_sched();
7195 dl_b = dl_bw_of(cpu);
3c18d447 7196
533445c6
OS
7197 raw_spin_lock_irqsave(&dl_b->lock, flags);
7198 cpus = dl_bw_cpus(cpu);
7199 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7200 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7201
533445c6 7202 rcu_read_unlock_sched();
3c18d447 7203
533445c6
OS
7204 if (overflow)
7205 return notifier_from_errno(-EBUSY);
7ddf96b0 7206 cpuset_update_active_cpus(false);
d35be8ba
SB
7207 break;
7208 case CPU_DOWN_PREPARE_FROZEN:
7209 num_cpus_frozen++;
7210 partition_sched_domains(1, NULL, NULL);
7211 break;
e761b772
MK
7212 default:
7213 return NOTIFY_DONE;
7214 }
d35be8ba 7215 return NOTIFY_OK;
e761b772 7216}
e761b772 7217
1da177e4
LT
7218void __init sched_init_smp(void)
7219{
dcc30a35
RR
7220 cpumask_var_t non_isolated_cpus;
7221
7222 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7223 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7224
cb83b629
PZ
7225 sched_init_numa();
7226
6acce3ef
PZ
7227 /*
7228 * There's no userspace yet to cause hotplug operations; hence all the
7229 * cpu masks are stable and all blatant races in the below code cannot
7230 * happen.
7231 */
712555ee 7232 mutex_lock(&sched_domains_mutex);
c4a8849a 7233 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7234 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7235 if (cpumask_empty(non_isolated_cpus))
7236 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7237 mutex_unlock(&sched_domains_mutex);
e761b772 7238
301a5cba 7239 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7240 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7241 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7242
b328ca18 7243 init_hrtick();
5c1e1767
NP
7244
7245 /* Move init over to a non-isolated CPU */
dcc30a35 7246 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7247 BUG();
19978ca6 7248 sched_init_granularity();
dcc30a35 7249 free_cpumask_var(non_isolated_cpus);
4212823f 7250
0e3900e6 7251 init_sched_rt_class();
1baca4ce 7252 init_sched_dl_class();
1da177e4
LT
7253}
7254#else
7255void __init sched_init_smp(void)
7256{
19978ca6 7257 sched_init_granularity();
1da177e4
LT
7258}
7259#endif /* CONFIG_SMP */
7260
7261int in_sched_functions(unsigned long addr)
7262{
1da177e4
LT
7263 return in_lock_functions(addr) ||
7264 (addr >= (unsigned long)__sched_text_start
7265 && addr < (unsigned long)__sched_text_end);
7266}
7267
029632fb 7268#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7269/*
7270 * Default task group.
7271 * Every task in system belongs to this group at bootup.
7272 */
029632fb 7273struct task_group root_task_group;
35cf4e50 7274LIST_HEAD(task_groups);
b0367629
WL
7275
7276/* Cacheline aligned slab cache for task_group */
7277static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7278#endif
6f505b16 7279
e6252c3e 7280DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7281
1da177e4
LT
7282void __init sched_init(void)
7283{
dd41f596 7284 int i, j;
434d53b0
MT
7285 unsigned long alloc_size = 0, ptr;
7286
7287#ifdef CONFIG_FAIR_GROUP_SCHED
7288 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7289#endif
7290#ifdef CONFIG_RT_GROUP_SCHED
7291 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7292#endif
434d53b0 7293 if (alloc_size) {
36b7b6d4 7294 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7295
7296#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7297 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7298 ptr += nr_cpu_ids * sizeof(void **);
7299
07e06b01 7300 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7301 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7302
6d6bc0ad 7303#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7304#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7305 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7306 ptr += nr_cpu_ids * sizeof(void **);
7307
07e06b01 7308 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7309 ptr += nr_cpu_ids * sizeof(void **);
7310
6d6bc0ad 7311#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7312 }
df7c8e84 7313#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7314 for_each_possible_cpu(i) {
7315 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7316 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7317 }
b74e6278 7318#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7319
332ac17e
DF
7320 init_rt_bandwidth(&def_rt_bandwidth,
7321 global_rt_period(), global_rt_runtime());
7322 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7323 global_rt_period(), global_rt_runtime());
332ac17e 7324
57d885fe
GH
7325#ifdef CONFIG_SMP
7326 init_defrootdomain();
7327#endif
7328
d0b27fa7 7329#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7330 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7331 global_rt_period(), global_rt_runtime());
6d6bc0ad 7332#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7333
7c941438 7334#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7335 task_group_cache = KMEM_CACHE(task_group, 0);
7336
07e06b01
YZ
7337 list_add(&root_task_group.list, &task_groups);
7338 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7339 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7340 autogroup_init(&init_task);
7c941438 7341#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7342
0a945022 7343 for_each_possible_cpu(i) {
70b97a7f 7344 struct rq *rq;
1da177e4
LT
7345
7346 rq = cpu_rq(i);
05fa785c 7347 raw_spin_lock_init(&rq->lock);
7897986b 7348 rq->nr_running = 0;
dce48a84
TG
7349 rq->calc_load_active = 0;
7350 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7351 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7352 init_rt_rq(&rq->rt);
7353 init_dl_rq(&rq->dl);
dd41f596 7354#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7355 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7356 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7357 /*
07e06b01 7358 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7359 *
7360 * In case of task-groups formed thr' the cgroup filesystem, it
7361 * gets 100% of the cpu resources in the system. This overall
7362 * system cpu resource is divided among the tasks of
07e06b01 7363 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7364 * based on each entity's (task or task-group's) weight
7365 * (se->load.weight).
7366 *
07e06b01 7367 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7368 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7369 * then A0's share of the cpu resource is:
7370 *
0d905bca 7371 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7372 *
07e06b01
YZ
7373 * We achieve this by letting root_task_group's tasks sit
7374 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7375 */
ab84d31e 7376 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7377 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7378#endif /* CONFIG_FAIR_GROUP_SCHED */
7379
7380 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7381#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7382 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7383#endif
1da177e4 7384
dd41f596
IM
7385 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7386 rq->cpu_load[j] = 0;
fdf3e95d 7387
1da177e4 7388#ifdef CONFIG_SMP
41c7ce9a 7389 rq->sd = NULL;
57d885fe 7390 rq->rd = NULL;
ca6d75e6 7391 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7392 rq->balance_callback = NULL;
1da177e4 7393 rq->active_balance = 0;
dd41f596 7394 rq->next_balance = jiffies;
1da177e4 7395 rq->push_cpu = 0;
0a2966b4 7396 rq->cpu = i;
1f11eb6a 7397 rq->online = 0;
eae0c9df
MG
7398 rq->idle_stamp = 0;
7399 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7400 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7401
7402 INIT_LIST_HEAD(&rq->cfs_tasks);
7403
dc938520 7404 rq_attach_root(rq, &def_root_domain);
3451d024 7405#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7406 rq->last_load_update_tick = jiffies;
1c792db7 7407 rq->nohz_flags = 0;
83cd4fe2 7408#endif
265f22a9
FW
7409#ifdef CONFIG_NO_HZ_FULL
7410 rq->last_sched_tick = 0;
7411#endif
9fd81dd5 7412#endif /* CONFIG_SMP */
8f4d37ec 7413 init_rq_hrtick(rq);
1da177e4 7414 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7415 }
7416
2dd73a4f 7417 set_load_weight(&init_task);
b50f60ce 7418
e107be36
AK
7419#ifdef CONFIG_PREEMPT_NOTIFIERS
7420 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7421#endif
7422
1da177e4
LT
7423 /*
7424 * The boot idle thread does lazy MMU switching as well:
7425 */
7426 atomic_inc(&init_mm.mm_count);
7427 enter_lazy_tlb(&init_mm, current);
7428
1b537c7d
YD
7429 /*
7430 * During early bootup we pretend to be a normal task:
7431 */
7432 current->sched_class = &fair_sched_class;
7433
1da177e4
LT
7434 /*
7435 * Make us the idle thread. Technically, schedule() should not be
7436 * called from this thread, however somewhere below it might be,
7437 * but because we are the idle thread, we just pick up running again
7438 * when this runqueue becomes "idle".
7439 */
7440 init_idle(current, smp_processor_id());
dce48a84
TG
7441
7442 calc_load_update = jiffies + LOAD_FREQ;
7443
bf4d83f6 7444#ifdef CONFIG_SMP
4cb98839 7445 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7446 /* May be allocated at isolcpus cmdline parse time */
7447 if (cpu_isolated_map == NULL)
7448 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7449 idle_thread_set_boot_cpu();
a803f026 7450 set_cpu_rq_start_time();
029632fb
PZ
7451#endif
7452 init_sched_fair_class();
6a7b3dc3 7453
6892b75e 7454 scheduler_running = 1;
1da177e4
LT
7455}
7456
d902db1e 7457#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7458static inline int preempt_count_equals(int preempt_offset)
7459{
da7142e2 7460 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7461
4ba8216c 7462 return (nested == preempt_offset);
e4aafea2
FW
7463}
7464
d894837f 7465void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7466{
8eb23b9f
PZ
7467 /*
7468 * Blocking primitives will set (and therefore destroy) current->state,
7469 * since we will exit with TASK_RUNNING make sure we enter with it,
7470 * otherwise we will destroy state.
7471 */
00845eb9 7472 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7473 "do not call blocking ops when !TASK_RUNNING; "
7474 "state=%lx set at [<%p>] %pS\n",
7475 current->state,
7476 (void *)current->task_state_change,
00845eb9 7477 (void *)current->task_state_change);
8eb23b9f 7478
3427445a
PZ
7479 ___might_sleep(file, line, preempt_offset);
7480}
7481EXPORT_SYMBOL(__might_sleep);
7482
7483void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7484{
1da177e4
LT
7485 static unsigned long prev_jiffy; /* ratelimiting */
7486
b3fbab05 7487 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7488 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7489 !is_idle_task(current)) ||
e4aafea2 7490 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7491 return;
7492 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7493 return;
7494 prev_jiffy = jiffies;
7495
3df0fc5b
PZ
7496 printk(KERN_ERR
7497 "BUG: sleeping function called from invalid context at %s:%d\n",
7498 file, line);
7499 printk(KERN_ERR
7500 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7501 in_atomic(), irqs_disabled(),
7502 current->pid, current->comm);
aef745fc 7503
a8b686b3
ES
7504 if (task_stack_end_corrupted(current))
7505 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7506
aef745fc
IM
7507 debug_show_held_locks(current);
7508 if (irqs_disabled())
7509 print_irqtrace_events(current);
8f47b187
TG
7510#ifdef CONFIG_DEBUG_PREEMPT
7511 if (!preempt_count_equals(preempt_offset)) {
7512 pr_err("Preemption disabled at:");
7513 print_ip_sym(current->preempt_disable_ip);
7514 pr_cont("\n");
7515 }
7516#endif
aef745fc 7517 dump_stack();
1da177e4 7518}
3427445a 7519EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7520#endif
7521
7522#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7523void normalize_rt_tasks(void)
3a5e4dc1 7524{
dbc7f069 7525 struct task_struct *g, *p;
d50dde5a
DF
7526 struct sched_attr attr = {
7527 .sched_policy = SCHED_NORMAL,
7528 };
1da177e4 7529
3472eaa1 7530 read_lock(&tasklist_lock);
5d07f420 7531 for_each_process_thread(g, p) {
178be793
IM
7532 /*
7533 * Only normalize user tasks:
7534 */
3472eaa1 7535 if (p->flags & PF_KTHREAD)
178be793
IM
7536 continue;
7537
6cfb0d5d 7538 p->se.exec_start = 0;
6cfb0d5d 7539#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7540 p->se.statistics.wait_start = 0;
7541 p->se.statistics.sleep_start = 0;
7542 p->se.statistics.block_start = 0;
6cfb0d5d 7543#endif
dd41f596 7544
aab03e05 7545 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7546 /*
7547 * Renice negative nice level userspace
7548 * tasks back to 0:
7549 */
3472eaa1 7550 if (task_nice(p) < 0)
dd41f596 7551 set_user_nice(p, 0);
1da177e4 7552 continue;
dd41f596 7553 }
1da177e4 7554
dbc7f069 7555 __sched_setscheduler(p, &attr, false, false);
5d07f420 7556 }
3472eaa1 7557 read_unlock(&tasklist_lock);
1da177e4
LT
7558}
7559
7560#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7561
67fc4e0c 7562#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7563/*
67fc4e0c 7564 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7565 *
7566 * They can only be called when the whole system has been
7567 * stopped - every CPU needs to be quiescent, and no scheduling
7568 * activity can take place. Using them for anything else would
7569 * be a serious bug, and as a result, they aren't even visible
7570 * under any other configuration.
7571 */
7572
7573/**
7574 * curr_task - return the current task for a given cpu.
7575 * @cpu: the processor in question.
7576 *
7577 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7578 *
7579 * Return: The current task for @cpu.
1df5c10a 7580 */
36c8b586 7581struct task_struct *curr_task(int cpu)
1df5c10a
LT
7582{
7583 return cpu_curr(cpu);
7584}
7585
67fc4e0c
JW
7586#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7587
7588#ifdef CONFIG_IA64
1df5c10a
LT
7589/**
7590 * set_curr_task - set the current task for a given cpu.
7591 * @cpu: the processor in question.
7592 * @p: the task pointer to set.
7593 *
7594 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7595 * are serviced on a separate stack. It allows the architecture to switch the
7596 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7597 * must be called with all CPU's synchronized, and interrupts disabled, the
7598 * and caller must save the original value of the current task (see
7599 * curr_task() above) and restore that value before reenabling interrupts and
7600 * re-starting the system.
7601 *
7602 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7603 */
36c8b586 7604void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7605{
7606 cpu_curr(cpu) = p;
7607}
7608
7609#endif
29f59db3 7610
7c941438 7611#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7612/* task_group_lock serializes the addition/removal of task groups */
7613static DEFINE_SPINLOCK(task_group_lock);
7614
2f5177f0 7615static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7616{
7617 free_fair_sched_group(tg);
7618 free_rt_sched_group(tg);
e9aa1dd1 7619 autogroup_free(tg);
b0367629 7620 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7621}
7622
7623/* allocate runqueue etc for a new task group */
ec7dc8ac 7624struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7625{
7626 struct task_group *tg;
bccbe08a 7627
b0367629 7628 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7629 if (!tg)
7630 return ERR_PTR(-ENOMEM);
7631
ec7dc8ac 7632 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7633 goto err;
7634
ec7dc8ac 7635 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7636 goto err;
7637
ace783b9
LZ
7638 return tg;
7639
7640err:
2f5177f0 7641 sched_free_group(tg);
ace783b9
LZ
7642 return ERR_PTR(-ENOMEM);
7643}
7644
7645void sched_online_group(struct task_group *tg, struct task_group *parent)
7646{
7647 unsigned long flags;
7648
8ed36996 7649 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7650 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7651
7652 WARN_ON(!parent); /* root should already exist */
7653
7654 tg->parent = parent;
f473aa5e 7655 INIT_LIST_HEAD(&tg->children);
09f2724a 7656 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7657 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7658}
7659
9b5b7751 7660/* rcu callback to free various structures associated with a task group */
2f5177f0 7661static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7662{
29f59db3 7663 /* now it should be safe to free those cfs_rqs */
2f5177f0 7664 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7665}
7666
4cf86d77 7667void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7668{
7669 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7670 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7671}
7672
7673void sched_offline_group(struct task_group *tg)
29f59db3 7674{
8ed36996 7675 unsigned long flags;
29f59db3 7676
3d4b47b4 7677 /* end participation in shares distribution */
6fe1f348 7678 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7679
7680 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7681 list_del_rcu(&tg->list);
f473aa5e 7682 list_del_rcu(&tg->siblings);
8ed36996 7683 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7684}
7685
9b5b7751 7686/* change task's runqueue when it moves between groups.
3a252015
IM
7687 * The caller of this function should have put the task in its new group
7688 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7689 * reflect its new group.
9b5b7751
SV
7690 */
7691void sched_move_task(struct task_struct *tsk)
29f59db3 7692{
8323f26c 7693 struct task_group *tg;
da0c1e65 7694 int queued, running;
29f59db3
SV
7695 unsigned long flags;
7696 struct rq *rq;
7697
7698 rq = task_rq_lock(tsk, &flags);
7699
051a1d1a 7700 running = task_current(rq, tsk);
da0c1e65 7701 queued = task_on_rq_queued(tsk);
29f59db3 7702
da0c1e65 7703 if (queued)
ff77e468 7704 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7705 if (unlikely(running))
f3cd1c4e 7706 put_prev_task(rq, tsk);
29f59db3 7707
f7b8a47d
KT
7708 /*
7709 * All callers are synchronized by task_rq_lock(); we do not use RCU
7710 * which is pointless here. Thus, we pass "true" to task_css_check()
7711 * to prevent lockdep warnings.
7712 */
7713 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7714 struct task_group, css);
7715 tg = autogroup_task_group(tsk, tg);
7716 tsk->sched_task_group = tg;
7717
810b3817 7718#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7719 if (tsk->sched_class->task_move_group)
bc54da21 7720 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7721 else
810b3817 7722#endif
b2b5ce02 7723 set_task_rq(tsk, task_cpu(tsk));
810b3817 7724
0e1f3483
HS
7725 if (unlikely(running))
7726 tsk->sched_class->set_curr_task(rq);
da0c1e65 7727 if (queued)
ff77e468 7728 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7729
0122ec5b 7730 task_rq_unlock(rq, tsk, &flags);
29f59db3 7731}
7c941438 7732#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7733
a790de99
PT
7734#ifdef CONFIG_RT_GROUP_SCHED
7735/*
7736 * Ensure that the real time constraints are schedulable.
7737 */
7738static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7739
9a7e0b18
PZ
7740/* Must be called with tasklist_lock held */
7741static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7742{
9a7e0b18 7743 struct task_struct *g, *p;
b40b2e8e 7744
1fe89e1b
PZ
7745 /*
7746 * Autogroups do not have RT tasks; see autogroup_create().
7747 */
7748 if (task_group_is_autogroup(tg))
7749 return 0;
7750
5d07f420 7751 for_each_process_thread(g, p) {
8651c658 7752 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7753 return 1;
5d07f420 7754 }
b40b2e8e 7755
9a7e0b18
PZ
7756 return 0;
7757}
b40b2e8e 7758
9a7e0b18
PZ
7759struct rt_schedulable_data {
7760 struct task_group *tg;
7761 u64 rt_period;
7762 u64 rt_runtime;
7763};
b40b2e8e 7764
a790de99 7765static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7766{
7767 struct rt_schedulable_data *d = data;
7768 struct task_group *child;
7769 unsigned long total, sum = 0;
7770 u64 period, runtime;
b40b2e8e 7771
9a7e0b18
PZ
7772 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7773 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7774
9a7e0b18
PZ
7775 if (tg == d->tg) {
7776 period = d->rt_period;
7777 runtime = d->rt_runtime;
b40b2e8e 7778 }
b40b2e8e 7779
4653f803
PZ
7780 /*
7781 * Cannot have more runtime than the period.
7782 */
7783 if (runtime > period && runtime != RUNTIME_INF)
7784 return -EINVAL;
6f505b16 7785
4653f803
PZ
7786 /*
7787 * Ensure we don't starve existing RT tasks.
7788 */
9a7e0b18
PZ
7789 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7790 return -EBUSY;
6f505b16 7791
9a7e0b18 7792 total = to_ratio(period, runtime);
6f505b16 7793
4653f803
PZ
7794 /*
7795 * Nobody can have more than the global setting allows.
7796 */
7797 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7798 return -EINVAL;
6f505b16 7799
4653f803
PZ
7800 /*
7801 * The sum of our children's runtime should not exceed our own.
7802 */
9a7e0b18
PZ
7803 list_for_each_entry_rcu(child, &tg->children, siblings) {
7804 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7805 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7806
9a7e0b18
PZ
7807 if (child == d->tg) {
7808 period = d->rt_period;
7809 runtime = d->rt_runtime;
7810 }
6f505b16 7811
9a7e0b18 7812 sum += to_ratio(period, runtime);
9f0c1e56 7813 }
6f505b16 7814
9a7e0b18
PZ
7815 if (sum > total)
7816 return -EINVAL;
7817
7818 return 0;
6f505b16
PZ
7819}
7820
9a7e0b18 7821static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7822{
8277434e
PT
7823 int ret;
7824
9a7e0b18
PZ
7825 struct rt_schedulable_data data = {
7826 .tg = tg,
7827 .rt_period = period,
7828 .rt_runtime = runtime,
7829 };
7830
8277434e
PT
7831 rcu_read_lock();
7832 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7833 rcu_read_unlock();
7834
7835 return ret;
521f1a24
DG
7836}
7837
ab84d31e 7838static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7839 u64 rt_period, u64 rt_runtime)
6f505b16 7840{
ac086bc2 7841 int i, err = 0;
9f0c1e56 7842
2636ed5f
PZ
7843 /*
7844 * Disallowing the root group RT runtime is BAD, it would disallow the
7845 * kernel creating (and or operating) RT threads.
7846 */
7847 if (tg == &root_task_group && rt_runtime == 0)
7848 return -EINVAL;
7849
7850 /* No period doesn't make any sense. */
7851 if (rt_period == 0)
7852 return -EINVAL;
7853
9f0c1e56 7854 mutex_lock(&rt_constraints_mutex);
521f1a24 7855 read_lock(&tasklist_lock);
9a7e0b18
PZ
7856 err = __rt_schedulable(tg, rt_period, rt_runtime);
7857 if (err)
9f0c1e56 7858 goto unlock;
ac086bc2 7859
0986b11b 7860 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7861 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7862 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7863
7864 for_each_possible_cpu(i) {
7865 struct rt_rq *rt_rq = tg->rt_rq[i];
7866
0986b11b 7867 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7868 rt_rq->rt_runtime = rt_runtime;
0986b11b 7869 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7870 }
0986b11b 7871 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7872unlock:
521f1a24 7873 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7874 mutex_unlock(&rt_constraints_mutex);
7875
7876 return err;
6f505b16
PZ
7877}
7878
25cc7da7 7879static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7880{
7881 u64 rt_runtime, rt_period;
7882
7883 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7884 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7885 if (rt_runtime_us < 0)
7886 rt_runtime = RUNTIME_INF;
7887
ab84d31e 7888 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7889}
7890
25cc7da7 7891static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7892{
7893 u64 rt_runtime_us;
7894
d0b27fa7 7895 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7896 return -1;
7897
d0b27fa7 7898 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7899 do_div(rt_runtime_us, NSEC_PER_USEC);
7900 return rt_runtime_us;
7901}
d0b27fa7 7902
ce2f5fe4 7903static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7904{
7905 u64 rt_runtime, rt_period;
7906
ce2f5fe4 7907 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7908 rt_runtime = tg->rt_bandwidth.rt_runtime;
7909
ab84d31e 7910 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7911}
7912
25cc7da7 7913static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7914{
7915 u64 rt_period_us;
7916
7917 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7918 do_div(rt_period_us, NSEC_PER_USEC);
7919 return rt_period_us;
7920}
332ac17e 7921#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7922
332ac17e 7923#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7924static int sched_rt_global_constraints(void)
7925{
7926 int ret = 0;
7927
7928 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7929 read_lock(&tasklist_lock);
4653f803 7930 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7931 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7932 mutex_unlock(&rt_constraints_mutex);
7933
7934 return ret;
7935}
54e99124 7936
25cc7da7 7937static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7938{
7939 /* Don't accept realtime tasks when there is no way for them to run */
7940 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7941 return 0;
7942
7943 return 1;
7944}
7945
6d6bc0ad 7946#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7947static int sched_rt_global_constraints(void)
7948{
ac086bc2 7949 unsigned long flags;
332ac17e 7950 int i, ret = 0;
ec5d4989 7951
0986b11b 7952 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7953 for_each_possible_cpu(i) {
7954 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7955
0986b11b 7956 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7957 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7958 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7959 }
0986b11b 7960 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7961
332ac17e 7962 return ret;
d0b27fa7 7963}
6d6bc0ad 7964#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7965
a1963b81 7966static int sched_dl_global_validate(void)
332ac17e 7967{
1724813d
PZ
7968 u64 runtime = global_rt_runtime();
7969 u64 period = global_rt_period();
332ac17e 7970 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7971 struct dl_bw *dl_b;
1724813d 7972 int cpu, ret = 0;
49516342 7973 unsigned long flags;
332ac17e
DF
7974
7975 /*
7976 * Here we want to check the bandwidth not being set to some
7977 * value smaller than the currently allocated bandwidth in
7978 * any of the root_domains.
7979 *
7980 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7981 * cycling on root_domains... Discussion on different/better
7982 * solutions is welcome!
7983 */
1724813d 7984 for_each_possible_cpu(cpu) {
f10e00f4
KT
7985 rcu_read_lock_sched();
7986 dl_b = dl_bw_of(cpu);
332ac17e 7987
49516342 7988 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7989 if (new_bw < dl_b->total_bw)
7990 ret = -EBUSY;
49516342 7991 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7992
f10e00f4
KT
7993 rcu_read_unlock_sched();
7994
1724813d
PZ
7995 if (ret)
7996 break;
332ac17e
DF
7997 }
7998
1724813d 7999 return ret;
332ac17e
DF
8000}
8001
1724813d 8002static void sched_dl_do_global(void)
ce0dbbbb 8003{
1724813d 8004 u64 new_bw = -1;
f10e00f4 8005 struct dl_bw *dl_b;
1724813d 8006 int cpu;
49516342 8007 unsigned long flags;
ce0dbbbb 8008
1724813d
PZ
8009 def_dl_bandwidth.dl_period = global_rt_period();
8010 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8011
8012 if (global_rt_runtime() != RUNTIME_INF)
8013 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8014
8015 /*
8016 * FIXME: As above...
8017 */
8018 for_each_possible_cpu(cpu) {
f10e00f4
KT
8019 rcu_read_lock_sched();
8020 dl_b = dl_bw_of(cpu);
1724813d 8021
49516342 8022 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8023 dl_b->bw = new_bw;
49516342 8024 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8025
8026 rcu_read_unlock_sched();
ce0dbbbb 8027 }
1724813d
PZ
8028}
8029
8030static int sched_rt_global_validate(void)
8031{
8032 if (sysctl_sched_rt_period <= 0)
8033 return -EINVAL;
8034
e9e7cb38
JL
8035 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8036 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8037 return -EINVAL;
8038
8039 return 0;
8040}
8041
8042static void sched_rt_do_global(void)
8043{
8044 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8045 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8046}
8047
d0b27fa7 8048int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8049 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8050 loff_t *ppos)
8051{
d0b27fa7
PZ
8052 int old_period, old_runtime;
8053 static DEFINE_MUTEX(mutex);
1724813d 8054 int ret;
d0b27fa7
PZ
8055
8056 mutex_lock(&mutex);
8057 old_period = sysctl_sched_rt_period;
8058 old_runtime = sysctl_sched_rt_runtime;
8059
8d65af78 8060 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8061
8062 if (!ret && write) {
1724813d
PZ
8063 ret = sched_rt_global_validate();
8064 if (ret)
8065 goto undo;
8066
a1963b81 8067 ret = sched_dl_global_validate();
1724813d
PZ
8068 if (ret)
8069 goto undo;
8070
a1963b81 8071 ret = sched_rt_global_constraints();
1724813d
PZ
8072 if (ret)
8073 goto undo;
8074
8075 sched_rt_do_global();
8076 sched_dl_do_global();
8077 }
8078 if (0) {
8079undo:
8080 sysctl_sched_rt_period = old_period;
8081 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8082 }
8083 mutex_unlock(&mutex);
8084
8085 return ret;
8086}
68318b8e 8087
1724813d 8088int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8089 void __user *buffer, size_t *lenp,
8090 loff_t *ppos)
8091{
8092 int ret;
332ac17e 8093 static DEFINE_MUTEX(mutex);
332ac17e
DF
8094
8095 mutex_lock(&mutex);
332ac17e 8096 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8097 /* make sure that internally we keep jiffies */
8098 /* also, writing zero resets timeslice to default */
332ac17e 8099 if (!ret && write) {
1724813d
PZ
8100 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8101 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8102 }
8103 mutex_unlock(&mutex);
332ac17e
DF
8104 return ret;
8105}
8106
052f1dc7 8107#ifdef CONFIG_CGROUP_SCHED
68318b8e 8108
a7c6d554 8109static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8110{
a7c6d554 8111 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8112}
8113
eb95419b
TH
8114static struct cgroup_subsys_state *
8115cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8116{
eb95419b
TH
8117 struct task_group *parent = css_tg(parent_css);
8118 struct task_group *tg;
68318b8e 8119
eb95419b 8120 if (!parent) {
68318b8e 8121 /* This is early initialization for the top cgroup */
07e06b01 8122 return &root_task_group.css;
68318b8e
SV
8123 }
8124
ec7dc8ac 8125 tg = sched_create_group(parent);
68318b8e
SV
8126 if (IS_ERR(tg))
8127 return ERR_PTR(-ENOMEM);
8128
2f5177f0
PZ
8129 sched_online_group(tg, parent);
8130
68318b8e
SV
8131 return &tg->css;
8132}
8133
2f5177f0 8134static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8135{
eb95419b 8136 struct task_group *tg = css_tg(css);
ace783b9 8137
2f5177f0 8138 sched_offline_group(tg);
ace783b9
LZ
8139}
8140
eb95419b 8141static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8142{
eb95419b 8143 struct task_group *tg = css_tg(css);
68318b8e 8144
2f5177f0
PZ
8145 /*
8146 * Relies on the RCU grace period between css_released() and this.
8147 */
8148 sched_free_group(tg);
ace783b9
LZ
8149}
8150
b53202e6 8151static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8152{
8153 sched_move_task(task);
8154}
8155
1f7dd3e5 8156static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8157{
bb9d97b6 8158 struct task_struct *task;
1f7dd3e5 8159 struct cgroup_subsys_state *css;
bb9d97b6 8160
1f7dd3e5 8161 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8162#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8163 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8164 return -EINVAL;
b68aa230 8165#else
bb9d97b6
TH
8166 /* We don't support RT-tasks being in separate groups */
8167 if (task->sched_class != &fair_sched_class)
8168 return -EINVAL;
b68aa230 8169#endif
bb9d97b6 8170 }
be367d09
BB
8171 return 0;
8172}
68318b8e 8173
1f7dd3e5 8174static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8175{
bb9d97b6 8176 struct task_struct *task;
1f7dd3e5 8177 struct cgroup_subsys_state *css;
bb9d97b6 8178
1f7dd3e5 8179 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8180 sched_move_task(task);
68318b8e
SV
8181}
8182
052f1dc7 8183#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8184static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8185 struct cftype *cftype, u64 shareval)
68318b8e 8186{
182446d0 8187 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8188}
8189
182446d0
TH
8190static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8191 struct cftype *cft)
68318b8e 8192{
182446d0 8193 struct task_group *tg = css_tg(css);
68318b8e 8194
c8b28116 8195 return (u64) scale_load_down(tg->shares);
68318b8e 8196}
ab84d31e
PT
8197
8198#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8199static DEFINE_MUTEX(cfs_constraints_mutex);
8200
ab84d31e
PT
8201const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8202const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8203
a790de99
PT
8204static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8205
ab84d31e
PT
8206static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8207{
56f570e5 8208 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8209 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8210
8211 if (tg == &root_task_group)
8212 return -EINVAL;
8213
8214 /*
8215 * Ensure we have at some amount of bandwidth every period. This is
8216 * to prevent reaching a state of large arrears when throttled via
8217 * entity_tick() resulting in prolonged exit starvation.
8218 */
8219 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8220 return -EINVAL;
8221
8222 /*
8223 * Likewise, bound things on the otherside by preventing insane quota
8224 * periods. This also allows us to normalize in computing quota
8225 * feasibility.
8226 */
8227 if (period > max_cfs_quota_period)
8228 return -EINVAL;
8229
0e59bdae
KT
8230 /*
8231 * Prevent race between setting of cfs_rq->runtime_enabled and
8232 * unthrottle_offline_cfs_rqs().
8233 */
8234 get_online_cpus();
a790de99
PT
8235 mutex_lock(&cfs_constraints_mutex);
8236 ret = __cfs_schedulable(tg, period, quota);
8237 if (ret)
8238 goto out_unlock;
8239
58088ad0 8240 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8241 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8242 /*
8243 * If we need to toggle cfs_bandwidth_used, off->on must occur
8244 * before making related changes, and on->off must occur afterwards
8245 */
8246 if (runtime_enabled && !runtime_was_enabled)
8247 cfs_bandwidth_usage_inc();
ab84d31e
PT
8248 raw_spin_lock_irq(&cfs_b->lock);
8249 cfs_b->period = ns_to_ktime(period);
8250 cfs_b->quota = quota;
58088ad0 8251
a9cf55b2 8252 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8253 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8254 if (runtime_enabled)
8255 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8256 raw_spin_unlock_irq(&cfs_b->lock);
8257
0e59bdae 8258 for_each_online_cpu(i) {
ab84d31e 8259 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8260 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8261
8262 raw_spin_lock_irq(&rq->lock);
58088ad0 8263 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8264 cfs_rq->runtime_remaining = 0;
671fd9da 8265
029632fb 8266 if (cfs_rq->throttled)
671fd9da 8267 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8268 raw_spin_unlock_irq(&rq->lock);
8269 }
1ee14e6c
BS
8270 if (runtime_was_enabled && !runtime_enabled)
8271 cfs_bandwidth_usage_dec();
a790de99
PT
8272out_unlock:
8273 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8274 put_online_cpus();
ab84d31e 8275
a790de99 8276 return ret;
ab84d31e
PT
8277}
8278
8279int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8280{
8281 u64 quota, period;
8282
029632fb 8283 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8284 if (cfs_quota_us < 0)
8285 quota = RUNTIME_INF;
8286 else
8287 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8288
8289 return tg_set_cfs_bandwidth(tg, period, quota);
8290}
8291
8292long tg_get_cfs_quota(struct task_group *tg)
8293{
8294 u64 quota_us;
8295
029632fb 8296 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8297 return -1;
8298
029632fb 8299 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8300 do_div(quota_us, NSEC_PER_USEC);
8301
8302 return quota_us;
8303}
8304
8305int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8306{
8307 u64 quota, period;
8308
8309 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8310 quota = tg->cfs_bandwidth.quota;
ab84d31e 8311
ab84d31e
PT
8312 return tg_set_cfs_bandwidth(tg, period, quota);
8313}
8314
8315long tg_get_cfs_period(struct task_group *tg)
8316{
8317 u64 cfs_period_us;
8318
029632fb 8319 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8320 do_div(cfs_period_us, NSEC_PER_USEC);
8321
8322 return cfs_period_us;
8323}
8324
182446d0
TH
8325static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8326 struct cftype *cft)
ab84d31e 8327{
182446d0 8328 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8329}
8330
182446d0
TH
8331static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8332 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8333{
182446d0 8334 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8335}
8336
182446d0
TH
8337static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8338 struct cftype *cft)
ab84d31e 8339{
182446d0 8340 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8341}
8342
182446d0
TH
8343static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8344 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8345{
182446d0 8346 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8347}
8348
a790de99
PT
8349struct cfs_schedulable_data {
8350 struct task_group *tg;
8351 u64 period, quota;
8352};
8353
8354/*
8355 * normalize group quota/period to be quota/max_period
8356 * note: units are usecs
8357 */
8358static u64 normalize_cfs_quota(struct task_group *tg,
8359 struct cfs_schedulable_data *d)
8360{
8361 u64 quota, period;
8362
8363 if (tg == d->tg) {
8364 period = d->period;
8365 quota = d->quota;
8366 } else {
8367 period = tg_get_cfs_period(tg);
8368 quota = tg_get_cfs_quota(tg);
8369 }
8370
8371 /* note: these should typically be equivalent */
8372 if (quota == RUNTIME_INF || quota == -1)
8373 return RUNTIME_INF;
8374
8375 return to_ratio(period, quota);
8376}
8377
8378static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8379{
8380 struct cfs_schedulable_data *d = data;
029632fb 8381 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8382 s64 quota = 0, parent_quota = -1;
8383
8384 if (!tg->parent) {
8385 quota = RUNTIME_INF;
8386 } else {
029632fb 8387 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8388
8389 quota = normalize_cfs_quota(tg, d);
9c58c79a 8390 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8391
8392 /*
8393 * ensure max(child_quota) <= parent_quota, inherit when no
8394 * limit is set
8395 */
8396 if (quota == RUNTIME_INF)
8397 quota = parent_quota;
8398 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8399 return -EINVAL;
8400 }
9c58c79a 8401 cfs_b->hierarchical_quota = quota;
a790de99
PT
8402
8403 return 0;
8404}
8405
8406static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8407{
8277434e 8408 int ret;
a790de99
PT
8409 struct cfs_schedulable_data data = {
8410 .tg = tg,
8411 .period = period,
8412 .quota = quota,
8413 };
8414
8415 if (quota != RUNTIME_INF) {
8416 do_div(data.period, NSEC_PER_USEC);
8417 do_div(data.quota, NSEC_PER_USEC);
8418 }
8419
8277434e
PT
8420 rcu_read_lock();
8421 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8422 rcu_read_unlock();
8423
8424 return ret;
a790de99 8425}
e8da1b18 8426
2da8ca82 8427static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8428{
2da8ca82 8429 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8430 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8431
44ffc75b
TH
8432 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8433 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8434 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8435
8436 return 0;
8437}
ab84d31e 8438#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8439#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8440
052f1dc7 8441#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8442static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8443 struct cftype *cft, s64 val)
6f505b16 8444{
182446d0 8445 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8446}
8447
182446d0
TH
8448static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8449 struct cftype *cft)
6f505b16 8450{
182446d0 8451 return sched_group_rt_runtime(css_tg(css));
6f505b16 8452}
d0b27fa7 8453
182446d0
TH
8454static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8455 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8456{
182446d0 8457 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8458}
8459
182446d0
TH
8460static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8461 struct cftype *cft)
d0b27fa7 8462{
182446d0 8463 return sched_group_rt_period(css_tg(css));
d0b27fa7 8464}
6d6bc0ad 8465#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8466
fe5c7cc2 8467static struct cftype cpu_files[] = {
052f1dc7 8468#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8469 {
8470 .name = "shares",
f4c753b7
PM
8471 .read_u64 = cpu_shares_read_u64,
8472 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8473 },
052f1dc7 8474#endif
ab84d31e
PT
8475#ifdef CONFIG_CFS_BANDWIDTH
8476 {
8477 .name = "cfs_quota_us",
8478 .read_s64 = cpu_cfs_quota_read_s64,
8479 .write_s64 = cpu_cfs_quota_write_s64,
8480 },
8481 {
8482 .name = "cfs_period_us",
8483 .read_u64 = cpu_cfs_period_read_u64,
8484 .write_u64 = cpu_cfs_period_write_u64,
8485 },
e8da1b18
NR
8486 {
8487 .name = "stat",
2da8ca82 8488 .seq_show = cpu_stats_show,
e8da1b18 8489 },
ab84d31e 8490#endif
052f1dc7 8491#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8492 {
9f0c1e56 8493 .name = "rt_runtime_us",
06ecb27c
PM
8494 .read_s64 = cpu_rt_runtime_read,
8495 .write_s64 = cpu_rt_runtime_write,
6f505b16 8496 },
d0b27fa7
PZ
8497 {
8498 .name = "rt_period_us",
f4c753b7
PM
8499 .read_u64 = cpu_rt_period_read_uint,
8500 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8501 },
052f1dc7 8502#endif
4baf6e33 8503 { } /* terminate */
68318b8e
SV
8504};
8505
073219e9 8506struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8507 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8508 .css_released = cpu_cgroup_css_released,
92fb9748 8509 .css_free = cpu_cgroup_css_free,
eeb61e53 8510 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8511 .can_attach = cpu_cgroup_can_attach,
8512 .attach = cpu_cgroup_attach,
5577964e 8513 .legacy_cftypes = cpu_files,
b38e42e9 8514 .early_init = true,
68318b8e
SV
8515};
8516
052f1dc7 8517#endif /* CONFIG_CGROUP_SCHED */
d842de87 8518
b637a328
PM
8519void dump_cpu_task(int cpu)
8520{
8521 pr_info("Task dump for CPU %d:\n", cpu);
8522 sched_show_task(cpu_curr(cpu));
8523}
ed82b8a1
AK
8524
8525/*
8526 * Nice levels are multiplicative, with a gentle 10% change for every
8527 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8528 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8529 * that remained on nice 0.
8530 *
8531 * The "10% effect" is relative and cumulative: from _any_ nice level,
8532 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8533 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8534 * If a task goes up by ~10% and another task goes down by ~10% then
8535 * the relative distance between them is ~25%.)
8536 */
8537const int sched_prio_to_weight[40] = {
8538 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8539 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8540 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8541 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8542 /* 0 */ 1024, 820, 655, 526, 423,
8543 /* 5 */ 335, 272, 215, 172, 137,
8544 /* 10 */ 110, 87, 70, 56, 45,
8545 /* 15 */ 36, 29, 23, 18, 15,
8546};
8547
8548/*
8549 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8550 *
8551 * In cases where the weight does not change often, we can use the
8552 * precalculated inverse to speed up arithmetics by turning divisions
8553 * into multiplications:
8554 */
8555const u32 sched_prio_to_wmult[40] = {
8556 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8557 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8558 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8559 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8560 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8561 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8562 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8563 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8564};
This page took 3.842472 seconds and 5 git commands to generate.