Restartable sequences system call (v8)
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
1da177e4 78
96f951ed 79#include <asm/switch_to.h>
5517d86b 80#include <asm/tlb.h>
838225b4 81#include <asm/irq_regs.h>
db7e527d 82#include <asm/mutex.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 188 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 228 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
594void wake_up_nohz_cpu(int cpu)
595{
c5bfece2 596 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
597 wake_up_idle_cpu(cpu);
598}
599
ca38062e 600static inline bool got_nohz_idle_kick(void)
45bf76df 601{
1c792db7 602 int cpu = smp_processor_id();
873b4c65
VG
603
604 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 return false;
606
607 if (idle_cpu(cpu) && !need_resched())
608 return true;
609
610 /*
611 * We can't run Idle Load Balance on this CPU for this time so we
612 * cancel it and clear NOHZ_BALANCE_KICK
613 */
614 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 return false;
45bf76df
IM
616}
617
3451d024 618#else /* CONFIG_NO_HZ_COMMON */
45bf76df 619
ca38062e 620static inline bool got_nohz_idle_kick(void)
2069dd75 621{
ca38062e 622 return false;
2069dd75
PZ
623}
624
3451d024 625#endif /* CONFIG_NO_HZ_COMMON */
d842de87 626
ce831b38 627#ifdef CONFIG_NO_HZ_FULL
76d92ac3 628bool sched_can_stop_tick(struct rq *rq)
ce831b38 629{
76d92ac3
FW
630 int fifo_nr_running;
631
632 /* Deadline tasks, even if single, need the tick */
633 if (rq->dl.dl_nr_running)
634 return false;
635
1e78cdbd 636 /*
2548d546
PZ
637 * If there are more than one RR tasks, we need the tick to effect the
638 * actual RR behaviour.
1e78cdbd 639 */
76d92ac3
FW
640 if (rq->rt.rr_nr_running) {
641 if (rq->rt.rr_nr_running == 1)
642 return true;
643 else
644 return false;
1e78cdbd
RR
645 }
646
2548d546
PZ
647 /*
648 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 * forced preemption between FIFO tasks.
650 */
651 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 if (fifo_nr_running)
653 return true;
654
655 /*
656 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 * if there's more than one we need the tick for involuntary
658 * preemption.
659 */
660 if (rq->nr_running > 1)
541b8264 661 return false;
ce831b38 662
541b8264 663 return true;
ce831b38
FW
664}
665#endif /* CONFIG_NO_HZ_FULL */
d842de87 666
029632fb 667void sched_avg_update(struct rq *rq)
18d95a28 668{
e9e9250b
PZ
669 s64 period = sched_avg_period();
670
78becc27 671 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
672 /*
673 * Inline assembly required to prevent the compiler
674 * optimising this loop into a divmod call.
675 * See __iter_div_u64_rem() for another example of this.
676 */
677 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
678 rq->age_stamp += period;
679 rq->rt_avg /= 2;
680 }
18d95a28
PZ
681}
682
6d6bc0ad 683#endif /* CONFIG_SMP */
18d95a28 684
a790de99
PT
685#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 687/*
8277434e
PT
688 * Iterate task_group tree rooted at *from, calling @down when first entering a
689 * node and @up when leaving it for the final time.
690 *
691 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 692 */
029632fb 693int walk_tg_tree_from(struct task_group *from,
8277434e 694 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
695{
696 struct task_group *parent, *child;
eb755805 697 int ret;
c09595f6 698
8277434e
PT
699 parent = from;
700
c09595f6 701down:
eb755805
PZ
702 ret = (*down)(parent, data);
703 if (ret)
8277434e 704 goto out;
c09595f6
PZ
705 list_for_each_entry_rcu(child, &parent->children, siblings) {
706 parent = child;
707 goto down;
708
709up:
710 continue;
711 }
eb755805 712 ret = (*up)(parent, data);
8277434e
PT
713 if (ret || parent == from)
714 goto out;
c09595f6
PZ
715
716 child = parent;
717 parent = parent->parent;
718 if (parent)
719 goto up;
8277434e 720out:
eb755805 721 return ret;
c09595f6
PZ
722}
723
029632fb 724int tg_nop(struct task_group *tg, void *data)
eb755805 725{
e2b245f8 726 return 0;
eb755805 727}
18d95a28
PZ
728#endif
729
45bf76df
IM
730static void set_load_weight(struct task_struct *p)
731{
f05998d4
NR
732 int prio = p->static_prio - MAX_RT_PRIO;
733 struct load_weight *load = &p->se.load;
734
dd41f596
IM
735 /*
736 * SCHED_IDLE tasks get minimal weight:
737 */
20f9cd2a 738 if (idle_policy(p->policy)) {
c8b28116 739 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 740 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
741 return;
742 }
71f8bd46 743
ed82b8a1
AK
744 load->weight = scale_load(sched_prio_to_weight[prio]);
745 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
746}
747
1de64443 748static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 749{
a64692a3 750 update_rq_clock(rq);
1de64443
PZ
751 if (!(flags & ENQUEUE_RESTORE))
752 sched_info_queued(rq, p);
371fd7e7 753 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
754}
755
1de64443 756static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 757{
a64692a3 758 update_rq_clock(rq);
1de64443
PZ
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
371fd7e7 761 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
762}
763
029632fb 764void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
765{
766 if (task_contributes_to_load(p))
767 rq->nr_uninterruptible--;
768
371fd7e7 769 enqueue_task(rq, p, flags);
1e3c88bd
PZ
770}
771
029632fb 772void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
773{
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible++;
776
371fd7e7 777 dequeue_task(rq, p, flags);
1e3c88bd
PZ
778}
779
fe44d621 780static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 781{
095c0aa8
GC
782/*
783 * In theory, the compile should just see 0 here, and optimize out the call
784 * to sched_rt_avg_update. But I don't trust it...
785 */
786#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 s64 steal = 0, irq_delta = 0;
788#endif
789#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 790 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
791
792 /*
793 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 * this case when a previous update_rq_clock() happened inside a
795 * {soft,}irq region.
796 *
797 * When this happens, we stop ->clock_task and only update the
798 * prev_irq_time stamp to account for the part that fit, so that a next
799 * update will consume the rest. This ensures ->clock_task is
800 * monotonic.
801 *
802 * It does however cause some slight miss-attribution of {soft,}irq
803 * time, a more accurate solution would be to update the irq_time using
804 * the current rq->clock timestamp, except that would require using
805 * atomic ops.
806 */
807 if (irq_delta > delta)
808 irq_delta = delta;
809
810 rq->prev_irq_time += irq_delta;
811 delta -= irq_delta;
095c0aa8
GC
812#endif
813#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 814 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
815 steal = paravirt_steal_clock(cpu_of(rq));
816 steal -= rq->prev_steal_time_rq;
817
818 if (unlikely(steal > delta))
819 steal = delta;
820
095c0aa8 821 rq->prev_steal_time_rq += steal;
095c0aa8
GC
822 delta -= steal;
823 }
824#endif
825
fe44d621
PZ
826 rq->clock_task += delta;
827
095c0aa8 828#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
830 sched_rt_avg_update(rq, irq_delta + steal);
831#endif
aa483808
VP
832}
833
34f971f6
PZ
834void sched_set_stop_task(int cpu, struct task_struct *stop)
835{
836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 struct task_struct *old_stop = cpu_rq(cpu)->stop;
838
839 if (stop) {
840 /*
841 * Make it appear like a SCHED_FIFO task, its something
842 * userspace knows about and won't get confused about.
843 *
844 * Also, it will make PI more or less work without too
845 * much confusion -- but then, stop work should not
846 * rely on PI working anyway.
847 */
848 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849
850 stop->sched_class = &stop_sched_class;
851 }
852
853 cpu_rq(cpu)->stop = stop;
854
855 if (old_stop) {
856 /*
857 * Reset it back to a normal scheduling class so that
858 * it can die in pieces.
859 */
860 old_stop->sched_class = &rt_sched_class;
861 }
862}
863
14531189 864/*
dd41f596 865 * __normal_prio - return the priority that is based on the static prio
14531189 866 */
14531189
IM
867static inline int __normal_prio(struct task_struct *p)
868{
dd41f596 869 return p->static_prio;
14531189
IM
870}
871
b29739f9
IM
872/*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
36c8b586 879static inline int normal_prio(struct task_struct *p)
b29739f9
IM
880{
881 int prio;
882
aab03e05
DF
883 if (task_has_dl_policy(p))
884 prio = MAX_DL_PRIO-1;
885 else if (task_has_rt_policy(p))
b29739f9
IM
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890}
891
892/*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
36c8b586 899static int effective_prio(struct task_struct *p)
b29739f9
IM
900{
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910}
911
1da177e4
LT
912/**
913 * task_curr - is this task currently executing on a CPU?
914 * @p: the task in question.
e69f6186
YB
915 *
916 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 917 */
36c8b586 918inline int task_curr(const struct task_struct *p)
1da177e4
LT
919{
920 return cpu_curr(task_cpu(p)) == p;
921}
922
67dfa1b7 923/*
4c9a4bc8
PZ
924 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925 * use the balance_callback list if you want balancing.
926 *
927 * this means any call to check_class_changed() must be followed by a call to
928 * balance_callback().
67dfa1b7 929 */
cb469845
SR
930static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 const struct sched_class *prev_class,
da7a735e 932 int oldprio)
cb469845
SR
933{
934 if (prev_class != p->sched_class) {
935 if (prev_class->switched_from)
da7a735e 936 prev_class->switched_from(rq, p);
4c9a4bc8 937
da7a735e 938 p->sched_class->switched_to(rq, p);
2d3d891d 939 } else if (oldprio != p->prio || dl_task(p))
da7a735e 940 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
941}
942
029632fb 943void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
944{
945 const struct sched_class *class;
946
947 if (p->sched_class == rq->curr->sched_class) {
948 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 } else {
950 for_each_class(class) {
951 if (class == rq->curr->sched_class)
952 break;
953 if (class == p->sched_class) {
8875125e 954 resched_curr(rq);
1e5a7405
PZ
955 break;
956 }
957 }
958 }
959
960 /*
961 * A queue event has occurred, and we're going to schedule. In
962 * this case, we can save a useless back to back clock update.
963 */
da0c1e65 964 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 965 rq_clock_skip_update(rq, true);
1e5a7405
PZ
966}
967
1da177e4 968#ifdef CONFIG_SMP
5cc389bc
PZ
969/*
970 * This is how migration works:
971 *
972 * 1) we invoke migration_cpu_stop() on the target CPU using
973 * stop_one_cpu().
974 * 2) stopper starts to run (implicitly forcing the migrated thread
975 * off the CPU)
976 * 3) it checks whether the migrated task is still in the wrong runqueue.
977 * 4) if it's in the wrong runqueue then the migration thread removes
978 * it and puts it into the right queue.
979 * 5) stopper completes and stop_one_cpu() returns and the migration
980 * is done.
981 */
982
983/*
984 * move_queued_task - move a queued task to new rq.
985 *
986 * Returns (locked) new rq. Old rq's lock is released.
987 */
5e16bbc2 988static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 989{
5cc389bc
PZ
990 lockdep_assert_held(&rq->lock);
991
5cc389bc 992 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 993 dequeue_task(rq, p, 0);
5cc389bc
PZ
994 set_task_cpu(p, new_cpu);
995 raw_spin_unlock(&rq->lock);
996
997 rq = cpu_rq(new_cpu);
998
999 raw_spin_lock(&rq->lock);
1000 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1001 enqueue_task(rq, p, 0);
3ea94de1 1002 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1003 check_preempt_curr(rq, p, 0);
1004
1005 return rq;
1006}
1007
1008struct migration_arg {
1009 struct task_struct *task;
1010 int dest_cpu;
1011};
1012
1013/*
1014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1015 * this because either it can't run here any more (set_cpus_allowed()
1016 * away from this CPU, or CPU going down), or because we're
1017 * attempting to rebalance this task on exec (sched_exec).
1018 *
1019 * So we race with normal scheduler movements, but that's OK, as long
1020 * as the task is no longer on this CPU.
5cc389bc 1021 */
5e16bbc2 1022static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1023{
5cc389bc 1024 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1025 return rq;
5cc389bc
PZ
1026
1027 /* Affinity changed (again). */
1028 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1029 return rq;
5cc389bc 1030
5e16bbc2
PZ
1031 rq = move_queued_task(rq, p, dest_cpu);
1032
1033 return rq;
5cc389bc
PZ
1034}
1035
1036/*
1037 * migration_cpu_stop - this will be executed by a highprio stopper thread
1038 * and performs thread migration by bumping thread off CPU then
1039 * 'pushing' onto another runqueue.
1040 */
1041static int migration_cpu_stop(void *data)
1042{
1043 struct migration_arg *arg = data;
5e16bbc2
PZ
1044 struct task_struct *p = arg->task;
1045 struct rq *rq = this_rq();
5cc389bc
PZ
1046
1047 /*
1048 * The original target cpu might have gone down and we might
1049 * be on another cpu but it doesn't matter.
1050 */
1051 local_irq_disable();
1052 /*
1053 * We need to explicitly wake pending tasks before running
1054 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 */
1057 sched_ttwu_pending();
5e16bbc2
PZ
1058
1059 raw_spin_lock(&p->pi_lock);
1060 raw_spin_lock(&rq->lock);
1061 /*
1062 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 * we're holding p->pi_lock.
1065 */
1066 if (task_rq(p) == rq && task_on_rq_queued(p))
1067 rq = __migrate_task(rq, p, arg->dest_cpu);
1068 raw_spin_unlock(&rq->lock);
1069 raw_spin_unlock(&p->pi_lock);
1070
5cc389bc
PZ
1071 local_irq_enable();
1072 return 0;
1073}
1074
c5b28038
PZ
1075/*
1076 * sched_class::set_cpus_allowed must do the below, but is not required to
1077 * actually call this function.
1078 */
1079void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1080{
5cc389bc
PZ
1081 cpumask_copy(&p->cpus_allowed, new_mask);
1082 p->nr_cpus_allowed = cpumask_weight(new_mask);
1083}
1084
c5b28038
PZ
1085void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1086{
6c37067e
PZ
1087 struct rq *rq = task_rq(p);
1088 bool queued, running;
1089
c5b28038 1090 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1091
1092 queued = task_on_rq_queued(p);
1093 running = task_current(rq, p);
1094
1095 if (queued) {
1096 /*
1097 * Because __kthread_bind() calls this on blocked tasks without
1098 * holding rq->lock.
1099 */
1100 lockdep_assert_held(&rq->lock);
1de64443 1101 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1102 }
1103 if (running)
1104 put_prev_task(rq, p);
1105
c5b28038 1106 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1107
1108 if (running)
1109 p->sched_class->set_curr_task(rq);
1110 if (queued)
1de64443 1111 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1112}
1113
5cc389bc
PZ
1114/*
1115 * Change a given task's CPU affinity. Migrate the thread to a
1116 * proper CPU and schedule it away if the CPU it's executing on
1117 * is removed from the allowed bitmask.
1118 *
1119 * NOTE: the caller must have a valid reference to the task, the
1120 * task must not exit() & deallocate itself prematurely. The
1121 * call is not atomic; no spinlocks may be held.
1122 */
25834c73
PZ
1123static int __set_cpus_allowed_ptr(struct task_struct *p,
1124 const struct cpumask *new_mask, bool check)
5cc389bc 1125{
e9d867a6 1126 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1127 unsigned int dest_cpu;
eb580751
PZ
1128 struct rq_flags rf;
1129 struct rq *rq;
5cc389bc
PZ
1130 int ret = 0;
1131
eb580751 1132 rq = task_rq_lock(p, &rf);
5cc389bc 1133
e9d867a6
PZI
1134 if (p->flags & PF_KTHREAD) {
1135 /*
1136 * Kernel threads are allowed on online && !active CPUs
1137 */
1138 cpu_valid_mask = cpu_online_mask;
1139 }
1140
25834c73
PZ
1141 /*
1142 * Must re-check here, to close a race against __kthread_bind(),
1143 * sched_setaffinity() is not guaranteed to observe the flag.
1144 */
1145 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1146 ret = -EINVAL;
1147 goto out;
1148 }
1149
5cc389bc
PZ
1150 if (cpumask_equal(&p->cpus_allowed, new_mask))
1151 goto out;
1152
e9d867a6 1153 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1154 ret = -EINVAL;
1155 goto out;
1156 }
1157
1158 do_set_cpus_allowed(p, new_mask);
1159
e9d867a6
PZI
1160 if (p->flags & PF_KTHREAD) {
1161 /*
1162 * For kernel threads that do indeed end up on online &&
1163 * !active we want to ensure they are strict per-cpu threads.
1164 */
1165 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1166 !cpumask_intersects(new_mask, cpu_active_mask) &&
1167 p->nr_cpus_allowed != 1);
1168 }
1169
5cc389bc
PZ
1170 /* Can the task run on the task's current CPU? If so, we're done */
1171 if (cpumask_test_cpu(task_cpu(p), new_mask))
1172 goto out;
1173
e9d867a6 1174 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1175 if (task_running(rq, p) || p->state == TASK_WAKING) {
1176 struct migration_arg arg = { p, dest_cpu };
1177 /* Need help from migration thread: drop lock and wait. */
eb580751 1178 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1179 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1180 tlb_migrate_finish(p->mm);
1181 return 0;
cbce1a68
PZ
1182 } else if (task_on_rq_queued(p)) {
1183 /*
1184 * OK, since we're going to drop the lock immediately
1185 * afterwards anyway.
1186 */
e7904a28 1187 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1188 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1189 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1190 }
5cc389bc 1191out:
eb580751 1192 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1193
1194 return ret;
1195}
25834c73
PZ
1196
1197int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1198{
1199 return __set_cpus_allowed_ptr(p, new_mask, false);
1200}
5cc389bc
PZ
1201EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1202
dd41f596 1203void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1204{
e2912009
PZ
1205#ifdef CONFIG_SCHED_DEBUG
1206 /*
1207 * We should never call set_task_cpu() on a blocked task,
1208 * ttwu() will sort out the placement.
1209 */
077614ee 1210 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1211 !p->on_rq);
0122ec5b 1212
3ea94de1
JP
1213 /*
1214 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1215 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1216 * time relying on p->on_rq.
1217 */
1218 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1219 p->sched_class == &fair_sched_class &&
1220 (p->on_rq && !task_on_rq_migrating(p)));
1221
0122ec5b 1222#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1223 /*
1224 * The caller should hold either p->pi_lock or rq->lock, when changing
1225 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1226 *
1227 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1228 * see task_group().
6c6c54e1
PZ
1229 *
1230 * Furthermore, all task_rq users should acquire both locks, see
1231 * task_rq_lock().
1232 */
0122ec5b
PZ
1233 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1234 lockdep_is_held(&task_rq(p)->lock)));
1235#endif
e2912009
PZ
1236#endif
1237
de1d7286 1238 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1239
0c69774e 1240 if (task_cpu(p) != new_cpu) {
0a74bef8 1241 if (p->sched_class->migrate_task_rq)
5a4fd036 1242 p->sched_class->migrate_task_rq(p);
0c69774e 1243 p->se.nr_migrations++;
ff303e66 1244 perf_event_task_migrate(p);
0c69774e 1245 }
dd41f596
IM
1246
1247 __set_task_cpu(p, new_cpu);
c65cc870
IM
1248}
1249
ac66f547
PZ
1250static void __migrate_swap_task(struct task_struct *p, int cpu)
1251{
da0c1e65 1252 if (task_on_rq_queued(p)) {
ac66f547
PZ
1253 struct rq *src_rq, *dst_rq;
1254
1255 src_rq = task_rq(p);
1256 dst_rq = cpu_rq(cpu);
1257
3ea94de1 1258 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1259 deactivate_task(src_rq, p, 0);
1260 set_task_cpu(p, cpu);
1261 activate_task(dst_rq, p, 0);
3ea94de1 1262 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1263 check_preempt_curr(dst_rq, p, 0);
1264 } else {
1265 /*
1266 * Task isn't running anymore; make it appear like we migrated
1267 * it before it went to sleep. This means on wakeup we make the
1268 * previous cpu our targer instead of where it really is.
1269 */
1270 p->wake_cpu = cpu;
1271 }
1272}
1273
1274struct migration_swap_arg {
1275 struct task_struct *src_task, *dst_task;
1276 int src_cpu, dst_cpu;
1277};
1278
1279static int migrate_swap_stop(void *data)
1280{
1281 struct migration_swap_arg *arg = data;
1282 struct rq *src_rq, *dst_rq;
1283 int ret = -EAGAIN;
1284
62694cd5
PZ
1285 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1286 return -EAGAIN;
1287
ac66f547
PZ
1288 src_rq = cpu_rq(arg->src_cpu);
1289 dst_rq = cpu_rq(arg->dst_cpu);
1290
74602315
PZ
1291 double_raw_lock(&arg->src_task->pi_lock,
1292 &arg->dst_task->pi_lock);
ac66f547 1293 double_rq_lock(src_rq, dst_rq);
62694cd5 1294
ac66f547
PZ
1295 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1296 goto unlock;
1297
1298 if (task_cpu(arg->src_task) != arg->src_cpu)
1299 goto unlock;
1300
1301 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1302 goto unlock;
1303
1304 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1305 goto unlock;
1306
1307 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1308 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1309
1310 ret = 0;
1311
1312unlock:
1313 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1314 raw_spin_unlock(&arg->dst_task->pi_lock);
1315 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1316
1317 return ret;
1318}
1319
1320/*
1321 * Cross migrate two tasks
1322 */
1323int migrate_swap(struct task_struct *cur, struct task_struct *p)
1324{
1325 struct migration_swap_arg arg;
1326 int ret = -EINVAL;
1327
ac66f547
PZ
1328 arg = (struct migration_swap_arg){
1329 .src_task = cur,
1330 .src_cpu = task_cpu(cur),
1331 .dst_task = p,
1332 .dst_cpu = task_cpu(p),
1333 };
1334
1335 if (arg.src_cpu == arg.dst_cpu)
1336 goto out;
1337
6acce3ef
PZ
1338 /*
1339 * These three tests are all lockless; this is OK since all of them
1340 * will be re-checked with proper locks held further down the line.
1341 */
ac66f547
PZ
1342 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1343 goto out;
1344
1345 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1346 goto out;
1347
1348 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1349 goto out;
1350
286549dc 1351 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1352 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1353
1354out:
ac66f547
PZ
1355 return ret;
1356}
1357
1da177e4
LT
1358/*
1359 * wait_task_inactive - wait for a thread to unschedule.
1360 *
85ba2d86
RM
1361 * If @match_state is nonzero, it's the @p->state value just checked and
1362 * not expected to change. If it changes, i.e. @p might have woken up,
1363 * then return zero. When we succeed in waiting for @p to be off its CPU,
1364 * we return a positive number (its total switch count). If a second call
1365 * a short while later returns the same number, the caller can be sure that
1366 * @p has remained unscheduled the whole time.
1367 *
1da177e4
LT
1368 * The caller must ensure that the task *will* unschedule sometime soon,
1369 * else this function might spin for a *long* time. This function can't
1370 * be called with interrupts off, or it may introduce deadlock with
1371 * smp_call_function() if an IPI is sent by the same process we are
1372 * waiting to become inactive.
1373 */
85ba2d86 1374unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1375{
da0c1e65 1376 int running, queued;
eb580751 1377 struct rq_flags rf;
85ba2d86 1378 unsigned long ncsw;
70b97a7f 1379 struct rq *rq;
1da177e4 1380
3a5c359a
AK
1381 for (;;) {
1382 /*
1383 * We do the initial early heuristics without holding
1384 * any task-queue locks at all. We'll only try to get
1385 * the runqueue lock when things look like they will
1386 * work out!
1387 */
1388 rq = task_rq(p);
fa490cfd 1389
3a5c359a
AK
1390 /*
1391 * If the task is actively running on another CPU
1392 * still, just relax and busy-wait without holding
1393 * any locks.
1394 *
1395 * NOTE! Since we don't hold any locks, it's not
1396 * even sure that "rq" stays as the right runqueue!
1397 * But we don't care, since "task_running()" will
1398 * return false if the runqueue has changed and p
1399 * is actually now running somewhere else!
1400 */
85ba2d86
RM
1401 while (task_running(rq, p)) {
1402 if (match_state && unlikely(p->state != match_state))
1403 return 0;
3a5c359a 1404 cpu_relax();
85ba2d86 1405 }
fa490cfd 1406
3a5c359a
AK
1407 /*
1408 * Ok, time to look more closely! We need the rq
1409 * lock now, to be *sure*. If we're wrong, we'll
1410 * just go back and repeat.
1411 */
eb580751 1412 rq = task_rq_lock(p, &rf);
27a9da65 1413 trace_sched_wait_task(p);
3a5c359a 1414 running = task_running(rq, p);
da0c1e65 1415 queued = task_on_rq_queued(p);
85ba2d86 1416 ncsw = 0;
f31e11d8 1417 if (!match_state || p->state == match_state)
93dcf55f 1418 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1419 task_rq_unlock(rq, p, &rf);
fa490cfd 1420
85ba2d86
RM
1421 /*
1422 * If it changed from the expected state, bail out now.
1423 */
1424 if (unlikely(!ncsw))
1425 break;
1426
3a5c359a
AK
1427 /*
1428 * Was it really running after all now that we
1429 * checked with the proper locks actually held?
1430 *
1431 * Oops. Go back and try again..
1432 */
1433 if (unlikely(running)) {
1434 cpu_relax();
1435 continue;
1436 }
fa490cfd 1437
3a5c359a
AK
1438 /*
1439 * It's not enough that it's not actively running,
1440 * it must be off the runqueue _entirely_, and not
1441 * preempted!
1442 *
80dd99b3 1443 * So if it was still runnable (but just not actively
3a5c359a
AK
1444 * running right now), it's preempted, and we should
1445 * yield - it could be a while.
1446 */
da0c1e65 1447 if (unlikely(queued)) {
8eb90c30
TG
1448 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1449
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1452 continue;
1453 }
fa490cfd 1454
3a5c359a
AK
1455 /*
1456 * Ahh, all good. It wasn't running, and it wasn't
1457 * runnable, which means that it will never become
1458 * running in the future either. We're all done!
1459 */
1460 break;
1461 }
85ba2d86
RM
1462
1463 return ncsw;
1da177e4
LT
1464}
1465
1466/***
1467 * kick_process - kick a running thread to enter/exit the kernel
1468 * @p: the to-be-kicked thread
1469 *
1470 * Cause a process which is running on another CPU to enter
1471 * kernel-mode, without any delay. (to get signals handled.)
1472 *
25985edc 1473 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1474 * because all it wants to ensure is that the remote task enters
1475 * the kernel. If the IPI races and the task has been migrated
1476 * to another CPU then no harm is done and the purpose has been
1477 * achieved as well.
1478 */
36c8b586 1479void kick_process(struct task_struct *p)
1da177e4
LT
1480{
1481 int cpu;
1482
1483 preempt_disable();
1484 cpu = task_cpu(p);
1485 if ((cpu != smp_processor_id()) && task_curr(p))
1486 smp_send_reschedule(cpu);
1487 preempt_enable();
1488}
b43e3521 1489EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1490
30da688e 1491/*
013fdb80 1492 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1493 *
1494 * A few notes on cpu_active vs cpu_online:
1495 *
1496 * - cpu_active must be a subset of cpu_online
1497 *
1498 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1499 * see __set_cpus_allowed_ptr(). At this point the newly online
1500 * cpu isn't yet part of the sched domains, and balancing will not
1501 * see it.
1502 *
1503 * - on cpu-down we clear cpu_active() to mask the sched domains and
1504 * avoid the load balancer to place new tasks on the to be removed
1505 * cpu. Existing tasks will remain running there and will be taken
1506 * off.
1507 *
1508 * This means that fallback selection must not select !active CPUs.
1509 * And can assume that any active CPU must be online. Conversely
1510 * select_task_rq() below may allow selection of !active CPUs in order
1511 * to satisfy the above rules.
30da688e 1512 */
5da9a0fb
PZ
1513static int select_fallback_rq(int cpu, struct task_struct *p)
1514{
aa00d89c
TC
1515 int nid = cpu_to_node(cpu);
1516 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1517 enum { cpuset, possible, fail } state = cpuset;
1518 int dest_cpu;
5da9a0fb 1519
aa00d89c
TC
1520 /*
1521 * If the node that the cpu is on has been offlined, cpu_to_node()
1522 * will return -1. There is no cpu on the node, and we should
1523 * select the cpu on the other node.
1524 */
1525 if (nid != -1) {
1526 nodemask = cpumask_of_node(nid);
1527
1528 /* Look for allowed, online CPU in same node. */
1529 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1530 if (!cpu_active(dest_cpu))
1531 continue;
1532 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1533 return dest_cpu;
1534 }
2baab4e9 1535 }
5da9a0fb 1536
2baab4e9
PZ
1537 for (;;) {
1538 /* Any allowed, online CPU? */
e3831edd 1539 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1540 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1541 continue;
1542 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1543 continue;
1544 goto out;
1545 }
5da9a0fb 1546
e73e85f0 1547 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1548 switch (state) {
1549 case cpuset:
e73e85f0
ON
1550 if (IS_ENABLED(CONFIG_CPUSETS)) {
1551 cpuset_cpus_allowed_fallback(p);
1552 state = possible;
1553 break;
1554 }
1555 /* fall-through */
2baab4e9
PZ
1556 case possible:
1557 do_set_cpus_allowed(p, cpu_possible_mask);
1558 state = fail;
1559 break;
1560
1561 case fail:
1562 BUG();
1563 break;
1564 }
1565 }
1566
1567out:
1568 if (state != cpuset) {
1569 /*
1570 * Don't tell them about moving exiting tasks or
1571 * kernel threads (both mm NULL), since they never
1572 * leave kernel.
1573 */
1574 if (p->mm && printk_ratelimit()) {
aac74dc4 1575 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1576 task_pid_nr(p), p->comm, cpu);
1577 }
5da9a0fb
PZ
1578 }
1579
1580 return dest_cpu;
1581}
1582
e2912009 1583/*
013fdb80 1584 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1585 */
970b13ba 1586static inline
ac66f547 1587int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1588{
cbce1a68
PZ
1589 lockdep_assert_held(&p->pi_lock);
1590
50605ffb 1591 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1592 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1593 else
1594 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1595
1596 /*
1597 * In order not to call set_task_cpu() on a blocking task we need
1598 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1599 * cpu.
1600 *
1601 * Since this is common to all placement strategies, this lives here.
1602 *
1603 * [ this allows ->select_task() to simply return task_cpu(p) and
1604 * not worry about this generic constraint ]
1605 */
fa17b507 1606 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1607 !cpu_online(cpu)))
5da9a0fb 1608 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1609
1610 return cpu;
970b13ba 1611}
09a40af5
MG
1612
1613static void update_avg(u64 *avg, u64 sample)
1614{
1615 s64 diff = sample - *avg;
1616 *avg += diff >> 3;
1617}
25834c73
PZ
1618
1619#else
1620
1621static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1622 const struct cpumask *new_mask, bool check)
1623{
1624 return set_cpus_allowed_ptr(p, new_mask);
1625}
1626
5cc389bc 1627#endif /* CONFIG_SMP */
970b13ba 1628
d7c01d27 1629static void
b84cb5df 1630ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1631{
d7c01d27 1632#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1633 struct rq *rq = this_rq();
1634
d7c01d27
PZ
1635#ifdef CONFIG_SMP
1636 int this_cpu = smp_processor_id();
1637
1638 if (cpu == this_cpu) {
1639 schedstat_inc(rq, ttwu_local);
1640 schedstat_inc(p, se.statistics.nr_wakeups_local);
1641 } else {
1642 struct sched_domain *sd;
1643
1644 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1645 rcu_read_lock();
d7c01d27
PZ
1646 for_each_domain(this_cpu, sd) {
1647 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1648 schedstat_inc(sd, ttwu_wake_remote);
1649 break;
1650 }
1651 }
057f3fad 1652 rcu_read_unlock();
d7c01d27 1653 }
f339b9dc
PZ
1654
1655 if (wake_flags & WF_MIGRATED)
1656 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1657
d7c01d27
PZ
1658#endif /* CONFIG_SMP */
1659
1660 schedstat_inc(rq, ttwu_count);
9ed3811a 1661 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1662
1663 if (wake_flags & WF_SYNC)
9ed3811a 1664 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1665
d7c01d27
PZ
1666#endif /* CONFIG_SCHEDSTATS */
1667}
1668
1de64443 1669static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1670{
9ed3811a 1671 activate_task(rq, p, en_flags);
da0c1e65 1672 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1673
1674 /* if a worker is waking up, notify workqueue */
1675 if (p->flags & PF_WQ_WORKER)
1676 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1677}
1678
23f41eeb
PZ
1679/*
1680 * Mark the task runnable and perform wakeup-preemption.
1681 */
e7904a28
PZ
1682static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1683 struct pin_cookie cookie)
9ed3811a 1684{
9ed3811a 1685 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1686 p->state = TASK_RUNNING;
fbd705a0
PZ
1687 trace_sched_wakeup(p);
1688
9ed3811a 1689#ifdef CONFIG_SMP
4c9a4bc8
PZ
1690 if (p->sched_class->task_woken) {
1691 /*
cbce1a68
PZ
1692 * Our task @p is fully woken up and running; so its safe to
1693 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1694 */
e7904a28 1695 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1696 p->sched_class->task_woken(rq, p);
e7904a28 1697 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1698 }
9ed3811a 1699
e69c6341 1700 if (rq->idle_stamp) {
78becc27 1701 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1702 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1703
abfafa54
JL
1704 update_avg(&rq->avg_idle, delta);
1705
1706 if (rq->avg_idle > max)
9ed3811a 1707 rq->avg_idle = max;
abfafa54 1708
9ed3811a
TH
1709 rq->idle_stamp = 0;
1710 }
1711#endif
1712}
1713
c05fbafb 1714static void
e7904a28
PZ
1715ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1716 struct pin_cookie cookie)
c05fbafb 1717{
b5179ac7
PZ
1718 int en_flags = ENQUEUE_WAKEUP;
1719
cbce1a68
PZ
1720 lockdep_assert_held(&rq->lock);
1721
c05fbafb
PZ
1722#ifdef CONFIG_SMP
1723 if (p->sched_contributes_to_load)
1724 rq->nr_uninterruptible--;
b5179ac7 1725
b5179ac7 1726 if (wake_flags & WF_MIGRATED)
59efa0ba 1727 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1728#endif
1729
b5179ac7 1730 ttwu_activate(rq, p, en_flags);
e7904a28 1731 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1732}
1733
1734/*
1735 * Called in case the task @p isn't fully descheduled from its runqueue,
1736 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1737 * since all we need to do is flip p->state to TASK_RUNNING, since
1738 * the task is still ->on_rq.
1739 */
1740static int ttwu_remote(struct task_struct *p, int wake_flags)
1741{
eb580751 1742 struct rq_flags rf;
c05fbafb
PZ
1743 struct rq *rq;
1744 int ret = 0;
1745
eb580751 1746 rq = __task_rq_lock(p, &rf);
da0c1e65 1747 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1748 /* check_preempt_curr() may use rq clock */
1749 update_rq_clock(rq);
e7904a28 1750 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1751 ret = 1;
1752 }
eb580751 1753 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1754
1755 return ret;
1756}
1757
317f3941 1758#ifdef CONFIG_SMP
e3baac47 1759void sched_ttwu_pending(void)
317f3941
PZ
1760{
1761 struct rq *rq = this_rq();
fa14ff4a 1762 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1763 struct pin_cookie cookie;
fa14ff4a 1764 struct task_struct *p;
e3baac47 1765 unsigned long flags;
317f3941 1766
e3baac47
PZ
1767 if (!llist)
1768 return;
1769
1770 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1771 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1772
fa14ff4a 1773 while (llist) {
b7e7ade3
PZ
1774 int wake_flags = 0;
1775
fa14ff4a
PZ
1776 p = llist_entry(llist, struct task_struct, wake_entry);
1777 llist = llist_next(llist);
b7e7ade3
PZ
1778
1779 if (p->sched_remote_wakeup)
1780 wake_flags = WF_MIGRATED;
1781
1782 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1783 }
1784
e7904a28 1785 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1786 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1787}
1788
1789void scheduler_ipi(void)
1790{
f27dde8d
PZ
1791 /*
1792 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1793 * TIF_NEED_RESCHED remotely (for the first time) will also send
1794 * this IPI.
1795 */
8cb75e0c 1796 preempt_fold_need_resched();
f27dde8d 1797
fd2ac4f4 1798 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1799 return;
1800
1801 /*
1802 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1803 * traditionally all their work was done from the interrupt return
1804 * path. Now that we actually do some work, we need to make sure
1805 * we do call them.
1806 *
1807 * Some archs already do call them, luckily irq_enter/exit nest
1808 * properly.
1809 *
1810 * Arguably we should visit all archs and update all handlers,
1811 * however a fair share of IPIs are still resched only so this would
1812 * somewhat pessimize the simple resched case.
1813 */
1814 irq_enter();
fa14ff4a 1815 sched_ttwu_pending();
ca38062e
SS
1816
1817 /*
1818 * Check if someone kicked us for doing the nohz idle load balance.
1819 */
873b4c65 1820 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1821 this_rq()->idle_balance = 1;
ca38062e 1822 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1823 }
c5d753a5 1824 irq_exit();
317f3941
PZ
1825}
1826
b7e7ade3 1827static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1828{
e3baac47
PZ
1829 struct rq *rq = cpu_rq(cpu);
1830
b7e7ade3
PZ
1831 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1832
e3baac47
PZ
1833 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1834 if (!set_nr_if_polling(rq->idle))
1835 smp_send_reschedule(cpu);
1836 else
1837 trace_sched_wake_idle_without_ipi(cpu);
1838 }
317f3941 1839}
d6aa8f85 1840
f6be8af1
CL
1841void wake_up_if_idle(int cpu)
1842{
1843 struct rq *rq = cpu_rq(cpu);
1844 unsigned long flags;
1845
fd7de1e8
AL
1846 rcu_read_lock();
1847
1848 if (!is_idle_task(rcu_dereference(rq->curr)))
1849 goto out;
f6be8af1
CL
1850
1851 if (set_nr_if_polling(rq->idle)) {
1852 trace_sched_wake_idle_without_ipi(cpu);
1853 } else {
1854 raw_spin_lock_irqsave(&rq->lock, flags);
1855 if (is_idle_task(rq->curr))
1856 smp_send_reschedule(cpu);
1857 /* Else cpu is not in idle, do nothing here */
1858 raw_spin_unlock_irqrestore(&rq->lock, flags);
1859 }
fd7de1e8
AL
1860
1861out:
1862 rcu_read_unlock();
f6be8af1
CL
1863}
1864
39be3501 1865bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1866{
1867 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1868}
d6aa8f85 1869#endif /* CONFIG_SMP */
317f3941 1870
b5179ac7 1871static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1872{
1873 struct rq *rq = cpu_rq(cpu);
e7904a28 1874 struct pin_cookie cookie;
c05fbafb 1875
17d9f311 1876#if defined(CONFIG_SMP)
39be3501 1877 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1878 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1879 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1880 return;
1881 }
1882#endif
1883
c05fbafb 1884 raw_spin_lock(&rq->lock);
e7904a28 1885 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1886 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1887 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1888 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1889}
1890
8643cda5
PZ
1891/*
1892 * Notes on Program-Order guarantees on SMP systems.
1893 *
1894 * MIGRATION
1895 *
1896 * The basic program-order guarantee on SMP systems is that when a task [t]
1897 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1898 * execution on its new cpu [c1].
1899 *
1900 * For migration (of runnable tasks) this is provided by the following means:
1901 *
1902 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1903 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1904 * rq(c1)->lock (if not at the same time, then in that order).
1905 * C) LOCK of the rq(c1)->lock scheduling in task
1906 *
1907 * Transitivity guarantees that B happens after A and C after B.
1908 * Note: we only require RCpc transitivity.
1909 * Note: the cpu doing B need not be c0 or c1
1910 *
1911 * Example:
1912 *
1913 * CPU0 CPU1 CPU2
1914 *
1915 * LOCK rq(0)->lock
1916 * sched-out X
1917 * sched-in Y
1918 * UNLOCK rq(0)->lock
1919 *
1920 * LOCK rq(0)->lock // orders against CPU0
1921 * dequeue X
1922 * UNLOCK rq(0)->lock
1923 *
1924 * LOCK rq(1)->lock
1925 * enqueue X
1926 * UNLOCK rq(1)->lock
1927 *
1928 * LOCK rq(1)->lock // orders against CPU2
1929 * sched-out Z
1930 * sched-in X
1931 * UNLOCK rq(1)->lock
1932 *
1933 *
1934 * BLOCKING -- aka. SLEEP + WAKEUP
1935 *
1936 * For blocking we (obviously) need to provide the same guarantee as for
1937 * migration. However the means are completely different as there is no lock
1938 * chain to provide order. Instead we do:
1939 *
1940 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1941 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1942 *
1943 * Example:
1944 *
1945 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1946 *
1947 * LOCK rq(0)->lock LOCK X->pi_lock
1948 * dequeue X
1949 * sched-out X
1950 * smp_store_release(X->on_cpu, 0);
1951 *
1f03e8d2 1952 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1953 * X->state = WAKING
1954 * set_task_cpu(X,2)
1955 *
1956 * LOCK rq(2)->lock
1957 * enqueue X
1958 * X->state = RUNNING
1959 * UNLOCK rq(2)->lock
1960 *
1961 * LOCK rq(2)->lock // orders against CPU1
1962 * sched-out Z
1963 * sched-in X
1964 * UNLOCK rq(2)->lock
1965 *
1966 * UNLOCK X->pi_lock
1967 * UNLOCK rq(0)->lock
1968 *
1969 *
1970 * However; for wakeups there is a second guarantee we must provide, namely we
1971 * must observe the state that lead to our wakeup. That is, not only must our
1972 * task observe its own prior state, it must also observe the stores prior to
1973 * its wakeup.
1974 *
1975 * This means that any means of doing remote wakeups must order the CPU doing
1976 * the wakeup against the CPU the task is going to end up running on. This,
1977 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1978 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1979 *
1980 */
1981
9ed3811a 1982/**
1da177e4 1983 * try_to_wake_up - wake up a thread
9ed3811a 1984 * @p: the thread to be awakened
1da177e4 1985 * @state: the mask of task states that can be woken
9ed3811a 1986 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1987 *
1988 * Put it on the run-queue if it's not already there. The "current"
1989 * thread is always on the run-queue (except when the actual
1990 * re-schedule is in progress), and as such you're allowed to do
1991 * the simpler "current->state = TASK_RUNNING" to mark yourself
1992 * runnable without the overhead of this.
1993 *
e69f6186 1994 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1995 * or @state didn't match @p's state.
1da177e4 1996 */
e4a52bcb
PZ
1997static int
1998try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1999{
1da177e4 2000 unsigned long flags;
c05fbafb 2001 int cpu, success = 0;
2398f2c6 2002
e0acd0a6
ON
2003 /*
2004 * If we are going to wake up a thread waiting for CONDITION we
2005 * need to ensure that CONDITION=1 done by the caller can not be
2006 * reordered with p->state check below. This pairs with mb() in
2007 * set_current_state() the waiting thread does.
2008 */
2009 smp_mb__before_spinlock();
013fdb80 2010 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2011 if (!(p->state & state))
1da177e4
LT
2012 goto out;
2013
fbd705a0
PZ
2014 trace_sched_waking(p);
2015
c05fbafb 2016 success = 1; /* we're going to change ->state */
1da177e4 2017 cpu = task_cpu(p);
1da177e4 2018
135e8c92
BS
2019 /*
2020 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2021 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2022 * in smp_cond_load_acquire() below.
2023 *
2024 * sched_ttwu_pending() try_to_wake_up()
2025 * [S] p->on_rq = 1; [L] P->state
2026 * UNLOCK rq->lock -----.
2027 * \
2028 * +--- RMB
2029 * schedule() /
2030 * LOCK rq->lock -----'
2031 * UNLOCK rq->lock
2032 *
2033 * [task p]
2034 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2035 *
2036 * Pairs with the UNLOCK+LOCK on rq->lock from the
2037 * last wakeup of our task and the schedule that got our task
2038 * current.
2039 */
2040 smp_rmb();
c05fbafb
PZ
2041 if (p->on_rq && ttwu_remote(p, wake_flags))
2042 goto stat;
1da177e4 2043
1da177e4 2044#ifdef CONFIG_SMP
ecf7d01c
PZ
2045 /*
2046 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2047 * possible to, falsely, observe p->on_cpu == 0.
2048 *
2049 * One must be running (->on_cpu == 1) in order to remove oneself
2050 * from the runqueue.
2051 *
2052 * [S] ->on_cpu = 1; [L] ->on_rq
2053 * UNLOCK rq->lock
2054 * RMB
2055 * LOCK rq->lock
2056 * [S] ->on_rq = 0; [L] ->on_cpu
2057 *
2058 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2059 * from the consecutive calls to schedule(); the first switching to our
2060 * task, the second putting it to sleep.
2061 */
2062 smp_rmb();
2063
e9c84311 2064 /*
c05fbafb
PZ
2065 * If the owning (remote) cpu is still in the middle of schedule() with
2066 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2067 *
2068 * Pairs with the smp_store_release() in finish_lock_switch().
2069 *
2070 * This ensures that tasks getting woken will be fully ordered against
2071 * their previous state and preserve Program Order.
0970d299 2072 */
1f03e8d2 2073 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2074
a8e4f2ea 2075 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2076 p->state = TASK_WAKING;
e7693a36 2077
ac66f547 2078 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2079 if (task_cpu(p) != cpu) {
2080 wake_flags |= WF_MIGRATED;
e4a52bcb 2081 set_task_cpu(p, cpu);
f339b9dc 2082 }
1da177e4 2083#endif /* CONFIG_SMP */
1da177e4 2084
b5179ac7 2085 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2086stat:
cb251765
MG
2087 if (schedstat_enabled())
2088 ttwu_stat(p, cpu, wake_flags);
1da177e4 2089out:
013fdb80 2090 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2091
2092 return success;
2093}
2094
21aa9af0
TH
2095/**
2096 * try_to_wake_up_local - try to wake up a local task with rq lock held
2097 * @p: the thread to be awakened
2098 *
2acca55e 2099 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2100 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2101 * the current task.
21aa9af0 2102 */
e7904a28 2103static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2104{
2105 struct rq *rq = task_rq(p);
21aa9af0 2106
383efcd0
TH
2107 if (WARN_ON_ONCE(rq != this_rq()) ||
2108 WARN_ON_ONCE(p == current))
2109 return;
2110
21aa9af0
TH
2111 lockdep_assert_held(&rq->lock);
2112
2acca55e 2113 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2114 /*
2115 * This is OK, because current is on_cpu, which avoids it being
2116 * picked for load-balance and preemption/IRQs are still
2117 * disabled avoiding further scheduler activity on it and we've
2118 * not yet picked a replacement task.
2119 */
e7904a28 2120 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2121 raw_spin_unlock(&rq->lock);
2122 raw_spin_lock(&p->pi_lock);
2123 raw_spin_lock(&rq->lock);
e7904a28 2124 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2125 }
2126
21aa9af0 2127 if (!(p->state & TASK_NORMAL))
2acca55e 2128 goto out;
21aa9af0 2129
fbd705a0
PZ
2130 trace_sched_waking(p);
2131
da0c1e65 2132 if (!task_on_rq_queued(p))
d7c01d27
PZ
2133 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2134
e7904a28 2135 ttwu_do_wakeup(rq, p, 0, cookie);
cb251765
MG
2136 if (schedstat_enabled())
2137 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2138out:
2139 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2140}
2141
50fa610a
DH
2142/**
2143 * wake_up_process - Wake up a specific process
2144 * @p: The process to be woken up.
2145 *
2146 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2147 * processes.
2148 *
2149 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2150 *
2151 * It may be assumed that this function implies a write memory barrier before
2152 * changing the task state if and only if any tasks are woken up.
2153 */
7ad5b3a5 2154int wake_up_process(struct task_struct *p)
1da177e4 2155{
9067ac85 2156 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2157}
1da177e4
LT
2158EXPORT_SYMBOL(wake_up_process);
2159
7ad5b3a5 2160int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2161{
2162 return try_to_wake_up(p, state, 0);
2163}
2164
a5e7be3b
JL
2165/*
2166 * This function clears the sched_dl_entity static params.
2167 */
2168void __dl_clear_params(struct task_struct *p)
2169{
2170 struct sched_dl_entity *dl_se = &p->dl;
2171
2172 dl_se->dl_runtime = 0;
2173 dl_se->dl_deadline = 0;
2174 dl_se->dl_period = 0;
2175 dl_se->flags = 0;
2176 dl_se->dl_bw = 0;
40767b0d
PZ
2177
2178 dl_se->dl_throttled = 0;
40767b0d 2179 dl_se->dl_yielded = 0;
a5e7be3b
JL
2180}
2181
1da177e4
LT
2182/*
2183 * Perform scheduler related setup for a newly forked process p.
2184 * p is forked by current.
dd41f596
IM
2185 *
2186 * __sched_fork() is basic setup used by init_idle() too:
2187 */
5e1576ed 2188static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2189{
fd2f4419
PZ
2190 p->on_rq = 0;
2191
2192 p->se.on_rq = 0;
dd41f596
IM
2193 p->se.exec_start = 0;
2194 p->se.sum_exec_runtime = 0;
f6cf891c 2195 p->se.prev_sum_exec_runtime = 0;
6c594c21 2196 p->se.nr_migrations = 0;
da7a735e 2197 p->se.vruntime = 0;
fd2f4419 2198 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2199
ad936d86
BP
2200#ifdef CONFIG_FAIR_GROUP_SCHED
2201 p->se.cfs_rq = NULL;
2202#endif
2203
6cfb0d5d 2204#ifdef CONFIG_SCHEDSTATS
cb251765 2205 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2206 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2207#endif
476d139c 2208
aab03e05 2209 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2210 init_dl_task_timer(&p->dl);
a5e7be3b 2211 __dl_clear_params(p);
aab03e05 2212
fa717060 2213 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2214 p->rt.timeout = 0;
2215 p->rt.time_slice = sched_rr_timeslice;
2216 p->rt.on_rq = 0;
2217 p->rt.on_list = 0;
476d139c 2218
e107be36
AK
2219#ifdef CONFIG_PREEMPT_NOTIFIERS
2220 INIT_HLIST_HEAD(&p->preempt_notifiers);
2221#endif
cbee9f88
PZ
2222
2223#ifdef CONFIG_NUMA_BALANCING
2224 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2225 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2226 p->mm->numa_scan_seq = 0;
2227 }
2228
5e1576ed
RR
2229 if (clone_flags & CLONE_VM)
2230 p->numa_preferred_nid = current->numa_preferred_nid;
2231 else
2232 p->numa_preferred_nid = -1;
2233
cbee9f88
PZ
2234 p->node_stamp = 0ULL;
2235 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2236 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2237 p->numa_work.next = &p->numa_work;
44dba3d5 2238 p->numa_faults = NULL;
7e2703e6
RR
2239 p->last_task_numa_placement = 0;
2240 p->last_sum_exec_runtime = 0;
8c8a743c 2241
8c8a743c 2242 p->numa_group = NULL;
cbee9f88 2243#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2244}
2245
2a595721
SD
2246DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2247
1a687c2e 2248#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2249
1a687c2e
MG
2250void set_numabalancing_state(bool enabled)
2251{
2252 if (enabled)
2a595721 2253 static_branch_enable(&sched_numa_balancing);
1a687c2e 2254 else
2a595721 2255 static_branch_disable(&sched_numa_balancing);
1a687c2e 2256}
54a43d54
AK
2257
2258#ifdef CONFIG_PROC_SYSCTL
2259int sysctl_numa_balancing(struct ctl_table *table, int write,
2260 void __user *buffer, size_t *lenp, loff_t *ppos)
2261{
2262 struct ctl_table t;
2263 int err;
2a595721 2264 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2265
2266 if (write && !capable(CAP_SYS_ADMIN))
2267 return -EPERM;
2268
2269 t = *table;
2270 t.data = &state;
2271 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2272 if (err < 0)
2273 return err;
2274 if (write)
2275 set_numabalancing_state(state);
2276 return err;
2277}
2278#endif
2279#endif
dd41f596 2280
4698f88c
JP
2281#ifdef CONFIG_SCHEDSTATS
2282
cb251765 2283DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2284static bool __initdata __sched_schedstats = false;
cb251765 2285
cb251765
MG
2286static void set_schedstats(bool enabled)
2287{
2288 if (enabled)
2289 static_branch_enable(&sched_schedstats);
2290 else
2291 static_branch_disable(&sched_schedstats);
2292}
2293
2294void force_schedstat_enabled(void)
2295{
2296 if (!schedstat_enabled()) {
2297 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2298 static_branch_enable(&sched_schedstats);
2299 }
2300}
2301
2302static int __init setup_schedstats(char *str)
2303{
2304 int ret = 0;
2305 if (!str)
2306 goto out;
2307
4698f88c
JP
2308 /*
2309 * This code is called before jump labels have been set up, so we can't
2310 * change the static branch directly just yet. Instead set a temporary
2311 * variable so init_schedstats() can do it later.
2312 */
cb251765 2313 if (!strcmp(str, "enable")) {
4698f88c 2314 __sched_schedstats = true;
cb251765
MG
2315 ret = 1;
2316 } else if (!strcmp(str, "disable")) {
4698f88c 2317 __sched_schedstats = false;
cb251765
MG
2318 ret = 1;
2319 }
2320out:
2321 if (!ret)
2322 pr_warn("Unable to parse schedstats=\n");
2323
2324 return ret;
2325}
2326__setup("schedstats=", setup_schedstats);
2327
4698f88c
JP
2328static void __init init_schedstats(void)
2329{
2330 set_schedstats(__sched_schedstats);
2331}
2332
cb251765
MG
2333#ifdef CONFIG_PROC_SYSCTL
2334int sysctl_schedstats(struct ctl_table *table, int write,
2335 void __user *buffer, size_t *lenp, loff_t *ppos)
2336{
2337 struct ctl_table t;
2338 int err;
2339 int state = static_branch_likely(&sched_schedstats);
2340
2341 if (write && !capable(CAP_SYS_ADMIN))
2342 return -EPERM;
2343
2344 t = *table;
2345 t.data = &state;
2346 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2347 if (err < 0)
2348 return err;
2349 if (write)
2350 set_schedstats(state);
2351 return err;
2352}
4698f88c
JP
2353#endif /* CONFIG_PROC_SYSCTL */
2354#else /* !CONFIG_SCHEDSTATS */
2355static inline void init_schedstats(void) {}
2356#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2357
2358/*
2359 * fork()/clone()-time setup:
2360 */
aab03e05 2361int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2362{
0122ec5b 2363 unsigned long flags;
dd41f596
IM
2364 int cpu = get_cpu();
2365
5e1576ed 2366 __sched_fork(clone_flags, p);
06b83b5f 2367 /*
7dc603c9 2368 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2369 * nobody will actually run it, and a signal or other external
2370 * event cannot wake it up and insert it on the runqueue either.
2371 */
7dc603c9 2372 p->state = TASK_NEW;
dd41f596 2373
c350a04e
MG
2374 /*
2375 * Make sure we do not leak PI boosting priority to the child.
2376 */
2377 p->prio = current->normal_prio;
2378
b9dc29e7
MG
2379 /*
2380 * Revert to default priority/policy on fork if requested.
2381 */
2382 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2383 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2384 p->policy = SCHED_NORMAL;
6c697bdf 2385 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2386 p->rt_priority = 0;
2387 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2388 p->static_prio = NICE_TO_PRIO(0);
2389
2390 p->prio = p->normal_prio = __normal_prio(p);
2391 set_load_weight(p);
6c697bdf 2392
b9dc29e7
MG
2393 /*
2394 * We don't need the reset flag anymore after the fork. It has
2395 * fulfilled its duty:
2396 */
2397 p->sched_reset_on_fork = 0;
2398 }
ca94c442 2399
aab03e05
DF
2400 if (dl_prio(p->prio)) {
2401 put_cpu();
2402 return -EAGAIN;
2403 } else if (rt_prio(p->prio)) {
2404 p->sched_class = &rt_sched_class;
2405 } else {
2ddbf952 2406 p->sched_class = &fair_sched_class;
aab03e05 2407 }
b29739f9 2408
7dc603c9 2409 init_entity_runnable_average(&p->se);
cd29fe6f 2410
86951599
PZ
2411 /*
2412 * The child is not yet in the pid-hash so no cgroup attach races,
2413 * and the cgroup is pinned to this child due to cgroup_fork()
2414 * is ran before sched_fork().
2415 *
2416 * Silence PROVE_RCU.
2417 */
0122ec5b 2418 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2419 /*
2420 * We're setting the cpu for the first time, we don't migrate,
2421 * so use __set_task_cpu().
2422 */
2423 __set_task_cpu(p, cpu);
2424 if (p->sched_class->task_fork)
2425 p->sched_class->task_fork(p);
0122ec5b 2426 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2427
f6db8347 2428#ifdef CONFIG_SCHED_INFO
dd41f596 2429 if (likely(sched_info_on()))
52f17b6c 2430 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2431#endif
3ca7a440
PZ
2432#if defined(CONFIG_SMP)
2433 p->on_cpu = 0;
4866cde0 2434#endif
01028747 2435 init_task_preempt_count(p);
806c09a7 2436#ifdef CONFIG_SMP
917b627d 2437 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2438 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2439#endif
917b627d 2440
476d139c 2441 put_cpu();
aab03e05 2442 return 0;
1da177e4
LT
2443}
2444
332ac17e
DF
2445unsigned long to_ratio(u64 period, u64 runtime)
2446{
2447 if (runtime == RUNTIME_INF)
2448 return 1ULL << 20;
2449
2450 /*
2451 * Doing this here saves a lot of checks in all
2452 * the calling paths, and returning zero seems
2453 * safe for them anyway.
2454 */
2455 if (period == 0)
2456 return 0;
2457
2458 return div64_u64(runtime << 20, period);
2459}
2460
2461#ifdef CONFIG_SMP
2462inline struct dl_bw *dl_bw_of(int i)
2463{
f78f5b90
PM
2464 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2465 "sched RCU must be held");
332ac17e
DF
2466 return &cpu_rq(i)->rd->dl_bw;
2467}
2468
de212f18 2469static inline int dl_bw_cpus(int i)
332ac17e 2470{
de212f18
PZ
2471 struct root_domain *rd = cpu_rq(i)->rd;
2472 int cpus = 0;
2473
f78f5b90
PM
2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 "sched RCU must be held");
de212f18
PZ
2476 for_each_cpu_and(i, rd->span, cpu_active_mask)
2477 cpus++;
2478
2479 return cpus;
332ac17e
DF
2480}
2481#else
2482inline struct dl_bw *dl_bw_of(int i)
2483{
2484 return &cpu_rq(i)->dl.dl_bw;
2485}
2486
de212f18 2487static inline int dl_bw_cpus(int i)
332ac17e
DF
2488{
2489 return 1;
2490}
2491#endif
2492
332ac17e
DF
2493/*
2494 * We must be sure that accepting a new task (or allowing changing the
2495 * parameters of an existing one) is consistent with the bandwidth
2496 * constraints. If yes, this function also accordingly updates the currently
2497 * allocated bandwidth to reflect the new situation.
2498 *
2499 * This function is called while holding p's rq->lock.
40767b0d
PZ
2500 *
2501 * XXX we should delay bw change until the task's 0-lag point, see
2502 * __setparam_dl().
332ac17e
DF
2503 */
2504static int dl_overflow(struct task_struct *p, int policy,
2505 const struct sched_attr *attr)
2506{
2507
2508 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2509 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2510 u64 runtime = attr->sched_runtime;
2511 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2512 int cpus, err = -1;
332ac17e 2513
fec148c0
XP
2514 /* !deadline task may carry old deadline bandwidth */
2515 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2516 return 0;
2517
2518 /*
2519 * Either if a task, enters, leave, or stays -deadline but changes
2520 * its parameters, we may need to update accordingly the total
2521 * allocated bandwidth of the container.
2522 */
2523 raw_spin_lock(&dl_b->lock);
de212f18 2524 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2525 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2526 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2527 __dl_add(dl_b, new_bw);
2528 err = 0;
2529 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2530 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2531 __dl_clear(dl_b, p->dl.dl_bw);
2532 __dl_add(dl_b, new_bw);
2533 err = 0;
2534 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2535 __dl_clear(dl_b, p->dl.dl_bw);
2536 err = 0;
2537 }
2538 raw_spin_unlock(&dl_b->lock);
2539
2540 return err;
2541}
2542
2543extern void init_dl_bw(struct dl_bw *dl_b);
2544
1da177e4
LT
2545/*
2546 * wake_up_new_task - wake up a newly created task for the first time.
2547 *
2548 * This function will do some initial scheduler statistics housekeeping
2549 * that must be done for every newly created context, then puts the task
2550 * on the runqueue and wakes it.
2551 */
3e51e3ed 2552void wake_up_new_task(struct task_struct *p)
1da177e4 2553{
eb580751 2554 struct rq_flags rf;
dd41f596 2555 struct rq *rq;
fabf318e 2556
eb580751 2557 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2558 p->state = TASK_RUNNING;
fabf318e
PZ
2559#ifdef CONFIG_SMP
2560 /*
2561 * Fork balancing, do it here and not earlier because:
2562 * - cpus_allowed can change in the fork path
2563 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2564 *
2565 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2566 * as we're not fully set-up yet.
fabf318e 2567 */
e210bffd 2568 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2569#endif
b7fa30c9 2570 rq = __task_rq_lock(p, &rf);
2b8c41da 2571 post_init_entity_util_avg(&p->se);
0017d735 2572
cd29fe6f 2573 activate_task(rq, p, 0);
da0c1e65 2574 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2575 trace_sched_wakeup_new(p);
a7558e01 2576 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2577#ifdef CONFIG_SMP
0aaafaab
PZ
2578 if (p->sched_class->task_woken) {
2579 /*
2580 * Nothing relies on rq->lock after this, so its fine to
2581 * drop it.
2582 */
e7904a28 2583 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2584 p->sched_class->task_woken(rq, p);
e7904a28 2585 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2586 }
9a897c5a 2587#endif
eb580751 2588 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2589}
2590
e107be36
AK
2591#ifdef CONFIG_PREEMPT_NOTIFIERS
2592
1cde2930
PZ
2593static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2594
2ecd9d29
PZ
2595void preempt_notifier_inc(void)
2596{
2597 static_key_slow_inc(&preempt_notifier_key);
2598}
2599EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2600
2601void preempt_notifier_dec(void)
2602{
2603 static_key_slow_dec(&preempt_notifier_key);
2604}
2605EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2606
e107be36 2607/**
80dd99b3 2608 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2609 * @notifier: notifier struct to register
e107be36
AK
2610 */
2611void preempt_notifier_register(struct preempt_notifier *notifier)
2612{
2ecd9d29
PZ
2613 if (!static_key_false(&preempt_notifier_key))
2614 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2615
e107be36
AK
2616 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2617}
2618EXPORT_SYMBOL_GPL(preempt_notifier_register);
2619
2620/**
2621 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2622 * @notifier: notifier struct to unregister
e107be36 2623 *
d84525a8 2624 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2625 */
2626void preempt_notifier_unregister(struct preempt_notifier *notifier)
2627{
2628 hlist_del(&notifier->link);
2629}
2630EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2631
1cde2930 2632static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2633{
2634 struct preempt_notifier *notifier;
e107be36 2635
b67bfe0d 2636 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2637 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2638}
2639
1cde2930
PZ
2640static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2641{
2642 if (static_key_false(&preempt_notifier_key))
2643 __fire_sched_in_preempt_notifiers(curr);
2644}
2645
e107be36 2646static void
1cde2930
PZ
2647__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2648 struct task_struct *next)
e107be36
AK
2649{
2650 struct preempt_notifier *notifier;
e107be36 2651
b67bfe0d 2652 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2653 notifier->ops->sched_out(notifier, next);
2654}
2655
1cde2930
PZ
2656static __always_inline void
2657fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659{
2660 if (static_key_false(&preempt_notifier_key))
2661 __fire_sched_out_preempt_notifiers(curr, next);
2662}
2663
6d6bc0ad 2664#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2665
1cde2930 2666static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2667{
2668}
2669
1cde2930 2670static inline void
e107be36
AK
2671fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2673{
2674}
2675
6d6bc0ad 2676#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2677
4866cde0
NP
2678/**
2679 * prepare_task_switch - prepare to switch tasks
2680 * @rq: the runqueue preparing to switch
421cee29 2681 * @prev: the current task that is being switched out
4866cde0
NP
2682 * @next: the task we are going to switch to.
2683 *
2684 * This is called with the rq lock held and interrupts off. It must
2685 * be paired with a subsequent finish_task_switch after the context
2686 * switch.
2687 *
2688 * prepare_task_switch sets up locking and calls architecture specific
2689 * hooks.
2690 */
e107be36
AK
2691static inline void
2692prepare_task_switch(struct rq *rq, struct task_struct *prev,
2693 struct task_struct *next)
4866cde0 2694{
43148951 2695 sched_info_switch(rq, prev, next);
fe4b04fa 2696 perf_event_task_sched_out(prev, next);
91a034ed 2697 rseq_sched_out(prev);
e107be36 2698 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2699 prepare_lock_switch(rq, next);
2700 prepare_arch_switch(next);
2701}
2702
1da177e4
LT
2703/**
2704 * finish_task_switch - clean up after a task-switch
2705 * @prev: the thread we just switched away from.
2706 *
4866cde0
NP
2707 * finish_task_switch must be called after the context switch, paired
2708 * with a prepare_task_switch call before the context switch.
2709 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2710 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2711 *
2712 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2713 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2714 * with the lock held can cause deadlocks; see schedule() for
2715 * details.)
dfa50b60
ON
2716 *
2717 * The context switch have flipped the stack from under us and restored the
2718 * local variables which were saved when this task called schedule() in the
2719 * past. prev == current is still correct but we need to recalculate this_rq
2720 * because prev may have moved to another CPU.
1da177e4 2721 */
dfa50b60 2722static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2723 __releases(rq->lock)
2724{
dfa50b60 2725 struct rq *rq = this_rq();
1da177e4 2726 struct mm_struct *mm = rq->prev_mm;
55a101f8 2727 long prev_state;
1da177e4 2728
609ca066
PZ
2729 /*
2730 * The previous task will have left us with a preempt_count of 2
2731 * because it left us after:
2732 *
2733 * schedule()
2734 * preempt_disable(); // 1
2735 * __schedule()
2736 * raw_spin_lock_irq(&rq->lock) // 2
2737 *
2738 * Also, see FORK_PREEMPT_COUNT.
2739 */
e2bf1c4b
PZ
2740 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2741 "corrupted preempt_count: %s/%d/0x%x\n",
2742 current->comm, current->pid, preempt_count()))
2743 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2744
1da177e4
LT
2745 rq->prev_mm = NULL;
2746
2747 /*
2748 * A task struct has one reference for the use as "current".
c394cc9f 2749 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2750 * schedule one last time. The schedule call will never return, and
2751 * the scheduled task must drop that reference.
95913d97
PZ
2752 *
2753 * We must observe prev->state before clearing prev->on_cpu (in
2754 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2755 * running on another CPU and we could rave with its RUNNING -> DEAD
2756 * transition, resulting in a double drop.
1da177e4 2757 */
55a101f8 2758 prev_state = prev->state;
bf9fae9f 2759 vtime_task_switch(prev);
a8d757ef 2760 perf_event_task_sched_in(prev, current);
4866cde0 2761 finish_lock_switch(rq, prev);
01f23e16 2762 finish_arch_post_lock_switch();
e8fa1362 2763
e107be36 2764 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2765 if (mm)
2766 mmdrop(mm);
c394cc9f 2767 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2768 if (prev->sched_class->task_dead)
2769 prev->sched_class->task_dead(prev);
2770
c6fd91f0 2771 /*
2772 * Remove function-return probe instances associated with this
2773 * task and put them back on the free list.
9761eea8 2774 */
c6fd91f0 2775 kprobe_flush_task(prev);
1da177e4 2776 put_task_struct(prev);
c6fd91f0 2777 }
99e5ada9 2778
de734f89 2779 tick_nohz_task_switch();
dfa50b60 2780 return rq;
1da177e4
LT
2781}
2782
3f029d3c
GH
2783#ifdef CONFIG_SMP
2784
3f029d3c 2785/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2786static void __balance_callback(struct rq *rq)
3f029d3c 2787{
e3fca9e7
PZ
2788 struct callback_head *head, *next;
2789 void (*func)(struct rq *rq);
2790 unsigned long flags;
3f029d3c 2791
e3fca9e7
PZ
2792 raw_spin_lock_irqsave(&rq->lock, flags);
2793 head = rq->balance_callback;
2794 rq->balance_callback = NULL;
2795 while (head) {
2796 func = (void (*)(struct rq *))head->func;
2797 next = head->next;
2798 head->next = NULL;
2799 head = next;
3f029d3c 2800
e3fca9e7 2801 func(rq);
3f029d3c 2802 }
e3fca9e7
PZ
2803 raw_spin_unlock_irqrestore(&rq->lock, flags);
2804}
2805
2806static inline void balance_callback(struct rq *rq)
2807{
2808 if (unlikely(rq->balance_callback))
2809 __balance_callback(rq);
3f029d3c
GH
2810}
2811
2812#else
da19ab51 2813
e3fca9e7 2814static inline void balance_callback(struct rq *rq)
3f029d3c 2815{
1da177e4
LT
2816}
2817
3f029d3c
GH
2818#endif
2819
1da177e4
LT
2820/**
2821 * schedule_tail - first thing a freshly forked thread must call.
2822 * @prev: the thread we just switched away from.
2823 */
722a9f92 2824asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2825 __releases(rq->lock)
2826{
1a43a14a 2827 struct rq *rq;
da19ab51 2828
609ca066
PZ
2829 /*
2830 * New tasks start with FORK_PREEMPT_COUNT, see there and
2831 * finish_task_switch() for details.
2832 *
2833 * finish_task_switch() will drop rq->lock() and lower preempt_count
2834 * and the preempt_enable() will end up enabling preemption (on
2835 * PREEMPT_COUNT kernels).
2836 */
2837
dfa50b60 2838 rq = finish_task_switch(prev);
e3fca9e7 2839 balance_callback(rq);
1a43a14a 2840 preempt_enable();
70b97a7f 2841
1da177e4 2842 if (current->set_child_tid)
b488893a 2843 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2844}
2845
2846/*
dfa50b60 2847 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2848 */
04936948 2849static __always_inline struct rq *
70b97a7f 2850context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2851 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2852{
dd41f596 2853 struct mm_struct *mm, *oldmm;
1da177e4 2854
e107be36 2855 prepare_task_switch(rq, prev, next);
fe4b04fa 2856
dd41f596
IM
2857 mm = next->mm;
2858 oldmm = prev->active_mm;
9226d125
ZA
2859 /*
2860 * For paravirt, this is coupled with an exit in switch_to to
2861 * combine the page table reload and the switch backend into
2862 * one hypercall.
2863 */
224101ed 2864 arch_start_context_switch(prev);
9226d125 2865
31915ab4 2866 if (!mm) {
1da177e4
LT
2867 next->active_mm = oldmm;
2868 atomic_inc(&oldmm->mm_count);
2869 enter_lazy_tlb(oldmm, next);
2870 } else
f98db601 2871 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2872
31915ab4 2873 if (!prev->mm) {
1da177e4 2874 prev->active_mm = NULL;
1da177e4
LT
2875 rq->prev_mm = oldmm;
2876 }
3a5f5e48
IM
2877 /*
2878 * Since the runqueue lock will be released by the next
2879 * task (which is an invalid locking op but in the case
2880 * of the scheduler it's an obvious special-case), so we
2881 * do an early lockdep release here:
2882 */
e7904a28 2883 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2884 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2885
2886 /* Here we just switch the register state and the stack. */
2887 switch_to(prev, next, prev);
dd41f596 2888 barrier();
dfa50b60
ON
2889
2890 return finish_task_switch(prev);
1da177e4
LT
2891}
2892
2893/*
1c3e8264 2894 * nr_running and nr_context_switches:
1da177e4
LT
2895 *
2896 * externally visible scheduler statistics: current number of runnable
1c3e8264 2897 * threads, total number of context switches performed since bootup.
1da177e4
LT
2898 */
2899unsigned long nr_running(void)
2900{
2901 unsigned long i, sum = 0;
2902
2903 for_each_online_cpu(i)
2904 sum += cpu_rq(i)->nr_running;
2905
2906 return sum;
f711f609 2907}
1da177e4 2908
2ee507c4
TC
2909/*
2910 * Check if only the current task is running on the cpu.
00cc1633
DD
2911 *
2912 * Caution: this function does not check that the caller has disabled
2913 * preemption, thus the result might have a time-of-check-to-time-of-use
2914 * race. The caller is responsible to use it correctly, for example:
2915 *
2916 * - from a non-preemptable section (of course)
2917 *
2918 * - from a thread that is bound to a single CPU
2919 *
2920 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2921 */
2922bool single_task_running(void)
2923{
00cc1633 2924 return raw_rq()->nr_running == 1;
2ee507c4
TC
2925}
2926EXPORT_SYMBOL(single_task_running);
2927
1da177e4 2928unsigned long long nr_context_switches(void)
46cb4b7c 2929{
cc94abfc
SR
2930 int i;
2931 unsigned long long sum = 0;
46cb4b7c 2932
0a945022 2933 for_each_possible_cpu(i)
1da177e4 2934 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2935
1da177e4
LT
2936 return sum;
2937}
483b4ee6 2938
1da177e4
LT
2939unsigned long nr_iowait(void)
2940{
2941 unsigned long i, sum = 0;
483b4ee6 2942
0a945022 2943 for_each_possible_cpu(i)
1da177e4 2944 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2945
1da177e4
LT
2946 return sum;
2947}
483b4ee6 2948
8c215bd3 2949unsigned long nr_iowait_cpu(int cpu)
69d25870 2950{
8c215bd3 2951 struct rq *this = cpu_rq(cpu);
69d25870
AV
2952 return atomic_read(&this->nr_iowait);
2953}
46cb4b7c 2954
372ba8cb
MG
2955void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2956{
3289bdb4
PZ
2957 struct rq *rq = this_rq();
2958 *nr_waiters = atomic_read(&rq->nr_iowait);
2959 *load = rq->load.weight;
372ba8cb
MG
2960}
2961
dd41f596 2962#ifdef CONFIG_SMP
8a0be9ef 2963
46cb4b7c 2964/*
38022906
PZ
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2967 */
38022906 2968void sched_exec(void)
46cb4b7c 2969{
38022906 2970 struct task_struct *p = current;
1da177e4 2971 unsigned long flags;
0017d735 2972 int dest_cpu;
46cb4b7c 2973
8f42ced9 2974 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2975 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2976 if (dest_cpu == smp_processor_id())
2977 goto unlock;
38022906 2978
8f42ced9 2979 if (likely(cpu_active(dest_cpu))) {
969c7921 2980 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2981
8f42ced9
PZ
2982 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2983 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2984 return;
2985 }
0017d735 2986unlock:
8f42ced9 2987 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2988}
dd41f596 2989
1da177e4
LT
2990#endif
2991
1da177e4 2992DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2993DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2994
2995EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2996EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2997
6075620b
GG
2998/*
2999 * The function fair_sched_class.update_curr accesses the struct curr
3000 * and its field curr->exec_start; when called from task_sched_runtime(),
3001 * we observe a high rate of cache misses in practice.
3002 * Prefetching this data results in improved performance.
3003 */
3004static inline void prefetch_curr_exec_start(struct task_struct *p)
3005{
3006#ifdef CONFIG_FAIR_GROUP_SCHED
3007 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3008#else
3009 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3010#endif
3011 prefetch(curr);
3012 prefetch(&curr->exec_start);
3013}
3014
c5f8d995
HS
3015/*
3016 * Return accounted runtime for the task.
3017 * In case the task is currently running, return the runtime plus current's
3018 * pending runtime that have not been accounted yet.
3019 */
3020unsigned long long task_sched_runtime(struct task_struct *p)
3021{
eb580751 3022 struct rq_flags rf;
c5f8d995 3023 struct rq *rq;
6e998916 3024 u64 ns;
c5f8d995 3025
911b2898
PZ
3026#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3027 /*
3028 * 64-bit doesn't need locks to atomically read a 64bit value.
3029 * So we have a optimization chance when the task's delta_exec is 0.
3030 * Reading ->on_cpu is racy, but this is ok.
3031 *
3032 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3033 * If we race with it entering cpu, unaccounted time is 0. This is
3034 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3035 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3036 * been accounted, so we're correct here as well.
911b2898 3037 */
da0c1e65 3038 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3039 return p->se.sum_exec_runtime;
3040#endif
3041
eb580751 3042 rq = task_rq_lock(p, &rf);
6e998916
SG
3043 /*
3044 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3045 * project cycles that may never be accounted to this
3046 * thread, breaking clock_gettime().
3047 */
3048 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3049 prefetch_curr_exec_start(p);
6e998916
SG
3050 update_rq_clock(rq);
3051 p->sched_class->update_curr(rq);
3052 }
3053 ns = p->se.sum_exec_runtime;
eb580751 3054 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3055
3056 return ns;
3057}
48f24c4d 3058
7835b98b
CL
3059/*
3060 * This function gets called by the timer code, with HZ frequency.
3061 * We call it with interrupts disabled.
7835b98b
CL
3062 */
3063void scheduler_tick(void)
3064{
7835b98b
CL
3065 int cpu = smp_processor_id();
3066 struct rq *rq = cpu_rq(cpu);
dd41f596 3067 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3068
3069 sched_clock_tick();
dd41f596 3070
05fa785c 3071 raw_spin_lock(&rq->lock);
3e51f33f 3072 update_rq_clock(rq);
fa85ae24 3073 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3074 cpu_load_update_active(rq);
3289bdb4 3075 calc_global_load_tick(rq);
05fa785c 3076 raw_spin_unlock(&rq->lock);
7835b98b 3077
e9d2b064 3078 perf_event_task_tick();
e220d2dc 3079
e418e1c2 3080#ifdef CONFIG_SMP
6eb57e0d 3081 rq->idle_balance = idle_cpu(cpu);
7caff66f 3082 trigger_load_balance(rq);
e418e1c2 3083#endif
265f22a9 3084 rq_last_tick_reset(rq);
1da177e4
LT
3085}
3086
265f22a9
FW
3087#ifdef CONFIG_NO_HZ_FULL
3088/**
3089 * scheduler_tick_max_deferment
3090 *
3091 * Keep at least one tick per second when a single
3092 * active task is running because the scheduler doesn't
3093 * yet completely support full dynticks environment.
3094 *
3095 * This makes sure that uptime, CFS vruntime, load
3096 * balancing, etc... continue to move forward, even
3097 * with a very low granularity.
e69f6186
YB
3098 *
3099 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3100 */
3101u64 scheduler_tick_max_deferment(void)
3102{
3103 struct rq *rq = this_rq();
316c1608 3104 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3105
3106 next = rq->last_sched_tick + HZ;
3107
3108 if (time_before_eq(next, now))
3109 return 0;
3110
8fe8ff09 3111 return jiffies_to_nsecs(next - now);
1da177e4 3112}
265f22a9 3113#endif
1da177e4 3114
7e49fcce
SR
3115#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3116 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3117/*
3118 * If the value passed in is equal to the current preempt count
3119 * then we just disabled preemption. Start timing the latency.
3120 */
3121static inline void preempt_latency_start(int val)
3122{
3123 if (preempt_count() == val) {
3124 unsigned long ip = get_lock_parent_ip();
3125#ifdef CONFIG_DEBUG_PREEMPT
3126 current->preempt_disable_ip = ip;
3127#endif
3128 trace_preempt_off(CALLER_ADDR0, ip);
3129 }
3130}
7e49fcce 3131
edafe3a5 3132void preempt_count_add(int val)
1da177e4 3133{
6cd8a4bb 3134#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3135 /*
3136 * Underflow?
3137 */
9a11b49a
IM
3138 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3139 return;
6cd8a4bb 3140#endif
bdb43806 3141 __preempt_count_add(val);
6cd8a4bb 3142#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3143 /*
3144 * Spinlock count overflowing soon?
3145 */
33859f7f
MOS
3146 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3147 PREEMPT_MASK - 10);
6cd8a4bb 3148#endif
47252cfb 3149 preempt_latency_start(val);
1da177e4 3150}
bdb43806 3151EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3152NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3153
47252cfb
SR
3154/*
3155 * If the value passed in equals to the current preempt count
3156 * then we just enabled preemption. Stop timing the latency.
3157 */
3158static inline void preempt_latency_stop(int val)
3159{
3160 if (preempt_count() == val)
3161 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3162}
3163
edafe3a5 3164void preempt_count_sub(int val)
1da177e4 3165{
6cd8a4bb 3166#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3167 /*
3168 * Underflow?
3169 */
01e3eb82 3170 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3171 return;
1da177e4
LT
3172 /*
3173 * Is the spinlock portion underflowing?
3174 */
9a11b49a
IM
3175 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3176 !(preempt_count() & PREEMPT_MASK)))
3177 return;
6cd8a4bb 3178#endif
9a11b49a 3179
47252cfb 3180 preempt_latency_stop(val);
bdb43806 3181 __preempt_count_sub(val);
1da177e4 3182}
bdb43806 3183EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3184NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3185
47252cfb
SR
3186#else
3187static inline void preempt_latency_start(int val) { }
3188static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3189#endif
3190
3191/*
dd41f596 3192 * Print scheduling while atomic bug:
1da177e4 3193 */
dd41f596 3194static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3195{
664dfa65
DJ
3196 if (oops_in_progress)
3197 return;
3198
3df0fc5b
PZ
3199 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3200 prev->comm, prev->pid, preempt_count());
838225b4 3201
dd41f596 3202 debug_show_held_locks(prev);
e21f5b15 3203 print_modules();
dd41f596
IM
3204 if (irqs_disabled())
3205 print_irqtrace_events(prev);
8f47b187
TG
3206#ifdef CONFIG_DEBUG_PREEMPT
3207 if (in_atomic_preempt_off()) {
3208 pr_err("Preemption disabled at:");
3209 print_ip_sym(current->preempt_disable_ip);
3210 pr_cont("\n");
3211 }
3212#endif
748c7201
DBO
3213 if (panic_on_warn)
3214 panic("scheduling while atomic\n");
3215
6135fc1e 3216 dump_stack();
373d4d09 3217 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3218}
1da177e4 3219
dd41f596
IM
3220/*
3221 * Various schedule()-time debugging checks and statistics:
3222 */
3223static inline void schedule_debug(struct task_struct *prev)
3224{
0d9e2632 3225#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3226 if (task_stack_end_corrupted(prev))
3227 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3228#endif
b99def8b 3229
1dc0fffc 3230 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3231 __schedule_bug(prev);
1dc0fffc
PZ
3232 preempt_count_set(PREEMPT_DISABLED);
3233 }
b3fbab05 3234 rcu_sleep_check();
dd41f596 3235
1da177e4
LT
3236 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3237
2d72376b 3238 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3239}
3240
3241/*
3242 * Pick up the highest-prio task:
3243 */
3244static inline struct task_struct *
e7904a28 3245pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3246{
37e117c0 3247 const struct sched_class *class = &fair_sched_class;
dd41f596 3248 struct task_struct *p;
1da177e4
LT
3249
3250 /*
dd41f596
IM
3251 * Optimization: we know that if all tasks are in
3252 * the fair class we can call that function directly:
1da177e4 3253 */
37e117c0 3254 if (likely(prev->sched_class == class &&
38033c37 3255 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3256 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3257 if (unlikely(p == RETRY_TASK))
3258 goto again;
3259
3260 /* assumes fair_sched_class->next == idle_sched_class */
3261 if (unlikely(!p))
e7904a28 3262 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3263
3264 return p;
1da177e4
LT
3265 }
3266
37e117c0 3267again:
34f971f6 3268 for_each_class(class) {
e7904a28 3269 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3270 if (p) {
3271 if (unlikely(p == RETRY_TASK))
3272 goto again;
dd41f596 3273 return p;
37e117c0 3274 }
dd41f596 3275 }
34f971f6
PZ
3276
3277 BUG(); /* the idle class will always have a runnable task */
dd41f596 3278}
1da177e4 3279
dd41f596 3280/*
c259e01a 3281 * __schedule() is the main scheduler function.
edde96ea
PE
3282 *
3283 * The main means of driving the scheduler and thus entering this function are:
3284 *
3285 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3286 *
3287 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3288 * paths. For example, see arch/x86/entry_64.S.
3289 *
3290 * To drive preemption between tasks, the scheduler sets the flag in timer
3291 * interrupt handler scheduler_tick().
3292 *
3293 * 3. Wakeups don't really cause entry into schedule(). They add a
3294 * task to the run-queue and that's it.
3295 *
3296 * Now, if the new task added to the run-queue preempts the current
3297 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3298 * called on the nearest possible occasion:
3299 *
3300 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3301 *
3302 * - in syscall or exception context, at the next outmost
3303 * preempt_enable(). (this might be as soon as the wake_up()'s
3304 * spin_unlock()!)
3305 *
3306 * - in IRQ context, return from interrupt-handler to
3307 * preemptible context
3308 *
3309 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3310 * then at the next:
3311 *
3312 * - cond_resched() call
3313 * - explicit schedule() call
3314 * - return from syscall or exception to user-space
3315 * - return from interrupt-handler to user-space
bfd9b2b5 3316 *
b30f0e3f 3317 * WARNING: must be called with preemption disabled!
dd41f596 3318 */
499d7955 3319static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3320{
3321 struct task_struct *prev, *next;
67ca7bde 3322 unsigned long *switch_count;
e7904a28 3323 struct pin_cookie cookie;
dd41f596 3324 struct rq *rq;
31656519 3325 int cpu;
dd41f596 3326
dd41f596
IM
3327 cpu = smp_processor_id();
3328 rq = cpu_rq(cpu);
dd41f596 3329 prev = rq->curr;
dd41f596 3330
b99def8b
PZ
3331 /*
3332 * do_exit() calls schedule() with preemption disabled as an exception;
3333 * however we must fix that up, otherwise the next task will see an
3334 * inconsistent (higher) preempt count.
3335 *
3336 * It also avoids the below schedule_debug() test from complaining
3337 * about this.
3338 */
3339 if (unlikely(prev->state == TASK_DEAD))
3340 preempt_enable_no_resched_notrace();
3341
dd41f596 3342 schedule_debug(prev);
1da177e4 3343
31656519 3344 if (sched_feat(HRTICK))
f333fdc9 3345 hrtick_clear(rq);
8f4d37ec 3346
46a5d164
PM
3347 local_irq_disable();
3348 rcu_note_context_switch();
3349
e0acd0a6
ON
3350 /*
3351 * Make sure that signal_pending_state()->signal_pending() below
3352 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3353 * done by the caller to avoid the race with signal_wake_up().
3354 */
3355 smp_mb__before_spinlock();
46a5d164 3356 raw_spin_lock(&rq->lock);
e7904a28 3357 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3358
9edfbfed
PZ
3359 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3360
246d86b5 3361 switch_count = &prev->nivcsw;
fc13aeba 3362 if (!preempt && prev->state) {
21aa9af0 3363 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3364 prev->state = TASK_RUNNING;
21aa9af0 3365 } else {
2acca55e
PZ
3366 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3367 prev->on_rq = 0;
3368
21aa9af0 3369 /*
2acca55e
PZ
3370 * If a worker went to sleep, notify and ask workqueue
3371 * whether it wants to wake up a task to maintain
3372 * concurrency.
21aa9af0
TH
3373 */
3374 if (prev->flags & PF_WQ_WORKER) {
3375 struct task_struct *to_wakeup;
3376
9b7f6597 3377 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3378 if (to_wakeup)
e7904a28 3379 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3380 }
21aa9af0 3381 }
dd41f596 3382 switch_count = &prev->nvcsw;
1da177e4
LT
3383 }
3384
9edfbfed 3385 if (task_on_rq_queued(prev))
606dba2e
PZ
3386 update_rq_clock(rq);
3387
e7904a28 3388 next = pick_next_task(rq, prev, cookie);
f26f9aff 3389 clear_tsk_need_resched(prev);
f27dde8d 3390 clear_preempt_need_resched();
9edfbfed 3391 rq->clock_skip_update = 0;
1da177e4 3392
1da177e4 3393 if (likely(prev != next)) {
1da177e4
LT
3394 rq->nr_switches++;
3395 rq->curr = next;
3396 ++*switch_count;
3397
c73464b1 3398 trace_sched_switch(preempt, prev, next);
e7904a28 3399 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3400 } else {
e7904a28 3401 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3402 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3403 }
1da177e4 3404
e3fca9e7 3405 balance_callback(rq);
1da177e4 3406}
8e05e96a 3407STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3408
9c40cef2
TG
3409static inline void sched_submit_work(struct task_struct *tsk)
3410{
3c7d5184 3411 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3412 return;
3413 /*
3414 * If we are going to sleep and we have plugged IO queued,
3415 * make sure to submit it to avoid deadlocks.
3416 */
3417 if (blk_needs_flush_plug(tsk))
3418 blk_schedule_flush_plug(tsk);
3419}
3420
722a9f92 3421asmlinkage __visible void __sched schedule(void)
c259e01a 3422{
9c40cef2
TG
3423 struct task_struct *tsk = current;
3424
3425 sched_submit_work(tsk);
bfd9b2b5 3426 do {
b30f0e3f 3427 preempt_disable();
fc13aeba 3428 __schedule(false);
b30f0e3f 3429 sched_preempt_enable_no_resched();
bfd9b2b5 3430 } while (need_resched());
c259e01a 3431}
1da177e4
LT
3432EXPORT_SYMBOL(schedule);
3433
91d1aa43 3434#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3435asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3436{
3437 /*
3438 * If we come here after a random call to set_need_resched(),
3439 * or we have been woken up remotely but the IPI has not yet arrived,
3440 * we haven't yet exited the RCU idle mode. Do it here manually until
3441 * we find a better solution.
7cc78f8f
AL
3442 *
3443 * NB: There are buggy callers of this function. Ideally we
c467ea76 3444 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3445 * too frequently to make sense yet.
20ab65e3 3446 */
7cc78f8f 3447 enum ctx_state prev_state = exception_enter();
20ab65e3 3448 schedule();
7cc78f8f 3449 exception_exit(prev_state);
20ab65e3
FW
3450}
3451#endif
3452
c5491ea7
TG
3453/**
3454 * schedule_preempt_disabled - called with preemption disabled
3455 *
3456 * Returns with preemption disabled. Note: preempt_count must be 1
3457 */
3458void __sched schedule_preempt_disabled(void)
3459{
ba74c144 3460 sched_preempt_enable_no_resched();
c5491ea7
TG
3461 schedule();
3462 preempt_disable();
3463}
3464
06b1f808 3465static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3466{
3467 do {
47252cfb
SR
3468 /*
3469 * Because the function tracer can trace preempt_count_sub()
3470 * and it also uses preempt_enable/disable_notrace(), if
3471 * NEED_RESCHED is set, the preempt_enable_notrace() called
3472 * by the function tracer will call this function again and
3473 * cause infinite recursion.
3474 *
3475 * Preemption must be disabled here before the function
3476 * tracer can trace. Break up preempt_disable() into two
3477 * calls. One to disable preemption without fear of being
3478 * traced. The other to still record the preemption latency,
3479 * which can also be traced by the function tracer.
3480 */
499d7955 3481 preempt_disable_notrace();
47252cfb 3482 preempt_latency_start(1);
fc13aeba 3483 __schedule(true);
47252cfb 3484 preempt_latency_stop(1);
499d7955 3485 preempt_enable_no_resched_notrace();
a18b5d01
FW
3486
3487 /*
3488 * Check again in case we missed a preemption opportunity
3489 * between schedule and now.
3490 */
a18b5d01
FW
3491 } while (need_resched());
3492}
3493
1da177e4
LT
3494#ifdef CONFIG_PREEMPT
3495/*
2ed6e34f 3496 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3497 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3498 * occur there and call schedule directly.
3499 */
722a9f92 3500asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3501{
1da177e4
LT
3502 /*
3503 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3504 * we do not want to preempt the current task. Just return..
1da177e4 3505 */
fbb00b56 3506 if (likely(!preemptible()))
1da177e4
LT
3507 return;
3508
a18b5d01 3509 preempt_schedule_common();
1da177e4 3510}
376e2424 3511NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3512EXPORT_SYMBOL(preempt_schedule);
009f60e2 3513
009f60e2 3514/**
4eaca0a8 3515 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3516 *
3517 * The tracing infrastructure uses preempt_enable_notrace to prevent
3518 * recursion and tracing preempt enabling caused by the tracing
3519 * infrastructure itself. But as tracing can happen in areas coming
3520 * from userspace or just about to enter userspace, a preempt enable
3521 * can occur before user_exit() is called. This will cause the scheduler
3522 * to be called when the system is still in usermode.
3523 *
3524 * To prevent this, the preempt_enable_notrace will use this function
3525 * instead of preempt_schedule() to exit user context if needed before
3526 * calling the scheduler.
3527 */
4eaca0a8 3528asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3529{
3530 enum ctx_state prev_ctx;
3531
3532 if (likely(!preemptible()))
3533 return;
3534
3535 do {
47252cfb
SR
3536 /*
3537 * Because the function tracer can trace preempt_count_sub()
3538 * and it also uses preempt_enable/disable_notrace(), if
3539 * NEED_RESCHED is set, the preempt_enable_notrace() called
3540 * by the function tracer will call this function again and
3541 * cause infinite recursion.
3542 *
3543 * Preemption must be disabled here before the function
3544 * tracer can trace. Break up preempt_disable() into two
3545 * calls. One to disable preemption without fear of being
3546 * traced. The other to still record the preemption latency,
3547 * which can also be traced by the function tracer.
3548 */
3d8f74dd 3549 preempt_disable_notrace();
47252cfb 3550 preempt_latency_start(1);
009f60e2
ON
3551 /*
3552 * Needs preempt disabled in case user_exit() is traced
3553 * and the tracer calls preempt_enable_notrace() causing
3554 * an infinite recursion.
3555 */
3556 prev_ctx = exception_enter();
fc13aeba 3557 __schedule(true);
009f60e2
ON
3558 exception_exit(prev_ctx);
3559
47252cfb 3560 preempt_latency_stop(1);
3d8f74dd 3561 preempt_enable_no_resched_notrace();
009f60e2
ON
3562 } while (need_resched());
3563}
4eaca0a8 3564EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3565
32e475d7 3566#endif /* CONFIG_PREEMPT */
1da177e4
LT
3567
3568/*
2ed6e34f 3569 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3570 * off of irq context.
3571 * Note, that this is called and return with irqs disabled. This will
3572 * protect us against recursive calling from irq.
3573 */
722a9f92 3574asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3575{
b22366cd 3576 enum ctx_state prev_state;
6478d880 3577
2ed6e34f 3578 /* Catch callers which need to be fixed */
f27dde8d 3579 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3580
b22366cd
FW
3581 prev_state = exception_enter();
3582
3a5c359a 3583 do {
3d8f74dd 3584 preempt_disable();
3a5c359a 3585 local_irq_enable();
fc13aeba 3586 __schedule(true);
3a5c359a 3587 local_irq_disable();
3d8f74dd 3588 sched_preempt_enable_no_resched();
5ed0cec0 3589 } while (need_resched());
b22366cd
FW
3590
3591 exception_exit(prev_state);
1da177e4
LT
3592}
3593
63859d4f 3594int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3595 void *key)
1da177e4 3596{
63859d4f 3597 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3598}
1da177e4
LT
3599EXPORT_SYMBOL(default_wake_function);
3600
b29739f9
IM
3601#ifdef CONFIG_RT_MUTEXES
3602
3603/*
3604 * rt_mutex_setprio - set the current priority of a task
3605 * @p: task
3606 * @prio: prio value (kernel-internal form)
3607 *
3608 * This function changes the 'effective' priority of a task. It does
3609 * not touch ->normal_prio like __setscheduler().
3610 *
c365c292
TG
3611 * Used by the rt_mutex code to implement priority inheritance
3612 * logic. Call site only calls if the priority of the task changed.
b29739f9 3613 */
36c8b586 3614void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3615{
ff77e468 3616 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3617 const struct sched_class *prev_class;
eb580751
PZ
3618 struct rq_flags rf;
3619 struct rq *rq;
b29739f9 3620
aab03e05 3621 BUG_ON(prio > MAX_PRIO);
b29739f9 3622
eb580751 3623 rq = __task_rq_lock(p, &rf);
b29739f9 3624
1c4dd99b
TG
3625 /*
3626 * Idle task boosting is a nono in general. There is one
3627 * exception, when PREEMPT_RT and NOHZ is active:
3628 *
3629 * The idle task calls get_next_timer_interrupt() and holds
3630 * the timer wheel base->lock on the CPU and another CPU wants
3631 * to access the timer (probably to cancel it). We can safely
3632 * ignore the boosting request, as the idle CPU runs this code
3633 * with interrupts disabled and will complete the lock
3634 * protected section without being interrupted. So there is no
3635 * real need to boost.
3636 */
3637 if (unlikely(p == rq->idle)) {
3638 WARN_ON(p != rq->curr);
3639 WARN_ON(p->pi_blocked_on);
3640 goto out_unlock;
3641 }
3642
a8027073 3643 trace_sched_pi_setprio(p, prio);
d5f9f942 3644 oldprio = p->prio;
ff77e468
PZ
3645
3646 if (oldprio == prio)
3647 queue_flag &= ~DEQUEUE_MOVE;
3648
83ab0aa0 3649 prev_class = p->sched_class;
da0c1e65 3650 queued = task_on_rq_queued(p);
051a1d1a 3651 running = task_current(rq, p);
da0c1e65 3652 if (queued)
ff77e468 3653 dequeue_task(rq, p, queue_flag);
0e1f3483 3654 if (running)
f3cd1c4e 3655 put_prev_task(rq, p);
dd41f596 3656
2d3d891d
DF
3657 /*
3658 * Boosting condition are:
3659 * 1. -rt task is running and holds mutex A
3660 * --> -dl task blocks on mutex A
3661 *
3662 * 2. -dl task is running and holds mutex A
3663 * --> -dl task blocks on mutex A and could preempt the
3664 * running task
3665 */
3666 if (dl_prio(prio)) {
466af29b
ON
3667 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3668 if (!dl_prio(p->normal_prio) ||
3669 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3670 p->dl.dl_boosted = 1;
ff77e468 3671 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3672 } else
3673 p->dl.dl_boosted = 0;
aab03e05 3674 p->sched_class = &dl_sched_class;
2d3d891d
DF
3675 } else if (rt_prio(prio)) {
3676 if (dl_prio(oldprio))
3677 p->dl.dl_boosted = 0;
3678 if (oldprio < prio)
ff77e468 3679 queue_flag |= ENQUEUE_HEAD;
dd41f596 3680 p->sched_class = &rt_sched_class;
2d3d891d
DF
3681 } else {
3682 if (dl_prio(oldprio))
3683 p->dl.dl_boosted = 0;
746db944
BS
3684 if (rt_prio(oldprio))
3685 p->rt.timeout = 0;
dd41f596 3686 p->sched_class = &fair_sched_class;
2d3d891d 3687 }
dd41f596 3688
b29739f9
IM
3689 p->prio = prio;
3690
0e1f3483
HS
3691 if (running)
3692 p->sched_class->set_curr_task(rq);
da0c1e65 3693 if (queued)
ff77e468 3694 enqueue_task(rq, p, queue_flag);
cb469845 3695
da7a735e 3696 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3697out_unlock:
4c9a4bc8 3698 preempt_disable(); /* avoid rq from going away on us */
eb580751 3699 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3700
3701 balance_callback(rq);
3702 preempt_enable();
b29739f9 3703}
b29739f9 3704#endif
d50dde5a 3705
36c8b586 3706void set_user_nice(struct task_struct *p, long nice)
1da177e4 3707{
da0c1e65 3708 int old_prio, delta, queued;
eb580751 3709 struct rq_flags rf;
70b97a7f 3710 struct rq *rq;
1da177e4 3711
75e45d51 3712 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3713 return;
3714 /*
3715 * We have to be careful, if called from sys_setpriority(),
3716 * the task might be in the middle of scheduling on another CPU.
3717 */
eb580751 3718 rq = task_rq_lock(p, &rf);
1da177e4
LT
3719 /*
3720 * The RT priorities are set via sched_setscheduler(), but we still
3721 * allow the 'normal' nice value to be set - but as expected
3722 * it wont have any effect on scheduling until the task is
aab03e05 3723 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3724 */
aab03e05 3725 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3726 p->static_prio = NICE_TO_PRIO(nice);
3727 goto out_unlock;
3728 }
da0c1e65
KT
3729 queued = task_on_rq_queued(p);
3730 if (queued)
1de64443 3731 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3732
1da177e4 3733 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3734 set_load_weight(p);
b29739f9
IM
3735 old_prio = p->prio;
3736 p->prio = effective_prio(p);
3737 delta = p->prio - old_prio;
1da177e4 3738
da0c1e65 3739 if (queued) {
1de64443 3740 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3741 /*
d5f9f942
AM
3742 * If the task increased its priority or is running and
3743 * lowered its priority, then reschedule its CPU:
1da177e4 3744 */
d5f9f942 3745 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3746 resched_curr(rq);
1da177e4
LT
3747 }
3748out_unlock:
eb580751 3749 task_rq_unlock(rq, p, &rf);
1da177e4 3750}
1da177e4
LT
3751EXPORT_SYMBOL(set_user_nice);
3752
e43379f1
MM
3753/*
3754 * can_nice - check if a task can reduce its nice value
3755 * @p: task
3756 * @nice: nice value
3757 */
36c8b586 3758int can_nice(const struct task_struct *p, const int nice)
e43379f1 3759{
024f4747 3760 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3761 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3762
78d7d407 3763 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3764 capable(CAP_SYS_NICE));
3765}
3766
1da177e4
LT
3767#ifdef __ARCH_WANT_SYS_NICE
3768
3769/*
3770 * sys_nice - change the priority of the current process.
3771 * @increment: priority increment
3772 *
3773 * sys_setpriority is a more generic, but much slower function that
3774 * does similar things.
3775 */
5add95d4 3776SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3777{
48f24c4d 3778 long nice, retval;
1da177e4
LT
3779
3780 /*
3781 * Setpriority might change our priority at the same moment.
3782 * We don't have to worry. Conceptually one call occurs first
3783 * and we have a single winner.
3784 */
a9467fa3 3785 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3786 nice = task_nice(current) + increment;
1da177e4 3787
a9467fa3 3788 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3789 if (increment < 0 && !can_nice(current, nice))
3790 return -EPERM;
3791
1da177e4
LT
3792 retval = security_task_setnice(current, nice);
3793 if (retval)
3794 return retval;
3795
3796 set_user_nice(current, nice);
3797 return 0;
3798}
3799
3800#endif
3801
3802/**
3803 * task_prio - return the priority value of a given task.
3804 * @p: the task in question.
3805 *
e69f6186 3806 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3807 * RT tasks are offset by -200. Normal tasks are centered
3808 * around 0, value goes from -16 to +15.
3809 */
36c8b586 3810int task_prio(const struct task_struct *p)
1da177e4
LT
3811{
3812 return p->prio - MAX_RT_PRIO;
3813}
3814
1da177e4
LT
3815/**
3816 * idle_cpu - is a given cpu idle currently?
3817 * @cpu: the processor in question.
e69f6186
YB
3818 *
3819 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3820 */
3821int idle_cpu(int cpu)
3822{
908a3283
TG
3823 struct rq *rq = cpu_rq(cpu);
3824
3825 if (rq->curr != rq->idle)
3826 return 0;
3827
3828 if (rq->nr_running)
3829 return 0;
3830
3831#ifdef CONFIG_SMP
3832 if (!llist_empty(&rq->wake_list))
3833 return 0;
3834#endif
3835
3836 return 1;
1da177e4
LT
3837}
3838
1da177e4
LT
3839/**
3840 * idle_task - return the idle task for a given cpu.
3841 * @cpu: the processor in question.
e69f6186
YB
3842 *
3843 * Return: The idle task for the cpu @cpu.
1da177e4 3844 */
36c8b586 3845struct task_struct *idle_task(int cpu)
1da177e4
LT
3846{
3847 return cpu_rq(cpu)->idle;
3848}
3849
3850/**
3851 * find_process_by_pid - find a process with a matching PID value.
3852 * @pid: the pid in question.
e69f6186
YB
3853 *
3854 * The task of @pid, if found. %NULL otherwise.
1da177e4 3855 */
a9957449 3856static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3857{
228ebcbe 3858 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3859}
3860
aab03e05
DF
3861/*
3862 * This function initializes the sched_dl_entity of a newly becoming
3863 * SCHED_DEADLINE task.
3864 *
3865 * Only the static values are considered here, the actual runtime and the
3866 * absolute deadline will be properly calculated when the task is enqueued
3867 * for the first time with its new policy.
3868 */
3869static void
3870__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3871{
3872 struct sched_dl_entity *dl_se = &p->dl;
3873
aab03e05
DF
3874 dl_se->dl_runtime = attr->sched_runtime;
3875 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3876 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3877 dl_se->flags = attr->sched_flags;
332ac17e 3878 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3879
3880 /*
3881 * Changing the parameters of a task is 'tricky' and we're not doing
3882 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3883 *
3884 * What we SHOULD do is delay the bandwidth release until the 0-lag
3885 * point. This would include retaining the task_struct until that time
3886 * and change dl_overflow() to not immediately decrement the current
3887 * amount.
3888 *
3889 * Instead we retain the current runtime/deadline and let the new
3890 * parameters take effect after the current reservation period lapses.
3891 * This is safe (albeit pessimistic) because the 0-lag point is always
3892 * before the current scheduling deadline.
3893 *
3894 * We can still have temporary overloads because we do not delay the
3895 * change in bandwidth until that time; so admission control is
3896 * not on the safe side. It does however guarantee tasks will never
3897 * consume more than promised.
3898 */
aab03e05
DF
3899}
3900
c13db6b1
SR
3901/*
3902 * sched_setparam() passes in -1 for its policy, to let the functions
3903 * it calls know not to change it.
3904 */
3905#define SETPARAM_POLICY -1
3906
c365c292
TG
3907static void __setscheduler_params(struct task_struct *p,
3908 const struct sched_attr *attr)
1da177e4 3909{
d50dde5a
DF
3910 int policy = attr->sched_policy;
3911
c13db6b1 3912 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3913 policy = p->policy;
3914
1da177e4 3915 p->policy = policy;
d50dde5a 3916
aab03e05
DF
3917 if (dl_policy(policy))
3918 __setparam_dl(p, attr);
39fd8fd2 3919 else if (fair_policy(policy))
d50dde5a
DF
3920 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3921
39fd8fd2
PZ
3922 /*
3923 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3924 * !rt_policy. Always setting this ensures that things like
3925 * getparam()/getattr() don't report silly values for !rt tasks.
3926 */
3927 p->rt_priority = attr->sched_priority;
383afd09 3928 p->normal_prio = normal_prio(p);
c365c292
TG
3929 set_load_weight(p);
3930}
39fd8fd2 3931
c365c292
TG
3932/* Actually do priority change: must hold pi & rq lock. */
3933static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3934 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3935{
3936 __setscheduler_params(p, attr);
d50dde5a 3937
383afd09 3938 /*
0782e63b
TG
3939 * Keep a potential priority boosting if called from
3940 * sched_setscheduler().
383afd09 3941 */
0782e63b
TG
3942 if (keep_boost)
3943 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3944 else
3945 p->prio = normal_prio(p);
383afd09 3946
aab03e05
DF
3947 if (dl_prio(p->prio))
3948 p->sched_class = &dl_sched_class;
3949 else if (rt_prio(p->prio))
ffd44db5
PZ
3950 p->sched_class = &rt_sched_class;
3951 else
3952 p->sched_class = &fair_sched_class;
1da177e4 3953}
aab03e05
DF
3954
3955static void
3956__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3957{
3958 struct sched_dl_entity *dl_se = &p->dl;
3959
3960 attr->sched_priority = p->rt_priority;
3961 attr->sched_runtime = dl_se->dl_runtime;
3962 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3963 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3964 attr->sched_flags = dl_se->flags;
3965}
3966
3967/*
3968 * This function validates the new parameters of a -deadline task.
3969 * We ask for the deadline not being zero, and greater or equal
755378a4 3970 * than the runtime, as well as the period of being zero or
332ac17e 3971 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3972 * user parameters are above the internal resolution of 1us (we
3973 * check sched_runtime only since it is always the smaller one) and
3974 * below 2^63 ns (we have to check both sched_deadline and
3975 * sched_period, as the latter can be zero).
aab03e05
DF
3976 */
3977static bool
3978__checkparam_dl(const struct sched_attr *attr)
3979{
b0827819
JL
3980 /* deadline != 0 */
3981 if (attr->sched_deadline == 0)
3982 return false;
3983
3984 /*
3985 * Since we truncate DL_SCALE bits, make sure we're at least
3986 * that big.
3987 */
3988 if (attr->sched_runtime < (1ULL << DL_SCALE))
3989 return false;
3990
3991 /*
3992 * Since we use the MSB for wrap-around and sign issues, make
3993 * sure it's not set (mind that period can be equal to zero).
3994 */
3995 if (attr->sched_deadline & (1ULL << 63) ||
3996 attr->sched_period & (1ULL << 63))
3997 return false;
3998
3999 /* runtime <= deadline <= period (if period != 0) */
4000 if ((attr->sched_period != 0 &&
4001 attr->sched_period < attr->sched_deadline) ||
4002 attr->sched_deadline < attr->sched_runtime)
4003 return false;
4004
4005 return true;
aab03e05
DF
4006}
4007
c69e8d9c
DH
4008/*
4009 * check the target process has a UID that matches the current process's
4010 */
4011static bool check_same_owner(struct task_struct *p)
4012{
4013 const struct cred *cred = current_cred(), *pcred;
4014 bool match;
4015
4016 rcu_read_lock();
4017 pcred = __task_cred(p);
9c806aa0
EB
4018 match = (uid_eq(cred->euid, pcred->euid) ||
4019 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4020 rcu_read_unlock();
4021 return match;
4022}
4023
75381608
WL
4024static bool dl_param_changed(struct task_struct *p,
4025 const struct sched_attr *attr)
4026{
4027 struct sched_dl_entity *dl_se = &p->dl;
4028
4029 if (dl_se->dl_runtime != attr->sched_runtime ||
4030 dl_se->dl_deadline != attr->sched_deadline ||
4031 dl_se->dl_period != attr->sched_period ||
4032 dl_se->flags != attr->sched_flags)
4033 return true;
4034
4035 return false;
4036}
4037
d50dde5a
DF
4038static int __sched_setscheduler(struct task_struct *p,
4039 const struct sched_attr *attr,
dbc7f069 4040 bool user, bool pi)
1da177e4 4041{
383afd09
SR
4042 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4043 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4044 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4045 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4046 const struct sched_class *prev_class;
eb580751 4047 struct rq_flags rf;
ca94c442 4048 int reset_on_fork;
ff77e468 4049 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4050 struct rq *rq;
1da177e4 4051
66e5393a
SR
4052 /* may grab non-irq protected spin_locks */
4053 BUG_ON(in_interrupt());
1da177e4
LT
4054recheck:
4055 /* double check policy once rq lock held */
ca94c442
LP
4056 if (policy < 0) {
4057 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4058 policy = oldpolicy = p->policy;
ca94c442 4059 } else {
7479f3c9 4060 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4061
20f9cd2a 4062 if (!valid_policy(policy))
ca94c442
LP
4063 return -EINVAL;
4064 }
4065
7479f3c9
PZ
4066 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4067 return -EINVAL;
4068
1da177e4
LT
4069 /*
4070 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4071 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4072 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4073 */
0bb040a4 4074 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4075 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4076 return -EINVAL;
aab03e05
DF
4077 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4078 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4079 return -EINVAL;
4080
37e4ab3f
OC
4081 /*
4082 * Allow unprivileged RT tasks to decrease priority:
4083 */
961ccddd 4084 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4085 if (fair_policy(policy)) {
d0ea0268 4086 if (attr->sched_nice < task_nice(p) &&
eaad4513 4087 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4088 return -EPERM;
4089 }
4090
e05606d3 4091 if (rt_policy(policy)) {
a44702e8
ON
4092 unsigned long rlim_rtprio =
4093 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4094
4095 /* can't set/change the rt policy */
4096 if (policy != p->policy && !rlim_rtprio)
4097 return -EPERM;
4098
4099 /* can't increase priority */
d50dde5a
DF
4100 if (attr->sched_priority > p->rt_priority &&
4101 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4102 return -EPERM;
4103 }
c02aa73b 4104
d44753b8
JL
4105 /*
4106 * Can't set/change SCHED_DEADLINE policy at all for now
4107 * (safest behavior); in the future we would like to allow
4108 * unprivileged DL tasks to increase their relative deadline
4109 * or reduce their runtime (both ways reducing utilization)
4110 */
4111 if (dl_policy(policy))
4112 return -EPERM;
4113
dd41f596 4114 /*
c02aa73b
DH
4115 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4116 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4117 */
20f9cd2a 4118 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4119 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4120 return -EPERM;
4121 }
5fe1d75f 4122
37e4ab3f 4123 /* can't change other user's priorities */
c69e8d9c 4124 if (!check_same_owner(p))
37e4ab3f 4125 return -EPERM;
ca94c442
LP
4126
4127 /* Normal users shall not reset the sched_reset_on_fork flag */
4128 if (p->sched_reset_on_fork && !reset_on_fork)
4129 return -EPERM;
37e4ab3f 4130 }
1da177e4 4131
725aad24 4132 if (user) {
b0ae1981 4133 retval = security_task_setscheduler(p);
725aad24
JF
4134 if (retval)
4135 return retval;
4136 }
4137
b29739f9
IM
4138 /*
4139 * make sure no PI-waiters arrive (or leave) while we are
4140 * changing the priority of the task:
0122ec5b 4141 *
25985edc 4142 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4143 * runqueue lock must be held.
4144 */
eb580751 4145 rq = task_rq_lock(p, &rf);
dc61b1d6 4146
34f971f6
PZ
4147 /*
4148 * Changing the policy of the stop threads its a very bad idea
4149 */
4150 if (p == rq->stop) {
eb580751 4151 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4152 return -EINVAL;
4153 }
4154
a51e9198 4155 /*
d6b1e911
TG
4156 * If not changing anything there's no need to proceed further,
4157 * but store a possible modification of reset_on_fork.
a51e9198 4158 */
d50dde5a 4159 if (unlikely(policy == p->policy)) {
d0ea0268 4160 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4161 goto change;
4162 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4163 goto change;
75381608 4164 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4165 goto change;
d50dde5a 4166
d6b1e911 4167 p->sched_reset_on_fork = reset_on_fork;
eb580751 4168 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4169 return 0;
4170 }
d50dde5a 4171change:
a51e9198 4172
dc61b1d6 4173 if (user) {
332ac17e 4174#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4175 /*
4176 * Do not allow realtime tasks into groups that have no runtime
4177 * assigned.
4178 */
4179 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4180 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4181 !task_group_is_autogroup(task_group(p))) {
eb580751 4182 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4183 return -EPERM;
4184 }
dc61b1d6 4185#endif
332ac17e
DF
4186#ifdef CONFIG_SMP
4187 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4188 cpumask_t *span = rq->rd->span;
332ac17e
DF
4189
4190 /*
4191 * Don't allow tasks with an affinity mask smaller than
4192 * the entire root_domain to become SCHED_DEADLINE. We
4193 * will also fail if there's no bandwidth available.
4194 */
e4099a5e
PZ
4195 if (!cpumask_subset(span, &p->cpus_allowed) ||
4196 rq->rd->dl_bw.bw == 0) {
eb580751 4197 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4198 return -EPERM;
4199 }
4200 }
4201#endif
4202 }
dc61b1d6 4203
1da177e4
LT
4204 /* recheck policy now with rq lock held */
4205 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4206 policy = oldpolicy = -1;
eb580751 4207 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4208 goto recheck;
4209 }
332ac17e
DF
4210
4211 /*
4212 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4213 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4214 * is available.
4215 */
e4099a5e 4216 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4217 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4218 return -EBUSY;
4219 }
4220
c365c292
TG
4221 p->sched_reset_on_fork = reset_on_fork;
4222 oldprio = p->prio;
4223
dbc7f069
PZ
4224 if (pi) {
4225 /*
4226 * Take priority boosted tasks into account. If the new
4227 * effective priority is unchanged, we just store the new
4228 * normal parameters and do not touch the scheduler class and
4229 * the runqueue. This will be done when the task deboost
4230 * itself.
4231 */
4232 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4233 if (new_effective_prio == oldprio)
4234 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4235 }
4236
da0c1e65 4237 queued = task_on_rq_queued(p);
051a1d1a 4238 running = task_current(rq, p);
da0c1e65 4239 if (queued)
ff77e468 4240 dequeue_task(rq, p, queue_flags);
0e1f3483 4241 if (running)
f3cd1c4e 4242 put_prev_task(rq, p);
f6b53205 4243
83ab0aa0 4244 prev_class = p->sched_class;
dbc7f069 4245 __setscheduler(rq, p, attr, pi);
f6b53205 4246
0e1f3483
HS
4247 if (running)
4248 p->sched_class->set_curr_task(rq);
da0c1e65 4249 if (queued) {
81a44c54
TG
4250 /*
4251 * We enqueue to tail when the priority of a task is
4252 * increased (user space view).
4253 */
ff77e468
PZ
4254 if (oldprio < p->prio)
4255 queue_flags |= ENQUEUE_HEAD;
1de64443 4256
ff77e468 4257 enqueue_task(rq, p, queue_flags);
81a44c54 4258 }
cb469845 4259
da7a735e 4260 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4261 preempt_disable(); /* avoid rq from going away on us */
eb580751 4262 task_rq_unlock(rq, p, &rf);
b29739f9 4263
dbc7f069
PZ
4264 if (pi)
4265 rt_mutex_adjust_pi(p);
95e02ca9 4266
4c9a4bc8
PZ
4267 /*
4268 * Run balance callbacks after we've adjusted the PI chain.
4269 */
4270 balance_callback(rq);
4271 preempt_enable();
95e02ca9 4272
1da177e4
LT
4273 return 0;
4274}
961ccddd 4275
7479f3c9
PZ
4276static int _sched_setscheduler(struct task_struct *p, int policy,
4277 const struct sched_param *param, bool check)
4278{
4279 struct sched_attr attr = {
4280 .sched_policy = policy,
4281 .sched_priority = param->sched_priority,
4282 .sched_nice = PRIO_TO_NICE(p->static_prio),
4283 };
4284
c13db6b1
SR
4285 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4286 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4287 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4288 policy &= ~SCHED_RESET_ON_FORK;
4289 attr.sched_policy = policy;
4290 }
4291
dbc7f069 4292 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4293}
961ccddd
RR
4294/**
4295 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4296 * @p: the task in question.
4297 * @policy: new policy.
4298 * @param: structure containing the new RT priority.
4299 *
e69f6186
YB
4300 * Return: 0 on success. An error code otherwise.
4301 *
961ccddd
RR
4302 * NOTE that the task may be already dead.
4303 */
4304int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4305 const struct sched_param *param)
961ccddd 4306{
7479f3c9 4307 return _sched_setscheduler(p, policy, param, true);
961ccddd 4308}
1da177e4
LT
4309EXPORT_SYMBOL_GPL(sched_setscheduler);
4310
d50dde5a
DF
4311int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4312{
dbc7f069 4313 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4314}
4315EXPORT_SYMBOL_GPL(sched_setattr);
4316
961ccddd
RR
4317/**
4318 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4319 * @p: the task in question.
4320 * @policy: new policy.
4321 * @param: structure containing the new RT priority.
4322 *
4323 * Just like sched_setscheduler, only don't bother checking if the
4324 * current context has permission. For example, this is needed in
4325 * stop_machine(): we create temporary high priority worker threads,
4326 * but our caller might not have that capability.
e69f6186
YB
4327 *
4328 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4329 */
4330int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4331 const struct sched_param *param)
961ccddd 4332{
7479f3c9 4333 return _sched_setscheduler(p, policy, param, false);
961ccddd 4334}
84778472 4335EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4336
95cdf3b7
IM
4337static int
4338do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4339{
1da177e4
LT
4340 struct sched_param lparam;
4341 struct task_struct *p;
36c8b586 4342 int retval;
1da177e4
LT
4343
4344 if (!param || pid < 0)
4345 return -EINVAL;
4346 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4347 return -EFAULT;
5fe1d75f
ON
4348
4349 rcu_read_lock();
4350 retval = -ESRCH;
1da177e4 4351 p = find_process_by_pid(pid);
5fe1d75f
ON
4352 if (p != NULL)
4353 retval = sched_setscheduler(p, policy, &lparam);
4354 rcu_read_unlock();
36c8b586 4355
1da177e4
LT
4356 return retval;
4357}
4358
d50dde5a
DF
4359/*
4360 * Mimics kernel/events/core.c perf_copy_attr().
4361 */
4362static int sched_copy_attr(struct sched_attr __user *uattr,
4363 struct sched_attr *attr)
4364{
4365 u32 size;
4366 int ret;
4367
4368 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4369 return -EFAULT;
4370
4371 /*
4372 * zero the full structure, so that a short copy will be nice.
4373 */
4374 memset(attr, 0, sizeof(*attr));
4375
4376 ret = get_user(size, &uattr->size);
4377 if (ret)
4378 return ret;
4379
4380 if (size > PAGE_SIZE) /* silly large */
4381 goto err_size;
4382
4383 if (!size) /* abi compat */
4384 size = SCHED_ATTR_SIZE_VER0;
4385
4386 if (size < SCHED_ATTR_SIZE_VER0)
4387 goto err_size;
4388
4389 /*
4390 * If we're handed a bigger struct than we know of,
4391 * ensure all the unknown bits are 0 - i.e. new
4392 * user-space does not rely on any kernel feature
4393 * extensions we dont know about yet.
4394 */
4395 if (size > sizeof(*attr)) {
4396 unsigned char __user *addr;
4397 unsigned char __user *end;
4398 unsigned char val;
4399
4400 addr = (void __user *)uattr + sizeof(*attr);
4401 end = (void __user *)uattr + size;
4402
4403 for (; addr < end; addr++) {
4404 ret = get_user(val, addr);
4405 if (ret)
4406 return ret;
4407 if (val)
4408 goto err_size;
4409 }
4410 size = sizeof(*attr);
4411 }
4412
4413 ret = copy_from_user(attr, uattr, size);
4414 if (ret)
4415 return -EFAULT;
4416
4417 /*
4418 * XXX: do we want to be lenient like existing syscalls; or do we want
4419 * to be strict and return an error on out-of-bounds values?
4420 */
75e45d51 4421 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4422
e78c7bca 4423 return 0;
d50dde5a
DF
4424
4425err_size:
4426 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4427 return -E2BIG;
d50dde5a
DF
4428}
4429
1da177e4
LT
4430/**
4431 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4432 * @pid: the pid in question.
4433 * @policy: new policy.
4434 * @param: structure containing the new RT priority.
e69f6186
YB
4435 *
4436 * Return: 0 on success. An error code otherwise.
1da177e4 4437 */
5add95d4
HC
4438SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4439 struct sched_param __user *, param)
1da177e4 4440{
c21761f1
JB
4441 /* negative values for policy are not valid */
4442 if (policy < 0)
4443 return -EINVAL;
4444
1da177e4
LT
4445 return do_sched_setscheduler(pid, policy, param);
4446}
4447
4448/**
4449 * sys_sched_setparam - set/change the RT priority of a thread
4450 * @pid: the pid in question.
4451 * @param: structure containing the new RT priority.
e69f6186
YB
4452 *
4453 * Return: 0 on success. An error code otherwise.
1da177e4 4454 */
5add95d4 4455SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4456{
c13db6b1 4457 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4458}
4459
d50dde5a
DF
4460/**
4461 * sys_sched_setattr - same as above, but with extended sched_attr
4462 * @pid: the pid in question.
5778fccf 4463 * @uattr: structure containing the extended parameters.
db66d756 4464 * @flags: for future extension.
d50dde5a 4465 */
6d35ab48
PZ
4466SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4467 unsigned int, flags)
d50dde5a
DF
4468{
4469 struct sched_attr attr;
4470 struct task_struct *p;
4471 int retval;
4472
6d35ab48 4473 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4474 return -EINVAL;
4475
143cf23d
MK
4476 retval = sched_copy_attr(uattr, &attr);
4477 if (retval)
4478 return retval;
d50dde5a 4479
b14ed2c2 4480 if ((int)attr.sched_policy < 0)
dbdb2275 4481 return -EINVAL;
d50dde5a
DF
4482
4483 rcu_read_lock();
4484 retval = -ESRCH;
4485 p = find_process_by_pid(pid);
4486 if (p != NULL)
4487 retval = sched_setattr(p, &attr);
4488 rcu_read_unlock();
4489
4490 return retval;
4491}
4492
1da177e4
LT
4493/**
4494 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4495 * @pid: the pid in question.
e69f6186
YB
4496 *
4497 * Return: On success, the policy of the thread. Otherwise, a negative error
4498 * code.
1da177e4 4499 */
5add95d4 4500SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4501{
36c8b586 4502 struct task_struct *p;
3a5c359a 4503 int retval;
1da177e4
LT
4504
4505 if (pid < 0)
3a5c359a 4506 return -EINVAL;
1da177e4
LT
4507
4508 retval = -ESRCH;
5fe85be0 4509 rcu_read_lock();
1da177e4
LT
4510 p = find_process_by_pid(pid);
4511 if (p) {
4512 retval = security_task_getscheduler(p);
4513 if (!retval)
ca94c442
LP
4514 retval = p->policy
4515 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4516 }
5fe85be0 4517 rcu_read_unlock();
1da177e4
LT
4518 return retval;
4519}
4520
4521/**
ca94c442 4522 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4523 * @pid: the pid in question.
4524 * @param: structure containing the RT priority.
e69f6186
YB
4525 *
4526 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4527 * code.
1da177e4 4528 */
5add95d4 4529SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4530{
ce5f7f82 4531 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4532 struct task_struct *p;
3a5c359a 4533 int retval;
1da177e4
LT
4534
4535 if (!param || pid < 0)
3a5c359a 4536 return -EINVAL;
1da177e4 4537
5fe85be0 4538 rcu_read_lock();
1da177e4
LT
4539 p = find_process_by_pid(pid);
4540 retval = -ESRCH;
4541 if (!p)
4542 goto out_unlock;
4543
4544 retval = security_task_getscheduler(p);
4545 if (retval)
4546 goto out_unlock;
4547
ce5f7f82
PZ
4548 if (task_has_rt_policy(p))
4549 lp.sched_priority = p->rt_priority;
5fe85be0 4550 rcu_read_unlock();
1da177e4
LT
4551
4552 /*
4553 * This one might sleep, we cannot do it with a spinlock held ...
4554 */
4555 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4556
1da177e4
LT
4557 return retval;
4558
4559out_unlock:
5fe85be0 4560 rcu_read_unlock();
1da177e4
LT
4561 return retval;
4562}
4563
d50dde5a
DF
4564static int sched_read_attr(struct sched_attr __user *uattr,
4565 struct sched_attr *attr,
4566 unsigned int usize)
4567{
4568 int ret;
4569
4570 if (!access_ok(VERIFY_WRITE, uattr, usize))
4571 return -EFAULT;
4572
4573 /*
4574 * If we're handed a smaller struct than we know of,
4575 * ensure all the unknown bits are 0 - i.e. old
4576 * user-space does not get uncomplete information.
4577 */
4578 if (usize < sizeof(*attr)) {
4579 unsigned char *addr;
4580 unsigned char *end;
4581
4582 addr = (void *)attr + usize;
4583 end = (void *)attr + sizeof(*attr);
4584
4585 for (; addr < end; addr++) {
4586 if (*addr)
22400674 4587 return -EFBIG;
d50dde5a
DF
4588 }
4589
4590 attr->size = usize;
4591 }
4592
4efbc454 4593 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4594 if (ret)
4595 return -EFAULT;
4596
22400674 4597 return 0;
d50dde5a
DF
4598}
4599
4600/**
aab03e05 4601 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4602 * @pid: the pid in question.
5778fccf 4603 * @uattr: structure containing the extended parameters.
d50dde5a 4604 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4605 * @flags: for future extension.
d50dde5a 4606 */
6d35ab48
PZ
4607SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4608 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4609{
4610 struct sched_attr attr = {
4611 .size = sizeof(struct sched_attr),
4612 };
4613 struct task_struct *p;
4614 int retval;
4615
4616 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4617 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4618 return -EINVAL;
4619
4620 rcu_read_lock();
4621 p = find_process_by_pid(pid);
4622 retval = -ESRCH;
4623 if (!p)
4624 goto out_unlock;
4625
4626 retval = security_task_getscheduler(p);
4627 if (retval)
4628 goto out_unlock;
4629
4630 attr.sched_policy = p->policy;
7479f3c9
PZ
4631 if (p->sched_reset_on_fork)
4632 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4633 if (task_has_dl_policy(p))
4634 __getparam_dl(p, &attr);
4635 else if (task_has_rt_policy(p))
d50dde5a
DF
4636 attr.sched_priority = p->rt_priority;
4637 else
d0ea0268 4638 attr.sched_nice = task_nice(p);
d50dde5a
DF
4639
4640 rcu_read_unlock();
4641
4642 retval = sched_read_attr(uattr, &attr, size);
4643 return retval;
4644
4645out_unlock:
4646 rcu_read_unlock();
4647 return retval;
4648}
4649
96f874e2 4650long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4651{
5a16f3d3 4652 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4653 struct task_struct *p;
4654 int retval;
1da177e4 4655
23f5d142 4656 rcu_read_lock();
1da177e4
LT
4657
4658 p = find_process_by_pid(pid);
4659 if (!p) {
23f5d142 4660 rcu_read_unlock();
1da177e4
LT
4661 return -ESRCH;
4662 }
4663
23f5d142 4664 /* Prevent p going away */
1da177e4 4665 get_task_struct(p);
23f5d142 4666 rcu_read_unlock();
1da177e4 4667
14a40ffc
TH
4668 if (p->flags & PF_NO_SETAFFINITY) {
4669 retval = -EINVAL;
4670 goto out_put_task;
4671 }
5a16f3d3
RR
4672 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4673 retval = -ENOMEM;
4674 goto out_put_task;
4675 }
4676 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4677 retval = -ENOMEM;
4678 goto out_free_cpus_allowed;
4679 }
1da177e4 4680 retval = -EPERM;
4c44aaaf
EB
4681 if (!check_same_owner(p)) {
4682 rcu_read_lock();
4683 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4684 rcu_read_unlock();
16303ab2 4685 goto out_free_new_mask;
4c44aaaf
EB
4686 }
4687 rcu_read_unlock();
4688 }
1da177e4 4689
b0ae1981 4690 retval = security_task_setscheduler(p);
e7834f8f 4691 if (retval)
16303ab2 4692 goto out_free_new_mask;
e7834f8f 4693
e4099a5e
PZ
4694
4695 cpuset_cpus_allowed(p, cpus_allowed);
4696 cpumask_and(new_mask, in_mask, cpus_allowed);
4697
332ac17e
DF
4698 /*
4699 * Since bandwidth control happens on root_domain basis,
4700 * if admission test is enabled, we only admit -deadline
4701 * tasks allowed to run on all the CPUs in the task's
4702 * root_domain.
4703 */
4704#ifdef CONFIG_SMP
f1e3a093
KT
4705 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4706 rcu_read_lock();
4707 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4708 retval = -EBUSY;
f1e3a093 4709 rcu_read_unlock();
16303ab2 4710 goto out_free_new_mask;
332ac17e 4711 }
f1e3a093 4712 rcu_read_unlock();
332ac17e
DF
4713 }
4714#endif
49246274 4715again:
25834c73 4716 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4717
8707d8b8 4718 if (!retval) {
5a16f3d3
RR
4719 cpuset_cpus_allowed(p, cpus_allowed);
4720 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4721 /*
4722 * We must have raced with a concurrent cpuset
4723 * update. Just reset the cpus_allowed to the
4724 * cpuset's cpus_allowed
4725 */
5a16f3d3 4726 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4727 goto again;
4728 }
4729 }
16303ab2 4730out_free_new_mask:
5a16f3d3
RR
4731 free_cpumask_var(new_mask);
4732out_free_cpus_allowed:
4733 free_cpumask_var(cpus_allowed);
4734out_put_task:
1da177e4 4735 put_task_struct(p);
1da177e4
LT
4736 return retval;
4737}
4738
4739static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4740 struct cpumask *new_mask)
1da177e4 4741{
96f874e2
RR
4742 if (len < cpumask_size())
4743 cpumask_clear(new_mask);
4744 else if (len > cpumask_size())
4745 len = cpumask_size();
4746
1da177e4
LT
4747 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4748}
4749
4750/**
4751 * sys_sched_setaffinity - set the cpu affinity of a process
4752 * @pid: pid of the process
4753 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4754 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4755 *
4756 * Return: 0 on success. An error code otherwise.
1da177e4 4757 */
5add95d4
HC
4758SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4759 unsigned long __user *, user_mask_ptr)
1da177e4 4760{
5a16f3d3 4761 cpumask_var_t new_mask;
1da177e4
LT
4762 int retval;
4763
5a16f3d3
RR
4764 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4765 return -ENOMEM;
1da177e4 4766
5a16f3d3
RR
4767 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4768 if (retval == 0)
4769 retval = sched_setaffinity(pid, new_mask);
4770 free_cpumask_var(new_mask);
4771 return retval;
1da177e4
LT
4772}
4773
96f874e2 4774long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4775{
36c8b586 4776 struct task_struct *p;
31605683 4777 unsigned long flags;
1da177e4 4778 int retval;
1da177e4 4779
23f5d142 4780 rcu_read_lock();
1da177e4
LT
4781
4782 retval = -ESRCH;
4783 p = find_process_by_pid(pid);
4784 if (!p)
4785 goto out_unlock;
4786
e7834f8f
DQ
4787 retval = security_task_getscheduler(p);
4788 if (retval)
4789 goto out_unlock;
4790
013fdb80 4791 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4792 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4793 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4794
4795out_unlock:
23f5d142 4796 rcu_read_unlock();
1da177e4 4797
9531b62f 4798 return retval;
1da177e4
LT
4799}
4800
4801/**
4802 * sys_sched_getaffinity - get the cpu affinity of a process
4803 * @pid: pid of the process
4804 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4805 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4806 *
599b4840
ZW
4807 * Return: size of CPU mask copied to user_mask_ptr on success. An
4808 * error code otherwise.
1da177e4 4809 */
5add95d4
HC
4810SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4811 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4812{
4813 int ret;
f17c8607 4814 cpumask_var_t mask;
1da177e4 4815
84fba5ec 4816 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4817 return -EINVAL;
4818 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4819 return -EINVAL;
4820
f17c8607
RR
4821 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4822 return -ENOMEM;
1da177e4 4823
f17c8607
RR
4824 ret = sched_getaffinity(pid, mask);
4825 if (ret == 0) {
8bc037fb 4826 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4827
4828 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4829 ret = -EFAULT;
4830 else
cd3d8031 4831 ret = retlen;
f17c8607
RR
4832 }
4833 free_cpumask_var(mask);
1da177e4 4834
f17c8607 4835 return ret;
1da177e4
LT
4836}
4837
4838/**
4839 * sys_sched_yield - yield the current processor to other threads.
4840 *
dd41f596
IM
4841 * This function yields the current CPU to other tasks. If there are no
4842 * other threads running on this CPU then this function will return.
e69f6186
YB
4843 *
4844 * Return: 0.
1da177e4 4845 */
5add95d4 4846SYSCALL_DEFINE0(sched_yield)
1da177e4 4847{
70b97a7f 4848 struct rq *rq = this_rq_lock();
1da177e4 4849
2d72376b 4850 schedstat_inc(rq, yld_count);
4530d7ab 4851 current->sched_class->yield_task(rq);
1da177e4
LT
4852
4853 /*
4854 * Since we are going to call schedule() anyway, there's
4855 * no need to preempt or enable interrupts:
4856 */
4857 __release(rq->lock);
8a25d5de 4858 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4859 do_raw_spin_unlock(&rq->lock);
ba74c144 4860 sched_preempt_enable_no_resched();
1da177e4
LT
4861
4862 schedule();
4863
4864 return 0;
4865}
4866
02b67cc3 4867int __sched _cond_resched(void)
1da177e4 4868{
fe32d3cd 4869 if (should_resched(0)) {
a18b5d01 4870 preempt_schedule_common();
1da177e4
LT
4871 return 1;
4872 }
4873 return 0;
4874}
02b67cc3 4875EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4876
4877/*
613afbf8 4878 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4879 * call schedule, and on return reacquire the lock.
4880 *
41a2d6cf 4881 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4882 * operations here to prevent schedule() from being called twice (once via
4883 * spin_unlock(), once by hand).
4884 */
613afbf8 4885int __cond_resched_lock(spinlock_t *lock)
1da177e4 4886{
fe32d3cd 4887 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4888 int ret = 0;
4889
f607c668
PZ
4890 lockdep_assert_held(lock);
4891
4a81e832 4892 if (spin_needbreak(lock) || resched) {
1da177e4 4893 spin_unlock(lock);
d86ee480 4894 if (resched)
a18b5d01 4895 preempt_schedule_common();
95c354fe
NP
4896 else
4897 cpu_relax();
6df3cecb 4898 ret = 1;
1da177e4 4899 spin_lock(lock);
1da177e4 4900 }
6df3cecb 4901 return ret;
1da177e4 4902}
613afbf8 4903EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4904
613afbf8 4905int __sched __cond_resched_softirq(void)
1da177e4
LT
4906{
4907 BUG_ON(!in_softirq());
4908
fe32d3cd 4909 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4910 local_bh_enable();
a18b5d01 4911 preempt_schedule_common();
1da177e4
LT
4912 local_bh_disable();
4913 return 1;
4914 }
4915 return 0;
4916}
613afbf8 4917EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4918
1da177e4
LT
4919/**
4920 * yield - yield the current processor to other threads.
4921 *
8e3fabfd
PZ
4922 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4923 *
4924 * The scheduler is at all times free to pick the calling task as the most
4925 * eligible task to run, if removing the yield() call from your code breaks
4926 * it, its already broken.
4927 *
4928 * Typical broken usage is:
4929 *
4930 * while (!event)
4931 * yield();
4932 *
4933 * where one assumes that yield() will let 'the other' process run that will
4934 * make event true. If the current task is a SCHED_FIFO task that will never
4935 * happen. Never use yield() as a progress guarantee!!
4936 *
4937 * If you want to use yield() to wait for something, use wait_event().
4938 * If you want to use yield() to be 'nice' for others, use cond_resched().
4939 * If you still want to use yield(), do not!
1da177e4
LT
4940 */
4941void __sched yield(void)
4942{
4943 set_current_state(TASK_RUNNING);
4944 sys_sched_yield();
4945}
1da177e4
LT
4946EXPORT_SYMBOL(yield);
4947
d95f4122
MG
4948/**
4949 * yield_to - yield the current processor to another thread in
4950 * your thread group, or accelerate that thread toward the
4951 * processor it's on.
16addf95
RD
4952 * @p: target task
4953 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4954 *
4955 * It's the caller's job to ensure that the target task struct
4956 * can't go away on us before we can do any checks.
4957 *
e69f6186 4958 * Return:
7b270f60
PZ
4959 * true (>0) if we indeed boosted the target task.
4960 * false (0) if we failed to boost the target.
4961 * -ESRCH if there's no task to yield to.
d95f4122 4962 */
fa93384f 4963int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4964{
4965 struct task_struct *curr = current;
4966 struct rq *rq, *p_rq;
4967 unsigned long flags;
c3c18640 4968 int yielded = 0;
d95f4122
MG
4969
4970 local_irq_save(flags);
4971 rq = this_rq();
4972
4973again:
4974 p_rq = task_rq(p);
7b270f60
PZ
4975 /*
4976 * If we're the only runnable task on the rq and target rq also
4977 * has only one task, there's absolutely no point in yielding.
4978 */
4979 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4980 yielded = -ESRCH;
4981 goto out_irq;
4982 }
4983
d95f4122 4984 double_rq_lock(rq, p_rq);
39e24d8f 4985 if (task_rq(p) != p_rq) {
d95f4122
MG
4986 double_rq_unlock(rq, p_rq);
4987 goto again;
4988 }
4989
4990 if (!curr->sched_class->yield_to_task)
7b270f60 4991 goto out_unlock;
d95f4122
MG
4992
4993 if (curr->sched_class != p->sched_class)
7b270f60 4994 goto out_unlock;
d95f4122
MG
4995
4996 if (task_running(p_rq, p) || p->state)
7b270f60 4997 goto out_unlock;
d95f4122
MG
4998
4999 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5000 if (yielded) {
d95f4122 5001 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5002 /*
5003 * Make p's CPU reschedule; pick_next_entity takes care of
5004 * fairness.
5005 */
5006 if (preempt && rq != p_rq)
8875125e 5007 resched_curr(p_rq);
6d1cafd8 5008 }
d95f4122 5009
7b270f60 5010out_unlock:
d95f4122 5011 double_rq_unlock(rq, p_rq);
7b270f60 5012out_irq:
d95f4122
MG
5013 local_irq_restore(flags);
5014
7b270f60 5015 if (yielded > 0)
d95f4122
MG
5016 schedule();
5017
5018 return yielded;
5019}
5020EXPORT_SYMBOL_GPL(yield_to);
5021
1da177e4 5022/*
41a2d6cf 5023 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5024 * that process accounting knows that this is a task in IO wait state.
1da177e4 5025 */
1da177e4
LT
5026long __sched io_schedule_timeout(long timeout)
5027{
9cff8ade
N
5028 int old_iowait = current->in_iowait;
5029 struct rq *rq;
1da177e4
LT
5030 long ret;
5031
9cff8ade 5032 current->in_iowait = 1;
10d784ea 5033 blk_schedule_flush_plug(current);
9cff8ade 5034
0ff92245 5035 delayacct_blkio_start();
9cff8ade 5036 rq = raw_rq();
1da177e4
LT
5037 atomic_inc(&rq->nr_iowait);
5038 ret = schedule_timeout(timeout);
9cff8ade 5039 current->in_iowait = old_iowait;
1da177e4 5040 atomic_dec(&rq->nr_iowait);
0ff92245 5041 delayacct_blkio_end();
9cff8ade 5042
1da177e4
LT
5043 return ret;
5044}
9cff8ade 5045EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5046
5047/**
5048 * sys_sched_get_priority_max - return maximum RT priority.
5049 * @policy: scheduling class.
5050 *
e69f6186
YB
5051 * Return: On success, this syscall returns the maximum
5052 * rt_priority that can be used by a given scheduling class.
5053 * On failure, a negative error code is returned.
1da177e4 5054 */
5add95d4 5055SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5056{
5057 int ret = -EINVAL;
5058
5059 switch (policy) {
5060 case SCHED_FIFO:
5061 case SCHED_RR:
5062 ret = MAX_USER_RT_PRIO-1;
5063 break;
aab03e05 5064 case SCHED_DEADLINE:
1da177e4 5065 case SCHED_NORMAL:
b0a9499c 5066 case SCHED_BATCH:
dd41f596 5067 case SCHED_IDLE:
1da177e4
LT
5068 ret = 0;
5069 break;
5070 }
5071 return ret;
5072}
5073
5074/**
5075 * sys_sched_get_priority_min - return minimum RT priority.
5076 * @policy: scheduling class.
5077 *
e69f6186
YB
5078 * Return: On success, this syscall returns the minimum
5079 * rt_priority that can be used by a given scheduling class.
5080 * On failure, a negative error code is returned.
1da177e4 5081 */
5add95d4 5082SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5083{
5084 int ret = -EINVAL;
5085
5086 switch (policy) {
5087 case SCHED_FIFO:
5088 case SCHED_RR:
5089 ret = 1;
5090 break;
aab03e05 5091 case SCHED_DEADLINE:
1da177e4 5092 case SCHED_NORMAL:
b0a9499c 5093 case SCHED_BATCH:
dd41f596 5094 case SCHED_IDLE:
1da177e4
LT
5095 ret = 0;
5096 }
5097 return ret;
5098}
5099
5100/**
5101 * sys_sched_rr_get_interval - return the default timeslice of a process.
5102 * @pid: pid of the process.
5103 * @interval: userspace pointer to the timeslice value.
5104 *
5105 * this syscall writes the default timeslice value of a given process
5106 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5107 *
5108 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5109 * an error code.
1da177e4 5110 */
17da2bd9 5111SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5112 struct timespec __user *, interval)
1da177e4 5113{
36c8b586 5114 struct task_struct *p;
a4ec24b4 5115 unsigned int time_slice;
eb580751
PZ
5116 struct rq_flags rf;
5117 struct timespec t;
dba091b9 5118 struct rq *rq;
3a5c359a 5119 int retval;
1da177e4
LT
5120
5121 if (pid < 0)
3a5c359a 5122 return -EINVAL;
1da177e4
LT
5123
5124 retval = -ESRCH;
1a551ae7 5125 rcu_read_lock();
1da177e4
LT
5126 p = find_process_by_pid(pid);
5127 if (!p)
5128 goto out_unlock;
5129
5130 retval = security_task_getscheduler(p);
5131 if (retval)
5132 goto out_unlock;
5133
eb580751 5134 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5135 time_slice = 0;
5136 if (p->sched_class->get_rr_interval)
5137 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5138 task_rq_unlock(rq, p, &rf);
a4ec24b4 5139
1a551ae7 5140 rcu_read_unlock();
a4ec24b4 5141 jiffies_to_timespec(time_slice, &t);
1da177e4 5142 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5143 return retval;
3a5c359a 5144
1da177e4 5145out_unlock:
1a551ae7 5146 rcu_read_unlock();
1da177e4
LT
5147 return retval;
5148}
5149
7c731e0a 5150static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5151
82a1fcb9 5152void sched_show_task(struct task_struct *p)
1da177e4 5153{
1da177e4 5154 unsigned long free = 0;
4e79752c 5155 int ppid;
1f8a7633 5156 unsigned long state = p->state;
1da177e4 5157
1f8a7633
TH
5158 if (state)
5159 state = __ffs(state) + 1;
28d0686c 5160 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5161 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5162#if BITS_PER_LONG == 32
1da177e4 5163 if (state == TASK_RUNNING)
3df0fc5b 5164 printk(KERN_CONT " running ");
1da177e4 5165 else
3df0fc5b 5166 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5167#else
5168 if (state == TASK_RUNNING)
3df0fc5b 5169 printk(KERN_CONT " running task ");
1da177e4 5170 else
3df0fc5b 5171 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5172#endif
5173#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5174 free = stack_not_used(p);
1da177e4 5175#endif
a90e984c 5176 ppid = 0;
4e79752c 5177 rcu_read_lock();
a90e984c
ON
5178 if (pid_alive(p))
5179 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5180 rcu_read_unlock();
3df0fc5b 5181 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5182 task_pid_nr(p), ppid,
aa47b7e0 5183 (unsigned long)task_thread_info(p)->flags);
1da177e4 5184
3d1cb205 5185 print_worker_info(KERN_INFO, p);
5fb5e6de 5186 show_stack(p, NULL);
1da177e4
LT
5187}
5188
e59e2ae2 5189void show_state_filter(unsigned long state_filter)
1da177e4 5190{
36c8b586 5191 struct task_struct *g, *p;
1da177e4 5192
4bd77321 5193#if BITS_PER_LONG == 32
3df0fc5b
PZ
5194 printk(KERN_INFO
5195 " task PC stack pid father\n");
1da177e4 5196#else
3df0fc5b
PZ
5197 printk(KERN_INFO
5198 " task PC stack pid father\n");
1da177e4 5199#endif
510f5acc 5200 rcu_read_lock();
5d07f420 5201 for_each_process_thread(g, p) {
1da177e4
LT
5202 /*
5203 * reset the NMI-timeout, listing all files on a slow
25985edc 5204 * console might take a lot of time:
57675cb9
AR
5205 * Also, reset softlockup watchdogs on all CPUs, because
5206 * another CPU might be blocked waiting for us to process
5207 * an IPI.
1da177e4
LT
5208 */
5209 touch_nmi_watchdog();
57675cb9 5210 touch_all_softlockup_watchdogs();
39bc89fd 5211 if (!state_filter || (p->state & state_filter))
82a1fcb9 5212 sched_show_task(p);
5d07f420 5213 }
1da177e4 5214
dd41f596 5215#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5216 if (!state_filter)
5217 sysrq_sched_debug_show();
dd41f596 5218#endif
510f5acc 5219 rcu_read_unlock();
e59e2ae2
IM
5220 /*
5221 * Only show locks if all tasks are dumped:
5222 */
93335a21 5223 if (!state_filter)
e59e2ae2 5224 debug_show_all_locks();
1da177e4
LT
5225}
5226
0db0628d 5227void init_idle_bootup_task(struct task_struct *idle)
1df21055 5228{
dd41f596 5229 idle->sched_class = &idle_sched_class;
1df21055
IM
5230}
5231
f340c0d1
IM
5232/**
5233 * init_idle - set up an idle thread for a given CPU
5234 * @idle: task in question
5235 * @cpu: cpu the idle task belongs to
5236 *
5237 * NOTE: this function does not set the idle thread's NEED_RESCHED
5238 * flag, to make booting more robust.
5239 */
0db0628d 5240void init_idle(struct task_struct *idle, int cpu)
1da177e4 5241{
70b97a7f 5242 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5243 unsigned long flags;
5244
25834c73
PZ
5245 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5246 raw_spin_lock(&rq->lock);
5cbd54ef 5247
5e1576ed 5248 __sched_fork(0, idle);
06b83b5f 5249 idle->state = TASK_RUNNING;
dd41f596
IM
5250 idle->se.exec_start = sched_clock();
5251
e1b77c92
MR
5252 kasan_unpoison_task_stack(idle);
5253
de9b8f5d
PZ
5254#ifdef CONFIG_SMP
5255 /*
5256 * Its possible that init_idle() gets called multiple times on a task,
5257 * in that case do_set_cpus_allowed() will not do the right thing.
5258 *
5259 * And since this is boot we can forgo the serialization.
5260 */
5261 set_cpus_allowed_common(idle, cpumask_of(cpu));
5262#endif
6506cf6c
PZ
5263 /*
5264 * We're having a chicken and egg problem, even though we are
5265 * holding rq->lock, the cpu isn't yet set to this cpu so the
5266 * lockdep check in task_group() will fail.
5267 *
5268 * Similar case to sched_fork(). / Alternatively we could
5269 * use task_rq_lock() here and obtain the other rq->lock.
5270 *
5271 * Silence PROVE_RCU
5272 */
5273 rcu_read_lock();
dd41f596 5274 __set_task_cpu(idle, cpu);
6506cf6c 5275 rcu_read_unlock();
1da177e4 5276
1da177e4 5277 rq->curr = rq->idle = idle;
da0c1e65 5278 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5279#ifdef CONFIG_SMP
3ca7a440 5280 idle->on_cpu = 1;
4866cde0 5281#endif
25834c73
PZ
5282 raw_spin_unlock(&rq->lock);
5283 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5284
5285 /* Set the preempt count _outside_ the spinlocks! */
01028747 5286 init_idle_preempt_count(idle, cpu);
55cd5340 5287
dd41f596
IM
5288 /*
5289 * The idle tasks have their own, simple scheduling class:
5290 */
5291 idle->sched_class = &idle_sched_class;
868baf07 5292 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5293 vtime_init_idle(idle, cpu);
de9b8f5d 5294#ifdef CONFIG_SMP
f1c6f1a7
CE
5295 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5296#endif
19978ca6
IM
5297}
5298
f82f8042
JL
5299int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5300 const struct cpumask *trial)
5301{
5302 int ret = 1, trial_cpus;
5303 struct dl_bw *cur_dl_b;
5304 unsigned long flags;
5305
bb2bc55a
MG
5306 if (!cpumask_weight(cur))
5307 return ret;
5308
75e23e49 5309 rcu_read_lock_sched();
f82f8042
JL
5310 cur_dl_b = dl_bw_of(cpumask_any(cur));
5311 trial_cpus = cpumask_weight(trial);
5312
5313 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5314 if (cur_dl_b->bw != -1 &&
5315 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5316 ret = 0;
5317 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5318 rcu_read_unlock_sched();
f82f8042
JL
5319
5320 return ret;
5321}
5322
7f51412a
JL
5323int task_can_attach(struct task_struct *p,
5324 const struct cpumask *cs_cpus_allowed)
5325{
5326 int ret = 0;
5327
5328 /*
5329 * Kthreads which disallow setaffinity shouldn't be moved
5330 * to a new cpuset; we don't want to change their cpu
5331 * affinity and isolating such threads by their set of
5332 * allowed nodes is unnecessary. Thus, cpusets are not
5333 * applicable for such threads. This prevents checking for
5334 * success of set_cpus_allowed_ptr() on all attached tasks
5335 * before cpus_allowed may be changed.
5336 */
5337 if (p->flags & PF_NO_SETAFFINITY) {
5338 ret = -EINVAL;
5339 goto out;
5340 }
5341
5342#ifdef CONFIG_SMP
5343 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5344 cs_cpus_allowed)) {
5345 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5346 cs_cpus_allowed);
75e23e49 5347 struct dl_bw *dl_b;
7f51412a
JL
5348 bool overflow;
5349 int cpus;
5350 unsigned long flags;
5351
75e23e49
JL
5352 rcu_read_lock_sched();
5353 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5354 raw_spin_lock_irqsave(&dl_b->lock, flags);
5355 cpus = dl_bw_cpus(dest_cpu);
5356 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5357 if (overflow)
5358 ret = -EBUSY;
5359 else {
5360 /*
5361 * We reserve space for this task in the destination
5362 * root_domain, as we can't fail after this point.
5363 * We will free resources in the source root_domain
5364 * later on (see set_cpus_allowed_dl()).
5365 */
5366 __dl_add(dl_b, p->dl.dl_bw);
5367 }
5368 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5369 rcu_read_unlock_sched();
7f51412a
JL
5370
5371 }
5372#endif
5373out:
5374 return ret;
5375}
5376
1da177e4 5377#ifdef CONFIG_SMP
1da177e4 5378
e26fbffd
TG
5379static bool sched_smp_initialized __read_mostly;
5380
e6628d5b
MG
5381#ifdef CONFIG_NUMA_BALANCING
5382/* Migrate current task p to target_cpu */
5383int migrate_task_to(struct task_struct *p, int target_cpu)
5384{
5385 struct migration_arg arg = { p, target_cpu };
5386 int curr_cpu = task_cpu(p);
5387
5388 if (curr_cpu == target_cpu)
5389 return 0;
5390
5391 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5392 return -EINVAL;
5393
5394 /* TODO: This is not properly updating schedstats */
5395
286549dc 5396 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5397 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5398}
0ec8aa00
PZ
5399
5400/*
5401 * Requeue a task on a given node and accurately track the number of NUMA
5402 * tasks on the runqueues
5403 */
5404void sched_setnuma(struct task_struct *p, int nid)
5405{
da0c1e65 5406 bool queued, running;
eb580751
PZ
5407 struct rq_flags rf;
5408 struct rq *rq;
0ec8aa00 5409
eb580751 5410 rq = task_rq_lock(p, &rf);
da0c1e65 5411 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5412 running = task_current(rq, p);
5413
da0c1e65 5414 if (queued)
1de64443 5415 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5416 if (running)
f3cd1c4e 5417 put_prev_task(rq, p);
0ec8aa00
PZ
5418
5419 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5420
5421 if (running)
5422 p->sched_class->set_curr_task(rq);
da0c1e65 5423 if (queued)
1de64443 5424 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5425 task_rq_unlock(rq, p, &rf);
0ec8aa00 5426}
5cc389bc 5427#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5428
1da177e4 5429#ifdef CONFIG_HOTPLUG_CPU
054b9108 5430/*
48c5ccae
PZ
5431 * Ensures that the idle task is using init_mm right before its cpu goes
5432 * offline.
054b9108 5433 */
48c5ccae 5434void idle_task_exit(void)
1da177e4 5435{
48c5ccae 5436 struct mm_struct *mm = current->active_mm;
e76bd8d9 5437
48c5ccae 5438 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5439
a53efe5f 5440 if (mm != &init_mm) {
f98db601 5441 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5442 finish_arch_post_lock_switch();
5443 }
48c5ccae 5444 mmdrop(mm);
1da177e4
LT
5445}
5446
5447/*
5d180232
PZ
5448 * Since this CPU is going 'away' for a while, fold any nr_active delta
5449 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5450 * nr_active count is stable. We need to take the teardown thread which
5451 * is calling this into account, so we hand in adjust = 1 to the load
5452 * calculation.
5d180232
PZ
5453 *
5454 * Also see the comment "Global load-average calculations".
1da177e4 5455 */
5d180232 5456static void calc_load_migrate(struct rq *rq)
1da177e4 5457{
d60585c5 5458 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5459 if (delta)
5460 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5461}
5462
3f1d2a31
PZ
5463static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5464{
5465}
5466
5467static const struct sched_class fake_sched_class = {
5468 .put_prev_task = put_prev_task_fake,
5469};
5470
5471static struct task_struct fake_task = {
5472 /*
5473 * Avoid pull_{rt,dl}_task()
5474 */
5475 .prio = MAX_PRIO + 1,
5476 .sched_class = &fake_sched_class,
5477};
5478
48f24c4d 5479/*
48c5ccae
PZ
5480 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5481 * try_to_wake_up()->select_task_rq().
5482 *
5483 * Called with rq->lock held even though we'er in stop_machine() and
5484 * there's no concurrency possible, we hold the required locks anyway
5485 * because of lock validation efforts.
1da177e4 5486 */
5e16bbc2 5487static void migrate_tasks(struct rq *dead_rq)
1da177e4 5488{
5e16bbc2 5489 struct rq *rq = dead_rq;
48c5ccae 5490 struct task_struct *next, *stop = rq->stop;
e7904a28 5491 struct pin_cookie cookie;
48c5ccae 5492 int dest_cpu;
1da177e4
LT
5493
5494 /*
48c5ccae
PZ
5495 * Fudge the rq selection such that the below task selection loop
5496 * doesn't get stuck on the currently eligible stop task.
5497 *
5498 * We're currently inside stop_machine() and the rq is either stuck
5499 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5500 * either way we should never end up calling schedule() until we're
5501 * done here.
1da177e4 5502 */
48c5ccae 5503 rq->stop = NULL;
48f24c4d 5504
77bd3970
FW
5505 /*
5506 * put_prev_task() and pick_next_task() sched
5507 * class method both need to have an up-to-date
5508 * value of rq->clock[_task]
5509 */
5510 update_rq_clock(rq);
5511
5e16bbc2 5512 for (;;) {
48c5ccae
PZ
5513 /*
5514 * There's this thread running, bail when that's the only
5515 * remaining thread.
5516 */
5517 if (rq->nr_running == 1)
dd41f596 5518 break;
48c5ccae 5519
cbce1a68 5520 /*
5473e0cc 5521 * pick_next_task assumes pinned rq->lock.
cbce1a68 5522 */
e7904a28
PZ
5523 cookie = lockdep_pin_lock(&rq->lock);
5524 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5525 BUG_ON(!next);
79c53799 5526 next->sched_class->put_prev_task(rq, next);
e692ab53 5527
5473e0cc
WL
5528 /*
5529 * Rules for changing task_struct::cpus_allowed are holding
5530 * both pi_lock and rq->lock, such that holding either
5531 * stabilizes the mask.
5532 *
5533 * Drop rq->lock is not quite as disastrous as it usually is
5534 * because !cpu_active at this point, which means load-balance
5535 * will not interfere. Also, stop-machine.
5536 */
e7904a28 5537 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5538 raw_spin_unlock(&rq->lock);
5539 raw_spin_lock(&next->pi_lock);
5540 raw_spin_lock(&rq->lock);
5541
5542 /*
5543 * Since we're inside stop-machine, _nothing_ should have
5544 * changed the task, WARN if weird stuff happened, because in
5545 * that case the above rq->lock drop is a fail too.
5546 */
5547 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5548 raw_spin_unlock(&next->pi_lock);
5549 continue;
5550 }
5551
48c5ccae 5552 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5553 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5554
5e16bbc2
PZ
5555 rq = __migrate_task(rq, next, dest_cpu);
5556 if (rq != dead_rq) {
5557 raw_spin_unlock(&rq->lock);
5558 rq = dead_rq;
5559 raw_spin_lock(&rq->lock);
5560 }
5473e0cc 5561 raw_spin_unlock(&next->pi_lock);
1da177e4 5562 }
dce48a84 5563
48c5ccae 5564 rq->stop = stop;
dce48a84 5565}
1da177e4
LT
5566#endif /* CONFIG_HOTPLUG_CPU */
5567
1f11eb6a
GH
5568static void set_rq_online(struct rq *rq)
5569{
5570 if (!rq->online) {
5571 const struct sched_class *class;
5572
c6c4927b 5573 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5574 rq->online = 1;
5575
5576 for_each_class(class) {
5577 if (class->rq_online)
5578 class->rq_online(rq);
5579 }
5580 }
5581}
5582
5583static void set_rq_offline(struct rq *rq)
5584{
5585 if (rq->online) {
5586 const struct sched_class *class;
5587
5588 for_each_class(class) {
5589 if (class->rq_offline)
5590 class->rq_offline(rq);
5591 }
5592
c6c4927b 5593 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5594 rq->online = 0;
5595 }
5596}
5597
9cf7243d 5598static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5599{
969c7921 5600 struct rq *rq = cpu_rq(cpu);
1da177e4 5601
a803f026
CM
5602 rq->age_stamp = sched_clock_cpu(cpu);
5603}
5604
4cb98839
PZ
5605static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5606
3e9830dc 5607#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5608
d039ac60 5609static __read_mostly int sched_debug_enabled;
f6630114 5610
d039ac60 5611static int __init sched_debug_setup(char *str)
f6630114 5612{
d039ac60 5613 sched_debug_enabled = 1;
f6630114
MT
5614
5615 return 0;
5616}
d039ac60
PZ
5617early_param("sched_debug", sched_debug_setup);
5618
5619static inline bool sched_debug(void)
5620{
5621 return sched_debug_enabled;
5622}
f6630114 5623
7c16ec58 5624static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5625 struct cpumask *groupmask)
1da177e4 5626{
4dcf6aff 5627 struct sched_group *group = sd->groups;
1da177e4 5628
96f874e2 5629 cpumask_clear(groupmask);
4dcf6aff
IM
5630
5631 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5632
5633 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5634 printk("does not load-balance\n");
4dcf6aff 5635 if (sd->parent)
3df0fc5b
PZ
5636 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5637 " has parent");
4dcf6aff 5638 return -1;
41c7ce9a
NP
5639 }
5640
333470ee
TH
5641 printk(KERN_CONT "span %*pbl level %s\n",
5642 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5643
758b2cdc 5644 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5645 printk(KERN_ERR "ERROR: domain->span does not contain "
5646 "CPU%d\n", cpu);
4dcf6aff 5647 }
758b2cdc 5648 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5649 printk(KERN_ERR "ERROR: domain->groups does not contain"
5650 " CPU%d\n", cpu);
4dcf6aff 5651 }
1da177e4 5652
4dcf6aff 5653 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5654 do {
4dcf6aff 5655 if (!group) {
3df0fc5b
PZ
5656 printk("\n");
5657 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5658 break;
5659 }
5660
758b2cdc 5661 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5662 printk(KERN_CONT "\n");
5663 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5664 break;
5665 }
1da177e4 5666
cb83b629
PZ
5667 if (!(sd->flags & SD_OVERLAP) &&
5668 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5669 printk(KERN_CONT "\n");
5670 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5671 break;
5672 }
1da177e4 5673
758b2cdc 5674 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5675
333470ee
TH
5676 printk(KERN_CONT " %*pbl",
5677 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5678 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5679 printk(KERN_CONT " (cpu_capacity = %d)",
5680 group->sgc->capacity);
381512cf 5681 }
1da177e4 5682
4dcf6aff
IM
5683 group = group->next;
5684 } while (group != sd->groups);
3df0fc5b 5685 printk(KERN_CONT "\n");
1da177e4 5686
758b2cdc 5687 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5688 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5689
758b2cdc
RR
5690 if (sd->parent &&
5691 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5692 printk(KERN_ERR "ERROR: parent span is not a superset "
5693 "of domain->span\n");
4dcf6aff
IM
5694 return 0;
5695}
1da177e4 5696
4dcf6aff
IM
5697static void sched_domain_debug(struct sched_domain *sd, int cpu)
5698{
5699 int level = 0;
1da177e4 5700
d039ac60 5701 if (!sched_debug_enabled)
f6630114
MT
5702 return;
5703
4dcf6aff
IM
5704 if (!sd) {
5705 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5706 return;
5707 }
1da177e4 5708
4dcf6aff
IM
5709 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5710
5711 for (;;) {
4cb98839 5712 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5713 break;
1da177e4
LT
5714 level++;
5715 sd = sd->parent;
33859f7f 5716 if (!sd)
4dcf6aff
IM
5717 break;
5718 }
1da177e4 5719}
6d6bc0ad 5720#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5721# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5722static inline bool sched_debug(void)
5723{
5724 return false;
5725}
6d6bc0ad 5726#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5727
1a20ff27 5728static int sd_degenerate(struct sched_domain *sd)
245af2c7 5729{
758b2cdc 5730 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5731 return 1;
5732
5733 /* Following flags need at least 2 groups */
5734 if (sd->flags & (SD_LOAD_BALANCE |
5735 SD_BALANCE_NEWIDLE |
5736 SD_BALANCE_FORK |
89c4710e 5737 SD_BALANCE_EXEC |
5d4dfddd 5738 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5739 SD_SHARE_PKG_RESOURCES |
5740 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5741 if (sd->groups != sd->groups->next)
5742 return 0;
5743 }
5744
5745 /* Following flags don't use groups */
c88d5910 5746 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5747 return 0;
5748
5749 return 1;
5750}
5751
48f24c4d
IM
5752static int
5753sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5754{
5755 unsigned long cflags = sd->flags, pflags = parent->flags;
5756
5757 if (sd_degenerate(parent))
5758 return 1;
5759
758b2cdc 5760 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5761 return 0;
5762
245af2c7
SS
5763 /* Flags needing groups don't count if only 1 group in parent */
5764 if (parent->groups == parent->groups->next) {
5765 pflags &= ~(SD_LOAD_BALANCE |
5766 SD_BALANCE_NEWIDLE |
5767 SD_BALANCE_FORK |
89c4710e 5768 SD_BALANCE_EXEC |
5d4dfddd 5769 SD_SHARE_CPUCAPACITY |
10866e62 5770 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5771 SD_PREFER_SIBLING |
5772 SD_SHARE_POWERDOMAIN);
5436499e
KC
5773 if (nr_node_ids == 1)
5774 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5775 }
5776 if (~cflags & pflags)
5777 return 0;
5778
5779 return 1;
5780}
5781
dce840a0 5782static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5783{
dce840a0 5784 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5785
68e74568 5786 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5787 cpudl_cleanup(&rd->cpudl);
1baca4ce 5788 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5789 free_cpumask_var(rd->rto_mask);
5790 free_cpumask_var(rd->online);
5791 free_cpumask_var(rd->span);
5792 kfree(rd);
5793}
5794
57d885fe
GH
5795static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5796{
a0490fa3 5797 struct root_domain *old_rd = NULL;
57d885fe 5798 unsigned long flags;
57d885fe 5799
05fa785c 5800 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5801
5802 if (rq->rd) {
a0490fa3 5803 old_rd = rq->rd;
57d885fe 5804
c6c4927b 5805 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5806 set_rq_offline(rq);
57d885fe 5807
c6c4927b 5808 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5809
a0490fa3 5810 /*
0515973f 5811 * If we dont want to free the old_rd yet then
a0490fa3
IM
5812 * set old_rd to NULL to skip the freeing later
5813 * in this function:
5814 */
5815 if (!atomic_dec_and_test(&old_rd->refcount))
5816 old_rd = NULL;
57d885fe
GH
5817 }
5818
5819 atomic_inc(&rd->refcount);
5820 rq->rd = rd;
5821
c6c4927b 5822 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5823 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5824 set_rq_online(rq);
57d885fe 5825
05fa785c 5826 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5827
5828 if (old_rd)
dce840a0 5829 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5830}
5831
68c38fc3 5832static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5833{
5834 memset(rd, 0, sizeof(*rd));
5835
8295c699 5836 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5837 goto out;
8295c699 5838 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5839 goto free_span;
8295c699 5840 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5841 goto free_online;
8295c699 5842 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5843 goto free_dlo_mask;
6e0534f2 5844
332ac17e 5845 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5846 if (cpudl_init(&rd->cpudl) != 0)
5847 goto free_dlo_mask;
332ac17e 5848
68c38fc3 5849 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5850 goto free_rto_mask;
c6c4927b 5851 return 0;
6e0534f2 5852
68e74568
RR
5853free_rto_mask:
5854 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5855free_dlo_mask:
5856 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5857free_online:
5858 free_cpumask_var(rd->online);
5859free_span:
5860 free_cpumask_var(rd->span);
0c910d28 5861out:
c6c4927b 5862 return -ENOMEM;
57d885fe
GH
5863}
5864
029632fb
PZ
5865/*
5866 * By default the system creates a single root-domain with all cpus as
5867 * members (mimicking the global state we have today).
5868 */
5869struct root_domain def_root_domain;
5870
57d885fe
GH
5871static void init_defrootdomain(void)
5872{
68c38fc3 5873 init_rootdomain(&def_root_domain);
c6c4927b 5874
57d885fe
GH
5875 atomic_set(&def_root_domain.refcount, 1);
5876}
5877
dc938520 5878static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5879{
5880 struct root_domain *rd;
5881
5882 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5883 if (!rd)
5884 return NULL;
5885
68c38fc3 5886 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5887 kfree(rd);
5888 return NULL;
5889 }
57d885fe
GH
5890
5891 return rd;
5892}
5893
63b2ca30 5894static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5895{
5896 struct sched_group *tmp, *first;
5897
5898 if (!sg)
5899 return;
5900
5901 first = sg;
5902 do {
5903 tmp = sg->next;
5904
63b2ca30
NP
5905 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5906 kfree(sg->sgc);
e3589f6c
PZ
5907
5908 kfree(sg);
5909 sg = tmp;
5910 } while (sg != first);
5911}
5912
dce840a0
PZ
5913static void free_sched_domain(struct rcu_head *rcu)
5914{
5915 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5916
5917 /*
5918 * If its an overlapping domain it has private groups, iterate and
5919 * nuke them all.
5920 */
5921 if (sd->flags & SD_OVERLAP) {
5922 free_sched_groups(sd->groups, 1);
5923 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5924 kfree(sd->groups->sgc);
dce840a0 5925 kfree(sd->groups);
9c3f75cb 5926 }
dce840a0
PZ
5927 kfree(sd);
5928}
5929
5930static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5931{
5932 call_rcu(&sd->rcu, free_sched_domain);
5933}
5934
5935static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5936{
5937 for (; sd; sd = sd->parent)
5938 destroy_sched_domain(sd, cpu);
5939}
5940
518cd623
PZ
5941/*
5942 * Keep a special pointer to the highest sched_domain that has
5943 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5944 * allows us to avoid some pointer chasing select_idle_sibling().
5945 *
5946 * Also keep a unique ID per domain (we use the first cpu number in
5947 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5948 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5949 */
5950DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5951DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5952DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5953DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5954DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5955DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5956
5957static void update_top_cache_domain(int cpu)
5958{
5959 struct sched_domain *sd;
5d4cf996 5960 struct sched_domain *busy_sd = NULL;
518cd623 5961 int id = cpu;
7d9ffa89 5962 int size = 1;
518cd623
PZ
5963
5964 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5965 if (sd) {
518cd623 5966 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5967 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5968 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5969 }
5d4cf996 5970 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5971
5972 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5973 per_cpu(sd_llc_size, cpu) = size;
518cd623 5974 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5975
5976 sd = lowest_flag_domain(cpu, SD_NUMA);
5977 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5978
5979 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5980 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5981}
5982
1da177e4 5983/*
0eab9146 5984 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5985 * hold the hotplug lock.
5986 */
0eab9146
IM
5987static void
5988cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5989{
70b97a7f 5990 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5991 struct sched_domain *tmp;
5992
5993 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5994 for (tmp = sd; tmp; ) {
245af2c7
SS
5995 struct sched_domain *parent = tmp->parent;
5996 if (!parent)
5997 break;
f29c9b1c 5998
1a848870 5999 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6000 tmp->parent = parent->parent;
1a848870
SS
6001 if (parent->parent)
6002 parent->parent->child = tmp;
10866e62
PZ
6003 /*
6004 * Transfer SD_PREFER_SIBLING down in case of a
6005 * degenerate parent; the spans match for this
6006 * so the property transfers.
6007 */
6008 if (parent->flags & SD_PREFER_SIBLING)
6009 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 6010 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6011 } else
6012 tmp = tmp->parent;
245af2c7
SS
6013 }
6014
1a848870 6015 if (sd && sd_degenerate(sd)) {
dce840a0 6016 tmp = sd;
245af2c7 6017 sd = sd->parent;
dce840a0 6018 destroy_sched_domain(tmp, cpu);
1a848870
SS
6019 if (sd)
6020 sd->child = NULL;
6021 }
1da177e4 6022
4cb98839 6023 sched_domain_debug(sd, cpu);
1da177e4 6024
57d885fe 6025 rq_attach_root(rq, rd);
dce840a0 6026 tmp = rq->sd;
674311d5 6027 rcu_assign_pointer(rq->sd, sd);
dce840a0 6028 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6029
6030 update_top_cache_domain(cpu);
1da177e4
LT
6031}
6032
1da177e4
LT
6033/* Setup the mask of cpus configured for isolated domains */
6034static int __init isolated_cpu_setup(char *str)
6035{
a6e4491c
PB
6036 int ret;
6037
bdddd296 6038 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6039 ret = cpulist_parse(str, cpu_isolated_map);
6040 if (ret) {
6041 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6042 return 0;
6043 }
1da177e4
LT
6044 return 1;
6045}
8927f494 6046__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6047
49a02c51 6048struct s_data {
21d42ccf 6049 struct sched_domain ** __percpu sd;
49a02c51
AH
6050 struct root_domain *rd;
6051};
6052
2109b99e 6053enum s_alloc {
2109b99e 6054 sa_rootdomain,
21d42ccf 6055 sa_sd,
dce840a0 6056 sa_sd_storage,
2109b99e
AH
6057 sa_none,
6058};
6059
c1174876
PZ
6060/*
6061 * Build an iteration mask that can exclude certain CPUs from the upwards
6062 * domain traversal.
6063 *
6064 * Asymmetric node setups can result in situations where the domain tree is of
6065 * unequal depth, make sure to skip domains that already cover the entire
6066 * range.
6067 *
6068 * In that case build_sched_domains() will have terminated the iteration early
6069 * and our sibling sd spans will be empty. Domains should always include the
6070 * cpu they're built on, so check that.
6071 *
6072 */
6073static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6074{
6075 const struct cpumask *span = sched_domain_span(sd);
6076 struct sd_data *sdd = sd->private;
6077 struct sched_domain *sibling;
6078 int i;
6079
6080 for_each_cpu(i, span) {
6081 sibling = *per_cpu_ptr(sdd->sd, i);
6082 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6083 continue;
6084
6085 cpumask_set_cpu(i, sched_group_mask(sg));
6086 }
6087}
6088
6089/*
6090 * Return the canonical balance cpu for this group, this is the first cpu
6091 * of this group that's also in the iteration mask.
6092 */
6093int group_balance_cpu(struct sched_group *sg)
6094{
6095 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6096}
6097
e3589f6c
PZ
6098static int
6099build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6100{
6101 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6102 const struct cpumask *span = sched_domain_span(sd);
6103 struct cpumask *covered = sched_domains_tmpmask;
6104 struct sd_data *sdd = sd->private;
aaecac4a 6105 struct sched_domain *sibling;
e3589f6c
PZ
6106 int i;
6107
6108 cpumask_clear(covered);
6109
6110 for_each_cpu(i, span) {
6111 struct cpumask *sg_span;
6112
6113 if (cpumask_test_cpu(i, covered))
6114 continue;
6115
aaecac4a 6116 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6117
6118 /* See the comment near build_group_mask(). */
aaecac4a 6119 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6120 continue;
6121
e3589f6c 6122 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6123 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6124
6125 if (!sg)
6126 goto fail;
6127
6128 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6129 if (sibling->child)
6130 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6131 else
e3589f6c
PZ
6132 cpumask_set_cpu(i, sg_span);
6133
6134 cpumask_or(covered, covered, sg_span);
6135
63b2ca30
NP
6136 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6137 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6138 build_group_mask(sd, sg);
6139
c3decf0d 6140 /*
63b2ca30 6141 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6142 * domains and no possible iteration will get us here, we won't
6143 * die on a /0 trap.
6144 */
ca8ce3d0 6145 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6146
c1174876
PZ
6147 /*
6148 * Make sure the first group of this domain contains the
6149 * canonical balance cpu. Otherwise the sched_domain iteration
6150 * breaks. See update_sg_lb_stats().
6151 */
74a5ce20 6152 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6153 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6154 groups = sg;
6155
6156 if (!first)
6157 first = sg;
6158 if (last)
6159 last->next = sg;
6160 last = sg;
6161 last->next = first;
6162 }
6163 sd->groups = groups;
6164
6165 return 0;
6166
6167fail:
6168 free_sched_groups(first, 0);
6169
6170 return -ENOMEM;
6171}
6172
dce840a0 6173static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6174{
dce840a0
PZ
6175 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6176 struct sched_domain *child = sd->child;
1da177e4 6177
dce840a0
PZ
6178 if (child)
6179 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6180
9c3f75cb 6181 if (sg) {
dce840a0 6182 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6183 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6184 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6185 }
dce840a0
PZ
6186
6187 return cpu;
1e9f28fa 6188}
1e9f28fa 6189
01a08546 6190/*
dce840a0
PZ
6191 * build_sched_groups will build a circular linked list of the groups
6192 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6193 * and ->cpu_capacity to 0.
e3589f6c
PZ
6194 *
6195 * Assumes the sched_domain tree is fully constructed
01a08546 6196 */
e3589f6c
PZ
6197static int
6198build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6199{
dce840a0
PZ
6200 struct sched_group *first = NULL, *last = NULL;
6201 struct sd_data *sdd = sd->private;
6202 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6203 struct cpumask *covered;
dce840a0 6204 int i;
9c1cfda2 6205
e3589f6c
PZ
6206 get_group(cpu, sdd, &sd->groups);
6207 atomic_inc(&sd->groups->ref);
6208
0936629f 6209 if (cpu != cpumask_first(span))
e3589f6c
PZ
6210 return 0;
6211
f96225fd
PZ
6212 lockdep_assert_held(&sched_domains_mutex);
6213 covered = sched_domains_tmpmask;
6214
dce840a0 6215 cpumask_clear(covered);
6711cab4 6216
dce840a0
PZ
6217 for_each_cpu(i, span) {
6218 struct sched_group *sg;
cd08e923 6219 int group, j;
6711cab4 6220
dce840a0
PZ
6221 if (cpumask_test_cpu(i, covered))
6222 continue;
6711cab4 6223
cd08e923 6224 group = get_group(i, sdd, &sg);
c1174876 6225 cpumask_setall(sched_group_mask(sg));
0601a88d 6226
dce840a0
PZ
6227 for_each_cpu(j, span) {
6228 if (get_group(j, sdd, NULL) != group)
6229 continue;
0601a88d 6230
dce840a0
PZ
6231 cpumask_set_cpu(j, covered);
6232 cpumask_set_cpu(j, sched_group_cpus(sg));
6233 }
0601a88d 6234
dce840a0
PZ
6235 if (!first)
6236 first = sg;
6237 if (last)
6238 last->next = sg;
6239 last = sg;
6240 }
6241 last->next = first;
e3589f6c
PZ
6242
6243 return 0;
0601a88d 6244}
51888ca2 6245
89c4710e 6246/*
63b2ca30 6247 * Initialize sched groups cpu_capacity.
89c4710e 6248 *
63b2ca30 6249 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6250 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6251 * Typically cpu_capacity for all the groups in a sched domain will be same
6252 * unless there are asymmetries in the topology. If there are asymmetries,
6253 * group having more cpu_capacity will pickup more load compared to the
6254 * group having less cpu_capacity.
89c4710e 6255 */
63b2ca30 6256static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6257{
e3589f6c 6258 struct sched_group *sg = sd->groups;
89c4710e 6259
94c95ba6 6260 WARN_ON(!sg);
e3589f6c
PZ
6261
6262 do {
6263 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6264 sg = sg->next;
6265 } while (sg != sd->groups);
89c4710e 6266
c1174876 6267 if (cpu != group_balance_cpu(sg))
e3589f6c 6268 return;
aae6d3dd 6269
63b2ca30
NP
6270 update_group_capacity(sd, cpu);
6271 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6272}
6273
7c16ec58
MT
6274/*
6275 * Initializers for schedule domains
6276 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6277 */
6278
1d3504fc 6279static int default_relax_domain_level = -1;
60495e77 6280int sched_domain_level_max;
1d3504fc
HS
6281
6282static int __init setup_relax_domain_level(char *str)
6283{
a841f8ce
DS
6284 if (kstrtoint(str, 0, &default_relax_domain_level))
6285 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6286
1d3504fc
HS
6287 return 1;
6288}
6289__setup("relax_domain_level=", setup_relax_domain_level);
6290
6291static void set_domain_attribute(struct sched_domain *sd,
6292 struct sched_domain_attr *attr)
6293{
6294 int request;
6295
6296 if (!attr || attr->relax_domain_level < 0) {
6297 if (default_relax_domain_level < 0)
6298 return;
6299 else
6300 request = default_relax_domain_level;
6301 } else
6302 request = attr->relax_domain_level;
6303 if (request < sd->level) {
6304 /* turn off idle balance on this domain */
c88d5910 6305 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6306 } else {
6307 /* turn on idle balance on this domain */
c88d5910 6308 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6309 }
6310}
6311
54ab4ff4
PZ
6312static void __sdt_free(const struct cpumask *cpu_map);
6313static int __sdt_alloc(const struct cpumask *cpu_map);
6314
2109b99e
AH
6315static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6316 const struct cpumask *cpu_map)
6317{
6318 switch (what) {
2109b99e 6319 case sa_rootdomain:
822ff793
PZ
6320 if (!atomic_read(&d->rd->refcount))
6321 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6322 case sa_sd:
6323 free_percpu(d->sd); /* fall through */
dce840a0 6324 case sa_sd_storage:
54ab4ff4 6325 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6326 case sa_none:
6327 break;
6328 }
6329}
3404c8d9 6330
2109b99e
AH
6331static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6332 const struct cpumask *cpu_map)
6333{
dce840a0
PZ
6334 memset(d, 0, sizeof(*d));
6335
54ab4ff4
PZ
6336 if (__sdt_alloc(cpu_map))
6337 return sa_sd_storage;
dce840a0
PZ
6338 d->sd = alloc_percpu(struct sched_domain *);
6339 if (!d->sd)
6340 return sa_sd_storage;
2109b99e 6341 d->rd = alloc_rootdomain();
dce840a0 6342 if (!d->rd)
21d42ccf 6343 return sa_sd;
2109b99e
AH
6344 return sa_rootdomain;
6345}
57d885fe 6346
dce840a0
PZ
6347/*
6348 * NULL the sd_data elements we've used to build the sched_domain and
6349 * sched_group structure so that the subsequent __free_domain_allocs()
6350 * will not free the data we're using.
6351 */
6352static void claim_allocations(int cpu, struct sched_domain *sd)
6353{
6354 struct sd_data *sdd = sd->private;
dce840a0
PZ
6355
6356 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6357 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6358
e3589f6c 6359 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6360 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6361
63b2ca30
NP
6362 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6363 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6364}
6365
cb83b629 6366#ifdef CONFIG_NUMA
cb83b629 6367static int sched_domains_numa_levels;
e3fe70b1 6368enum numa_topology_type sched_numa_topology_type;
cb83b629 6369static int *sched_domains_numa_distance;
9942f79b 6370int sched_max_numa_distance;
cb83b629
PZ
6371static struct cpumask ***sched_domains_numa_masks;
6372static int sched_domains_curr_level;
143e1e28 6373#endif
cb83b629 6374
143e1e28
VG
6375/*
6376 * SD_flags allowed in topology descriptions.
6377 *
5d4dfddd 6378 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6379 * SD_SHARE_PKG_RESOURCES - describes shared caches
6380 * SD_NUMA - describes NUMA topologies
d77b3ed5 6381 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6382 *
6383 * Odd one out:
6384 * SD_ASYM_PACKING - describes SMT quirks
6385 */
6386#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6387 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6388 SD_SHARE_PKG_RESOURCES | \
6389 SD_NUMA | \
d77b3ed5
VG
6390 SD_ASYM_PACKING | \
6391 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6392
6393static struct sched_domain *
143e1e28 6394sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6395{
6396 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6397 int sd_weight, sd_flags = 0;
6398
6399#ifdef CONFIG_NUMA
6400 /*
6401 * Ugly hack to pass state to sd_numa_mask()...
6402 */
6403 sched_domains_curr_level = tl->numa_level;
6404#endif
6405
6406 sd_weight = cpumask_weight(tl->mask(cpu));
6407
6408 if (tl->sd_flags)
6409 sd_flags = (*tl->sd_flags)();
6410 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6411 "wrong sd_flags in topology description\n"))
6412 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6413
6414 *sd = (struct sched_domain){
6415 .min_interval = sd_weight,
6416 .max_interval = 2*sd_weight,
6417 .busy_factor = 32,
870a0bb5 6418 .imbalance_pct = 125,
143e1e28
VG
6419
6420 .cache_nice_tries = 0,
6421 .busy_idx = 0,
6422 .idle_idx = 0,
cb83b629
PZ
6423 .newidle_idx = 0,
6424 .wake_idx = 0,
6425 .forkexec_idx = 0,
6426
6427 .flags = 1*SD_LOAD_BALANCE
6428 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6429 | 1*SD_BALANCE_EXEC
6430 | 1*SD_BALANCE_FORK
cb83b629 6431 | 0*SD_BALANCE_WAKE
143e1e28 6432 | 1*SD_WAKE_AFFINE
5d4dfddd 6433 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6434 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6435 | 0*SD_SERIALIZE
cb83b629 6436 | 0*SD_PREFER_SIBLING
143e1e28
VG
6437 | 0*SD_NUMA
6438 | sd_flags
cb83b629 6439 ,
143e1e28 6440
cb83b629
PZ
6441 .last_balance = jiffies,
6442 .balance_interval = sd_weight,
143e1e28 6443 .smt_gain = 0,
2b4cfe64
JL
6444 .max_newidle_lb_cost = 0,
6445 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6446#ifdef CONFIG_SCHED_DEBUG
6447 .name = tl->name,
6448#endif
cb83b629 6449 };
cb83b629
PZ
6450
6451 /*
143e1e28 6452 * Convert topological properties into behaviour.
cb83b629 6453 */
143e1e28 6454
5d4dfddd 6455 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6456 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6457 sd->imbalance_pct = 110;
6458 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6459
6460 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6461 sd->imbalance_pct = 117;
6462 sd->cache_nice_tries = 1;
6463 sd->busy_idx = 2;
6464
6465#ifdef CONFIG_NUMA
6466 } else if (sd->flags & SD_NUMA) {
6467 sd->cache_nice_tries = 2;
6468 sd->busy_idx = 3;
6469 sd->idle_idx = 2;
6470
6471 sd->flags |= SD_SERIALIZE;
6472 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6473 sd->flags &= ~(SD_BALANCE_EXEC |
6474 SD_BALANCE_FORK |
6475 SD_WAKE_AFFINE);
6476 }
6477
6478#endif
6479 } else {
6480 sd->flags |= SD_PREFER_SIBLING;
6481 sd->cache_nice_tries = 1;
6482 sd->busy_idx = 2;
6483 sd->idle_idx = 1;
6484 }
6485
6486 sd->private = &tl->data;
cb83b629
PZ
6487
6488 return sd;
6489}
6490
143e1e28
VG
6491/*
6492 * Topology list, bottom-up.
6493 */
6494static struct sched_domain_topology_level default_topology[] = {
6495#ifdef CONFIG_SCHED_SMT
6496 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6497#endif
6498#ifdef CONFIG_SCHED_MC
6499 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6500#endif
6501 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6502 { NULL, },
6503};
6504
c6e1e7b5
JG
6505static struct sched_domain_topology_level *sched_domain_topology =
6506 default_topology;
143e1e28
VG
6507
6508#define for_each_sd_topology(tl) \
6509 for (tl = sched_domain_topology; tl->mask; tl++)
6510
6511void set_sched_topology(struct sched_domain_topology_level *tl)
6512{
6513 sched_domain_topology = tl;
6514}
6515
6516#ifdef CONFIG_NUMA
6517
cb83b629
PZ
6518static const struct cpumask *sd_numa_mask(int cpu)
6519{
6520 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6521}
6522
d039ac60
PZ
6523static void sched_numa_warn(const char *str)
6524{
6525 static int done = false;
6526 int i,j;
6527
6528 if (done)
6529 return;
6530
6531 done = true;
6532
6533 printk(KERN_WARNING "ERROR: %s\n\n", str);
6534
6535 for (i = 0; i < nr_node_ids; i++) {
6536 printk(KERN_WARNING " ");
6537 for (j = 0; j < nr_node_ids; j++)
6538 printk(KERN_CONT "%02d ", node_distance(i,j));
6539 printk(KERN_CONT "\n");
6540 }
6541 printk(KERN_WARNING "\n");
6542}
6543
9942f79b 6544bool find_numa_distance(int distance)
d039ac60
PZ
6545{
6546 int i;
6547
6548 if (distance == node_distance(0, 0))
6549 return true;
6550
6551 for (i = 0; i < sched_domains_numa_levels; i++) {
6552 if (sched_domains_numa_distance[i] == distance)
6553 return true;
6554 }
6555
6556 return false;
6557}
6558
e3fe70b1
RR
6559/*
6560 * A system can have three types of NUMA topology:
6561 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6562 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6563 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6564 *
6565 * The difference between a glueless mesh topology and a backplane
6566 * topology lies in whether communication between not directly
6567 * connected nodes goes through intermediary nodes (where programs
6568 * could run), or through backplane controllers. This affects
6569 * placement of programs.
6570 *
6571 * The type of topology can be discerned with the following tests:
6572 * - If the maximum distance between any nodes is 1 hop, the system
6573 * is directly connected.
6574 * - If for two nodes A and B, located N > 1 hops away from each other,
6575 * there is an intermediary node C, which is < N hops away from both
6576 * nodes A and B, the system is a glueless mesh.
6577 */
6578static void init_numa_topology_type(void)
6579{
6580 int a, b, c, n;
6581
6582 n = sched_max_numa_distance;
6583
e237882b 6584 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6585 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6586 return;
6587 }
e3fe70b1
RR
6588
6589 for_each_online_node(a) {
6590 for_each_online_node(b) {
6591 /* Find two nodes furthest removed from each other. */
6592 if (node_distance(a, b) < n)
6593 continue;
6594
6595 /* Is there an intermediary node between a and b? */
6596 for_each_online_node(c) {
6597 if (node_distance(a, c) < n &&
6598 node_distance(b, c) < n) {
6599 sched_numa_topology_type =
6600 NUMA_GLUELESS_MESH;
6601 return;
6602 }
6603 }
6604
6605 sched_numa_topology_type = NUMA_BACKPLANE;
6606 return;
6607 }
6608 }
6609}
6610
cb83b629
PZ
6611static void sched_init_numa(void)
6612{
6613 int next_distance, curr_distance = node_distance(0, 0);
6614 struct sched_domain_topology_level *tl;
6615 int level = 0;
6616 int i, j, k;
6617
cb83b629
PZ
6618 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6619 if (!sched_domains_numa_distance)
6620 return;
6621
6622 /*
6623 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6624 * unique distances in the node_distance() table.
6625 *
6626 * Assumes node_distance(0,j) includes all distances in
6627 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6628 */
6629 next_distance = curr_distance;
6630 for (i = 0; i < nr_node_ids; i++) {
6631 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6632 for (k = 0; k < nr_node_ids; k++) {
6633 int distance = node_distance(i, k);
6634
6635 if (distance > curr_distance &&
6636 (distance < next_distance ||
6637 next_distance == curr_distance))
6638 next_distance = distance;
6639
6640 /*
6641 * While not a strong assumption it would be nice to know
6642 * about cases where if node A is connected to B, B is not
6643 * equally connected to A.
6644 */
6645 if (sched_debug() && node_distance(k, i) != distance)
6646 sched_numa_warn("Node-distance not symmetric");
6647
6648 if (sched_debug() && i && !find_numa_distance(distance))
6649 sched_numa_warn("Node-0 not representative");
6650 }
6651 if (next_distance != curr_distance) {
6652 sched_domains_numa_distance[level++] = next_distance;
6653 sched_domains_numa_levels = level;
6654 curr_distance = next_distance;
6655 } else break;
cb83b629 6656 }
d039ac60
PZ
6657
6658 /*
6659 * In case of sched_debug() we verify the above assumption.
6660 */
6661 if (!sched_debug())
6662 break;
cb83b629 6663 }
c123588b
AR
6664
6665 if (!level)
6666 return;
6667
cb83b629
PZ
6668 /*
6669 * 'level' contains the number of unique distances, excluding the
6670 * identity distance node_distance(i,i).
6671 *
28b4a521 6672 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6673 * numbers.
6674 */
6675
5f7865f3
TC
6676 /*
6677 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6678 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6679 * the array will contain less then 'level' members. This could be
6680 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6681 * in other functions.
6682 *
6683 * We reset it to 'level' at the end of this function.
6684 */
6685 sched_domains_numa_levels = 0;
6686
cb83b629
PZ
6687 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6688 if (!sched_domains_numa_masks)
6689 return;
6690
6691 /*
6692 * Now for each level, construct a mask per node which contains all
6693 * cpus of nodes that are that many hops away from us.
6694 */
6695 for (i = 0; i < level; i++) {
6696 sched_domains_numa_masks[i] =
6697 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6698 if (!sched_domains_numa_masks[i])
6699 return;
6700
6701 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6702 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6703 if (!mask)
6704 return;
6705
6706 sched_domains_numa_masks[i][j] = mask;
6707
9c03ee14 6708 for_each_node(k) {
dd7d8634 6709 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6710 continue;
6711
6712 cpumask_or(mask, mask, cpumask_of_node(k));
6713 }
6714 }
6715 }
6716
143e1e28
VG
6717 /* Compute default topology size */
6718 for (i = 0; sched_domain_topology[i].mask; i++);
6719
c515db8c 6720 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6721 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6722 if (!tl)
6723 return;
6724
6725 /*
6726 * Copy the default topology bits..
6727 */
143e1e28
VG
6728 for (i = 0; sched_domain_topology[i].mask; i++)
6729 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6730
6731 /*
6732 * .. and append 'j' levels of NUMA goodness.
6733 */
6734 for (j = 0; j < level; i++, j++) {
6735 tl[i] = (struct sched_domain_topology_level){
cb83b629 6736 .mask = sd_numa_mask,
143e1e28 6737 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6738 .flags = SDTL_OVERLAP,
6739 .numa_level = j,
143e1e28 6740 SD_INIT_NAME(NUMA)
cb83b629
PZ
6741 };
6742 }
6743
6744 sched_domain_topology = tl;
5f7865f3
TC
6745
6746 sched_domains_numa_levels = level;
9942f79b 6747 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6748
6749 init_numa_topology_type();
cb83b629 6750}
301a5cba 6751
135fb3e1 6752static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6753{
301a5cba 6754 int node = cpu_to_node(cpu);
135fb3e1 6755 int i, j;
301a5cba
TC
6756
6757 for (i = 0; i < sched_domains_numa_levels; i++) {
6758 for (j = 0; j < nr_node_ids; j++) {
6759 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6760 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6761 }
6762 }
6763}
6764
135fb3e1 6765static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6766{
6767 int i, j;
135fb3e1 6768
301a5cba
TC
6769 for (i = 0; i < sched_domains_numa_levels; i++) {
6770 for (j = 0; j < nr_node_ids; j++)
6771 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6772 }
6773}
6774
cb83b629 6775#else
135fb3e1
TG
6776static inline void sched_init_numa(void) { }
6777static void sched_domains_numa_masks_set(unsigned int cpu) { }
6778static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6779#endif /* CONFIG_NUMA */
6780
54ab4ff4
PZ
6781static int __sdt_alloc(const struct cpumask *cpu_map)
6782{
6783 struct sched_domain_topology_level *tl;
6784 int j;
6785
27723a68 6786 for_each_sd_topology(tl) {
54ab4ff4
PZ
6787 struct sd_data *sdd = &tl->data;
6788
6789 sdd->sd = alloc_percpu(struct sched_domain *);
6790 if (!sdd->sd)
6791 return -ENOMEM;
6792
6793 sdd->sg = alloc_percpu(struct sched_group *);
6794 if (!sdd->sg)
6795 return -ENOMEM;
6796
63b2ca30
NP
6797 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6798 if (!sdd->sgc)
9c3f75cb
PZ
6799 return -ENOMEM;
6800
54ab4ff4
PZ
6801 for_each_cpu(j, cpu_map) {
6802 struct sched_domain *sd;
6803 struct sched_group *sg;
63b2ca30 6804 struct sched_group_capacity *sgc;
54ab4ff4 6805
5cc389bc 6806 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6807 GFP_KERNEL, cpu_to_node(j));
6808 if (!sd)
6809 return -ENOMEM;
6810
6811 *per_cpu_ptr(sdd->sd, j) = sd;
6812
6813 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6814 GFP_KERNEL, cpu_to_node(j));
6815 if (!sg)
6816 return -ENOMEM;
6817
30b4e9eb
IM
6818 sg->next = sg;
6819
54ab4ff4 6820 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6821
63b2ca30 6822 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6823 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6824 if (!sgc)
9c3f75cb
PZ
6825 return -ENOMEM;
6826
63b2ca30 6827 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6828 }
6829 }
6830
6831 return 0;
6832}
6833
6834static void __sdt_free(const struct cpumask *cpu_map)
6835{
6836 struct sched_domain_topology_level *tl;
6837 int j;
6838
27723a68 6839 for_each_sd_topology(tl) {
54ab4ff4
PZ
6840 struct sd_data *sdd = &tl->data;
6841
6842 for_each_cpu(j, cpu_map) {
fb2cf2c6 6843 struct sched_domain *sd;
6844
6845 if (sdd->sd) {
6846 sd = *per_cpu_ptr(sdd->sd, j);
6847 if (sd && (sd->flags & SD_OVERLAP))
6848 free_sched_groups(sd->groups, 0);
6849 kfree(*per_cpu_ptr(sdd->sd, j));
6850 }
6851
6852 if (sdd->sg)
6853 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6854 if (sdd->sgc)
6855 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6856 }
6857 free_percpu(sdd->sd);
fb2cf2c6 6858 sdd->sd = NULL;
54ab4ff4 6859 free_percpu(sdd->sg);
fb2cf2c6 6860 sdd->sg = NULL;
63b2ca30
NP
6861 free_percpu(sdd->sgc);
6862 sdd->sgc = NULL;
54ab4ff4
PZ
6863 }
6864}
6865
2c402dc3 6866struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6867 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6868 struct sched_domain *child, int cpu)
2c402dc3 6869{
143e1e28 6870 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6871 if (!sd)
d069b916 6872 return child;
2c402dc3 6873
2c402dc3 6874 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6875 if (child) {
6876 sd->level = child->level + 1;
6877 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6878 child->parent = sd;
c75e0128 6879 sd->child = child;
6ae72dff
PZ
6880
6881 if (!cpumask_subset(sched_domain_span(child),
6882 sched_domain_span(sd))) {
6883 pr_err("BUG: arch topology borken\n");
6884#ifdef CONFIG_SCHED_DEBUG
6885 pr_err(" the %s domain not a subset of the %s domain\n",
6886 child->name, sd->name);
6887#endif
6888 /* Fixup, ensure @sd has at least @child cpus. */
6889 cpumask_or(sched_domain_span(sd),
6890 sched_domain_span(sd),
6891 sched_domain_span(child));
6892 }
6893
60495e77 6894 }
a841f8ce 6895 set_domain_attribute(sd, attr);
2c402dc3
PZ
6896
6897 return sd;
6898}
6899
2109b99e
AH
6900/*
6901 * Build sched domains for a given set of cpus and attach the sched domains
6902 * to the individual cpus
6903 */
dce840a0
PZ
6904static int build_sched_domains(const struct cpumask *cpu_map,
6905 struct sched_domain_attr *attr)
2109b99e 6906{
1c632169 6907 enum s_alloc alloc_state;
dce840a0 6908 struct sched_domain *sd;
2109b99e 6909 struct s_data d;
822ff793 6910 int i, ret = -ENOMEM;
9c1cfda2 6911
2109b99e
AH
6912 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6913 if (alloc_state != sa_rootdomain)
6914 goto error;
9c1cfda2 6915
dce840a0 6916 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6917 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6918 struct sched_domain_topology_level *tl;
6919
3bd65a80 6920 sd = NULL;
27723a68 6921 for_each_sd_topology(tl) {
4a850cbe 6922 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6923 if (tl == sched_domain_topology)
6924 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6925 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6926 sd->flags |= SD_OVERLAP;
d110235d
PZ
6927 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6928 break;
e3589f6c 6929 }
dce840a0
PZ
6930 }
6931
6932 /* Build the groups for the domains */
6933 for_each_cpu(i, cpu_map) {
6934 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6935 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6936 if (sd->flags & SD_OVERLAP) {
6937 if (build_overlap_sched_groups(sd, i))
6938 goto error;
6939 } else {
6940 if (build_sched_groups(sd, i))
6941 goto error;
6942 }
1cf51902 6943 }
a06dadbe 6944 }
9c1cfda2 6945
ced549fa 6946 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6947 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6948 if (!cpumask_test_cpu(i, cpu_map))
6949 continue;
9c1cfda2 6950
dce840a0
PZ
6951 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6952 claim_allocations(i, sd);
63b2ca30 6953 init_sched_groups_capacity(i, sd);
dce840a0 6954 }
f712c0c7 6955 }
9c1cfda2 6956
1da177e4 6957 /* Attach the domains */
dce840a0 6958 rcu_read_lock();
abcd083a 6959 for_each_cpu(i, cpu_map) {
21d42ccf 6960 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6961 cpu_attach_domain(sd, d.rd, i);
1da177e4 6962 }
dce840a0 6963 rcu_read_unlock();
51888ca2 6964
822ff793 6965 ret = 0;
51888ca2 6966error:
2109b99e 6967 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6968 return ret;
1da177e4 6969}
029190c5 6970
acc3f5d7 6971static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6972static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6973static struct sched_domain_attr *dattr_cur;
6974 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6975
6976/*
6977 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6978 * cpumask) fails, then fallback to a single sched domain,
6979 * as determined by the single cpumask fallback_doms.
029190c5 6980 */
4212823f 6981static cpumask_var_t fallback_doms;
029190c5 6982
ee79d1bd
HC
6983/*
6984 * arch_update_cpu_topology lets virtualized architectures update the
6985 * cpu core maps. It is supposed to return 1 if the topology changed
6986 * or 0 if it stayed the same.
6987 */
52f5684c 6988int __weak arch_update_cpu_topology(void)
22e52b07 6989{
ee79d1bd 6990 return 0;
22e52b07
HC
6991}
6992
acc3f5d7
RR
6993cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6994{
6995 int i;
6996 cpumask_var_t *doms;
6997
6998 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6999 if (!doms)
7000 return NULL;
7001 for (i = 0; i < ndoms; i++) {
7002 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7003 free_sched_domains(doms, i);
7004 return NULL;
7005 }
7006 }
7007 return doms;
7008}
7009
7010void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7011{
7012 unsigned int i;
7013 for (i = 0; i < ndoms; i++)
7014 free_cpumask_var(doms[i]);
7015 kfree(doms);
7016}
7017
1a20ff27 7018/*
41a2d6cf 7019 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7020 * For now this just excludes isolated cpus, but could be used to
7021 * exclude other special cases in the future.
1a20ff27 7022 */
c4a8849a 7023static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7024{
7378547f
MM
7025 int err;
7026
22e52b07 7027 arch_update_cpu_topology();
029190c5 7028 ndoms_cur = 1;
acc3f5d7 7029 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7030 if (!doms_cur)
acc3f5d7
RR
7031 doms_cur = &fallback_doms;
7032 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7033 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7034 register_sched_domain_sysctl();
7378547f
MM
7035
7036 return err;
1a20ff27
DG
7037}
7038
1a20ff27
DG
7039/*
7040 * Detach sched domains from a group of cpus specified in cpu_map
7041 * These cpus will now be attached to the NULL domain
7042 */
96f874e2 7043static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7044{
7045 int i;
7046
dce840a0 7047 rcu_read_lock();
abcd083a 7048 for_each_cpu(i, cpu_map)
57d885fe 7049 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7050 rcu_read_unlock();
1a20ff27
DG
7051}
7052
1d3504fc
HS
7053/* handle null as "default" */
7054static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7055 struct sched_domain_attr *new, int idx_new)
7056{
7057 struct sched_domain_attr tmp;
7058
7059 /* fast path */
7060 if (!new && !cur)
7061 return 1;
7062
7063 tmp = SD_ATTR_INIT;
7064 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7065 new ? (new + idx_new) : &tmp,
7066 sizeof(struct sched_domain_attr));
7067}
7068
029190c5
PJ
7069/*
7070 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7071 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7072 * doms_new[] to the current sched domain partitioning, doms_cur[].
7073 * It destroys each deleted domain and builds each new domain.
7074 *
acc3f5d7 7075 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7076 * The masks don't intersect (don't overlap.) We should setup one
7077 * sched domain for each mask. CPUs not in any of the cpumasks will
7078 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7079 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7080 * it as it is.
7081 *
acc3f5d7
RR
7082 * The passed in 'doms_new' should be allocated using
7083 * alloc_sched_domains. This routine takes ownership of it and will
7084 * free_sched_domains it when done with it. If the caller failed the
7085 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7086 * and partition_sched_domains() will fallback to the single partition
7087 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7088 *
96f874e2 7089 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7090 * ndoms_new == 0 is a special case for destroying existing domains,
7091 * and it will not create the default domain.
dfb512ec 7092 *
029190c5
PJ
7093 * Call with hotplug lock held
7094 */
acc3f5d7 7095void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7096 struct sched_domain_attr *dattr_new)
029190c5 7097{
dfb512ec 7098 int i, j, n;
d65bd5ec 7099 int new_topology;
029190c5 7100
712555ee 7101 mutex_lock(&sched_domains_mutex);
a1835615 7102
7378547f
MM
7103 /* always unregister in case we don't destroy any domains */
7104 unregister_sched_domain_sysctl();
7105
d65bd5ec
HC
7106 /* Let architecture update cpu core mappings. */
7107 new_topology = arch_update_cpu_topology();
7108
dfb512ec 7109 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7110
7111 /* Destroy deleted domains */
7112 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7113 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7114 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7115 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7116 goto match1;
7117 }
7118 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7119 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7120match1:
7121 ;
7122 }
7123
c8d2d47a 7124 n = ndoms_cur;
e761b772 7125 if (doms_new == NULL) {
c8d2d47a 7126 n = 0;
acc3f5d7 7127 doms_new = &fallback_doms;
6ad4c188 7128 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7129 WARN_ON_ONCE(dattr_new);
e761b772
MK
7130 }
7131
029190c5
PJ
7132 /* Build new domains */
7133 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7134 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7135 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7136 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7137 goto match2;
7138 }
7139 /* no match - add a new doms_new */
dce840a0 7140 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7141match2:
7142 ;
7143 }
7144
7145 /* Remember the new sched domains */
acc3f5d7
RR
7146 if (doms_cur != &fallback_doms)
7147 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7148 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7149 doms_cur = doms_new;
1d3504fc 7150 dattr_cur = dattr_new;
029190c5 7151 ndoms_cur = ndoms_new;
7378547f
MM
7152
7153 register_sched_domain_sysctl();
a1835615 7154
712555ee 7155 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7156}
7157
d35be8ba
SB
7158static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7159
1da177e4 7160/*
3a101d05
TH
7161 * Update cpusets according to cpu_active mask. If cpusets are
7162 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7163 * around partition_sched_domains().
d35be8ba
SB
7164 *
7165 * If we come here as part of a suspend/resume, don't touch cpusets because we
7166 * want to restore it back to its original state upon resume anyway.
1da177e4 7167 */
40190a78 7168static void cpuset_cpu_active(void)
e761b772 7169{
40190a78 7170 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7171 /*
7172 * num_cpus_frozen tracks how many CPUs are involved in suspend
7173 * resume sequence. As long as this is not the last online
7174 * operation in the resume sequence, just build a single sched
7175 * domain, ignoring cpusets.
7176 */
7177 num_cpus_frozen--;
7178 if (likely(num_cpus_frozen)) {
7179 partition_sched_domains(1, NULL, NULL);
135fb3e1 7180 return;
d35be8ba 7181 }
d35be8ba
SB
7182 /*
7183 * This is the last CPU online operation. So fall through and
7184 * restore the original sched domains by considering the
7185 * cpuset configurations.
7186 */
3a101d05 7187 }
135fb3e1 7188 cpuset_update_active_cpus(true);
3a101d05 7189}
e761b772 7190
40190a78 7191static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7192{
3c18d447 7193 unsigned long flags;
3c18d447 7194 struct dl_bw *dl_b;
533445c6
OS
7195 bool overflow;
7196 int cpus;
3c18d447 7197
40190a78 7198 if (!cpuhp_tasks_frozen) {
533445c6
OS
7199 rcu_read_lock_sched();
7200 dl_b = dl_bw_of(cpu);
3c18d447 7201
533445c6
OS
7202 raw_spin_lock_irqsave(&dl_b->lock, flags);
7203 cpus = dl_bw_cpus(cpu);
7204 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7205 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7206
533445c6 7207 rcu_read_unlock_sched();
3c18d447 7208
533445c6 7209 if (overflow)
135fb3e1 7210 return -EBUSY;
7ddf96b0 7211 cpuset_update_active_cpus(false);
135fb3e1 7212 } else {
d35be8ba
SB
7213 num_cpus_frozen++;
7214 partition_sched_domains(1, NULL, NULL);
e761b772 7215 }
135fb3e1 7216 return 0;
e761b772 7217}
e761b772 7218
40190a78 7219int sched_cpu_activate(unsigned int cpu)
135fb3e1 7220{
7d976699
TG
7221 struct rq *rq = cpu_rq(cpu);
7222 unsigned long flags;
7223
40190a78 7224 set_cpu_active(cpu, true);
135fb3e1 7225
40190a78 7226 if (sched_smp_initialized) {
135fb3e1 7227 sched_domains_numa_masks_set(cpu);
40190a78 7228 cpuset_cpu_active();
e761b772 7229 }
7d976699
TG
7230
7231 /*
7232 * Put the rq online, if not already. This happens:
7233 *
7234 * 1) In the early boot process, because we build the real domains
7235 * after all cpus have been brought up.
7236 *
7237 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7238 * domains.
7239 */
7240 raw_spin_lock_irqsave(&rq->lock, flags);
7241 if (rq->rd) {
7242 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7243 set_rq_online(rq);
7244 }
7245 raw_spin_unlock_irqrestore(&rq->lock, flags);
7246
7247 update_max_interval();
7248
40190a78 7249 return 0;
135fb3e1
TG
7250}
7251
40190a78 7252int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7253{
135fb3e1
TG
7254 int ret;
7255
40190a78 7256 set_cpu_active(cpu, false);
b2454caa
PZ
7257 /*
7258 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7259 * users of this state to go away such that all new such users will
7260 * observe it.
7261 *
7262 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7263 * not imply sync_sched(), so wait for both.
7264 *
7265 * Do sync before park smpboot threads to take care the rcu boost case.
7266 */
7267 if (IS_ENABLED(CONFIG_PREEMPT))
7268 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7269 else
7270 synchronize_rcu();
40190a78
TG
7271
7272 if (!sched_smp_initialized)
7273 return 0;
7274
7275 ret = cpuset_cpu_inactive(cpu);
7276 if (ret) {
7277 set_cpu_active(cpu, true);
7278 return ret;
135fb3e1 7279 }
40190a78
TG
7280 sched_domains_numa_masks_clear(cpu);
7281 return 0;
135fb3e1
TG
7282}
7283
94baf7a5
TG
7284static void sched_rq_cpu_starting(unsigned int cpu)
7285{
7286 struct rq *rq = cpu_rq(cpu);
7287
7288 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7289 update_max_interval();
7290}
7291
135fb3e1
TG
7292int sched_cpu_starting(unsigned int cpu)
7293{
7294 set_cpu_rq_start_time(cpu);
94baf7a5 7295 sched_rq_cpu_starting(cpu);
135fb3e1 7296 return 0;
e761b772 7297}
e761b772 7298
f2785ddb
TG
7299#ifdef CONFIG_HOTPLUG_CPU
7300int sched_cpu_dying(unsigned int cpu)
7301{
7302 struct rq *rq = cpu_rq(cpu);
7303 unsigned long flags;
7304
7305 /* Handle pending wakeups and then migrate everything off */
7306 sched_ttwu_pending();
7307 raw_spin_lock_irqsave(&rq->lock, flags);
7308 if (rq->rd) {
7309 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7310 set_rq_offline(rq);
7311 }
7312 migrate_tasks(rq);
7313 BUG_ON(rq->nr_running != 1);
7314 raw_spin_unlock_irqrestore(&rq->lock, flags);
7315 calc_load_migrate(rq);
7316 update_max_interval();
20a5c8cc 7317 nohz_balance_exit_idle(cpu);
e5ef27d0 7318 hrtick_clear(rq);
f2785ddb
TG
7319 return 0;
7320}
7321#endif
7322
1da177e4
LT
7323void __init sched_init_smp(void)
7324{
dcc30a35
RR
7325 cpumask_var_t non_isolated_cpus;
7326
7327 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7328 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7329
cb83b629
PZ
7330 sched_init_numa();
7331
6acce3ef
PZ
7332 /*
7333 * There's no userspace yet to cause hotplug operations; hence all the
7334 * cpu masks are stable and all blatant races in the below code cannot
7335 * happen.
7336 */
712555ee 7337 mutex_lock(&sched_domains_mutex);
c4a8849a 7338 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7339 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7340 if (cpumask_empty(non_isolated_cpus))
7341 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7342 mutex_unlock(&sched_domains_mutex);
e761b772 7343
5c1e1767 7344 /* Move init over to a non-isolated CPU */
dcc30a35 7345 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7346 BUG();
19978ca6 7347 sched_init_granularity();
dcc30a35 7348 free_cpumask_var(non_isolated_cpus);
4212823f 7349
0e3900e6 7350 init_sched_rt_class();
1baca4ce 7351 init_sched_dl_class();
e26fbffd 7352 sched_smp_initialized = true;
1da177e4 7353}
e26fbffd
TG
7354
7355static int __init migration_init(void)
7356{
94baf7a5 7357 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7358 return 0;
1da177e4 7359}
e26fbffd
TG
7360early_initcall(migration_init);
7361
1da177e4
LT
7362#else
7363void __init sched_init_smp(void)
7364{
19978ca6 7365 sched_init_granularity();
1da177e4
LT
7366}
7367#endif /* CONFIG_SMP */
7368
7369int in_sched_functions(unsigned long addr)
7370{
1da177e4
LT
7371 return in_lock_functions(addr) ||
7372 (addr >= (unsigned long)__sched_text_start
7373 && addr < (unsigned long)__sched_text_end);
7374}
7375
029632fb 7376#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7377/*
7378 * Default task group.
7379 * Every task in system belongs to this group at bootup.
7380 */
029632fb 7381struct task_group root_task_group;
35cf4e50 7382LIST_HEAD(task_groups);
b0367629
WL
7383
7384/* Cacheline aligned slab cache for task_group */
7385static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7386#endif
6f505b16 7387
e6252c3e 7388DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7389
1da177e4
LT
7390void __init sched_init(void)
7391{
dd41f596 7392 int i, j;
434d53b0
MT
7393 unsigned long alloc_size = 0, ptr;
7394
7395#ifdef CONFIG_FAIR_GROUP_SCHED
7396 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7397#endif
7398#ifdef CONFIG_RT_GROUP_SCHED
7399 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7400#endif
434d53b0 7401 if (alloc_size) {
36b7b6d4 7402 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7403
7404#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7405 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7406 ptr += nr_cpu_ids * sizeof(void **);
7407
07e06b01 7408 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7409 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7410
6d6bc0ad 7411#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7412#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7413 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7414 ptr += nr_cpu_ids * sizeof(void **);
7415
07e06b01 7416 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7417 ptr += nr_cpu_ids * sizeof(void **);
7418
6d6bc0ad 7419#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7420 }
df7c8e84 7421#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7422 for_each_possible_cpu(i) {
7423 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7424 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7425 }
b74e6278 7426#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7427
332ac17e
DF
7428 init_rt_bandwidth(&def_rt_bandwidth,
7429 global_rt_period(), global_rt_runtime());
7430 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7431 global_rt_period(), global_rt_runtime());
332ac17e 7432
57d885fe
GH
7433#ifdef CONFIG_SMP
7434 init_defrootdomain();
7435#endif
7436
d0b27fa7 7437#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7438 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7439 global_rt_period(), global_rt_runtime());
6d6bc0ad 7440#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7441
7c941438 7442#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7443 task_group_cache = KMEM_CACHE(task_group, 0);
7444
07e06b01
YZ
7445 list_add(&root_task_group.list, &task_groups);
7446 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7447 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7448 autogroup_init(&init_task);
7c941438 7449#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7450
0a945022 7451 for_each_possible_cpu(i) {
70b97a7f 7452 struct rq *rq;
1da177e4
LT
7453
7454 rq = cpu_rq(i);
05fa785c 7455 raw_spin_lock_init(&rq->lock);
7897986b 7456 rq->nr_running = 0;
dce48a84
TG
7457 rq->calc_load_active = 0;
7458 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7459 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7460 init_rt_rq(&rq->rt);
7461 init_dl_rq(&rq->dl);
dd41f596 7462#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7463 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7464 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7465 /*
07e06b01 7466 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7467 *
7468 * In case of task-groups formed thr' the cgroup filesystem, it
7469 * gets 100% of the cpu resources in the system. This overall
7470 * system cpu resource is divided among the tasks of
07e06b01 7471 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7472 * based on each entity's (task or task-group's) weight
7473 * (se->load.weight).
7474 *
07e06b01 7475 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7476 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7477 * then A0's share of the cpu resource is:
7478 *
0d905bca 7479 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7480 *
07e06b01
YZ
7481 * We achieve this by letting root_task_group's tasks sit
7482 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7483 */
ab84d31e 7484 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7485 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7486#endif /* CONFIG_FAIR_GROUP_SCHED */
7487
7488 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7489#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7490 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7491#endif
1da177e4 7492
dd41f596
IM
7493 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7494 rq->cpu_load[j] = 0;
fdf3e95d 7495
1da177e4 7496#ifdef CONFIG_SMP
41c7ce9a 7497 rq->sd = NULL;
57d885fe 7498 rq->rd = NULL;
ca6d75e6 7499 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7500 rq->balance_callback = NULL;
1da177e4 7501 rq->active_balance = 0;
dd41f596 7502 rq->next_balance = jiffies;
1da177e4 7503 rq->push_cpu = 0;
0a2966b4 7504 rq->cpu = i;
1f11eb6a 7505 rq->online = 0;
eae0c9df
MG
7506 rq->idle_stamp = 0;
7507 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7508 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7509
7510 INIT_LIST_HEAD(&rq->cfs_tasks);
7511
dc938520 7512 rq_attach_root(rq, &def_root_domain);
3451d024 7513#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7514 rq->last_load_update_tick = jiffies;
1c792db7 7515 rq->nohz_flags = 0;
83cd4fe2 7516#endif
265f22a9
FW
7517#ifdef CONFIG_NO_HZ_FULL
7518 rq->last_sched_tick = 0;
7519#endif
9fd81dd5 7520#endif /* CONFIG_SMP */
8f4d37ec 7521 init_rq_hrtick(rq);
1da177e4 7522 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7523 }
7524
2dd73a4f 7525 set_load_weight(&init_task);
b50f60ce 7526
e107be36
AK
7527#ifdef CONFIG_PREEMPT_NOTIFIERS
7528 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7529#endif
7530
1da177e4
LT
7531 /*
7532 * The boot idle thread does lazy MMU switching as well:
7533 */
7534 atomic_inc(&init_mm.mm_count);
7535 enter_lazy_tlb(&init_mm, current);
7536
1b537c7d
YD
7537 /*
7538 * During early bootup we pretend to be a normal task:
7539 */
7540 current->sched_class = &fair_sched_class;
7541
1da177e4
LT
7542 /*
7543 * Make us the idle thread. Technically, schedule() should not be
7544 * called from this thread, however somewhere below it might be,
7545 * but because we are the idle thread, we just pick up running again
7546 * when this runqueue becomes "idle".
7547 */
7548 init_idle(current, smp_processor_id());
dce48a84
TG
7549
7550 calc_load_update = jiffies + LOAD_FREQ;
7551
bf4d83f6 7552#ifdef CONFIG_SMP
4cb98839 7553 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7554 /* May be allocated at isolcpus cmdline parse time */
7555 if (cpu_isolated_map == NULL)
7556 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7557 idle_thread_set_boot_cpu();
9cf7243d 7558 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7559#endif
7560 init_sched_fair_class();
6a7b3dc3 7561
4698f88c
JP
7562 init_schedstats();
7563
6892b75e 7564 scheduler_running = 1;
1da177e4
LT
7565}
7566
d902db1e 7567#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7568static inline int preempt_count_equals(int preempt_offset)
7569{
da7142e2 7570 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7571
4ba8216c 7572 return (nested == preempt_offset);
e4aafea2
FW
7573}
7574
d894837f 7575void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7576{
8eb23b9f
PZ
7577 /*
7578 * Blocking primitives will set (and therefore destroy) current->state,
7579 * since we will exit with TASK_RUNNING make sure we enter with it,
7580 * otherwise we will destroy state.
7581 */
00845eb9 7582 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7583 "do not call blocking ops when !TASK_RUNNING; "
7584 "state=%lx set at [<%p>] %pS\n",
7585 current->state,
7586 (void *)current->task_state_change,
00845eb9 7587 (void *)current->task_state_change);
8eb23b9f 7588
3427445a
PZ
7589 ___might_sleep(file, line, preempt_offset);
7590}
7591EXPORT_SYMBOL(__might_sleep);
7592
7593void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7594{
1da177e4
LT
7595 static unsigned long prev_jiffy; /* ratelimiting */
7596
b3fbab05 7597 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7598 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7599 !is_idle_task(current)) ||
e4aafea2 7600 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7601 return;
7602 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7603 return;
7604 prev_jiffy = jiffies;
7605
3df0fc5b
PZ
7606 printk(KERN_ERR
7607 "BUG: sleeping function called from invalid context at %s:%d\n",
7608 file, line);
7609 printk(KERN_ERR
7610 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7611 in_atomic(), irqs_disabled(),
7612 current->pid, current->comm);
aef745fc 7613
a8b686b3
ES
7614 if (task_stack_end_corrupted(current))
7615 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7616
aef745fc
IM
7617 debug_show_held_locks(current);
7618 if (irqs_disabled())
7619 print_irqtrace_events(current);
8f47b187
TG
7620#ifdef CONFIG_DEBUG_PREEMPT
7621 if (!preempt_count_equals(preempt_offset)) {
7622 pr_err("Preemption disabled at:");
7623 print_ip_sym(current->preempt_disable_ip);
7624 pr_cont("\n");
7625 }
7626#endif
aef745fc 7627 dump_stack();
1da177e4 7628}
3427445a 7629EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7630#endif
7631
7632#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7633void normalize_rt_tasks(void)
3a5e4dc1 7634{
dbc7f069 7635 struct task_struct *g, *p;
d50dde5a
DF
7636 struct sched_attr attr = {
7637 .sched_policy = SCHED_NORMAL,
7638 };
1da177e4 7639
3472eaa1 7640 read_lock(&tasklist_lock);
5d07f420 7641 for_each_process_thread(g, p) {
178be793
IM
7642 /*
7643 * Only normalize user tasks:
7644 */
3472eaa1 7645 if (p->flags & PF_KTHREAD)
178be793
IM
7646 continue;
7647
6cfb0d5d 7648 p->se.exec_start = 0;
6cfb0d5d 7649#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7650 p->se.statistics.wait_start = 0;
7651 p->se.statistics.sleep_start = 0;
7652 p->se.statistics.block_start = 0;
6cfb0d5d 7653#endif
dd41f596 7654
aab03e05 7655 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7656 /*
7657 * Renice negative nice level userspace
7658 * tasks back to 0:
7659 */
3472eaa1 7660 if (task_nice(p) < 0)
dd41f596 7661 set_user_nice(p, 0);
1da177e4 7662 continue;
dd41f596 7663 }
1da177e4 7664
dbc7f069 7665 __sched_setscheduler(p, &attr, false, false);
5d07f420 7666 }
3472eaa1 7667 read_unlock(&tasklist_lock);
1da177e4
LT
7668}
7669
7670#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7671
67fc4e0c 7672#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7673/*
67fc4e0c 7674 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7675 *
7676 * They can only be called when the whole system has been
7677 * stopped - every CPU needs to be quiescent, and no scheduling
7678 * activity can take place. Using them for anything else would
7679 * be a serious bug, and as a result, they aren't even visible
7680 * under any other configuration.
7681 */
7682
7683/**
7684 * curr_task - return the current task for a given cpu.
7685 * @cpu: the processor in question.
7686 *
7687 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7688 *
7689 * Return: The current task for @cpu.
1df5c10a 7690 */
36c8b586 7691struct task_struct *curr_task(int cpu)
1df5c10a
LT
7692{
7693 return cpu_curr(cpu);
7694}
7695
67fc4e0c
JW
7696#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7697
7698#ifdef CONFIG_IA64
1df5c10a
LT
7699/**
7700 * set_curr_task - set the current task for a given cpu.
7701 * @cpu: the processor in question.
7702 * @p: the task pointer to set.
7703 *
7704 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7705 * are serviced on a separate stack. It allows the architecture to switch the
7706 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7707 * must be called with all CPU's synchronized, and interrupts disabled, the
7708 * and caller must save the original value of the current task (see
7709 * curr_task() above) and restore that value before reenabling interrupts and
7710 * re-starting the system.
7711 *
7712 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7713 */
36c8b586 7714void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7715{
7716 cpu_curr(cpu) = p;
7717}
7718
7719#endif
29f59db3 7720
7c941438 7721#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7722/* task_group_lock serializes the addition/removal of task groups */
7723static DEFINE_SPINLOCK(task_group_lock);
7724
2f5177f0 7725static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7726{
7727 free_fair_sched_group(tg);
7728 free_rt_sched_group(tg);
e9aa1dd1 7729 autogroup_free(tg);
b0367629 7730 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7731}
7732
7733/* allocate runqueue etc for a new task group */
ec7dc8ac 7734struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7735{
7736 struct task_group *tg;
bccbe08a 7737
b0367629 7738 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7739 if (!tg)
7740 return ERR_PTR(-ENOMEM);
7741
ec7dc8ac 7742 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7743 goto err;
7744
ec7dc8ac 7745 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7746 goto err;
7747
ace783b9
LZ
7748 return tg;
7749
7750err:
2f5177f0 7751 sched_free_group(tg);
ace783b9
LZ
7752 return ERR_PTR(-ENOMEM);
7753}
7754
7755void sched_online_group(struct task_group *tg, struct task_group *parent)
7756{
7757 unsigned long flags;
7758
8ed36996 7759 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7760 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7761
7762 WARN_ON(!parent); /* root should already exist */
7763
7764 tg->parent = parent;
f473aa5e 7765 INIT_LIST_HEAD(&tg->children);
09f2724a 7766 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7767 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7768
7769 online_fair_sched_group(tg);
29f59db3
SV
7770}
7771
9b5b7751 7772/* rcu callback to free various structures associated with a task group */
2f5177f0 7773static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7774{
29f59db3 7775 /* now it should be safe to free those cfs_rqs */
2f5177f0 7776 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7777}
7778
4cf86d77 7779void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7780{
7781 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7782 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7783}
7784
7785void sched_offline_group(struct task_group *tg)
29f59db3 7786{
8ed36996 7787 unsigned long flags;
29f59db3 7788
3d4b47b4 7789 /* end participation in shares distribution */
6fe1f348 7790 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7791
7792 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7793 list_del_rcu(&tg->list);
f473aa5e 7794 list_del_rcu(&tg->siblings);
8ed36996 7795 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7796}
7797
ea86cb4b 7798static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7799{
8323f26c 7800 struct task_group *tg;
29f59db3 7801
f7b8a47d
KT
7802 /*
7803 * All callers are synchronized by task_rq_lock(); we do not use RCU
7804 * which is pointless here. Thus, we pass "true" to task_css_check()
7805 * to prevent lockdep warnings.
7806 */
7807 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7808 struct task_group, css);
7809 tg = autogroup_task_group(tsk, tg);
7810 tsk->sched_task_group = tg;
7811
810b3817 7812#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7813 if (tsk->sched_class->task_change_group)
7814 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7815 else
810b3817 7816#endif
b2b5ce02 7817 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7818}
7819
7820/*
7821 * Change task's runqueue when it moves between groups.
7822 *
7823 * The caller of this function should have put the task in its new group by
7824 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7825 * its new group.
7826 */
7827void sched_move_task(struct task_struct *tsk)
7828{
7829 int queued, running;
7830 struct rq_flags rf;
7831 struct rq *rq;
7832
7833 rq = task_rq_lock(tsk, &rf);
7834
7835 running = task_current(rq, tsk);
7836 queued = task_on_rq_queued(tsk);
7837
7838 if (queued)
7839 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7840 if (unlikely(running))
7841 put_prev_task(rq, tsk);
7842
7843 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7844
0e1f3483
HS
7845 if (unlikely(running))
7846 tsk->sched_class->set_curr_task(rq);
da0c1e65 7847 if (queued)
ff77e468 7848 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7849
eb580751 7850 task_rq_unlock(rq, tsk, &rf);
29f59db3 7851}
7c941438 7852#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7853
a790de99
PT
7854#ifdef CONFIG_RT_GROUP_SCHED
7855/*
7856 * Ensure that the real time constraints are schedulable.
7857 */
7858static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7859
9a7e0b18
PZ
7860/* Must be called with tasklist_lock held */
7861static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7862{
9a7e0b18 7863 struct task_struct *g, *p;
b40b2e8e 7864
1fe89e1b
PZ
7865 /*
7866 * Autogroups do not have RT tasks; see autogroup_create().
7867 */
7868 if (task_group_is_autogroup(tg))
7869 return 0;
7870
5d07f420 7871 for_each_process_thread(g, p) {
8651c658 7872 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7873 return 1;
5d07f420 7874 }
b40b2e8e 7875
9a7e0b18
PZ
7876 return 0;
7877}
b40b2e8e 7878
9a7e0b18
PZ
7879struct rt_schedulable_data {
7880 struct task_group *tg;
7881 u64 rt_period;
7882 u64 rt_runtime;
7883};
b40b2e8e 7884
a790de99 7885static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7886{
7887 struct rt_schedulable_data *d = data;
7888 struct task_group *child;
7889 unsigned long total, sum = 0;
7890 u64 period, runtime;
b40b2e8e 7891
9a7e0b18
PZ
7892 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7893 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7894
9a7e0b18
PZ
7895 if (tg == d->tg) {
7896 period = d->rt_period;
7897 runtime = d->rt_runtime;
b40b2e8e 7898 }
b40b2e8e 7899
4653f803
PZ
7900 /*
7901 * Cannot have more runtime than the period.
7902 */
7903 if (runtime > period && runtime != RUNTIME_INF)
7904 return -EINVAL;
6f505b16 7905
4653f803
PZ
7906 /*
7907 * Ensure we don't starve existing RT tasks.
7908 */
9a7e0b18
PZ
7909 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7910 return -EBUSY;
6f505b16 7911
9a7e0b18 7912 total = to_ratio(period, runtime);
6f505b16 7913
4653f803
PZ
7914 /*
7915 * Nobody can have more than the global setting allows.
7916 */
7917 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7918 return -EINVAL;
6f505b16 7919
4653f803
PZ
7920 /*
7921 * The sum of our children's runtime should not exceed our own.
7922 */
9a7e0b18
PZ
7923 list_for_each_entry_rcu(child, &tg->children, siblings) {
7924 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7925 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7926
9a7e0b18
PZ
7927 if (child == d->tg) {
7928 period = d->rt_period;
7929 runtime = d->rt_runtime;
7930 }
6f505b16 7931
9a7e0b18 7932 sum += to_ratio(period, runtime);
9f0c1e56 7933 }
6f505b16 7934
9a7e0b18
PZ
7935 if (sum > total)
7936 return -EINVAL;
7937
7938 return 0;
6f505b16
PZ
7939}
7940
9a7e0b18 7941static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7942{
8277434e
PT
7943 int ret;
7944
9a7e0b18
PZ
7945 struct rt_schedulable_data data = {
7946 .tg = tg,
7947 .rt_period = period,
7948 .rt_runtime = runtime,
7949 };
7950
8277434e
PT
7951 rcu_read_lock();
7952 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7953 rcu_read_unlock();
7954
7955 return ret;
521f1a24
DG
7956}
7957
ab84d31e 7958static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7959 u64 rt_period, u64 rt_runtime)
6f505b16 7960{
ac086bc2 7961 int i, err = 0;
9f0c1e56 7962
2636ed5f
PZ
7963 /*
7964 * Disallowing the root group RT runtime is BAD, it would disallow the
7965 * kernel creating (and or operating) RT threads.
7966 */
7967 if (tg == &root_task_group && rt_runtime == 0)
7968 return -EINVAL;
7969
7970 /* No period doesn't make any sense. */
7971 if (rt_period == 0)
7972 return -EINVAL;
7973
9f0c1e56 7974 mutex_lock(&rt_constraints_mutex);
521f1a24 7975 read_lock(&tasklist_lock);
9a7e0b18
PZ
7976 err = __rt_schedulable(tg, rt_period, rt_runtime);
7977 if (err)
9f0c1e56 7978 goto unlock;
ac086bc2 7979
0986b11b 7980 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7981 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7982 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7983
7984 for_each_possible_cpu(i) {
7985 struct rt_rq *rt_rq = tg->rt_rq[i];
7986
0986b11b 7987 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7988 rt_rq->rt_runtime = rt_runtime;
0986b11b 7989 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7990 }
0986b11b 7991 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7992unlock:
521f1a24 7993 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7994 mutex_unlock(&rt_constraints_mutex);
7995
7996 return err;
6f505b16
PZ
7997}
7998
25cc7da7 7999static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8000{
8001 u64 rt_runtime, rt_period;
8002
8003 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8004 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8005 if (rt_runtime_us < 0)
8006 rt_runtime = RUNTIME_INF;
8007
ab84d31e 8008 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8009}
8010
25cc7da7 8011static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8012{
8013 u64 rt_runtime_us;
8014
d0b27fa7 8015 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8016 return -1;
8017
d0b27fa7 8018 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8019 do_div(rt_runtime_us, NSEC_PER_USEC);
8020 return rt_runtime_us;
8021}
d0b27fa7 8022
ce2f5fe4 8023static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8024{
8025 u64 rt_runtime, rt_period;
8026
ce2f5fe4 8027 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8028 rt_runtime = tg->rt_bandwidth.rt_runtime;
8029
ab84d31e 8030 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8031}
8032
25cc7da7 8033static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8034{
8035 u64 rt_period_us;
8036
8037 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8038 do_div(rt_period_us, NSEC_PER_USEC);
8039 return rt_period_us;
8040}
332ac17e 8041#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8042
332ac17e 8043#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8044static int sched_rt_global_constraints(void)
8045{
8046 int ret = 0;
8047
8048 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8049 read_lock(&tasklist_lock);
4653f803 8050 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8051 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8052 mutex_unlock(&rt_constraints_mutex);
8053
8054 return ret;
8055}
54e99124 8056
25cc7da7 8057static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8058{
8059 /* Don't accept realtime tasks when there is no way for them to run */
8060 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8061 return 0;
8062
8063 return 1;
8064}
8065
6d6bc0ad 8066#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8067static int sched_rt_global_constraints(void)
8068{
ac086bc2 8069 unsigned long flags;
8c5e9554 8070 int i;
ec5d4989 8071
0986b11b 8072 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8073 for_each_possible_cpu(i) {
8074 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8075
0986b11b 8076 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8077 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8078 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8079 }
0986b11b 8080 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8081
8c5e9554 8082 return 0;
d0b27fa7 8083}
6d6bc0ad 8084#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8085
a1963b81 8086static int sched_dl_global_validate(void)
332ac17e 8087{
1724813d
PZ
8088 u64 runtime = global_rt_runtime();
8089 u64 period = global_rt_period();
332ac17e 8090 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8091 struct dl_bw *dl_b;
1724813d 8092 int cpu, ret = 0;
49516342 8093 unsigned long flags;
332ac17e
DF
8094
8095 /*
8096 * Here we want to check the bandwidth not being set to some
8097 * value smaller than the currently allocated bandwidth in
8098 * any of the root_domains.
8099 *
8100 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8101 * cycling on root_domains... Discussion on different/better
8102 * solutions is welcome!
8103 */
1724813d 8104 for_each_possible_cpu(cpu) {
f10e00f4
KT
8105 rcu_read_lock_sched();
8106 dl_b = dl_bw_of(cpu);
332ac17e 8107
49516342 8108 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8109 if (new_bw < dl_b->total_bw)
8110 ret = -EBUSY;
49516342 8111 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8112
f10e00f4
KT
8113 rcu_read_unlock_sched();
8114
1724813d
PZ
8115 if (ret)
8116 break;
332ac17e
DF
8117 }
8118
1724813d 8119 return ret;
332ac17e
DF
8120}
8121
1724813d 8122static void sched_dl_do_global(void)
ce0dbbbb 8123{
1724813d 8124 u64 new_bw = -1;
f10e00f4 8125 struct dl_bw *dl_b;
1724813d 8126 int cpu;
49516342 8127 unsigned long flags;
ce0dbbbb 8128
1724813d
PZ
8129 def_dl_bandwidth.dl_period = global_rt_period();
8130 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8131
8132 if (global_rt_runtime() != RUNTIME_INF)
8133 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8134
8135 /*
8136 * FIXME: As above...
8137 */
8138 for_each_possible_cpu(cpu) {
f10e00f4
KT
8139 rcu_read_lock_sched();
8140 dl_b = dl_bw_of(cpu);
1724813d 8141
49516342 8142 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8143 dl_b->bw = new_bw;
49516342 8144 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8145
8146 rcu_read_unlock_sched();
ce0dbbbb 8147 }
1724813d
PZ
8148}
8149
8150static int sched_rt_global_validate(void)
8151{
8152 if (sysctl_sched_rt_period <= 0)
8153 return -EINVAL;
8154
e9e7cb38
JL
8155 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8156 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8157 return -EINVAL;
8158
8159 return 0;
8160}
8161
8162static void sched_rt_do_global(void)
8163{
8164 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8165 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8166}
8167
d0b27fa7 8168int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8169 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8170 loff_t *ppos)
8171{
d0b27fa7
PZ
8172 int old_period, old_runtime;
8173 static DEFINE_MUTEX(mutex);
1724813d 8174 int ret;
d0b27fa7
PZ
8175
8176 mutex_lock(&mutex);
8177 old_period = sysctl_sched_rt_period;
8178 old_runtime = sysctl_sched_rt_runtime;
8179
8d65af78 8180 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8181
8182 if (!ret && write) {
1724813d
PZ
8183 ret = sched_rt_global_validate();
8184 if (ret)
8185 goto undo;
8186
a1963b81 8187 ret = sched_dl_global_validate();
1724813d
PZ
8188 if (ret)
8189 goto undo;
8190
a1963b81 8191 ret = sched_rt_global_constraints();
1724813d
PZ
8192 if (ret)
8193 goto undo;
8194
8195 sched_rt_do_global();
8196 sched_dl_do_global();
8197 }
8198 if (0) {
8199undo:
8200 sysctl_sched_rt_period = old_period;
8201 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8202 }
8203 mutex_unlock(&mutex);
8204
8205 return ret;
8206}
68318b8e 8207
1724813d 8208int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8209 void __user *buffer, size_t *lenp,
8210 loff_t *ppos)
8211{
8212 int ret;
332ac17e 8213 static DEFINE_MUTEX(mutex);
332ac17e
DF
8214
8215 mutex_lock(&mutex);
332ac17e 8216 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8217 /* make sure that internally we keep jiffies */
8218 /* also, writing zero resets timeslice to default */
332ac17e 8219 if (!ret && write) {
1724813d
PZ
8220 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8221 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8222 }
8223 mutex_unlock(&mutex);
332ac17e
DF
8224 return ret;
8225}
8226
052f1dc7 8227#ifdef CONFIG_CGROUP_SCHED
68318b8e 8228
a7c6d554 8229static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8230{
a7c6d554 8231 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8232}
8233
eb95419b
TH
8234static struct cgroup_subsys_state *
8235cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8236{
eb95419b
TH
8237 struct task_group *parent = css_tg(parent_css);
8238 struct task_group *tg;
68318b8e 8239
eb95419b 8240 if (!parent) {
68318b8e 8241 /* This is early initialization for the top cgroup */
07e06b01 8242 return &root_task_group.css;
68318b8e
SV
8243 }
8244
ec7dc8ac 8245 tg = sched_create_group(parent);
68318b8e
SV
8246 if (IS_ERR(tg))
8247 return ERR_PTR(-ENOMEM);
8248
2f5177f0
PZ
8249 sched_online_group(tg, parent);
8250
68318b8e
SV
8251 return &tg->css;
8252}
8253
2f5177f0 8254static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8255{
eb95419b 8256 struct task_group *tg = css_tg(css);
ace783b9 8257
2f5177f0 8258 sched_offline_group(tg);
ace783b9
LZ
8259}
8260
eb95419b 8261static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8262{
eb95419b 8263 struct task_group *tg = css_tg(css);
68318b8e 8264
2f5177f0
PZ
8265 /*
8266 * Relies on the RCU grace period between css_released() and this.
8267 */
8268 sched_free_group(tg);
ace783b9
LZ
8269}
8270
ea86cb4b
VG
8271/*
8272 * This is called before wake_up_new_task(), therefore we really only
8273 * have to set its group bits, all the other stuff does not apply.
8274 */
b53202e6 8275static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8276{
ea86cb4b
VG
8277 struct rq_flags rf;
8278 struct rq *rq;
8279
8280 rq = task_rq_lock(task, &rf);
8281
8282 sched_change_group(task, TASK_SET_GROUP);
8283
8284 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8285}
8286
1f7dd3e5 8287static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8288{
bb9d97b6 8289 struct task_struct *task;
1f7dd3e5 8290 struct cgroup_subsys_state *css;
7dc603c9 8291 int ret = 0;
bb9d97b6 8292
1f7dd3e5 8293 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8294#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8295 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8296 return -EINVAL;
b68aa230 8297#else
bb9d97b6
TH
8298 /* We don't support RT-tasks being in separate groups */
8299 if (task->sched_class != &fair_sched_class)
8300 return -EINVAL;
b68aa230 8301#endif
7dc603c9
PZ
8302 /*
8303 * Serialize against wake_up_new_task() such that if its
8304 * running, we're sure to observe its full state.
8305 */
8306 raw_spin_lock_irq(&task->pi_lock);
8307 /*
8308 * Avoid calling sched_move_task() before wake_up_new_task()
8309 * has happened. This would lead to problems with PELT, due to
8310 * move wanting to detach+attach while we're not attached yet.
8311 */
8312 if (task->state == TASK_NEW)
8313 ret = -EINVAL;
8314 raw_spin_unlock_irq(&task->pi_lock);
8315
8316 if (ret)
8317 break;
bb9d97b6 8318 }
7dc603c9 8319 return ret;
be367d09 8320}
68318b8e 8321
1f7dd3e5 8322static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8323{
bb9d97b6 8324 struct task_struct *task;
1f7dd3e5 8325 struct cgroup_subsys_state *css;
bb9d97b6 8326
1f7dd3e5 8327 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8328 sched_move_task(task);
68318b8e
SV
8329}
8330
052f1dc7 8331#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8332static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8333 struct cftype *cftype, u64 shareval)
68318b8e 8334{
182446d0 8335 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8336}
8337
182446d0
TH
8338static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8339 struct cftype *cft)
68318b8e 8340{
182446d0 8341 struct task_group *tg = css_tg(css);
68318b8e 8342
c8b28116 8343 return (u64) scale_load_down(tg->shares);
68318b8e 8344}
ab84d31e
PT
8345
8346#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8347static DEFINE_MUTEX(cfs_constraints_mutex);
8348
ab84d31e
PT
8349const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8350const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8351
a790de99
PT
8352static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8353
ab84d31e
PT
8354static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8355{
56f570e5 8356 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8357 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8358
8359 if (tg == &root_task_group)
8360 return -EINVAL;
8361
8362 /*
8363 * Ensure we have at some amount of bandwidth every period. This is
8364 * to prevent reaching a state of large arrears when throttled via
8365 * entity_tick() resulting in prolonged exit starvation.
8366 */
8367 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8368 return -EINVAL;
8369
8370 /*
8371 * Likewise, bound things on the otherside by preventing insane quota
8372 * periods. This also allows us to normalize in computing quota
8373 * feasibility.
8374 */
8375 if (period > max_cfs_quota_period)
8376 return -EINVAL;
8377
0e59bdae
KT
8378 /*
8379 * Prevent race between setting of cfs_rq->runtime_enabled and
8380 * unthrottle_offline_cfs_rqs().
8381 */
8382 get_online_cpus();
a790de99
PT
8383 mutex_lock(&cfs_constraints_mutex);
8384 ret = __cfs_schedulable(tg, period, quota);
8385 if (ret)
8386 goto out_unlock;
8387
58088ad0 8388 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8389 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8390 /*
8391 * If we need to toggle cfs_bandwidth_used, off->on must occur
8392 * before making related changes, and on->off must occur afterwards
8393 */
8394 if (runtime_enabled && !runtime_was_enabled)
8395 cfs_bandwidth_usage_inc();
ab84d31e
PT
8396 raw_spin_lock_irq(&cfs_b->lock);
8397 cfs_b->period = ns_to_ktime(period);
8398 cfs_b->quota = quota;
58088ad0 8399
a9cf55b2 8400 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8401 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8402 if (runtime_enabled)
8403 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8404 raw_spin_unlock_irq(&cfs_b->lock);
8405
0e59bdae 8406 for_each_online_cpu(i) {
ab84d31e 8407 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8408 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8409
8410 raw_spin_lock_irq(&rq->lock);
58088ad0 8411 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8412 cfs_rq->runtime_remaining = 0;
671fd9da 8413
029632fb 8414 if (cfs_rq->throttled)
671fd9da 8415 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8416 raw_spin_unlock_irq(&rq->lock);
8417 }
1ee14e6c
BS
8418 if (runtime_was_enabled && !runtime_enabled)
8419 cfs_bandwidth_usage_dec();
a790de99
PT
8420out_unlock:
8421 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8422 put_online_cpus();
ab84d31e 8423
a790de99 8424 return ret;
ab84d31e
PT
8425}
8426
8427int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8428{
8429 u64 quota, period;
8430
029632fb 8431 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8432 if (cfs_quota_us < 0)
8433 quota = RUNTIME_INF;
8434 else
8435 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8436
8437 return tg_set_cfs_bandwidth(tg, period, quota);
8438}
8439
8440long tg_get_cfs_quota(struct task_group *tg)
8441{
8442 u64 quota_us;
8443
029632fb 8444 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8445 return -1;
8446
029632fb 8447 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8448 do_div(quota_us, NSEC_PER_USEC);
8449
8450 return quota_us;
8451}
8452
8453int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8454{
8455 u64 quota, period;
8456
8457 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8458 quota = tg->cfs_bandwidth.quota;
ab84d31e 8459
ab84d31e
PT
8460 return tg_set_cfs_bandwidth(tg, period, quota);
8461}
8462
8463long tg_get_cfs_period(struct task_group *tg)
8464{
8465 u64 cfs_period_us;
8466
029632fb 8467 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8468 do_div(cfs_period_us, NSEC_PER_USEC);
8469
8470 return cfs_period_us;
8471}
8472
182446d0
TH
8473static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8474 struct cftype *cft)
ab84d31e 8475{
182446d0 8476 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8477}
8478
182446d0
TH
8479static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8480 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8481{
182446d0 8482 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8483}
8484
182446d0
TH
8485static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8486 struct cftype *cft)
ab84d31e 8487{
182446d0 8488 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8489}
8490
182446d0
TH
8491static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8492 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8493{
182446d0 8494 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8495}
8496
a790de99
PT
8497struct cfs_schedulable_data {
8498 struct task_group *tg;
8499 u64 period, quota;
8500};
8501
8502/*
8503 * normalize group quota/period to be quota/max_period
8504 * note: units are usecs
8505 */
8506static u64 normalize_cfs_quota(struct task_group *tg,
8507 struct cfs_schedulable_data *d)
8508{
8509 u64 quota, period;
8510
8511 if (tg == d->tg) {
8512 period = d->period;
8513 quota = d->quota;
8514 } else {
8515 period = tg_get_cfs_period(tg);
8516 quota = tg_get_cfs_quota(tg);
8517 }
8518
8519 /* note: these should typically be equivalent */
8520 if (quota == RUNTIME_INF || quota == -1)
8521 return RUNTIME_INF;
8522
8523 return to_ratio(period, quota);
8524}
8525
8526static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8527{
8528 struct cfs_schedulable_data *d = data;
029632fb 8529 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8530 s64 quota = 0, parent_quota = -1;
8531
8532 if (!tg->parent) {
8533 quota = RUNTIME_INF;
8534 } else {
029632fb 8535 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8536
8537 quota = normalize_cfs_quota(tg, d);
9c58c79a 8538 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8539
8540 /*
8541 * ensure max(child_quota) <= parent_quota, inherit when no
8542 * limit is set
8543 */
8544 if (quota == RUNTIME_INF)
8545 quota = parent_quota;
8546 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8547 return -EINVAL;
8548 }
9c58c79a 8549 cfs_b->hierarchical_quota = quota;
a790de99
PT
8550
8551 return 0;
8552}
8553
8554static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8555{
8277434e 8556 int ret;
a790de99
PT
8557 struct cfs_schedulable_data data = {
8558 .tg = tg,
8559 .period = period,
8560 .quota = quota,
8561 };
8562
8563 if (quota != RUNTIME_INF) {
8564 do_div(data.period, NSEC_PER_USEC);
8565 do_div(data.quota, NSEC_PER_USEC);
8566 }
8567
8277434e
PT
8568 rcu_read_lock();
8569 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8570 rcu_read_unlock();
8571
8572 return ret;
a790de99 8573}
e8da1b18 8574
2da8ca82 8575static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8576{
2da8ca82 8577 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8578 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8579
44ffc75b
TH
8580 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8581 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8582 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8583
8584 return 0;
8585}
ab84d31e 8586#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8587#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8588
052f1dc7 8589#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8590static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8591 struct cftype *cft, s64 val)
6f505b16 8592{
182446d0 8593 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8594}
8595
182446d0
TH
8596static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8597 struct cftype *cft)
6f505b16 8598{
182446d0 8599 return sched_group_rt_runtime(css_tg(css));
6f505b16 8600}
d0b27fa7 8601
182446d0
TH
8602static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8603 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8604{
182446d0 8605 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8606}
8607
182446d0
TH
8608static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8609 struct cftype *cft)
d0b27fa7 8610{
182446d0 8611 return sched_group_rt_period(css_tg(css));
d0b27fa7 8612}
6d6bc0ad 8613#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8614
fe5c7cc2 8615static struct cftype cpu_files[] = {
052f1dc7 8616#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8617 {
8618 .name = "shares",
f4c753b7
PM
8619 .read_u64 = cpu_shares_read_u64,
8620 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8621 },
052f1dc7 8622#endif
ab84d31e
PT
8623#ifdef CONFIG_CFS_BANDWIDTH
8624 {
8625 .name = "cfs_quota_us",
8626 .read_s64 = cpu_cfs_quota_read_s64,
8627 .write_s64 = cpu_cfs_quota_write_s64,
8628 },
8629 {
8630 .name = "cfs_period_us",
8631 .read_u64 = cpu_cfs_period_read_u64,
8632 .write_u64 = cpu_cfs_period_write_u64,
8633 },
e8da1b18
NR
8634 {
8635 .name = "stat",
2da8ca82 8636 .seq_show = cpu_stats_show,
e8da1b18 8637 },
ab84d31e 8638#endif
052f1dc7 8639#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8640 {
9f0c1e56 8641 .name = "rt_runtime_us",
06ecb27c
PM
8642 .read_s64 = cpu_rt_runtime_read,
8643 .write_s64 = cpu_rt_runtime_write,
6f505b16 8644 },
d0b27fa7
PZ
8645 {
8646 .name = "rt_period_us",
f4c753b7
PM
8647 .read_u64 = cpu_rt_period_read_uint,
8648 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8649 },
052f1dc7 8650#endif
4baf6e33 8651 { } /* terminate */
68318b8e
SV
8652};
8653
073219e9 8654struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8655 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8656 .css_released = cpu_cgroup_css_released,
92fb9748 8657 .css_free = cpu_cgroup_css_free,
eeb61e53 8658 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8659 .can_attach = cpu_cgroup_can_attach,
8660 .attach = cpu_cgroup_attach,
5577964e 8661 .legacy_cftypes = cpu_files,
b38e42e9 8662 .early_init = true,
68318b8e
SV
8663};
8664
052f1dc7 8665#endif /* CONFIG_CGROUP_SCHED */
d842de87 8666
b637a328
PM
8667void dump_cpu_task(int cpu)
8668{
8669 pr_info("Task dump for CPU %d:\n", cpu);
8670 sched_show_task(cpu_curr(cpu));
8671}
ed82b8a1
AK
8672
8673/*
8674 * Nice levels are multiplicative, with a gentle 10% change for every
8675 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8676 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8677 * that remained on nice 0.
8678 *
8679 * The "10% effect" is relative and cumulative: from _any_ nice level,
8680 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8681 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8682 * If a task goes up by ~10% and another task goes down by ~10% then
8683 * the relative distance between them is ~25%.)
8684 */
8685const int sched_prio_to_weight[40] = {
8686 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8687 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8688 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8689 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8690 /* 0 */ 1024, 820, 655, 526, 423,
8691 /* 5 */ 335, 272, 215, 172, 137,
8692 /* 10 */ 110, 87, 70, 56, 45,
8693 /* 15 */ 36, 29, 23, 18, 15,
8694};
8695
8696/*
8697 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8698 *
8699 * In cases where the weight does not change often, we can use the
8700 * precalculated inverse to speed up arithmetics by turning divisions
8701 * into multiplications:
8702 */
8703const u32 sched_prio_to_wmult[40] = {
8704 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8705 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8706 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8707 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8708 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8709 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8710 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8711 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8712};
This page took 3.467312 seconds and 5 git commands to generate.