sched/fair: Do not announce throttled next buddy in dequeue_task_fair()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
3e71a462
PZ
173/*
174 * __task_rq_lock - lock the rq @p resides on.
175 */
eb580751 176struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
177 __acquires(rq->lock)
178{
179 struct rq *rq;
180
181 lockdep_assert_held(&p->pi_lock);
182
183 for (;;) {
184 rq = task_rq(p);
185 raw_spin_lock(&rq->lock);
186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 187 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
188 return rq;
189 }
190 raw_spin_unlock(&rq->lock);
191
192 while (unlikely(task_on_rq_migrating(p)))
193 cpu_relax();
194 }
195}
196
197/*
198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199 */
eb580751 200struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
201 __acquires(p->pi_lock)
202 __acquires(rq->lock)
203{
204 struct rq *rq;
205
206 for (;;) {
eb580751 207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
208 rq = task_rq(p);
209 raw_spin_lock(&rq->lock);
210 /*
211 * move_queued_task() task_rq_lock()
212 *
213 * ACQUIRE (rq->lock)
214 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
216 * [S] ->cpu = new_cpu [L] task_rq()
217 * [L] ->on_rq
218 * RELEASE (rq->lock)
219 *
220 * If we observe the old cpu in task_rq_lock, the acquire of
221 * the old rq->lock will fully serialize against the stores.
222 *
223 * If we observe the new cpu in task_rq_lock, the acquire will
224 * pair with the WMB to ensure we must then also see migrating.
225 */
226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 227 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
228 return rq;
229 }
230 raw_spin_unlock(&rq->lock);
eb580751 231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
232
233 while (unlikely(task_on_rq_migrating(p)))
234 cpu_relax();
235 }
236}
237
8f4d37ec
PZ
238#ifdef CONFIG_SCHED_HRTICK
239/*
240 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 241 */
8f4d37ec 242
8f4d37ec
PZ
243static void hrtick_clear(struct rq *rq)
244{
245 if (hrtimer_active(&rq->hrtick_timer))
246 hrtimer_cancel(&rq->hrtick_timer);
247}
248
8f4d37ec
PZ
249/*
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
252 */
253static enum hrtimer_restart hrtick(struct hrtimer *timer)
254{
255 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
05fa785c 259 raw_spin_lock(&rq->lock);
3e51f33f 260 update_rq_clock(rq);
8f4d37ec 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 262 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
263
264 return HRTIMER_NORESTART;
265}
266
95e904c7 267#ifdef CONFIG_SMP
971ee28c 268
4961b6e1 269static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
270{
271 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 272
4961b6e1 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
274}
275
31656519
PZ
276/*
277 * called from hardirq (IPI) context
278 */
279static void __hrtick_start(void *arg)
b328ca18 280{
31656519 281 struct rq *rq = arg;
b328ca18 282
05fa785c 283 raw_spin_lock(&rq->lock);
971ee28c 284 __hrtick_restart(rq);
31656519 285 rq->hrtick_csd_pending = 0;
05fa785c 286 raw_spin_unlock(&rq->lock);
b328ca18
PZ
287}
288
31656519
PZ
289/*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
029632fb 294void hrtick_start(struct rq *rq, u64 delay)
b328ca18 295{
31656519 296 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 306
cc584b21 307 hrtimer_set_expires(timer, time);
31656519
PZ
308
309 if (rq == this_rq()) {
971ee28c 310 __hrtick_restart(rq);
31656519 311 } else if (!rq->hrtick_csd_pending) {
c46fff2a 312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
313 rq->hrtick_csd_pending = 1;
314 }
b328ca18
PZ
315}
316
31656519
PZ
317#else
318/*
319 * Called to set the hrtick timer state.
320 *
321 * called with rq->lock held and irqs disabled
322 */
029632fb 323void hrtick_start(struct rq *rq, u64 delay)
31656519 324{
86893335
WL
325 /*
326 * Don't schedule slices shorter than 10000ns, that just
327 * doesn't make sense. Rely on vruntime for fairness.
328 */
329 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 HRTIMER_MODE_REL_PINNED);
31656519 332}
31656519 333#endif /* CONFIG_SMP */
8f4d37ec 334
31656519 335static void init_rq_hrtick(struct rq *rq)
8f4d37ec 336{
31656519
PZ
337#ifdef CONFIG_SMP
338 rq->hrtick_csd_pending = 0;
8f4d37ec 339
31656519
PZ
340 rq->hrtick_csd.flags = 0;
341 rq->hrtick_csd.func = __hrtick_start;
342 rq->hrtick_csd.info = rq;
343#endif
8f4d37ec 344
31656519
PZ
345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 rq->hrtick_timer.function = hrtick;
8f4d37ec 347}
006c75f1 348#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
349static inline void hrtick_clear(struct rq *rq)
350{
351}
352
8f4d37ec
PZ
353static inline void init_rq_hrtick(struct rq *rq)
354{
355}
006c75f1 356#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 357
5529578a
FW
358/*
359 * cmpxchg based fetch_or, macro so it works for different integer types
360 */
361#define fetch_or(ptr, mask) \
362 ({ \
363 typeof(ptr) _ptr = (ptr); \
364 typeof(mask) _mask = (mask); \
365 typeof(*_ptr) _old, _val = *_ptr; \
366 \
367 for (;;) { \
368 _old = cmpxchg(_ptr, _val, _val | _mask); \
369 if (_old == _val) \
370 break; \
371 _val = _old; \
372 } \
373 _old; \
374})
375
e3baac47 376#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
377/*
378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379 * this avoids any races wrt polling state changes and thereby avoids
380 * spurious IPIs.
381 */
382static bool set_nr_and_not_polling(struct task_struct *p)
383{
384 struct thread_info *ti = task_thread_info(p);
385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386}
e3baac47
PZ
387
388/*
389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390 *
391 * If this returns true, then the idle task promises to call
392 * sched_ttwu_pending() and reschedule soon.
393 */
394static bool set_nr_if_polling(struct task_struct *p)
395{
396 struct thread_info *ti = task_thread_info(p);
316c1608 397 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
398
399 for (;;) {
400 if (!(val & _TIF_POLLING_NRFLAG))
401 return false;
402 if (val & _TIF_NEED_RESCHED)
403 return true;
404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 if (old == val)
406 break;
407 val = old;
408 }
409 return true;
410}
411
fd99f91a
PZ
412#else
413static bool set_nr_and_not_polling(struct task_struct *p)
414{
415 set_tsk_need_resched(p);
416 return true;
417}
e3baac47
PZ
418
419#ifdef CONFIG_SMP
420static bool set_nr_if_polling(struct task_struct *p)
421{
422 return false;
423}
424#endif
fd99f91a
PZ
425#endif
426
76751049
PZ
427void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428{
429 struct wake_q_node *node = &task->wake_q;
430
431 /*
432 * Atomically grab the task, if ->wake_q is !nil already it means
433 * its already queued (either by us or someone else) and will get the
434 * wakeup due to that.
435 *
436 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 437 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
438 */
439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 return;
441
442 get_task_struct(task);
443
444 /*
445 * The head is context local, there can be no concurrency.
446 */
447 *head->lastp = node;
448 head->lastp = &node->next;
449}
450
451void wake_up_q(struct wake_q_head *head)
452{
453 struct wake_q_node *node = head->first;
454
455 while (node != WAKE_Q_TAIL) {
456 struct task_struct *task;
457
458 task = container_of(node, struct task_struct, wake_q);
459 BUG_ON(!task);
460 /* task can safely be re-inserted now */
461 node = node->next;
462 task->wake_q.next = NULL;
463
464 /*
465 * wake_up_process() implies a wmb() to pair with the queueing
466 * in wake_q_add() so as not to miss wakeups.
467 */
468 wake_up_process(task);
469 put_task_struct(task);
470 }
471}
472
c24d20db 473/*
8875125e 474 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
475 *
476 * On UP this means the setting of the need_resched flag, on SMP it
477 * might also involve a cross-CPU call to trigger the scheduler on
478 * the target CPU.
479 */
8875125e 480void resched_curr(struct rq *rq)
c24d20db 481{
8875125e 482 struct task_struct *curr = rq->curr;
c24d20db
IM
483 int cpu;
484
8875125e 485 lockdep_assert_held(&rq->lock);
c24d20db 486
8875125e 487 if (test_tsk_need_resched(curr))
c24d20db
IM
488 return;
489
8875125e 490 cpu = cpu_of(rq);
fd99f91a 491
f27dde8d 492 if (cpu == smp_processor_id()) {
8875125e 493 set_tsk_need_resched(curr);
f27dde8d 494 set_preempt_need_resched();
c24d20db 495 return;
f27dde8d 496 }
c24d20db 497
8875125e 498 if (set_nr_and_not_polling(curr))
c24d20db 499 smp_send_reschedule(cpu);
dfc68f29
AL
500 else
501 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
502}
503
029632fb 504void resched_cpu(int cpu)
c24d20db
IM
505{
506 struct rq *rq = cpu_rq(cpu);
507 unsigned long flags;
508
05fa785c 509 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 510 return;
8875125e 511 resched_curr(rq);
05fa785c 512 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 513}
06d8308c 514
b021fe3e 515#ifdef CONFIG_SMP
3451d024 516#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
517/*
518 * In the semi idle case, use the nearest busy cpu for migrating timers
519 * from an idle cpu. This is good for power-savings.
520 *
521 * We don't do similar optimization for completely idle system, as
522 * selecting an idle cpu will add more delays to the timers than intended
523 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524 */
bc7a34b8 525int get_nohz_timer_target(void)
83cd4fe2 526{
bc7a34b8 527 int i, cpu = smp_processor_id();
83cd4fe2
VP
528 struct sched_domain *sd;
529
9642d18e 530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
531 return cpu;
532
057f3fad 533 rcu_read_lock();
83cd4fe2 534 for_each_domain(cpu, sd) {
057f3fad 535 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
536 if (cpu == i)
537 continue;
538
539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
540 cpu = i;
541 goto unlock;
542 }
543 }
83cd4fe2 544 }
9642d18e
VH
545
546 if (!is_housekeeping_cpu(cpu))
547 cpu = housekeeping_any_cpu();
057f3fad
PZ
548unlock:
549 rcu_read_unlock();
83cd4fe2
VP
550 return cpu;
551}
06d8308c
TG
552/*
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
561 */
1c20091e 562static void wake_up_idle_cpu(int cpu)
06d8308c
TG
563{
564 struct rq *rq = cpu_rq(cpu);
565
566 if (cpu == smp_processor_id())
567 return;
568
67b9ca70 569 if (set_nr_and_not_polling(rq->idle))
06d8308c 570 smp_send_reschedule(cpu);
dfc68f29
AL
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
573}
574
c5bfece2 575static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 576{
53c5fa16
FW
577 /*
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
581 * empty IRQ.
582 */
c5bfece2 583 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
584 if (cpu != smp_processor_id() ||
585 tick_nohz_tick_stopped())
53c5fa16 586 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
587 return true;
588 }
589
590 return false;
591}
592
593void wake_up_nohz_cpu(int cpu)
594{
c5bfece2 595 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
596 wake_up_idle_cpu(cpu);
597}
598
ca38062e 599static inline bool got_nohz_idle_kick(void)
45bf76df 600{
1c792db7 601 int cpu = smp_processor_id();
873b4c65
VG
602
603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 return false;
605
606 if (idle_cpu(cpu) && !need_resched())
607 return true;
608
609 /*
610 * We can't run Idle Load Balance on this CPU for this time so we
611 * cancel it and clear NOHZ_BALANCE_KICK
612 */
613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 return false;
45bf76df
IM
615}
616
3451d024 617#else /* CONFIG_NO_HZ_COMMON */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
3451d024 624#endif /* CONFIG_NO_HZ_COMMON */
d842de87 625
ce831b38 626#ifdef CONFIG_NO_HZ_FULL
76d92ac3 627bool sched_can_stop_tick(struct rq *rq)
ce831b38 628{
76d92ac3
FW
629 int fifo_nr_running;
630
631 /* Deadline tasks, even if single, need the tick */
632 if (rq->dl.dl_nr_running)
633 return false;
634
1e78cdbd 635 /*
2548d546
PZ
636 * If there are more than one RR tasks, we need the tick to effect the
637 * actual RR behaviour.
1e78cdbd 638 */
76d92ac3
FW
639 if (rq->rt.rr_nr_running) {
640 if (rq->rt.rr_nr_running == 1)
641 return true;
642 else
643 return false;
1e78cdbd
RR
644 }
645
2548d546
PZ
646 /*
647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 * forced preemption between FIFO tasks.
649 */
650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 if (fifo_nr_running)
652 return true;
653
654 /*
655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 * if there's more than one we need the tick for involuntary
657 * preemption.
658 */
659 if (rq->nr_running > 1)
541b8264 660 return false;
ce831b38 661
541b8264 662 return true;
ce831b38
FW
663}
664#endif /* CONFIG_NO_HZ_FULL */
d842de87 665
029632fb 666void sched_avg_update(struct rq *rq)
18d95a28 667{
e9e9250b
PZ
668 s64 period = sched_avg_period();
669
78becc27 670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
671 /*
672 * Inline assembly required to prevent the compiler
673 * optimising this loop into a divmod call.
674 * See __iter_div_u64_rem() for another example of this.
675 */
676 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
677 rq->age_stamp += period;
678 rq->rt_avg /= 2;
679 }
18d95a28
PZ
680}
681
6d6bc0ad 682#endif /* CONFIG_SMP */
18d95a28 683
a790de99
PT
684#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 686/*
8277434e
PT
687 * Iterate task_group tree rooted at *from, calling @down when first entering a
688 * node and @up when leaving it for the final time.
689 *
690 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 691 */
029632fb 692int walk_tg_tree_from(struct task_group *from,
8277434e 693 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
694{
695 struct task_group *parent, *child;
eb755805 696 int ret;
c09595f6 697
8277434e
PT
698 parent = from;
699
c09595f6 700down:
eb755805
PZ
701 ret = (*down)(parent, data);
702 if (ret)
8277434e 703 goto out;
c09595f6
PZ
704 list_for_each_entry_rcu(child, &parent->children, siblings) {
705 parent = child;
706 goto down;
707
708up:
709 continue;
710 }
eb755805 711 ret = (*up)(parent, data);
8277434e
PT
712 if (ret || parent == from)
713 goto out;
c09595f6
PZ
714
715 child = parent;
716 parent = parent->parent;
717 if (parent)
718 goto up;
8277434e 719out:
eb755805 720 return ret;
c09595f6
PZ
721}
722
029632fb 723int tg_nop(struct task_group *tg, void *data)
eb755805 724{
e2b245f8 725 return 0;
eb755805 726}
18d95a28
PZ
727#endif
728
45bf76df
IM
729static void set_load_weight(struct task_struct *p)
730{
f05998d4
NR
731 int prio = p->static_prio - MAX_RT_PRIO;
732 struct load_weight *load = &p->se.load;
733
dd41f596
IM
734 /*
735 * SCHED_IDLE tasks get minimal weight:
736 */
20f9cd2a 737 if (idle_policy(p->policy)) {
c8b28116 738 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 739 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
740 return;
741 }
71f8bd46 742
ed82b8a1
AK
743 load->weight = scale_load(sched_prio_to_weight[prio]);
744 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
745}
746
1de64443 747static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 748{
a64692a3 749 update_rq_clock(rq);
1de64443
PZ
750 if (!(flags & ENQUEUE_RESTORE))
751 sched_info_queued(rq, p);
371fd7e7 752 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
753}
754
1de64443 755static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 756{
a64692a3 757 update_rq_clock(rq);
1de64443
PZ
758 if (!(flags & DEQUEUE_SAVE))
759 sched_info_dequeued(rq, p);
371fd7e7 760 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
761}
762
029632fb 763void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
764{
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
371fd7e7 768 enqueue_task(rq, p, flags);
1e3c88bd
PZ
769}
770
029632fb 771void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
371fd7e7 776 dequeue_task(rq, p, flags);
1e3c88bd
PZ
777}
778
fe44d621 779static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 780{
095c0aa8
GC
781/*
782 * In theory, the compile should just see 0 here, and optimize out the call
783 * to sched_rt_avg_update. But I don't trust it...
784 */
785#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 s64 steal = 0, irq_delta = 0;
787#endif
788#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
790
791 /*
792 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 * this case when a previous update_rq_clock() happened inside a
794 * {soft,}irq region.
795 *
796 * When this happens, we stop ->clock_task and only update the
797 * prev_irq_time stamp to account for the part that fit, so that a next
798 * update will consume the rest. This ensures ->clock_task is
799 * monotonic.
800 *
801 * It does however cause some slight miss-attribution of {soft,}irq
802 * time, a more accurate solution would be to update the irq_time using
803 * the current rq->clock timestamp, except that would require using
804 * atomic ops.
805 */
806 if (irq_delta > delta)
807 irq_delta = delta;
808
809 rq->prev_irq_time += irq_delta;
810 delta -= irq_delta;
095c0aa8
GC
811#endif
812#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 813 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
814 steal = paravirt_steal_clock(cpu_of(rq));
815 steal -= rq->prev_steal_time_rq;
816
817 if (unlikely(steal > delta))
818 steal = delta;
819
095c0aa8 820 rq->prev_steal_time_rq += steal;
095c0aa8
GC
821 delta -= steal;
822 }
823#endif
824
fe44d621
PZ
825 rq->clock_task += delta;
826
095c0aa8 827#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
829 sched_rt_avg_update(rq, irq_delta + steal);
830#endif
aa483808
VP
831}
832
34f971f6
PZ
833void sched_set_stop_task(int cpu, struct task_struct *stop)
834{
835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 struct task_struct *old_stop = cpu_rq(cpu)->stop;
837
838 if (stop) {
839 /*
840 * Make it appear like a SCHED_FIFO task, its something
841 * userspace knows about and won't get confused about.
842 *
843 * Also, it will make PI more or less work without too
844 * much confusion -- but then, stop work should not
845 * rely on PI working anyway.
846 */
847 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848
849 stop->sched_class = &stop_sched_class;
850 }
851
852 cpu_rq(cpu)->stop = stop;
853
854 if (old_stop) {
855 /*
856 * Reset it back to a normal scheduling class so that
857 * it can die in pieces.
858 */
859 old_stop->sched_class = &rt_sched_class;
860 }
861}
862
14531189 863/*
dd41f596 864 * __normal_prio - return the priority that is based on the static prio
14531189 865 */
14531189
IM
866static inline int __normal_prio(struct task_struct *p)
867{
dd41f596 868 return p->static_prio;
14531189
IM
869}
870
b29739f9
IM
871/*
872 * Calculate the expected normal priority: i.e. priority
873 * without taking RT-inheritance into account. Might be
874 * boosted by interactivity modifiers. Changes upon fork,
875 * setprio syscalls, and whenever the interactivity
876 * estimator recalculates.
877 */
36c8b586 878static inline int normal_prio(struct task_struct *p)
b29739f9
IM
879{
880 int prio;
881
aab03e05
DF
882 if (task_has_dl_policy(p))
883 prio = MAX_DL_PRIO-1;
884 else if (task_has_rt_policy(p))
b29739f9
IM
885 prio = MAX_RT_PRIO-1 - p->rt_priority;
886 else
887 prio = __normal_prio(p);
888 return prio;
889}
890
891/*
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
897 */
36c8b586 898static int effective_prio(struct task_struct *p)
b29739f9
IM
899{
900 p->normal_prio = normal_prio(p);
901 /*
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
905 */
906 if (!rt_prio(p->prio))
907 return p->normal_prio;
908 return p->prio;
909}
910
1da177e4
LT
911/**
912 * task_curr - is this task currently executing on a CPU?
913 * @p: the task in question.
e69f6186
YB
914 *
915 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 916 */
36c8b586 917inline int task_curr(const struct task_struct *p)
1da177e4
LT
918{
919 return cpu_curr(task_cpu(p)) == p;
920}
921
67dfa1b7 922/*
4c9a4bc8
PZ
923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924 * use the balance_callback list if you want balancing.
925 *
926 * this means any call to check_class_changed() must be followed by a call to
927 * balance_callback().
67dfa1b7 928 */
cb469845
SR
929static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 const struct sched_class *prev_class,
da7a735e 931 int oldprio)
cb469845
SR
932{
933 if (prev_class != p->sched_class) {
934 if (prev_class->switched_from)
da7a735e 935 prev_class->switched_from(rq, p);
4c9a4bc8 936
da7a735e 937 p->sched_class->switched_to(rq, p);
2d3d891d 938 } else if (oldprio != p->prio || dl_task(p))
da7a735e 939 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
940}
941
029632fb 942void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
943{
944 const struct sched_class *class;
945
946 if (p->sched_class == rq->curr->sched_class) {
947 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 } else {
949 for_each_class(class) {
950 if (class == rq->curr->sched_class)
951 break;
952 if (class == p->sched_class) {
8875125e 953 resched_curr(rq);
1e5a7405
PZ
954 break;
955 }
956 }
957 }
958
959 /*
960 * A queue event has occurred, and we're going to schedule. In
961 * this case, we can save a useless back to back clock update.
962 */
da0c1e65 963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 964 rq_clock_skip_update(rq, true);
1e5a7405
PZ
965}
966
1da177e4 967#ifdef CONFIG_SMP
5cc389bc
PZ
968/*
969 * This is how migration works:
970 *
971 * 1) we invoke migration_cpu_stop() on the target CPU using
972 * stop_one_cpu().
973 * 2) stopper starts to run (implicitly forcing the migrated thread
974 * off the CPU)
975 * 3) it checks whether the migrated task is still in the wrong runqueue.
976 * 4) if it's in the wrong runqueue then the migration thread removes
977 * it and puts it into the right queue.
978 * 5) stopper completes and stop_one_cpu() returns and the migration
979 * is done.
980 */
981
982/*
983 * move_queued_task - move a queued task to new rq.
984 *
985 * Returns (locked) new rq. Old rq's lock is released.
986 */
5e16bbc2 987static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 988{
5cc389bc
PZ
989 lockdep_assert_held(&rq->lock);
990
5cc389bc 991 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 992 dequeue_task(rq, p, 0);
5cc389bc
PZ
993 set_task_cpu(p, new_cpu);
994 raw_spin_unlock(&rq->lock);
995
996 rq = cpu_rq(new_cpu);
997
998 raw_spin_lock(&rq->lock);
999 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1000 enqueue_task(rq, p, 0);
3ea94de1 1001 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1002 check_preempt_curr(rq, p, 0);
1003
1004 return rq;
1005}
1006
1007struct migration_arg {
1008 struct task_struct *task;
1009 int dest_cpu;
1010};
1011
1012/*
1013 * Move (not current) task off this cpu, onto dest cpu. We're doing
1014 * this because either it can't run here any more (set_cpus_allowed()
1015 * away from this CPU, or CPU going down), or because we're
1016 * attempting to rebalance this task on exec (sched_exec).
1017 *
1018 * So we race with normal scheduler movements, but that's OK, as long
1019 * as the task is no longer on this CPU.
5cc389bc 1020 */
5e16bbc2 1021static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1022{
5cc389bc 1023 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1024 return rq;
5cc389bc
PZ
1025
1026 /* Affinity changed (again). */
1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1028 return rq;
5cc389bc 1029
5e16bbc2
PZ
1030 rq = move_queued_task(rq, p, dest_cpu);
1031
1032 return rq;
5cc389bc
PZ
1033}
1034
1035/*
1036 * migration_cpu_stop - this will be executed by a highprio stopper thread
1037 * and performs thread migration by bumping thread off CPU then
1038 * 'pushing' onto another runqueue.
1039 */
1040static int migration_cpu_stop(void *data)
1041{
1042 struct migration_arg *arg = data;
5e16bbc2
PZ
1043 struct task_struct *p = arg->task;
1044 struct rq *rq = this_rq();
5cc389bc
PZ
1045
1046 /*
1047 * The original target cpu might have gone down and we might
1048 * be on another cpu but it doesn't matter.
1049 */
1050 local_irq_disable();
1051 /*
1052 * We need to explicitly wake pending tasks before running
1053 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 */
1056 sched_ttwu_pending();
5e16bbc2
PZ
1057
1058 raw_spin_lock(&p->pi_lock);
1059 raw_spin_lock(&rq->lock);
1060 /*
1061 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 * we're holding p->pi_lock.
1064 */
1065 if (task_rq(p) == rq && task_on_rq_queued(p))
1066 rq = __migrate_task(rq, p, arg->dest_cpu);
1067 raw_spin_unlock(&rq->lock);
1068 raw_spin_unlock(&p->pi_lock);
1069
5cc389bc
PZ
1070 local_irq_enable();
1071 return 0;
1072}
1073
c5b28038
PZ
1074/*
1075 * sched_class::set_cpus_allowed must do the below, but is not required to
1076 * actually call this function.
1077 */
1078void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1079{
5cc389bc
PZ
1080 cpumask_copy(&p->cpus_allowed, new_mask);
1081 p->nr_cpus_allowed = cpumask_weight(new_mask);
1082}
1083
c5b28038
PZ
1084void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085{
6c37067e
PZ
1086 struct rq *rq = task_rq(p);
1087 bool queued, running;
1088
c5b28038 1089 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1090
1091 queued = task_on_rq_queued(p);
1092 running = task_current(rq, p);
1093
1094 if (queued) {
1095 /*
1096 * Because __kthread_bind() calls this on blocked tasks without
1097 * holding rq->lock.
1098 */
1099 lockdep_assert_held(&rq->lock);
1de64443 1100 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1101 }
1102 if (running)
1103 put_prev_task(rq, p);
1104
c5b28038 1105 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1106
1107 if (running)
1108 p->sched_class->set_curr_task(rq);
1109 if (queued)
1de64443 1110 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1111}
1112
5cc389bc
PZ
1113/*
1114 * Change a given task's CPU affinity. Migrate the thread to a
1115 * proper CPU and schedule it away if the CPU it's executing on
1116 * is removed from the allowed bitmask.
1117 *
1118 * NOTE: the caller must have a valid reference to the task, the
1119 * task must not exit() & deallocate itself prematurely. The
1120 * call is not atomic; no spinlocks may be held.
1121 */
25834c73
PZ
1122static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 const struct cpumask *new_mask, bool check)
5cc389bc 1124{
e9d867a6 1125 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1126 unsigned int dest_cpu;
eb580751
PZ
1127 struct rq_flags rf;
1128 struct rq *rq;
5cc389bc
PZ
1129 int ret = 0;
1130
eb580751 1131 rq = task_rq_lock(p, &rf);
5cc389bc 1132
e9d867a6
PZI
1133 if (p->flags & PF_KTHREAD) {
1134 /*
1135 * Kernel threads are allowed on online && !active CPUs
1136 */
1137 cpu_valid_mask = cpu_online_mask;
1138 }
1139
25834c73
PZ
1140 /*
1141 * Must re-check here, to close a race against __kthread_bind(),
1142 * sched_setaffinity() is not guaranteed to observe the flag.
1143 */
1144 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 ret = -EINVAL;
1146 goto out;
1147 }
1148
5cc389bc
PZ
1149 if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 goto out;
1151
e9d867a6 1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
1157 do_set_cpus_allowed(p, new_mask);
1158
e9d867a6
PZI
1159 if (p->flags & PF_KTHREAD) {
1160 /*
1161 * For kernel threads that do indeed end up on online &&
1162 * !active we want to ensure they are strict per-cpu threads.
1163 */
1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 !cpumask_intersects(new_mask, cpu_active_mask) &&
1166 p->nr_cpus_allowed != 1);
1167 }
1168
5cc389bc
PZ
1169 /* Can the task run on the task's current CPU? If so, we're done */
1170 if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 goto out;
1172
e9d867a6 1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1174 if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 struct migration_arg arg = { p, dest_cpu };
1176 /* Need help from migration thread: drop lock and wait. */
eb580751 1177 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 tlb_migrate_finish(p->mm);
1180 return 0;
cbce1a68
PZ
1181 } else if (task_on_rq_queued(p)) {
1182 /*
1183 * OK, since we're going to drop the lock immediately
1184 * afterwards anyway.
1185 */
e7904a28 1186 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1187 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1188 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1189 }
5cc389bc 1190out:
eb580751 1191 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1192
1193 return ret;
1194}
25834c73
PZ
1195
1196int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197{
1198 return __set_cpus_allowed_ptr(p, new_mask, false);
1199}
5cc389bc
PZ
1200EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201
dd41f596 1202void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1203{
e2912009
PZ
1204#ifdef CONFIG_SCHED_DEBUG
1205 /*
1206 * We should never call set_task_cpu() on a blocked task,
1207 * ttwu() will sort out the placement.
1208 */
077614ee 1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1210 !p->on_rq);
0122ec5b 1211
3ea94de1
JP
1212 /*
1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 * time relying on p->on_rq.
1216 */
1217 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 p->sched_class == &fair_sched_class &&
1219 (p->on_rq && !task_on_rq_migrating(p)));
1220
0122ec5b 1221#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1222 /*
1223 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 *
1226 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1227 * see task_group().
6c6c54e1
PZ
1228 *
1229 * Furthermore, all task_rq users should acquire both locks, see
1230 * task_rq_lock().
1231 */
0122ec5b
PZ
1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 lockdep_is_held(&task_rq(p)->lock)));
1234#endif
e2912009
PZ
1235#endif
1236
de1d7286 1237 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1238
0c69774e 1239 if (task_cpu(p) != new_cpu) {
0a74bef8 1240 if (p->sched_class->migrate_task_rq)
5a4fd036 1241 p->sched_class->migrate_task_rq(p);
0c69774e 1242 p->se.nr_migrations++;
ff303e66 1243 perf_event_task_migrate(p);
0c69774e 1244 }
dd41f596
IM
1245
1246 __set_task_cpu(p, new_cpu);
c65cc870
IM
1247}
1248
ac66f547
PZ
1249static void __migrate_swap_task(struct task_struct *p, int cpu)
1250{
da0c1e65 1251 if (task_on_rq_queued(p)) {
ac66f547
PZ
1252 struct rq *src_rq, *dst_rq;
1253
1254 src_rq = task_rq(p);
1255 dst_rq = cpu_rq(cpu);
1256
3ea94de1 1257 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1258 deactivate_task(src_rq, p, 0);
1259 set_task_cpu(p, cpu);
1260 activate_task(dst_rq, p, 0);
3ea94de1 1261 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1262 check_preempt_curr(dst_rq, p, 0);
1263 } else {
1264 /*
1265 * Task isn't running anymore; make it appear like we migrated
1266 * it before it went to sleep. This means on wakeup we make the
1267 * previous cpu our targer instead of where it really is.
1268 */
1269 p->wake_cpu = cpu;
1270 }
1271}
1272
1273struct migration_swap_arg {
1274 struct task_struct *src_task, *dst_task;
1275 int src_cpu, dst_cpu;
1276};
1277
1278static int migrate_swap_stop(void *data)
1279{
1280 struct migration_swap_arg *arg = data;
1281 struct rq *src_rq, *dst_rq;
1282 int ret = -EAGAIN;
1283
62694cd5
PZ
1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 return -EAGAIN;
1286
ac66f547
PZ
1287 src_rq = cpu_rq(arg->src_cpu);
1288 dst_rq = cpu_rq(arg->dst_cpu);
1289
74602315
PZ
1290 double_raw_lock(&arg->src_task->pi_lock,
1291 &arg->dst_task->pi_lock);
ac66f547 1292 double_rq_lock(src_rq, dst_rq);
62694cd5 1293
ac66f547
PZ
1294 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 goto unlock;
1296
1297 if (task_cpu(arg->src_task) != arg->src_cpu)
1298 goto unlock;
1299
1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 goto unlock;
1302
1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 goto unlock;
1305
1306 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1308
1309 ret = 0;
1310
1311unlock:
1312 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1313 raw_spin_unlock(&arg->dst_task->pi_lock);
1314 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1315
1316 return ret;
1317}
1318
1319/*
1320 * Cross migrate two tasks
1321 */
1322int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323{
1324 struct migration_swap_arg arg;
1325 int ret = -EINVAL;
1326
ac66f547
PZ
1327 arg = (struct migration_swap_arg){
1328 .src_task = cur,
1329 .src_cpu = task_cpu(cur),
1330 .dst_task = p,
1331 .dst_cpu = task_cpu(p),
1332 };
1333
1334 if (arg.src_cpu == arg.dst_cpu)
1335 goto out;
1336
6acce3ef
PZ
1337 /*
1338 * These three tests are all lockless; this is OK since all of them
1339 * will be re-checked with proper locks held further down the line.
1340 */
ac66f547
PZ
1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 goto out;
1343
1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 goto out;
1346
1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 goto out;
1349
286549dc 1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352
1353out:
ac66f547
PZ
1354 return ret;
1355}
1356
1da177e4
LT
1357/*
1358 * wait_task_inactive - wait for a thread to unschedule.
1359 *
85ba2d86
RM
1360 * If @match_state is nonzero, it's the @p->state value just checked and
1361 * not expected to change. If it changes, i.e. @p might have woken up,
1362 * then return zero. When we succeed in waiting for @p to be off its CPU,
1363 * we return a positive number (its total switch count). If a second call
1364 * a short while later returns the same number, the caller can be sure that
1365 * @p has remained unscheduled the whole time.
1366 *
1da177e4
LT
1367 * The caller must ensure that the task *will* unschedule sometime soon,
1368 * else this function might spin for a *long* time. This function can't
1369 * be called with interrupts off, or it may introduce deadlock with
1370 * smp_call_function() if an IPI is sent by the same process we are
1371 * waiting to become inactive.
1372 */
85ba2d86 1373unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1374{
da0c1e65 1375 int running, queued;
eb580751 1376 struct rq_flags rf;
85ba2d86 1377 unsigned long ncsw;
70b97a7f 1378 struct rq *rq;
1da177e4 1379
3a5c359a
AK
1380 for (;;) {
1381 /*
1382 * We do the initial early heuristics without holding
1383 * any task-queue locks at all. We'll only try to get
1384 * the runqueue lock when things look like they will
1385 * work out!
1386 */
1387 rq = task_rq(p);
fa490cfd 1388
3a5c359a
AK
1389 /*
1390 * If the task is actively running on another CPU
1391 * still, just relax and busy-wait without holding
1392 * any locks.
1393 *
1394 * NOTE! Since we don't hold any locks, it's not
1395 * even sure that "rq" stays as the right runqueue!
1396 * But we don't care, since "task_running()" will
1397 * return false if the runqueue has changed and p
1398 * is actually now running somewhere else!
1399 */
85ba2d86
RM
1400 while (task_running(rq, p)) {
1401 if (match_state && unlikely(p->state != match_state))
1402 return 0;
3a5c359a 1403 cpu_relax();
85ba2d86 1404 }
fa490cfd 1405
3a5c359a
AK
1406 /*
1407 * Ok, time to look more closely! We need the rq
1408 * lock now, to be *sure*. If we're wrong, we'll
1409 * just go back and repeat.
1410 */
eb580751 1411 rq = task_rq_lock(p, &rf);
27a9da65 1412 trace_sched_wait_task(p);
3a5c359a 1413 running = task_running(rq, p);
da0c1e65 1414 queued = task_on_rq_queued(p);
85ba2d86 1415 ncsw = 0;
f31e11d8 1416 if (!match_state || p->state == match_state)
93dcf55f 1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1418 task_rq_unlock(rq, p, &rf);
fa490cfd 1419
85ba2d86
RM
1420 /*
1421 * If it changed from the expected state, bail out now.
1422 */
1423 if (unlikely(!ncsw))
1424 break;
1425
3a5c359a
AK
1426 /*
1427 * Was it really running after all now that we
1428 * checked with the proper locks actually held?
1429 *
1430 * Oops. Go back and try again..
1431 */
1432 if (unlikely(running)) {
1433 cpu_relax();
1434 continue;
1435 }
fa490cfd 1436
3a5c359a
AK
1437 /*
1438 * It's not enough that it's not actively running,
1439 * it must be off the runqueue _entirely_, and not
1440 * preempted!
1441 *
80dd99b3 1442 * So if it was still runnable (but just not actively
3a5c359a
AK
1443 * running right now), it's preempted, and we should
1444 * yield - it could be a while.
1445 */
da0c1e65 1446 if (unlikely(queued)) {
8eb90c30
TG
1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1451 continue;
1452 }
fa490cfd 1453
3a5c359a
AK
1454 /*
1455 * Ahh, all good. It wasn't running, and it wasn't
1456 * runnable, which means that it will never become
1457 * running in the future either. We're all done!
1458 */
1459 break;
1460 }
85ba2d86
RM
1461
1462 return ncsw;
1da177e4
LT
1463}
1464
1465/***
1466 * kick_process - kick a running thread to enter/exit the kernel
1467 * @p: the to-be-kicked thread
1468 *
1469 * Cause a process which is running on another CPU to enter
1470 * kernel-mode, without any delay. (to get signals handled.)
1471 *
25985edc 1472 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1473 * because all it wants to ensure is that the remote task enters
1474 * the kernel. If the IPI races and the task has been migrated
1475 * to another CPU then no harm is done and the purpose has been
1476 * achieved as well.
1477 */
36c8b586 1478void kick_process(struct task_struct *p)
1da177e4
LT
1479{
1480 int cpu;
1481
1482 preempt_disable();
1483 cpu = task_cpu(p);
1484 if ((cpu != smp_processor_id()) && task_curr(p))
1485 smp_send_reschedule(cpu);
1486 preempt_enable();
1487}
b43e3521 1488EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1489
30da688e 1490/*
013fdb80 1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1492 *
1493 * A few notes on cpu_active vs cpu_online:
1494 *
1495 * - cpu_active must be a subset of cpu_online
1496 *
1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498 * see __set_cpus_allowed_ptr(). At this point the newly online
1499 * cpu isn't yet part of the sched domains, and balancing will not
1500 * see it.
1501 *
1502 * - on cpu-down we clear cpu_active() to mask the sched domains and
1503 * avoid the load balancer to place new tasks on the to be removed
1504 * cpu. Existing tasks will remain running there and will be taken
1505 * off.
1506 *
1507 * This means that fallback selection must not select !active CPUs.
1508 * And can assume that any active CPU must be online. Conversely
1509 * select_task_rq() below may allow selection of !active CPUs in order
1510 * to satisfy the above rules.
30da688e 1511 */
5da9a0fb
PZ
1512static int select_fallback_rq(int cpu, struct task_struct *p)
1513{
aa00d89c
TC
1514 int nid = cpu_to_node(cpu);
1515 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1516 enum { cpuset, possible, fail } state = cpuset;
1517 int dest_cpu;
5da9a0fb 1518
aa00d89c
TC
1519 /*
1520 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 * will return -1. There is no cpu on the node, and we should
1522 * select the cpu on the other node.
1523 */
1524 if (nid != -1) {
1525 nodemask = cpumask_of_node(nid);
1526
1527 /* Look for allowed, online CPU in same node. */
1528 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1529 if (!cpu_active(dest_cpu))
1530 continue;
1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 return dest_cpu;
1533 }
2baab4e9 1534 }
5da9a0fb 1535
2baab4e9
PZ
1536 for (;;) {
1537 /* Any allowed, online CPU? */
e3831edd 1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1539 if (!cpu_active(dest_cpu))
1540 continue;
1541 goto out;
1542 }
5da9a0fb 1543
e73e85f0 1544 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1545 switch (state) {
1546 case cpuset:
e73e85f0
ON
1547 if (IS_ENABLED(CONFIG_CPUSETS)) {
1548 cpuset_cpus_allowed_fallback(p);
1549 state = possible;
1550 break;
1551 }
1552 /* fall-through */
2baab4e9
PZ
1553 case possible:
1554 do_set_cpus_allowed(p, cpu_possible_mask);
1555 state = fail;
1556 break;
1557
1558 case fail:
1559 BUG();
1560 break;
1561 }
1562 }
1563
1564out:
1565 if (state != cpuset) {
1566 /*
1567 * Don't tell them about moving exiting tasks or
1568 * kernel threads (both mm NULL), since they never
1569 * leave kernel.
1570 */
1571 if (p->mm && printk_ratelimit()) {
aac74dc4 1572 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1573 task_pid_nr(p), p->comm, cpu);
1574 }
5da9a0fb
PZ
1575 }
1576
1577 return dest_cpu;
1578}
1579
e2912009 1580/*
013fdb80 1581 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1582 */
970b13ba 1583static inline
ac66f547 1584int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1585{
cbce1a68
PZ
1586 lockdep_assert_held(&p->pi_lock);
1587
50605ffb 1588 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1589 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1590 else
1591 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1592
1593 /*
1594 * In order not to call set_task_cpu() on a blocking task we need
1595 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1596 * cpu.
1597 *
1598 * Since this is common to all placement strategies, this lives here.
1599 *
1600 * [ this allows ->select_task() to simply return task_cpu(p) and
1601 * not worry about this generic constraint ]
1602 */
fa17b507 1603 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1604 !cpu_online(cpu)))
5da9a0fb 1605 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1606
1607 return cpu;
970b13ba 1608}
09a40af5
MG
1609
1610static void update_avg(u64 *avg, u64 sample)
1611{
1612 s64 diff = sample - *avg;
1613 *avg += diff >> 3;
1614}
25834c73
PZ
1615
1616#else
1617
1618static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1619 const struct cpumask *new_mask, bool check)
1620{
1621 return set_cpus_allowed_ptr(p, new_mask);
1622}
1623
5cc389bc 1624#endif /* CONFIG_SMP */
970b13ba 1625
d7c01d27 1626static void
b84cb5df 1627ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1628{
d7c01d27 1629#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1630 struct rq *rq = this_rq();
1631
d7c01d27
PZ
1632#ifdef CONFIG_SMP
1633 int this_cpu = smp_processor_id();
1634
1635 if (cpu == this_cpu) {
1636 schedstat_inc(rq, ttwu_local);
1637 schedstat_inc(p, se.statistics.nr_wakeups_local);
1638 } else {
1639 struct sched_domain *sd;
1640
1641 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1642 rcu_read_lock();
d7c01d27
PZ
1643 for_each_domain(this_cpu, sd) {
1644 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1645 schedstat_inc(sd, ttwu_wake_remote);
1646 break;
1647 }
1648 }
057f3fad 1649 rcu_read_unlock();
d7c01d27 1650 }
f339b9dc
PZ
1651
1652 if (wake_flags & WF_MIGRATED)
1653 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1654
d7c01d27
PZ
1655#endif /* CONFIG_SMP */
1656
1657 schedstat_inc(rq, ttwu_count);
9ed3811a 1658 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1659
1660 if (wake_flags & WF_SYNC)
9ed3811a 1661 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1662
d7c01d27
PZ
1663#endif /* CONFIG_SCHEDSTATS */
1664}
1665
1de64443 1666static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1667{
9ed3811a 1668 activate_task(rq, p, en_flags);
da0c1e65 1669 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1670
1671 /* if a worker is waking up, notify workqueue */
1672 if (p->flags & PF_WQ_WORKER)
1673 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1674}
1675
23f41eeb
PZ
1676/*
1677 * Mark the task runnable and perform wakeup-preemption.
1678 */
e7904a28
PZ
1679static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1680 struct pin_cookie cookie)
9ed3811a 1681{
9ed3811a 1682 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1683 p->state = TASK_RUNNING;
fbd705a0
PZ
1684 trace_sched_wakeup(p);
1685
9ed3811a 1686#ifdef CONFIG_SMP
4c9a4bc8
PZ
1687 if (p->sched_class->task_woken) {
1688 /*
cbce1a68
PZ
1689 * Our task @p is fully woken up and running; so its safe to
1690 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1691 */
e7904a28 1692 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1693 p->sched_class->task_woken(rq, p);
e7904a28 1694 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1695 }
9ed3811a 1696
e69c6341 1697 if (rq->idle_stamp) {
78becc27 1698 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1699 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1700
abfafa54
JL
1701 update_avg(&rq->avg_idle, delta);
1702
1703 if (rq->avg_idle > max)
9ed3811a 1704 rq->avg_idle = max;
abfafa54 1705
9ed3811a
TH
1706 rq->idle_stamp = 0;
1707 }
1708#endif
1709}
1710
c05fbafb 1711static void
e7904a28
PZ
1712ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1713 struct pin_cookie cookie)
c05fbafb 1714{
b5179ac7
PZ
1715 int en_flags = ENQUEUE_WAKEUP;
1716
cbce1a68
PZ
1717 lockdep_assert_held(&rq->lock);
1718
c05fbafb
PZ
1719#ifdef CONFIG_SMP
1720 if (p->sched_contributes_to_load)
1721 rq->nr_uninterruptible--;
b5179ac7 1722
b5179ac7 1723 if (wake_flags & WF_MIGRATED)
59efa0ba 1724 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1725#endif
1726
b5179ac7 1727 ttwu_activate(rq, p, en_flags);
e7904a28 1728 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1729}
1730
1731/*
1732 * Called in case the task @p isn't fully descheduled from its runqueue,
1733 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1734 * since all we need to do is flip p->state to TASK_RUNNING, since
1735 * the task is still ->on_rq.
1736 */
1737static int ttwu_remote(struct task_struct *p, int wake_flags)
1738{
eb580751 1739 struct rq_flags rf;
c05fbafb
PZ
1740 struct rq *rq;
1741 int ret = 0;
1742
eb580751 1743 rq = __task_rq_lock(p, &rf);
da0c1e65 1744 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1745 /* check_preempt_curr() may use rq clock */
1746 update_rq_clock(rq);
e7904a28 1747 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1748 ret = 1;
1749 }
eb580751 1750 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1751
1752 return ret;
1753}
1754
317f3941 1755#ifdef CONFIG_SMP
e3baac47 1756void sched_ttwu_pending(void)
317f3941
PZ
1757{
1758 struct rq *rq = this_rq();
fa14ff4a 1759 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1760 struct pin_cookie cookie;
fa14ff4a 1761 struct task_struct *p;
e3baac47 1762 unsigned long flags;
317f3941 1763
e3baac47
PZ
1764 if (!llist)
1765 return;
1766
1767 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1768 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1769
fa14ff4a 1770 while (llist) {
b7e7ade3
PZ
1771 int wake_flags = 0;
1772
fa14ff4a
PZ
1773 p = llist_entry(llist, struct task_struct, wake_entry);
1774 llist = llist_next(llist);
b7e7ade3
PZ
1775
1776 if (p->sched_remote_wakeup)
1777 wake_flags = WF_MIGRATED;
1778
1779 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1780 }
1781
e7904a28 1782 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1783 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1784}
1785
1786void scheduler_ipi(void)
1787{
f27dde8d
PZ
1788 /*
1789 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1790 * TIF_NEED_RESCHED remotely (for the first time) will also send
1791 * this IPI.
1792 */
8cb75e0c 1793 preempt_fold_need_resched();
f27dde8d 1794
fd2ac4f4 1795 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1796 return;
1797
1798 /*
1799 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1800 * traditionally all their work was done from the interrupt return
1801 * path. Now that we actually do some work, we need to make sure
1802 * we do call them.
1803 *
1804 * Some archs already do call them, luckily irq_enter/exit nest
1805 * properly.
1806 *
1807 * Arguably we should visit all archs and update all handlers,
1808 * however a fair share of IPIs are still resched only so this would
1809 * somewhat pessimize the simple resched case.
1810 */
1811 irq_enter();
fa14ff4a 1812 sched_ttwu_pending();
ca38062e
SS
1813
1814 /*
1815 * Check if someone kicked us for doing the nohz idle load balance.
1816 */
873b4c65 1817 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1818 this_rq()->idle_balance = 1;
ca38062e 1819 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1820 }
c5d753a5 1821 irq_exit();
317f3941
PZ
1822}
1823
b7e7ade3 1824static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1825{
e3baac47
PZ
1826 struct rq *rq = cpu_rq(cpu);
1827
b7e7ade3
PZ
1828 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1829
e3baac47
PZ
1830 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1831 if (!set_nr_if_polling(rq->idle))
1832 smp_send_reschedule(cpu);
1833 else
1834 trace_sched_wake_idle_without_ipi(cpu);
1835 }
317f3941 1836}
d6aa8f85 1837
f6be8af1
CL
1838void wake_up_if_idle(int cpu)
1839{
1840 struct rq *rq = cpu_rq(cpu);
1841 unsigned long flags;
1842
fd7de1e8
AL
1843 rcu_read_lock();
1844
1845 if (!is_idle_task(rcu_dereference(rq->curr)))
1846 goto out;
f6be8af1
CL
1847
1848 if (set_nr_if_polling(rq->idle)) {
1849 trace_sched_wake_idle_without_ipi(cpu);
1850 } else {
1851 raw_spin_lock_irqsave(&rq->lock, flags);
1852 if (is_idle_task(rq->curr))
1853 smp_send_reschedule(cpu);
1854 /* Else cpu is not in idle, do nothing here */
1855 raw_spin_unlock_irqrestore(&rq->lock, flags);
1856 }
fd7de1e8
AL
1857
1858out:
1859 rcu_read_unlock();
f6be8af1
CL
1860}
1861
39be3501 1862bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1863{
1864 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1865}
d6aa8f85 1866#endif /* CONFIG_SMP */
317f3941 1867
b5179ac7 1868static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1869{
1870 struct rq *rq = cpu_rq(cpu);
e7904a28 1871 struct pin_cookie cookie;
c05fbafb 1872
17d9f311 1873#if defined(CONFIG_SMP)
39be3501 1874 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1875 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1876 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1877 return;
1878 }
1879#endif
1880
c05fbafb 1881 raw_spin_lock(&rq->lock);
e7904a28 1882 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1883 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1884 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1885 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1886}
1887
8643cda5
PZ
1888/*
1889 * Notes on Program-Order guarantees on SMP systems.
1890 *
1891 * MIGRATION
1892 *
1893 * The basic program-order guarantee on SMP systems is that when a task [t]
1894 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1895 * execution on its new cpu [c1].
1896 *
1897 * For migration (of runnable tasks) this is provided by the following means:
1898 *
1899 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1900 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1901 * rq(c1)->lock (if not at the same time, then in that order).
1902 * C) LOCK of the rq(c1)->lock scheduling in task
1903 *
1904 * Transitivity guarantees that B happens after A and C after B.
1905 * Note: we only require RCpc transitivity.
1906 * Note: the cpu doing B need not be c0 or c1
1907 *
1908 * Example:
1909 *
1910 * CPU0 CPU1 CPU2
1911 *
1912 * LOCK rq(0)->lock
1913 * sched-out X
1914 * sched-in Y
1915 * UNLOCK rq(0)->lock
1916 *
1917 * LOCK rq(0)->lock // orders against CPU0
1918 * dequeue X
1919 * UNLOCK rq(0)->lock
1920 *
1921 * LOCK rq(1)->lock
1922 * enqueue X
1923 * UNLOCK rq(1)->lock
1924 *
1925 * LOCK rq(1)->lock // orders against CPU2
1926 * sched-out Z
1927 * sched-in X
1928 * UNLOCK rq(1)->lock
1929 *
1930 *
1931 * BLOCKING -- aka. SLEEP + WAKEUP
1932 *
1933 * For blocking we (obviously) need to provide the same guarantee as for
1934 * migration. However the means are completely different as there is no lock
1935 * chain to provide order. Instead we do:
1936 *
1937 * 1) smp_store_release(X->on_cpu, 0)
1938 * 2) smp_cond_acquire(!X->on_cpu)
1939 *
1940 * Example:
1941 *
1942 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1943 *
1944 * LOCK rq(0)->lock LOCK X->pi_lock
1945 * dequeue X
1946 * sched-out X
1947 * smp_store_release(X->on_cpu, 0);
1948 *
1949 * smp_cond_acquire(!X->on_cpu);
1950 * X->state = WAKING
1951 * set_task_cpu(X,2)
1952 *
1953 * LOCK rq(2)->lock
1954 * enqueue X
1955 * X->state = RUNNING
1956 * UNLOCK rq(2)->lock
1957 *
1958 * LOCK rq(2)->lock // orders against CPU1
1959 * sched-out Z
1960 * sched-in X
1961 * UNLOCK rq(2)->lock
1962 *
1963 * UNLOCK X->pi_lock
1964 * UNLOCK rq(0)->lock
1965 *
1966 *
1967 * However; for wakeups there is a second guarantee we must provide, namely we
1968 * must observe the state that lead to our wakeup. That is, not only must our
1969 * task observe its own prior state, it must also observe the stores prior to
1970 * its wakeup.
1971 *
1972 * This means that any means of doing remote wakeups must order the CPU doing
1973 * the wakeup against the CPU the task is going to end up running on. This,
1974 * however, is already required for the regular Program-Order guarantee above,
1975 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1976 *
1977 */
1978
9ed3811a 1979/**
1da177e4 1980 * try_to_wake_up - wake up a thread
9ed3811a 1981 * @p: the thread to be awakened
1da177e4 1982 * @state: the mask of task states that can be woken
9ed3811a 1983 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1984 *
1985 * Put it on the run-queue if it's not already there. The "current"
1986 * thread is always on the run-queue (except when the actual
1987 * re-schedule is in progress), and as such you're allowed to do
1988 * the simpler "current->state = TASK_RUNNING" to mark yourself
1989 * runnable without the overhead of this.
1990 *
e69f6186 1991 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1992 * or @state didn't match @p's state.
1da177e4 1993 */
e4a52bcb
PZ
1994static int
1995try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1996{
1da177e4 1997 unsigned long flags;
c05fbafb 1998 int cpu, success = 0;
2398f2c6 1999
e0acd0a6
ON
2000 /*
2001 * If we are going to wake up a thread waiting for CONDITION we
2002 * need to ensure that CONDITION=1 done by the caller can not be
2003 * reordered with p->state check below. This pairs with mb() in
2004 * set_current_state() the waiting thread does.
2005 */
2006 smp_mb__before_spinlock();
013fdb80 2007 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2008 if (!(p->state & state))
1da177e4
LT
2009 goto out;
2010
fbd705a0
PZ
2011 trace_sched_waking(p);
2012
c05fbafb 2013 success = 1; /* we're going to change ->state */
1da177e4 2014 cpu = task_cpu(p);
1da177e4 2015
c05fbafb
PZ
2016 if (p->on_rq && ttwu_remote(p, wake_flags))
2017 goto stat;
1da177e4 2018
1da177e4 2019#ifdef CONFIG_SMP
ecf7d01c
PZ
2020 /*
2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 * possible to, falsely, observe p->on_cpu == 0.
2023 *
2024 * One must be running (->on_cpu == 1) in order to remove oneself
2025 * from the runqueue.
2026 *
2027 * [S] ->on_cpu = 1; [L] ->on_rq
2028 * UNLOCK rq->lock
2029 * RMB
2030 * LOCK rq->lock
2031 * [S] ->on_rq = 0; [L] ->on_cpu
2032 *
2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 * from the consecutive calls to schedule(); the first switching to our
2035 * task, the second putting it to sleep.
2036 */
2037 smp_rmb();
2038
e9c84311 2039 /*
c05fbafb
PZ
2040 * If the owning (remote) cpu is still in the middle of schedule() with
2041 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2042 *
2043 * Pairs with the smp_store_release() in finish_lock_switch().
2044 *
2045 * This ensures that tasks getting woken will be fully ordered against
2046 * their previous state and preserve Program Order.
0970d299 2047 */
b3e0b1b6 2048 smp_cond_acquire(!p->on_cpu);
1da177e4 2049
a8e4f2ea 2050 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2051 p->state = TASK_WAKING;
e7693a36 2052
ac66f547 2053 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2054 if (task_cpu(p) != cpu) {
2055 wake_flags |= WF_MIGRATED;
e4a52bcb 2056 set_task_cpu(p, cpu);
f339b9dc 2057 }
1da177e4 2058#endif /* CONFIG_SMP */
1da177e4 2059
b5179ac7 2060 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2061stat:
cb251765
MG
2062 if (schedstat_enabled())
2063 ttwu_stat(p, cpu, wake_flags);
1da177e4 2064out:
013fdb80 2065 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2066
2067 return success;
2068}
2069
21aa9af0
TH
2070/**
2071 * try_to_wake_up_local - try to wake up a local task with rq lock held
2072 * @p: the thread to be awakened
2073 *
2acca55e 2074 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2075 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2076 * the current task.
21aa9af0 2077 */
e7904a28 2078static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2079{
2080 struct rq *rq = task_rq(p);
21aa9af0 2081
383efcd0
TH
2082 if (WARN_ON_ONCE(rq != this_rq()) ||
2083 WARN_ON_ONCE(p == current))
2084 return;
2085
21aa9af0
TH
2086 lockdep_assert_held(&rq->lock);
2087
2acca55e 2088 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2089 /*
2090 * This is OK, because current is on_cpu, which avoids it being
2091 * picked for load-balance and preemption/IRQs are still
2092 * disabled avoiding further scheduler activity on it and we've
2093 * not yet picked a replacement task.
2094 */
e7904a28 2095 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2096 raw_spin_unlock(&rq->lock);
2097 raw_spin_lock(&p->pi_lock);
2098 raw_spin_lock(&rq->lock);
e7904a28 2099 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2100 }
2101
21aa9af0 2102 if (!(p->state & TASK_NORMAL))
2acca55e 2103 goto out;
21aa9af0 2104
fbd705a0
PZ
2105 trace_sched_waking(p);
2106
da0c1e65 2107 if (!task_on_rq_queued(p))
d7c01d27
PZ
2108 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2109
e7904a28 2110 ttwu_do_wakeup(rq, p, 0, cookie);
cb251765
MG
2111 if (schedstat_enabled())
2112 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2113out:
2114 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2115}
2116
50fa610a
DH
2117/**
2118 * wake_up_process - Wake up a specific process
2119 * @p: The process to be woken up.
2120 *
2121 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2122 * processes.
2123 *
2124 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2125 *
2126 * It may be assumed that this function implies a write memory barrier before
2127 * changing the task state if and only if any tasks are woken up.
2128 */
7ad5b3a5 2129int wake_up_process(struct task_struct *p)
1da177e4 2130{
9067ac85 2131 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2132}
1da177e4
LT
2133EXPORT_SYMBOL(wake_up_process);
2134
7ad5b3a5 2135int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2136{
2137 return try_to_wake_up(p, state, 0);
2138}
2139
a5e7be3b
JL
2140/*
2141 * This function clears the sched_dl_entity static params.
2142 */
2143void __dl_clear_params(struct task_struct *p)
2144{
2145 struct sched_dl_entity *dl_se = &p->dl;
2146
2147 dl_se->dl_runtime = 0;
2148 dl_se->dl_deadline = 0;
2149 dl_se->dl_period = 0;
2150 dl_se->flags = 0;
2151 dl_se->dl_bw = 0;
40767b0d
PZ
2152
2153 dl_se->dl_throttled = 0;
40767b0d 2154 dl_se->dl_yielded = 0;
a5e7be3b
JL
2155}
2156
1da177e4
LT
2157/*
2158 * Perform scheduler related setup for a newly forked process p.
2159 * p is forked by current.
dd41f596
IM
2160 *
2161 * __sched_fork() is basic setup used by init_idle() too:
2162 */
5e1576ed 2163static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2164{
fd2f4419
PZ
2165 p->on_rq = 0;
2166
2167 p->se.on_rq = 0;
dd41f596
IM
2168 p->se.exec_start = 0;
2169 p->se.sum_exec_runtime = 0;
f6cf891c 2170 p->se.prev_sum_exec_runtime = 0;
6c594c21 2171 p->se.nr_migrations = 0;
da7a735e 2172 p->se.vruntime = 0;
fd2f4419 2173 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2174
ad936d86
BP
2175#ifdef CONFIG_FAIR_GROUP_SCHED
2176 p->se.cfs_rq = NULL;
2177#endif
2178
6cfb0d5d 2179#ifdef CONFIG_SCHEDSTATS
cb251765 2180 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2181 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2182#endif
476d139c 2183
aab03e05 2184 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2185 init_dl_task_timer(&p->dl);
a5e7be3b 2186 __dl_clear_params(p);
aab03e05 2187
fa717060 2188 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2189 p->rt.timeout = 0;
2190 p->rt.time_slice = sched_rr_timeslice;
2191 p->rt.on_rq = 0;
2192 p->rt.on_list = 0;
476d139c 2193
e107be36
AK
2194#ifdef CONFIG_PREEMPT_NOTIFIERS
2195 INIT_HLIST_HEAD(&p->preempt_notifiers);
2196#endif
cbee9f88
PZ
2197
2198#ifdef CONFIG_NUMA_BALANCING
2199 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2200 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2201 p->mm->numa_scan_seq = 0;
2202 }
2203
5e1576ed
RR
2204 if (clone_flags & CLONE_VM)
2205 p->numa_preferred_nid = current->numa_preferred_nid;
2206 else
2207 p->numa_preferred_nid = -1;
2208
cbee9f88
PZ
2209 p->node_stamp = 0ULL;
2210 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2211 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2212 p->numa_work.next = &p->numa_work;
44dba3d5 2213 p->numa_faults = NULL;
7e2703e6
RR
2214 p->last_task_numa_placement = 0;
2215 p->last_sum_exec_runtime = 0;
8c8a743c 2216
8c8a743c 2217 p->numa_group = NULL;
cbee9f88 2218#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2219}
2220
2a595721
SD
2221DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2222
1a687c2e 2223#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2224
1a687c2e
MG
2225void set_numabalancing_state(bool enabled)
2226{
2227 if (enabled)
2a595721 2228 static_branch_enable(&sched_numa_balancing);
1a687c2e 2229 else
2a595721 2230 static_branch_disable(&sched_numa_balancing);
1a687c2e 2231}
54a43d54
AK
2232
2233#ifdef CONFIG_PROC_SYSCTL
2234int sysctl_numa_balancing(struct ctl_table *table, int write,
2235 void __user *buffer, size_t *lenp, loff_t *ppos)
2236{
2237 struct ctl_table t;
2238 int err;
2a595721 2239 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2240
2241 if (write && !capable(CAP_SYS_ADMIN))
2242 return -EPERM;
2243
2244 t = *table;
2245 t.data = &state;
2246 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2247 if (err < 0)
2248 return err;
2249 if (write)
2250 set_numabalancing_state(state);
2251 return err;
2252}
2253#endif
2254#endif
dd41f596 2255
4698f88c
JP
2256#ifdef CONFIG_SCHEDSTATS
2257
cb251765 2258DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2259static bool __initdata __sched_schedstats = false;
cb251765 2260
cb251765
MG
2261static void set_schedstats(bool enabled)
2262{
2263 if (enabled)
2264 static_branch_enable(&sched_schedstats);
2265 else
2266 static_branch_disable(&sched_schedstats);
2267}
2268
2269void force_schedstat_enabled(void)
2270{
2271 if (!schedstat_enabled()) {
2272 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2273 static_branch_enable(&sched_schedstats);
2274 }
2275}
2276
2277static int __init setup_schedstats(char *str)
2278{
2279 int ret = 0;
2280 if (!str)
2281 goto out;
2282
4698f88c
JP
2283 /*
2284 * This code is called before jump labels have been set up, so we can't
2285 * change the static branch directly just yet. Instead set a temporary
2286 * variable so init_schedstats() can do it later.
2287 */
cb251765 2288 if (!strcmp(str, "enable")) {
4698f88c 2289 __sched_schedstats = true;
cb251765
MG
2290 ret = 1;
2291 } else if (!strcmp(str, "disable")) {
4698f88c 2292 __sched_schedstats = false;
cb251765
MG
2293 ret = 1;
2294 }
2295out:
2296 if (!ret)
2297 pr_warn("Unable to parse schedstats=\n");
2298
2299 return ret;
2300}
2301__setup("schedstats=", setup_schedstats);
2302
4698f88c
JP
2303static void __init init_schedstats(void)
2304{
2305 set_schedstats(__sched_schedstats);
2306}
2307
cb251765
MG
2308#ifdef CONFIG_PROC_SYSCTL
2309int sysctl_schedstats(struct ctl_table *table, int write,
2310 void __user *buffer, size_t *lenp, loff_t *ppos)
2311{
2312 struct ctl_table t;
2313 int err;
2314 int state = static_branch_likely(&sched_schedstats);
2315
2316 if (write && !capable(CAP_SYS_ADMIN))
2317 return -EPERM;
2318
2319 t = *table;
2320 t.data = &state;
2321 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2322 if (err < 0)
2323 return err;
2324 if (write)
2325 set_schedstats(state);
2326 return err;
2327}
4698f88c
JP
2328#endif /* CONFIG_PROC_SYSCTL */
2329#else /* !CONFIG_SCHEDSTATS */
2330static inline void init_schedstats(void) {}
2331#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2332
2333/*
2334 * fork()/clone()-time setup:
2335 */
aab03e05 2336int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2337{
0122ec5b 2338 unsigned long flags;
dd41f596
IM
2339 int cpu = get_cpu();
2340
5e1576ed 2341 __sched_fork(clone_flags, p);
06b83b5f 2342 /*
0017d735 2343 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2344 * nobody will actually run it, and a signal or other external
2345 * event cannot wake it up and insert it on the runqueue either.
2346 */
0017d735 2347 p->state = TASK_RUNNING;
dd41f596 2348
c350a04e
MG
2349 /*
2350 * Make sure we do not leak PI boosting priority to the child.
2351 */
2352 p->prio = current->normal_prio;
2353
b9dc29e7
MG
2354 /*
2355 * Revert to default priority/policy on fork if requested.
2356 */
2357 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2358 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2359 p->policy = SCHED_NORMAL;
6c697bdf 2360 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2361 p->rt_priority = 0;
2362 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2363 p->static_prio = NICE_TO_PRIO(0);
2364
2365 p->prio = p->normal_prio = __normal_prio(p);
2366 set_load_weight(p);
6c697bdf 2367
b9dc29e7
MG
2368 /*
2369 * We don't need the reset flag anymore after the fork. It has
2370 * fulfilled its duty:
2371 */
2372 p->sched_reset_on_fork = 0;
2373 }
ca94c442 2374
aab03e05
DF
2375 if (dl_prio(p->prio)) {
2376 put_cpu();
2377 return -EAGAIN;
2378 } else if (rt_prio(p->prio)) {
2379 p->sched_class = &rt_sched_class;
2380 } else {
2ddbf952 2381 p->sched_class = &fair_sched_class;
aab03e05 2382 }
b29739f9 2383
cd29fe6f
PZ
2384 if (p->sched_class->task_fork)
2385 p->sched_class->task_fork(p);
2386
86951599
PZ
2387 /*
2388 * The child is not yet in the pid-hash so no cgroup attach races,
2389 * and the cgroup is pinned to this child due to cgroup_fork()
2390 * is ran before sched_fork().
2391 *
2392 * Silence PROVE_RCU.
2393 */
0122ec5b 2394 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2395 set_task_cpu(p, cpu);
0122ec5b 2396 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2397
f6db8347 2398#ifdef CONFIG_SCHED_INFO
dd41f596 2399 if (likely(sched_info_on()))
52f17b6c 2400 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2401#endif
3ca7a440
PZ
2402#if defined(CONFIG_SMP)
2403 p->on_cpu = 0;
4866cde0 2404#endif
01028747 2405 init_task_preempt_count(p);
806c09a7 2406#ifdef CONFIG_SMP
917b627d 2407 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2408 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2409#endif
917b627d 2410
476d139c 2411 put_cpu();
aab03e05 2412 return 0;
1da177e4
LT
2413}
2414
332ac17e
DF
2415unsigned long to_ratio(u64 period, u64 runtime)
2416{
2417 if (runtime == RUNTIME_INF)
2418 return 1ULL << 20;
2419
2420 /*
2421 * Doing this here saves a lot of checks in all
2422 * the calling paths, and returning zero seems
2423 * safe for them anyway.
2424 */
2425 if (period == 0)
2426 return 0;
2427
2428 return div64_u64(runtime << 20, period);
2429}
2430
2431#ifdef CONFIG_SMP
2432inline struct dl_bw *dl_bw_of(int i)
2433{
f78f5b90
PM
2434 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2435 "sched RCU must be held");
332ac17e
DF
2436 return &cpu_rq(i)->rd->dl_bw;
2437}
2438
de212f18 2439static inline int dl_bw_cpus(int i)
332ac17e 2440{
de212f18
PZ
2441 struct root_domain *rd = cpu_rq(i)->rd;
2442 int cpus = 0;
2443
f78f5b90
PM
2444 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2445 "sched RCU must be held");
de212f18
PZ
2446 for_each_cpu_and(i, rd->span, cpu_active_mask)
2447 cpus++;
2448
2449 return cpus;
332ac17e
DF
2450}
2451#else
2452inline struct dl_bw *dl_bw_of(int i)
2453{
2454 return &cpu_rq(i)->dl.dl_bw;
2455}
2456
de212f18 2457static inline int dl_bw_cpus(int i)
332ac17e
DF
2458{
2459 return 1;
2460}
2461#endif
2462
332ac17e
DF
2463/*
2464 * We must be sure that accepting a new task (or allowing changing the
2465 * parameters of an existing one) is consistent with the bandwidth
2466 * constraints. If yes, this function also accordingly updates the currently
2467 * allocated bandwidth to reflect the new situation.
2468 *
2469 * This function is called while holding p's rq->lock.
40767b0d
PZ
2470 *
2471 * XXX we should delay bw change until the task's 0-lag point, see
2472 * __setparam_dl().
332ac17e
DF
2473 */
2474static int dl_overflow(struct task_struct *p, int policy,
2475 const struct sched_attr *attr)
2476{
2477
2478 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2479 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2480 u64 runtime = attr->sched_runtime;
2481 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2482 int cpus, err = -1;
332ac17e 2483
fec148c0
XP
2484 /* !deadline task may carry old deadline bandwidth */
2485 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2486 return 0;
2487
2488 /*
2489 * Either if a task, enters, leave, or stays -deadline but changes
2490 * its parameters, we may need to update accordingly the total
2491 * allocated bandwidth of the container.
2492 */
2493 raw_spin_lock(&dl_b->lock);
de212f18 2494 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2495 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2496 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2497 __dl_add(dl_b, new_bw);
2498 err = 0;
2499 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2500 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2501 __dl_clear(dl_b, p->dl.dl_bw);
2502 __dl_add(dl_b, new_bw);
2503 err = 0;
2504 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2505 __dl_clear(dl_b, p->dl.dl_bw);
2506 err = 0;
2507 }
2508 raw_spin_unlock(&dl_b->lock);
2509
2510 return err;
2511}
2512
2513extern void init_dl_bw(struct dl_bw *dl_b);
2514
1da177e4
LT
2515/*
2516 * wake_up_new_task - wake up a newly created task for the first time.
2517 *
2518 * This function will do some initial scheduler statistics housekeeping
2519 * that must be done for every newly created context, then puts the task
2520 * on the runqueue and wakes it.
2521 */
3e51e3ed 2522void wake_up_new_task(struct task_struct *p)
1da177e4 2523{
eb580751 2524 struct rq_flags rf;
dd41f596 2525 struct rq *rq;
fabf318e 2526
98d8fd81
MR
2527 /* Initialize new task's runnable average */
2528 init_entity_runnable_average(&p->se);
eb580751 2529 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
fabf318e
PZ
2530#ifdef CONFIG_SMP
2531 /*
2532 * Fork balancing, do it here and not earlier because:
2533 * - cpus_allowed can change in the fork path
2534 * - any previously selected cpu might disappear through hotplug
fabf318e 2535 */
ac66f547 2536 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2537#endif
b7fa30c9 2538 rq = __task_rq_lock(p, &rf);
2b8c41da 2539 post_init_entity_util_avg(&p->se);
0017d735 2540
cd29fe6f 2541 activate_task(rq, p, 0);
da0c1e65 2542 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2543 trace_sched_wakeup_new(p);
a7558e01 2544 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2545#ifdef CONFIG_SMP
0aaafaab
PZ
2546 if (p->sched_class->task_woken) {
2547 /*
2548 * Nothing relies on rq->lock after this, so its fine to
2549 * drop it.
2550 */
e7904a28 2551 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2552 p->sched_class->task_woken(rq, p);
e7904a28 2553 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2554 }
9a897c5a 2555#endif
eb580751 2556 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2557}
2558
e107be36
AK
2559#ifdef CONFIG_PREEMPT_NOTIFIERS
2560
1cde2930
PZ
2561static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2562
2ecd9d29
PZ
2563void preempt_notifier_inc(void)
2564{
2565 static_key_slow_inc(&preempt_notifier_key);
2566}
2567EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2568
2569void preempt_notifier_dec(void)
2570{
2571 static_key_slow_dec(&preempt_notifier_key);
2572}
2573EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2574
e107be36 2575/**
80dd99b3 2576 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2577 * @notifier: notifier struct to register
e107be36
AK
2578 */
2579void preempt_notifier_register(struct preempt_notifier *notifier)
2580{
2ecd9d29
PZ
2581 if (!static_key_false(&preempt_notifier_key))
2582 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2583
e107be36
AK
2584 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2585}
2586EXPORT_SYMBOL_GPL(preempt_notifier_register);
2587
2588/**
2589 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2590 * @notifier: notifier struct to unregister
e107be36 2591 *
d84525a8 2592 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2593 */
2594void preempt_notifier_unregister(struct preempt_notifier *notifier)
2595{
2596 hlist_del(&notifier->link);
2597}
2598EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2599
1cde2930 2600static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2601{
2602 struct preempt_notifier *notifier;
e107be36 2603
b67bfe0d 2604 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2605 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2606}
2607
1cde2930
PZ
2608static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2609{
2610 if (static_key_false(&preempt_notifier_key))
2611 __fire_sched_in_preempt_notifiers(curr);
2612}
2613
e107be36 2614static void
1cde2930
PZ
2615__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2616 struct task_struct *next)
e107be36
AK
2617{
2618 struct preempt_notifier *notifier;
e107be36 2619
b67bfe0d 2620 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2621 notifier->ops->sched_out(notifier, next);
2622}
2623
1cde2930
PZ
2624static __always_inline void
2625fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2627{
2628 if (static_key_false(&preempt_notifier_key))
2629 __fire_sched_out_preempt_notifiers(curr, next);
2630}
2631
6d6bc0ad 2632#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2633
1cde2930 2634static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2635{
2636}
2637
1cde2930 2638static inline void
e107be36
AK
2639fire_sched_out_preempt_notifiers(struct task_struct *curr,
2640 struct task_struct *next)
2641{
2642}
2643
6d6bc0ad 2644#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2645
4866cde0
NP
2646/**
2647 * prepare_task_switch - prepare to switch tasks
2648 * @rq: the runqueue preparing to switch
421cee29 2649 * @prev: the current task that is being switched out
4866cde0
NP
2650 * @next: the task we are going to switch to.
2651 *
2652 * This is called with the rq lock held and interrupts off. It must
2653 * be paired with a subsequent finish_task_switch after the context
2654 * switch.
2655 *
2656 * prepare_task_switch sets up locking and calls architecture specific
2657 * hooks.
2658 */
e107be36
AK
2659static inline void
2660prepare_task_switch(struct rq *rq, struct task_struct *prev,
2661 struct task_struct *next)
4866cde0 2662{
43148951 2663 sched_info_switch(rq, prev, next);
fe4b04fa 2664 perf_event_task_sched_out(prev, next);
e107be36 2665 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2666 prepare_lock_switch(rq, next);
2667 prepare_arch_switch(next);
2668}
2669
1da177e4
LT
2670/**
2671 * finish_task_switch - clean up after a task-switch
2672 * @prev: the thread we just switched away from.
2673 *
4866cde0
NP
2674 * finish_task_switch must be called after the context switch, paired
2675 * with a prepare_task_switch call before the context switch.
2676 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2677 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2678 *
2679 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2680 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2681 * with the lock held can cause deadlocks; see schedule() for
2682 * details.)
dfa50b60
ON
2683 *
2684 * The context switch have flipped the stack from under us and restored the
2685 * local variables which were saved when this task called schedule() in the
2686 * past. prev == current is still correct but we need to recalculate this_rq
2687 * because prev may have moved to another CPU.
1da177e4 2688 */
dfa50b60 2689static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2690 __releases(rq->lock)
2691{
dfa50b60 2692 struct rq *rq = this_rq();
1da177e4 2693 struct mm_struct *mm = rq->prev_mm;
55a101f8 2694 long prev_state;
1da177e4 2695
609ca066
PZ
2696 /*
2697 * The previous task will have left us with a preempt_count of 2
2698 * because it left us after:
2699 *
2700 * schedule()
2701 * preempt_disable(); // 1
2702 * __schedule()
2703 * raw_spin_lock_irq(&rq->lock) // 2
2704 *
2705 * Also, see FORK_PREEMPT_COUNT.
2706 */
e2bf1c4b
PZ
2707 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2708 "corrupted preempt_count: %s/%d/0x%x\n",
2709 current->comm, current->pid, preempt_count()))
2710 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2711
1da177e4
LT
2712 rq->prev_mm = NULL;
2713
2714 /*
2715 * A task struct has one reference for the use as "current".
c394cc9f 2716 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2717 * schedule one last time. The schedule call will never return, and
2718 * the scheduled task must drop that reference.
95913d97
PZ
2719 *
2720 * We must observe prev->state before clearing prev->on_cpu (in
2721 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2722 * running on another CPU and we could rave with its RUNNING -> DEAD
2723 * transition, resulting in a double drop.
1da177e4 2724 */
55a101f8 2725 prev_state = prev->state;
bf9fae9f 2726 vtime_task_switch(prev);
a8d757ef 2727 perf_event_task_sched_in(prev, current);
4866cde0 2728 finish_lock_switch(rq, prev);
01f23e16 2729 finish_arch_post_lock_switch();
e8fa1362 2730
e107be36 2731 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2732 if (mm)
2733 mmdrop(mm);
c394cc9f 2734 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2735 if (prev->sched_class->task_dead)
2736 prev->sched_class->task_dead(prev);
2737
c6fd91f0 2738 /*
2739 * Remove function-return probe instances associated with this
2740 * task and put them back on the free list.
9761eea8 2741 */
c6fd91f0 2742 kprobe_flush_task(prev);
1da177e4 2743 put_task_struct(prev);
c6fd91f0 2744 }
99e5ada9 2745
de734f89 2746 tick_nohz_task_switch();
dfa50b60 2747 return rq;
1da177e4
LT
2748}
2749
3f029d3c
GH
2750#ifdef CONFIG_SMP
2751
3f029d3c 2752/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2753static void __balance_callback(struct rq *rq)
3f029d3c 2754{
e3fca9e7
PZ
2755 struct callback_head *head, *next;
2756 void (*func)(struct rq *rq);
2757 unsigned long flags;
3f029d3c 2758
e3fca9e7
PZ
2759 raw_spin_lock_irqsave(&rq->lock, flags);
2760 head = rq->balance_callback;
2761 rq->balance_callback = NULL;
2762 while (head) {
2763 func = (void (*)(struct rq *))head->func;
2764 next = head->next;
2765 head->next = NULL;
2766 head = next;
3f029d3c 2767
e3fca9e7 2768 func(rq);
3f029d3c 2769 }
e3fca9e7
PZ
2770 raw_spin_unlock_irqrestore(&rq->lock, flags);
2771}
2772
2773static inline void balance_callback(struct rq *rq)
2774{
2775 if (unlikely(rq->balance_callback))
2776 __balance_callback(rq);
3f029d3c
GH
2777}
2778
2779#else
da19ab51 2780
e3fca9e7 2781static inline void balance_callback(struct rq *rq)
3f029d3c 2782{
1da177e4
LT
2783}
2784
3f029d3c
GH
2785#endif
2786
1da177e4
LT
2787/**
2788 * schedule_tail - first thing a freshly forked thread must call.
2789 * @prev: the thread we just switched away from.
2790 */
722a9f92 2791asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2792 __releases(rq->lock)
2793{
1a43a14a 2794 struct rq *rq;
da19ab51 2795
609ca066
PZ
2796 /*
2797 * New tasks start with FORK_PREEMPT_COUNT, see there and
2798 * finish_task_switch() for details.
2799 *
2800 * finish_task_switch() will drop rq->lock() and lower preempt_count
2801 * and the preempt_enable() will end up enabling preemption (on
2802 * PREEMPT_COUNT kernels).
2803 */
2804
dfa50b60 2805 rq = finish_task_switch(prev);
e3fca9e7 2806 balance_callback(rq);
1a43a14a 2807 preempt_enable();
70b97a7f 2808
1da177e4 2809 if (current->set_child_tid)
b488893a 2810 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2811}
2812
2813/*
dfa50b60 2814 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2815 */
04936948 2816static __always_inline struct rq *
70b97a7f 2817context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2818 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2819{
dd41f596 2820 struct mm_struct *mm, *oldmm;
1da177e4 2821
e107be36 2822 prepare_task_switch(rq, prev, next);
fe4b04fa 2823
dd41f596
IM
2824 mm = next->mm;
2825 oldmm = prev->active_mm;
9226d125
ZA
2826 /*
2827 * For paravirt, this is coupled with an exit in switch_to to
2828 * combine the page table reload and the switch backend into
2829 * one hypercall.
2830 */
224101ed 2831 arch_start_context_switch(prev);
9226d125 2832
31915ab4 2833 if (!mm) {
1da177e4
LT
2834 next->active_mm = oldmm;
2835 atomic_inc(&oldmm->mm_count);
2836 enter_lazy_tlb(oldmm, next);
2837 } else
f98db601 2838 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2839
31915ab4 2840 if (!prev->mm) {
1da177e4 2841 prev->active_mm = NULL;
1da177e4
LT
2842 rq->prev_mm = oldmm;
2843 }
3a5f5e48
IM
2844 /*
2845 * Since the runqueue lock will be released by the next
2846 * task (which is an invalid locking op but in the case
2847 * of the scheduler it's an obvious special-case), so we
2848 * do an early lockdep release here:
2849 */
e7904a28 2850 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2851 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2852
2853 /* Here we just switch the register state and the stack. */
2854 switch_to(prev, next, prev);
dd41f596 2855 barrier();
dfa50b60
ON
2856
2857 return finish_task_switch(prev);
1da177e4
LT
2858}
2859
2860/*
1c3e8264 2861 * nr_running and nr_context_switches:
1da177e4
LT
2862 *
2863 * externally visible scheduler statistics: current number of runnable
1c3e8264 2864 * threads, total number of context switches performed since bootup.
1da177e4
LT
2865 */
2866unsigned long nr_running(void)
2867{
2868 unsigned long i, sum = 0;
2869
2870 for_each_online_cpu(i)
2871 sum += cpu_rq(i)->nr_running;
2872
2873 return sum;
f711f609 2874}
1da177e4 2875
2ee507c4
TC
2876/*
2877 * Check if only the current task is running on the cpu.
00cc1633
DD
2878 *
2879 * Caution: this function does not check that the caller has disabled
2880 * preemption, thus the result might have a time-of-check-to-time-of-use
2881 * race. The caller is responsible to use it correctly, for example:
2882 *
2883 * - from a non-preemptable section (of course)
2884 *
2885 * - from a thread that is bound to a single CPU
2886 *
2887 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2888 */
2889bool single_task_running(void)
2890{
00cc1633 2891 return raw_rq()->nr_running == 1;
2ee507c4
TC
2892}
2893EXPORT_SYMBOL(single_task_running);
2894
1da177e4 2895unsigned long long nr_context_switches(void)
46cb4b7c 2896{
cc94abfc
SR
2897 int i;
2898 unsigned long long sum = 0;
46cb4b7c 2899
0a945022 2900 for_each_possible_cpu(i)
1da177e4 2901 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2902
1da177e4
LT
2903 return sum;
2904}
483b4ee6 2905
1da177e4
LT
2906unsigned long nr_iowait(void)
2907{
2908 unsigned long i, sum = 0;
483b4ee6 2909
0a945022 2910 for_each_possible_cpu(i)
1da177e4 2911 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2912
1da177e4
LT
2913 return sum;
2914}
483b4ee6 2915
8c215bd3 2916unsigned long nr_iowait_cpu(int cpu)
69d25870 2917{
8c215bd3 2918 struct rq *this = cpu_rq(cpu);
69d25870
AV
2919 return atomic_read(&this->nr_iowait);
2920}
46cb4b7c 2921
372ba8cb
MG
2922void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2923{
3289bdb4
PZ
2924 struct rq *rq = this_rq();
2925 *nr_waiters = atomic_read(&rq->nr_iowait);
2926 *load = rq->load.weight;
372ba8cb
MG
2927}
2928
dd41f596 2929#ifdef CONFIG_SMP
8a0be9ef 2930
46cb4b7c 2931/*
38022906
PZ
2932 * sched_exec - execve() is a valuable balancing opportunity, because at
2933 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2934 */
38022906 2935void sched_exec(void)
46cb4b7c 2936{
38022906 2937 struct task_struct *p = current;
1da177e4 2938 unsigned long flags;
0017d735 2939 int dest_cpu;
46cb4b7c 2940
8f42ced9 2941 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2942 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2943 if (dest_cpu == smp_processor_id())
2944 goto unlock;
38022906 2945
8f42ced9 2946 if (likely(cpu_active(dest_cpu))) {
969c7921 2947 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2948
8f42ced9
PZ
2949 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2950 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2951 return;
2952 }
0017d735 2953unlock:
8f42ced9 2954 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2955}
dd41f596 2956
1da177e4
LT
2957#endif
2958
1da177e4 2959DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2960DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2961
2962EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2963EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2964
c5f8d995
HS
2965/*
2966 * Return accounted runtime for the task.
2967 * In case the task is currently running, return the runtime plus current's
2968 * pending runtime that have not been accounted yet.
2969 */
2970unsigned long long task_sched_runtime(struct task_struct *p)
2971{
eb580751 2972 struct rq_flags rf;
c5f8d995 2973 struct rq *rq;
6e998916 2974 u64 ns;
c5f8d995 2975
911b2898
PZ
2976#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2977 /*
2978 * 64-bit doesn't need locks to atomically read a 64bit value.
2979 * So we have a optimization chance when the task's delta_exec is 0.
2980 * Reading ->on_cpu is racy, but this is ok.
2981 *
2982 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2983 * If we race with it entering cpu, unaccounted time is 0. This is
2984 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2985 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2986 * been accounted, so we're correct here as well.
911b2898 2987 */
da0c1e65 2988 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2989 return p->se.sum_exec_runtime;
2990#endif
2991
eb580751 2992 rq = task_rq_lock(p, &rf);
6e998916
SG
2993 /*
2994 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2995 * project cycles that may never be accounted to this
2996 * thread, breaking clock_gettime().
2997 */
2998 if (task_current(rq, p) && task_on_rq_queued(p)) {
2999 update_rq_clock(rq);
3000 p->sched_class->update_curr(rq);
3001 }
3002 ns = p->se.sum_exec_runtime;
eb580751 3003 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3004
3005 return ns;
3006}
48f24c4d 3007
7835b98b
CL
3008/*
3009 * This function gets called by the timer code, with HZ frequency.
3010 * We call it with interrupts disabled.
7835b98b
CL
3011 */
3012void scheduler_tick(void)
3013{
7835b98b
CL
3014 int cpu = smp_processor_id();
3015 struct rq *rq = cpu_rq(cpu);
dd41f596 3016 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3017
3018 sched_clock_tick();
dd41f596 3019
05fa785c 3020 raw_spin_lock(&rq->lock);
3e51f33f 3021 update_rq_clock(rq);
fa85ae24 3022 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3023 cpu_load_update_active(rq);
3289bdb4 3024 calc_global_load_tick(rq);
05fa785c 3025 raw_spin_unlock(&rq->lock);
7835b98b 3026
e9d2b064 3027 perf_event_task_tick();
e220d2dc 3028
e418e1c2 3029#ifdef CONFIG_SMP
6eb57e0d 3030 rq->idle_balance = idle_cpu(cpu);
7caff66f 3031 trigger_load_balance(rq);
e418e1c2 3032#endif
265f22a9 3033 rq_last_tick_reset(rq);
1da177e4
LT
3034}
3035
265f22a9
FW
3036#ifdef CONFIG_NO_HZ_FULL
3037/**
3038 * scheduler_tick_max_deferment
3039 *
3040 * Keep at least one tick per second when a single
3041 * active task is running because the scheduler doesn't
3042 * yet completely support full dynticks environment.
3043 *
3044 * This makes sure that uptime, CFS vruntime, load
3045 * balancing, etc... continue to move forward, even
3046 * with a very low granularity.
e69f6186
YB
3047 *
3048 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3049 */
3050u64 scheduler_tick_max_deferment(void)
3051{
3052 struct rq *rq = this_rq();
316c1608 3053 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3054
3055 next = rq->last_sched_tick + HZ;
3056
3057 if (time_before_eq(next, now))
3058 return 0;
3059
8fe8ff09 3060 return jiffies_to_nsecs(next - now);
1da177e4 3061}
265f22a9 3062#endif
1da177e4 3063
7e49fcce
SR
3064#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3065 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3066/*
3067 * If the value passed in is equal to the current preempt count
3068 * then we just disabled preemption. Start timing the latency.
3069 */
3070static inline void preempt_latency_start(int val)
3071{
3072 if (preempt_count() == val) {
3073 unsigned long ip = get_lock_parent_ip();
3074#ifdef CONFIG_DEBUG_PREEMPT
3075 current->preempt_disable_ip = ip;
3076#endif
3077 trace_preempt_off(CALLER_ADDR0, ip);
3078 }
3079}
7e49fcce 3080
edafe3a5 3081void preempt_count_add(int val)
1da177e4 3082{
6cd8a4bb 3083#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3084 /*
3085 * Underflow?
3086 */
9a11b49a
IM
3087 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3088 return;
6cd8a4bb 3089#endif
bdb43806 3090 __preempt_count_add(val);
6cd8a4bb 3091#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3092 /*
3093 * Spinlock count overflowing soon?
3094 */
33859f7f
MOS
3095 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3096 PREEMPT_MASK - 10);
6cd8a4bb 3097#endif
47252cfb 3098 preempt_latency_start(val);
1da177e4 3099}
bdb43806 3100EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3101NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3102
47252cfb
SR
3103/*
3104 * If the value passed in equals to the current preempt count
3105 * then we just enabled preemption. Stop timing the latency.
3106 */
3107static inline void preempt_latency_stop(int val)
3108{
3109 if (preempt_count() == val)
3110 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3111}
3112
edafe3a5 3113void preempt_count_sub(int val)
1da177e4 3114{
6cd8a4bb 3115#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3116 /*
3117 * Underflow?
3118 */
01e3eb82 3119 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3120 return;
1da177e4
LT
3121 /*
3122 * Is the spinlock portion underflowing?
3123 */
9a11b49a
IM
3124 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3125 !(preempt_count() & PREEMPT_MASK)))
3126 return;
6cd8a4bb 3127#endif
9a11b49a 3128
47252cfb 3129 preempt_latency_stop(val);
bdb43806 3130 __preempt_count_sub(val);
1da177e4 3131}
bdb43806 3132EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3133NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3134
47252cfb
SR
3135#else
3136static inline void preempt_latency_start(int val) { }
3137static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3138#endif
3139
3140/*
dd41f596 3141 * Print scheduling while atomic bug:
1da177e4 3142 */
dd41f596 3143static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3144{
664dfa65
DJ
3145 if (oops_in_progress)
3146 return;
3147
3df0fc5b
PZ
3148 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3149 prev->comm, prev->pid, preempt_count());
838225b4 3150
dd41f596 3151 debug_show_held_locks(prev);
e21f5b15 3152 print_modules();
dd41f596
IM
3153 if (irqs_disabled())
3154 print_irqtrace_events(prev);
8f47b187
TG
3155#ifdef CONFIG_DEBUG_PREEMPT
3156 if (in_atomic_preempt_off()) {
3157 pr_err("Preemption disabled at:");
3158 print_ip_sym(current->preempt_disable_ip);
3159 pr_cont("\n");
3160 }
3161#endif
6135fc1e 3162 dump_stack();
373d4d09 3163 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3164}
1da177e4 3165
dd41f596
IM
3166/*
3167 * Various schedule()-time debugging checks and statistics:
3168 */
3169static inline void schedule_debug(struct task_struct *prev)
3170{
0d9e2632 3171#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3172 if (task_stack_end_corrupted(prev))
3173 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3174#endif
b99def8b 3175
1dc0fffc 3176 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3177 __schedule_bug(prev);
1dc0fffc
PZ
3178 preempt_count_set(PREEMPT_DISABLED);
3179 }
b3fbab05 3180 rcu_sleep_check();
dd41f596 3181
1da177e4
LT
3182 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3183
2d72376b 3184 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3185}
3186
3187/*
3188 * Pick up the highest-prio task:
3189 */
3190static inline struct task_struct *
e7904a28 3191pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3192{
37e117c0 3193 const struct sched_class *class = &fair_sched_class;
dd41f596 3194 struct task_struct *p;
1da177e4
LT
3195
3196 /*
dd41f596
IM
3197 * Optimization: we know that if all tasks are in
3198 * the fair class we can call that function directly:
1da177e4 3199 */
37e117c0 3200 if (likely(prev->sched_class == class &&
38033c37 3201 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3202 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3203 if (unlikely(p == RETRY_TASK))
3204 goto again;
3205
3206 /* assumes fair_sched_class->next == idle_sched_class */
3207 if (unlikely(!p))
e7904a28 3208 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3209
3210 return p;
1da177e4
LT
3211 }
3212
37e117c0 3213again:
34f971f6 3214 for_each_class(class) {
e7904a28 3215 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3216 if (p) {
3217 if (unlikely(p == RETRY_TASK))
3218 goto again;
dd41f596 3219 return p;
37e117c0 3220 }
dd41f596 3221 }
34f971f6
PZ
3222
3223 BUG(); /* the idle class will always have a runnable task */
dd41f596 3224}
1da177e4 3225
dd41f596 3226/*
c259e01a 3227 * __schedule() is the main scheduler function.
edde96ea
PE
3228 *
3229 * The main means of driving the scheduler and thus entering this function are:
3230 *
3231 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3232 *
3233 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3234 * paths. For example, see arch/x86/entry_64.S.
3235 *
3236 * To drive preemption between tasks, the scheduler sets the flag in timer
3237 * interrupt handler scheduler_tick().
3238 *
3239 * 3. Wakeups don't really cause entry into schedule(). They add a
3240 * task to the run-queue and that's it.
3241 *
3242 * Now, if the new task added to the run-queue preempts the current
3243 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3244 * called on the nearest possible occasion:
3245 *
3246 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3247 *
3248 * - in syscall or exception context, at the next outmost
3249 * preempt_enable(). (this might be as soon as the wake_up()'s
3250 * spin_unlock()!)
3251 *
3252 * - in IRQ context, return from interrupt-handler to
3253 * preemptible context
3254 *
3255 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3256 * then at the next:
3257 *
3258 * - cond_resched() call
3259 * - explicit schedule() call
3260 * - return from syscall or exception to user-space
3261 * - return from interrupt-handler to user-space
bfd9b2b5 3262 *
b30f0e3f 3263 * WARNING: must be called with preemption disabled!
dd41f596 3264 */
499d7955 3265static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3266{
3267 struct task_struct *prev, *next;
67ca7bde 3268 unsigned long *switch_count;
e7904a28 3269 struct pin_cookie cookie;
dd41f596 3270 struct rq *rq;
31656519 3271 int cpu;
dd41f596 3272
dd41f596
IM
3273 cpu = smp_processor_id();
3274 rq = cpu_rq(cpu);
dd41f596 3275 prev = rq->curr;
dd41f596 3276
b99def8b
PZ
3277 /*
3278 * do_exit() calls schedule() with preemption disabled as an exception;
3279 * however we must fix that up, otherwise the next task will see an
3280 * inconsistent (higher) preempt count.
3281 *
3282 * It also avoids the below schedule_debug() test from complaining
3283 * about this.
3284 */
3285 if (unlikely(prev->state == TASK_DEAD))
3286 preempt_enable_no_resched_notrace();
3287
dd41f596 3288 schedule_debug(prev);
1da177e4 3289
31656519 3290 if (sched_feat(HRTICK))
f333fdc9 3291 hrtick_clear(rq);
8f4d37ec 3292
46a5d164
PM
3293 local_irq_disable();
3294 rcu_note_context_switch();
3295
e0acd0a6
ON
3296 /*
3297 * Make sure that signal_pending_state()->signal_pending() below
3298 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3299 * done by the caller to avoid the race with signal_wake_up().
3300 */
3301 smp_mb__before_spinlock();
46a5d164 3302 raw_spin_lock(&rq->lock);
e7904a28 3303 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3304
9edfbfed
PZ
3305 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3306
246d86b5 3307 switch_count = &prev->nivcsw;
fc13aeba 3308 if (!preempt && prev->state) {
21aa9af0 3309 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3310 prev->state = TASK_RUNNING;
21aa9af0 3311 } else {
2acca55e
PZ
3312 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3313 prev->on_rq = 0;
3314
21aa9af0 3315 /*
2acca55e
PZ
3316 * If a worker went to sleep, notify and ask workqueue
3317 * whether it wants to wake up a task to maintain
3318 * concurrency.
21aa9af0
TH
3319 */
3320 if (prev->flags & PF_WQ_WORKER) {
3321 struct task_struct *to_wakeup;
3322
9b7f6597 3323 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3324 if (to_wakeup)
e7904a28 3325 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3326 }
21aa9af0 3327 }
dd41f596 3328 switch_count = &prev->nvcsw;
1da177e4
LT
3329 }
3330
9edfbfed 3331 if (task_on_rq_queued(prev))
606dba2e
PZ
3332 update_rq_clock(rq);
3333
e7904a28 3334 next = pick_next_task(rq, prev, cookie);
f26f9aff 3335 clear_tsk_need_resched(prev);
f27dde8d 3336 clear_preempt_need_resched();
9edfbfed 3337 rq->clock_skip_update = 0;
1da177e4 3338
1da177e4 3339 if (likely(prev != next)) {
1da177e4
LT
3340 rq->nr_switches++;
3341 rq->curr = next;
3342 ++*switch_count;
3343
c73464b1 3344 trace_sched_switch(preempt, prev, next);
e7904a28 3345 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3346 } else {
e7904a28 3347 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3348 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3349 }
1da177e4 3350
e3fca9e7 3351 balance_callback(rq);
1da177e4 3352}
8e05e96a 3353STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3354
9c40cef2
TG
3355static inline void sched_submit_work(struct task_struct *tsk)
3356{
3c7d5184 3357 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3358 return;
3359 /*
3360 * If we are going to sleep and we have plugged IO queued,
3361 * make sure to submit it to avoid deadlocks.
3362 */
3363 if (blk_needs_flush_plug(tsk))
3364 blk_schedule_flush_plug(tsk);
3365}
3366
722a9f92 3367asmlinkage __visible void __sched schedule(void)
c259e01a 3368{
9c40cef2
TG
3369 struct task_struct *tsk = current;
3370
3371 sched_submit_work(tsk);
bfd9b2b5 3372 do {
b30f0e3f 3373 preempt_disable();
fc13aeba 3374 __schedule(false);
b30f0e3f 3375 sched_preempt_enable_no_resched();
bfd9b2b5 3376 } while (need_resched());
c259e01a 3377}
1da177e4
LT
3378EXPORT_SYMBOL(schedule);
3379
91d1aa43 3380#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3381asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3382{
3383 /*
3384 * If we come here after a random call to set_need_resched(),
3385 * or we have been woken up remotely but the IPI has not yet arrived,
3386 * we haven't yet exited the RCU idle mode. Do it here manually until
3387 * we find a better solution.
7cc78f8f
AL
3388 *
3389 * NB: There are buggy callers of this function. Ideally we
c467ea76 3390 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3391 * too frequently to make sense yet.
20ab65e3 3392 */
7cc78f8f 3393 enum ctx_state prev_state = exception_enter();
20ab65e3 3394 schedule();
7cc78f8f 3395 exception_exit(prev_state);
20ab65e3
FW
3396}
3397#endif
3398
c5491ea7
TG
3399/**
3400 * schedule_preempt_disabled - called with preemption disabled
3401 *
3402 * Returns with preemption disabled. Note: preempt_count must be 1
3403 */
3404void __sched schedule_preempt_disabled(void)
3405{
ba74c144 3406 sched_preempt_enable_no_resched();
c5491ea7
TG
3407 schedule();
3408 preempt_disable();
3409}
3410
06b1f808 3411static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3412{
3413 do {
47252cfb
SR
3414 /*
3415 * Because the function tracer can trace preempt_count_sub()
3416 * and it also uses preempt_enable/disable_notrace(), if
3417 * NEED_RESCHED is set, the preempt_enable_notrace() called
3418 * by the function tracer will call this function again and
3419 * cause infinite recursion.
3420 *
3421 * Preemption must be disabled here before the function
3422 * tracer can trace. Break up preempt_disable() into two
3423 * calls. One to disable preemption without fear of being
3424 * traced. The other to still record the preemption latency,
3425 * which can also be traced by the function tracer.
3426 */
499d7955 3427 preempt_disable_notrace();
47252cfb 3428 preempt_latency_start(1);
fc13aeba 3429 __schedule(true);
47252cfb 3430 preempt_latency_stop(1);
499d7955 3431 preempt_enable_no_resched_notrace();
a18b5d01
FW
3432
3433 /*
3434 * Check again in case we missed a preemption opportunity
3435 * between schedule and now.
3436 */
a18b5d01
FW
3437 } while (need_resched());
3438}
3439
1da177e4
LT
3440#ifdef CONFIG_PREEMPT
3441/*
2ed6e34f 3442 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3443 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3444 * occur there and call schedule directly.
3445 */
722a9f92 3446asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3447{
1da177e4
LT
3448 /*
3449 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3450 * we do not want to preempt the current task. Just return..
1da177e4 3451 */
fbb00b56 3452 if (likely(!preemptible()))
1da177e4
LT
3453 return;
3454
a18b5d01 3455 preempt_schedule_common();
1da177e4 3456}
376e2424 3457NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3458EXPORT_SYMBOL(preempt_schedule);
009f60e2 3459
009f60e2 3460/**
4eaca0a8 3461 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3462 *
3463 * The tracing infrastructure uses preempt_enable_notrace to prevent
3464 * recursion and tracing preempt enabling caused by the tracing
3465 * infrastructure itself. But as tracing can happen in areas coming
3466 * from userspace or just about to enter userspace, a preempt enable
3467 * can occur before user_exit() is called. This will cause the scheduler
3468 * to be called when the system is still in usermode.
3469 *
3470 * To prevent this, the preempt_enable_notrace will use this function
3471 * instead of preempt_schedule() to exit user context if needed before
3472 * calling the scheduler.
3473 */
4eaca0a8 3474asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3475{
3476 enum ctx_state prev_ctx;
3477
3478 if (likely(!preemptible()))
3479 return;
3480
3481 do {
47252cfb
SR
3482 /*
3483 * Because the function tracer can trace preempt_count_sub()
3484 * and it also uses preempt_enable/disable_notrace(), if
3485 * NEED_RESCHED is set, the preempt_enable_notrace() called
3486 * by the function tracer will call this function again and
3487 * cause infinite recursion.
3488 *
3489 * Preemption must be disabled here before the function
3490 * tracer can trace. Break up preempt_disable() into two
3491 * calls. One to disable preemption without fear of being
3492 * traced. The other to still record the preemption latency,
3493 * which can also be traced by the function tracer.
3494 */
3d8f74dd 3495 preempt_disable_notrace();
47252cfb 3496 preempt_latency_start(1);
009f60e2
ON
3497 /*
3498 * Needs preempt disabled in case user_exit() is traced
3499 * and the tracer calls preempt_enable_notrace() causing
3500 * an infinite recursion.
3501 */
3502 prev_ctx = exception_enter();
fc13aeba 3503 __schedule(true);
009f60e2
ON
3504 exception_exit(prev_ctx);
3505
47252cfb 3506 preempt_latency_stop(1);
3d8f74dd 3507 preempt_enable_no_resched_notrace();
009f60e2
ON
3508 } while (need_resched());
3509}
4eaca0a8 3510EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3511
32e475d7 3512#endif /* CONFIG_PREEMPT */
1da177e4
LT
3513
3514/*
2ed6e34f 3515 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3516 * off of irq context.
3517 * Note, that this is called and return with irqs disabled. This will
3518 * protect us against recursive calling from irq.
3519 */
722a9f92 3520asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3521{
b22366cd 3522 enum ctx_state prev_state;
6478d880 3523
2ed6e34f 3524 /* Catch callers which need to be fixed */
f27dde8d 3525 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3526
b22366cd
FW
3527 prev_state = exception_enter();
3528
3a5c359a 3529 do {
3d8f74dd 3530 preempt_disable();
3a5c359a 3531 local_irq_enable();
fc13aeba 3532 __schedule(true);
3a5c359a 3533 local_irq_disable();
3d8f74dd 3534 sched_preempt_enable_no_resched();
5ed0cec0 3535 } while (need_resched());
b22366cd
FW
3536
3537 exception_exit(prev_state);
1da177e4
LT
3538}
3539
63859d4f 3540int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3541 void *key)
1da177e4 3542{
63859d4f 3543 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3544}
1da177e4
LT
3545EXPORT_SYMBOL(default_wake_function);
3546
b29739f9
IM
3547#ifdef CONFIG_RT_MUTEXES
3548
3549/*
3550 * rt_mutex_setprio - set the current priority of a task
3551 * @p: task
3552 * @prio: prio value (kernel-internal form)
3553 *
3554 * This function changes the 'effective' priority of a task. It does
3555 * not touch ->normal_prio like __setscheduler().
3556 *
c365c292
TG
3557 * Used by the rt_mutex code to implement priority inheritance
3558 * logic. Call site only calls if the priority of the task changed.
b29739f9 3559 */
36c8b586 3560void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3561{
ff77e468 3562 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3563 const struct sched_class *prev_class;
eb580751
PZ
3564 struct rq_flags rf;
3565 struct rq *rq;
b29739f9 3566
aab03e05 3567 BUG_ON(prio > MAX_PRIO);
b29739f9 3568
eb580751 3569 rq = __task_rq_lock(p, &rf);
b29739f9 3570
1c4dd99b
TG
3571 /*
3572 * Idle task boosting is a nono in general. There is one
3573 * exception, when PREEMPT_RT and NOHZ is active:
3574 *
3575 * The idle task calls get_next_timer_interrupt() and holds
3576 * the timer wheel base->lock on the CPU and another CPU wants
3577 * to access the timer (probably to cancel it). We can safely
3578 * ignore the boosting request, as the idle CPU runs this code
3579 * with interrupts disabled and will complete the lock
3580 * protected section without being interrupted. So there is no
3581 * real need to boost.
3582 */
3583 if (unlikely(p == rq->idle)) {
3584 WARN_ON(p != rq->curr);
3585 WARN_ON(p->pi_blocked_on);
3586 goto out_unlock;
3587 }
3588
a8027073 3589 trace_sched_pi_setprio(p, prio);
d5f9f942 3590 oldprio = p->prio;
ff77e468
PZ
3591
3592 if (oldprio == prio)
3593 queue_flag &= ~DEQUEUE_MOVE;
3594
83ab0aa0 3595 prev_class = p->sched_class;
da0c1e65 3596 queued = task_on_rq_queued(p);
051a1d1a 3597 running = task_current(rq, p);
da0c1e65 3598 if (queued)
ff77e468 3599 dequeue_task(rq, p, queue_flag);
0e1f3483 3600 if (running)
f3cd1c4e 3601 put_prev_task(rq, p);
dd41f596 3602
2d3d891d
DF
3603 /*
3604 * Boosting condition are:
3605 * 1. -rt task is running and holds mutex A
3606 * --> -dl task blocks on mutex A
3607 *
3608 * 2. -dl task is running and holds mutex A
3609 * --> -dl task blocks on mutex A and could preempt the
3610 * running task
3611 */
3612 if (dl_prio(prio)) {
466af29b
ON
3613 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3614 if (!dl_prio(p->normal_prio) ||
3615 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3616 p->dl.dl_boosted = 1;
ff77e468 3617 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3618 } else
3619 p->dl.dl_boosted = 0;
aab03e05 3620 p->sched_class = &dl_sched_class;
2d3d891d
DF
3621 } else if (rt_prio(prio)) {
3622 if (dl_prio(oldprio))
3623 p->dl.dl_boosted = 0;
3624 if (oldprio < prio)
ff77e468 3625 queue_flag |= ENQUEUE_HEAD;
dd41f596 3626 p->sched_class = &rt_sched_class;
2d3d891d
DF
3627 } else {
3628 if (dl_prio(oldprio))
3629 p->dl.dl_boosted = 0;
746db944
BS
3630 if (rt_prio(oldprio))
3631 p->rt.timeout = 0;
dd41f596 3632 p->sched_class = &fair_sched_class;
2d3d891d 3633 }
dd41f596 3634
b29739f9
IM
3635 p->prio = prio;
3636
0e1f3483
HS
3637 if (running)
3638 p->sched_class->set_curr_task(rq);
da0c1e65 3639 if (queued)
ff77e468 3640 enqueue_task(rq, p, queue_flag);
cb469845 3641
da7a735e 3642 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3643out_unlock:
4c9a4bc8 3644 preempt_disable(); /* avoid rq from going away on us */
eb580751 3645 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3646
3647 balance_callback(rq);
3648 preempt_enable();
b29739f9 3649}
b29739f9 3650#endif
d50dde5a 3651
36c8b586 3652void set_user_nice(struct task_struct *p, long nice)
1da177e4 3653{
da0c1e65 3654 int old_prio, delta, queued;
eb580751 3655 struct rq_flags rf;
70b97a7f 3656 struct rq *rq;
1da177e4 3657
75e45d51 3658 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3659 return;
3660 /*
3661 * We have to be careful, if called from sys_setpriority(),
3662 * the task might be in the middle of scheduling on another CPU.
3663 */
eb580751 3664 rq = task_rq_lock(p, &rf);
1da177e4
LT
3665 /*
3666 * The RT priorities are set via sched_setscheduler(), but we still
3667 * allow the 'normal' nice value to be set - but as expected
3668 * it wont have any effect on scheduling until the task is
aab03e05 3669 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3670 */
aab03e05 3671 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3672 p->static_prio = NICE_TO_PRIO(nice);
3673 goto out_unlock;
3674 }
da0c1e65
KT
3675 queued = task_on_rq_queued(p);
3676 if (queued)
1de64443 3677 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3678
1da177e4 3679 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3680 set_load_weight(p);
b29739f9
IM
3681 old_prio = p->prio;
3682 p->prio = effective_prio(p);
3683 delta = p->prio - old_prio;
1da177e4 3684
da0c1e65 3685 if (queued) {
1de64443 3686 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3687 /*
d5f9f942
AM
3688 * If the task increased its priority or is running and
3689 * lowered its priority, then reschedule its CPU:
1da177e4 3690 */
d5f9f942 3691 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3692 resched_curr(rq);
1da177e4
LT
3693 }
3694out_unlock:
eb580751 3695 task_rq_unlock(rq, p, &rf);
1da177e4 3696}
1da177e4
LT
3697EXPORT_SYMBOL(set_user_nice);
3698
e43379f1
MM
3699/*
3700 * can_nice - check if a task can reduce its nice value
3701 * @p: task
3702 * @nice: nice value
3703 */
36c8b586 3704int can_nice(const struct task_struct *p, const int nice)
e43379f1 3705{
024f4747 3706 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3707 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3708
78d7d407 3709 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3710 capable(CAP_SYS_NICE));
3711}
3712
1da177e4
LT
3713#ifdef __ARCH_WANT_SYS_NICE
3714
3715/*
3716 * sys_nice - change the priority of the current process.
3717 * @increment: priority increment
3718 *
3719 * sys_setpriority is a more generic, but much slower function that
3720 * does similar things.
3721 */
5add95d4 3722SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3723{
48f24c4d 3724 long nice, retval;
1da177e4
LT
3725
3726 /*
3727 * Setpriority might change our priority at the same moment.
3728 * We don't have to worry. Conceptually one call occurs first
3729 * and we have a single winner.
3730 */
a9467fa3 3731 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3732 nice = task_nice(current) + increment;
1da177e4 3733
a9467fa3 3734 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3735 if (increment < 0 && !can_nice(current, nice))
3736 return -EPERM;
3737
1da177e4
LT
3738 retval = security_task_setnice(current, nice);
3739 if (retval)
3740 return retval;
3741
3742 set_user_nice(current, nice);
3743 return 0;
3744}
3745
3746#endif
3747
3748/**
3749 * task_prio - return the priority value of a given task.
3750 * @p: the task in question.
3751 *
e69f6186 3752 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3753 * RT tasks are offset by -200. Normal tasks are centered
3754 * around 0, value goes from -16 to +15.
3755 */
36c8b586 3756int task_prio(const struct task_struct *p)
1da177e4
LT
3757{
3758 return p->prio - MAX_RT_PRIO;
3759}
3760
1da177e4
LT
3761/**
3762 * idle_cpu - is a given cpu idle currently?
3763 * @cpu: the processor in question.
e69f6186
YB
3764 *
3765 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3766 */
3767int idle_cpu(int cpu)
3768{
908a3283
TG
3769 struct rq *rq = cpu_rq(cpu);
3770
3771 if (rq->curr != rq->idle)
3772 return 0;
3773
3774 if (rq->nr_running)
3775 return 0;
3776
3777#ifdef CONFIG_SMP
3778 if (!llist_empty(&rq->wake_list))
3779 return 0;
3780#endif
3781
3782 return 1;
1da177e4
LT
3783}
3784
1da177e4
LT
3785/**
3786 * idle_task - return the idle task for a given cpu.
3787 * @cpu: the processor in question.
e69f6186
YB
3788 *
3789 * Return: The idle task for the cpu @cpu.
1da177e4 3790 */
36c8b586 3791struct task_struct *idle_task(int cpu)
1da177e4
LT
3792{
3793 return cpu_rq(cpu)->idle;
3794}
3795
3796/**
3797 * find_process_by_pid - find a process with a matching PID value.
3798 * @pid: the pid in question.
e69f6186
YB
3799 *
3800 * The task of @pid, if found. %NULL otherwise.
1da177e4 3801 */
a9957449 3802static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3803{
228ebcbe 3804 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3805}
3806
aab03e05
DF
3807/*
3808 * This function initializes the sched_dl_entity of a newly becoming
3809 * SCHED_DEADLINE task.
3810 *
3811 * Only the static values are considered here, the actual runtime and the
3812 * absolute deadline will be properly calculated when the task is enqueued
3813 * for the first time with its new policy.
3814 */
3815static void
3816__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3817{
3818 struct sched_dl_entity *dl_se = &p->dl;
3819
aab03e05
DF
3820 dl_se->dl_runtime = attr->sched_runtime;
3821 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3822 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3823 dl_se->flags = attr->sched_flags;
332ac17e 3824 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3825
3826 /*
3827 * Changing the parameters of a task is 'tricky' and we're not doing
3828 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3829 *
3830 * What we SHOULD do is delay the bandwidth release until the 0-lag
3831 * point. This would include retaining the task_struct until that time
3832 * and change dl_overflow() to not immediately decrement the current
3833 * amount.
3834 *
3835 * Instead we retain the current runtime/deadline and let the new
3836 * parameters take effect after the current reservation period lapses.
3837 * This is safe (albeit pessimistic) because the 0-lag point is always
3838 * before the current scheduling deadline.
3839 *
3840 * We can still have temporary overloads because we do not delay the
3841 * change in bandwidth until that time; so admission control is
3842 * not on the safe side. It does however guarantee tasks will never
3843 * consume more than promised.
3844 */
aab03e05
DF
3845}
3846
c13db6b1
SR
3847/*
3848 * sched_setparam() passes in -1 for its policy, to let the functions
3849 * it calls know not to change it.
3850 */
3851#define SETPARAM_POLICY -1
3852
c365c292
TG
3853static void __setscheduler_params(struct task_struct *p,
3854 const struct sched_attr *attr)
1da177e4 3855{
d50dde5a
DF
3856 int policy = attr->sched_policy;
3857
c13db6b1 3858 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3859 policy = p->policy;
3860
1da177e4 3861 p->policy = policy;
d50dde5a 3862
aab03e05
DF
3863 if (dl_policy(policy))
3864 __setparam_dl(p, attr);
39fd8fd2 3865 else if (fair_policy(policy))
d50dde5a
DF
3866 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3867
39fd8fd2
PZ
3868 /*
3869 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3870 * !rt_policy. Always setting this ensures that things like
3871 * getparam()/getattr() don't report silly values for !rt tasks.
3872 */
3873 p->rt_priority = attr->sched_priority;
383afd09 3874 p->normal_prio = normal_prio(p);
c365c292
TG
3875 set_load_weight(p);
3876}
39fd8fd2 3877
c365c292
TG
3878/* Actually do priority change: must hold pi & rq lock. */
3879static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3880 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3881{
3882 __setscheduler_params(p, attr);
d50dde5a 3883
383afd09 3884 /*
0782e63b
TG
3885 * Keep a potential priority boosting if called from
3886 * sched_setscheduler().
383afd09 3887 */
0782e63b
TG
3888 if (keep_boost)
3889 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3890 else
3891 p->prio = normal_prio(p);
383afd09 3892
aab03e05
DF
3893 if (dl_prio(p->prio))
3894 p->sched_class = &dl_sched_class;
3895 else if (rt_prio(p->prio))
ffd44db5
PZ
3896 p->sched_class = &rt_sched_class;
3897 else
3898 p->sched_class = &fair_sched_class;
1da177e4 3899}
aab03e05
DF
3900
3901static void
3902__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3903{
3904 struct sched_dl_entity *dl_se = &p->dl;
3905
3906 attr->sched_priority = p->rt_priority;
3907 attr->sched_runtime = dl_se->dl_runtime;
3908 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3909 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3910 attr->sched_flags = dl_se->flags;
3911}
3912
3913/*
3914 * This function validates the new parameters of a -deadline task.
3915 * We ask for the deadline not being zero, and greater or equal
755378a4 3916 * than the runtime, as well as the period of being zero or
332ac17e 3917 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3918 * user parameters are above the internal resolution of 1us (we
3919 * check sched_runtime only since it is always the smaller one) and
3920 * below 2^63 ns (we have to check both sched_deadline and
3921 * sched_period, as the latter can be zero).
aab03e05
DF
3922 */
3923static bool
3924__checkparam_dl(const struct sched_attr *attr)
3925{
b0827819
JL
3926 /* deadline != 0 */
3927 if (attr->sched_deadline == 0)
3928 return false;
3929
3930 /*
3931 * Since we truncate DL_SCALE bits, make sure we're at least
3932 * that big.
3933 */
3934 if (attr->sched_runtime < (1ULL << DL_SCALE))
3935 return false;
3936
3937 /*
3938 * Since we use the MSB for wrap-around and sign issues, make
3939 * sure it's not set (mind that period can be equal to zero).
3940 */
3941 if (attr->sched_deadline & (1ULL << 63) ||
3942 attr->sched_period & (1ULL << 63))
3943 return false;
3944
3945 /* runtime <= deadline <= period (if period != 0) */
3946 if ((attr->sched_period != 0 &&
3947 attr->sched_period < attr->sched_deadline) ||
3948 attr->sched_deadline < attr->sched_runtime)
3949 return false;
3950
3951 return true;
aab03e05
DF
3952}
3953
c69e8d9c
DH
3954/*
3955 * check the target process has a UID that matches the current process's
3956 */
3957static bool check_same_owner(struct task_struct *p)
3958{
3959 const struct cred *cred = current_cred(), *pcred;
3960 bool match;
3961
3962 rcu_read_lock();
3963 pcred = __task_cred(p);
9c806aa0
EB
3964 match = (uid_eq(cred->euid, pcred->euid) ||
3965 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3966 rcu_read_unlock();
3967 return match;
3968}
3969
75381608
WL
3970static bool dl_param_changed(struct task_struct *p,
3971 const struct sched_attr *attr)
3972{
3973 struct sched_dl_entity *dl_se = &p->dl;
3974
3975 if (dl_se->dl_runtime != attr->sched_runtime ||
3976 dl_se->dl_deadline != attr->sched_deadline ||
3977 dl_se->dl_period != attr->sched_period ||
3978 dl_se->flags != attr->sched_flags)
3979 return true;
3980
3981 return false;
3982}
3983
d50dde5a
DF
3984static int __sched_setscheduler(struct task_struct *p,
3985 const struct sched_attr *attr,
dbc7f069 3986 bool user, bool pi)
1da177e4 3987{
383afd09
SR
3988 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3989 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3990 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3991 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 3992 const struct sched_class *prev_class;
eb580751 3993 struct rq_flags rf;
ca94c442 3994 int reset_on_fork;
ff77e468 3995 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 3996 struct rq *rq;
1da177e4 3997
66e5393a
SR
3998 /* may grab non-irq protected spin_locks */
3999 BUG_ON(in_interrupt());
1da177e4
LT
4000recheck:
4001 /* double check policy once rq lock held */
ca94c442
LP
4002 if (policy < 0) {
4003 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4004 policy = oldpolicy = p->policy;
ca94c442 4005 } else {
7479f3c9 4006 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4007
20f9cd2a 4008 if (!valid_policy(policy))
ca94c442
LP
4009 return -EINVAL;
4010 }
4011
7479f3c9
PZ
4012 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4013 return -EINVAL;
4014
1da177e4
LT
4015 /*
4016 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4017 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4018 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4019 */
0bb040a4 4020 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4021 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4022 return -EINVAL;
aab03e05
DF
4023 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4024 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4025 return -EINVAL;
4026
37e4ab3f
OC
4027 /*
4028 * Allow unprivileged RT tasks to decrease priority:
4029 */
961ccddd 4030 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4031 if (fair_policy(policy)) {
d0ea0268 4032 if (attr->sched_nice < task_nice(p) &&
eaad4513 4033 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4034 return -EPERM;
4035 }
4036
e05606d3 4037 if (rt_policy(policy)) {
a44702e8
ON
4038 unsigned long rlim_rtprio =
4039 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4040
4041 /* can't set/change the rt policy */
4042 if (policy != p->policy && !rlim_rtprio)
4043 return -EPERM;
4044
4045 /* can't increase priority */
d50dde5a
DF
4046 if (attr->sched_priority > p->rt_priority &&
4047 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4048 return -EPERM;
4049 }
c02aa73b 4050
d44753b8
JL
4051 /*
4052 * Can't set/change SCHED_DEADLINE policy at all for now
4053 * (safest behavior); in the future we would like to allow
4054 * unprivileged DL tasks to increase their relative deadline
4055 * or reduce their runtime (both ways reducing utilization)
4056 */
4057 if (dl_policy(policy))
4058 return -EPERM;
4059
dd41f596 4060 /*
c02aa73b
DH
4061 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4062 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4063 */
20f9cd2a 4064 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4065 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4066 return -EPERM;
4067 }
5fe1d75f 4068
37e4ab3f 4069 /* can't change other user's priorities */
c69e8d9c 4070 if (!check_same_owner(p))
37e4ab3f 4071 return -EPERM;
ca94c442
LP
4072
4073 /* Normal users shall not reset the sched_reset_on_fork flag */
4074 if (p->sched_reset_on_fork && !reset_on_fork)
4075 return -EPERM;
37e4ab3f 4076 }
1da177e4 4077
725aad24 4078 if (user) {
b0ae1981 4079 retval = security_task_setscheduler(p);
725aad24
JF
4080 if (retval)
4081 return retval;
4082 }
4083
b29739f9
IM
4084 /*
4085 * make sure no PI-waiters arrive (or leave) while we are
4086 * changing the priority of the task:
0122ec5b 4087 *
25985edc 4088 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4089 * runqueue lock must be held.
4090 */
eb580751 4091 rq = task_rq_lock(p, &rf);
dc61b1d6 4092
34f971f6
PZ
4093 /*
4094 * Changing the policy of the stop threads its a very bad idea
4095 */
4096 if (p == rq->stop) {
eb580751 4097 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4098 return -EINVAL;
4099 }
4100
a51e9198 4101 /*
d6b1e911
TG
4102 * If not changing anything there's no need to proceed further,
4103 * but store a possible modification of reset_on_fork.
a51e9198 4104 */
d50dde5a 4105 if (unlikely(policy == p->policy)) {
d0ea0268 4106 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4107 goto change;
4108 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4109 goto change;
75381608 4110 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4111 goto change;
d50dde5a 4112
d6b1e911 4113 p->sched_reset_on_fork = reset_on_fork;
eb580751 4114 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4115 return 0;
4116 }
d50dde5a 4117change:
a51e9198 4118
dc61b1d6 4119 if (user) {
332ac17e 4120#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4121 /*
4122 * Do not allow realtime tasks into groups that have no runtime
4123 * assigned.
4124 */
4125 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4126 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4127 !task_group_is_autogroup(task_group(p))) {
eb580751 4128 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4129 return -EPERM;
4130 }
dc61b1d6 4131#endif
332ac17e
DF
4132#ifdef CONFIG_SMP
4133 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4134 cpumask_t *span = rq->rd->span;
332ac17e
DF
4135
4136 /*
4137 * Don't allow tasks with an affinity mask smaller than
4138 * the entire root_domain to become SCHED_DEADLINE. We
4139 * will also fail if there's no bandwidth available.
4140 */
e4099a5e
PZ
4141 if (!cpumask_subset(span, &p->cpus_allowed) ||
4142 rq->rd->dl_bw.bw == 0) {
eb580751 4143 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4144 return -EPERM;
4145 }
4146 }
4147#endif
4148 }
dc61b1d6 4149
1da177e4
LT
4150 /* recheck policy now with rq lock held */
4151 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4152 policy = oldpolicy = -1;
eb580751 4153 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4154 goto recheck;
4155 }
332ac17e
DF
4156
4157 /*
4158 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4159 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4160 * is available.
4161 */
e4099a5e 4162 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4163 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4164 return -EBUSY;
4165 }
4166
c365c292
TG
4167 p->sched_reset_on_fork = reset_on_fork;
4168 oldprio = p->prio;
4169
dbc7f069
PZ
4170 if (pi) {
4171 /*
4172 * Take priority boosted tasks into account. If the new
4173 * effective priority is unchanged, we just store the new
4174 * normal parameters and do not touch the scheduler class and
4175 * the runqueue. This will be done when the task deboost
4176 * itself.
4177 */
4178 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4179 if (new_effective_prio == oldprio)
4180 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4181 }
4182
da0c1e65 4183 queued = task_on_rq_queued(p);
051a1d1a 4184 running = task_current(rq, p);
da0c1e65 4185 if (queued)
ff77e468 4186 dequeue_task(rq, p, queue_flags);
0e1f3483 4187 if (running)
f3cd1c4e 4188 put_prev_task(rq, p);
f6b53205 4189
83ab0aa0 4190 prev_class = p->sched_class;
dbc7f069 4191 __setscheduler(rq, p, attr, pi);
f6b53205 4192
0e1f3483
HS
4193 if (running)
4194 p->sched_class->set_curr_task(rq);
da0c1e65 4195 if (queued) {
81a44c54
TG
4196 /*
4197 * We enqueue to tail when the priority of a task is
4198 * increased (user space view).
4199 */
ff77e468
PZ
4200 if (oldprio < p->prio)
4201 queue_flags |= ENQUEUE_HEAD;
1de64443 4202
ff77e468 4203 enqueue_task(rq, p, queue_flags);
81a44c54 4204 }
cb469845 4205
da7a735e 4206 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4207 preempt_disable(); /* avoid rq from going away on us */
eb580751 4208 task_rq_unlock(rq, p, &rf);
b29739f9 4209
dbc7f069
PZ
4210 if (pi)
4211 rt_mutex_adjust_pi(p);
95e02ca9 4212
4c9a4bc8
PZ
4213 /*
4214 * Run balance callbacks after we've adjusted the PI chain.
4215 */
4216 balance_callback(rq);
4217 preempt_enable();
95e02ca9 4218
1da177e4
LT
4219 return 0;
4220}
961ccddd 4221
7479f3c9
PZ
4222static int _sched_setscheduler(struct task_struct *p, int policy,
4223 const struct sched_param *param, bool check)
4224{
4225 struct sched_attr attr = {
4226 .sched_policy = policy,
4227 .sched_priority = param->sched_priority,
4228 .sched_nice = PRIO_TO_NICE(p->static_prio),
4229 };
4230
c13db6b1
SR
4231 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4232 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4233 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4234 policy &= ~SCHED_RESET_ON_FORK;
4235 attr.sched_policy = policy;
4236 }
4237
dbc7f069 4238 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4239}
961ccddd
RR
4240/**
4241 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4242 * @p: the task in question.
4243 * @policy: new policy.
4244 * @param: structure containing the new RT priority.
4245 *
e69f6186
YB
4246 * Return: 0 on success. An error code otherwise.
4247 *
961ccddd
RR
4248 * NOTE that the task may be already dead.
4249 */
4250int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4251 const struct sched_param *param)
961ccddd 4252{
7479f3c9 4253 return _sched_setscheduler(p, policy, param, true);
961ccddd 4254}
1da177e4
LT
4255EXPORT_SYMBOL_GPL(sched_setscheduler);
4256
d50dde5a
DF
4257int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4258{
dbc7f069 4259 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4260}
4261EXPORT_SYMBOL_GPL(sched_setattr);
4262
961ccddd
RR
4263/**
4264 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4265 * @p: the task in question.
4266 * @policy: new policy.
4267 * @param: structure containing the new RT priority.
4268 *
4269 * Just like sched_setscheduler, only don't bother checking if the
4270 * current context has permission. For example, this is needed in
4271 * stop_machine(): we create temporary high priority worker threads,
4272 * but our caller might not have that capability.
e69f6186
YB
4273 *
4274 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4275 */
4276int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4277 const struct sched_param *param)
961ccddd 4278{
7479f3c9 4279 return _sched_setscheduler(p, policy, param, false);
961ccddd 4280}
84778472 4281EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4282
95cdf3b7
IM
4283static int
4284do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4285{
1da177e4
LT
4286 struct sched_param lparam;
4287 struct task_struct *p;
36c8b586 4288 int retval;
1da177e4
LT
4289
4290 if (!param || pid < 0)
4291 return -EINVAL;
4292 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4293 return -EFAULT;
5fe1d75f
ON
4294
4295 rcu_read_lock();
4296 retval = -ESRCH;
1da177e4 4297 p = find_process_by_pid(pid);
5fe1d75f
ON
4298 if (p != NULL)
4299 retval = sched_setscheduler(p, policy, &lparam);
4300 rcu_read_unlock();
36c8b586 4301
1da177e4
LT
4302 return retval;
4303}
4304
d50dde5a
DF
4305/*
4306 * Mimics kernel/events/core.c perf_copy_attr().
4307 */
4308static int sched_copy_attr(struct sched_attr __user *uattr,
4309 struct sched_attr *attr)
4310{
4311 u32 size;
4312 int ret;
4313
4314 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4315 return -EFAULT;
4316
4317 /*
4318 * zero the full structure, so that a short copy will be nice.
4319 */
4320 memset(attr, 0, sizeof(*attr));
4321
4322 ret = get_user(size, &uattr->size);
4323 if (ret)
4324 return ret;
4325
4326 if (size > PAGE_SIZE) /* silly large */
4327 goto err_size;
4328
4329 if (!size) /* abi compat */
4330 size = SCHED_ATTR_SIZE_VER0;
4331
4332 if (size < SCHED_ATTR_SIZE_VER0)
4333 goto err_size;
4334
4335 /*
4336 * If we're handed a bigger struct than we know of,
4337 * ensure all the unknown bits are 0 - i.e. new
4338 * user-space does not rely on any kernel feature
4339 * extensions we dont know about yet.
4340 */
4341 if (size > sizeof(*attr)) {
4342 unsigned char __user *addr;
4343 unsigned char __user *end;
4344 unsigned char val;
4345
4346 addr = (void __user *)uattr + sizeof(*attr);
4347 end = (void __user *)uattr + size;
4348
4349 for (; addr < end; addr++) {
4350 ret = get_user(val, addr);
4351 if (ret)
4352 return ret;
4353 if (val)
4354 goto err_size;
4355 }
4356 size = sizeof(*attr);
4357 }
4358
4359 ret = copy_from_user(attr, uattr, size);
4360 if (ret)
4361 return -EFAULT;
4362
4363 /*
4364 * XXX: do we want to be lenient like existing syscalls; or do we want
4365 * to be strict and return an error on out-of-bounds values?
4366 */
75e45d51 4367 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4368
e78c7bca 4369 return 0;
d50dde5a
DF
4370
4371err_size:
4372 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4373 return -E2BIG;
d50dde5a
DF
4374}
4375
1da177e4
LT
4376/**
4377 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4378 * @pid: the pid in question.
4379 * @policy: new policy.
4380 * @param: structure containing the new RT priority.
e69f6186
YB
4381 *
4382 * Return: 0 on success. An error code otherwise.
1da177e4 4383 */
5add95d4
HC
4384SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4385 struct sched_param __user *, param)
1da177e4 4386{
c21761f1
JB
4387 /* negative values for policy are not valid */
4388 if (policy < 0)
4389 return -EINVAL;
4390
1da177e4
LT
4391 return do_sched_setscheduler(pid, policy, param);
4392}
4393
4394/**
4395 * sys_sched_setparam - set/change the RT priority of a thread
4396 * @pid: the pid in question.
4397 * @param: structure containing the new RT priority.
e69f6186
YB
4398 *
4399 * Return: 0 on success. An error code otherwise.
1da177e4 4400 */
5add95d4 4401SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4402{
c13db6b1 4403 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4404}
4405
d50dde5a
DF
4406/**
4407 * sys_sched_setattr - same as above, but with extended sched_attr
4408 * @pid: the pid in question.
5778fccf 4409 * @uattr: structure containing the extended parameters.
db66d756 4410 * @flags: for future extension.
d50dde5a 4411 */
6d35ab48
PZ
4412SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4413 unsigned int, flags)
d50dde5a
DF
4414{
4415 struct sched_attr attr;
4416 struct task_struct *p;
4417 int retval;
4418
6d35ab48 4419 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4420 return -EINVAL;
4421
143cf23d
MK
4422 retval = sched_copy_attr(uattr, &attr);
4423 if (retval)
4424 return retval;
d50dde5a 4425
b14ed2c2 4426 if ((int)attr.sched_policy < 0)
dbdb2275 4427 return -EINVAL;
d50dde5a
DF
4428
4429 rcu_read_lock();
4430 retval = -ESRCH;
4431 p = find_process_by_pid(pid);
4432 if (p != NULL)
4433 retval = sched_setattr(p, &attr);
4434 rcu_read_unlock();
4435
4436 return retval;
4437}
4438
1da177e4
LT
4439/**
4440 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4441 * @pid: the pid in question.
e69f6186
YB
4442 *
4443 * Return: On success, the policy of the thread. Otherwise, a negative error
4444 * code.
1da177e4 4445 */
5add95d4 4446SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4447{
36c8b586 4448 struct task_struct *p;
3a5c359a 4449 int retval;
1da177e4
LT
4450
4451 if (pid < 0)
3a5c359a 4452 return -EINVAL;
1da177e4
LT
4453
4454 retval = -ESRCH;
5fe85be0 4455 rcu_read_lock();
1da177e4
LT
4456 p = find_process_by_pid(pid);
4457 if (p) {
4458 retval = security_task_getscheduler(p);
4459 if (!retval)
ca94c442
LP
4460 retval = p->policy
4461 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4462 }
5fe85be0 4463 rcu_read_unlock();
1da177e4
LT
4464 return retval;
4465}
4466
4467/**
ca94c442 4468 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4469 * @pid: the pid in question.
4470 * @param: structure containing the RT priority.
e69f6186
YB
4471 *
4472 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4473 * code.
1da177e4 4474 */
5add95d4 4475SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4476{
ce5f7f82 4477 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4478 struct task_struct *p;
3a5c359a 4479 int retval;
1da177e4
LT
4480
4481 if (!param || pid < 0)
3a5c359a 4482 return -EINVAL;
1da177e4 4483
5fe85be0 4484 rcu_read_lock();
1da177e4
LT
4485 p = find_process_by_pid(pid);
4486 retval = -ESRCH;
4487 if (!p)
4488 goto out_unlock;
4489
4490 retval = security_task_getscheduler(p);
4491 if (retval)
4492 goto out_unlock;
4493
ce5f7f82
PZ
4494 if (task_has_rt_policy(p))
4495 lp.sched_priority = p->rt_priority;
5fe85be0 4496 rcu_read_unlock();
1da177e4
LT
4497
4498 /*
4499 * This one might sleep, we cannot do it with a spinlock held ...
4500 */
4501 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4502
1da177e4
LT
4503 return retval;
4504
4505out_unlock:
5fe85be0 4506 rcu_read_unlock();
1da177e4
LT
4507 return retval;
4508}
4509
d50dde5a
DF
4510static int sched_read_attr(struct sched_attr __user *uattr,
4511 struct sched_attr *attr,
4512 unsigned int usize)
4513{
4514 int ret;
4515
4516 if (!access_ok(VERIFY_WRITE, uattr, usize))
4517 return -EFAULT;
4518
4519 /*
4520 * If we're handed a smaller struct than we know of,
4521 * ensure all the unknown bits are 0 - i.e. old
4522 * user-space does not get uncomplete information.
4523 */
4524 if (usize < sizeof(*attr)) {
4525 unsigned char *addr;
4526 unsigned char *end;
4527
4528 addr = (void *)attr + usize;
4529 end = (void *)attr + sizeof(*attr);
4530
4531 for (; addr < end; addr++) {
4532 if (*addr)
22400674 4533 return -EFBIG;
d50dde5a
DF
4534 }
4535
4536 attr->size = usize;
4537 }
4538
4efbc454 4539 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4540 if (ret)
4541 return -EFAULT;
4542
22400674 4543 return 0;
d50dde5a
DF
4544}
4545
4546/**
aab03e05 4547 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4548 * @pid: the pid in question.
5778fccf 4549 * @uattr: structure containing the extended parameters.
d50dde5a 4550 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4551 * @flags: for future extension.
d50dde5a 4552 */
6d35ab48
PZ
4553SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4554 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4555{
4556 struct sched_attr attr = {
4557 .size = sizeof(struct sched_attr),
4558 };
4559 struct task_struct *p;
4560 int retval;
4561
4562 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4563 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4564 return -EINVAL;
4565
4566 rcu_read_lock();
4567 p = find_process_by_pid(pid);
4568 retval = -ESRCH;
4569 if (!p)
4570 goto out_unlock;
4571
4572 retval = security_task_getscheduler(p);
4573 if (retval)
4574 goto out_unlock;
4575
4576 attr.sched_policy = p->policy;
7479f3c9
PZ
4577 if (p->sched_reset_on_fork)
4578 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4579 if (task_has_dl_policy(p))
4580 __getparam_dl(p, &attr);
4581 else if (task_has_rt_policy(p))
d50dde5a
DF
4582 attr.sched_priority = p->rt_priority;
4583 else
d0ea0268 4584 attr.sched_nice = task_nice(p);
d50dde5a
DF
4585
4586 rcu_read_unlock();
4587
4588 retval = sched_read_attr(uattr, &attr, size);
4589 return retval;
4590
4591out_unlock:
4592 rcu_read_unlock();
4593 return retval;
4594}
4595
96f874e2 4596long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4597{
5a16f3d3 4598 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4599 struct task_struct *p;
4600 int retval;
1da177e4 4601
23f5d142 4602 rcu_read_lock();
1da177e4
LT
4603
4604 p = find_process_by_pid(pid);
4605 if (!p) {
23f5d142 4606 rcu_read_unlock();
1da177e4
LT
4607 return -ESRCH;
4608 }
4609
23f5d142 4610 /* Prevent p going away */
1da177e4 4611 get_task_struct(p);
23f5d142 4612 rcu_read_unlock();
1da177e4 4613
14a40ffc
TH
4614 if (p->flags & PF_NO_SETAFFINITY) {
4615 retval = -EINVAL;
4616 goto out_put_task;
4617 }
5a16f3d3
RR
4618 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4619 retval = -ENOMEM;
4620 goto out_put_task;
4621 }
4622 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4623 retval = -ENOMEM;
4624 goto out_free_cpus_allowed;
4625 }
1da177e4 4626 retval = -EPERM;
4c44aaaf
EB
4627 if (!check_same_owner(p)) {
4628 rcu_read_lock();
4629 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4630 rcu_read_unlock();
16303ab2 4631 goto out_free_new_mask;
4c44aaaf
EB
4632 }
4633 rcu_read_unlock();
4634 }
1da177e4 4635
b0ae1981 4636 retval = security_task_setscheduler(p);
e7834f8f 4637 if (retval)
16303ab2 4638 goto out_free_new_mask;
e7834f8f 4639
e4099a5e
PZ
4640
4641 cpuset_cpus_allowed(p, cpus_allowed);
4642 cpumask_and(new_mask, in_mask, cpus_allowed);
4643
332ac17e
DF
4644 /*
4645 * Since bandwidth control happens on root_domain basis,
4646 * if admission test is enabled, we only admit -deadline
4647 * tasks allowed to run on all the CPUs in the task's
4648 * root_domain.
4649 */
4650#ifdef CONFIG_SMP
f1e3a093
KT
4651 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4652 rcu_read_lock();
4653 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4654 retval = -EBUSY;
f1e3a093 4655 rcu_read_unlock();
16303ab2 4656 goto out_free_new_mask;
332ac17e 4657 }
f1e3a093 4658 rcu_read_unlock();
332ac17e
DF
4659 }
4660#endif
49246274 4661again:
25834c73 4662 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4663
8707d8b8 4664 if (!retval) {
5a16f3d3
RR
4665 cpuset_cpus_allowed(p, cpus_allowed);
4666 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4667 /*
4668 * We must have raced with a concurrent cpuset
4669 * update. Just reset the cpus_allowed to the
4670 * cpuset's cpus_allowed
4671 */
5a16f3d3 4672 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4673 goto again;
4674 }
4675 }
16303ab2 4676out_free_new_mask:
5a16f3d3
RR
4677 free_cpumask_var(new_mask);
4678out_free_cpus_allowed:
4679 free_cpumask_var(cpus_allowed);
4680out_put_task:
1da177e4 4681 put_task_struct(p);
1da177e4
LT
4682 return retval;
4683}
4684
4685static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4686 struct cpumask *new_mask)
1da177e4 4687{
96f874e2
RR
4688 if (len < cpumask_size())
4689 cpumask_clear(new_mask);
4690 else if (len > cpumask_size())
4691 len = cpumask_size();
4692
1da177e4
LT
4693 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4694}
4695
4696/**
4697 * sys_sched_setaffinity - set the cpu affinity of a process
4698 * @pid: pid of the process
4699 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4700 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4701 *
4702 * Return: 0 on success. An error code otherwise.
1da177e4 4703 */
5add95d4
HC
4704SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4705 unsigned long __user *, user_mask_ptr)
1da177e4 4706{
5a16f3d3 4707 cpumask_var_t new_mask;
1da177e4
LT
4708 int retval;
4709
5a16f3d3
RR
4710 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4711 return -ENOMEM;
1da177e4 4712
5a16f3d3
RR
4713 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4714 if (retval == 0)
4715 retval = sched_setaffinity(pid, new_mask);
4716 free_cpumask_var(new_mask);
4717 return retval;
1da177e4
LT
4718}
4719
96f874e2 4720long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4721{
36c8b586 4722 struct task_struct *p;
31605683 4723 unsigned long flags;
1da177e4 4724 int retval;
1da177e4 4725
23f5d142 4726 rcu_read_lock();
1da177e4
LT
4727
4728 retval = -ESRCH;
4729 p = find_process_by_pid(pid);
4730 if (!p)
4731 goto out_unlock;
4732
e7834f8f
DQ
4733 retval = security_task_getscheduler(p);
4734 if (retval)
4735 goto out_unlock;
4736
013fdb80 4737 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4738 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4739 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4740
4741out_unlock:
23f5d142 4742 rcu_read_unlock();
1da177e4 4743
9531b62f 4744 return retval;
1da177e4
LT
4745}
4746
4747/**
4748 * sys_sched_getaffinity - get the cpu affinity of a process
4749 * @pid: pid of the process
4750 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4751 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4752 *
4753 * Return: 0 on success. An error code otherwise.
1da177e4 4754 */
5add95d4
HC
4755SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4756 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4757{
4758 int ret;
f17c8607 4759 cpumask_var_t mask;
1da177e4 4760
84fba5ec 4761 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4762 return -EINVAL;
4763 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4764 return -EINVAL;
4765
f17c8607
RR
4766 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4767 return -ENOMEM;
1da177e4 4768
f17c8607
RR
4769 ret = sched_getaffinity(pid, mask);
4770 if (ret == 0) {
8bc037fb 4771 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4772
4773 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4774 ret = -EFAULT;
4775 else
cd3d8031 4776 ret = retlen;
f17c8607
RR
4777 }
4778 free_cpumask_var(mask);
1da177e4 4779
f17c8607 4780 return ret;
1da177e4
LT
4781}
4782
4783/**
4784 * sys_sched_yield - yield the current processor to other threads.
4785 *
dd41f596
IM
4786 * This function yields the current CPU to other tasks. If there are no
4787 * other threads running on this CPU then this function will return.
e69f6186
YB
4788 *
4789 * Return: 0.
1da177e4 4790 */
5add95d4 4791SYSCALL_DEFINE0(sched_yield)
1da177e4 4792{
70b97a7f 4793 struct rq *rq = this_rq_lock();
1da177e4 4794
2d72376b 4795 schedstat_inc(rq, yld_count);
4530d7ab 4796 current->sched_class->yield_task(rq);
1da177e4
LT
4797
4798 /*
4799 * Since we are going to call schedule() anyway, there's
4800 * no need to preempt or enable interrupts:
4801 */
4802 __release(rq->lock);
8a25d5de 4803 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4804 do_raw_spin_unlock(&rq->lock);
ba74c144 4805 sched_preempt_enable_no_resched();
1da177e4
LT
4806
4807 schedule();
4808
4809 return 0;
4810}
4811
02b67cc3 4812int __sched _cond_resched(void)
1da177e4 4813{
fe32d3cd 4814 if (should_resched(0)) {
a18b5d01 4815 preempt_schedule_common();
1da177e4
LT
4816 return 1;
4817 }
4818 return 0;
4819}
02b67cc3 4820EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4821
4822/*
613afbf8 4823 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4824 * call schedule, and on return reacquire the lock.
4825 *
41a2d6cf 4826 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4827 * operations here to prevent schedule() from being called twice (once via
4828 * spin_unlock(), once by hand).
4829 */
613afbf8 4830int __cond_resched_lock(spinlock_t *lock)
1da177e4 4831{
fe32d3cd 4832 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4833 int ret = 0;
4834
f607c668
PZ
4835 lockdep_assert_held(lock);
4836
4a81e832 4837 if (spin_needbreak(lock) || resched) {
1da177e4 4838 spin_unlock(lock);
d86ee480 4839 if (resched)
a18b5d01 4840 preempt_schedule_common();
95c354fe
NP
4841 else
4842 cpu_relax();
6df3cecb 4843 ret = 1;
1da177e4 4844 spin_lock(lock);
1da177e4 4845 }
6df3cecb 4846 return ret;
1da177e4 4847}
613afbf8 4848EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4849
613afbf8 4850int __sched __cond_resched_softirq(void)
1da177e4
LT
4851{
4852 BUG_ON(!in_softirq());
4853
fe32d3cd 4854 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4855 local_bh_enable();
a18b5d01 4856 preempt_schedule_common();
1da177e4
LT
4857 local_bh_disable();
4858 return 1;
4859 }
4860 return 0;
4861}
613afbf8 4862EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4863
1da177e4
LT
4864/**
4865 * yield - yield the current processor to other threads.
4866 *
8e3fabfd
PZ
4867 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4868 *
4869 * The scheduler is at all times free to pick the calling task as the most
4870 * eligible task to run, if removing the yield() call from your code breaks
4871 * it, its already broken.
4872 *
4873 * Typical broken usage is:
4874 *
4875 * while (!event)
4876 * yield();
4877 *
4878 * where one assumes that yield() will let 'the other' process run that will
4879 * make event true. If the current task is a SCHED_FIFO task that will never
4880 * happen. Never use yield() as a progress guarantee!!
4881 *
4882 * If you want to use yield() to wait for something, use wait_event().
4883 * If you want to use yield() to be 'nice' for others, use cond_resched().
4884 * If you still want to use yield(), do not!
1da177e4
LT
4885 */
4886void __sched yield(void)
4887{
4888 set_current_state(TASK_RUNNING);
4889 sys_sched_yield();
4890}
1da177e4
LT
4891EXPORT_SYMBOL(yield);
4892
d95f4122
MG
4893/**
4894 * yield_to - yield the current processor to another thread in
4895 * your thread group, or accelerate that thread toward the
4896 * processor it's on.
16addf95
RD
4897 * @p: target task
4898 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4899 *
4900 * It's the caller's job to ensure that the target task struct
4901 * can't go away on us before we can do any checks.
4902 *
e69f6186 4903 * Return:
7b270f60
PZ
4904 * true (>0) if we indeed boosted the target task.
4905 * false (0) if we failed to boost the target.
4906 * -ESRCH if there's no task to yield to.
d95f4122 4907 */
fa93384f 4908int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4909{
4910 struct task_struct *curr = current;
4911 struct rq *rq, *p_rq;
4912 unsigned long flags;
c3c18640 4913 int yielded = 0;
d95f4122
MG
4914
4915 local_irq_save(flags);
4916 rq = this_rq();
4917
4918again:
4919 p_rq = task_rq(p);
7b270f60
PZ
4920 /*
4921 * If we're the only runnable task on the rq and target rq also
4922 * has only one task, there's absolutely no point in yielding.
4923 */
4924 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4925 yielded = -ESRCH;
4926 goto out_irq;
4927 }
4928
d95f4122 4929 double_rq_lock(rq, p_rq);
39e24d8f 4930 if (task_rq(p) != p_rq) {
d95f4122
MG
4931 double_rq_unlock(rq, p_rq);
4932 goto again;
4933 }
4934
4935 if (!curr->sched_class->yield_to_task)
7b270f60 4936 goto out_unlock;
d95f4122
MG
4937
4938 if (curr->sched_class != p->sched_class)
7b270f60 4939 goto out_unlock;
d95f4122
MG
4940
4941 if (task_running(p_rq, p) || p->state)
7b270f60 4942 goto out_unlock;
d95f4122
MG
4943
4944 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4945 if (yielded) {
d95f4122 4946 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4947 /*
4948 * Make p's CPU reschedule; pick_next_entity takes care of
4949 * fairness.
4950 */
4951 if (preempt && rq != p_rq)
8875125e 4952 resched_curr(p_rq);
6d1cafd8 4953 }
d95f4122 4954
7b270f60 4955out_unlock:
d95f4122 4956 double_rq_unlock(rq, p_rq);
7b270f60 4957out_irq:
d95f4122
MG
4958 local_irq_restore(flags);
4959
7b270f60 4960 if (yielded > 0)
d95f4122
MG
4961 schedule();
4962
4963 return yielded;
4964}
4965EXPORT_SYMBOL_GPL(yield_to);
4966
1da177e4 4967/*
41a2d6cf 4968 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4969 * that process accounting knows that this is a task in IO wait state.
1da177e4 4970 */
1da177e4
LT
4971long __sched io_schedule_timeout(long timeout)
4972{
9cff8ade
N
4973 int old_iowait = current->in_iowait;
4974 struct rq *rq;
1da177e4
LT
4975 long ret;
4976
9cff8ade 4977 current->in_iowait = 1;
10d784ea 4978 blk_schedule_flush_plug(current);
9cff8ade 4979
0ff92245 4980 delayacct_blkio_start();
9cff8ade 4981 rq = raw_rq();
1da177e4
LT
4982 atomic_inc(&rq->nr_iowait);
4983 ret = schedule_timeout(timeout);
9cff8ade 4984 current->in_iowait = old_iowait;
1da177e4 4985 atomic_dec(&rq->nr_iowait);
0ff92245 4986 delayacct_blkio_end();
9cff8ade 4987
1da177e4
LT
4988 return ret;
4989}
9cff8ade 4990EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4991
4992/**
4993 * sys_sched_get_priority_max - return maximum RT priority.
4994 * @policy: scheduling class.
4995 *
e69f6186
YB
4996 * Return: On success, this syscall returns the maximum
4997 * rt_priority that can be used by a given scheduling class.
4998 * On failure, a negative error code is returned.
1da177e4 4999 */
5add95d4 5000SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5001{
5002 int ret = -EINVAL;
5003
5004 switch (policy) {
5005 case SCHED_FIFO:
5006 case SCHED_RR:
5007 ret = MAX_USER_RT_PRIO-1;
5008 break;
aab03e05 5009 case SCHED_DEADLINE:
1da177e4 5010 case SCHED_NORMAL:
b0a9499c 5011 case SCHED_BATCH:
dd41f596 5012 case SCHED_IDLE:
1da177e4
LT
5013 ret = 0;
5014 break;
5015 }
5016 return ret;
5017}
5018
5019/**
5020 * sys_sched_get_priority_min - return minimum RT priority.
5021 * @policy: scheduling class.
5022 *
e69f6186
YB
5023 * Return: On success, this syscall returns the minimum
5024 * rt_priority that can be used by a given scheduling class.
5025 * On failure, a negative error code is returned.
1da177e4 5026 */
5add95d4 5027SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5028{
5029 int ret = -EINVAL;
5030
5031 switch (policy) {
5032 case SCHED_FIFO:
5033 case SCHED_RR:
5034 ret = 1;
5035 break;
aab03e05 5036 case SCHED_DEADLINE:
1da177e4 5037 case SCHED_NORMAL:
b0a9499c 5038 case SCHED_BATCH:
dd41f596 5039 case SCHED_IDLE:
1da177e4
LT
5040 ret = 0;
5041 }
5042 return ret;
5043}
5044
5045/**
5046 * sys_sched_rr_get_interval - return the default timeslice of a process.
5047 * @pid: pid of the process.
5048 * @interval: userspace pointer to the timeslice value.
5049 *
5050 * this syscall writes the default timeslice value of a given process
5051 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5052 *
5053 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5054 * an error code.
1da177e4 5055 */
17da2bd9 5056SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5057 struct timespec __user *, interval)
1da177e4 5058{
36c8b586 5059 struct task_struct *p;
a4ec24b4 5060 unsigned int time_slice;
eb580751
PZ
5061 struct rq_flags rf;
5062 struct timespec t;
dba091b9 5063 struct rq *rq;
3a5c359a 5064 int retval;
1da177e4
LT
5065
5066 if (pid < 0)
3a5c359a 5067 return -EINVAL;
1da177e4
LT
5068
5069 retval = -ESRCH;
1a551ae7 5070 rcu_read_lock();
1da177e4
LT
5071 p = find_process_by_pid(pid);
5072 if (!p)
5073 goto out_unlock;
5074
5075 retval = security_task_getscheduler(p);
5076 if (retval)
5077 goto out_unlock;
5078
eb580751 5079 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5080 time_slice = 0;
5081 if (p->sched_class->get_rr_interval)
5082 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5083 task_rq_unlock(rq, p, &rf);
a4ec24b4 5084
1a551ae7 5085 rcu_read_unlock();
a4ec24b4 5086 jiffies_to_timespec(time_slice, &t);
1da177e4 5087 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5088 return retval;
3a5c359a 5089
1da177e4 5090out_unlock:
1a551ae7 5091 rcu_read_unlock();
1da177e4
LT
5092 return retval;
5093}
5094
7c731e0a 5095static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5096
82a1fcb9 5097void sched_show_task(struct task_struct *p)
1da177e4 5098{
1da177e4 5099 unsigned long free = 0;
4e79752c 5100 int ppid;
1f8a7633 5101 unsigned long state = p->state;
1da177e4 5102
1f8a7633
TH
5103 if (state)
5104 state = __ffs(state) + 1;
28d0686c 5105 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5106 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5107#if BITS_PER_LONG == 32
1da177e4 5108 if (state == TASK_RUNNING)
3df0fc5b 5109 printk(KERN_CONT " running ");
1da177e4 5110 else
3df0fc5b 5111 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5112#else
5113 if (state == TASK_RUNNING)
3df0fc5b 5114 printk(KERN_CONT " running task ");
1da177e4 5115 else
3df0fc5b 5116 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5117#endif
5118#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5119 free = stack_not_used(p);
1da177e4 5120#endif
a90e984c 5121 ppid = 0;
4e79752c 5122 rcu_read_lock();
a90e984c
ON
5123 if (pid_alive(p))
5124 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5125 rcu_read_unlock();
3df0fc5b 5126 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5127 task_pid_nr(p), ppid,
aa47b7e0 5128 (unsigned long)task_thread_info(p)->flags);
1da177e4 5129
3d1cb205 5130 print_worker_info(KERN_INFO, p);
5fb5e6de 5131 show_stack(p, NULL);
1da177e4
LT
5132}
5133
e59e2ae2 5134void show_state_filter(unsigned long state_filter)
1da177e4 5135{
36c8b586 5136 struct task_struct *g, *p;
1da177e4 5137
4bd77321 5138#if BITS_PER_LONG == 32
3df0fc5b
PZ
5139 printk(KERN_INFO
5140 " task PC stack pid father\n");
1da177e4 5141#else
3df0fc5b
PZ
5142 printk(KERN_INFO
5143 " task PC stack pid father\n");
1da177e4 5144#endif
510f5acc 5145 rcu_read_lock();
5d07f420 5146 for_each_process_thread(g, p) {
1da177e4
LT
5147 /*
5148 * reset the NMI-timeout, listing all files on a slow
25985edc 5149 * console might take a lot of time:
57675cb9
AR
5150 * Also, reset softlockup watchdogs on all CPUs, because
5151 * another CPU might be blocked waiting for us to process
5152 * an IPI.
1da177e4
LT
5153 */
5154 touch_nmi_watchdog();
57675cb9 5155 touch_all_softlockup_watchdogs();
39bc89fd 5156 if (!state_filter || (p->state & state_filter))
82a1fcb9 5157 sched_show_task(p);
5d07f420 5158 }
1da177e4 5159
dd41f596 5160#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5161 if (!state_filter)
5162 sysrq_sched_debug_show();
dd41f596 5163#endif
510f5acc 5164 rcu_read_unlock();
e59e2ae2
IM
5165 /*
5166 * Only show locks if all tasks are dumped:
5167 */
93335a21 5168 if (!state_filter)
e59e2ae2 5169 debug_show_all_locks();
1da177e4
LT
5170}
5171
0db0628d 5172void init_idle_bootup_task(struct task_struct *idle)
1df21055 5173{
dd41f596 5174 idle->sched_class = &idle_sched_class;
1df21055
IM
5175}
5176
f340c0d1
IM
5177/**
5178 * init_idle - set up an idle thread for a given CPU
5179 * @idle: task in question
5180 * @cpu: cpu the idle task belongs to
5181 *
5182 * NOTE: this function does not set the idle thread's NEED_RESCHED
5183 * flag, to make booting more robust.
5184 */
0db0628d 5185void init_idle(struct task_struct *idle, int cpu)
1da177e4 5186{
70b97a7f 5187 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5188 unsigned long flags;
5189
25834c73
PZ
5190 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5191 raw_spin_lock(&rq->lock);
5cbd54ef 5192
5e1576ed 5193 __sched_fork(0, idle);
06b83b5f 5194 idle->state = TASK_RUNNING;
dd41f596
IM
5195 idle->se.exec_start = sched_clock();
5196
e1b77c92
MR
5197 kasan_unpoison_task_stack(idle);
5198
de9b8f5d
PZ
5199#ifdef CONFIG_SMP
5200 /*
5201 * Its possible that init_idle() gets called multiple times on a task,
5202 * in that case do_set_cpus_allowed() will not do the right thing.
5203 *
5204 * And since this is boot we can forgo the serialization.
5205 */
5206 set_cpus_allowed_common(idle, cpumask_of(cpu));
5207#endif
6506cf6c
PZ
5208 /*
5209 * We're having a chicken and egg problem, even though we are
5210 * holding rq->lock, the cpu isn't yet set to this cpu so the
5211 * lockdep check in task_group() will fail.
5212 *
5213 * Similar case to sched_fork(). / Alternatively we could
5214 * use task_rq_lock() here and obtain the other rq->lock.
5215 *
5216 * Silence PROVE_RCU
5217 */
5218 rcu_read_lock();
dd41f596 5219 __set_task_cpu(idle, cpu);
6506cf6c 5220 rcu_read_unlock();
1da177e4 5221
1da177e4 5222 rq->curr = rq->idle = idle;
da0c1e65 5223 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5224#ifdef CONFIG_SMP
3ca7a440 5225 idle->on_cpu = 1;
4866cde0 5226#endif
25834c73
PZ
5227 raw_spin_unlock(&rq->lock);
5228 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5229
5230 /* Set the preempt count _outside_ the spinlocks! */
01028747 5231 init_idle_preempt_count(idle, cpu);
55cd5340 5232
dd41f596
IM
5233 /*
5234 * The idle tasks have their own, simple scheduling class:
5235 */
5236 idle->sched_class = &idle_sched_class;
868baf07 5237 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5238 vtime_init_idle(idle, cpu);
de9b8f5d 5239#ifdef CONFIG_SMP
f1c6f1a7
CE
5240 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5241#endif
19978ca6
IM
5242}
5243
f82f8042
JL
5244int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5245 const struct cpumask *trial)
5246{
5247 int ret = 1, trial_cpus;
5248 struct dl_bw *cur_dl_b;
5249 unsigned long flags;
5250
bb2bc55a
MG
5251 if (!cpumask_weight(cur))
5252 return ret;
5253
75e23e49 5254 rcu_read_lock_sched();
f82f8042
JL
5255 cur_dl_b = dl_bw_of(cpumask_any(cur));
5256 trial_cpus = cpumask_weight(trial);
5257
5258 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5259 if (cur_dl_b->bw != -1 &&
5260 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5261 ret = 0;
5262 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5263 rcu_read_unlock_sched();
f82f8042
JL
5264
5265 return ret;
5266}
5267
7f51412a
JL
5268int task_can_attach(struct task_struct *p,
5269 const struct cpumask *cs_cpus_allowed)
5270{
5271 int ret = 0;
5272
5273 /*
5274 * Kthreads which disallow setaffinity shouldn't be moved
5275 * to a new cpuset; we don't want to change their cpu
5276 * affinity and isolating such threads by their set of
5277 * allowed nodes is unnecessary. Thus, cpusets are not
5278 * applicable for such threads. This prevents checking for
5279 * success of set_cpus_allowed_ptr() on all attached tasks
5280 * before cpus_allowed may be changed.
5281 */
5282 if (p->flags & PF_NO_SETAFFINITY) {
5283 ret = -EINVAL;
5284 goto out;
5285 }
5286
5287#ifdef CONFIG_SMP
5288 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5289 cs_cpus_allowed)) {
5290 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5291 cs_cpus_allowed);
75e23e49 5292 struct dl_bw *dl_b;
7f51412a
JL
5293 bool overflow;
5294 int cpus;
5295 unsigned long flags;
5296
75e23e49
JL
5297 rcu_read_lock_sched();
5298 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5299 raw_spin_lock_irqsave(&dl_b->lock, flags);
5300 cpus = dl_bw_cpus(dest_cpu);
5301 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5302 if (overflow)
5303 ret = -EBUSY;
5304 else {
5305 /*
5306 * We reserve space for this task in the destination
5307 * root_domain, as we can't fail after this point.
5308 * We will free resources in the source root_domain
5309 * later on (see set_cpus_allowed_dl()).
5310 */
5311 __dl_add(dl_b, p->dl.dl_bw);
5312 }
5313 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5314 rcu_read_unlock_sched();
7f51412a
JL
5315
5316 }
5317#endif
5318out:
5319 return ret;
5320}
5321
1da177e4 5322#ifdef CONFIG_SMP
1da177e4 5323
e26fbffd
TG
5324static bool sched_smp_initialized __read_mostly;
5325
e6628d5b
MG
5326#ifdef CONFIG_NUMA_BALANCING
5327/* Migrate current task p to target_cpu */
5328int migrate_task_to(struct task_struct *p, int target_cpu)
5329{
5330 struct migration_arg arg = { p, target_cpu };
5331 int curr_cpu = task_cpu(p);
5332
5333 if (curr_cpu == target_cpu)
5334 return 0;
5335
5336 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5337 return -EINVAL;
5338
5339 /* TODO: This is not properly updating schedstats */
5340
286549dc 5341 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5342 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5343}
0ec8aa00
PZ
5344
5345/*
5346 * Requeue a task on a given node and accurately track the number of NUMA
5347 * tasks on the runqueues
5348 */
5349void sched_setnuma(struct task_struct *p, int nid)
5350{
da0c1e65 5351 bool queued, running;
eb580751
PZ
5352 struct rq_flags rf;
5353 struct rq *rq;
0ec8aa00 5354
eb580751 5355 rq = task_rq_lock(p, &rf);
da0c1e65 5356 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5357 running = task_current(rq, p);
5358
da0c1e65 5359 if (queued)
1de64443 5360 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5361 if (running)
f3cd1c4e 5362 put_prev_task(rq, p);
0ec8aa00
PZ
5363
5364 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5365
5366 if (running)
5367 p->sched_class->set_curr_task(rq);
da0c1e65 5368 if (queued)
1de64443 5369 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5370 task_rq_unlock(rq, p, &rf);
0ec8aa00 5371}
5cc389bc 5372#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5373
1da177e4 5374#ifdef CONFIG_HOTPLUG_CPU
054b9108 5375/*
48c5ccae
PZ
5376 * Ensures that the idle task is using init_mm right before its cpu goes
5377 * offline.
054b9108 5378 */
48c5ccae 5379void idle_task_exit(void)
1da177e4 5380{
48c5ccae 5381 struct mm_struct *mm = current->active_mm;
e76bd8d9 5382
48c5ccae 5383 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5384
a53efe5f 5385 if (mm != &init_mm) {
f98db601 5386 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5387 finish_arch_post_lock_switch();
5388 }
48c5ccae 5389 mmdrop(mm);
1da177e4
LT
5390}
5391
5392/*
5d180232
PZ
5393 * Since this CPU is going 'away' for a while, fold any nr_active delta
5394 * we might have. Assumes we're called after migrate_tasks() so that the
5395 * nr_active count is stable.
5396 *
5397 * Also see the comment "Global load-average calculations".
1da177e4 5398 */
5d180232 5399static void calc_load_migrate(struct rq *rq)
1da177e4 5400{
5d180232
PZ
5401 long delta = calc_load_fold_active(rq);
5402 if (delta)
5403 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5404}
5405
3f1d2a31
PZ
5406static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5407{
5408}
5409
5410static const struct sched_class fake_sched_class = {
5411 .put_prev_task = put_prev_task_fake,
5412};
5413
5414static struct task_struct fake_task = {
5415 /*
5416 * Avoid pull_{rt,dl}_task()
5417 */
5418 .prio = MAX_PRIO + 1,
5419 .sched_class = &fake_sched_class,
5420};
5421
48f24c4d 5422/*
48c5ccae
PZ
5423 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5424 * try_to_wake_up()->select_task_rq().
5425 *
5426 * Called with rq->lock held even though we'er in stop_machine() and
5427 * there's no concurrency possible, we hold the required locks anyway
5428 * because of lock validation efforts.
1da177e4 5429 */
5e16bbc2 5430static void migrate_tasks(struct rq *dead_rq)
1da177e4 5431{
5e16bbc2 5432 struct rq *rq = dead_rq;
48c5ccae 5433 struct task_struct *next, *stop = rq->stop;
e7904a28 5434 struct pin_cookie cookie;
48c5ccae 5435 int dest_cpu;
1da177e4
LT
5436
5437 /*
48c5ccae
PZ
5438 * Fudge the rq selection such that the below task selection loop
5439 * doesn't get stuck on the currently eligible stop task.
5440 *
5441 * We're currently inside stop_machine() and the rq is either stuck
5442 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5443 * either way we should never end up calling schedule() until we're
5444 * done here.
1da177e4 5445 */
48c5ccae 5446 rq->stop = NULL;
48f24c4d 5447
77bd3970
FW
5448 /*
5449 * put_prev_task() and pick_next_task() sched
5450 * class method both need to have an up-to-date
5451 * value of rq->clock[_task]
5452 */
5453 update_rq_clock(rq);
5454
5e16bbc2 5455 for (;;) {
48c5ccae
PZ
5456 /*
5457 * There's this thread running, bail when that's the only
5458 * remaining thread.
5459 */
5460 if (rq->nr_running == 1)
dd41f596 5461 break;
48c5ccae 5462
cbce1a68 5463 /*
5473e0cc 5464 * pick_next_task assumes pinned rq->lock.
cbce1a68 5465 */
e7904a28
PZ
5466 cookie = lockdep_pin_lock(&rq->lock);
5467 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5468 BUG_ON(!next);
79c53799 5469 next->sched_class->put_prev_task(rq, next);
e692ab53 5470
5473e0cc
WL
5471 /*
5472 * Rules for changing task_struct::cpus_allowed are holding
5473 * both pi_lock and rq->lock, such that holding either
5474 * stabilizes the mask.
5475 *
5476 * Drop rq->lock is not quite as disastrous as it usually is
5477 * because !cpu_active at this point, which means load-balance
5478 * will not interfere. Also, stop-machine.
5479 */
e7904a28 5480 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5481 raw_spin_unlock(&rq->lock);
5482 raw_spin_lock(&next->pi_lock);
5483 raw_spin_lock(&rq->lock);
5484
5485 /*
5486 * Since we're inside stop-machine, _nothing_ should have
5487 * changed the task, WARN if weird stuff happened, because in
5488 * that case the above rq->lock drop is a fail too.
5489 */
5490 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5491 raw_spin_unlock(&next->pi_lock);
5492 continue;
5493 }
5494
48c5ccae 5495 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5496 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5497
5e16bbc2
PZ
5498 rq = __migrate_task(rq, next, dest_cpu);
5499 if (rq != dead_rq) {
5500 raw_spin_unlock(&rq->lock);
5501 rq = dead_rq;
5502 raw_spin_lock(&rq->lock);
5503 }
5473e0cc 5504 raw_spin_unlock(&next->pi_lock);
1da177e4 5505 }
dce48a84 5506
48c5ccae 5507 rq->stop = stop;
dce48a84 5508}
1da177e4
LT
5509#endif /* CONFIG_HOTPLUG_CPU */
5510
1f11eb6a
GH
5511static void set_rq_online(struct rq *rq)
5512{
5513 if (!rq->online) {
5514 const struct sched_class *class;
5515
c6c4927b 5516 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5517 rq->online = 1;
5518
5519 for_each_class(class) {
5520 if (class->rq_online)
5521 class->rq_online(rq);
5522 }
5523 }
5524}
5525
5526static void set_rq_offline(struct rq *rq)
5527{
5528 if (rq->online) {
5529 const struct sched_class *class;
5530
5531 for_each_class(class) {
5532 if (class->rq_offline)
5533 class->rq_offline(rq);
5534 }
5535
c6c4927b 5536 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5537 rq->online = 0;
5538 }
5539}
5540
9cf7243d 5541static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5542{
969c7921 5543 struct rq *rq = cpu_rq(cpu);
1da177e4 5544
a803f026
CM
5545 rq->age_stamp = sched_clock_cpu(cpu);
5546}
5547
4cb98839
PZ
5548static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5549
3e9830dc 5550#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5551
d039ac60 5552static __read_mostly int sched_debug_enabled;
f6630114 5553
d039ac60 5554static int __init sched_debug_setup(char *str)
f6630114 5555{
d039ac60 5556 sched_debug_enabled = 1;
f6630114
MT
5557
5558 return 0;
5559}
d039ac60
PZ
5560early_param("sched_debug", sched_debug_setup);
5561
5562static inline bool sched_debug(void)
5563{
5564 return sched_debug_enabled;
5565}
f6630114 5566
7c16ec58 5567static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5568 struct cpumask *groupmask)
1da177e4 5569{
4dcf6aff 5570 struct sched_group *group = sd->groups;
1da177e4 5571
96f874e2 5572 cpumask_clear(groupmask);
4dcf6aff
IM
5573
5574 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5575
5576 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5577 printk("does not load-balance\n");
4dcf6aff 5578 if (sd->parent)
3df0fc5b
PZ
5579 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5580 " has parent");
4dcf6aff 5581 return -1;
41c7ce9a
NP
5582 }
5583
333470ee
TH
5584 printk(KERN_CONT "span %*pbl level %s\n",
5585 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5586
758b2cdc 5587 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5588 printk(KERN_ERR "ERROR: domain->span does not contain "
5589 "CPU%d\n", cpu);
4dcf6aff 5590 }
758b2cdc 5591 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5592 printk(KERN_ERR "ERROR: domain->groups does not contain"
5593 " CPU%d\n", cpu);
4dcf6aff 5594 }
1da177e4 5595
4dcf6aff 5596 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5597 do {
4dcf6aff 5598 if (!group) {
3df0fc5b
PZ
5599 printk("\n");
5600 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5601 break;
5602 }
5603
758b2cdc 5604 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5605 printk(KERN_CONT "\n");
5606 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5607 break;
5608 }
1da177e4 5609
cb83b629
PZ
5610 if (!(sd->flags & SD_OVERLAP) &&
5611 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5612 printk(KERN_CONT "\n");
5613 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5614 break;
5615 }
1da177e4 5616
758b2cdc 5617 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5618
333470ee
TH
5619 printk(KERN_CONT " %*pbl",
5620 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5621 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5622 printk(KERN_CONT " (cpu_capacity = %d)",
5623 group->sgc->capacity);
381512cf 5624 }
1da177e4 5625
4dcf6aff
IM
5626 group = group->next;
5627 } while (group != sd->groups);
3df0fc5b 5628 printk(KERN_CONT "\n");
1da177e4 5629
758b2cdc 5630 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5631 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5632
758b2cdc
RR
5633 if (sd->parent &&
5634 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5635 printk(KERN_ERR "ERROR: parent span is not a superset "
5636 "of domain->span\n");
4dcf6aff
IM
5637 return 0;
5638}
1da177e4 5639
4dcf6aff
IM
5640static void sched_domain_debug(struct sched_domain *sd, int cpu)
5641{
5642 int level = 0;
1da177e4 5643
d039ac60 5644 if (!sched_debug_enabled)
f6630114
MT
5645 return;
5646
4dcf6aff
IM
5647 if (!sd) {
5648 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5649 return;
5650 }
1da177e4 5651
4dcf6aff
IM
5652 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5653
5654 for (;;) {
4cb98839 5655 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5656 break;
1da177e4
LT
5657 level++;
5658 sd = sd->parent;
33859f7f 5659 if (!sd)
4dcf6aff
IM
5660 break;
5661 }
1da177e4 5662}
6d6bc0ad 5663#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5664# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5665static inline bool sched_debug(void)
5666{
5667 return false;
5668}
6d6bc0ad 5669#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5670
1a20ff27 5671static int sd_degenerate(struct sched_domain *sd)
245af2c7 5672{
758b2cdc 5673 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5674 return 1;
5675
5676 /* Following flags need at least 2 groups */
5677 if (sd->flags & (SD_LOAD_BALANCE |
5678 SD_BALANCE_NEWIDLE |
5679 SD_BALANCE_FORK |
89c4710e 5680 SD_BALANCE_EXEC |
5d4dfddd 5681 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5682 SD_SHARE_PKG_RESOURCES |
5683 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5684 if (sd->groups != sd->groups->next)
5685 return 0;
5686 }
5687
5688 /* Following flags don't use groups */
c88d5910 5689 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5690 return 0;
5691
5692 return 1;
5693}
5694
48f24c4d
IM
5695static int
5696sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5697{
5698 unsigned long cflags = sd->flags, pflags = parent->flags;
5699
5700 if (sd_degenerate(parent))
5701 return 1;
5702
758b2cdc 5703 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5704 return 0;
5705
245af2c7
SS
5706 /* Flags needing groups don't count if only 1 group in parent */
5707 if (parent->groups == parent->groups->next) {
5708 pflags &= ~(SD_LOAD_BALANCE |
5709 SD_BALANCE_NEWIDLE |
5710 SD_BALANCE_FORK |
89c4710e 5711 SD_BALANCE_EXEC |
5d4dfddd 5712 SD_SHARE_CPUCAPACITY |
10866e62 5713 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5714 SD_PREFER_SIBLING |
5715 SD_SHARE_POWERDOMAIN);
5436499e
KC
5716 if (nr_node_ids == 1)
5717 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5718 }
5719 if (~cflags & pflags)
5720 return 0;
5721
5722 return 1;
5723}
5724
dce840a0 5725static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5726{
dce840a0 5727 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5728
68e74568 5729 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5730 cpudl_cleanup(&rd->cpudl);
1baca4ce 5731 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5732 free_cpumask_var(rd->rto_mask);
5733 free_cpumask_var(rd->online);
5734 free_cpumask_var(rd->span);
5735 kfree(rd);
5736}
5737
57d885fe
GH
5738static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5739{
a0490fa3 5740 struct root_domain *old_rd = NULL;
57d885fe 5741 unsigned long flags;
57d885fe 5742
05fa785c 5743 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5744
5745 if (rq->rd) {
a0490fa3 5746 old_rd = rq->rd;
57d885fe 5747
c6c4927b 5748 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5749 set_rq_offline(rq);
57d885fe 5750
c6c4927b 5751 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5752
a0490fa3 5753 /*
0515973f 5754 * If we dont want to free the old_rd yet then
a0490fa3
IM
5755 * set old_rd to NULL to skip the freeing later
5756 * in this function:
5757 */
5758 if (!atomic_dec_and_test(&old_rd->refcount))
5759 old_rd = NULL;
57d885fe
GH
5760 }
5761
5762 atomic_inc(&rd->refcount);
5763 rq->rd = rd;
5764
c6c4927b 5765 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5766 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5767 set_rq_online(rq);
57d885fe 5768
05fa785c 5769 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5770
5771 if (old_rd)
dce840a0 5772 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5773}
5774
68c38fc3 5775static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5776{
5777 memset(rd, 0, sizeof(*rd));
5778
8295c699 5779 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5780 goto out;
8295c699 5781 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5782 goto free_span;
8295c699 5783 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5784 goto free_online;
8295c699 5785 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5786 goto free_dlo_mask;
6e0534f2 5787
332ac17e 5788 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5789 if (cpudl_init(&rd->cpudl) != 0)
5790 goto free_dlo_mask;
332ac17e 5791
68c38fc3 5792 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5793 goto free_rto_mask;
c6c4927b 5794 return 0;
6e0534f2 5795
68e74568
RR
5796free_rto_mask:
5797 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5798free_dlo_mask:
5799 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5800free_online:
5801 free_cpumask_var(rd->online);
5802free_span:
5803 free_cpumask_var(rd->span);
0c910d28 5804out:
c6c4927b 5805 return -ENOMEM;
57d885fe
GH
5806}
5807
029632fb
PZ
5808/*
5809 * By default the system creates a single root-domain with all cpus as
5810 * members (mimicking the global state we have today).
5811 */
5812struct root_domain def_root_domain;
5813
57d885fe
GH
5814static void init_defrootdomain(void)
5815{
68c38fc3 5816 init_rootdomain(&def_root_domain);
c6c4927b 5817
57d885fe
GH
5818 atomic_set(&def_root_domain.refcount, 1);
5819}
5820
dc938520 5821static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5822{
5823 struct root_domain *rd;
5824
5825 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5826 if (!rd)
5827 return NULL;
5828
68c38fc3 5829 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5830 kfree(rd);
5831 return NULL;
5832 }
57d885fe
GH
5833
5834 return rd;
5835}
5836
63b2ca30 5837static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5838{
5839 struct sched_group *tmp, *first;
5840
5841 if (!sg)
5842 return;
5843
5844 first = sg;
5845 do {
5846 tmp = sg->next;
5847
63b2ca30
NP
5848 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5849 kfree(sg->sgc);
e3589f6c
PZ
5850
5851 kfree(sg);
5852 sg = tmp;
5853 } while (sg != first);
5854}
5855
dce840a0
PZ
5856static void free_sched_domain(struct rcu_head *rcu)
5857{
5858 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5859
5860 /*
5861 * If its an overlapping domain it has private groups, iterate and
5862 * nuke them all.
5863 */
5864 if (sd->flags & SD_OVERLAP) {
5865 free_sched_groups(sd->groups, 1);
5866 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5867 kfree(sd->groups->sgc);
dce840a0 5868 kfree(sd->groups);
9c3f75cb 5869 }
dce840a0
PZ
5870 kfree(sd);
5871}
5872
5873static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5874{
5875 call_rcu(&sd->rcu, free_sched_domain);
5876}
5877
5878static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5879{
5880 for (; sd; sd = sd->parent)
5881 destroy_sched_domain(sd, cpu);
5882}
5883
518cd623
PZ
5884/*
5885 * Keep a special pointer to the highest sched_domain that has
5886 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5887 * allows us to avoid some pointer chasing select_idle_sibling().
5888 *
5889 * Also keep a unique ID per domain (we use the first cpu number in
5890 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5891 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5892 */
5893DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5894DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5895DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5896DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5897DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5898DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5899
5900static void update_top_cache_domain(int cpu)
5901{
5902 struct sched_domain *sd;
5d4cf996 5903 struct sched_domain *busy_sd = NULL;
518cd623 5904 int id = cpu;
7d9ffa89 5905 int size = 1;
518cd623
PZ
5906
5907 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5908 if (sd) {
518cd623 5909 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5910 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5911 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5912 }
5d4cf996 5913 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5914
5915 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5916 per_cpu(sd_llc_size, cpu) = size;
518cd623 5917 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5918
5919 sd = lowest_flag_domain(cpu, SD_NUMA);
5920 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5921
5922 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5923 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5924}
5925
1da177e4 5926/*
0eab9146 5927 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5928 * hold the hotplug lock.
5929 */
0eab9146
IM
5930static void
5931cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5932{
70b97a7f 5933 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5934 struct sched_domain *tmp;
5935
5936 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5937 for (tmp = sd; tmp; ) {
245af2c7
SS
5938 struct sched_domain *parent = tmp->parent;
5939 if (!parent)
5940 break;
f29c9b1c 5941
1a848870 5942 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5943 tmp->parent = parent->parent;
1a848870
SS
5944 if (parent->parent)
5945 parent->parent->child = tmp;
10866e62
PZ
5946 /*
5947 * Transfer SD_PREFER_SIBLING down in case of a
5948 * degenerate parent; the spans match for this
5949 * so the property transfers.
5950 */
5951 if (parent->flags & SD_PREFER_SIBLING)
5952 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5953 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5954 } else
5955 tmp = tmp->parent;
245af2c7
SS
5956 }
5957
1a848870 5958 if (sd && sd_degenerate(sd)) {
dce840a0 5959 tmp = sd;
245af2c7 5960 sd = sd->parent;
dce840a0 5961 destroy_sched_domain(tmp, cpu);
1a848870
SS
5962 if (sd)
5963 sd->child = NULL;
5964 }
1da177e4 5965
4cb98839 5966 sched_domain_debug(sd, cpu);
1da177e4 5967
57d885fe 5968 rq_attach_root(rq, rd);
dce840a0 5969 tmp = rq->sd;
674311d5 5970 rcu_assign_pointer(rq->sd, sd);
dce840a0 5971 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5972
5973 update_top_cache_domain(cpu);
1da177e4
LT
5974}
5975
1da177e4
LT
5976/* Setup the mask of cpus configured for isolated domains */
5977static int __init isolated_cpu_setup(char *str)
5978{
a6e4491c
PB
5979 int ret;
5980
bdddd296 5981 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5982 ret = cpulist_parse(str, cpu_isolated_map);
5983 if (ret) {
5984 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5985 return 0;
5986 }
1da177e4
LT
5987 return 1;
5988}
8927f494 5989__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5990
49a02c51 5991struct s_data {
21d42ccf 5992 struct sched_domain ** __percpu sd;
49a02c51
AH
5993 struct root_domain *rd;
5994};
5995
2109b99e 5996enum s_alloc {
2109b99e 5997 sa_rootdomain,
21d42ccf 5998 sa_sd,
dce840a0 5999 sa_sd_storage,
2109b99e
AH
6000 sa_none,
6001};
6002
c1174876
PZ
6003/*
6004 * Build an iteration mask that can exclude certain CPUs from the upwards
6005 * domain traversal.
6006 *
6007 * Asymmetric node setups can result in situations where the domain tree is of
6008 * unequal depth, make sure to skip domains that already cover the entire
6009 * range.
6010 *
6011 * In that case build_sched_domains() will have terminated the iteration early
6012 * and our sibling sd spans will be empty. Domains should always include the
6013 * cpu they're built on, so check that.
6014 *
6015 */
6016static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6017{
6018 const struct cpumask *span = sched_domain_span(sd);
6019 struct sd_data *sdd = sd->private;
6020 struct sched_domain *sibling;
6021 int i;
6022
6023 for_each_cpu(i, span) {
6024 sibling = *per_cpu_ptr(sdd->sd, i);
6025 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6026 continue;
6027
6028 cpumask_set_cpu(i, sched_group_mask(sg));
6029 }
6030}
6031
6032/*
6033 * Return the canonical balance cpu for this group, this is the first cpu
6034 * of this group that's also in the iteration mask.
6035 */
6036int group_balance_cpu(struct sched_group *sg)
6037{
6038 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6039}
6040
e3589f6c
PZ
6041static int
6042build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6043{
6044 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6045 const struct cpumask *span = sched_domain_span(sd);
6046 struct cpumask *covered = sched_domains_tmpmask;
6047 struct sd_data *sdd = sd->private;
aaecac4a 6048 struct sched_domain *sibling;
e3589f6c
PZ
6049 int i;
6050
6051 cpumask_clear(covered);
6052
6053 for_each_cpu(i, span) {
6054 struct cpumask *sg_span;
6055
6056 if (cpumask_test_cpu(i, covered))
6057 continue;
6058
aaecac4a 6059 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6060
6061 /* See the comment near build_group_mask(). */
aaecac4a 6062 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6063 continue;
6064
e3589f6c 6065 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6066 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6067
6068 if (!sg)
6069 goto fail;
6070
6071 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6072 if (sibling->child)
6073 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6074 else
e3589f6c
PZ
6075 cpumask_set_cpu(i, sg_span);
6076
6077 cpumask_or(covered, covered, sg_span);
6078
63b2ca30
NP
6079 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6080 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6081 build_group_mask(sd, sg);
6082
c3decf0d 6083 /*
63b2ca30 6084 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6085 * domains and no possible iteration will get us here, we won't
6086 * die on a /0 trap.
6087 */
ca8ce3d0 6088 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6089
c1174876
PZ
6090 /*
6091 * Make sure the first group of this domain contains the
6092 * canonical balance cpu. Otherwise the sched_domain iteration
6093 * breaks. See update_sg_lb_stats().
6094 */
74a5ce20 6095 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6096 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6097 groups = sg;
6098
6099 if (!first)
6100 first = sg;
6101 if (last)
6102 last->next = sg;
6103 last = sg;
6104 last->next = first;
6105 }
6106 sd->groups = groups;
6107
6108 return 0;
6109
6110fail:
6111 free_sched_groups(first, 0);
6112
6113 return -ENOMEM;
6114}
6115
dce840a0 6116static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6117{
dce840a0
PZ
6118 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6119 struct sched_domain *child = sd->child;
1da177e4 6120
dce840a0
PZ
6121 if (child)
6122 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6123
9c3f75cb 6124 if (sg) {
dce840a0 6125 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6126 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6127 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6128 }
dce840a0
PZ
6129
6130 return cpu;
1e9f28fa 6131}
1e9f28fa 6132
01a08546 6133/*
dce840a0
PZ
6134 * build_sched_groups will build a circular linked list of the groups
6135 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6136 * and ->cpu_capacity to 0.
e3589f6c
PZ
6137 *
6138 * Assumes the sched_domain tree is fully constructed
01a08546 6139 */
e3589f6c
PZ
6140static int
6141build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6142{
dce840a0
PZ
6143 struct sched_group *first = NULL, *last = NULL;
6144 struct sd_data *sdd = sd->private;
6145 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6146 struct cpumask *covered;
dce840a0 6147 int i;
9c1cfda2 6148
e3589f6c
PZ
6149 get_group(cpu, sdd, &sd->groups);
6150 atomic_inc(&sd->groups->ref);
6151
0936629f 6152 if (cpu != cpumask_first(span))
e3589f6c
PZ
6153 return 0;
6154
f96225fd
PZ
6155 lockdep_assert_held(&sched_domains_mutex);
6156 covered = sched_domains_tmpmask;
6157
dce840a0 6158 cpumask_clear(covered);
6711cab4 6159
dce840a0
PZ
6160 for_each_cpu(i, span) {
6161 struct sched_group *sg;
cd08e923 6162 int group, j;
6711cab4 6163
dce840a0
PZ
6164 if (cpumask_test_cpu(i, covered))
6165 continue;
6711cab4 6166
cd08e923 6167 group = get_group(i, sdd, &sg);
c1174876 6168 cpumask_setall(sched_group_mask(sg));
0601a88d 6169
dce840a0
PZ
6170 for_each_cpu(j, span) {
6171 if (get_group(j, sdd, NULL) != group)
6172 continue;
0601a88d 6173
dce840a0
PZ
6174 cpumask_set_cpu(j, covered);
6175 cpumask_set_cpu(j, sched_group_cpus(sg));
6176 }
0601a88d 6177
dce840a0
PZ
6178 if (!first)
6179 first = sg;
6180 if (last)
6181 last->next = sg;
6182 last = sg;
6183 }
6184 last->next = first;
e3589f6c
PZ
6185
6186 return 0;
0601a88d 6187}
51888ca2 6188
89c4710e 6189/*
63b2ca30 6190 * Initialize sched groups cpu_capacity.
89c4710e 6191 *
63b2ca30 6192 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6193 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6194 * Typically cpu_capacity for all the groups in a sched domain will be same
6195 * unless there are asymmetries in the topology. If there are asymmetries,
6196 * group having more cpu_capacity will pickup more load compared to the
6197 * group having less cpu_capacity.
89c4710e 6198 */
63b2ca30 6199static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6200{
e3589f6c 6201 struct sched_group *sg = sd->groups;
89c4710e 6202
94c95ba6 6203 WARN_ON(!sg);
e3589f6c
PZ
6204
6205 do {
6206 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6207 sg = sg->next;
6208 } while (sg != sd->groups);
89c4710e 6209
c1174876 6210 if (cpu != group_balance_cpu(sg))
e3589f6c 6211 return;
aae6d3dd 6212
63b2ca30
NP
6213 update_group_capacity(sd, cpu);
6214 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6215}
6216
7c16ec58
MT
6217/*
6218 * Initializers for schedule domains
6219 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6220 */
6221
1d3504fc 6222static int default_relax_domain_level = -1;
60495e77 6223int sched_domain_level_max;
1d3504fc
HS
6224
6225static int __init setup_relax_domain_level(char *str)
6226{
a841f8ce
DS
6227 if (kstrtoint(str, 0, &default_relax_domain_level))
6228 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6229
1d3504fc
HS
6230 return 1;
6231}
6232__setup("relax_domain_level=", setup_relax_domain_level);
6233
6234static void set_domain_attribute(struct sched_domain *sd,
6235 struct sched_domain_attr *attr)
6236{
6237 int request;
6238
6239 if (!attr || attr->relax_domain_level < 0) {
6240 if (default_relax_domain_level < 0)
6241 return;
6242 else
6243 request = default_relax_domain_level;
6244 } else
6245 request = attr->relax_domain_level;
6246 if (request < sd->level) {
6247 /* turn off idle balance on this domain */
c88d5910 6248 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6249 } else {
6250 /* turn on idle balance on this domain */
c88d5910 6251 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6252 }
6253}
6254
54ab4ff4
PZ
6255static void __sdt_free(const struct cpumask *cpu_map);
6256static int __sdt_alloc(const struct cpumask *cpu_map);
6257
2109b99e
AH
6258static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6259 const struct cpumask *cpu_map)
6260{
6261 switch (what) {
2109b99e 6262 case sa_rootdomain:
822ff793
PZ
6263 if (!atomic_read(&d->rd->refcount))
6264 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6265 case sa_sd:
6266 free_percpu(d->sd); /* fall through */
dce840a0 6267 case sa_sd_storage:
54ab4ff4 6268 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6269 case sa_none:
6270 break;
6271 }
6272}
3404c8d9 6273
2109b99e
AH
6274static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6275 const struct cpumask *cpu_map)
6276{
dce840a0
PZ
6277 memset(d, 0, sizeof(*d));
6278
54ab4ff4
PZ
6279 if (__sdt_alloc(cpu_map))
6280 return sa_sd_storage;
dce840a0
PZ
6281 d->sd = alloc_percpu(struct sched_domain *);
6282 if (!d->sd)
6283 return sa_sd_storage;
2109b99e 6284 d->rd = alloc_rootdomain();
dce840a0 6285 if (!d->rd)
21d42ccf 6286 return sa_sd;
2109b99e
AH
6287 return sa_rootdomain;
6288}
57d885fe 6289
dce840a0
PZ
6290/*
6291 * NULL the sd_data elements we've used to build the sched_domain and
6292 * sched_group structure so that the subsequent __free_domain_allocs()
6293 * will not free the data we're using.
6294 */
6295static void claim_allocations(int cpu, struct sched_domain *sd)
6296{
6297 struct sd_data *sdd = sd->private;
dce840a0
PZ
6298
6299 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6300 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6301
e3589f6c 6302 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6303 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6304
63b2ca30
NP
6305 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6306 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6307}
6308
cb83b629 6309#ifdef CONFIG_NUMA
cb83b629 6310static int sched_domains_numa_levels;
e3fe70b1 6311enum numa_topology_type sched_numa_topology_type;
cb83b629 6312static int *sched_domains_numa_distance;
9942f79b 6313int sched_max_numa_distance;
cb83b629
PZ
6314static struct cpumask ***sched_domains_numa_masks;
6315static int sched_domains_curr_level;
143e1e28 6316#endif
cb83b629 6317
143e1e28
VG
6318/*
6319 * SD_flags allowed in topology descriptions.
6320 *
5d4dfddd 6321 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6322 * SD_SHARE_PKG_RESOURCES - describes shared caches
6323 * SD_NUMA - describes NUMA topologies
d77b3ed5 6324 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6325 *
6326 * Odd one out:
6327 * SD_ASYM_PACKING - describes SMT quirks
6328 */
6329#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6330 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6331 SD_SHARE_PKG_RESOURCES | \
6332 SD_NUMA | \
d77b3ed5
VG
6333 SD_ASYM_PACKING | \
6334 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6335
6336static struct sched_domain *
143e1e28 6337sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6338{
6339 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6340 int sd_weight, sd_flags = 0;
6341
6342#ifdef CONFIG_NUMA
6343 /*
6344 * Ugly hack to pass state to sd_numa_mask()...
6345 */
6346 sched_domains_curr_level = tl->numa_level;
6347#endif
6348
6349 sd_weight = cpumask_weight(tl->mask(cpu));
6350
6351 if (tl->sd_flags)
6352 sd_flags = (*tl->sd_flags)();
6353 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6354 "wrong sd_flags in topology description\n"))
6355 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6356
6357 *sd = (struct sched_domain){
6358 .min_interval = sd_weight,
6359 .max_interval = 2*sd_weight,
6360 .busy_factor = 32,
870a0bb5 6361 .imbalance_pct = 125,
143e1e28
VG
6362
6363 .cache_nice_tries = 0,
6364 .busy_idx = 0,
6365 .idle_idx = 0,
cb83b629
PZ
6366 .newidle_idx = 0,
6367 .wake_idx = 0,
6368 .forkexec_idx = 0,
6369
6370 .flags = 1*SD_LOAD_BALANCE
6371 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6372 | 1*SD_BALANCE_EXEC
6373 | 1*SD_BALANCE_FORK
cb83b629 6374 | 0*SD_BALANCE_WAKE
143e1e28 6375 | 1*SD_WAKE_AFFINE
5d4dfddd 6376 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6377 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6378 | 0*SD_SERIALIZE
cb83b629 6379 | 0*SD_PREFER_SIBLING
143e1e28
VG
6380 | 0*SD_NUMA
6381 | sd_flags
cb83b629 6382 ,
143e1e28 6383
cb83b629
PZ
6384 .last_balance = jiffies,
6385 .balance_interval = sd_weight,
143e1e28 6386 .smt_gain = 0,
2b4cfe64
JL
6387 .max_newidle_lb_cost = 0,
6388 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6389#ifdef CONFIG_SCHED_DEBUG
6390 .name = tl->name,
6391#endif
cb83b629 6392 };
cb83b629
PZ
6393
6394 /*
143e1e28 6395 * Convert topological properties into behaviour.
cb83b629 6396 */
143e1e28 6397
5d4dfddd 6398 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6399 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6400 sd->imbalance_pct = 110;
6401 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6402
6403 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6404 sd->imbalance_pct = 117;
6405 sd->cache_nice_tries = 1;
6406 sd->busy_idx = 2;
6407
6408#ifdef CONFIG_NUMA
6409 } else if (sd->flags & SD_NUMA) {
6410 sd->cache_nice_tries = 2;
6411 sd->busy_idx = 3;
6412 sd->idle_idx = 2;
6413
6414 sd->flags |= SD_SERIALIZE;
6415 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6416 sd->flags &= ~(SD_BALANCE_EXEC |
6417 SD_BALANCE_FORK |
6418 SD_WAKE_AFFINE);
6419 }
6420
6421#endif
6422 } else {
6423 sd->flags |= SD_PREFER_SIBLING;
6424 sd->cache_nice_tries = 1;
6425 sd->busy_idx = 2;
6426 sd->idle_idx = 1;
6427 }
6428
6429 sd->private = &tl->data;
cb83b629
PZ
6430
6431 return sd;
6432}
6433
143e1e28
VG
6434/*
6435 * Topology list, bottom-up.
6436 */
6437static struct sched_domain_topology_level default_topology[] = {
6438#ifdef CONFIG_SCHED_SMT
6439 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6440#endif
6441#ifdef CONFIG_SCHED_MC
6442 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6443#endif
6444 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6445 { NULL, },
6446};
6447
c6e1e7b5
JG
6448static struct sched_domain_topology_level *sched_domain_topology =
6449 default_topology;
143e1e28
VG
6450
6451#define for_each_sd_topology(tl) \
6452 for (tl = sched_domain_topology; tl->mask; tl++)
6453
6454void set_sched_topology(struct sched_domain_topology_level *tl)
6455{
6456 sched_domain_topology = tl;
6457}
6458
6459#ifdef CONFIG_NUMA
6460
cb83b629
PZ
6461static const struct cpumask *sd_numa_mask(int cpu)
6462{
6463 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6464}
6465
d039ac60
PZ
6466static void sched_numa_warn(const char *str)
6467{
6468 static int done = false;
6469 int i,j;
6470
6471 if (done)
6472 return;
6473
6474 done = true;
6475
6476 printk(KERN_WARNING "ERROR: %s\n\n", str);
6477
6478 for (i = 0; i < nr_node_ids; i++) {
6479 printk(KERN_WARNING " ");
6480 for (j = 0; j < nr_node_ids; j++)
6481 printk(KERN_CONT "%02d ", node_distance(i,j));
6482 printk(KERN_CONT "\n");
6483 }
6484 printk(KERN_WARNING "\n");
6485}
6486
9942f79b 6487bool find_numa_distance(int distance)
d039ac60
PZ
6488{
6489 int i;
6490
6491 if (distance == node_distance(0, 0))
6492 return true;
6493
6494 for (i = 0; i < sched_domains_numa_levels; i++) {
6495 if (sched_domains_numa_distance[i] == distance)
6496 return true;
6497 }
6498
6499 return false;
6500}
6501
e3fe70b1
RR
6502/*
6503 * A system can have three types of NUMA topology:
6504 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6505 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6506 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6507 *
6508 * The difference between a glueless mesh topology and a backplane
6509 * topology lies in whether communication between not directly
6510 * connected nodes goes through intermediary nodes (where programs
6511 * could run), or through backplane controllers. This affects
6512 * placement of programs.
6513 *
6514 * The type of topology can be discerned with the following tests:
6515 * - If the maximum distance between any nodes is 1 hop, the system
6516 * is directly connected.
6517 * - If for two nodes A and B, located N > 1 hops away from each other,
6518 * there is an intermediary node C, which is < N hops away from both
6519 * nodes A and B, the system is a glueless mesh.
6520 */
6521static void init_numa_topology_type(void)
6522{
6523 int a, b, c, n;
6524
6525 n = sched_max_numa_distance;
6526
e237882b 6527 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6528 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6529 return;
6530 }
e3fe70b1
RR
6531
6532 for_each_online_node(a) {
6533 for_each_online_node(b) {
6534 /* Find two nodes furthest removed from each other. */
6535 if (node_distance(a, b) < n)
6536 continue;
6537
6538 /* Is there an intermediary node between a and b? */
6539 for_each_online_node(c) {
6540 if (node_distance(a, c) < n &&
6541 node_distance(b, c) < n) {
6542 sched_numa_topology_type =
6543 NUMA_GLUELESS_MESH;
6544 return;
6545 }
6546 }
6547
6548 sched_numa_topology_type = NUMA_BACKPLANE;
6549 return;
6550 }
6551 }
6552}
6553
cb83b629
PZ
6554static void sched_init_numa(void)
6555{
6556 int next_distance, curr_distance = node_distance(0, 0);
6557 struct sched_domain_topology_level *tl;
6558 int level = 0;
6559 int i, j, k;
6560
cb83b629
PZ
6561 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6562 if (!sched_domains_numa_distance)
6563 return;
6564
6565 /*
6566 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6567 * unique distances in the node_distance() table.
6568 *
6569 * Assumes node_distance(0,j) includes all distances in
6570 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6571 */
6572 next_distance = curr_distance;
6573 for (i = 0; i < nr_node_ids; i++) {
6574 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6575 for (k = 0; k < nr_node_ids; k++) {
6576 int distance = node_distance(i, k);
6577
6578 if (distance > curr_distance &&
6579 (distance < next_distance ||
6580 next_distance == curr_distance))
6581 next_distance = distance;
6582
6583 /*
6584 * While not a strong assumption it would be nice to know
6585 * about cases where if node A is connected to B, B is not
6586 * equally connected to A.
6587 */
6588 if (sched_debug() && node_distance(k, i) != distance)
6589 sched_numa_warn("Node-distance not symmetric");
6590
6591 if (sched_debug() && i && !find_numa_distance(distance))
6592 sched_numa_warn("Node-0 not representative");
6593 }
6594 if (next_distance != curr_distance) {
6595 sched_domains_numa_distance[level++] = next_distance;
6596 sched_domains_numa_levels = level;
6597 curr_distance = next_distance;
6598 } else break;
cb83b629 6599 }
d039ac60
PZ
6600
6601 /*
6602 * In case of sched_debug() we verify the above assumption.
6603 */
6604 if (!sched_debug())
6605 break;
cb83b629 6606 }
c123588b
AR
6607
6608 if (!level)
6609 return;
6610
cb83b629
PZ
6611 /*
6612 * 'level' contains the number of unique distances, excluding the
6613 * identity distance node_distance(i,i).
6614 *
28b4a521 6615 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6616 * numbers.
6617 */
6618
5f7865f3
TC
6619 /*
6620 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6621 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6622 * the array will contain less then 'level' members. This could be
6623 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6624 * in other functions.
6625 *
6626 * We reset it to 'level' at the end of this function.
6627 */
6628 sched_domains_numa_levels = 0;
6629
cb83b629
PZ
6630 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6631 if (!sched_domains_numa_masks)
6632 return;
6633
6634 /*
6635 * Now for each level, construct a mask per node which contains all
6636 * cpus of nodes that are that many hops away from us.
6637 */
6638 for (i = 0; i < level; i++) {
6639 sched_domains_numa_masks[i] =
6640 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6641 if (!sched_domains_numa_masks[i])
6642 return;
6643
6644 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6645 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6646 if (!mask)
6647 return;
6648
6649 sched_domains_numa_masks[i][j] = mask;
6650
9c03ee14 6651 for_each_node(k) {
dd7d8634 6652 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6653 continue;
6654
6655 cpumask_or(mask, mask, cpumask_of_node(k));
6656 }
6657 }
6658 }
6659
143e1e28
VG
6660 /* Compute default topology size */
6661 for (i = 0; sched_domain_topology[i].mask; i++);
6662
c515db8c 6663 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6664 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6665 if (!tl)
6666 return;
6667
6668 /*
6669 * Copy the default topology bits..
6670 */
143e1e28
VG
6671 for (i = 0; sched_domain_topology[i].mask; i++)
6672 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6673
6674 /*
6675 * .. and append 'j' levels of NUMA goodness.
6676 */
6677 for (j = 0; j < level; i++, j++) {
6678 tl[i] = (struct sched_domain_topology_level){
cb83b629 6679 .mask = sd_numa_mask,
143e1e28 6680 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6681 .flags = SDTL_OVERLAP,
6682 .numa_level = j,
143e1e28 6683 SD_INIT_NAME(NUMA)
cb83b629
PZ
6684 };
6685 }
6686
6687 sched_domain_topology = tl;
5f7865f3
TC
6688
6689 sched_domains_numa_levels = level;
9942f79b 6690 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6691
6692 init_numa_topology_type();
cb83b629 6693}
301a5cba 6694
135fb3e1 6695static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6696{
301a5cba 6697 int node = cpu_to_node(cpu);
135fb3e1 6698 int i, j;
301a5cba
TC
6699
6700 for (i = 0; i < sched_domains_numa_levels; i++) {
6701 for (j = 0; j < nr_node_ids; j++) {
6702 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6703 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6704 }
6705 }
6706}
6707
135fb3e1 6708static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6709{
6710 int i, j;
135fb3e1 6711
301a5cba
TC
6712 for (i = 0; i < sched_domains_numa_levels; i++) {
6713 for (j = 0; j < nr_node_ids; j++)
6714 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6715 }
6716}
6717
cb83b629 6718#else
135fb3e1
TG
6719static inline void sched_init_numa(void) { }
6720static void sched_domains_numa_masks_set(unsigned int cpu) { }
6721static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6722#endif /* CONFIG_NUMA */
6723
54ab4ff4
PZ
6724static int __sdt_alloc(const struct cpumask *cpu_map)
6725{
6726 struct sched_domain_topology_level *tl;
6727 int j;
6728
27723a68 6729 for_each_sd_topology(tl) {
54ab4ff4
PZ
6730 struct sd_data *sdd = &tl->data;
6731
6732 sdd->sd = alloc_percpu(struct sched_domain *);
6733 if (!sdd->sd)
6734 return -ENOMEM;
6735
6736 sdd->sg = alloc_percpu(struct sched_group *);
6737 if (!sdd->sg)
6738 return -ENOMEM;
6739
63b2ca30
NP
6740 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6741 if (!sdd->sgc)
9c3f75cb
PZ
6742 return -ENOMEM;
6743
54ab4ff4
PZ
6744 for_each_cpu(j, cpu_map) {
6745 struct sched_domain *sd;
6746 struct sched_group *sg;
63b2ca30 6747 struct sched_group_capacity *sgc;
54ab4ff4 6748
5cc389bc 6749 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6750 GFP_KERNEL, cpu_to_node(j));
6751 if (!sd)
6752 return -ENOMEM;
6753
6754 *per_cpu_ptr(sdd->sd, j) = sd;
6755
6756 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6757 GFP_KERNEL, cpu_to_node(j));
6758 if (!sg)
6759 return -ENOMEM;
6760
30b4e9eb
IM
6761 sg->next = sg;
6762
54ab4ff4 6763 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6764
63b2ca30 6765 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6766 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6767 if (!sgc)
9c3f75cb
PZ
6768 return -ENOMEM;
6769
63b2ca30 6770 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6771 }
6772 }
6773
6774 return 0;
6775}
6776
6777static void __sdt_free(const struct cpumask *cpu_map)
6778{
6779 struct sched_domain_topology_level *tl;
6780 int j;
6781
27723a68 6782 for_each_sd_topology(tl) {
54ab4ff4
PZ
6783 struct sd_data *sdd = &tl->data;
6784
6785 for_each_cpu(j, cpu_map) {
fb2cf2c6 6786 struct sched_domain *sd;
6787
6788 if (sdd->sd) {
6789 sd = *per_cpu_ptr(sdd->sd, j);
6790 if (sd && (sd->flags & SD_OVERLAP))
6791 free_sched_groups(sd->groups, 0);
6792 kfree(*per_cpu_ptr(sdd->sd, j));
6793 }
6794
6795 if (sdd->sg)
6796 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6797 if (sdd->sgc)
6798 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6799 }
6800 free_percpu(sdd->sd);
fb2cf2c6 6801 sdd->sd = NULL;
54ab4ff4 6802 free_percpu(sdd->sg);
fb2cf2c6 6803 sdd->sg = NULL;
63b2ca30
NP
6804 free_percpu(sdd->sgc);
6805 sdd->sgc = NULL;
54ab4ff4
PZ
6806 }
6807}
6808
2c402dc3 6809struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6810 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6811 struct sched_domain *child, int cpu)
2c402dc3 6812{
143e1e28 6813 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6814 if (!sd)
d069b916 6815 return child;
2c402dc3 6816
2c402dc3 6817 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6818 if (child) {
6819 sd->level = child->level + 1;
6820 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6821 child->parent = sd;
c75e0128 6822 sd->child = child;
6ae72dff
PZ
6823
6824 if (!cpumask_subset(sched_domain_span(child),
6825 sched_domain_span(sd))) {
6826 pr_err("BUG: arch topology borken\n");
6827#ifdef CONFIG_SCHED_DEBUG
6828 pr_err(" the %s domain not a subset of the %s domain\n",
6829 child->name, sd->name);
6830#endif
6831 /* Fixup, ensure @sd has at least @child cpus. */
6832 cpumask_or(sched_domain_span(sd),
6833 sched_domain_span(sd),
6834 sched_domain_span(child));
6835 }
6836
60495e77 6837 }
a841f8ce 6838 set_domain_attribute(sd, attr);
2c402dc3
PZ
6839
6840 return sd;
6841}
6842
2109b99e
AH
6843/*
6844 * Build sched domains for a given set of cpus and attach the sched domains
6845 * to the individual cpus
6846 */
dce840a0
PZ
6847static int build_sched_domains(const struct cpumask *cpu_map,
6848 struct sched_domain_attr *attr)
2109b99e 6849{
1c632169 6850 enum s_alloc alloc_state;
dce840a0 6851 struct sched_domain *sd;
2109b99e 6852 struct s_data d;
822ff793 6853 int i, ret = -ENOMEM;
9c1cfda2 6854
2109b99e
AH
6855 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6856 if (alloc_state != sa_rootdomain)
6857 goto error;
9c1cfda2 6858
dce840a0 6859 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6860 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6861 struct sched_domain_topology_level *tl;
6862
3bd65a80 6863 sd = NULL;
27723a68 6864 for_each_sd_topology(tl) {
4a850cbe 6865 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6866 if (tl == sched_domain_topology)
6867 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6868 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6869 sd->flags |= SD_OVERLAP;
d110235d
PZ
6870 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6871 break;
e3589f6c 6872 }
dce840a0
PZ
6873 }
6874
6875 /* Build the groups for the domains */
6876 for_each_cpu(i, cpu_map) {
6877 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6878 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6879 if (sd->flags & SD_OVERLAP) {
6880 if (build_overlap_sched_groups(sd, i))
6881 goto error;
6882 } else {
6883 if (build_sched_groups(sd, i))
6884 goto error;
6885 }
1cf51902 6886 }
a06dadbe 6887 }
9c1cfda2 6888
ced549fa 6889 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6890 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6891 if (!cpumask_test_cpu(i, cpu_map))
6892 continue;
9c1cfda2 6893
dce840a0
PZ
6894 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6895 claim_allocations(i, sd);
63b2ca30 6896 init_sched_groups_capacity(i, sd);
dce840a0 6897 }
f712c0c7 6898 }
9c1cfda2 6899
1da177e4 6900 /* Attach the domains */
dce840a0 6901 rcu_read_lock();
abcd083a 6902 for_each_cpu(i, cpu_map) {
21d42ccf 6903 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6904 cpu_attach_domain(sd, d.rd, i);
1da177e4 6905 }
dce840a0 6906 rcu_read_unlock();
51888ca2 6907
822ff793 6908 ret = 0;
51888ca2 6909error:
2109b99e 6910 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6911 return ret;
1da177e4 6912}
029190c5 6913
acc3f5d7 6914static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6915static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6916static struct sched_domain_attr *dattr_cur;
6917 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6918
6919/*
6920 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6921 * cpumask) fails, then fallback to a single sched domain,
6922 * as determined by the single cpumask fallback_doms.
029190c5 6923 */
4212823f 6924static cpumask_var_t fallback_doms;
029190c5 6925
ee79d1bd
HC
6926/*
6927 * arch_update_cpu_topology lets virtualized architectures update the
6928 * cpu core maps. It is supposed to return 1 if the topology changed
6929 * or 0 if it stayed the same.
6930 */
52f5684c 6931int __weak arch_update_cpu_topology(void)
22e52b07 6932{
ee79d1bd 6933 return 0;
22e52b07
HC
6934}
6935
acc3f5d7
RR
6936cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6937{
6938 int i;
6939 cpumask_var_t *doms;
6940
6941 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6942 if (!doms)
6943 return NULL;
6944 for (i = 0; i < ndoms; i++) {
6945 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6946 free_sched_domains(doms, i);
6947 return NULL;
6948 }
6949 }
6950 return doms;
6951}
6952
6953void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6954{
6955 unsigned int i;
6956 for (i = 0; i < ndoms; i++)
6957 free_cpumask_var(doms[i]);
6958 kfree(doms);
6959}
6960
1a20ff27 6961/*
41a2d6cf 6962 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6963 * For now this just excludes isolated cpus, but could be used to
6964 * exclude other special cases in the future.
1a20ff27 6965 */
c4a8849a 6966static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6967{
7378547f
MM
6968 int err;
6969
22e52b07 6970 arch_update_cpu_topology();
029190c5 6971 ndoms_cur = 1;
acc3f5d7 6972 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6973 if (!doms_cur)
acc3f5d7
RR
6974 doms_cur = &fallback_doms;
6975 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6976 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6977 register_sched_domain_sysctl();
7378547f
MM
6978
6979 return err;
1a20ff27
DG
6980}
6981
1a20ff27
DG
6982/*
6983 * Detach sched domains from a group of cpus specified in cpu_map
6984 * These cpus will now be attached to the NULL domain
6985 */
96f874e2 6986static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6987{
6988 int i;
6989
dce840a0 6990 rcu_read_lock();
abcd083a 6991 for_each_cpu(i, cpu_map)
57d885fe 6992 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6993 rcu_read_unlock();
1a20ff27
DG
6994}
6995
1d3504fc
HS
6996/* handle null as "default" */
6997static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6998 struct sched_domain_attr *new, int idx_new)
6999{
7000 struct sched_domain_attr tmp;
7001
7002 /* fast path */
7003 if (!new && !cur)
7004 return 1;
7005
7006 tmp = SD_ATTR_INIT;
7007 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7008 new ? (new + idx_new) : &tmp,
7009 sizeof(struct sched_domain_attr));
7010}
7011
029190c5
PJ
7012/*
7013 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7014 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7015 * doms_new[] to the current sched domain partitioning, doms_cur[].
7016 * It destroys each deleted domain and builds each new domain.
7017 *
acc3f5d7 7018 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7019 * The masks don't intersect (don't overlap.) We should setup one
7020 * sched domain for each mask. CPUs not in any of the cpumasks will
7021 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7022 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7023 * it as it is.
7024 *
acc3f5d7
RR
7025 * The passed in 'doms_new' should be allocated using
7026 * alloc_sched_domains. This routine takes ownership of it and will
7027 * free_sched_domains it when done with it. If the caller failed the
7028 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7029 * and partition_sched_domains() will fallback to the single partition
7030 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7031 *
96f874e2 7032 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7033 * ndoms_new == 0 is a special case for destroying existing domains,
7034 * and it will not create the default domain.
dfb512ec 7035 *
029190c5
PJ
7036 * Call with hotplug lock held
7037 */
acc3f5d7 7038void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7039 struct sched_domain_attr *dattr_new)
029190c5 7040{
dfb512ec 7041 int i, j, n;
d65bd5ec 7042 int new_topology;
029190c5 7043
712555ee 7044 mutex_lock(&sched_domains_mutex);
a1835615 7045
7378547f
MM
7046 /* always unregister in case we don't destroy any domains */
7047 unregister_sched_domain_sysctl();
7048
d65bd5ec
HC
7049 /* Let architecture update cpu core mappings. */
7050 new_topology = arch_update_cpu_topology();
7051
dfb512ec 7052 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7053
7054 /* Destroy deleted domains */
7055 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7056 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7057 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7058 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7059 goto match1;
7060 }
7061 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7062 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7063match1:
7064 ;
7065 }
7066
c8d2d47a 7067 n = ndoms_cur;
e761b772 7068 if (doms_new == NULL) {
c8d2d47a 7069 n = 0;
acc3f5d7 7070 doms_new = &fallback_doms;
6ad4c188 7071 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7072 WARN_ON_ONCE(dattr_new);
e761b772
MK
7073 }
7074
029190c5
PJ
7075 /* Build new domains */
7076 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7077 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7078 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7079 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7080 goto match2;
7081 }
7082 /* no match - add a new doms_new */
dce840a0 7083 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7084match2:
7085 ;
7086 }
7087
7088 /* Remember the new sched domains */
acc3f5d7
RR
7089 if (doms_cur != &fallback_doms)
7090 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7091 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7092 doms_cur = doms_new;
1d3504fc 7093 dattr_cur = dattr_new;
029190c5 7094 ndoms_cur = ndoms_new;
7378547f
MM
7095
7096 register_sched_domain_sysctl();
a1835615 7097
712555ee 7098 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7099}
7100
d35be8ba
SB
7101static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7102
1da177e4 7103/*
3a101d05
TH
7104 * Update cpusets according to cpu_active mask. If cpusets are
7105 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7106 * around partition_sched_domains().
d35be8ba
SB
7107 *
7108 * If we come here as part of a suspend/resume, don't touch cpusets because we
7109 * want to restore it back to its original state upon resume anyway.
1da177e4 7110 */
40190a78 7111static void cpuset_cpu_active(void)
e761b772 7112{
40190a78 7113 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7114 /*
7115 * num_cpus_frozen tracks how many CPUs are involved in suspend
7116 * resume sequence. As long as this is not the last online
7117 * operation in the resume sequence, just build a single sched
7118 * domain, ignoring cpusets.
7119 */
7120 num_cpus_frozen--;
7121 if (likely(num_cpus_frozen)) {
7122 partition_sched_domains(1, NULL, NULL);
135fb3e1 7123 return;
d35be8ba 7124 }
d35be8ba
SB
7125 /*
7126 * This is the last CPU online operation. So fall through and
7127 * restore the original sched domains by considering the
7128 * cpuset configurations.
7129 */
3a101d05 7130 }
135fb3e1 7131 cpuset_update_active_cpus(true);
3a101d05 7132}
e761b772 7133
40190a78 7134static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7135{
3c18d447 7136 unsigned long flags;
3c18d447 7137 struct dl_bw *dl_b;
533445c6
OS
7138 bool overflow;
7139 int cpus;
3c18d447 7140
40190a78 7141 if (!cpuhp_tasks_frozen) {
533445c6
OS
7142 rcu_read_lock_sched();
7143 dl_b = dl_bw_of(cpu);
3c18d447 7144
533445c6
OS
7145 raw_spin_lock_irqsave(&dl_b->lock, flags);
7146 cpus = dl_bw_cpus(cpu);
7147 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7148 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7149
533445c6 7150 rcu_read_unlock_sched();
3c18d447 7151
533445c6 7152 if (overflow)
135fb3e1 7153 return -EBUSY;
7ddf96b0 7154 cpuset_update_active_cpus(false);
135fb3e1 7155 } else {
d35be8ba
SB
7156 num_cpus_frozen++;
7157 partition_sched_domains(1, NULL, NULL);
e761b772 7158 }
135fb3e1 7159 return 0;
e761b772 7160}
e761b772 7161
40190a78 7162int sched_cpu_activate(unsigned int cpu)
135fb3e1 7163{
7d976699
TG
7164 struct rq *rq = cpu_rq(cpu);
7165 unsigned long flags;
7166
40190a78 7167 set_cpu_active(cpu, true);
135fb3e1 7168
40190a78 7169 if (sched_smp_initialized) {
135fb3e1 7170 sched_domains_numa_masks_set(cpu);
40190a78 7171 cpuset_cpu_active();
e761b772 7172 }
7d976699
TG
7173
7174 /*
7175 * Put the rq online, if not already. This happens:
7176 *
7177 * 1) In the early boot process, because we build the real domains
7178 * after all cpus have been brought up.
7179 *
7180 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7181 * domains.
7182 */
7183 raw_spin_lock_irqsave(&rq->lock, flags);
7184 if (rq->rd) {
7185 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7186 set_rq_online(rq);
7187 }
7188 raw_spin_unlock_irqrestore(&rq->lock, flags);
7189
7190 update_max_interval();
7191
40190a78 7192 return 0;
135fb3e1
TG
7193}
7194
40190a78 7195int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7196{
135fb3e1
TG
7197 int ret;
7198
40190a78 7199 set_cpu_active(cpu, false);
b2454caa
PZ
7200 /*
7201 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7202 * users of this state to go away such that all new such users will
7203 * observe it.
7204 *
7205 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7206 * not imply sync_sched(), so wait for both.
7207 *
7208 * Do sync before park smpboot threads to take care the rcu boost case.
7209 */
7210 if (IS_ENABLED(CONFIG_PREEMPT))
7211 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7212 else
7213 synchronize_rcu();
40190a78
TG
7214
7215 if (!sched_smp_initialized)
7216 return 0;
7217
7218 ret = cpuset_cpu_inactive(cpu);
7219 if (ret) {
7220 set_cpu_active(cpu, true);
7221 return ret;
135fb3e1 7222 }
40190a78
TG
7223 sched_domains_numa_masks_clear(cpu);
7224 return 0;
135fb3e1
TG
7225}
7226
94baf7a5
TG
7227static void sched_rq_cpu_starting(unsigned int cpu)
7228{
7229 struct rq *rq = cpu_rq(cpu);
7230
7231 rq->calc_load_update = calc_load_update;
7232 account_reset_rq(rq);
7233 update_max_interval();
7234}
7235
135fb3e1
TG
7236int sched_cpu_starting(unsigned int cpu)
7237{
7238 set_cpu_rq_start_time(cpu);
94baf7a5 7239 sched_rq_cpu_starting(cpu);
135fb3e1 7240 return 0;
e761b772 7241}
e761b772 7242
f2785ddb
TG
7243#ifdef CONFIG_HOTPLUG_CPU
7244int sched_cpu_dying(unsigned int cpu)
7245{
7246 struct rq *rq = cpu_rq(cpu);
7247 unsigned long flags;
7248
7249 /* Handle pending wakeups and then migrate everything off */
7250 sched_ttwu_pending();
7251 raw_spin_lock_irqsave(&rq->lock, flags);
7252 if (rq->rd) {
7253 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7254 set_rq_offline(rq);
7255 }
7256 migrate_tasks(rq);
7257 BUG_ON(rq->nr_running != 1);
7258 raw_spin_unlock_irqrestore(&rq->lock, flags);
7259 calc_load_migrate(rq);
7260 update_max_interval();
20a5c8cc 7261 nohz_balance_exit_idle(cpu);
e5ef27d0 7262 hrtick_clear(rq);
f2785ddb
TG
7263 return 0;
7264}
7265#endif
7266
1da177e4
LT
7267void __init sched_init_smp(void)
7268{
dcc30a35
RR
7269 cpumask_var_t non_isolated_cpus;
7270
7271 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7272 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7273
cb83b629
PZ
7274 sched_init_numa();
7275
6acce3ef
PZ
7276 /*
7277 * There's no userspace yet to cause hotplug operations; hence all the
7278 * cpu masks are stable and all blatant races in the below code cannot
7279 * happen.
7280 */
712555ee 7281 mutex_lock(&sched_domains_mutex);
c4a8849a 7282 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7283 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7284 if (cpumask_empty(non_isolated_cpus))
7285 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7286 mutex_unlock(&sched_domains_mutex);
e761b772 7287
5c1e1767 7288 /* Move init over to a non-isolated CPU */
dcc30a35 7289 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7290 BUG();
19978ca6 7291 sched_init_granularity();
dcc30a35 7292 free_cpumask_var(non_isolated_cpus);
4212823f 7293
0e3900e6 7294 init_sched_rt_class();
1baca4ce 7295 init_sched_dl_class();
e26fbffd 7296 sched_smp_initialized = true;
1da177e4 7297}
e26fbffd
TG
7298
7299static int __init migration_init(void)
7300{
94baf7a5 7301 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7302 return 0;
1da177e4 7303}
e26fbffd
TG
7304early_initcall(migration_init);
7305
1da177e4
LT
7306#else
7307void __init sched_init_smp(void)
7308{
19978ca6 7309 sched_init_granularity();
1da177e4
LT
7310}
7311#endif /* CONFIG_SMP */
7312
7313int in_sched_functions(unsigned long addr)
7314{
1da177e4
LT
7315 return in_lock_functions(addr) ||
7316 (addr >= (unsigned long)__sched_text_start
7317 && addr < (unsigned long)__sched_text_end);
7318}
7319
029632fb 7320#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7321/*
7322 * Default task group.
7323 * Every task in system belongs to this group at bootup.
7324 */
029632fb 7325struct task_group root_task_group;
35cf4e50 7326LIST_HEAD(task_groups);
b0367629
WL
7327
7328/* Cacheline aligned slab cache for task_group */
7329static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7330#endif
6f505b16 7331
e6252c3e 7332DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7333
1da177e4
LT
7334void __init sched_init(void)
7335{
dd41f596 7336 int i, j;
434d53b0
MT
7337 unsigned long alloc_size = 0, ptr;
7338
7339#ifdef CONFIG_FAIR_GROUP_SCHED
7340 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7341#endif
7342#ifdef CONFIG_RT_GROUP_SCHED
7343 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7344#endif
434d53b0 7345 if (alloc_size) {
36b7b6d4 7346 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7347
7348#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7349 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7350 ptr += nr_cpu_ids * sizeof(void **);
7351
07e06b01 7352 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7353 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7354
6d6bc0ad 7355#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7356#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7357 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7358 ptr += nr_cpu_ids * sizeof(void **);
7359
07e06b01 7360 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7361 ptr += nr_cpu_ids * sizeof(void **);
7362
6d6bc0ad 7363#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7364 }
df7c8e84 7365#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7366 for_each_possible_cpu(i) {
7367 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7368 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7369 }
b74e6278 7370#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7371
332ac17e
DF
7372 init_rt_bandwidth(&def_rt_bandwidth,
7373 global_rt_period(), global_rt_runtime());
7374 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7375 global_rt_period(), global_rt_runtime());
332ac17e 7376
57d885fe
GH
7377#ifdef CONFIG_SMP
7378 init_defrootdomain();
7379#endif
7380
d0b27fa7 7381#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7382 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7383 global_rt_period(), global_rt_runtime());
6d6bc0ad 7384#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7385
7c941438 7386#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7387 task_group_cache = KMEM_CACHE(task_group, 0);
7388
07e06b01
YZ
7389 list_add(&root_task_group.list, &task_groups);
7390 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7391 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7392 autogroup_init(&init_task);
7c941438 7393#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7394
0a945022 7395 for_each_possible_cpu(i) {
70b97a7f 7396 struct rq *rq;
1da177e4
LT
7397
7398 rq = cpu_rq(i);
05fa785c 7399 raw_spin_lock_init(&rq->lock);
7897986b 7400 rq->nr_running = 0;
dce48a84
TG
7401 rq->calc_load_active = 0;
7402 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7403 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7404 init_rt_rq(&rq->rt);
7405 init_dl_rq(&rq->dl);
dd41f596 7406#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7407 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7408 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7409 /*
07e06b01 7410 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7411 *
7412 * In case of task-groups formed thr' the cgroup filesystem, it
7413 * gets 100% of the cpu resources in the system. This overall
7414 * system cpu resource is divided among the tasks of
07e06b01 7415 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7416 * based on each entity's (task or task-group's) weight
7417 * (se->load.weight).
7418 *
07e06b01 7419 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7420 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7421 * then A0's share of the cpu resource is:
7422 *
0d905bca 7423 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7424 *
07e06b01
YZ
7425 * We achieve this by letting root_task_group's tasks sit
7426 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7427 */
ab84d31e 7428 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7429 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7430#endif /* CONFIG_FAIR_GROUP_SCHED */
7431
7432 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7433#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7434 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7435#endif
1da177e4 7436
dd41f596
IM
7437 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7438 rq->cpu_load[j] = 0;
fdf3e95d 7439
1da177e4 7440#ifdef CONFIG_SMP
41c7ce9a 7441 rq->sd = NULL;
57d885fe 7442 rq->rd = NULL;
ca6d75e6 7443 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7444 rq->balance_callback = NULL;
1da177e4 7445 rq->active_balance = 0;
dd41f596 7446 rq->next_balance = jiffies;
1da177e4 7447 rq->push_cpu = 0;
0a2966b4 7448 rq->cpu = i;
1f11eb6a 7449 rq->online = 0;
eae0c9df
MG
7450 rq->idle_stamp = 0;
7451 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7452 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7453
7454 INIT_LIST_HEAD(&rq->cfs_tasks);
7455
dc938520 7456 rq_attach_root(rq, &def_root_domain);
3451d024 7457#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7458 rq->last_load_update_tick = jiffies;
1c792db7 7459 rq->nohz_flags = 0;
83cd4fe2 7460#endif
265f22a9
FW
7461#ifdef CONFIG_NO_HZ_FULL
7462 rq->last_sched_tick = 0;
7463#endif
9fd81dd5 7464#endif /* CONFIG_SMP */
8f4d37ec 7465 init_rq_hrtick(rq);
1da177e4 7466 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7467 }
7468
2dd73a4f 7469 set_load_weight(&init_task);
b50f60ce 7470
e107be36
AK
7471#ifdef CONFIG_PREEMPT_NOTIFIERS
7472 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7473#endif
7474
1da177e4
LT
7475 /*
7476 * The boot idle thread does lazy MMU switching as well:
7477 */
7478 atomic_inc(&init_mm.mm_count);
7479 enter_lazy_tlb(&init_mm, current);
7480
1b537c7d
YD
7481 /*
7482 * During early bootup we pretend to be a normal task:
7483 */
7484 current->sched_class = &fair_sched_class;
7485
1da177e4
LT
7486 /*
7487 * Make us the idle thread. Technically, schedule() should not be
7488 * called from this thread, however somewhere below it might be,
7489 * but because we are the idle thread, we just pick up running again
7490 * when this runqueue becomes "idle".
7491 */
7492 init_idle(current, smp_processor_id());
dce48a84
TG
7493
7494 calc_load_update = jiffies + LOAD_FREQ;
7495
bf4d83f6 7496#ifdef CONFIG_SMP
4cb98839 7497 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7498 /* May be allocated at isolcpus cmdline parse time */
7499 if (cpu_isolated_map == NULL)
7500 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7501 idle_thread_set_boot_cpu();
9cf7243d 7502 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7503#endif
7504 init_sched_fair_class();
6a7b3dc3 7505
4698f88c
JP
7506 init_schedstats();
7507
6892b75e 7508 scheduler_running = 1;
1da177e4
LT
7509}
7510
d902db1e 7511#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7512static inline int preempt_count_equals(int preempt_offset)
7513{
da7142e2 7514 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7515
4ba8216c 7516 return (nested == preempt_offset);
e4aafea2
FW
7517}
7518
d894837f 7519void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7520{
8eb23b9f
PZ
7521 /*
7522 * Blocking primitives will set (and therefore destroy) current->state,
7523 * since we will exit with TASK_RUNNING make sure we enter with it,
7524 * otherwise we will destroy state.
7525 */
00845eb9 7526 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7527 "do not call blocking ops when !TASK_RUNNING; "
7528 "state=%lx set at [<%p>] %pS\n",
7529 current->state,
7530 (void *)current->task_state_change,
00845eb9 7531 (void *)current->task_state_change);
8eb23b9f 7532
3427445a
PZ
7533 ___might_sleep(file, line, preempt_offset);
7534}
7535EXPORT_SYMBOL(__might_sleep);
7536
7537void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7538{
1da177e4
LT
7539 static unsigned long prev_jiffy; /* ratelimiting */
7540
b3fbab05 7541 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7542 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7543 !is_idle_task(current)) ||
e4aafea2 7544 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7545 return;
7546 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7547 return;
7548 prev_jiffy = jiffies;
7549
3df0fc5b
PZ
7550 printk(KERN_ERR
7551 "BUG: sleeping function called from invalid context at %s:%d\n",
7552 file, line);
7553 printk(KERN_ERR
7554 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7555 in_atomic(), irqs_disabled(),
7556 current->pid, current->comm);
aef745fc 7557
a8b686b3
ES
7558 if (task_stack_end_corrupted(current))
7559 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7560
aef745fc
IM
7561 debug_show_held_locks(current);
7562 if (irqs_disabled())
7563 print_irqtrace_events(current);
8f47b187
TG
7564#ifdef CONFIG_DEBUG_PREEMPT
7565 if (!preempt_count_equals(preempt_offset)) {
7566 pr_err("Preemption disabled at:");
7567 print_ip_sym(current->preempt_disable_ip);
7568 pr_cont("\n");
7569 }
7570#endif
aef745fc 7571 dump_stack();
1da177e4 7572}
3427445a 7573EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7574#endif
7575
7576#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7577void normalize_rt_tasks(void)
3a5e4dc1 7578{
dbc7f069 7579 struct task_struct *g, *p;
d50dde5a
DF
7580 struct sched_attr attr = {
7581 .sched_policy = SCHED_NORMAL,
7582 };
1da177e4 7583
3472eaa1 7584 read_lock(&tasklist_lock);
5d07f420 7585 for_each_process_thread(g, p) {
178be793
IM
7586 /*
7587 * Only normalize user tasks:
7588 */
3472eaa1 7589 if (p->flags & PF_KTHREAD)
178be793
IM
7590 continue;
7591
6cfb0d5d 7592 p->se.exec_start = 0;
6cfb0d5d 7593#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7594 p->se.statistics.wait_start = 0;
7595 p->se.statistics.sleep_start = 0;
7596 p->se.statistics.block_start = 0;
6cfb0d5d 7597#endif
dd41f596 7598
aab03e05 7599 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7600 /*
7601 * Renice negative nice level userspace
7602 * tasks back to 0:
7603 */
3472eaa1 7604 if (task_nice(p) < 0)
dd41f596 7605 set_user_nice(p, 0);
1da177e4 7606 continue;
dd41f596 7607 }
1da177e4 7608
dbc7f069 7609 __sched_setscheduler(p, &attr, false, false);
5d07f420 7610 }
3472eaa1 7611 read_unlock(&tasklist_lock);
1da177e4
LT
7612}
7613
7614#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7615
67fc4e0c 7616#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7617/*
67fc4e0c 7618 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7619 *
7620 * They can only be called when the whole system has been
7621 * stopped - every CPU needs to be quiescent, and no scheduling
7622 * activity can take place. Using them for anything else would
7623 * be a serious bug, and as a result, they aren't even visible
7624 * under any other configuration.
7625 */
7626
7627/**
7628 * curr_task - return the current task for a given cpu.
7629 * @cpu: the processor in question.
7630 *
7631 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7632 *
7633 * Return: The current task for @cpu.
1df5c10a 7634 */
36c8b586 7635struct task_struct *curr_task(int cpu)
1df5c10a
LT
7636{
7637 return cpu_curr(cpu);
7638}
7639
67fc4e0c
JW
7640#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7641
7642#ifdef CONFIG_IA64
1df5c10a
LT
7643/**
7644 * set_curr_task - set the current task for a given cpu.
7645 * @cpu: the processor in question.
7646 * @p: the task pointer to set.
7647 *
7648 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7649 * are serviced on a separate stack. It allows the architecture to switch the
7650 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7651 * must be called with all CPU's synchronized, and interrupts disabled, the
7652 * and caller must save the original value of the current task (see
7653 * curr_task() above) and restore that value before reenabling interrupts and
7654 * re-starting the system.
7655 *
7656 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7657 */
36c8b586 7658void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7659{
7660 cpu_curr(cpu) = p;
7661}
7662
7663#endif
29f59db3 7664
7c941438 7665#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7666/* task_group_lock serializes the addition/removal of task groups */
7667static DEFINE_SPINLOCK(task_group_lock);
7668
2f5177f0 7669static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7670{
7671 free_fair_sched_group(tg);
7672 free_rt_sched_group(tg);
e9aa1dd1 7673 autogroup_free(tg);
b0367629 7674 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7675}
7676
7677/* allocate runqueue etc for a new task group */
ec7dc8ac 7678struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7679{
7680 struct task_group *tg;
bccbe08a 7681
b0367629 7682 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7683 if (!tg)
7684 return ERR_PTR(-ENOMEM);
7685
ec7dc8ac 7686 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7687 goto err;
7688
ec7dc8ac 7689 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7690 goto err;
7691
ace783b9
LZ
7692 return tg;
7693
7694err:
2f5177f0 7695 sched_free_group(tg);
ace783b9
LZ
7696 return ERR_PTR(-ENOMEM);
7697}
7698
7699void sched_online_group(struct task_group *tg, struct task_group *parent)
7700{
7701 unsigned long flags;
7702
8ed36996 7703 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7704 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7705
7706 WARN_ON(!parent); /* root should already exist */
7707
7708 tg->parent = parent;
f473aa5e 7709 INIT_LIST_HEAD(&tg->children);
09f2724a 7710 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7711 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7712}
7713
9b5b7751 7714/* rcu callback to free various structures associated with a task group */
2f5177f0 7715static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7716{
29f59db3 7717 /* now it should be safe to free those cfs_rqs */
2f5177f0 7718 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7719}
7720
4cf86d77 7721void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7722{
7723 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7724 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7725}
7726
7727void sched_offline_group(struct task_group *tg)
29f59db3 7728{
8ed36996 7729 unsigned long flags;
29f59db3 7730
3d4b47b4 7731 /* end participation in shares distribution */
6fe1f348 7732 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7733
7734 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7735 list_del_rcu(&tg->list);
f473aa5e 7736 list_del_rcu(&tg->siblings);
8ed36996 7737 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7738}
7739
9b5b7751 7740/* change task's runqueue when it moves between groups.
3a252015
IM
7741 * The caller of this function should have put the task in its new group
7742 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7743 * reflect its new group.
9b5b7751
SV
7744 */
7745void sched_move_task(struct task_struct *tsk)
29f59db3 7746{
8323f26c 7747 struct task_group *tg;
da0c1e65 7748 int queued, running;
eb580751 7749 struct rq_flags rf;
29f59db3
SV
7750 struct rq *rq;
7751
eb580751 7752 rq = task_rq_lock(tsk, &rf);
29f59db3 7753
051a1d1a 7754 running = task_current(rq, tsk);
da0c1e65 7755 queued = task_on_rq_queued(tsk);
29f59db3 7756
da0c1e65 7757 if (queued)
ff77e468 7758 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7759 if (unlikely(running))
f3cd1c4e 7760 put_prev_task(rq, tsk);
29f59db3 7761
f7b8a47d
KT
7762 /*
7763 * All callers are synchronized by task_rq_lock(); we do not use RCU
7764 * which is pointless here. Thus, we pass "true" to task_css_check()
7765 * to prevent lockdep warnings.
7766 */
7767 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7768 struct task_group, css);
7769 tg = autogroup_task_group(tsk, tg);
7770 tsk->sched_task_group = tg;
7771
810b3817 7772#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7773 if (tsk->sched_class->task_move_group)
bc54da21 7774 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7775 else
810b3817 7776#endif
b2b5ce02 7777 set_task_rq(tsk, task_cpu(tsk));
810b3817 7778
0e1f3483
HS
7779 if (unlikely(running))
7780 tsk->sched_class->set_curr_task(rq);
da0c1e65 7781 if (queued)
ff77e468 7782 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7783
eb580751 7784 task_rq_unlock(rq, tsk, &rf);
29f59db3 7785}
7c941438 7786#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7787
a790de99
PT
7788#ifdef CONFIG_RT_GROUP_SCHED
7789/*
7790 * Ensure that the real time constraints are schedulable.
7791 */
7792static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7793
9a7e0b18
PZ
7794/* Must be called with tasklist_lock held */
7795static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7796{
9a7e0b18 7797 struct task_struct *g, *p;
b40b2e8e 7798
1fe89e1b
PZ
7799 /*
7800 * Autogroups do not have RT tasks; see autogroup_create().
7801 */
7802 if (task_group_is_autogroup(tg))
7803 return 0;
7804
5d07f420 7805 for_each_process_thread(g, p) {
8651c658 7806 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7807 return 1;
5d07f420 7808 }
b40b2e8e 7809
9a7e0b18
PZ
7810 return 0;
7811}
b40b2e8e 7812
9a7e0b18
PZ
7813struct rt_schedulable_data {
7814 struct task_group *tg;
7815 u64 rt_period;
7816 u64 rt_runtime;
7817};
b40b2e8e 7818
a790de99 7819static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7820{
7821 struct rt_schedulable_data *d = data;
7822 struct task_group *child;
7823 unsigned long total, sum = 0;
7824 u64 period, runtime;
b40b2e8e 7825
9a7e0b18
PZ
7826 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7827 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7828
9a7e0b18
PZ
7829 if (tg == d->tg) {
7830 period = d->rt_period;
7831 runtime = d->rt_runtime;
b40b2e8e 7832 }
b40b2e8e 7833
4653f803
PZ
7834 /*
7835 * Cannot have more runtime than the period.
7836 */
7837 if (runtime > period && runtime != RUNTIME_INF)
7838 return -EINVAL;
6f505b16 7839
4653f803
PZ
7840 /*
7841 * Ensure we don't starve existing RT tasks.
7842 */
9a7e0b18
PZ
7843 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7844 return -EBUSY;
6f505b16 7845
9a7e0b18 7846 total = to_ratio(period, runtime);
6f505b16 7847
4653f803
PZ
7848 /*
7849 * Nobody can have more than the global setting allows.
7850 */
7851 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7852 return -EINVAL;
6f505b16 7853
4653f803
PZ
7854 /*
7855 * The sum of our children's runtime should not exceed our own.
7856 */
9a7e0b18
PZ
7857 list_for_each_entry_rcu(child, &tg->children, siblings) {
7858 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7859 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7860
9a7e0b18
PZ
7861 if (child == d->tg) {
7862 period = d->rt_period;
7863 runtime = d->rt_runtime;
7864 }
6f505b16 7865
9a7e0b18 7866 sum += to_ratio(period, runtime);
9f0c1e56 7867 }
6f505b16 7868
9a7e0b18
PZ
7869 if (sum > total)
7870 return -EINVAL;
7871
7872 return 0;
6f505b16
PZ
7873}
7874
9a7e0b18 7875static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7876{
8277434e
PT
7877 int ret;
7878
9a7e0b18
PZ
7879 struct rt_schedulable_data data = {
7880 .tg = tg,
7881 .rt_period = period,
7882 .rt_runtime = runtime,
7883 };
7884
8277434e
PT
7885 rcu_read_lock();
7886 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7887 rcu_read_unlock();
7888
7889 return ret;
521f1a24
DG
7890}
7891
ab84d31e 7892static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7893 u64 rt_period, u64 rt_runtime)
6f505b16 7894{
ac086bc2 7895 int i, err = 0;
9f0c1e56 7896
2636ed5f
PZ
7897 /*
7898 * Disallowing the root group RT runtime is BAD, it would disallow the
7899 * kernel creating (and or operating) RT threads.
7900 */
7901 if (tg == &root_task_group && rt_runtime == 0)
7902 return -EINVAL;
7903
7904 /* No period doesn't make any sense. */
7905 if (rt_period == 0)
7906 return -EINVAL;
7907
9f0c1e56 7908 mutex_lock(&rt_constraints_mutex);
521f1a24 7909 read_lock(&tasklist_lock);
9a7e0b18
PZ
7910 err = __rt_schedulable(tg, rt_period, rt_runtime);
7911 if (err)
9f0c1e56 7912 goto unlock;
ac086bc2 7913
0986b11b 7914 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7915 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7916 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7917
7918 for_each_possible_cpu(i) {
7919 struct rt_rq *rt_rq = tg->rt_rq[i];
7920
0986b11b 7921 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7922 rt_rq->rt_runtime = rt_runtime;
0986b11b 7923 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7924 }
0986b11b 7925 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7926unlock:
521f1a24 7927 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7928 mutex_unlock(&rt_constraints_mutex);
7929
7930 return err;
6f505b16
PZ
7931}
7932
25cc7da7 7933static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7934{
7935 u64 rt_runtime, rt_period;
7936
7937 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7938 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7939 if (rt_runtime_us < 0)
7940 rt_runtime = RUNTIME_INF;
7941
ab84d31e 7942 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7943}
7944
25cc7da7 7945static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7946{
7947 u64 rt_runtime_us;
7948
d0b27fa7 7949 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7950 return -1;
7951
d0b27fa7 7952 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7953 do_div(rt_runtime_us, NSEC_PER_USEC);
7954 return rt_runtime_us;
7955}
d0b27fa7 7956
ce2f5fe4 7957static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7958{
7959 u64 rt_runtime, rt_period;
7960
ce2f5fe4 7961 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7962 rt_runtime = tg->rt_bandwidth.rt_runtime;
7963
ab84d31e 7964 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7965}
7966
25cc7da7 7967static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7968{
7969 u64 rt_period_us;
7970
7971 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7972 do_div(rt_period_us, NSEC_PER_USEC);
7973 return rt_period_us;
7974}
332ac17e 7975#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7976
332ac17e 7977#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7978static int sched_rt_global_constraints(void)
7979{
7980 int ret = 0;
7981
7982 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7983 read_lock(&tasklist_lock);
4653f803 7984 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7985 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7986 mutex_unlock(&rt_constraints_mutex);
7987
7988 return ret;
7989}
54e99124 7990
25cc7da7 7991static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7992{
7993 /* Don't accept realtime tasks when there is no way for them to run */
7994 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7995 return 0;
7996
7997 return 1;
7998}
7999
6d6bc0ad 8000#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8001static int sched_rt_global_constraints(void)
8002{
ac086bc2 8003 unsigned long flags;
8c5e9554 8004 int i;
ec5d4989 8005
0986b11b 8006 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8007 for_each_possible_cpu(i) {
8008 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8009
0986b11b 8010 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8011 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8012 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8013 }
0986b11b 8014 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8015
8c5e9554 8016 return 0;
d0b27fa7 8017}
6d6bc0ad 8018#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8019
a1963b81 8020static int sched_dl_global_validate(void)
332ac17e 8021{
1724813d
PZ
8022 u64 runtime = global_rt_runtime();
8023 u64 period = global_rt_period();
332ac17e 8024 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8025 struct dl_bw *dl_b;
1724813d 8026 int cpu, ret = 0;
49516342 8027 unsigned long flags;
332ac17e
DF
8028
8029 /*
8030 * Here we want to check the bandwidth not being set to some
8031 * value smaller than the currently allocated bandwidth in
8032 * any of the root_domains.
8033 *
8034 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8035 * cycling on root_domains... Discussion on different/better
8036 * solutions is welcome!
8037 */
1724813d 8038 for_each_possible_cpu(cpu) {
f10e00f4
KT
8039 rcu_read_lock_sched();
8040 dl_b = dl_bw_of(cpu);
332ac17e 8041
49516342 8042 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8043 if (new_bw < dl_b->total_bw)
8044 ret = -EBUSY;
49516342 8045 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8046
f10e00f4
KT
8047 rcu_read_unlock_sched();
8048
1724813d
PZ
8049 if (ret)
8050 break;
332ac17e
DF
8051 }
8052
1724813d 8053 return ret;
332ac17e
DF
8054}
8055
1724813d 8056static void sched_dl_do_global(void)
ce0dbbbb 8057{
1724813d 8058 u64 new_bw = -1;
f10e00f4 8059 struct dl_bw *dl_b;
1724813d 8060 int cpu;
49516342 8061 unsigned long flags;
ce0dbbbb 8062
1724813d
PZ
8063 def_dl_bandwidth.dl_period = global_rt_period();
8064 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8065
8066 if (global_rt_runtime() != RUNTIME_INF)
8067 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8068
8069 /*
8070 * FIXME: As above...
8071 */
8072 for_each_possible_cpu(cpu) {
f10e00f4
KT
8073 rcu_read_lock_sched();
8074 dl_b = dl_bw_of(cpu);
1724813d 8075
49516342 8076 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8077 dl_b->bw = new_bw;
49516342 8078 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8079
8080 rcu_read_unlock_sched();
ce0dbbbb 8081 }
1724813d
PZ
8082}
8083
8084static int sched_rt_global_validate(void)
8085{
8086 if (sysctl_sched_rt_period <= 0)
8087 return -EINVAL;
8088
e9e7cb38
JL
8089 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8090 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8091 return -EINVAL;
8092
8093 return 0;
8094}
8095
8096static void sched_rt_do_global(void)
8097{
8098 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8099 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8100}
8101
d0b27fa7 8102int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8103 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8104 loff_t *ppos)
8105{
d0b27fa7
PZ
8106 int old_period, old_runtime;
8107 static DEFINE_MUTEX(mutex);
1724813d 8108 int ret;
d0b27fa7
PZ
8109
8110 mutex_lock(&mutex);
8111 old_period = sysctl_sched_rt_period;
8112 old_runtime = sysctl_sched_rt_runtime;
8113
8d65af78 8114 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8115
8116 if (!ret && write) {
1724813d
PZ
8117 ret = sched_rt_global_validate();
8118 if (ret)
8119 goto undo;
8120
a1963b81 8121 ret = sched_dl_global_validate();
1724813d
PZ
8122 if (ret)
8123 goto undo;
8124
a1963b81 8125 ret = sched_rt_global_constraints();
1724813d
PZ
8126 if (ret)
8127 goto undo;
8128
8129 sched_rt_do_global();
8130 sched_dl_do_global();
8131 }
8132 if (0) {
8133undo:
8134 sysctl_sched_rt_period = old_period;
8135 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8136 }
8137 mutex_unlock(&mutex);
8138
8139 return ret;
8140}
68318b8e 8141
1724813d 8142int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8143 void __user *buffer, size_t *lenp,
8144 loff_t *ppos)
8145{
8146 int ret;
332ac17e 8147 static DEFINE_MUTEX(mutex);
332ac17e
DF
8148
8149 mutex_lock(&mutex);
332ac17e 8150 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8151 /* make sure that internally we keep jiffies */
8152 /* also, writing zero resets timeslice to default */
332ac17e 8153 if (!ret && write) {
1724813d
PZ
8154 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8155 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8156 }
8157 mutex_unlock(&mutex);
332ac17e
DF
8158 return ret;
8159}
8160
052f1dc7 8161#ifdef CONFIG_CGROUP_SCHED
68318b8e 8162
a7c6d554 8163static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8164{
a7c6d554 8165 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8166}
8167
eb95419b
TH
8168static struct cgroup_subsys_state *
8169cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8170{
eb95419b
TH
8171 struct task_group *parent = css_tg(parent_css);
8172 struct task_group *tg;
68318b8e 8173
eb95419b 8174 if (!parent) {
68318b8e 8175 /* This is early initialization for the top cgroup */
07e06b01 8176 return &root_task_group.css;
68318b8e
SV
8177 }
8178
ec7dc8ac 8179 tg = sched_create_group(parent);
68318b8e
SV
8180 if (IS_ERR(tg))
8181 return ERR_PTR(-ENOMEM);
8182
2f5177f0
PZ
8183 sched_online_group(tg, parent);
8184
68318b8e
SV
8185 return &tg->css;
8186}
8187
2f5177f0 8188static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8189{
eb95419b 8190 struct task_group *tg = css_tg(css);
ace783b9 8191
2f5177f0 8192 sched_offline_group(tg);
ace783b9
LZ
8193}
8194
eb95419b 8195static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8196{
eb95419b 8197 struct task_group *tg = css_tg(css);
68318b8e 8198
2f5177f0
PZ
8199 /*
8200 * Relies on the RCU grace period between css_released() and this.
8201 */
8202 sched_free_group(tg);
ace783b9
LZ
8203}
8204
b53202e6 8205static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8206{
8207 sched_move_task(task);
8208}
8209
1f7dd3e5 8210static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8211{
bb9d97b6 8212 struct task_struct *task;
1f7dd3e5 8213 struct cgroup_subsys_state *css;
bb9d97b6 8214
1f7dd3e5 8215 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8216#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8217 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8218 return -EINVAL;
b68aa230 8219#else
bb9d97b6
TH
8220 /* We don't support RT-tasks being in separate groups */
8221 if (task->sched_class != &fair_sched_class)
8222 return -EINVAL;
b68aa230 8223#endif
bb9d97b6 8224 }
be367d09
BB
8225 return 0;
8226}
68318b8e 8227
1f7dd3e5 8228static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8229{
bb9d97b6 8230 struct task_struct *task;
1f7dd3e5 8231 struct cgroup_subsys_state *css;
bb9d97b6 8232
1f7dd3e5 8233 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8234 sched_move_task(task);
68318b8e
SV
8235}
8236
052f1dc7 8237#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8238static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8239 struct cftype *cftype, u64 shareval)
68318b8e 8240{
182446d0 8241 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8242}
8243
182446d0
TH
8244static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8245 struct cftype *cft)
68318b8e 8246{
182446d0 8247 struct task_group *tg = css_tg(css);
68318b8e 8248
c8b28116 8249 return (u64) scale_load_down(tg->shares);
68318b8e 8250}
ab84d31e
PT
8251
8252#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8253static DEFINE_MUTEX(cfs_constraints_mutex);
8254
ab84d31e
PT
8255const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8256const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8257
a790de99
PT
8258static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8259
ab84d31e
PT
8260static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8261{
56f570e5 8262 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8263 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8264
8265 if (tg == &root_task_group)
8266 return -EINVAL;
8267
8268 /*
8269 * Ensure we have at some amount of bandwidth every period. This is
8270 * to prevent reaching a state of large arrears when throttled via
8271 * entity_tick() resulting in prolonged exit starvation.
8272 */
8273 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8274 return -EINVAL;
8275
8276 /*
8277 * Likewise, bound things on the otherside by preventing insane quota
8278 * periods. This also allows us to normalize in computing quota
8279 * feasibility.
8280 */
8281 if (period > max_cfs_quota_period)
8282 return -EINVAL;
8283
0e59bdae
KT
8284 /*
8285 * Prevent race between setting of cfs_rq->runtime_enabled and
8286 * unthrottle_offline_cfs_rqs().
8287 */
8288 get_online_cpus();
a790de99
PT
8289 mutex_lock(&cfs_constraints_mutex);
8290 ret = __cfs_schedulable(tg, period, quota);
8291 if (ret)
8292 goto out_unlock;
8293
58088ad0 8294 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8295 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8296 /*
8297 * If we need to toggle cfs_bandwidth_used, off->on must occur
8298 * before making related changes, and on->off must occur afterwards
8299 */
8300 if (runtime_enabled && !runtime_was_enabled)
8301 cfs_bandwidth_usage_inc();
ab84d31e
PT
8302 raw_spin_lock_irq(&cfs_b->lock);
8303 cfs_b->period = ns_to_ktime(period);
8304 cfs_b->quota = quota;
58088ad0 8305
a9cf55b2 8306 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8307 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8308 if (runtime_enabled)
8309 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8310 raw_spin_unlock_irq(&cfs_b->lock);
8311
0e59bdae 8312 for_each_online_cpu(i) {
ab84d31e 8313 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8314 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8315
8316 raw_spin_lock_irq(&rq->lock);
58088ad0 8317 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8318 cfs_rq->runtime_remaining = 0;
671fd9da 8319
029632fb 8320 if (cfs_rq->throttled)
671fd9da 8321 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8322 raw_spin_unlock_irq(&rq->lock);
8323 }
1ee14e6c
BS
8324 if (runtime_was_enabled && !runtime_enabled)
8325 cfs_bandwidth_usage_dec();
a790de99
PT
8326out_unlock:
8327 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8328 put_online_cpus();
ab84d31e 8329
a790de99 8330 return ret;
ab84d31e
PT
8331}
8332
8333int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8334{
8335 u64 quota, period;
8336
029632fb 8337 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8338 if (cfs_quota_us < 0)
8339 quota = RUNTIME_INF;
8340 else
8341 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8342
8343 return tg_set_cfs_bandwidth(tg, period, quota);
8344}
8345
8346long tg_get_cfs_quota(struct task_group *tg)
8347{
8348 u64 quota_us;
8349
029632fb 8350 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8351 return -1;
8352
029632fb 8353 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8354 do_div(quota_us, NSEC_PER_USEC);
8355
8356 return quota_us;
8357}
8358
8359int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8360{
8361 u64 quota, period;
8362
8363 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8364 quota = tg->cfs_bandwidth.quota;
ab84d31e 8365
ab84d31e
PT
8366 return tg_set_cfs_bandwidth(tg, period, quota);
8367}
8368
8369long tg_get_cfs_period(struct task_group *tg)
8370{
8371 u64 cfs_period_us;
8372
029632fb 8373 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8374 do_div(cfs_period_us, NSEC_PER_USEC);
8375
8376 return cfs_period_us;
8377}
8378
182446d0
TH
8379static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8380 struct cftype *cft)
ab84d31e 8381{
182446d0 8382 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8383}
8384
182446d0
TH
8385static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8386 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8387{
182446d0 8388 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8389}
8390
182446d0
TH
8391static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8392 struct cftype *cft)
ab84d31e 8393{
182446d0 8394 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8395}
8396
182446d0
TH
8397static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8398 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8399{
182446d0 8400 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8401}
8402
a790de99
PT
8403struct cfs_schedulable_data {
8404 struct task_group *tg;
8405 u64 period, quota;
8406};
8407
8408/*
8409 * normalize group quota/period to be quota/max_period
8410 * note: units are usecs
8411 */
8412static u64 normalize_cfs_quota(struct task_group *tg,
8413 struct cfs_schedulable_data *d)
8414{
8415 u64 quota, period;
8416
8417 if (tg == d->tg) {
8418 period = d->period;
8419 quota = d->quota;
8420 } else {
8421 period = tg_get_cfs_period(tg);
8422 quota = tg_get_cfs_quota(tg);
8423 }
8424
8425 /* note: these should typically be equivalent */
8426 if (quota == RUNTIME_INF || quota == -1)
8427 return RUNTIME_INF;
8428
8429 return to_ratio(period, quota);
8430}
8431
8432static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8433{
8434 struct cfs_schedulable_data *d = data;
029632fb 8435 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8436 s64 quota = 0, parent_quota = -1;
8437
8438 if (!tg->parent) {
8439 quota = RUNTIME_INF;
8440 } else {
029632fb 8441 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8442
8443 quota = normalize_cfs_quota(tg, d);
9c58c79a 8444 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8445
8446 /*
8447 * ensure max(child_quota) <= parent_quota, inherit when no
8448 * limit is set
8449 */
8450 if (quota == RUNTIME_INF)
8451 quota = parent_quota;
8452 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8453 return -EINVAL;
8454 }
9c58c79a 8455 cfs_b->hierarchical_quota = quota;
a790de99
PT
8456
8457 return 0;
8458}
8459
8460static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8461{
8277434e 8462 int ret;
a790de99
PT
8463 struct cfs_schedulable_data data = {
8464 .tg = tg,
8465 .period = period,
8466 .quota = quota,
8467 };
8468
8469 if (quota != RUNTIME_INF) {
8470 do_div(data.period, NSEC_PER_USEC);
8471 do_div(data.quota, NSEC_PER_USEC);
8472 }
8473
8277434e
PT
8474 rcu_read_lock();
8475 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8476 rcu_read_unlock();
8477
8478 return ret;
a790de99 8479}
e8da1b18 8480
2da8ca82 8481static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8482{
2da8ca82 8483 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8484 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8485
44ffc75b
TH
8486 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8487 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8488 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8489
8490 return 0;
8491}
ab84d31e 8492#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8493#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8494
052f1dc7 8495#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8496static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8497 struct cftype *cft, s64 val)
6f505b16 8498{
182446d0 8499 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8500}
8501
182446d0
TH
8502static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8503 struct cftype *cft)
6f505b16 8504{
182446d0 8505 return sched_group_rt_runtime(css_tg(css));
6f505b16 8506}
d0b27fa7 8507
182446d0
TH
8508static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8509 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8510{
182446d0 8511 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8512}
8513
182446d0
TH
8514static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8515 struct cftype *cft)
d0b27fa7 8516{
182446d0 8517 return sched_group_rt_period(css_tg(css));
d0b27fa7 8518}
6d6bc0ad 8519#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8520
fe5c7cc2 8521static struct cftype cpu_files[] = {
052f1dc7 8522#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8523 {
8524 .name = "shares",
f4c753b7
PM
8525 .read_u64 = cpu_shares_read_u64,
8526 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8527 },
052f1dc7 8528#endif
ab84d31e
PT
8529#ifdef CONFIG_CFS_BANDWIDTH
8530 {
8531 .name = "cfs_quota_us",
8532 .read_s64 = cpu_cfs_quota_read_s64,
8533 .write_s64 = cpu_cfs_quota_write_s64,
8534 },
8535 {
8536 .name = "cfs_period_us",
8537 .read_u64 = cpu_cfs_period_read_u64,
8538 .write_u64 = cpu_cfs_period_write_u64,
8539 },
e8da1b18
NR
8540 {
8541 .name = "stat",
2da8ca82 8542 .seq_show = cpu_stats_show,
e8da1b18 8543 },
ab84d31e 8544#endif
052f1dc7 8545#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8546 {
9f0c1e56 8547 .name = "rt_runtime_us",
06ecb27c
PM
8548 .read_s64 = cpu_rt_runtime_read,
8549 .write_s64 = cpu_rt_runtime_write,
6f505b16 8550 },
d0b27fa7
PZ
8551 {
8552 .name = "rt_period_us",
f4c753b7
PM
8553 .read_u64 = cpu_rt_period_read_uint,
8554 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8555 },
052f1dc7 8556#endif
4baf6e33 8557 { } /* terminate */
68318b8e
SV
8558};
8559
073219e9 8560struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8561 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8562 .css_released = cpu_cgroup_css_released,
92fb9748 8563 .css_free = cpu_cgroup_css_free,
eeb61e53 8564 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8565 .can_attach = cpu_cgroup_can_attach,
8566 .attach = cpu_cgroup_attach,
5577964e 8567 .legacy_cftypes = cpu_files,
b38e42e9 8568 .early_init = true,
68318b8e
SV
8569};
8570
052f1dc7 8571#endif /* CONFIG_CGROUP_SCHED */
d842de87 8572
b637a328
PM
8573void dump_cpu_task(int cpu)
8574{
8575 pr_info("Task dump for CPU %d:\n", cpu);
8576 sched_show_task(cpu_curr(cpu));
8577}
ed82b8a1
AK
8578
8579/*
8580 * Nice levels are multiplicative, with a gentle 10% change for every
8581 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8582 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8583 * that remained on nice 0.
8584 *
8585 * The "10% effect" is relative and cumulative: from _any_ nice level,
8586 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8587 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8588 * If a task goes up by ~10% and another task goes down by ~10% then
8589 * the relative distance between them is ~25%.)
8590 */
8591const int sched_prio_to_weight[40] = {
8592 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8593 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8594 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8595 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8596 /* 0 */ 1024, 820, 655, 526, 423,
8597 /* 5 */ 335, 272, 215, 172, 137,
8598 /* 10 */ 110, 87, 70, 56, 45,
8599 /* 15 */ 36, 29, 23, 18, 15,
8600};
8601
8602/*
8603 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8604 *
8605 * In cases where the weight does not change often, we can use the
8606 * precalculated inverse to speed up arithmetics by turning divisions
8607 * into multiplications:
8608 */
8609const u32 sched_prio_to_wmult[40] = {
8610 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8611 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8612 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8613 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8614 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8615 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8616 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8617 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8618};
This page took 3.674373 seconds and 5 git commands to generate.