tracing: add sched_set_prio tracepoint
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
1da177e4
LT
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
8f4d37ec
PZ
173#ifdef CONFIG_SCHED_HRTICK
174/*
175 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 176 */
8f4d37ec 177
8f4d37ec
PZ
178static void hrtick_clear(struct rq *rq)
179{
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182}
183
8f4d37ec
PZ
184/*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188static enum hrtimer_restart hrtick(struct hrtimer *timer)
189{
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
05fa785c 194 raw_spin_lock(&rq->lock);
3e51f33f 195 update_rq_clock(rq);
8f4d37ec 196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 197 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
198
199 return HRTIMER_NORESTART;
200}
201
95e904c7 202#ifdef CONFIG_SMP
971ee28c 203
4961b6e1 204static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
205{
206 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 207
4961b6e1 208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
209}
210
31656519
PZ
211/*
212 * called from hardirq (IPI) context
213 */
214static void __hrtick_start(void *arg)
b328ca18 215{
31656519 216 struct rq *rq = arg;
b328ca18 217
05fa785c 218 raw_spin_lock(&rq->lock);
971ee28c 219 __hrtick_restart(rq);
31656519 220 rq->hrtick_csd_pending = 0;
05fa785c 221 raw_spin_unlock(&rq->lock);
b328ca18
PZ
222}
223
31656519
PZ
224/*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
029632fb 229void hrtick_start(struct rq *rq, u64 delay)
b328ca18 230{
31656519 231 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 241
cc584b21 242 hrtimer_set_expires(timer, time);
31656519
PZ
243
244 if (rq == this_rq()) {
971ee28c 245 __hrtick_restart(rq);
31656519 246 } else if (!rq->hrtick_csd_pending) {
c46fff2a 247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
248 rq->hrtick_csd_pending = 1;
249 }
b328ca18
PZ
250}
251
252static int
253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254{
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
31656519 264 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269}
270
fa748203 271static __init void init_hrtick(void)
b328ca18
PZ
272{
273 hotcpu_notifier(hotplug_hrtick, 0);
274}
31656519
PZ
275#else
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
029632fb 281void hrtick_start(struct rq *rq, u64 delay)
31656519 282{
86893335
WL
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
31656519 290}
b328ca18 291
006c75f1 292static inline void init_hrtick(void)
8f4d37ec 293{
8f4d37ec 294}
31656519 295#endif /* CONFIG_SMP */
8f4d37ec 296
31656519 297static void init_rq_hrtick(struct rq *rq)
8f4d37ec 298{
31656519
PZ
299#ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
8f4d37ec 301
31656519
PZ
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305#endif
8f4d37ec 306
31656519
PZ
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
8f4d37ec 309}
006c75f1 310#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
311static inline void hrtick_clear(struct rq *rq)
312{
313}
314
8f4d37ec
PZ
315static inline void init_rq_hrtick(struct rq *rq)
316{
317}
318
b328ca18
PZ
319static inline void init_hrtick(void)
320{
321}
006c75f1 322#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 323
5529578a
FW
324/*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327#define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340})
341
e3baac47 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
343/*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348static bool set_nr_and_not_polling(struct task_struct *p)
349{
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352}
e3baac47
PZ
353
354/*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360static bool set_nr_if_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
316c1608 363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376}
377
fd99f91a
PZ
378#else
379static bool set_nr_and_not_polling(struct task_struct *p)
380{
381 set_tsk_need_resched(p);
382 return true;
383}
e3baac47
PZ
384
385#ifdef CONFIG_SMP
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 return false;
389}
390#endif
fd99f91a
PZ
391#endif
392
76751049
PZ
393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394{
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415}
416
417void wake_up_q(struct wake_q_head *head)
418{
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437}
438
c24d20db 439/*
8875125e 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
8875125e 446void resched_curr(struct rq *rq)
c24d20db 447{
8875125e 448 struct task_struct *curr = rq->curr;
c24d20db
IM
449 int cpu;
450
8875125e 451 lockdep_assert_held(&rq->lock);
c24d20db 452
8875125e 453 if (test_tsk_need_resched(curr))
c24d20db
IM
454 return;
455
8875125e 456 cpu = cpu_of(rq);
fd99f91a 457
f27dde8d 458 if (cpu == smp_processor_id()) {
8875125e 459 set_tsk_need_resched(curr);
f27dde8d 460 set_preempt_need_resched();
c24d20db 461 return;
f27dde8d 462 }
c24d20db 463
8875125e 464 if (set_nr_and_not_polling(curr))
c24d20db 465 smp_send_reschedule(cpu);
dfc68f29
AL
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
468}
469
029632fb 470void resched_cpu(int cpu)
c24d20db
IM
471{
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
05fa785c 475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 476 return;
8875125e 477 resched_curr(rq);
05fa785c 478 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 479}
06d8308c 480
b021fe3e 481#ifdef CONFIG_SMP
3451d024 482#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
483/*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
bc7a34b8 491int get_nohz_timer_target(void)
83cd4fe2 492{
bc7a34b8 493 int i, cpu = smp_processor_id();
83cd4fe2
VP
494 struct sched_domain *sd;
495
9642d18e 496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
497 return cpu;
498
057f3fad 499 rcu_read_lock();
83cd4fe2 500 for_each_domain(cpu, sd) {
057f3fad 501 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
503 cpu = i;
504 goto unlock;
505 }
506 }
83cd4fe2 507 }
9642d18e
VH
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
057f3fad
PZ
511unlock:
512 rcu_read_unlock();
83cd4fe2
VP
513 return cpu;
514}
06d8308c
TG
515/*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
1c20091e 525static void wake_up_idle_cpu(int cpu)
06d8308c
TG
526{
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
67b9ca70 532 if (set_nr_and_not_polling(rq->idle))
06d8308c 533 smp_send_reschedule(cpu);
dfc68f29
AL
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
536}
537
c5bfece2 538static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 539{
53c5fa16
FW
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
c5bfece2 546 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
53c5fa16 549 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
550 return true;
551 }
552
553 return false;
554}
555
556void wake_up_nohz_cpu(int cpu)
557{
c5bfece2 558 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
559 wake_up_idle_cpu(cpu);
560}
561
ca38062e 562static inline bool got_nohz_idle_kick(void)
45bf76df 563{
1c792db7 564 int cpu = smp_processor_id();
873b4c65
VG
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
45bf76df
IM
578}
579
3451d024 580#else /* CONFIG_NO_HZ_COMMON */
45bf76df 581
ca38062e 582static inline bool got_nohz_idle_kick(void)
2069dd75 583{
ca38062e 584 return false;
2069dd75
PZ
585}
586
3451d024 587#endif /* CONFIG_NO_HZ_COMMON */
d842de87 588
ce831b38 589#ifdef CONFIG_NO_HZ_FULL
76d92ac3 590bool sched_can_stop_tick(struct rq *rq)
ce831b38 591{
76d92ac3
FW
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
1e78cdbd 598 /*
2548d546
PZ
599 * If there are more than one RR tasks, we need the tick to effect the
600 * actual RR behaviour.
1e78cdbd 601 */
76d92ac3
FW
602 if (rq->rt.rr_nr_running) {
603 if (rq->rt.rr_nr_running == 1)
604 return true;
605 else
606 return false;
1e78cdbd
RR
607 }
608
2548d546
PZ
609 /*
610 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
611 * forced preemption between FIFO tasks.
612 */
613 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
614 if (fifo_nr_running)
615 return true;
616
617 /*
618 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
619 * if there's more than one we need the tick for involuntary
620 * preemption.
621 */
622 if (rq->nr_running > 1)
541b8264 623 return false;
ce831b38 624
541b8264 625 return true;
ce831b38
FW
626}
627#endif /* CONFIG_NO_HZ_FULL */
d842de87 628
029632fb 629void sched_avg_update(struct rq *rq)
18d95a28 630{
e9e9250b
PZ
631 s64 period = sched_avg_period();
632
78becc27 633 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
634 /*
635 * Inline assembly required to prevent the compiler
636 * optimising this loop into a divmod call.
637 * See __iter_div_u64_rem() for another example of this.
638 */
639 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
640 rq->age_stamp += period;
641 rq->rt_avg /= 2;
642 }
18d95a28
PZ
643}
644
6d6bc0ad 645#endif /* CONFIG_SMP */
18d95a28 646
a790de99
PT
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 649/*
8277434e
PT
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 654 */
029632fb 655int walk_tg_tree_from(struct task_group *from,
8277434e 656 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
657{
658 struct task_group *parent, *child;
eb755805 659 int ret;
c09595f6 660
8277434e
PT
661 parent = from;
662
c09595f6 663down:
eb755805
PZ
664 ret = (*down)(parent, data);
665 if (ret)
8277434e 666 goto out;
c09595f6
PZ
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
eb755805 674 ret = (*up)(parent, data);
8277434e
PT
675 if (ret || parent == from)
676 goto out;
c09595f6
PZ
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
8277434e 682out:
eb755805 683 return ret;
c09595f6
PZ
684}
685
029632fb 686int tg_nop(struct task_group *tg, void *data)
eb755805 687{
e2b245f8 688 return 0;
eb755805 689}
18d95a28
PZ
690#endif
691
45bf76df
IM
692static void set_load_weight(struct task_struct *p)
693{
f05998d4
NR
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
dd41f596
IM
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
20f9cd2a 700 if (idle_policy(p->policy)) {
c8b28116 701 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 702 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
703 return;
704 }
71f8bd46 705
ed82b8a1
AK
706 load->weight = scale_load(sched_prio_to_weight[prio]);
707 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
708}
709
1de64443 710static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 711{
a64692a3 712 update_rq_clock(rq);
1de64443
PZ
713 if (!(flags & ENQUEUE_RESTORE))
714 sched_info_queued(rq, p);
371fd7e7 715 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
716}
717
1de64443 718static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 719{
a64692a3 720 update_rq_clock(rq);
1de64443
PZ
721 if (!(flags & DEQUEUE_SAVE))
722 sched_info_dequeued(rq, p);
371fd7e7 723 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
724}
725
029632fb 726void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
727{
728 if (task_contributes_to_load(p))
729 rq->nr_uninterruptible--;
730
371fd7e7 731 enqueue_task(rq, p, flags);
1e3c88bd
PZ
732}
733
029632fb 734void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
735{
736 if (task_contributes_to_load(p))
737 rq->nr_uninterruptible++;
738
371fd7e7 739 dequeue_task(rq, p, flags);
1e3c88bd
PZ
740}
741
fe44d621 742static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 743{
095c0aa8
GC
744/*
745 * In theory, the compile should just see 0 here, and optimize out the call
746 * to sched_rt_avg_update. But I don't trust it...
747 */
748#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
749 s64 steal = 0, irq_delta = 0;
750#endif
751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
753
754 /*
755 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 * this case when a previous update_rq_clock() happened inside a
757 * {soft,}irq region.
758 *
759 * When this happens, we stop ->clock_task and only update the
760 * prev_irq_time stamp to account for the part that fit, so that a next
761 * update will consume the rest. This ensures ->clock_task is
762 * monotonic.
763 *
764 * It does however cause some slight miss-attribution of {soft,}irq
765 * time, a more accurate solution would be to update the irq_time using
766 * the current rq->clock timestamp, except that would require using
767 * atomic ops.
768 */
769 if (irq_delta > delta)
770 irq_delta = delta;
771
772 rq->prev_irq_time += irq_delta;
773 delta -= irq_delta;
095c0aa8
GC
774#endif
775#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 776 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
777 steal = paravirt_steal_clock(cpu_of(rq));
778 steal -= rq->prev_steal_time_rq;
779
780 if (unlikely(steal > delta))
781 steal = delta;
782
095c0aa8 783 rq->prev_steal_time_rq += steal;
095c0aa8
GC
784 delta -= steal;
785 }
786#endif
787
fe44d621
PZ
788 rq->clock_task += delta;
789
095c0aa8 790#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 791 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
792 sched_rt_avg_update(rq, irq_delta + steal);
793#endif
aa483808
VP
794}
795
34f971f6
PZ
796void sched_set_stop_task(int cpu, struct task_struct *stop)
797{
798 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
799 struct task_struct *old_stop = cpu_rq(cpu)->stop;
800
801 if (stop) {
802 /*
803 * Make it appear like a SCHED_FIFO task, its something
804 * userspace knows about and won't get confused about.
805 *
806 * Also, it will make PI more or less work without too
807 * much confusion -- but then, stop work should not
808 * rely on PI working anyway.
809 */
810 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
811
812 stop->sched_class = &stop_sched_class;
813 }
814
815 cpu_rq(cpu)->stop = stop;
816
817 if (old_stop) {
818 /*
819 * Reset it back to a normal scheduling class so that
820 * it can die in pieces.
821 */
822 old_stop->sched_class = &rt_sched_class;
823 }
824}
825
14531189 826/*
dd41f596 827 * __normal_prio - return the priority that is based on the static prio
14531189 828 */
14531189
IM
829static inline int __normal_prio(struct task_struct *p)
830{
dd41f596 831 return p->static_prio;
14531189
IM
832}
833
b29739f9
IM
834/*
835 * Calculate the expected normal priority: i.e. priority
836 * without taking RT-inheritance into account. Might be
837 * boosted by interactivity modifiers. Changes upon fork,
838 * setprio syscalls, and whenever the interactivity
839 * estimator recalculates.
840 */
36c8b586 841static inline int normal_prio(struct task_struct *p)
b29739f9
IM
842{
843 int prio;
844
aab03e05
DF
845 if (task_has_dl_policy(p))
846 prio = MAX_DL_PRIO-1;
847 else if (task_has_rt_policy(p))
b29739f9
IM
848 prio = MAX_RT_PRIO-1 - p->rt_priority;
849 else
850 prio = __normal_prio(p);
851 return prio;
852}
853
854/*
855 * Calculate the current priority, i.e. the priority
856 * taken into account by the scheduler. This value might
857 * be boosted by RT tasks, or might be boosted by
858 * interactivity modifiers. Will be RT if the task got
859 * RT-boosted. If not then it returns p->normal_prio.
860 */
36c8b586 861static int effective_prio(struct task_struct *p)
b29739f9
IM
862{
863 p->normal_prio = normal_prio(p);
864 /*
865 * If we are RT tasks or we were boosted to RT priority,
866 * keep the priority unchanged. Otherwise, update priority
867 * to the normal priority:
868 */
869 if (!rt_prio(p->prio))
870 return p->normal_prio;
871 return p->prio;
872}
873
1da177e4
LT
874/**
875 * task_curr - is this task currently executing on a CPU?
876 * @p: the task in question.
e69f6186
YB
877 *
878 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 879 */
36c8b586 880inline int task_curr(const struct task_struct *p)
1da177e4
LT
881{
882 return cpu_curr(task_cpu(p)) == p;
883}
884
67dfa1b7 885/*
4c9a4bc8
PZ
886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
887 * use the balance_callback list if you want balancing.
888 *
889 * this means any call to check_class_changed() must be followed by a call to
890 * balance_callback().
67dfa1b7 891 */
cb469845
SR
892static inline void check_class_changed(struct rq *rq, struct task_struct *p,
893 const struct sched_class *prev_class,
da7a735e 894 int oldprio)
cb469845
SR
895{
896 if (prev_class != p->sched_class) {
897 if (prev_class->switched_from)
da7a735e 898 prev_class->switched_from(rq, p);
4c9a4bc8 899
da7a735e 900 p->sched_class->switched_to(rq, p);
2d3d891d 901 } else if (oldprio != p->prio || dl_task(p))
da7a735e 902 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
903}
904
029632fb 905void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
906{
907 const struct sched_class *class;
908
909 if (p->sched_class == rq->curr->sched_class) {
910 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
911 } else {
912 for_each_class(class) {
913 if (class == rq->curr->sched_class)
914 break;
915 if (class == p->sched_class) {
8875125e 916 resched_curr(rq);
1e5a7405
PZ
917 break;
918 }
919 }
920 }
921
922 /*
923 * A queue event has occurred, and we're going to schedule. In
924 * this case, we can save a useless back to back clock update.
925 */
da0c1e65 926 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 927 rq_clock_skip_update(rq, true);
1e5a7405
PZ
928}
929
1da177e4 930#ifdef CONFIG_SMP
5cc389bc
PZ
931/*
932 * This is how migration works:
933 *
934 * 1) we invoke migration_cpu_stop() on the target CPU using
935 * stop_one_cpu().
936 * 2) stopper starts to run (implicitly forcing the migrated thread
937 * off the CPU)
938 * 3) it checks whether the migrated task is still in the wrong runqueue.
939 * 4) if it's in the wrong runqueue then the migration thread removes
940 * it and puts it into the right queue.
941 * 5) stopper completes and stop_one_cpu() returns and the migration
942 * is done.
943 */
944
945/*
946 * move_queued_task - move a queued task to new rq.
947 *
948 * Returns (locked) new rq. Old rq's lock is released.
949 */
5e16bbc2 950static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 951{
5cc389bc
PZ
952 lockdep_assert_held(&rq->lock);
953
5cc389bc 954 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 955 dequeue_task(rq, p, 0);
5cc389bc
PZ
956 set_task_cpu(p, new_cpu);
957 raw_spin_unlock(&rq->lock);
958
959 rq = cpu_rq(new_cpu);
960
961 raw_spin_lock(&rq->lock);
962 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 963 enqueue_task(rq, p, 0);
3ea94de1 964 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
965 check_preempt_curr(rq, p, 0);
966
967 return rq;
968}
969
970struct migration_arg {
971 struct task_struct *task;
972 int dest_cpu;
973};
974
975/*
976 * Move (not current) task off this cpu, onto dest cpu. We're doing
977 * this because either it can't run here any more (set_cpus_allowed()
978 * away from this CPU, or CPU going down), or because we're
979 * attempting to rebalance this task on exec (sched_exec).
980 *
981 * So we race with normal scheduler movements, but that's OK, as long
982 * as the task is no longer on this CPU.
5cc389bc 983 */
5e16bbc2 984static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 985{
5cc389bc 986 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 987 return rq;
5cc389bc
PZ
988
989 /* Affinity changed (again). */
990 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 991 return rq;
5cc389bc 992
5e16bbc2
PZ
993 rq = move_queued_task(rq, p, dest_cpu);
994
995 return rq;
5cc389bc
PZ
996}
997
998/*
999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003static int migration_cpu_stop(void *data)
1004{
1005 struct migration_arg *arg = data;
5e16bbc2
PZ
1006 struct task_struct *p = arg->task;
1007 struct rq *rq = this_rq();
5cc389bc
PZ
1008
1009 /*
1010 * The original target cpu might have gone down and we might
1011 * be on another cpu but it doesn't matter.
1012 */
1013 local_irq_disable();
1014 /*
1015 * We need to explicitly wake pending tasks before running
1016 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018 */
1019 sched_ttwu_pending();
5e16bbc2
PZ
1020
1021 raw_spin_lock(&p->pi_lock);
1022 raw_spin_lock(&rq->lock);
1023 /*
1024 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026 * we're holding p->pi_lock.
1027 */
1028 if (task_rq(p) == rq && task_on_rq_queued(p))
1029 rq = __migrate_task(rq, p, arg->dest_cpu);
1030 raw_spin_unlock(&rq->lock);
1031 raw_spin_unlock(&p->pi_lock);
1032
5cc389bc
PZ
1033 local_irq_enable();
1034 return 0;
1035}
1036
c5b28038
PZ
1037/*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1042{
5cc389bc
PZ
1043 cpumask_copy(&p->cpus_allowed, new_mask);
1044 p->nr_cpus_allowed = cpumask_weight(new_mask);
1045}
1046
c5b28038
PZ
1047void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1048{
6c37067e
PZ
1049 struct rq *rq = task_rq(p);
1050 bool queued, running;
1051
c5b28038 1052 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1053
1054 queued = task_on_rq_queued(p);
1055 running = task_current(rq, p);
1056
1057 if (queued) {
1058 /*
1059 * Because __kthread_bind() calls this on blocked tasks without
1060 * holding rq->lock.
1061 */
1062 lockdep_assert_held(&rq->lock);
1de64443 1063 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1064 }
1065 if (running)
1066 put_prev_task(rq, p);
1067
c5b28038 1068 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1069
1070 if (running)
1071 p->sched_class->set_curr_task(rq);
1072 if (queued)
1de64443 1073 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1074}
1075
5cc389bc
PZ
1076/*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
1084 */
25834c73
PZ
1085static int __set_cpus_allowed_ptr(struct task_struct *p,
1086 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1087{
1088 unsigned long flags;
1089 struct rq *rq;
1090 unsigned int dest_cpu;
1091 int ret = 0;
1092
1093 rq = task_rq_lock(p, &flags);
1094
25834c73
PZ
1095 /*
1096 * Must re-check here, to close a race against __kthread_bind(),
1097 * sched_setaffinity() is not guaranteed to observe the flag.
1098 */
1099 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100 ret = -EINVAL;
1101 goto out;
1102 }
1103
5cc389bc
PZ
1104 if (cpumask_equal(&p->cpus_allowed, new_mask))
1105 goto out;
1106
1107 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1108 ret = -EINVAL;
1109 goto out;
1110 }
1111
1112 do_set_cpus_allowed(p, new_mask);
1113
1114 /* Can the task run on the task's current CPU? If so, we're done */
1115 if (cpumask_test_cpu(task_cpu(p), new_mask))
1116 goto out;
1117
1118 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119 if (task_running(rq, p) || p->state == TASK_WAKING) {
1120 struct migration_arg arg = { p, dest_cpu };
1121 /* Need help from migration thread: drop lock and wait. */
1122 task_rq_unlock(rq, p, &flags);
1123 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124 tlb_migrate_finish(p->mm);
1125 return 0;
cbce1a68
PZ
1126 } else if (task_on_rq_queued(p)) {
1127 /*
1128 * OK, since we're going to drop the lock immediately
1129 * afterwards anyway.
1130 */
1131 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1132 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1133 lockdep_pin_lock(&rq->lock);
1134 }
5cc389bc
PZ
1135out:
1136 task_rq_unlock(rq, p, &flags);
1137
1138 return ret;
1139}
25834c73
PZ
1140
1141int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142{
1143 return __set_cpus_allowed_ptr(p, new_mask, false);
1144}
5cc389bc
PZ
1145EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
dd41f596 1147void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1148{
e2912009
PZ
1149#ifdef CONFIG_SCHED_DEBUG
1150 /*
1151 * We should never call set_task_cpu() on a blocked task,
1152 * ttwu() will sort out the placement.
1153 */
077614ee 1154 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1155 !p->on_rq);
0122ec5b 1156
3ea94de1
JP
1157 /*
1158 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160 * time relying on p->on_rq.
1161 */
1162 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163 p->sched_class == &fair_sched_class &&
1164 (p->on_rq && !task_on_rq_migrating(p)));
1165
0122ec5b 1166#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1167 /*
1168 * The caller should hold either p->pi_lock or rq->lock, when changing
1169 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170 *
1171 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1172 * see task_group().
6c6c54e1
PZ
1173 *
1174 * Furthermore, all task_rq users should acquire both locks, see
1175 * task_rq_lock().
1176 */
0122ec5b
PZ
1177 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178 lockdep_is_held(&task_rq(p)->lock)));
1179#endif
e2912009
PZ
1180#endif
1181
de1d7286 1182 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1183
0c69774e 1184 if (task_cpu(p) != new_cpu) {
0a74bef8 1185 if (p->sched_class->migrate_task_rq)
5a4fd036 1186 p->sched_class->migrate_task_rq(p);
0c69774e 1187 p->se.nr_migrations++;
ff303e66 1188 perf_event_task_migrate(p);
0c69774e 1189 }
dd41f596
IM
1190
1191 __set_task_cpu(p, new_cpu);
c65cc870
IM
1192}
1193
ac66f547
PZ
1194static void __migrate_swap_task(struct task_struct *p, int cpu)
1195{
da0c1e65 1196 if (task_on_rq_queued(p)) {
ac66f547
PZ
1197 struct rq *src_rq, *dst_rq;
1198
1199 src_rq = task_rq(p);
1200 dst_rq = cpu_rq(cpu);
1201
3ea94de1 1202 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1203 deactivate_task(src_rq, p, 0);
1204 set_task_cpu(p, cpu);
1205 activate_task(dst_rq, p, 0);
3ea94de1 1206 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1207 check_preempt_curr(dst_rq, p, 0);
1208 } else {
1209 /*
1210 * Task isn't running anymore; make it appear like we migrated
1211 * it before it went to sleep. This means on wakeup we make the
1212 * previous cpu our targer instead of where it really is.
1213 */
1214 p->wake_cpu = cpu;
1215 }
1216}
1217
1218struct migration_swap_arg {
1219 struct task_struct *src_task, *dst_task;
1220 int src_cpu, dst_cpu;
1221};
1222
1223static int migrate_swap_stop(void *data)
1224{
1225 struct migration_swap_arg *arg = data;
1226 struct rq *src_rq, *dst_rq;
1227 int ret = -EAGAIN;
1228
62694cd5
PZ
1229 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230 return -EAGAIN;
1231
ac66f547
PZ
1232 src_rq = cpu_rq(arg->src_cpu);
1233 dst_rq = cpu_rq(arg->dst_cpu);
1234
74602315
PZ
1235 double_raw_lock(&arg->src_task->pi_lock,
1236 &arg->dst_task->pi_lock);
ac66f547 1237 double_rq_lock(src_rq, dst_rq);
62694cd5 1238
ac66f547
PZ
1239 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240 goto unlock;
1241
1242 if (task_cpu(arg->src_task) != arg->src_cpu)
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246 goto unlock;
1247
1248 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249 goto unlock;
1250
1251 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1252 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254 ret = 0;
1255
1256unlock:
1257 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1258 raw_spin_unlock(&arg->dst_task->pi_lock);
1259 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1260
1261 return ret;
1262}
1263
1264/*
1265 * Cross migrate two tasks
1266 */
1267int migrate_swap(struct task_struct *cur, struct task_struct *p)
1268{
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1271
ac66f547
PZ
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
1274 .src_cpu = task_cpu(cur),
1275 .dst_task = p,
1276 .dst_cpu = task_cpu(p),
1277 };
1278
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1281
6acce3ef
PZ
1282 /*
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1285 */
ac66f547
PZ
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290 goto out;
1291
1292 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293 goto out;
1294
286549dc 1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
ac66f547
PZ
1299 return ret;
1300}
1301
1da177e4
LT
1302/*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
85ba2d86
RM
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change. If it changes, i.e. @p might have woken up,
1307 * then return zero. When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count). If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1da177e4
LT
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
85ba2d86 1318unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1319{
1320 unsigned long flags;
da0c1e65 1321 int running, queued;
85ba2d86 1322 unsigned long ncsw;
70b97a7f 1323 struct rq *rq;
1da177e4 1324
3a5c359a
AK
1325 for (;;) {
1326 /*
1327 * We do the initial early heuristics without holding
1328 * any task-queue locks at all. We'll only try to get
1329 * the runqueue lock when things look like they will
1330 * work out!
1331 */
1332 rq = task_rq(p);
fa490cfd 1333
3a5c359a
AK
1334 /*
1335 * If the task is actively running on another CPU
1336 * still, just relax and busy-wait without holding
1337 * any locks.
1338 *
1339 * NOTE! Since we don't hold any locks, it's not
1340 * even sure that "rq" stays as the right runqueue!
1341 * But we don't care, since "task_running()" will
1342 * return false if the runqueue has changed and p
1343 * is actually now running somewhere else!
1344 */
85ba2d86
RM
1345 while (task_running(rq, p)) {
1346 if (match_state && unlikely(p->state != match_state))
1347 return 0;
3a5c359a 1348 cpu_relax();
85ba2d86 1349 }
fa490cfd 1350
3a5c359a
AK
1351 /*
1352 * Ok, time to look more closely! We need the rq
1353 * lock now, to be *sure*. If we're wrong, we'll
1354 * just go back and repeat.
1355 */
1356 rq = task_rq_lock(p, &flags);
27a9da65 1357 trace_sched_wait_task(p);
3a5c359a 1358 running = task_running(rq, p);
da0c1e65 1359 queued = task_on_rq_queued(p);
85ba2d86 1360 ncsw = 0;
f31e11d8 1361 if (!match_state || p->state == match_state)
93dcf55f 1362 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1363 task_rq_unlock(rq, p, &flags);
fa490cfd 1364
85ba2d86
RM
1365 /*
1366 * If it changed from the expected state, bail out now.
1367 */
1368 if (unlikely(!ncsw))
1369 break;
1370
3a5c359a
AK
1371 /*
1372 * Was it really running after all now that we
1373 * checked with the proper locks actually held?
1374 *
1375 * Oops. Go back and try again..
1376 */
1377 if (unlikely(running)) {
1378 cpu_relax();
1379 continue;
1380 }
fa490cfd 1381
3a5c359a
AK
1382 /*
1383 * It's not enough that it's not actively running,
1384 * it must be off the runqueue _entirely_, and not
1385 * preempted!
1386 *
80dd99b3 1387 * So if it was still runnable (but just not actively
3a5c359a
AK
1388 * running right now), it's preempted, and we should
1389 * yield - it could be a while.
1390 */
da0c1e65 1391 if (unlikely(queued)) {
8eb90c30
TG
1392 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394 set_current_state(TASK_UNINTERRUPTIBLE);
1395 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1396 continue;
1397 }
fa490cfd 1398
3a5c359a
AK
1399 /*
1400 * Ahh, all good. It wasn't running, and it wasn't
1401 * runnable, which means that it will never become
1402 * running in the future either. We're all done!
1403 */
1404 break;
1405 }
85ba2d86
RM
1406
1407 return ncsw;
1da177e4
LT
1408}
1409
1410/***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
25985edc 1417 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
36c8b586 1423void kick_process(struct task_struct *p)
1da177e4
LT
1424{
1425 int cpu;
1426
1427 preempt_disable();
1428 cpu = task_cpu(p);
1429 if ((cpu != smp_processor_id()) && task_curr(p))
1430 smp_send_reschedule(cpu);
1431 preempt_enable();
1432}
b43e3521 1433EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1434
30da688e 1435/*
013fdb80 1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1437 */
5da9a0fb
PZ
1438static int select_fallback_rq(int cpu, struct task_struct *p)
1439{
aa00d89c
TC
1440 int nid = cpu_to_node(cpu);
1441 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1442 enum { cpuset, possible, fail } state = cpuset;
1443 int dest_cpu;
5da9a0fb 1444
aa00d89c
TC
1445 /*
1446 * If the node that the cpu is on has been offlined, cpu_to_node()
1447 * will return -1. There is no cpu on the node, and we should
1448 * select the cpu on the other node.
1449 */
1450 if (nid != -1) {
1451 nodemask = cpumask_of_node(nid);
1452
1453 /* Look for allowed, online CPU in same node. */
1454 for_each_cpu(dest_cpu, nodemask) {
1455 if (!cpu_online(dest_cpu))
1456 continue;
1457 if (!cpu_active(dest_cpu))
1458 continue;
1459 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460 return dest_cpu;
1461 }
2baab4e9 1462 }
5da9a0fb 1463
2baab4e9
PZ
1464 for (;;) {
1465 /* Any allowed, online CPU? */
e3831edd 1466 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1467 if (!cpu_online(dest_cpu))
1468 continue;
1469 if (!cpu_active(dest_cpu))
1470 continue;
1471 goto out;
1472 }
5da9a0fb 1473
e73e85f0 1474 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1475 switch (state) {
1476 case cpuset:
e73e85f0
ON
1477 if (IS_ENABLED(CONFIG_CPUSETS)) {
1478 cpuset_cpus_allowed_fallback(p);
1479 state = possible;
1480 break;
1481 }
1482 /* fall-through */
2baab4e9
PZ
1483 case possible:
1484 do_set_cpus_allowed(p, cpu_possible_mask);
1485 state = fail;
1486 break;
1487
1488 case fail:
1489 BUG();
1490 break;
1491 }
1492 }
1493
1494out:
1495 if (state != cpuset) {
1496 /*
1497 * Don't tell them about moving exiting tasks or
1498 * kernel threads (both mm NULL), since they never
1499 * leave kernel.
1500 */
1501 if (p->mm && printk_ratelimit()) {
aac74dc4 1502 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1503 task_pid_nr(p), p->comm, cpu);
1504 }
5da9a0fb
PZ
1505 }
1506
1507 return dest_cpu;
1508}
1509
e2912009 1510/*
013fdb80 1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1512 */
970b13ba 1513static inline
ac66f547 1514int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1515{
cbce1a68
PZ
1516 lockdep_assert_held(&p->pi_lock);
1517
6c1d9410
WL
1518 if (p->nr_cpus_allowed > 1)
1519 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1520
1521 /*
1522 * In order not to call set_task_cpu() on a blocking task we need
1523 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524 * cpu.
1525 *
1526 * Since this is common to all placement strategies, this lives here.
1527 *
1528 * [ this allows ->select_task() to simply return task_cpu(p) and
1529 * not worry about this generic constraint ]
1530 */
fa17b507 1531 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1532 !cpu_online(cpu)))
5da9a0fb 1533 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1534
1535 return cpu;
970b13ba 1536}
09a40af5
MG
1537
1538static void update_avg(u64 *avg, u64 sample)
1539{
1540 s64 diff = sample - *avg;
1541 *avg += diff >> 3;
1542}
25834c73
PZ
1543
1544#else
1545
1546static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547 const struct cpumask *new_mask, bool check)
1548{
1549 return set_cpus_allowed_ptr(p, new_mask);
1550}
1551
5cc389bc 1552#endif /* CONFIG_SMP */
970b13ba 1553
d7c01d27 1554static void
b84cb5df 1555ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1556{
d7c01d27 1557#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1558 struct rq *rq = this_rq();
1559
d7c01d27
PZ
1560#ifdef CONFIG_SMP
1561 int this_cpu = smp_processor_id();
1562
1563 if (cpu == this_cpu) {
1564 schedstat_inc(rq, ttwu_local);
1565 schedstat_inc(p, se.statistics.nr_wakeups_local);
1566 } else {
1567 struct sched_domain *sd;
1568
1569 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1570 rcu_read_lock();
d7c01d27
PZ
1571 for_each_domain(this_cpu, sd) {
1572 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573 schedstat_inc(sd, ttwu_wake_remote);
1574 break;
1575 }
1576 }
057f3fad 1577 rcu_read_unlock();
d7c01d27 1578 }
f339b9dc
PZ
1579
1580 if (wake_flags & WF_MIGRATED)
1581 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
d7c01d27
PZ
1583#endif /* CONFIG_SMP */
1584
1585 schedstat_inc(rq, ttwu_count);
9ed3811a 1586 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1587
1588 if (wake_flags & WF_SYNC)
9ed3811a 1589 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1590
d7c01d27
PZ
1591#endif /* CONFIG_SCHEDSTATS */
1592}
1593
1de64443 1594static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1595{
9ed3811a 1596 activate_task(rq, p, en_flags);
da0c1e65 1597 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1598
1599 /* if a worker is waking up, notify workqueue */
1600 if (p->flags & PF_WQ_WORKER)
1601 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1602}
1603
23f41eeb
PZ
1604/*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
89363381 1607static void
23f41eeb 1608ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1609{
9ed3811a 1610 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1611 p->state = TASK_RUNNING;
fbd705a0
PZ
1612 trace_sched_wakeup(p);
1613
9ed3811a 1614#ifdef CONFIG_SMP
4c9a4bc8
PZ
1615 if (p->sched_class->task_woken) {
1616 /*
cbce1a68
PZ
1617 * Our task @p is fully woken up and running; so its safe to
1618 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1619 */
cbce1a68 1620 lockdep_unpin_lock(&rq->lock);
9ed3811a 1621 p->sched_class->task_woken(rq, p);
cbce1a68 1622 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1623 }
9ed3811a 1624
e69c6341 1625 if (rq->idle_stamp) {
78becc27 1626 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1627 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1628
abfafa54
JL
1629 update_avg(&rq->avg_idle, delta);
1630
1631 if (rq->avg_idle > max)
9ed3811a 1632 rq->avg_idle = max;
abfafa54 1633
9ed3811a
TH
1634 rq->idle_stamp = 0;
1635 }
1636#endif
1637}
1638
c05fbafb
PZ
1639static void
1640ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1641{
cbce1a68
PZ
1642 lockdep_assert_held(&rq->lock);
1643
c05fbafb
PZ
1644#ifdef CONFIG_SMP
1645 if (p->sched_contributes_to_load)
1646 rq->nr_uninterruptible--;
1647#endif
1648
1649 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650 ttwu_do_wakeup(rq, p, wake_flags);
1651}
1652
1653/*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
1658 */
1659static int ttwu_remote(struct task_struct *p, int wake_flags)
1660{
1661 struct rq *rq;
1662 int ret = 0;
1663
1664 rq = __task_rq_lock(p);
da0c1e65 1665 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1666 /* check_preempt_curr() may use rq clock */
1667 update_rq_clock(rq);
c05fbafb
PZ
1668 ttwu_do_wakeup(rq, p, wake_flags);
1669 ret = 1;
1670 }
1671 __task_rq_unlock(rq);
1672
1673 return ret;
1674}
1675
317f3941 1676#ifdef CONFIG_SMP
e3baac47 1677void sched_ttwu_pending(void)
317f3941
PZ
1678{
1679 struct rq *rq = this_rq();
fa14ff4a
PZ
1680 struct llist_node *llist = llist_del_all(&rq->wake_list);
1681 struct task_struct *p;
e3baac47 1682 unsigned long flags;
317f3941 1683
e3baac47
PZ
1684 if (!llist)
1685 return;
1686
1687 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1688 lockdep_pin_lock(&rq->lock);
317f3941 1689
fa14ff4a
PZ
1690 while (llist) {
1691 p = llist_entry(llist, struct task_struct, wake_entry);
1692 llist = llist_next(llist);
317f3941
PZ
1693 ttwu_do_activate(rq, p, 0);
1694 }
1695
cbce1a68 1696 lockdep_unpin_lock(&rq->lock);
e3baac47 1697 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1698}
1699
1700void scheduler_ipi(void)
1701{
f27dde8d
PZ
1702 /*
1703 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705 * this IPI.
1706 */
8cb75e0c 1707 preempt_fold_need_resched();
f27dde8d 1708
fd2ac4f4 1709 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1710 return;
1711
1712 /*
1713 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714 * traditionally all their work was done from the interrupt return
1715 * path. Now that we actually do some work, we need to make sure
1716 * we do call them.
1717 *
1718 * Some archs already do call them, luckily irq_enter/exit nest
1719 * properly.
1720 *
1721 * Arguably we should visit all archs and update all handlers,
1722 * however a fair share of IPIs are still resched only so this would
1723 * somewhat pessimize the simple resched case.
1724 */
1725 irq_enter();
fa14ff4a 1726 sched_ttwu_pending();
ca38062e
SS
1727
1728 /*
1729 * Check if someone kicked us for doing the nohz idle load balance.
1730 */
873b4c65 1731 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1732 this_rq()->idle_balance = 1;
ca38062e 1733 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1734 }
c5d753a5 1735 irq_exit();
317f3941
PZ
1736}
1737
1738static void ttwu_queue_remote(struct task_struct *p, int cpu)
1739{
e3baac47
PZ
1740 struct rq *rq = cpu_rq(cpu);
1741
1742 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743 if (!set_nr_if_polling(rq->idle))
1744 smp_send_reschedule(cpu);
1745 else
1746 trace_sched_wake_idle_without_ipi(cpu);
1747 }
317f3941 1748}
d6aa8f85 1749
f6be8af1
CL
1750void wake_up_if_idle(int cpu)
1751{
1752 struct rq *rq = cpu_rq(cpu);
1753 unsigned long flags;
1754
fd7de1e8
AL
1755 rcu_read_lock();
1756
1757 if (!is_idle_task(rcu_dereference(rq->curr)))
1758 goto out;
f6be8af1
CL
1759
1760 if (set_nr_if_polling(rq->idle)) {
1761 trace_sched_wake_idle_without_ipi(cpu);
1762 } else {
1763 raw_spin_lock_irqsave(&rq->lock, flags);
1764 if (is_idle_task(rq->curr))
1765 smp_send_reschedule(cpu);
1766 /* Else cpu is not in idle, do nothing here */
1767 raw_spin_unlock_irqrestore(&rq->lock, flags);
1768 }
fd7de1e8
AL
1769
1770out:
1771 rcu_read_unlock();
f6be8af1
CL
1772}
1773
39be3501 1774bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1775{
1776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777}
d6aa8f85 1778#endif /* CONFIG_SMP */
317f3941 1779
c05fbafb
PZ
1780static void ttwu_queue(struct task_struct *p, int cpu)
1781{
1782 struct rq *rq = cpu_rq(cpu);
1783
17d9f311 1784#if defined(CONFIG_SMP)
39be3501 1785 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1786 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1787 ttwu_queue_remote(p, cpu);
1788 return;
1789 }
1790#endif
1791
c05fbafb 1792 raw_spin_lock(&rq->lock);
cbce1a68 1793 lockdep_pin_lock(&rq->lock);
c05fbafb 1794 ttwu_do_activate(rq, p, 0);
cbce1a68 1795 lockdep_unpin_lock(&rq->lock);
c05fbafb 1796 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1797}
1798
8643cda5
PZ
1799/*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 * MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 * rq(c1)->lock (if not at the same time, then in that order).
1813 * C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 * CPU0 CPU1 CPU2
1822 *
1823 * LOCK rq(0)->lock
1824 * sched-out X
1825 * sched-in Y
1826 * UNLOCK rq(0)->lock
1827 *
1828 * LOCK rq(0)->lock // orders against CPU0
1829 * dequeue X
1830 * UNLOCK rq(0)->lock
1831 *
1832 * LOCK rq(1)->lock
1833 * enqueue X
1834 * UNLOCK rq(1)->lock
1835 *
1836 * LOCK rq(1)->lock // orders against CPU2
1837 * sched-out Z
1838 * sched-in X
1839 * UNLOCK rq(1)->lock
1840 *
1841 *
1842 * BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 * 1) smp_store_release(X->on_cpu, 0)
1849 * 2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 * LOCK rq(0)->lock LOCK X->pi_lock
1856 * dequeue X
1857 * sched-out X
1858 * smp_store_release(X->on_cpu, 0);
1859 *
1860 * smp_cond_acquire(!X->on_cpu);
1861 * X->state = WAKING
1862 * set_task_cpu(X,2)
1863 *
1864 * LOCK rq(2)->lock
1865 * enqueue X
1866 * X->state = RUNNING
1867 * UNLOCK rq(2)->lock
1868 *
1869 * LOCK rq(2)->lock // orders against CPU1
1870 * sched-out Z
1871 * sched-in X
1872 * UNLOCK rq(2)->lock
1873 *
1874 * UNLOCK X->pi_lock
1875 * UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
9ed3811a 1890/**
1da177e4 1891 * try_to_wake_up - wake up a thread
9ed3811a 1892 * @p: the thread to be awakened
1da177e4 1893 * @state: the mask of task states that can be woken
9ed3811a 1894 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
1901 *
e69f6186 1902 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1903 * or @state didn't match @p's state.
1da177e4 1904 */
e4a52bcb
PZ
1905static int
1906try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1907{
1da177e4 1908 unsigned long flags;
c05fbafb 1909 int cpu, success = 0;
2398f2c6 1910
e0acd0a6
ON
1911 /*
1912 * If we are going to wake up a thread waiting for CONDITION we
1913 * need to ensure that CONDITION=1 done by the caller can not be
1914 * reordered with p->state check below. This pairs with mb() in
1915 * set_current_state() the waiting thread does.
1916 */
1917 smp_mb__before_spinlock();
013fdb80 1918 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1919 if (!(p->state & state))
1da177e4
LT
1920 goto out;
1921
fbd705a0
PZ
1922 trace_sched_waking(p);
1923
c05fbafb 1924 success = 1; /* we're going to change ->state */
1da177e4 1925 cpu = task_cpu(p);
1da177e4 1926
c05fbafb
PZ
1927 if (p->on_rq && ttwu_remote(p, wake_flags))
1928 goto stat;
1da177e4 1929
1da177e4 1930#ifdef CONFIG_SMP
ecf7d01c
PZ
1931 /*
1932 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933 * possible to, falsely, observe p->on_cpu == 0.
1934 *
1935 * One must be running (->on_cpu == 1) in order to remove oneself
1936 * from the runqueue.
1937 *
1938 * [S] ->on_cpu = 1; [L] ->on_rq
1939 * UNLOCK rq->lock
1940 * RMB
1941 * LOCK rq->lock
1942 * [S] ->on_rq = 0; [L] ->on_cpu
1943 *
1944 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945 * from the consecutive calls to schedule(); the first switching to our
1946 * task, the second putting it to sleep.
1947 */
1948 smp_rmb();
1949
e9c84311 1950 /*
c05fbafb
PZ
1951 * If the owning (remote) cpu is still in the middle of schedule() with
1952 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
1953 *
1954 * Pairs with the smp_store_release() in finish_lock_switch().
1955 *
1956 * This ensures that tasks getting woken will be fully ordered against
1957 * their previous state and preserve Program Order.
0970d299 1958 */
b3e0b1b6 1959 smp_cond_acquire(!p->on_cpu);
1da177e4 1960
a8e4f2ea 1961 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1962 p->state = TASK_WAKING;
e7693a36 1963
e4a52bcb 1964 if (p->sched_class->task_waking)
74f8e4b2 1965 p->sched_class->task_waking(p);
efbbd05a 1966
ac66f547 1967 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1968 if (task_cpu(p) != cpu) {
1969 wake_flags |= WF_MIGRATED;
e4a52bcb 1970 set_task_cpu(p, cpu);
f339b9dc 1971 }
1da177e4 1972#endif /* CONFIG_SMP */
1da177e4 1973
c05fbafb
PZ
1974 ttwu_queue(p, cpu);
1975stat:
cb251765
MG
1976 if (schedstat_enabled())
1977 ttwu_stat(p, cpu, wake_flags);
1da177e4 1978out:
013fdb80 1979 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1980
1981 return success;
1982}
1983
21aa9af0
TH
1984/**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
1987 *
2acca55e 1988 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1990 * the current task.
21aa9af0
TH
1991 */
1992static void try_to_wake_up_local(struct task_struct *p)
1993{
1994 struct rq *rq = task_rq(p);
21aa9af0 1995
383efcd0
TH
1996 if (WARN_ON_ONCE(rq != this_rq()) ||
1997 WARN_ON_ONCE(p == current))
1998 return;
1999
21aa9af0
TH
2000 lockdep_assert_held(&rq->lock);
2001
2acca55e 2002 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2003 /*
2004 * This is OK, because current is on_cpu, which avoids it being
2005 * picked for load-balance and preemption/IRQs are still
2006 * disabled avoiding further scheduler activity on it and we've
2007 * not yet picked a replacement task.
2008 */
2009 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2010 raw_spin_unlock(&rq->lock);
2011 raw_spin_lock(&p->pi_lock);
2012 raw_spin_lock(&rq->lock);
cbce1a68 2013 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2014 }
2015
21aa9af0 2016 if (!(p->state & TASK_NORMAL))
2acca55e 2017 goto out;
21aa9af0 2018
fbd705a0
PZ
2019 trace_sched_waking(p);
2020
da0c1e65 2021 if (!task_on_rq_queued(p))
d7c01d27
PZ
2022 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023
23f41eeb 2024 ttwu_do_wakeup(rq, p, 0);
cb251765
MG
2025 if (schedstat_enabled())
2026 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2027out:
2028 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2029}
2030
50fa610a
DH
2031/**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
7ad5b3a5 2043int wake_up_process(struct task_struct *p)
1da177e4 2044{
9067ac85 2045 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2046}
1da177e4
LT
2047EXPORT_SYMBOL(wake_up_process);
2048
7ad5b3a5 2049int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2050{
2051 return try_to_wake_up(p, state, 0);
2052}
2053
a5e7be3b
JL
2054/*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057void __dl_clear_params(struct task_struct *p)
2058{
2059 struct sched_dl_entity *dl_se = &p->dl;
2060
2061 dl_se->dl_runtime = 0;
2062 dl_se->dl_deadline = 0;
2063 dl_se->dl_period = 0;
2064 dl_se->flags = 0;
2065 dl_se->dl_bw = 0;
40767b0d
PZ
2066
2067 dl_se->dl_throttled = 0;
40767b0d 2068 dl_se->dl_yielded = 0;
a5e7be3b
JL
2069}
2070
1da177e4
LT
2071/*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
dd41f596
IM
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
2076 */
5e1576ed 2077static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2078{
fd2f4419
PZ
2079 p->on_rq = 0;
2080
2081 p->se.on_rq = 0;
dd41f596
IM
2082 p->se.exec_start = 0;
2083 p->se.sum_exec_runtime = 0;
f6cf891c 2084 p->se.prev_sum_exec_runtime = 0;
6c594c21 2085 p->se.nr_migrations = 0;
da7a735e 2086 p->se.vruntime = 0;
fd2f4419 2087 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2088
ad936d86
BP
2089#ifdef CONFIG_FAIR_GROUP_SCHED
2090 p->se.cfs_rq = NULL;
2091#endif
2092
6cfb0d5d 2093#ifdef CONFIG_SCHEDSTATS
cb251765 2094 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2095 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2096#endif
476d139c 2097
aab03e05 2098 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2099 init_dl_task_timer(&p->dl);
a5e7be3b 2100 __dl_clear_params(p);
aab03e05 2101
fa717060 2102 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2103 p->rt.timeout = 0;
2104 p->rt.time_slice = sched_rr_timeslice;
2105 p->rt.on_rq = 0;
2106 p->rt.on_list = 0;
476d139c 2107
e107be36
AK
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109 INIT_HLIST_HEAD(&p->preempt_notifiers);
2110#endif
cbee9f88
PZ
2111
2112#ifdef CONFIG_NUMA_BALANCING
2113 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2114 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2115 p->mm->numa_scan_seq = 0;
2116 }
2117
5e1576ed
RR
2118 if (clone_flags & CLONE_VM)
2119 p->numa_preferred_nid = current->numa_preferred_nid;
2120 else
2121 p->numa_preferred_nid = -1;
2122
cbee9f88
PZ
2123 p->node_stamp = 0ULL;
2124 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2125 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2126 p->numa_work.next = &p->numa_work;
44dba3d5 2127 p->numa_faults = NULL;
7e2703e6
RR
2128 p->last_task_numa_placement = 0;
2129 p->last_sum_exec_runtime = 0;
8c8a743c 2130
8c8a743c 2131 p->numa_group = NULL;
cbee9f88 2132#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2133}
2134
2a595721
SD
2135DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
1a687c2e 2137#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2138
1a687c2e
MG
2139void set_numabalancing_state(bool enabled)
2140{
2141 if (enabled)
2a595721 2142 static_branch_enable(&sched_numa_balancing);
1a687c2e 2143 else
2a595721 2144 static_branch_disable(&sched_numa_balancing);
1a687c2e 2145}
54a43d54
AK
2146
2147#ifdef CONFIG_PROC_SYSCTL
2148int sysctl_numa_balancing(struct ctl_table *table, int write,
2149 void __user *buffer, size_t *lenp, loff_t *ppos)
2150{
2151 struct ctl_table t;
2152 int err;
2a595721 2153 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2154
2155 if (write && !capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 t = *table;
2159 t.data = &state;
2160 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161 if (err < 0)
2162 return err;
2163 if (write)
2164 set_numabalancing_state(state);
2165 return err;
2166}
2167#endif
2168#endif
dd41f596 2169
cb251765
MG
2170DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171
2172#ifdef CONFIG_SCHEDSTATS
2173static void set_schedstats(bool enabled)
2174{
2175 if (enabled)
2176 static_branch_enable(&sched_schedstats);
2177 else
2178 static_branch_disable(&sched_schedstats);
2179}
2180
2181void force_schedstat_enabled(void)
2182{
2183 if (!schedstat_enabled()) {
2184 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185 static_branch_enable(&sched_schedstats);
2186 }
2187}
2188
2189static int __init setup_schedstats(char *str)
2190{
2191 int ret = 0;
2192 if (!str)
2193 goto out;
2194
2195 if (!strcmp(str, "enable")) {
2196 set_schedstats(true);
2197 ret = 1;
2198 } else if (!strcmp(str, "disable")) {
2199 set_schedstats(false);
2200 ret = 1;
2201 }
2202out:
2203 if (!ret)
2204 pr_warn("Unable to parse schedstats=\n");
2205
2206 return ret;
2207}
2208__setup("schedstats=", setup_schedstats);
2209
2210#ifdef CONFIG_PROC_SYSCTL
2211int sysctl_schedstats(struct ctl_table *table, int write,
2212 void __user *buffer, size_t *lenp, loff_t *ppos)
2213{
2214 struct ctl_table t;
2215 int err;
2216 int state = static_branch_likely(&sched_schedstats);
2217
2218 if (write && !capable(CAP_SYS_ADMIN))
2219 return -EPERM;
2220
2221 t = *table;
2222 t.data = &state;
2223 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224 if (err < 0)
2225 return err;
2226 if (write)
2227 set_schedstats(state);
2228 return err;
2229}
2230#endif
2231#endif
dd41f596 2232
9908df2e
JD
2233static void sched_set_prio(struct task_struct *p, int prio)
2234{
3b866741 2235 trace_sched_set_prio(p, prio);
9908df2e
JD
2236 p->prio = prio;
2237}
2238
dd41f596
IM
2239/*
2240 * fork()/clone()-time setup:
2241 */
aab03e05 2242int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2243{
0122ec5b 2244 unsigned long flags;
dd41f596
IM
2245 int cpu = get_cpu();
2246
5e1576ed 2247 __sched_fork(clone_flags, p);
06b83b5f 2248 /*
0017d735 2249 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2250 * nobody will actually run it, and a signal or other external
2251 * event cannot wake it up and insert it on the runqueue either.
2252 */
0017d735 2253 p->state = TASK_RUNNING;
dd41f596 2254
c350a04e
MG
2255 /*
2256 * Make sure we do not leak PI boosting priority to the child.
2257 */
9908df2e 2258 sched_set_prio(p, current->normal_prio);
c350a04e 2259
b9dc29e7
MG
2260 /*
2261 * Revert to default priority/policy on fork if requested.
2262 */
2263 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2264 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2265 p->policy = SCHED_NORMAL;
6c697bdf 2266 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2267 p->rt_priority = 0;
2268 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2269 p->static_prio = NICE_TO_PRIO(0);
2270
9908df2e
JD
2271 p->normal_prio = __normal_prio(p);
2272 sched_set_prio(p, p->normal_prio);
c350a04e 2273 set_load_weight(p);
6c697bdf 2274
b9dc29e7
MG
2275 /*
2276 * We don't need the reset flag anymore after the fork. It has
2277 * fulfilled its duty:
2278 */
2279 p->sched_reset_on_fork = 0;
2280 }
ca94c442 2281
aab03e05
DF
2282 if (dl_prio(p->prio)) {
2283 put_cpu();
2284 return -EAGAIN;
2285 } else if (rt_prio(p->prio)) {
2286 p->sched_class = &rt_sched_class;
2287 } else {
2ddbf952 2288 p->sched_class = &fair_sched_class;
aab03e05 2289 }
b29739f9 2290
cd29fe6f
PZ
2291 if (p->sched_class->task_fork)
2292 p->sched_class->task_fork(p);
2293
86951599
PZ
2294 /*
2295 * The child is not yet in the pid-hash so no cgroup attach races,
2296 * and the cgroup is pinned to this child due to cgroup_fork()
2297 * is ran before sched_fork().
2298 *
2299 * Silence PROVE_RCU.
2300 */
0122ec5b 2301 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2302 set_task_cpu(p, cpu);
0122ec5b 2303 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2304
f6db8347 2305#ifdef CONFIG_SCHED_INFO
dd41f596 2306 if (likely(sched_info_on()))
52f17b6c 2307 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2308#endif
3ca7a440
PZ
2309#if defined(CONFIG_SMP)
2310 p->on_cpu = 0;
4866cde0 2311#endif
01028747 2312 init_task_preempt_count(p);
806c09a7 2313#ifdef CONFIG_SMP
917b627d 2314 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2315 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2316#endif
917b627d 2317
476d139c 2318 put_cpu();
aab03e05 2319 return 0;
1da177e4
LT
2320}
2321
332ac17e
DF
2322unsigned long to_ratio(u64 period, u64 runtime)
2323{
2324 if (runtime == RUNTIME_INF)
2325 return 1ULL << 20;
2326
2327 /*
2328 * Doing this here saves a lot of checks in all
2329 * the calling paths, and returning zero seems
2330 * safe for them anyway.
2331 */
2332 if (period == 0)
2333 return 0;
2334
2335 return div64_u64(runtime << 20, period);
2336}
2337
2338#ifdef CONFIG_SMP
2339inline struct dl_bw *dl_bw_of(int i)
2340{
f78f5b90
PM
2341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2342 "sched RCU must be held");
332ac17e
DF
2343 return &cpu_rq(i)->rd->dl_bw;
2344}
2345
de212f18 2346static inline int dl_bw_cpus(int i)
332ac17e 2347{
de212f18
PZ
2348 struct root_domain *rd = cpu_rq(i)->rd;
2349 int cpus = 0;
2350
f78f5b90
PM
2351 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2352 "sched RCU must be held");
de212f18
PZ
2353 for_each_cpu_and(i, rd->span, cpu_active_mask)
2354 cpus++;
2355
2356 return cpus;
332ac17e
DF
2357}
2358#else
2359inline struct dl_bw *dl_bw_of(int i)
2360{
2361 return &cpu_rq(i)->dl.dl_bw;
2362}
2363
de212f18 2364static inline int dl_bw_cpus(int i)
332ac17e
DF
2365{
2366 return 1;
2367}
2368#endif
2369
332ac17e
DF
2370/*
2371 * We must be sure that accepting a new task (or allowing changing the
2372 * parameters of an existing one) is consistent with the bandwidth
2373 * constraints. If yes, this function also accordingly updates the currently
2374 * allocated bandwidth to reflect the new situation.
2375 *
2376 * This function is called while holding p's rq->lock.
40767b0d
PZ
2377 *
2378 * XXX we should delay bw change until the task's 0-lag point, see
2379 * __setparam_dl().
332ac17e
DF
2380 */
2381static int dl_overflow(struct task_struct *p, int policy,
2382 const struct sched_attr *attr)
2383{
2384
2385 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2386 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2387 u64 runtime = attr->sched_runtime;
2388 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2389 int cpus, err = -1;
332ac17e
DF
2390
2391 if (new_bw == p->dl.dl_bw)
2392 return 0;
2393
2394 /*
2395 * Either if a task, enters, leave, or stays -deadline but changes
2396 * its parameters, we may need to update accordingly the total
2397 * allocated bandwidth of the container.
2398 */
2399 raw_spin_lock(&dl_b->lock);
de212f18 2400 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2401 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2402 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2403 __dl_add(dl_b, new_bw);
2404 err = 0;
2405 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2406 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2407 __dl_clear(dl_b, p->dl.dl_bw);
2408 __dl_add(dl_b, new_bw);
2409 err = 0;
2410 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2411 __dl_clear(dl_b, p->dl.dl_bw);
2412 err = 0;
2413 }
2414 raw_spin_unlock(&dl_b->lock);
2415
2416 return err;
2417}
2418
2419extern void init_dl_bw(struct dl_bw *dl_b);
2420
1da177e4
LT
2421/*
2422 * wake_up_new_task - wake up a newly created task for the first time.
2423 *
2424 * This function will do some initial scheduler statistics housekeeping
2425 * that must be done for every newly created context, then puts the task
2426 * on the runqueue and wakes it.
2427 */
3e51e3ed 2428void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2429{
2430 unsigned long flags;
dd41f596 2431 struct rq *rq;
fabf318e 2432
ab2515c4 2433 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2434 /* Initialize new task's runnable average */
2435 init_entity_runnable_average(&p->se);
fabf318e
PZ
2436#ifdef CONFIG_SMP
2437 /*
2438 * Fork balancing, do it here and not earlier because:
2439 * - cpus_allowed can change in the fork path
2440 * - any previously selected cpu might disappear through hotplug
fabf318e 2441 */
ac66f547 2442 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2443#endif
2444
ab2515c4 2445 rq = __task_rq_lock(p);
cd29fe6f 2446 activate_task(rq, p, 0);
da0c1e65 2447 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2448 trace_sched_wakeup_new(p);
a7558e01 2449 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2450#ifdef CONFIG_SMP
0aaafaab
PZ
2451 if (p->sched_class->task_woken) {
2452 /*
2453 * Nothing relies on rq->lock after this, so its fine to
2454 * drop it.
2455 */
2456 lockdep_unpin_lock(&rq->lock);
efbbd05a 2457 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2458 lockdep_pin_lock(&rq->lock);
2459 }
9a897c5a 2460#endif
0122ec5b 2461 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2462}
2463
e107be36
AK
2464#ifdef CONFIG_PREEMPT_NOTIFIERS
2465
1cde2930
PZ
2466static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2467
2ecd9d29
PZ
2468void preempt_notifier_inc(void)
2469{
2470 static_key_slow_inc(&preempt_notifier_key);
2471}
2472EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2473
2474void preempt_notifier_dec(void)
2475{
2476 static_key_slow_dec(&preempt_notifier_key);
2477}
2478EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2479
e107be36 2480/**
80dd99b3 2481 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2482 * @notifier: notifier struct to register
e107be36
AK
2483 */
2484void preempt_notifier_register(struct preempt_notifier *notifier)
2485{
2ecd9d29
PZ
2486 if (!static_key_false(&preempt_notifier_key))
2487 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2488
e107be36
AK
2489 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2490}
2491EXPORT_SYMBOL_GPL(preempt_notifier_register);
2492
2493/**
2494 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2495 * @notifier: notifier struct to unregister
e107be36 2496 *
d84525a8 2497 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2498 */
2499void preempt_notifier_unregister(struct preempt_notifier *notifier)
2500{
2501 hlist_del(&notifier->link);
2502}
2503EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2504
1cde2930 2505static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2506{
2507 struct preempt_notifier *notifier;
e107be36 2508
b67bfe0d 2509 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2510 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2511}
2512
1cde2930
PZ
2513static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2514{
2515 if (static_key_false(&preempt_notifier_key))
2516 __fire_sched_in_preempt_notifiers(curr);
2517}
2518
e107be36 2519static void
1cde2930
PZ
2520__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 struct task_struct *next)
e107be36
AK
2522{
2523 struct preempt_notifier *notifier;
e107be36 2524
b67bfe0d 2525 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2526 notifier->ops->sched_out(notifier, next);
2527}
2528
1cde2930
PZ
2529static __always_inline void
2530fire_sched_out_preempt_notifiers(struct task_struct *curr,
2531 struct task_struct *next)
2532{
2533 if (static_key_false(&preempt_notifier_key))
2534 __fire_sched_out_preempt_notifiers(curr, next);
2535}
2536
6d6bc0ad 2537#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2538
1cde2930 2539static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2540{
2541}
2542
1cde2930 2543static inline void
e107be36
AK
2544fire_sched_out_preempt_notifiers(struct task_struct *curr,
2545 struct task_struct *next)
2546{
2547}
2548
6d6bc0ad 2549#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2550
4866cde0
NP
2551/**
2552 * prepare_task_switch - prepare to switch tasks
2553 * @rq: the runqueue preparing to switch
421cee29 2554 * @prev: the current task that is being switched out
4866cde0
NP
2555 * @next: the task we are going to switch to.
2556 *
2557 * This is called with the rq lock held and interrupts off. It must
2558 * be paired with a subsequent finish_task_switch after the context
2559 * switch.
2560 *
2561 * prepare_task_switch sets up locking and calls architecture specific
2562 * hooks.
2563 */
e107be36
AK
2564static inline void
2565prepare_task_switch(struct rq *rq, struct task_struct *prev,
2566 struct task_struct *next)
4866cde0 2567{
43148951 2568 sched_info_switch(rq, prev, next);
fe4b04fa 2569 perf_event_task_sched_out(prev, next);
e107be36 2570 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2571 prepare_lock_switch(rq, next);
2572 prepare_arch_switch(next);
2573}
2574
1da177e4
LT
2575/**
2576 * finish_task_switch - clean up after a task-switch
2577 * @prev: the thread we just switched away from.
2578 *
4866cde0
NP
2579 * finish_task_switch must be called after the context switch, paired
2580 * with a prepare_task_switch call before the context switch.
2581 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2582 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2583 *
2584 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2585 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2586 * with the lock held can cause deadlocks; see schedule() for
2587 * details.)
dfa50b60
ON
2588 *
2589 * The context switch have flipped the stack from under us and restored the
2590 * local variables which were saved when this task called schedule() in the
2591 * past. prev == current is still correct but we need to recalculate this_rq
2592 * because prev may have moved to another CPU.
1da177e4 2593 */
dfa50b60 2594static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2595 __releases(rq->lock)
2596{
dfa50b60 2597 struct rq *rq = this_rq();
1da177e4 2598 struct mm_struct *mm = rq->prev_mm;
55a101f8 2599 long prev_state;
1da177e4 2600
609ca066
PZ
2601 /*
2602 * The previous task will have left us with a preempt_count of 2
2603 * because it left us after:
2604 *
2605 * schedule()
2606 * preempt_disable(); // 1
2607 * __schedule()
2608 * raw_spin_lock_irq(&rq->lock) // 2
2609 *
2610 * Also, see FORK_PREEMPT_COUNT.
2611 */
e2bf1c4b
PZ
2612 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2613 "corrupted preempt_count: %s/%d/0x%x\n",
2614 current->comm, current->pid, preempt_count()))
2615 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2616
1da177e4
LT
2617 rq->prev_mm = NULL;
2618
2619 /*
2620 * A task struct has one reference for the use as "current".
c394cc9f 2621 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2622 * schedule one last time. The schedule call will never return, and
2623 * the scheduled task must drop that reference.
95913d97
PZ
2624 *
2625 * We must observe prev->state before clearing prev->on_cpu (in
2626 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2627 * running on another CPU and we could rave with its RUNNING -> DEAD
2628 * transition, resulting in a double drop.
1da177e4 2629 */
55a101f8 2630 prev_state = prev->state;
bf9fae9f 2631 vtime_task_switch(prev);
a8d757ef 2632 perf_event_task_sched_in(prev, current);
4866cde0 2633 finish_lock_switch(rq, prev);
01f23e16 2634 finish_arch_post_lock_switch();
e8fa1362 2635
e107be36 2636 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2637 if (mm)
2638 mmdrop(mm);
c394cc9f 2639 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2640 if (prev->sched_class->task_dead)
2641 prev->sched_class->task_dead(prev);
2642
c6fd91f0 2643 /*
2644 * Remove function-return probe instances associated with this
2645 * task and put them back on the free list.
9761eea8 2646 */
c6fd91f0 2647 kprobe_flush_task(prev);
1da177e4 2648 put_task_struct(prev);
c6fd91f0 2649 }
99e5ada9 2650
de734f89 2651 tick_nohz_task_switch();
dfa50b60 2652 return rq;
1da177e4
LT
2653}
2654
3f029d3c
GH
2655#ifdef CONFIG_SMP
2656
3f029d3c 2657/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2658static void __balance_callback(struct rq *rq)
3f029d3c 2659{
e3fca9e7
PZ
2660 struct callback_head *head, *next;
2661 void (*func)(struct rq *rq);
2662 unsigned long flags;
3f029d3c 2663
e3fca9e7
PZ
2664 raw_spin_lock_irqsave(&rq->lock, flags);
2665 head = rq->balance_callback;
2666 rq->balance_callback = NULL;
2667 while (head) {
2668 func = (void (*)(struct rq *))head->func;
2669 next = head->next;
2670 head->next = NULL;
2671 head = next;
3f029d3c 2672
e3fca9e7 2673 func(rq);
3f029d3c 2674 }
e3fca9e7
PZ
2675 raw_spin_unlock_irqrestore(&rq->lock, flags);
2676}
2677
2678static inline void balance_callback(struct rq *rq)
2679{
2680 if (unlikely(rq->balance_callback))
2681 __balance_callback(rq);
3f029d3c
GH
2682}
2683
2684#else
da19ab51 2685
e3fca9e7 2686static inline void balance_callback(struct rq *rq)
3f029d3c 2687{
1da177e4
LT
2688}
2689
3f029d3c
GH
2690#endif
2691
1da177e4
LT
2692/**
2693 * schedule_tail - first thing a freshly forked thread must call.
2694 * @prev: the thread we just switched away from.
2695 */
722a9f92 2696asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2697 __releases(rq->lock)
2698{
1a43a14a 2699 struct rq *rq;
da19ab51 2700
609ca066
PZ
2701 /*
2702 * New tasks start with FORK_PREEMPT_COUNT, see there and
2703 * finish_task_switch() for details.
2704 *
2705 * finish_task_switch() will drop rq->lock() and lower preempt_count
2706 * and the preempt_enable() will end up enabling preemption (on
2707 * PREEMPT_COUNT kernels).
2708 */
2709
dfa50b60 2710 rq = finish_task_switch(prev);
e3fca9e7 2711 balance_callback(rq);
1a43a14a 2712 preempt_enable();
70b97a7f 2713
1da177e4 2714 if (current->set_child_tid)
b488893a 2715 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2716}
2717
2718/*
dfa50b60 2719 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2720 */
04936948 2721static __always_inline struct rq *
70b97a7f 2722context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2723 struct task_struct *next)
1da177e4 2724{
dd41f596 2725 struct mm_struct *mm, *oldmm;
1da177e4 2726
e107be36 2727 prepare_task_switch(rq, prev, next);
fe4b04fa 2728
dd41f596
IM
2729 mm = next->mm;
2730 oldmm = prev->active_mm;
9226d125
ZA
2731 /*
2732 * For paravirt, this is coupled with an exit in switch_to to
2733 * combine the page table reload and the switch backend into
2734 * one hypercall.
2735 */
224101ed 2736 arch_start_context_switch(prev);
9226d125 2737
31915ab4 2738 if (!mm) {
1da177e4
LT
2739 next->active_mm = oldmm;
2740 atomic_inc(&oldmm->mm_count);
2741 enter_lazy_tlb(oldmm, next);
2742 } else
2743 switch_mm(oldmm, mm, next);
2744
31915ab4 2745 if (!prev->mm) {
1da177e4 2746 prev->active_mm = NULL;
1da177e4
LT
2747 rq->prev_mm = oldmm;
2748 }
3a5f5e48
IM
2749 /*
2750 * Since the runqueue lock will be released by the next
2751 * task (which is an invalid locking op but in the case
2752 * of the scheduler it's an obvious special-case), so we
2753 * do an early lockdep release here:
2754 */
cbce1a68 2755 lockdep_unpin_lock(&rq->lock);
8a25d5de 2756 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2757
2758 /* Here we just switch the register state and the stack. */
2759 switch_to(prev, next, prev);
dd41f596 2760 barrier();
dfa50b60
ON
2761
2762 return finish_task_switch(prev);
1da177e4
LT
2763}
2764
2765/*
1c3e8264 2766 * nr_running and nr_context_switches:
1da177e4
LT
2767 *
2768 * externally visible scheduler statistics: current number of runnable
1c3e8264 2769 * threads, total number of context switches performed since bootup.
1da177e4
LT
2770 */
2771unsigned long nr_running(void)
2772{
2773 unsigned long i, sum = 0;
2774
2775 for_each_online_cpu(i)
2776 sum += cpu_rq(i)->nr_running;
2777
2778 return sum;
f711f609 2779}
1da177e4 2780
2ee507c4
TC
2781/*
2782 * Check if only the current task is running on the cpu.
00cc1633
DD
2783 *
2784 * Caution: this function does not check that the caller has disabled
2785 * preemption, thus the result might have a time-of-check-to-time-of-use
2786 * race. The caller is responsible to use it correctly, for example:
2787 *
2788 * - from a non-preemptable section (of course)
2789 *
2790 * - from a thread that is bound to a single CPU
2791 *
2792 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2793 */
2794bool single_task_running(void)
2795{
00cc1633 2796 return raw_rq()->nr_running == 1;
2ee507c4
TC
2797}
2798EXPORT_SYMBOL(single_task_running);
2799
1da177e4 2800unsigned long long nr_context_switches(void)
46cb4b7c 2801{
cc94abfc
SR
2802 int i;
2803 unsigned long long sum = 0;
46cb4b7c 2804
0a945022 2805 for_each_possible_cpu(i)
1da177e4 2806 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2807
1da177e4
LT
2808 return sum;
2809}
483b4ee6 2810
1da177e4
LT
2811unsigned long nr_iowait(void)
2812{
2813 unsigned long i, sum = 0;
483b4ee6 2814
0a945022 2815 for_each_possible_cpu(i)
1da177e4 2816 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2817
1da177e4
LT
2818 return sum;
2819}
483b4ee6 2820
8c215bd3 2821unsigned long nr_iowait_cpu(int cpu)
69d25870 2822{
8c215bd3 2823 struct rq *this = cpu_rq(cpu);
69d25870
AV
2824 return atomic_read(&this->nr_iowait);
2825}
46cb4b7c 2826
372ba8cb
MG
2827void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2828{
3289bdb4
PZ
2829 struct rq *rq = this_rq();
2830 *nr_waiters = atomic_read(&rq->nr_iowait);
2831 *load = rq->load.weight;
372ba8cb
MG
2832}
2833
dd41f596 2834#ifdef CONFIG_SMP
8a0be9ef 2835
46cb4b7c 2836/*
38022906
PZ
2837 * sched_exec - execve() is a valuable balancing opportunity, because at
2838 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2839 */
38022906 2840void sched_exec(void)
46cb4b7c 2841{
38022906 2842 struct task_struct *p = current;
1da177e4 2843 unsigned long flags;
0017d735 2844 int dest_cpu;
46cb4b7c 2845
8f42ced9 2846 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2847 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2848 if (dest_cpu == smp_processor_id())
2849 goto unlock;
38022906 2850
8f42ced9 2851 if (likely(cpu_active(dest_cpu))) {
969c7921 2852 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2853
8f42ced9
PZ
2854 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2855 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2856 return;
2857 }
0017d735 2858unlock:
8f42ced9 2859 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2860}
dd41f596 2861
1da177e4
LT
2862#endif
2863
1da177e4 2864DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2865DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2866
2867EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2868EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2869
c5f8d995
HS
2870/*
2871 * Return accounted runtime for the task.
2872 * In case the task is currently running, return the runtime plus current's
2873 * pending runtime that have not been accounted yet.
2874 */
2875unsigned long long task_sched_runtime(struct task_struct *p)
2876{
2877 unsigned long flags;
2878 struct rq *rq;
6e998916 2879 u64 ns;
c5f8d995 2880
911b2898
PZ
2881#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2882 /*
2883 * 64-bit doesn't need locks to atomically read a 64bit value.
2884 * So we have a optimization chance when the task's delta_exec is 0.
2885 * Reading ->on_cpu is racy, but this is ok.
2886 *
2887 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2888 * If we race with it entering cpu, unaccounted time is 0. This is
2889 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2890 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2891 * been accounted, so we're correct here as well.
911b2898 2892 */
da0c1e65 2893 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2894 return p->se.sum_exec_runtime;
2895#endif
2896
c5f8d995 2897 rq = task_rq_lock(p, &flags);
6e998916
SG
2898 /*
2899 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2900 * project cycles that may never be accounted to this
2901 * thread, breaking clock_gettime().
2902 */
2903 if (task_current(rq, p) && task_on_rq_queued(p)) {
2904 update_rq_clock(rq);
2905 p->sched_class->update_curr(rq);
2906 }
2907 ns = p->se.sum_exec_runtime;
0122ec5b 2908 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2909
2910 return ns;
2911}
48f24c4d 2912
7835b98b
CL
2913/*
2914 * This function gets called by the timer code, with HZ frequency.
2915 * We call it with interrupts disabled.
7835b98b
CL
2916 */
2917void scheduler_tick(void)
2918{
7835b98b
CL
2919 int cpu = smp_processor_id();
2920 struct rq *rq = cpu_rq(cpu);
dd41f596 2921 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2922
2923 sched_clock_tick();
dd41f596 2924
05fa785c 2925 raw_spin_lock(&rq->lock);
3e51f33f 2926 update_rq_clock(rq);
fa85ae24 2927 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2928 update_cpu_load_active(rq);
3289bdb4 2929 calc_global_load_tick(rq);
05fa785c 2930 raw_spin_unlock(&rq->lock);
7835b98b 2931
e9d2b064 2932 perf_event_task_tick();
e220d2dc 2933
e418e1c2 2934#ifdef CONFIG_SMP
6eb57e0d 2935 rq->idle_balance = idle_cpu(cpu);
7caff66f 2936 trigger_load_balance(rq);
e418e1c2 2937#endif
265f22a9 2938 rq_last_tick_reset(rq);
1da177e4
LT
2939}
2940
265f22a9
FW
2941#ifdef CONFIG_NO_HZ_FULL
2942/**
2943 * scheduler_tick_max_deferment
2944 *
2945 * Keep at least one tick per second when a single
2946 * active task is running because the scheduler doesn't
2947 * yet completely support full dynticks environment.
2948 *
2949 * This makes sure that uptime, CFS vruntime, load
2950 * balancing, etc... continue to move forward, even
2951 * with a very low granularity.
e69f6186
YB
2952 *
2953 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2954 */
2955u64 scheduler_tick_max_deferment(void)
2956{
2957 struct rq *rq = this_rq();
316c1608 2958 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2959
2960 next = rq->last_sched_tick + HZ;
2961
2962 if (time_before_eq(next, now))
2963 return 0;
2964
8fe8ff09 2965 return jiffies_to_nsecs(next - now);
1da177e4 2966}
265f22a9 2967#endif
1da177e4 2968
7e49fcce
SR
2969#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2970 defined(CONFIG_PREEMPT_TRACER))
2971
edafe3a5 2972void preempt_count_add(int val)
1da177e4 2973{
6cd8a4bb 2974#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2975 /*
2976 * Underflow?
2977 */
9a11b49a
IM
2978 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2979 return;
6cd8a4bb 2980#endif
bdb43806 2981 __preempt_count_add(val);
6cd8a4bb 2982#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2983 /*
2984 * Spinlock count overflowing soon?
2985 */
33859f7f
MOS
2986 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2987 PREEMPT_MASK - 10);
6cd8a4bb 2988#endif
8f47b187 2989 if (preempt_count() == val) {
f904f582 2990 unsigned long ip = get_lock_parent_ip();
8f47b187
TG
2991#ifdef CONFIG_DEBUG_PREEMPT
2992 current->preempt_disable_ip = ip;
2993#endif
2994 trace_preempt_off(CALLER_ADDR0, ip);
2995 }
1da177e4 2996}
bdb43806 2997EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2998NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2999
edafe3a5 3000void preempt_count_sub(int val)
1da177e4 3001{
6cd8a4bb 3002#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3003 /*
3004 * Underflow?
3005 */
01e3eb82 3006 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3007 return;
1da177e4
LT
3008 /*
3009 * Is the spinlock portion underflowing?
3010 */
9a11b49a
IM
3011 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3012 !(preempt_count() & PREEMPT_MASK)))
3013 return;
6cd8a4bb 3014#endif
9a11b49a 3015
6cd8a4bb 3016 if (preempt_count() == val)
f904f582 3017 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
bdb43806 3018 __preempt_count_sub(val);
1da177e4 3019}
bdb43806 3020EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3021NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
3022
3023#endif
3024
3025/*
dd41f596 3026 * Print scheduling while atomic bug:
1da177e4 3027 */
dd41f596 3028static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3029{
664dfa65
DJ
3030 if (oops_in_progress)
3031 return;
3032
3df0fc5b
PZ
3033 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3034 prev->comm, prev->pid, preempt_count());
838225b4 3035
dd41f596 3036 debug_show_held_locks(prev);
e21f5b15 3037 print_modules();
dd41f596
IM
3038 if (irqs_disabled())
3039 print_irqtrace_events(prev);
8f47b187
TG
3040#ifdef CONFIG_DEBUG_PREEMPT
3041 if (in_atomic_preempt_off()) {
3042 pr_err("Preemption disabled at:");
3043 print_ip_sym(current->preempt_disable_ip);
3044 pr_cont("\n");
3045 }
3046#endif
6135fc1e 3047 dump_stack();
373d4d09 3048 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3049}
1da177e4 3050
dd41f596
IM
3051/*
3052 * Various schedule()-time debugging checks and statistics:
3053 */
3054static inline void schedule_debug(struct task_struct *prev)
3055{
0d9e2632 3056#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3057 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3058#endif
b99def8b 3059
1dc0fffc 3060 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3061 __schedule_bug(prev);
1dc0fffc
PZ
3062 preempt_count_set(PREEMPT_DISABLED);
3063 }
b3fbab05 3064 rcu_sleep_check();
dd41f596 3065
1da177e4
LT
3066 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3067
2d72376b 3068 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3069}
3070
3071/*
3072 * Pick up the highest-prio task:
3073 */
3074static inline struct task_struct *
606dba2e 3075pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3076{
37e117c0 3077 const struct sched_class *class = &fair_sched_class;
dd41f596 3078 struct task_struct *p;
1da177e4
LT
3079
3080 /*
dd41f596
IM
3081 * Optimization: we know that if all tasks are in
3082 * the fair class we can call that function directly:
1da177e4 3083 */
37e117c0 3084 if (likely(prev->sched_class == class &&
38033c37 3085 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3086 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3087 if (unlikely(p == RETRY_TASK))
3088 goto again;
3089
3090 /* assumes fair_sched_class->next == idle_sched_class */
3091 if (unlikely(!p))
3092 p = idle_sched_class.pick_next_task(rq, prev);
3093
3094 return p;
1da177e4
LT
3095 }
3096
37e117c0 3097again:
34f971f6 3098 for_each_class(class) {
606dba2e 3099 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3100 if (p) {
3101 if (unlikely(p == RETRY_TASK))
3102 goto again;
dd41f596 3103 return p;
37e117c0 3104 }
dd41f596 3105 }
34f971f6
PZ
3106
3107 BUG(); /* the idle class will always have a runnable task */
dd41f596 3108}
1da177e4 3109
dd41f596 3110/*
c259e01a 3111 * __schedule() is the main scheduler function.
edde96ea
PE
3112 *
3113 * The main means of driving the scheduler and thus entering this function are:
3114 *
3115 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3116 *
3117 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3118 * paths. For example, see arch/x86/entry_64.S.
3119 *
3120 * To drive preemption between tasks, the scheduler sets the flag in timer
3121 * interrupt handler scheduler_tick().
3122 *
3123 * 3. Wakeups don't really cause entry into schedule(). They add a
3124 * task to the run-queue and that's it.
3125 *
3126 * Now, if the new task added to the run-queue preempts the current
3127 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3128 * called on the nearest possible occasion:
3129 *
3130 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3131 *
3132 * - in syscall or exception context, at the next outmost
3133 * preempt_enable(). (this might be as soon as the wake_up()'s
3134 * spin_unlock()!)
3135 *
3136 * - in IRQ context, return from interrupt-handler to
3137 * preemptible context
3138 *
3139 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3140 * then at the next:
3141 *
3142 * - cond_resched() call
3143 * - explicit schedule() call
3144 * - return from syscall or exception to user-space
3145 * - return from interrupt-handler to user-space
bfd9b2b5 3146 *
b30f0e3f 3147 * WARNING: must be called with preemption disabled!
dd41f596 3148 */
499d7955 3149static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3150{
3151 struct task_struct *prev, *next;
67ca7bde 3152 unsigned long *switch_count;
dd41f596 3153 struct rq *rq;
31656519 3154 int cpu;
dd41f596 3155
dd41f596
IM
3156 cpu = smp_processor_id();
3157 rq = cpu_rq(cpu);
dd41f596 3158 prev = rq->curr;
dd41f596 3159
b99def8b
PZ
3160 /*
3161 * do_exit() calls schedule() with preemption disabled as an exception;
3162 * however we must fix that up, otherwise the next task will see an
3163 * inconsistent (higher) preempt count.
3164 *
3165 * It also avoids the below schedule_debug() test from complaining
3166 * about this.
3167 */
3168 if (unlikely(prev->state == TASK_DEAD))
3169 preempt_enable_no_resched_notrace();
3170
dd41f596 3171 schedule_debug(prev);
1da177e4 3172
31656519 3173 if (sched_feat(HRTICK))
f333fdc9 3174 hrtick_clear(rq);
8f4d37ec 3175
46a5d164
PM
3176 local_irq_disable();
3177 rcu_note_context_switch();
3178
e0acd0a6
ON
3179 /*
3180 * Make sure that signal_pending_state()->signal_pending() below
3181 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3182 * done by the caller to avoid the race with signal_wake_up().
3183 */
3184 smp_mb__before_spinlock();
46a5d164 3185 raw_spin_lock(&rq->lock);
cbce1a68 3186 lockdep_pin_lock(&rq->lock);
1da177e4 3187
9edfbfed
PZ
3188 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3189
246d86b5 3190 switch_count = &prev->nivcsw;
fc13aeba 3191 if (!preempt && prev->state) {
21aa9af0 3192 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3193 prev->state = TASK_RUNNING;
21aa9af0 3194 } else {
2acca55e
PZ
3195 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3196 prev->on_rq = 0;
3197
21aa9af0 3198 /*
2acca55e
PZ
3199 * If a worker went to sleep, notify and ask workqueue
3200 * whether it wants to wake up a task to maintain
3201 * concurrency.
21aa9af0
TH
3202 */
3203 if (prev->flags & PF_WQ_WORKER) {
3204 struct task_struct *to_wakeup;
3205
9b7f6597 3206 to_wakeup = wq_worker_sleeping(prev);
21aa9af0
TH
3207 if (to_wakeup)
3208 try_to_wake_up_local(to_wakeup);
3209 }
21aa9af0 3210 }
dd41f596 3211 switch_count = &prev->nvcsw;
1da177e4
LT
3212 }
3213
9edfbfed 3214 if (task_on_rq_queued(prev))
606dba2e
PZ
3215 update_rq_clock(rq);
3216
3217 next = pick_next_task(rq, prev);
f26f9aff 3218 clear_tsk_need_resched(prev);
f27dde8d 3219 clear_preempt_need_resched();
9edfbfed 3220 rq->clock_skip_update = 0;
1da177e4 3221
1da177e4 3222 if (likely(prev != next)) {
1da177e4
LT
3223 rq->nr_switches++;
3224 rq->curr = next;
3225 ++*switch_count;
3226
c73464b1 3227 trace_sched_switch(preempt, prev, next);
dfa50b60 3228 rq = context_switch(rq, prev, next); /* unlocks the rq */
cbce1a68
PZ
3229 } else {
3230 lockdep_unpin_lock(&rq->lock);
05fa785c 3231 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3232 }
1da177e4 3233
e3fca9e7 3234 balance_callback(rq);
1da177e4 3235}
8e05e96a 3236STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3237
9c40cef2
TG
3238static inline void sched_submit_work(struct task_struct *tsk)
3239{
3c7d5184 3240 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3241 return;
3242 /*
3243 * If we are going to sleep and we have plugged IO queued,
3244 * make sure to submit it to avoid deadlocks.
3245 */
3246 if (blk_needs_flush_plug(tsk))
3247 blk_schedule_flush_plug(tsk);
3248}
3249
722a9f92 3250asmlinkage __visible void __sched schedule(void)
c259e01a 3251{
9c40cef2
TG
3252 struct task_struct *tsk = current;
3253
3254 sched_submit_work(tsk);
bfd9b2b5 3255 do {
b30f0e3f 3256 preempt_disable();
fc13aeba 3257 __schedule(false);
b30f0e3f 3258 sched_preempt_enable_no_resched();
bfd9b2b5 3259 } while (need_resched());
c259e01a 3260}
1da177e4
LT
3261EXPORT_SYMBOL(schedule);
3262
91d1aa43 3263#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3264asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3265{
3266 /*
3267 * If we come here after a random call to set_need_resched(),
3268 * or we have been woken up remotely but the IPI has not yet arrived,
3269 * we haven't yet exited the RCU idle mode. Do it here manually until
3270 * we find a better solution.
7cc78f8f
AL
3271 *
3272 * NB: There are buggy callers of this function. Ideally we
c467ea76 3273 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3274 * too frequently to make sense yet.
20ab65e3 3275 */
7cc78f8f 3276 enum ctx_state prev_state = exception_enter();
20ab65e3 3277 schedule();
7cc78f8f 3278 exception_exit(prev_state);
20ab65e3
FW
3279}
3280#endif
3281
c5491ea7
TG
3282/**
3283 * schedule_preempt_disabled - called with preemption disabled
3284 *
3285 * Returns with preemption disabled. Note: preempt_count must be 1
3286 */
3287void __sched schedule_preempt_disabled(void)
3288{
ba74c144 3289 sched_preempt_enable_no_resched();
c5491ea7
TG
3290 schedule();
3291 preempt_disable();
3292}
3293
06b1f808 3294static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3295{
3296 do {
499d7955 3297 preempt_disable_notrace();
fc13aeba 3298 __schedule(true);
499d7955 3299 preempt_enable_no_resched_notrace();
a18b5d01
FW
3300
3301 /*
3302 * Check again in case we missed a preemption opportunity
3303 * between schedule and now.
3304 */
a18b5d01
FW
3305 } while (need_resched());
3306}
3307
1da177e4
LT
3308#ifdef CONFIG_PREEMPT
3309/*
2ed6e34f 3310 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3311 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3312 * occur there and call schedule directly.
3313 */
722a9f92 3314asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3315{
1da177e4
LT
3316 /*
3317 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3318 * we do not want to preempt the current task. Just return..
1da177e4 3319 */
fbb00b56 3320 if (likely(!preemptible()))
1da177e4
LT
3321 return;
3322
a18b5d01 3323 preempt_schedule_common();
1da177e4 3324}
376e2424 3325NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3326EXPORT_SYMBOL(preempt_schedule);
009f60e2 3327
009f60e2 3328/**
4eaca0a8 3329 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3330 *
3331 * The tracing infrastructure uses preempt_enable_notrace to prevent
3332 * recursion and tracing preempt enabling caused by the tracing
3333 * infrastructure itself. But as tracing can happen in areas coming
3334 * from userspace or just about to enter userspace, a preempt enable
3335 * can occur before user_exit() is called. This will cause the scheduler
3336 * to be called when the system is still in usermode.
3337 *
3338 * To prevent this, the preempt_enable_notrace will use this function
3339 * instead of preempt_schedule() to exit user context if needed before
3340 * calling the scheduler.
3341 */
4eaca0a8 3342asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3343{
3344 enum ctx_state prev_ctx;
3345
3346 if (likely(!preemptible()))
3347 return;
3348
3349 do {
3d8f74dd 3350 preempt_disable_notrace();
009f60e2
ON
3351 /*
3352 * Needs preempt disabled in case user_exit() is traced
3353 * and the tracer calls preempt_enable_notrace() causing
3354 * an infinite recursion.
3355 */
3356 prev_ctx = exception_enter();
fc13aeba 3357 __schedule(true);
009f60e2
ON
3358 exception_exit(prev_ctx);
3359
3d8f74dd 3360 preempt_enable_no_resched_notrace();
009f60e2
ON
3361 } while (need_resched());
3362}
4eaca0a8 3363EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3364
32e475d7 3365#endif /* CONFIG_PREEMPT */
1da177e4
LT
3366
3367/*
2ed6e34f 3368 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3369 * off of irq context.
3370 * Note, that this is called and return with irqs disabled. This will
3371 * protect us against recursive calling from irq.
3372 */
722a9f92 3373asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3374{
b22366cd 3375 enum ctx_state prev_state;
6478d880 3376
2ed6e34f 3377 /* Catch callers which need to be fixed */
f27dde8d 3378 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3379
b22366cd
FW
3380 prev_state = exception_enter();
3381
3a5c359a 3382 do {
3d8f74dd 3383 preempt_disable();
3a5c359a 3384 local_irq_enable();
fc13aeba 3385 __schedule(true);
3a5c359a 3386 local_irq_disable();
3d8f74dd 3387 sched_preempt_enable_no_resched();
5ed0cec0 3388 } while (need_resched());
b22366cd
FW
3389
3390 exception_exit(prev_state);
1da177e4
LT
3391}
3392
63859d4f 3393int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3394 void *key)
1da177e4 3395{
63859d4f 3396 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3397}
1da177e4
LT
3398EXPORT_SYMBOL(default_wake_function);
3399
b29739f9
IM
3400#ifdef CONFIG_RT_MUTEXES
3401
3402/*
3403 * rt_mutex_setprio - set the current priority of a task
3404 * @p: task
3405 * @prio: prio value (kernel-internal form)
3406 *
3407 * This function changes the 'effective' priority of a task. It does
3408 * not touch ->normal_prio like __setscheduler().
3409 *
c365c292
TG
3410 * Used by the rt_mutex code to implement priority inheritance
3411 * logic. Call site only calls if the priority of the task changed.
b29739f9 3412 */
36c8b586 3413void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3414{
ff77e468 3415 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
70b97a7f 3416 struct rq *rq;
83ab0aa0 3417 const struct sched_class *prev_class;
b29739f9 3418
aab03e05 3419 BUG_ON(prio > MAX_PRIO);
b29739f9 3420
0122ec5b 3421 rq = __task_rq_lock(p);
b29739f9 3422
1c4dd99b
TG
3423 /*
3424 * Idle task boosting is a nono in general. There is one
3425 * exception, when PREEMPT_RT and NOHZ is active:
3426 *
3427 * The idle task calls get_next_timer_interrupt() and holds
3428 * the timer wheel base->lock on the CPU and another CPU wants
3429 * to access the timer (probably to cancel it). We can safely
3430 * ignore the boosting request, as the idle CPU runs this code
3431 * with interrupts disabled and will complete the lock
3432 * protected section without being interrupted. So there is no
3433 * real need to boost.
3434 */
3435 if (unlikely(p == rq->idle)) {
3436 WARN_ON(p != rq->curr);
3437 WARN_ON(p->pi_blocked_on);
3438 goto out_unlock;
3439 }
3440
a8027073 3441 trace_sched_pi_setprio(p, prio);
d5f9f942 3442 oldprio = p->prio;
ff77e468
PZ
3443
3444 if (oldprio == prio)
3445 queue_flag &= ~DEQUEUE_MOVE;
3446
83ab0aa0 3447 prev_class = p->sched_class;
da0c1e65 3448 queued = task_on_rq_queued(p);
051a1d1a 3449 running = task_current(rq, p);
da0c1e65 3450 if (queued)
ff77e468 3451 dequeue_task(rq, p, queue_flag);
0e1f3483 3452 if (running)
f3cd1c4e 3453 put_prev_task(rq, p);
dd41f596 3454
2d3d891d
DF
3455 /*
3456 * Boosting condition are:
3457 * 1. -rt task is running and holds mutex A
3458 * --> -dl task blocks on mutex A
3459 *
3460 * 2. -dl task is running and holds mutex A
3461 * --> -dl task blocks on mutex A and could preempt the
3462 * running task
3463 */
3464 if (dl_prio(prio)) {
466af29b
ON
3465 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3466 if (!dl_prio(p->normal_prio) ||
3467 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3468 p->dl.dl_boosted = 1;
ff77e468 3469 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3470 } else
3471 p->dl.dl_boosted = 0;
aab03e05 3472 p->sched_class = &dl_sched_class;
2d3d891d
DF
3473 } else if (rt_prio(prio)) {
3474 if (dl_prio(oldprio))
3475 p->dl.dl_boosted = 0;
3476 if (oldprio < prio)
ff77e468 3477 queue_flag |= ENQUEUE_HEAD;
dd41f596 3478 p->sched_class = &rt_sched_class;
2d3d891d
DF
3479 } else {
3480 if (dl_prio(oldprio))
3481 p->dl.dl_boosted = 0;
746db944
BS
3482 if (rt_prio(oldprio))
3483 p->rt.timeout = 0;
dd41f596 3484 p->sched_class = &fair_sched_class;
2d3d891d 3485 }
dd41f596 3486
9908df2e 3487 sched_set_prio(p, prio);
b29739f9 3488
0e1f3483
HS
3489 if (running)
3490 p->sched_class->set_curr_task(rq);
da0c1e65 3491 if (queued)
ff77e468 3492 enqueue_task(rq, p, queue_flag);
cb469845 3493
da7a735e 3494 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3495out_unlock:
4c9a4bc8 3496 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3497 __task_rq_unlock(rq);
4c9a4bc8
PZ
3498
3499 balance_callback(rq);
3500 preempt_enable();
b29739f9 3501}
b29739f9 3502#endif
d50dde5a 3503
36c8b586 3504void set_user_nice(struct task_struct *p, long nice)
1da177e4 3505{
da0c1e65 3506 int old_prio, delta, queued;
1da177e4 3507 unsigned long flags;
70b97a7f 3508 struct rq *rq;
1da177e4 3509
75e45d51 3510 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3511 return;
3512 /*
3513 * We have to be careful, if called from sys_setpriority(),
3514 * the task might be in the middle of scheduling on another CPU.
3515 */
3516 rq = task_rq_lock(p, &flags);
3517 /*
3518 * The RT priorities are set via sched_setscheduler(), but we still
3519 * allow the 'normal' nice value to be set - but as expected
3520 * it wont have any effect on scheduling until the task is
aab03e05 3521 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3522 */
aab03e05 3523 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3524 p->static_prio = NICE_TO_PRIO(nice);
3525 goto out_unlock;
3526 }
da0c1e65
KT
3527 queued = task_on_rq_queued(p);
3528 if (queued)
1de64443 3529 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3530
1da177e4 3531 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3532 set_load_weight(p);
b29739f9 3533 old_prio = p->prio;
9908df2e 3534 sched_set_prio(p, effective_prio(p));
b29739f9 3535 delta = p->prio - old_prio;
1da177e4 3536
da0c1e65 3537 if (queued) {
1de64443 3538 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3539 /*
d5f9f942
AM
3540 * If the task increased its priority or is running and
3541 * lowered its priority, then reschedule its CPU:
1da177e4 3542 */
d5f9f942 3543 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3544 resched_curr(rq);
1da177e4
LT
3545 }
3546out_unlock:
0122ec5b 3547 task_rq_unlock(rq, p, &flags);
1da177e4 3548}
1da177e4
LT
3549EXPORT_SYMBOL(set_user_nice);
3550
e43379f1
MM
3551/*
3552 * can_nice - check if a task can reduce its nice value
3553 * @p: task
3554 * @nice: nice value
3555 */
36c8b586 3556int can_nice(const struct task_struct *p, const int nice)
e43379f1 3557{
024f4747 3558 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3559 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3560
78d7d407 3561 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3562 capable(CAP_SYS_NICE));
3563}
3564
1da177e4
LT
3565#ifdef __ARCH_WANT_SYS_NICE
3566
3567/*
3568 * sys_nice - change the priority of the current process.
3569 * @increment: priority increment
3570 *
3571 * sys_setpriority is a more generic, but much slower function that
3572 * does similar things.
3573 */
5add95d4 3574SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3575{
48f24c4d 3576 long nice, retval;
1da177e4
LT
3577
3578 /*
3579 * Setpriority might change our priority at the same moment.
3580 * We don't have to worry. Conceptually one call occurs first
3581 * and we have a single winner.
3582 */
a9467fa3 3583 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3584 nice = task_nice(current) + increment;
1da177e4 3585
a9467fa3 3586 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3587 if (increment < 0 && !can_nice(current, nice))
3588 return -EPERM;
3589
1da177e4
LT
3590 retval = security_task_setnice(current, nice);
3591 if (retval)
3592 return retval;
3593
3594 set_user_nice(current, nice);
3595 return 0;
3596}
3597
3598#endif
3599
3600/**
3601 * task_prio - return the priority value of a given task.
3602 * @p: the task in question.
3603 *
e69f6186 3604 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3605 * RT tasks are offset by -200. Normal tasks are centered
3606 * around 0, value goes from -16 to +15.
3607 */
36c8b586 3608int task_prio(const struct task_struct *p)
1da177e4
LT
3609{
3610 return p->prio - MAX_RT_PRIO;
3611}
3612
1da177e4
LT
3613/**
3614 * idle_cpu - is a given cpu idle currently?
3615 * @cpu: the processor in question.
e69f6186
YB
3616 *
3617 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3618 */
3619int idle_cpu(int cpu)
3620{
908a3283
TG
3621 struct rq *rq = cpu_rq(cpu);
3622
3623 if (rq->curr != rq->idle)
3624 return 0;
3625
3626 if (rq->nr_running)
3627 return 0;
3628
3629#ifdef CONFIG_SMP
3630 if (!llist_empty(&rq->wake_list))
3631 return 0;
3632#endif
3633
3634 return 1;
1da177e4
LT
3635}
3636
1da177e4
LT
3637/**
3638 * idle_task - return the idle task for a given cpu.
3639 * @cpu: the processor in question.
e69f6186
YB
3640 *
3641 * Return: The idle task for the cpu @cpu.
1da177e4 3642 */
36c8b586 3643struct task_struct *idle_task(int cpu)
1da177e4
LT
3644{
3645 return cpu_rq(cpu)->idle;
3646}
3647
3648/**
3649 * find_process_by_pid - find a process with a matching PID value.
3650 * @pid: the pid in question.
e69f6186
YB
3651 *
3652 * The task of @pid, if found. %NULL otherwise.
1da177e4 3653 */
a9957449 3654static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3655{
228ebcbe 3656 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3657}
3658
aab03e05
DF
3659/*
3660 * This function initializes the sched_dl_entity of a newly becoming
3661 * SCHED_DEADLINE task.
3662 *
3663 * Only the static values are considered here, the actual runtime and the
3664 * absolute deadline will be properly calculated when the task is enqueued
3665 * for the first time with its new policy.
3666 */
3667static void
3668__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3669{
3670 struct sched_dl_entity *dl_se = &p->dl;
3671
aab03e05
DF
3672 dl_se->dl_runtime = attr->sched_runtime;
3673 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3674 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3675 dl_se->flags = attr->sched_flags;
332ac17e 3676 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3677
3678 /*
3679 * Changing the parameters of a task is 'tricky' and we're not doing
3680 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3681 *
3682 * What we SHOULD do is delay the bandwidth release until the 0-lag
3683 * point. This would include retaining the task_struct until that time
3684 * and change dl_overflow() to not immediately decrement the current
3685 * amount.
3686 *
3687 * Instead we retain the current runtime/deadline and let the new
3688 * parameters take effect after the current reservation period lapses.
3689 * This is safe (albeit pessimistic) because the 0-lag point is always
3690 * before the current scheduling deadline.
3691 *
3692 * We can still have temporary overloads because we do not delay the
3693 * change in bandwidth until that time; so admission control is
3694 * not on the safe side. It does however guarantee tasks will never
3695 * consume more than promised.
3696 */
aab03e05
DF
3697}
3698
c13db6b1
SR
3699/*
3700 * sched_setparam() passes in -1 for its policy, to let the functions
3701 * it calls know not to change it.
3702 */
3703#define SETPARAM_POLICY -1
3704
c365c292
TG
3705static void __setscheduler_params(struct task_struct *p,
3706 const struct sched_attr *attr)
1da177e4 3707{
d50dde5a
DF
3708 int policy = attr->sched_policy;
3709
c13db6b1 3710 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3711 policy = p->policy;
3712
1da177e4 3713 p->policy = policy;
d50dde5a 3714
aab03e05
DF
3715 if (dl_policy(policy))
3716 __setparam_dl(p, attr);
39fd8fd2 3717 else if (fair_policy(policy))
d50dde5a
DF
3718 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3719
39fd8fd2
PZ
3720 /*
3721 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3722 * !rt_policy. Always setting this ensures that things like
3723 * getparam()/getattr() don't report silly values for !rt tasks.
3724 */
3725 p->rt_priority = attr->sched_priority;
383afd09 3726 p->normal_prio = normal_prio(p);
c365c292
TG
3727 set_load_weight(p);
3728}
39fd8fd2 3729
c365c292
TG
3730/* Actually do priority change: must hold pi & rq lock. */
3731static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3732 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3733{
3734 __setscheduler_params(p, attr);
d50dde5a 3735
383afd09 3736 /*
0782e63b
TG
3737 * Keep a potential priority boosting if called from
3738 * sched_setscheduler().
383afd09 3739 */
0782e63b 3740 if (keep_boost)
9908df2e
JD
3741 sched_set_prio(p, rt_mutex_get_effective_prio(p,
3742 normal_prio(p)));
0782e63b 3743 else
9908df2e 3744 sched_set_prio(p, normal_prio(p));
383afd09 3745
aab03e05
DF
3746 if (dl_prio(p->prio))
3747 p->sched_class = &dl_sched_class;
3748 else if (rt_prio(p->prio))
ffd44db5
PZ
3749 p->sched_class = &rt_sched_class;
3750 else
3751 p->sched_class = &fair_sched_class;
1da177e4 3752}
aab03e05
DF
3753
3754static void
3755__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3756{
3757 struct sched_dl_entity *dl_se = &p->dl;
3758
3759 attr->sched_priority = p->rt_priority;
3760 attr->sched_runtime = dl_se->dl_runtime;
3761 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3762 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3763 attr->sched_flags = dl_se->flags;
3764}
3765
3766/*
3767 * This function validates the new parameters of a -deadline task.
3768 * We ask for the deadline not being zero, and greater or equal
755378a4 3769 * than the runtime, as well as the period of being zero or
332ac17e 3770 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3771 * user parameters are above the internal resolution of 1us (we
3772 * check sched_runtime only since it is always the smaller one) and
3773 * below 2^63 ns (we have to check both sched_deadline and
3774 * sched_period, as the latter can be zero).
aab03e05
DF
3775 */
3776static bool
3777__checkparam_dl(const struct sched_attr *attr)
3778{
b0827819
JL
3779 /* deadline != 0 */
3780 if (attr->sched_deadline == 0)
3781 return false;
3782
3783 /*
3784 * Since we truncate DL_SCALE bits, make sure we're at least
3785 * that big.
3786 */
3787 if (attr->sched_runtime < (1ULL << DL_SCALE))
3788 return false;
3789
3790 /*
3791 * Since we use the MSB for wrap-around and sign issues, make
3792 * sure it's not set (mind that period can be equal to zero).
3793 */
3794 if (attr->sched_deadline & (1ULL << 63) ||
3795 attr->sched_period & (1ULL << 63))
3796 return false;
3797
3798 /* runtime <= deadline <= period (if period != 0) */
3799 if ((attr->sched_period != 0 &&
3800 attr->sched_period < attr->sched_deadline) ||
3801 attr->sched_deadline < attr->sched_runtime)
3802 return false;
3803
3804 return true;
aab03e05
DF
3805}
3806
c69e8d9c
DH
3807/*
3808 * check the target process has a UID that matches the current process's
3809 */
3810static bool check_same_owner(struct task_struct *p)
3811{
3812 const struct cred *cred = current_cred(), *pcred;
3813 bool match;
3814
3815 rcu_read_lock();
3816 pcred = __task_cred(p);
9c806aa0
EB
3817 match = (uid_eq(cred->euid, pcred->euid) ||
3818 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3819 rcu_read_unlock();
3820 return match;
3821}
3822
75381608
WL
3823static bool dl_param_changed(struct task_struct *p,
3824 const struct sched_attr *attr)
3825{
3826 struct sched_dl_entity *dl_se = &p->dl;
3827
3828 if (dl_se->dl_runtime != attr->sched_runtime ||
3829 dl_se->dl_deadline != attr->sched_deadline ||
3830 dl_se->dl_period != attr->sched_period ||
3831 dl_se->flags != attr->sched_flags)
3832 return true;
3833
3834 return false;
3835}
3836
d50dde5a
DF
3837static int __sched_setscheduler(struct task_struct *p,
3838 const struct sched_attr *attr,
dbc7f069 3839 bool user, bool pi)
1da177e4 3840{
383afd09
SR
3841 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3842 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3843 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3844 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3845 unsigned long flags;
83ab0aa0 3846 const struct sched_class *prev_class;
70b97a7f 3847 struct rq *rq;
ca94c442 3848 int reset_on_fork;
ff77e468 3849 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
1da177e4 3850
66e5393a
SR
3851 /* may grab non-irq protected spin_locks */
3852 BUG_ON(in_interrupt());
1da177e4
LT
3853recheck:
3854 /* double check policy once rq lock held */
ca94c442
LP
3855 if (policy < 0) {
3856 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3857 policy = oldpolicy = p->policy;
ca94c442 3858 } else {
7479f3c9 3859 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3860
20f9cd2a 3861 if (!valid_policy(policy))
ca94c442
LP
3862 return -EINVAL;
3863 }
3864
7479f3c9
PZ
3865 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3866 return -EINVAL;
3867
1da177e4
LT
3868 /*
3869 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3870 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3871 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3872 */
0bb040a4 3873 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3874 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3875 return -EINVAL;
aab03e05
DF
3876 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3877 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3878 return -EINVAL;
3879
37e4ab3f
OC
3880 /*
3881 * Allow unprivileged RT tasks to decrease priority:
3882 */
961ccddd 3883 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3884 if (fair_policy(policy)) {
d0ea0268 3885 if (attr->sched_nice < task_nice(p) &&
eaad4513 3886 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3887 return -EPERM;
3888 }
3889
e05606d3 3890 if (rt_policy(policy)) {
a44702e8
ON
3891 unsigned long rlim_rtprio =
3892 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3893
3894 /* can't set/change the rt policy */
3895 if (policy != p->policy && !rlim_rtprio)
3896 return -EPERM;
3897
3898 /* can't increase priority */
d50dde5a
DF
3899 if (attr->sched_priority > p->rt_priority &&
3900 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3901 return -EPERM;
3902 }
c02aa73b 3903
d44753b8
JL
3904 /*
3905 * Can't set/change SCHED_DEADLINE policy at all for now
3906 * (safest behavior); in the future we would like to allow
3907 * unprivileged DL tasks to increase their relative deadline
3908 * or reduce their runtime (both ways reducing utilization)
3909 */
3910 if (dl_policy(policy))
3911 return -EPERM;
3912
dd41f596 3913 /*
c02aa73b
DH
3914 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3915 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3916 */
20f9cd2a 3917 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3918 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3919 return -EPERM;
3920 }
5fe1d75f 3921
37e4ab3f 3922 /* can't change other user's priorities */
c69e8d9c 3923 if (!check_same_owner(p))
37e4ab3f 3924 return -EPERM;
ca94c442
LP
3925
3926 /* Normal users shall not reset the sched_reset_on_fork flag */
3927 if (p->sched_reset_on_fork && !reset_on_fork)
3928 return -EPERM;
37e4ab3f 3929 }
1da177e4 3930
725aad24 3931 if (user) {
b0ae1981 3932 retval = security_task_setscheduler(p);
725aad24
JF
3933 if (retval)
3934 return retval;
3935 }
3936
b29739f9
IM
3937 /*
3938 * make sure no PI-waiters arrive (or leave) while we are
3939 * changing the priority of the task:
0122ec5b 3940 *
25985edc 3941 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3942 * runqueue lock must be held.
3943 */
0122ec5b 3944 rq = task_rq_lock(p, &flags);
dc61b1d6 3945
34f971f6
PZ
3946 /*
3947 * Changing the policy of the stop threads its a very bad idea
3948 */
3949 if (p == rq->stop) {
0122ec5b 3950 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3951 return -EINVAL;
3952 }
3953
a51e9198 3954 /*
d6b1e911
TG
3955 * If not changing anything there's no need to proceed further,
3956 * but store a possible modification of reset_on_fork.
a51e9198 3957 */
d50dde5a 3958 if (unlikely(policy == p->policy)) {
d0ea0268 3959 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3960 goto change;
3961 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3962 goto change;
75381608 3963 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3964 goto change;
d50dde5a 3965
d6b1e911 3966 p->sched_reset_on_fork = reset_on_fork;
45afb173 3967 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3968 return 0;
3969 }
d50dde5a 3970change:
a51e9198 3971
dc61b1d6 3972 if (user) {
332ac17e 3973#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3974 /*
3975 * Do not allow realtime tasks into groups that have no runtime
3976 * assigned.
3977 */
3978 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3979 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3980 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3981 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3982 return -EPERM;
3983 }
dc61b1d6 3984#endif
332ac17e
DF
3985#ifdef CONFIG_SMP
3986 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3987 cpumask_t *span = rq->rd->span;
332ac17e
DF
3988
3989 /*
3990 * Don't allow tasks with an affinity mask smaller than
3991 * the entire root_domain to become SCHED_DEADLINE. We
3992 * will also fail if there's no bandwidth available.
3993 */
e4099a5e
PZ
3994 if (!cpumask_subset(span, &p->cpus_allowed) ||
3995 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3996 task_rq_unlock(rq, p, &flags);
3997 return -EPERM;
3998 }
3999 }
4000#endif
4001 }
dc61b1d6 4002
1da177e4
LT
4003 /* recheck policy now with rq lock held */
4004 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4005 policy = oldpolicy = -1;
0122ec5b 4006 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4007 goto recheck;
4008 }
332ac17e
DF
4009
4010 /*
4011 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4012 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4013 * is available.
4014 */
e4099a5e 4015 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
4016 task_rq_unlock(rq, p, &flags);
4017 return -EBUSY;
4018 }
4019
c365c292
TG
4020 p->sched_reset_on_fork = reset_on_fork;
4021 oldprio = p->prio;
4022
dbc7f069
PZ
4023 if (pi) {
4024 /*
4025 * Take priority boosted tasks into account. If the new
4026 * effective priority is unchanged, we just store the new
4027 * normal parameters and do not touch the scheduler class and
4028 * the runqueue. This will be done when the task deboost
4029 * itself.
4030 */
4031 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4032 if (new_effective_prio == oldprio)
4033 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4034 }
4035
da0c1e65 4036 queued = task_on_rq_queued(p);
051a1d1a 4037 running = task_current(rq, p);
da0c1e65 4038 if (queued)
ff77e468 4039 dequeue_task(rq, p, queue_flags);
0e1f3483 4040 if (running)
f3cd1c4e 4041 put_prev_task(rq, p);
f6b53205 4042
83ab0aa0 4043 prev_class = p->sched_class;
dbc7f069 4044 __setscheduler(rq, p, attr, pi);
f6b53205 4045
0e1f3483
HS
4046 if (running)
4047 p->sched_class->set_curr_task(rq);
da0c1e65 4048 if (queued) {
81a44c54
TG
4049 /*
4050 * We enqueue to tail when the priority of a task is
4051 * increased (user space view).
4052 */
ff77e468
PZ
4053 if (oldprio < p->prio)
4054 queue_flags |= ENQUEUE_HEAD;
1de64443 4055
ff77e468 4056 enqueue_task(rq, p, queue_flags);
81a44c54 4057 }
cb469845 4058
da7a735e 4059 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4060 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4061 task_rq_unlock(rq, p, &flags);
b29739f9 4062
dbc7f069
PZ
4063 if (pi)
4064 rt_mutex_adjust_pi(p);
95e02ca9 4065
4c9a4bc8
PZ
4066 /*
4067 * Run balance callbacks after we've adjusted the PI chain.
4068 */
4069 balance_callback(rq);
4070 preempt_enable();
95e02ca9 4071
1da177e4
LT
4072 return 0;
4073}
961ccddd 4074
7479f3c9
PZ
4075static int _sched_setscheduler(struct task_struct *p, int policy,
4076 const struct sched_param *param, bool check)
4077{
4078 struct sched_attr attr = {
4079 .sched_policy = policy,
4080 .sched_priority = param->sched_priority,
4081 .sched_nice = PRIO_TO_NICE(p->static_prio),
4082 };
4083
c13db6b1
SR
4084 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4085 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4086 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4087 policy &= ~SCHED_RESET_ON_FORK;
4088 attr.sched_policy = policy;
4089 }
4090
dbc7f069 4091 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4092}
961ccddd
RR
4093/**
4094 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4095 * @p: the task in question.
4096 * @policy: new policy.
4097 * @param: structure containing the new RT priority.
4098 *
e69f6186
YB
4099 * Return: 0 on success. An error code otherwise.
4100 *
961ccddd
RR
4101 * NOTE that the task may be already dead.
4102 */
4103int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4104 const struct sched_param *param)
961ccddd 4105{
7479f3c9 4106 return _sched_setscheduler(p, policy, param, true);
961ccddd 4107}
1da177e4
LT
4108EXPORT_SYMBOL_GPL(sched_setscheduler);
4109
d50dde5a
DF
4110int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4111{
dbc7f069 4112 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4113}
4114EXPORT_SYMBOL_GPL(sched_setattr);
4115
961ccddd
RR
4116/**
4117 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4118 * @p: the task in question.
4119 * @policy: new policy.
4120 * @param: structure containing the new RT priority.
4121 *
4122 * Just like sched_setscheduler, only don't bother checking if the
4123 * current context has permission. For example, this is needed in
4124 * stop_machine(): we create temporary high priority worker threads,
4125 * but our caller might not have that capability.
e69f6186
YB
4126 *
4127 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4128 */
4129int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4130 const struct sched_param *param)
961ccddd 4131{
7479f3c9 4132 return _sched_setscheduler(p, policy, param, false);
961ccddd 4133}
84778472 4134EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4135
95cdf3b7
IM
4136static int
4137do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4138{
1da177e4
LT
4139 struct sched_param lparam;
4140 struct task_struct *p;
36c8b586 4141 int retval;
1da177e4
LT
4142
4143 if (!param || pid < 0)
4144 return -EINVAL;
4145 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4146 return -EFAULT;
5fe1d75f
ON
4147
4148 rcu_read_lock();
4149 retval = -ESRCH;
1da177e4 4150 p = find_process_by_pid(pid);
5fe1d75f
ON
4151 if (p != NULL)
4152 retval = sched_setscheduler(p, policy, &lparam);
4153 rcu_read_unlock();
36c8b586 4154
1da177e4
LT
4155 return retval;
4156}
4157
d50dde5a
DF
4158/*
4159 * Mimics kernel/events/core.c perf_copy_attr().
4160 */
4161static int sched_copy_attr(struct sched_attr __user *uattr,
4162 struct sched_attr *attr)
4163{
4164 u32 size;
4165 int ret;
4166
4167 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4168 return -EFAULT;
4169
4170 /*
4171 * zero the full structure, so that a short copy will be nice.
4172 */
4173 memset(attr, 0, sizeof(*attr));
4174
4175 ret = get_user(size, &uattr->size);
4176 if (ret)
4177 return ret;
4178
4179 if (size > PAGE_SIZE) /* silly large */
4180 goto err_size;
4181
4182 if (!size) /* abi compat */
4183 size = SCHED_ATTR_SIZE_VER0;
4184
4185 if (size < SCHED_ATTR_SIZE_VER0)
4186 goto err_size;
4187
4188 /*
4189 * If we're handed a bigger struct than we know of,
4190 * ensure all the unknown bits are 0 - i.e. new
4191 * user-space does not rely on any kernel feature
4192 * extensions we dont know about yet.
4193 */
4194 if (size > sizeof(*attr)) {
4195 unsigned char __user *addr;
4196 unsigned char __user *end;
4197 unsigned char val;
4198
4199 addr = (void __user *)uattr + sizeof(*attr);
4200 end = (void __user *)uattr + size;
4201
4202 for (; addr < end; addr++) {
4203 ret = get_user(val, addr);
4204 if (ret)
4205 return ret;
4206 if (val)
4207 goto err_size;
4208 }
4209 size = sizeof(*attr);
4210 }
4211
4212 ret = copy_from_user(attr, uattr, size);
4213 if (ret)
4214 return -EFAULT;
4215
4216 /*
4217 * XXX: do we want to be lenient like existing syscalls; or do we want
4218 * to be strict and return an error on out-of-bounds values?
4219 */
75e45d51 4220 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4221
e78c7bca 4222 return 0;
d50dde5a
DF
4223
4224err_size:
4225 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4226 return -E2BIG;
d50dde5a
DF
4227}
4228
1da177e4
LT
4229/**
4230 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4231 * @pid: the pid in question.
4232 * @policy: new policy.
4233 * @param: structure containing the new RT priority.
e69f6186
YB
4234 *
4235 * Return: 0 on success. An error code otherwise.
1da177e4 4236 */
5add95d4
HC
4237SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4238 struct sched_param __user *, param)
1da177e4 4239{
c21761f1
JB
4240 /* negative values for policy are not valid */
4241 if (policy < 0)
4242 return -EINVAL;
4243
1da177e4
LT
4244 return do_sched_setscheduler(pid, policy, param);
4245}
4246
4247/**
4248 * sys_sched_setparam - set/change the RT priority of a thread
4249 * @pid: the pid in question.
4250 * @param: structure containing the new RT priority.
e69f6186
YB
4251 *
4252 * Return: 0 on success. An error code otherwise.
1da177e4 4253 */
5add95d4 4254SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4255{
c13db6b1 4256 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4257}
4258
d50dde5a
DF
4259/**
4260 * sys_sched_setattr - same as above, but with extended sched_attr
4261 * @pid: the pid in question.
5778fccf 4262 * @uattr: structure containing the extended parameters.
db66d756 4263 * @flags: for future extension.
d50dde5a 4264 */
6d35ab48
PZ
4265SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4266 unsigned int, flags)
d50dde5a
DF
4267{
4268 struct sched_attr attr;
4269 struct task_struct *p;
4270 int retval;
4271
6d35ab48 4272 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4273 return -EINVAL;
4274
143cf23d
MK
4275 retval = sched_copy_attr(uattr, &attr);
4276 if (retval)
4277 return retval;
d50dde5a 4278
b14ed2c2 4279 if ((int)attr.sched_policy < 0)
dbdb2275 4280 return -EINVAL;
d50dde5a
DF
4281
4282 rcu_read_lock();
4283 retval = -ESRCH;
4284 p = find_process_by_pid(pid);
4285 if (p != NULL)
4286 retval = sched_setattr(p, &attr);
4287 rcu_read_unlock();
4288
4289 return retval;
4290}
4291
1da177e4
LT
4292/**
4293 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4294 * @pid: the pid in question.
e69f6186
YB
4295 *
4296 * Return: On success, the policy of the thread. Otherwise, a negative error
4297 * code.
1da177e4 4298 */
5add95d4 4299SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4300{
36c8b586 4301 struct task_struct *p;
3a5c359a 4302 int retval;
1da177e4
LT
4303
4304 if (pid < 0)
3a5c359a 4305 return -EINVAL;
1da177e4
LT
4306
4307 retval = -ESRCH;
5fe85be0 4308 rcu_read_lock();
1da177e4
LT
4309 p = find_process_by_pid(pid);
4310 if (p) {
4311 retval = security_task_getscheduler(p);
4312 if (!retval)
ca94c442
LP
4313 retval = p->policy
4314 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4315 }
5fe85be0 4316 rcu_read_unlock();
1da177e4
LT
4317 return retval;
4318}
4319
4320/**
ca94c442 4321 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4322 * @pid: the pid in question.
4323 * @param: structure containing the RT priority.
e69f6186
YB
4324 *
4325 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4326 * code.
1da177e4 4327 */
5add95d4 4328SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4329{
ce5f7f82 4330 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4331 struct task_struct *p;
3a5c359a 4332 int retval;
1da177e4
LT
4333
4334 if (!param || pid < 0)
3a5c359a 4335 return -EINVAL;
1da177e4 4336
5fe85be0 4337 rcu_read_lock();
1da177e4
LT
4338 p = find_process_by_pid(pid);
4339 retval = -ESRCH;
4340 if (!p)
4341 goto out_unlock;
4342
4343 retval = security_task_getscheduler(p);
4344 if (retval)
4345 goto out_unlock;
4346
ce5f7f82
PZ
4347 if (task_has_rt_policy(p))
4348 lp.sched_priority = p->rt_priority;
5fe85be0 4349 rcu_read_unlock();
1da177e4
LT
4350
4351 /*
4352 * This one might sleep, we cannot do it with a spinlock held ...
4353 */
4354 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4355
1da177e4
LT
4356 return retval;
4357
4358out_unlock:
5fe85be0 4359 rcu_read_unlock();
1da177e4
LT
4360 return retval;
4361}
4362
d50dde5a
DF
4363static int sched_read_attr(struct sched_attr __user *uattr,
4364 struct sched_attr *attr,
4365 unsigned int usize)
4366{
4367 int ret;
4368
4369 if (!access_ok(VERIFY_WRITE, uattr, usize))
4370 return -EFAULT;
4371
4372 /*
4373 * If we're handed a smaller struct than we know of,
4374 * ensure all the unknown bits are 0 - i.e. old
4375 * user-space does not get uncomplete information.
4376 */
4377 if (usize < sizeof(*attr)) {
4378 unsigned char *addr;
4379 unsigned char *end;
4380
4381 addr = (void *)attr + usize;
4382 end = (void *)attr + sizeof(*attr);
4383
4384 for (; addr < end; addr++) {
4385 if (*addr)
22400674 4386 return -EFBIG;
d50dde5a
DF
4387 }
4388
4389 attr->size = usize;
4390 }
4391
4efbc454 4392 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4393 if (ret)
4394 return -EFAULT;
4395
22400674 4396 return 0;
d50dde5a
DF
4397}
4398
4399/**
aab03e05 4400 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4401 * @pid: the pid in question.
5778fccf 4402 * @uattr: structure containing the extended parameters.
d50dde5a 4403 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4404 * @flags: for future extension.
d50dde5a 4405 */
6d35ab48
PZ
4406SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4407 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4408{
4409 struct sched_attr attr = {
4410 .size = sizeof(struct sched_attr),
4411 };
4412 struct task_struct *p;
4413 int retval;
4414
4415 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4416 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4417 return -EINVAL;
4418
4419 rcu_read_lock();
4420 p = find_process_by_pid(pid);
4421 retval = -ESRCH;
4422 if (!p)
4423 goto out_unlock;
4424
4425 retval = security_task_getscheduler(p);
4426 if (retval)
4427 goto out_unlock;
4428
4429 attr.sched_policy = p->policy;
7479f3c9
PZ
4430 if (p->sched_reset_on_fork)
4431 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4432 if (task_has_dl_policy(p))
4433 __getparam_dl(p, &attr);
4434 else if (task_has_rt_policy(p))
d50dde5a
DF
4435 attr.sched_priority = p->rt_priority;
4436 else
d0ea0268 4437 attr.sched_nice = task_nice(p);
d50dde5a
DF
4438
4439 rcu_read_unlock();
4440
4441 retval = sched_read_attr(uattr, &attr, size);
4442 return retval;
4443
4444out_unlock:
4445 rcu_read_unlock();
4446 return retval;
4447}
4448
96f874e2 4449long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4450{
5a16f3d3 4451 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4452 struct task_struct *p;
4453 int retval;
1da177e4 4454
23f5d142 4455 rcu_read_lock();
1da177e4
LT
4456
4457 p = find_process_by_pid(pid);
4458 if (!p) {
23f5d142 4459 rcu_read_unlock();
1da177e4
LT
4460 return -ESRCH;
4461 }
4462
23f5d142 4463 /* Prevent p going away */
1da177e4 4464 get_task_struct(p);
23f5d142 4465 rcu_read_unlock();
1da177e4 4466
14a40ffc
TH
4467 if (p->flags & PF_NO_SETAFFINITY) {
4468 retval = -EINVAL;
4469 goto out_put_task;
4470 }
5a16f3d3
RR
4471 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4472 retval = -ENOMEM;
4473 goto out_put_task;
4474 }
4475 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4476 retval = -ENOMEM;
4477 goto out_free_cpus_allowed;
4478 }
1da177e4 4479 retval = -EPERM;
4c44aaaf
EB
4480 if (!check_same_owner(p)) {
4481 rcu_read_lock();
4482 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4483 rcu_read_unlock();
16303ab2 4484 goto out_free_new_mask;
4c44aaaf
EB
4485 }
4486 rcu_read_unlock();
4487 }
1da177e4 4488
b0ae1981 4489 retval = security_task_setscheduler(p);
e7834f8f 4490 if (retval)
16303ab2 4491 goto out_free_new_mask;
e7834f8f 4492
e4099a5e
PZ
4493
4494 cpuset_cpus_allowed(p, cpus_allowed);
4495 cpumask_and(new_mask, in_mask, cpus_allowed);
4496
332ac17e
DF
4497 /*
4498 * Since bandwidth control happens on root_domain basis,
4499 * if admission test is enabled, we only admit -deadline
4500 * tasks allowed to run on all the CPUs in the task's
4501 * root_domain.
4502 */
4503#ifdef CONFIG_SMP
f1e3a093
KT
4504 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4505 rcu_read_lock();
4506 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4507 retval = -EBUSY;
f1e3a093 4508 rcu_read_unlock();
16303ab2 4509 goto out_free_new_mask;
332ac17e 4510 }
f1e3a093 4511 rcu_read_unlock();
332ac17e
DF
4512 }
4513#endif
49246274 4514again:
25834c73 4515 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4516
8707d8b8 4517 if (!retval) {
5a16f3d3
RR
4518 cpuset_cpus_allowed(p, cpus_allowed);
4519 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4520 /*
4521 * We must have raced with a concurrent cpuset
4522 * update. Just reset the cpus_allowed to the
4523 * cpuset's cpus_allowed
4524 */
5a16f3d3 4525 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4526 goto again;
4527 }
4528 }
16303ab2 4529out_free_new_mask:
5a16f3d3
RR
4530 free_cpumask_var(new_mask);
4531out_free_cpus_allowed:
4532 free_cpumask_var(cpus_allowed);
4533out_put_task:
1da177e4 4534 put_task_struct(p);
1da177e4
LT
4535 return retval;
4536}
4537
4538static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4539 struct cpumask *new_mask)
1da177e4 4540{
96f874e2
RR
4541 if (len < cpumask_size())
4542 cpumask_clear(new_mask);
4543 else if (len > cpumask_size())
4544 len = cpumask_size();
4545
1da177e4
LT
4546 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4547}
4548
4549/**
4550 * sys_sched_setaffinity - set the cpu affinity of a process
4551 * @pid: pid of the process
4552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4553 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4554 *
4555 * Return: 0 on success. An error code otherwise.
1da177e4 4556 */
5add95d4
HC
4557SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4558 unsigned long __user *, user_mask_ptr)
1da177e4 4559{
5a16f3d3 4560 cpumask_var_t new_mask;
1da177e4
LT
4561 int retval;
4562
5a16f3d3
RR
4563 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4564 return -ENOMEM;
1da177e4 4565
5a16f3d3
RR
4566 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4567 if (retval == 0)
4568 retval = sched_setaffinity(pid, new_mask);
4569 free_cpumask_var(new_mask);
4570 return retval;
1da177e4
LT
4571}
4572
96f874e2 4573long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4574{
36c8b586 4575 struct task_struct *p;
31605683 4576 unsigned long flags;
1da177e4 4577 int retval;
1da177e4 4578
23f5d142 4579 rcu_read_lock();
1da177e4
LT
4580
4581 retval = -ESRCH;
4582 p = find_process_by_pid(pid);
4583 if (!p)
4584 goto out_unlock;
4585
e7834f8f
DQ
4586 retval = security_task_getscheduler(p);
4587 if (retval)
4588 goto out_unlock;
4589
013fdb80 4590 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4591 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4592 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4593
4594out_unlock:
23f5d142 4595 rcu_read_unlock();
1da177e4 4596
9531b62f 4597 return retval;
1da177e4
LT
4598}
4599
4600/**
4601 * sys_sched_getaffinity - get the cpu affinity of a process
4602 * @pid: pid of the process
4603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4605 *
4606 * Return: 0 on success. An error code otherwise.
1da177e4 4607 */
5add95d4
HC
4608SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4609 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4610{
4611 int ret;
f17c8607 4612 cpumask_var_t mask;
1da177e4 4613
84fba5ec 4614 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4615 return -EINVAL;
4616 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4617 return -EINVAL;
4618
f17c8607
RR
4619 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4620 return -ENOMEM;
1da177e4 4621
f17c8607
RR
4622 ret = sched_getaffinity(pid, mask);
4623 if (ret == 0) {
8bc037fb 4624 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4625
4626 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4627 ret = -EFAULT;
4628 else
cd3d8031 4629 ret = retlen;
f17c8607
RR
4630 }
4631 free_cpumask_var(mask);
1da177e4 4632
f17c8607 4633 return ret;
1da177e4
LT
4634}
4635
4636/**
4637 * sys_sched_yield - yield the current processor to other threads.
4638 *
dd41f596
IM
4639 * This function yields the current CPU to other tasks. If there are no
4640 * other threads running on this CPU then this function will return.
e69f6186
YB
4641 *
4642 * Return: 0.
1da177e4 4643 */
5add95d4 4644SYSCALL_DEFINE0(sched_yield)
1da177e4 4645{
70b97a7f 4646 struct rq *rq = this_rq_lock();
1da177e4 4647
2d72376b 4648 schedstat_inc(rq, yld_count);
4530d7ab 4649 current->sched_class->yield_task(rq);
1da177e4
LT
4650
4651 /*
4652 * Since we are going to call schedule() anyway, there's
4653 * no need to preempt or enable interrupts:
4654 */
4655 __release(rq->lock);
8a25d5de 4656 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4657 do_raw_spin_unlock(&rq->lock);
ba74c144 4658 sched_preempt_enable_no_resched();
1da177e4
LT
4659
4660 schedule();
4661
4662 return 0;
4663}
4664
02b67cc3 4665int __sched _cond_resched(void)
1da177e4 4666{
fe32d3cd 4667 if (should_resched(0)) {
a18b5d01 4668 preempt_schedule_common();
1da177e4
LT
4669 return 1;
4670 }
4671 return 0;
4672}
02b67cc3 4673EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4674
4675/*
613afbf8 4676 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4677 * call schedule, and on return reacquire the lock.
4678 *
41a2d6cf 4679 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4680 * operations here to prevent schedule() from being called twice (once via
4681 * spin_unlock(), once by hand).
4682 */
613afbf8 4683int __cond_resched_lock(spinlock_t *lock)
1da177e4 4684{
fe32d3cd 4685 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4686 int ret = 0;
4687
f607c668
PZ
4688 lockdep_assert_held(lock);
4689
4a81e832 4690 if (spin_needbreak(lock) || resched) {
1da177e4 4691 spin_unlock(lock);
d86ee480 4692 if (resched)
a18b5d01 4693 preempt_schedule_common();
95c354fe
NP
4694 else
4695 cpu_relax();
6df3cecb 4696 ret = 1;
1da177e4 4697 spin_lock(lock);
1da177e4 4698 }
6df3cecb 4699 return ret;
1da177e4 4700}
613afbf8 4701EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4702
613afbf8 4703int __sched __cond_resched_softirq(void)
1da177e4
LT
4704{
4705 BUG_ON(!in_softirq());
4706
fe32d3cd 4707 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4708 local_bh_enable();
a18b5d01 4709 preempt_schedule_common();
1da177e4
LT
4710 local_bh_disable();
4711 return 1;
4712 }
4713 return 0;
4714}
613afbf8 4715EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4716
1da177e4
LT
4717/**
4718 * yield - yield the current processor to other threads.
4719 *
8e3fabfd
PZ
4720 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4721 *
4722 * The scheduler is at all times free to pick the calling task as the most
4723 * eligible task to run, if removing the yield() call from your code breaks
4724 * it, its already broken.
4725 *
4726 * Typical broken usage is:
4727 *
4728 * while (!event)
4729 * yield();
4730 *
4731 * where one assumes that yield() will let 'the other' process run that will
4732 * make event true. If the current task is a SCHED_FIFO task that will never
4733 * happen. Never use yield() as a progress guarantee!!
4734 *
4735 * If you want to use yield() to wait for something, use wait_event().
4736 * If you want to use yield() to be 'nice' for others, use cond_resched().
4737 * If you still want to use yield(), do not!
1da177e4
LT
4738 */
4739void __sched yield(void)
4740{
4741 set_current_state(TASK_RUNNING);
4742 sys_sched_yield();
4743}
1da177e4
LT
4744EXPORT_SYMBOL(yield);
4745
d95f4122
MG
4746/**
4747 * yield_to - yield the current processor to another thread in
4748 * your thread group, or accelerate that thread toward the
4749 * processor it's on.
16addf95
RD
4750 * @p: target task
4751 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4752 *
4753 * It's the caller's job to ensure that the target task struct
4754 * can't go away on us before we can do any checks.
4755 *
e69f6186 4756 * Return:
7b270f60
PZ
4757 * true (>0) if we indeed boosted the target task.
4758 * false (0) if we failed to boost the target.
4759 * -ESRCH if there's no task to yield to.
d95f4122 4760 */
fa93384f 4761int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4762{
4763 struct task_struct *curr = current;
4764 struct rq *rq, *p_rq;
4765 unsigned long flags;
c3c18640 4766 int yielded = 0;
d95f4122
MG
4767
4768 local_irq_save(flags);
4769 rq = this_rq();
4770
4771again:
4772 p_rq = task_rq(p);
7b270f60
PZ
4773 /*
4774 * If we're the only runnable task on the rq and target rq also
4775 * has only one task, there's absolutely no point in yielding.
4776 */
4777 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4778 yielded = -ESRCH;
4779 goto out_irq;
4780 }
4781
d95f4122 4782 double_rq_lock(rq, p_rq);
39e24d8f 4783 if (task_rq(p) != p_rq) {
d95f4122
MG
4784 double_rq_unlock(rq, p_rq);
4785 goto again;
4786 }
4787
4788 if (!curr->sched_class->yield_to_task)
7b270f60 4789 goto out_unlock;
d95f4122
MG
4790
4791 if (curr->sched_class != p->sched_class)
7b270f60 4792 goto out_unlock;
d95f4122
MG
4793
4794 if (task_running(p_rq, p) || p->state)
7b270f60 4795 goto out_unlock;
d95f4122
MG
4796
4797 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4798 if (yielded) {
d95f4122 4799 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4800 /*
4801 * Make p's CPU reschedule; pick_next_entity takes care of
4802 * fairness.
4803 */
4804 if (preempt && rq != p_rq)
8875125e 4805 resched_curr(p_rq);
6d1cafd8 4806 }
d95f4122 4807
7b270f60 4808out_unlock:
d95f4122 4809 double_rq_unlock(rq, p_rq);
7b270f60 4810out_irq:
d95f4122
MG
4811 local_irq_restore(flags);
4812
7b270f60 4813 if (yielded > 0)
d95f4122
MG
4814 schedule();
4815
4816 return yielded;
4817}
4818EXPORT_SYMBOL_GPL(yield_to);
4819
1da177e4 4820/*
41a2d6cf 4821 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4822 * that process accounting knows that this is a task in IO wait state.
1da177e4 4823 */
1da177e4
LT
4824long __sched io_schedule_timeout(long timeout)
4825{
9cff8ade
N
4826 int old_iowait = current->in_iowait;
4827 struct rq *rq;
1da177e4
LT
4828 long ret;
4829
9cff8ade 4830 current->in_iowait = 1;
10d784ea 4831 blk_schedule_flush_plug(current);
9cff8ade 4832
0ff92245 4833 delayacct_blkio_start();
9cff8ade 4834 rq = raw_rq();
1da177e4
LT
4835 atomic_inc(&rq->nr_iowait);
4836 ret = schedule_timeout(timeout);
9cff8ade 4837 current->in_iowait = old_iowait;
1da177e4 4838 atomic_dec(&rq->nr_iowait);
0ff92245 4839 delayacct_blkio_end();
9cff8ade 4840
1da177e4
LT
4841 return ret;
4842}
9cff8ade 4843EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4844
4845/**
4846 * sys_sched_get_priority_max - return maximum RT priority.
4847 * @policy: scheduling class.
4848 *
e69f6186
YB
4849 * Return: On success, this syscall returns the maximum
4850 * rt_priority that can be used by a given scheduling class.
4851 * On failure, a negative error code is returned.
1da177e4 4852 */
5add95d4 4853SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4854{
4855 int ret = -EINVAL;
4856
4857 switch (policy) {
4858 case SCHED_FIFO:
4859 case SCHED_RR:
4860 ret = MAX_USER_RT_PRIO-1;
4861 break;
aab03e05 4862 case SCHED_DEADLINE:
1da177e4 4863 case SCHED_NORMAL:
b0a9499c 4864 case SCHED_BATCH:
dd41f596 4865 case SCHED_IDLE:
1da177e4
LT
4866 ret = 0;
4867 break;
4868 }
4869 return ret;
4870}
4871
4872/**
4873 * sys_sched_get_priority_min - return minimum RT priority.
4874 * @policy: scheduling class.
4875 *
e69f6186
YB
4876 * Return: On success, this syscall returns the minimum
4877 * rt_priority that can be used by a given scheduling class.
4878 * On failure, a negative error code is returned.
1da177e4 4879 */
5add95d4 4880SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4881{
4882 int ret = -EINVAL;
4883
4884 switch (policy) {
4885 case SCHED_FIFO:
4886 case SCHED_RR:
4887 ret = 1;
4888 break;
aab03e05 4889 case SCHED_DEADLINE:
1da177e4 4890 case SCHED_NORMAL:
b0a9499c 4891 case SCHED_BATCH:
dd41f596 4892 case SCHED_IDLE:
1da177e4
LT
4893 ret = 0;
4894 }
4895 return ret;
4896}
4897
4898/**
4899 * sys_sched_rr_get_interval - return the default timeslice of a process.
4900 * @pid: pid of the process.
4901 * @interval: userspace pointer to the timeslice value.
4902 *
4903 * this syscall writes the default timeslice value of a given process
4904 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4905 *
4906 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4907 * an error code.
1da177e4 4908 */
17da2bd9 4909SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4910 struct timespec __user *, interval)
1da177e4 4911{
36c8b586 4912 struct task_struct *p;
a4ec24b4 4913 unsigned int time_slice;
dba091b9
TG
4914 unsigned long flags;
4915 struct rq *rq;
3a5c359a 4916 int retval;
1da177e4 4917 struct timespec t;
1da177e4
LT
4918
4919 if (pid < 0)
3a5c359a 4920 return -EINVAL;
1da177e4
LT
4921
4922 retval = -ESRCH;
1a551ae7 4923 rcu_read_lock();
1da177e4
LT
4924 p = find_process_by_pid(pid);
4925 if (!p)
4926 goto out_unlock;
4927
4928 retval = security_task_getscheduler(p);
4929 if (retval)
4930 goto out_unlock;
4931
dba091b9 4932 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4933 time_slice = 0;
4934 if (p->sched_class->get_rr_interval)
4935 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4936 task_rq_unlock(rq, p, &flags);
a4ec24b4 4937
1a551ae7 4938 rcu_read_unlock();
a4ec24b4 4939 jiffies_to_timespec(time_slice, &t);
1da177e4 4940 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4941 return retval;
3a5c359a 4942
1da177e4 4943out_unlock:
1a551ae7 4944 rcu_read_unlock();
1da177e4
LT
4945 return retval;
4946}
4947
7c731e0a 4948static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4949
82a1fcb9 4950void sched_show_task(struct task_struct *p)
1da177e4 4951{
1da177e4 4952 unsigned long free = 0;
4e79752c 4953 int ppid;
1f8a7633 4954 unsigned long state = p->state;
1da177e4 4955
1f8a7633
TH
4956 if (state)
4957 state = __ffs(state) + 1;
28d0686c 4958 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4959 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4960#if BITS_PER_LONG == 32
1da177e4 4961 if (state == TASK_RUNNING)
3df0fc5b 4962 printk(KERN_CONT " running ");
1da177e4 4963 else
3df0fc5b 4964 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4965#else
4966 if (state == TASK_RUNNING)
3df0fc5b 4967 printk(KERN_CONT " running task ");
1da177e4 4968 else
3df0fc5b 4969 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4970#endif
4971#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4972 free = stack_not_used(p);
1da177e4 4973#endif
a90e984c 4974 ppid = 0;
4e79752c 4975 rcu_read_lock();
a90e984c
ON
4976 if (pid_alive(p))
4977 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4978 rcu_read_unlock();
3df0fc5b 4979 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4980 task_pid_nr(p), ppid,
aa47b7e0 4981 (unsigned long)task_thread_info(p)->flags);
1da177e4 4982
3d1cb205 4983 print_worker_info(KERN_INFO, p);
5fb5e6de 4984 show_stack(p, NULL);
1da177e4
LT
4985}
4986
e59e2ae2 4987void show_state_filter(unsigned long state_filter)
1da177e4 4988{
36c8b586 4989 struct task_struct *g, *p;
1da177e4 4990
4bd77321 4991#if BITS_PER_LONG == 32
3df0fc5b
PZ
4992 printk(KERN_INFO
4993 " task PC stack pid father\n");
1da177e4 4994#else
3df0fc5b
PZ
4995 printk(KERN_INFO
4996 " task PC stack pid father\n");
1da177e4 4997#endif
510f5acc 4998 rcu_read_lock();
5d07f420 4999 for_each_process_thread(g, p) {
1da177e4
LT
5000 /*
5001 * reset the NMI-timeout, listing all files on a slow
25985edc 5002 * console might take a lot of time:
1da177e4
LT
5003 */
5004 touch_nmi_watchdog();
39bc89fd 5005 if (!state_filter || (p->state & state_filter))
82a1fcb9 5006 sched_show_task(p);
5d07f420 5007 }
1da177e4 5008
04c9167f
JF
5009 touch_all_softlockup_watchdogs();
5010
dd41f596
IM
5011#ifdef CONFIG_SCHED_DEBUG
5012 sysrq_sched_debug_show();
5013#endif
510f5acc 5014 rcu_read_unlock();
e59e2ae2
IM
5015 /*
5016 * Only show locks if all tasks are dumped:
5017 */
93335a21 5018 if (!state_filter)
e59e2ae2 5019 debug_show_all_locks();
1da177e4
LT
5020}
5021
0db0628d 5022void init_idle_bootup_task(struct task_struct *idle)
1df21055 5023{
dd41f596 5024 idle->sched_class = &idle_sched_class;
1df21055
IM
5025}
5026
f340c0d1
IM
5027/**
5028 * init_idle - set up an idle thread for a given CPU
5029 * @idle: task in question
5030 * @cpu: cpu the idle task belongs to
5031 *
5032 * NOTE: this function does not set the idle thread's NEED_RESCHED
5033 * flag, to make booting more robust.
5034 */
0db0628d 5035void init_idle(struct task_struct *idle, int cpu)
1da177e4 5036{
70b97a7f 5037 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5038 unsigned long flags;
5039
25834c73
PZ
5040 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5041 raw_spin_lock(&rq->lock);
5cbd54ef 5042
5e1576ed 5043 __sched_fork(0, idle);
06b83b5f 5044 idle->state = TASK_RUNNING;
dd41f596
IM
5045 idle->se.exec_start = sched_clock();
5046
e1b77c92
MR
5047 kasan_unpoison_task_stack(idle);
5048
de9b8f5d
PZ
5049#ifdef CONFIG_SMP
5050 /*
5051 * Its possible that init_idle() gets called multiple times on a task,
5052 * in that case do_set_cpus_allowed() will not do the right thing.
5053 *
5054 * And since this is boot we can forgo the serialization.
5055 */
5056 set_cpus_allowed_common(idle, cpumask_of(cpu));
5057#endif
6506cf6c
PZ
5058 /*
5059 * We're having a chicken and egg problem, even though we are
5060 * holding rq->lock, the cpu isn't yet set to this cpu so the
5061 * lockdep check in task_group() will fail.
5062 *
5063 * Similar case to sched_fork(). / Alternatively we could
5064 * use task_rq_lock() here and obtain the other rq->lock.
5065 *
5066 * Silence PROVE_RCU
5067 */
5068 rcu_read_lock();
dd41f596 5069 __set_task_cpu(idle, cpu);
6506cf6c 5070 rcu_read_unlock();
1da177e4 5071
1da177e4 5072 rq->curr = rq->idle = idle;
da0c1e65 5073 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5074#ifdef CONFIG_SMP
3ca7a440 5075 idle->on_cpu = 1;
4866cde0 5076#endif
25834c73
PZ
5077 raw_spin_unlock(&rq->lock);
5078 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5079
5080 /* Set the preempt count _outside_ the spinlocks! */
01028747 5081 init_idle_preempt_count(idle, cpu);
55cd5340 5082
dd41f596
IM
5083 /*
5084 * The idle tasks have their own, simple scheduling class:
5085 */
5086 idle->sched_class = &idle_sched_class;
868baf07 5087 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5088 vtime_init_idle(idle, cpu);
de9b8f5d 5089#ifdef CONFIG_SMP
f1c6f1a7
CE
5090 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5091#endif
19978ca6
IM
5092}
5093
f82f8042
JL
5094int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5095 const struct cpumask *trial)
5096{
5097 int ret = 1, trial_cpus;
5098 struct dl_bw *cur_dl_b;
5099 unsigned long flags;
5100
bb2bc55a
MG
5101 if (!cpumask_weight(cur))
5102 return ret;
5103
75e23e49 5104 rcu_read_lock_sched();
f82f8042
JL
5105 cur_dl_b = dl_bw_of(cpumask_any(cur));
5106 trial_cpus = cpumask_weight(trial);
5107
5108 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5109 if (cur_dl_b->bw != -1 &&
5110 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5111 ret = 0;
5112 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5113 rcu_read_unlock_sched();
f82f8042
JL
5114
5115 return ret;
5116}
5117
7f51412a
JL
5118int task_can_attach(struct task_struct *p,
5119 const struct cpumask *cs_cpus_allowed)
5120{
5121 int ret = 0;
5122
5123 /*
5124 * Kthreads which disallow setaffinity shouldn't be moved
5125 * to a new cpuset; we don't want to change their cpu
5126 * affinity and isolating such threads by their set of
5127 * allowed nodes is unnecessary. Thus, cpusets are not
5128 * applicable for such threads. This prevents checking for
5129 * success of set_cpus_allowed_ptr() on all attached tasks
5130 * before cpus_allowed may be changed.
5131 */
5132 if (p->flags & PF_NO_SETAFFINITY) {
5133 ret = -EINVAL;
5134 goto out;
5135 }
5136
5137#ifdef CONFIG_SMP
5138 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5139 cs_cpus_allowed)) {
5140 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5141 cs_cpus_allowed);
75e23e49 5142 struct dl_bw *dl_b;
7f51412a
JL
5143 bool overflow;
5144 int cpus;
5145 unsigned long flags;
5146
75e23e49
JL
5147 rcu_read_lock_sched();
5148 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5149 raw_spin_lock_irqsave(&dl_b->lock, flags);
5150 cpus = dl_bw_cpus(dest_cpu);
5151 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5152 if (overflow)
5153 ret = -EBUSY;
5154 else {
5155 /*
5156 * We reserve space for this task in the destination
5157 * root_domain, as we can't fail after this point.
5158 * We will free resources in the source root_domain
5159 * later on (see set_cpus_allowed_dl()).
5160 */
5161 __dl_add(dl_b, p->dl.dl_bw);
5162 }
5163 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5164 rcu_read_unlock_sched();
7f51412a
JL
5165
5166 }
5167#endif
5168out:
5169 return ret;
5170}
5171
1da177e4 5172#ifdef CONFIG_SMP
1da177e4 5173
e6628d5b
MG
5174#ifdef CONFIG_NUMA_BALANCING
5175/* Migrate current task p to target_cpu */
5176int migrate_task_to(struct task_struct *p, int target_cpu)
5177{
5178 struct migration_arg arg = { p, target_cpu };
5179 int curr_cpu = task_cpu(p);
5180
5181 if (curr_cpu == target_cpu)
5182 return 0;
5183
5184 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5185 return -EINVAL;
5186
5187 /* TODO: This is not properly updating schedstats */
5188
286549dc 5189 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5190 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5191}
0ec8aa00
PZ
5192
5193/*
5194 * Requeue a task on a given node and accurately track the number of NUMA
5195 * tasks on the runqueues
5196 */
5197void sched_setnuma(struct task_struct *p, int nid)
5198{
5199 struct rq *rq;
5200 unsigned long flags;
da0c1e65 5201 bool queued, running;
0ec8aa00
PZ
5202
5203 rq = task_rq_lock(p, &flags);
da0c1e65 5204 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5205 running = task_current(rq, p);
5206
da0c1e65 5207 if (queued)
1de64443 5208 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5209 if (running)
f3cd1c4e 5210 put_prev_task(rq, p);
0ec8aa00
PZ
5211
5212 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5213
5214 if (running)
5215 p->sched_class->set_curr_task(rq);
da0c1e65 5216 if (queued)
1de64443 5217 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5218 task_rq_unlock(rq, p, &flags);
5219}
5cc389bc 5220#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5221
1da177e4 5222#ifdef CONFIG_HOTPLUG_CPU
054b9108 5223/*
48c5ccae
PZ
5224 * Ensures that the idle task is using init_mm right before its cpu goes
5225 * offline.
054b9108 5226 */
48c5ccae 5227void idle_task_exit(void)
1da177e4 5228{
48c5ccae 5229 struct mm_struct *mm = current->active_mm;
e76bd8d9 5230
48c5ccae 5231 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5232
a53efe5f 5233 if (mm != &init_mm) {
48c5ccae 5234 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5235 finish_arch_post_lock_switch();
5236 }
48c5ccae 5237 mmdrop(mm);
1da177e4
LT
5238}
5239
5240/*
5d180232
PZ
5241 * Since this CPU is going 'away' for a while, fold any nr_active delta
5242 * we might have. Assumes we're called after migrate_tasks() so that the
5243 * nr_active count is stable.
5244 *
5245 * Also see the comment "Global load-average calculations".
1da177e4 5246 */
5d180232 5247static void calc_load_migrate(struct rq *rq)
1da177e4 5248{
5d180232
PZ
5249 long delta = calc_load_fold_active(rq);
5250 if (delta)
5251 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5252}
5253
3f1d2a31
PZ
5254static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5255{
5256}
5257
5258static const struct sched_class fake_sched_class = {
5259 .put_prev_task = put_prev_task_fake,
5260};
5261
5262static struct task_struct fake_task = {
5263 /*
5264 * Avoid pull_{rt,dl}_task()
5265 */
5266 .prio = MAX_PRIO + 1,
5267 .sched_class = &fake_sched_class,
5268};
5269
48f24c4d 5270/*
48c5ccae
PZ
5271 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5272 * try_to_wake_up()->select_task_rq().
5273 *
5274 * Called with rq->lock held even though we'er in stop_machine() and
5275 * there's no concurrency possible, we hold the required locks anyway
5276 * because of lock validation efforts.
1da177e4 5277 */
5e16bbc2 5278static void migrate_tasks(struct rq *dead_rq)
1da177e4 5279{
5e16bbc2 5280 struct rq *rq = dead_rq;
48c5ccae
PZ
5281 struct task_struct *next, *stop = rq->stop;
5282 int dest_cpu;
1da177e4
LT
5283
5284 /*
48c5ccae
PZ
5285 * Fudge the rq selection such that the below task selection loop
5286 * doesn't get stuck on the currently eligible stop task.
5287 *
5288 * We're currently inside stop_machine() and the rq is either stuck
5289 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5290 * either way we should never end up calling schedule() until we're
5291 * done here.
1da177e4 5292 */
48c5ccae 5293 rq->stop = NULL;
48f24c4d 5294
77bd3970
FW
5295 /*
5296 * put_prev_task() and pick_next_task() sched
5297 * class method both need to have an up-to-date
5298 * value of rq->clock[_task]
5299 */
5300 update_rq_clock(rq);
5301
5e16bbc2 5302 for (;;) {
48c5ccae
PZ
5303 /*
5304 * There's this thread running, bail when that's the only
5305 * remaining thread.
5306 */
5307 if (rq->nr_running == 1)
dd41f596 5308 break;
48c5ccae 5309
cbce1a68 5310 /*
5473e0cc 5311 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5312 */
5313 lockdep_pin_lock(&rq->lock);
3f1d2a31 5314 next = pick_next_task(rq, &fake_task);
48c5ccae 5315 BUG_ON(!next);
79c53799 5316 next->sched_class->put_prev_task(rq, next);
e692ab53 5317
5473e0cc
WL
5318 /*
5319 * Rules for changing task_struct::cpus_allowed are holding
5320 * both pi_lock and rq->lock, such that holding either
5321 * stabilizes the mask.
5322 *
5323 * Drop rq->lock is not quite as disastrous as it usually is
5324 * because !cpu_active at this point, which means load-balance
5325 * will not interfere. Also, stop-machine.
5326 */
5327 lockdep_unpin_lock(&rq->lock);
5328 raw_spin_unlock(&rq->lock);
5329 raw_spin_lock(&next->pi_lock);
5330 raw_spin_lock(&rq->lock);
5331
5332 /*
5333 * Since we're inside stop-machine, _nothing_ should have
5334 * changed the task, WARN if weird stuff happened, because in
5335 * that case the above rq->lock drop is a fail too.
5336 */
5337 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5338 raw_spin_unlock(&next->pi_lock);
5339 continue;
5340 }
5341
48c5ccae 5342 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5343 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5344
5e16bbc2
PZ
5345 rq = __migrate_task(rq, next, dest_cpu);
5346 if (rq != dead_rq) {
5347 raw_spin_unlock(&rq->lock);
5348 rq = dead_rq;
5349 raw_spin_lock(&rq->lock);
5350 }
5473e0cc 5351 raw_spin_unlock(&next->pi_lock);
1da177e4 5352 }
dce48a84 5353
48c5ccae 5354 rq->stop = stop;
dce48a84 5355}
1da177e4
LT
5356#endif /* CONFIG_HOTPLUG_CPU */
5357
1f11eb6a
GH
5358static void set_rq_online(struct rq *rq)
5359{
5360 if (!rq->online) {
5361 const struct sched_class *class;
5362
c6c4927b 5363 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5364 rq->online = 1;
5365
5366 for_each_class(class) {
5367 if (class->rq_online)
5368 class->rq_online(rq);
5369 }
5370 }
5371}
5372
5373static void set_rq_offline(struct rq *rq)
5374{
5375 if (rq->online) {
5376 const struct sched_class *class;
5377
5378 for_each_class(class) {
5379 if (class->rq_offline)
5380 class->rq_offline(rq);
5381 }
5382
c6c4927b 5383 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5384 rq->online = 0;
5385 }
5386}
5387
1da177e4
LT
5388/*
5389 * migration_call - callback that gets triggered when a CPU is added.
5390 * Here we can start up the necessary migration thread for the new CPU.
5391 */
0db0628d 5392static int
48f24c4d 5393migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5394{
48f24c4d 5395 int cpu = (long)hcpu;
1da177e4 5396 unsigned long flags;
969c7921 5397 struct rq *rq = cpu_rq(cpu);
1da177e4 5398
48c5ccae 5399 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5400
1da177e4 5401 case CPU_UP_PREPARE:
a468d389 5402 rq->calc_load_update = calc_load_update;
e9532e69 5403 account_reset_rq(rq);
1da177e4 5404 break;
48f24c4d 5405
1da177e4 5406 case CPU_ONLINE:
1f94ef59 5407 /* Update our root-domain */
05fa785c 5408 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5409 if (rq->rd) {
c6c4927b 5410 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5411
5412 set_rq_online(rq);
1f94ef59 5413 }
05fa785c 5414 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5415 break;
48f24c4d 5416
1da177e4 5417#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5418 case CPU_DYING:
317f3941 5419 sched_ttwu_pending();
57d885fe 5420 /* Update our root-domain */
05fa785c 5421 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5422 if (rq->rd) {
c6c4927b 5423 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5424 set_rq_offline(rq);
57d885fe 5425 }
5e16bbc2 5426 migrate_tasks(rq);
48c5ccae 5427 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5428 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5429 break;
48c5ccae 5430
5d180232 5431 case CPU_DEAD:
f319da0c 5432 calc_load_migrate(rq);
57d885fe 5433 break;
1da177e4
LT
5434#endif
5435 }
49c022e6
PZ
5436
5437 update_max_interval();
5438
1da177e4
LT
5439 return NOTIFY_OK;
5440}
5441
f38b0820
PM
5442/*
5443 * Register at high priority so that task migration (migrate_all_tasks)
5444 * happens before everything else. This has to be lower priority than
cdd6c482 5445 * the notifier in the perf_event subsystem, though.
1da177e4 5446 */
0db0628d 5447static struct notifier_block migration_notifier = {
1da177e4 5448 .notifier_call = migration_call,
50a323b7 5449 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5450};
5451
6a82b60d 5452static void set_cpu_rq_start_time(void)
a803f026
CM
5453{
5454 int cpu = smp_processor_id();
5455 struct rq *rq = cpu_rq(cpu);
5456 rq->age_stamp = sched_clock_cpu(cpu);
5457}
5458
0db0628d 5459static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5460 unsigned long action, void *hcpu)
5461{
07f06cb3
PZ
5462 int cpu = (long)hcpu;
5463
3a101d05 5464 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5465 case CPU_STARTING:
5466 set_cpu_rq_start_time();
5467 return NOTIFY_OK;
07f06cb3 5468
3a101d05 5469 case CPU_DOWN_FAILED:
07f06cb3 5470 set_cpu_active(cpu, true);
3a101d05 5471 return NOTIFY_OK;
07f06cb3 5472
3a101d05
TH
5473 default:
5474 return NOTIFY_DONE;
5475 }
5476}
5477
0db0628d 5478static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5479 unsigned long action, void *hcpu)
5480{
5481 switch (action & ~CPU_TASKS_FROZEN) {
5482 case CPU_DOWN_PREPARE:
3c18d447 5483 set_cpu_active((long)hcpu, false);
3a101d05 5484 return NOTIFY_OK;
3c18d447
JL
5485 default:
5486 return NOTIFY_DONE;
3a101d05
TH
5487 }
5488}
5489
7babe8db 5490static int __init migration_init(void)
1da177e4
LT
5491{
5492 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5493 int err;
48f24c4d 5494
3a101d05 5495 /* Initialize migration for the boot CPU */
07dccf33
AM
5496 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5497 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5498 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5499 register_cpu_notifier(&migration_notifier);
7babe8db 5500
3a101d05
TH
5501 /* Register cpu active notifiers */
5502 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5503 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5504
a004cd42 5505 return 0;
1da177e4 5506}
7babe8db 5507early_initcall(migration_init);
476f3534 5508
4cb98839
PZ
5509static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5510
3e9830dc 5511#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5512
d039ac60 5513static __read_mostly int sched_debug_enabled;
f6630114 5514
d039ac60 5515static int __init sched_debug_setup(char *str)
f6630114 5516{
d039ac60 5517 sched_debug_enabled = 1;
f6630114
MT
5518
5519 return 0;
5520}
d039ac60
PZ
5521early_param("sched_debug", sched_debug_setup);
5522
5523static inline bool sched_debug(void)
5524{
5525 return sched_debug_enabled;
5526}
f6630114 5527
7c16ec58 5528static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5529 struct cpumask *groupmask)
1da177e4 5530{
4dcf6aff 5531 struct sched_group *group = sd->groups;
1da177e4 5532
96f874e2 5533 cpumask_clear(groupmask);
4dcf6aff
IM
5534
5535 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5536
5537 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5538 printk("does not load-balance\n");
4dcf6aff 5539 if (sd->parent)
3df0fc5b
PZ
5540 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5541 " has parent");
4dcf6aff 5542 return -1;
41c7ce9a
NP
5543 }
5544
333470ee
TH
5545 printk(KERN_CONT "span %*pbl level %s\n",
5546 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5547
758b2cdc 5548 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5549 printk(KERN_ERR "ERROR: domain->span does not contain "
5550 "CPU%d\n", cpu);
4dcf6aff 5551 }
758b2cdc 5552 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5553 printk(KERN_ERR "ERROR: domain->groups does not contain"
5554 " CPU%d\n", cpu);
4dcf6aff 5555 }
1da177e4 5556
4dcf6aff 5557 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5558 do {
4dcf6aff 5559 if (!group) {
3df0fc5b
PZ
5560 printk("\n");
5561 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5562 break;
5563 }
5564
758b2cdc 5565 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5566 printk(KERN_CONT "\n");
5567 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5568 break;
5569 }
1da177e4 5570
cb83b629
PZ
5571 if (!(sd->flags & SD_OVERLAP) &&
5572 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5573 printk(KERN_CONT "\n");
5574 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5575 break;
5576 }
1da177e4 5577
758b2cdc 5578 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5579
333470ee
TH
5580 printk(KERN_CONT " %*pbl",
5581 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5582 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5583 printk(KERN_CONT " (cpu_capacity = %d)",
5584 group->sgc->capacity);
381512cf 5585 }
1da177e4 5586
4dcf6aff
IM
5587 group = group->next;
5588 } while (group != sd->groups);
3df0fc5b 5589 printk(KERN_CONT "\n");
1da177e4 5590
758b2cdc 5591 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5592 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5593
758b2cdc
RR
5594 if (sd->parent &&
5595 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5596 printk(KERN_ERR "ERROR: parent span is not a superset "
5597 "of domain->span\n");
4dcf6aff
IM
5598 return 0;
5599}
1da177e4 5600
4dcf6aff
IM
5601static void sched_domain_debug(struct sched_domain *sd, int cpu)
5602{
5603 int level = 0;
1da177e4 5604
d039ac60 5605 if (!sched_debug_enabled)
f6630114
MT
5606 return;
5607
4dcf6aff
IM
5608 if (!sd) {
5609 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5610 return;
5611 }
1da177e4 5612
4dcf6aff
IM
5613 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5614
5615 for (;;) {
4cb98839 5616 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5617 break;
1da177e4
LT
5618 level++;
5619 sd = sd->parent;
33859f7f 5620 if (!sd)
4dcf6aff
IM
5621 break;
5622 }
1da177e4 5623}
6d6bc0ad 5624#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5625# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5626static inline bool sched_debug(void)
5627{
5628 return false;
5629}
6d6bc0ad 5630#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5631
1a20ff27 5632static int sd_degenerate(struct sched_domain *sd)
245af2c7 5633{
758b2cdc 5634 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5635 return 1;
5636
5637 /* Following flags need at least 2 groups */
5638 if (sd->flags & (SD_LOAD_BALANCE |
5639 SD_BALANCE_NEWIDLE |
5640 SD_BALANCE_FORK |
89c4710e 5641 SD_BALANCE_EXEC |
5d4dfddd 5642 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5643 SD_SHARE_PKG_RESOURCES |
5644 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5645 if (sd->groups != sd->groups->next)
5646 return 0;
5647 }
5648
5649 /* Following flags don't use groups */
c88d5910 5650 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5651 return 0;
5652
5653 return 1;
5654}
5655
48f24c4d
IM
5656static int
5657sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5658{
5659 unsigned long cflags = sd->flags, pflags = parent->flags;
5660
5661 if (sd_degenerate(parent))
5662 return 1;
5663
758b2cdc 5664 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5665 return 0;
5666
245af2c7
SS
5667 /* Flags needing groups don't count if only 1 group in parent */
5668 if (parent->groups == parent->groups->next) {
5669 pflags &= ~(SD_LOAD_BALANCE |
5670 SD_BALANCE_NEWIDLE |
5671 SD_BALANCE_FORK |
89c4710e 5672 SD_BALANCE_EXEC |
5d4dfddd 5673 SD_SHARE_CPUCAPACITY |
10866e62 5674 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5675 SD_PREFER_SIBLING |
5676 SD_SHARE_POWERDOMAIN);
5436499e
KC
5677 if (nr_node_ids == 1)
5678 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5679 }
5680 if (~cflags & pflags)
5681 return 0;
5682
5683 return 1;
5684}
5685
dce840a0 5686static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5687{
dce840a0 5688 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5689
68e74568 5690 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5691 cpudl_cleanup(&rd->cpudl);
1baca4ce 5692 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5693 free_cpumask_var(rd->rto_mask);
5694 free_cpumask_var(rd->online);
5695 free_cpumask_var(rd->span);
5696 kfree(rd);
5697}
5698
57d885fe
GH
5699static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5700{
a0490fa3 5701 struct root_domain *old_rd = NULL;
57d885fe 5702 unsigned long flags;
57d885fe 5703
05fa785c 5704 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5705
5706 if (rq->rd) {
a0490fa3 5707 old_rd = rq->rd;
57d885fe 5708
c6c4927b 5709 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5710 set_rq_offline(rq);
57d885fe 5711
c6c4927b 5712 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5713
a0490fa3 5714 /*
0515973f 5715 * If we dont want to free the old_rd yet then
a0490fa3
IM
5716 * set old_rd to NULL to skip the freeing later
5717 * in this function:
5718 */
5719 if (!atomic_dec_and_test(&old_rd->refcount))
5720 old_rd = NULL;
57d885fe
GH
5721 }
5722
5723 atomic_inc(&rd->refcount);
5724 rq->rd = rd;
5725
c6c4927b 5726 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5727 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5728 set_rq_online(rq);
57d885fe 5729
05fa785c 5730 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5731
5732 if (old_rd)
dce840a0 5733 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5734}
5735
68c38fc3 5736static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5737{
5738 memset(rd, 0, sizeof(*rd));
5739
8295c699 5740 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5741 goto out;
8295c699 5742 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5743 goto free_span;
8295c699 5744 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5745 goto free_online;
8295c699 5746 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5747 goto free_dlo_mask;
6e0534f2 5748
332ac17e 5749 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5750 if (cpudl_init(&rd->cpudl) != 0)
5751 goto free_dlo_mask;
332ac17e 5752
68c38fc3 5753 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5754 goto free_rto_mask;
c6c4927b 5755 return 0;
6e0534f2 5756
68e74568
RR
5757free_rto_mask:
5758 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5759free_dlo_mask:
5760 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5761free_online:
5762 free_cpumask_var(rd->online);
5763free_span:
5764 free_cpumask_var(rd->span);
0c910d28 5765out:
c6c4927b 5766 return -ENOMEM;
57d885fe
GH
5767}
5768
029632fb
PZ
5769/*
5770 * By default the system creates a single root-domain with all cpus as
5771 * members (mimicking the global state we have today).
5772 */
5773struct root_domain def_root_domain;
5774
57d885fe
GH
5775static void init_defrootdomain(void)
5776{
68c38fc3 5777 init_rootdomain(&def_root_domain);
c6c4927b 5778
57d885fe
GH
5779 atomic_set(&def_root_domain.refcount, 1);
5780}
5781
dc938520 5782static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5783{
5784 struct root_domain *rd;
5785
5786 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5787 if (!rd)
5788 return NULL;
5789
68c38fc3 5790 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5791 kfree(rd);
5792 return NULL;
5793 }
57d885fe
GH
5794
5795 return rd;
5796}
5797
63b2ca30 5798static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5799{
5800 struct sched_group *tmp, *first;
5801
5802 if (!sg)
5803 return;
5804
5805 first = sg;
5806 do {
5807 tmp = sg->next;
5808
63b2ca30
NP
5809 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5810 kfree(sg->sgc);
e3589f6c
PZ
5811
5812 kfree(sg);
5813 sg = tmp;
5814 } while (sg != first);
5815}
5816
dce840a0
PZ
5817static void free_sched_domain(struct rcu_head *rcu)
5818{
5819 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5820
5821 /*
5822 * If its an overlapping domain it has private groups, iterate and
5823 * nuke them all.
5824 */
5825 if (sd->flags & SD_OVERLAP) {
5826 free_sched_groups(sd->groups, 1);
5827 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5828 kfree(sd->groups->sgc);
dce840a0 5829 kfree(sd->groups);
9c3f75cb 5830 }
dce840a0
PZ
5831 kfree(sd);
5832}
5833
5834static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5835{
5836 call_rcu(&sd->rcu, free_sched_domain);
5837}
5838
5839static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5840{
5841 for (; sd; sd = sd->parent)
5842 destroy_sched_domain(sd, cpu);
5843}
5844
518cd623
PZ
5845/*
5846 * Keep a special pointer to the highest sched_domain that has
5847 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5848 * allows us to avoid some pointer chasing select_idle_sibling().
5849 *
5850 * Also keep a unique ID per domain (we use the first cpu number in
5851 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5852 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5853 */
5854DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5855DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5856DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5857DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5858DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5859DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5860
5861static void update_top_cache_domain(int cpu)
5862{
5863 struct sched_domain *sd;
5d4cf996 5864 struct sched_domain *busy_sd = NULL;
518cd623 5865 int id = cpu;
7d9ffa89 5866 int size = 1;
518cd623
PZ
5867
5868 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5869 if (sd) {
518cd623 5870 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5871 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5872 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5873 }
5d4cf996 5874 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5875
5876 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5877 per_cpu(sd_llc_size, cpu) = size;
518cd623 5878 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5879
5880 sd = lowest_flag_domain(cpu, SD_NUMA);
5881 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5882
5883 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5884 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5885}
5886
1da177e4 5887/*
0eab9146 5888 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5889 * hold the hotplug lock.
5890 */
0eab9146
IM
5891static void
5892cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5893{
70b97a7f 5894 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5895 struct sched_domain *tmp;
5896
5897 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5898 for (tmp = sd; tmp; ) {
245af2c7
SS
5899 struct sched_domain *parent = tmp->parent;
5900 if (!parent)
5901 break;
f29c9b1c 5902
1a848870 5903 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5904 tmp->parent = parent->parent;
1a848870
SS
5905 if (parent->parent)
5906 parent->parent->child = tmp;
10866e62
PZ
5907 /*
5908 * Transfer SD_PREFER_SIBLING down in case of a
5909 * degenerate parent; the spans match for this
5910 * so the property transfers.
5911 */
5912 if (parent->flags & SD_PREFER_SIBLING)
5913 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5914 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5915 } else
5916 tmp = tmp->parent;
245af2c7
SS
5917 }
5918
1a848870 5919 if (sd && sd_degenerate(sd)) {
dce840a0 5920 tmp = sd;
245af2c7 5921 sd = sd->parent;
dce840a0 5922 destroy_sched_domain(tmp, cpu);
1a848870
SS
5923 if (sd)
5924 sd->child = NULL;
5925 }
1da177e4 5926
4cb98839 5927 sched_domain_debug(sd, cpu);
1da177e4 5928
57d885fe 5929 rq_attach_root(rq, rd);
dce840a0 5930 tmp = rq->sd;
674311d5 5931 rcu_assign_pointer(rq->sd, sd);
dce840a0 5932 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5933
5934 update_top_cache_domain(cpu);
1da177e4
LT
5935}
5936
1da177e4
LT
5937/* Setup the mask of cpus configured for isolated domains */
5938static int __init isolated_cpu_setup(char *str)
5939{
a6e4491c
PB
5940 int ret;
5941
bdddd296 5942 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5943 ret = cpulist_parse(str, cpu_isolated_map);
5944 if (ret) {
5945 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5946 return 0;
5947 }
1da177e4
LT
5948 return 1;
5949}
8927f494 5950__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5951
49a02c51 5952struct s_data {
21d42ccf 5953 struct sched_domain ** __percpu sd;
49a02c51
AH
5954 struct root_domain *rd;
5955};
5956
2109b99e 5957enum s_alloc {
2109b99e 5958 sa_rootdomain,
21d42ccf 5959 sa_sd,
dce840a0 5960 sa_sd_storage,
2109b99e
AH
5961 sa_none,
5962};
5963
c1174876
PZ
5964/*
5965 * Build an iteration mask that can exclude certain CPUs from the upwards
5966 * domain traversal.
5967 *
5968 * Asymmetric node setups can result in situations where the domain tree is of
5969 * unequal depth, make sure to skip domains that already cover the entire
5970 * range.
5971 *
5972 * In that case build_sched_domains() will have terminated the iteration early
5973 * and our sibling sd spans will be empty. Domains should always include the
5974 * cpu they're built on, so check that.
5975 *
5976 */
5977static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5978{
5979 const struct cpumask *span = sched_domain_span(sd);
5980 struct sd_data *sdd = sd->private;
5981 struct sched_domain *sibling;
5982 int i;
5983
5984 for_each_cpu(i, span) {
5985 sibling = *per_cpu_ptr(sdd->sd, i);
5986 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5987 continue;
5988
5989 cpumask_set_cpu(i, sched_group_mask(sg));
5990 }
5991}
5992
5993/*
5994 * Return the canonical balance cpu for this group, this is the first cpu
5995 * of this group that's also in the iteration mask.
5996 */
5997int group_balance_cpu(struct sched_group *sg)
5998{
5999 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6000}
6001
e3589f6c
PZ
6002static int
6003build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6004{
6005 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6006 const struct cpumask *span = sched_domain_span(sd);
6007 struct cpumask *covered = sched_domains_tmpmask;
6008 struct sd_data *sdd = sd->private;
aaecac4a 6009 struct sched_domain *sibling;
e3589f6c
PZ
6010 int i;
6011
6012 cpumask_clear(covered);
6013
6014 for_each_cpu(i, span) {
6015 struct cpumask *sg_span;
6016
6017 if (cpumask_test_cpu(i, covered))
6018 continue;
6019
aaecac4a 6020 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6021
6022 /* See the comment near build_group_mask(). */
aaecac4a 6023 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6024 continue;
6025
e3589f6c 6026 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6027 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6028
6029 if (!sg)
6030 goto fail;
6031
6032 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6033 if (sibling->child)
6034 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6035 else
e3589f6c
PZ
6036 cpumask_set_cpu(i, sg_span);
6037
6038 cpumask_or(covered, covered, sg_span);
6039
63b2ca30
NP
6040 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6041 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6042 build_group_mask(sd, sg);
6043
c3decf0d 6044 /*
63b2ca30 6045 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6046 * domains and no possible iteration will get us here, we won't
6047 * die on a /0 trap.
6048 */
ca8ce3d0 6049 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6050
c1174876
PZ
6051 /*
6052 * Make sure the first group of this domain contains the
6053 * canonical balance cpu. Otherwise the sched_domain iteration
6054 * breaks. See update_sg_lb_stats().
6055 */
74a5ce20 6056 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6057 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6058 groups = sg;
6059
6060 if (!first)
6061 first = sg;
6062 if (last)
6063 last->next = sg;
6064 last = sg;
6065 last->next = first;
6066 }
6067 sd->groups = groups;
6068
6069 return 0;
6070
6071fail:
6072 free_sched_groups(first, 0);
6073
6074 return -ENOMEM;
6075}
6076
dce840a0 6077static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6078{
dce840a0
PZ
6079 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6080 struct sched_domain *child = sd->child;
1da177e4 6081
dce840a0
PZ
6082 if (child)
6083 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6084
9c3f75cb 6085 if (sg) {
dce840a0 6086 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6087 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6088 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6089 }
dce840a0
PZ
6090
6091 return cpu;
1e9f28fa 6092}
1e9f28fa 6093
01a08546 6094/*
dce840a0
PZ
6095 * build_sched_groups will build a circular linked list of the groups
6096 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6097 * and ->cpu_capacity to 0.
e3589f6c
PZ
6098 *
6099 * Assumes the sched_domain tree is fully constructed
01a08546 6100 */
e3589f6c
PZ
6101static int
6102build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6103{
dce840a0
PZ
6104 struct sched_group *first = NULL, *last = NULL;
6105 struct sd_data *sdd = sd->private;
6106 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6107 struct cpumask *covered;
dce840a0 6108 int i;
9c1cfda2 6109
e3589f6c
PZ
6110 get_group(cpu, sdd, &sd->groups);
6111 atomic_inc(&sd->groups->ref);
6112
0936629f 6113 if (cpu != cpumask_first(span))
e3589f6c
PZ
6114 return 0;
6115
f96225fd
PZ
6116 lockdep_assert_held(&sched_domains_mutex);
6117 covered = sched_domains_tmpmask;
6118
dce840a0 6119 cpumask_clear(covered);
6711cab4 6120
dce840a0
PZ
6121 for_each_cpu(i, span) {
6122 struct sched_group *sg;
cd08e923 6123 int group, j;
6711cab4 6124
dce840a0
PZ
6125 if (cpumask_test_cpu(i, covered))
6126 continue;
6711cab4 6127
cd08e923 6128 group = get_group(i, sdd, &sg);
c1174876 6129 cpumask_setall(sched_group_mask(sg));
0601a88d 6130
dce840a0
PZ
6131 for_each_cpu(j, span) {
6132 if (get_group(j, sdd, NULL) != group)
6133 continue;
0601a88d 6134
dce840a0
PZ
6135 cpumask_set_cpu(j, covered);
6136 cpumask_set_cpu(j, sched_group_cpus(sg));
6137 }
0601a88d 6138
dce840a0
PZ
6139 if (!first)
6140 first = sg;
6141 if (last)
6142 last->next = sg;
6143 last = sg;
6144 }
6145 last->next = first;
e3589f6c
PZ
6146
6147 return 0;
0601a88d 6148}
51888ca2 6149
89c4710e 6150/*
63b2ca30 6151 * Initialize sched groups cpu_capacity.
89c4710e 6152 *
63b2ca30 6153 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6154 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6155 * Typically cpu_capacity for all the groups in a sched domain will be same
6156 * unless there are asymmetries in the topology. If there are asymmetries,
6157 * group having more cpu_capacity will pickup more load compared to the
6158 * group having less cpu_capacity.
89c4710e 6159 */
63b2ca30 6160static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6161{
e3589f6c 6162 struct sched_group *sg = sd->groups;
89c4710e 6163
94c95ba6 6164 WARN_ON(!sg);
e3589f6c
PZ
6165
6166 do {
6167 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6168 sg = sg->next;
6169 } while (sg != sd->groups);
89c4710e 6170
c1174876 6171 if (cpu != group_balance_cpu(sg))
e3589f6c 6172 return;
aae6d3dd 6173
63b2ca30
NP
6174 update_group_capacity(sd, cpu);
6175 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6176}
6177
7c16ec58
MT
6178/*
6179 * Initializers for schedule domains
6180 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6181 */
6182
1d3504fc 6183static int default_relax_domain_level = -1;
60495e77 6184int sched_domain_level_max;
1d3504fc
HS
6185
6186static int __init setup_relax_domain_level(char *str)
6187{
a841f8ce
DS
6188 if (kstrtoint(str, 0, &default_relax_domain_level))
6189 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6190
1d3504fc
HS
6191 return 1;
6192}
6193__setup("relax_domain_level=", setup_relax_domain_level);
6194
6195static void set_domain_attribute(struct sched_domain *sd,
6196 struct sched_domain_attr *attr)
6197{
6198 int request;
6199
6200 if (!attr || attr->relax_domain_level < 0) {
6201 if (default_relax_domain_level < 0)
6202 return;
6203 else
6204 request = default_relax_domain_level;
6205 } else
6206 request = attr->relax_domain_level;
6207 if (request < sd->level) {
6208 /* turn off idle balance on this domain */
c88d5910 6209 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6210 } else {
6211 /* turn on idle balance on this domain */
c88d5910 6212 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6213 }
6214}
6215
54ab4ff4
PZ
6216static void __sdt_free(const struct cpumask *cpu_map);
6217static int __sdt_alloc(const struct cpumask *cpu_map);
6218
2109b99e
AH
6219static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6220 const struct cpumask *cpu_map)
6221{
6222 switch (what) {
2109b99e 6223 case sa_rootdomain:
822ff793
PZ
6224 if (!atomic_read(&d->rd->refcount))
6225 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6226 case sa_sd:
6227 free_percpu(d->sd); /* fall through */
dce840a0 6228 case sa_sd_storage:
54ab4ff4 6229 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6230 case sa_none:
6231 break;
6232 }
6233}
3404c8d9 6234
2109b99e
AH
6235static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6236 const struct cpumask *cpu_map)
6237{
dce840a0
PZ
6238 memset(d, 0, sizeof(*d));
6239
54ab4ff4
PZ
6240 if (__sdt_alloc(cpu_map))
6241 return sa_sd_storage;
dce840a0
PZ
6242 d->sd = alloc_percpu(struct sched_domain *);
6243 if (!d->sd)
6244 return sa_sd_storage;
2109b99e 6245 d->rd = alloc_rootdomain();
dce840a0 6246 if (!d->rd)
21d42ccf 6247 return sa_sd;
2109b99e
AH
6248 return sa_rootdomain;
6249}
57d885fe 6250
dce840a0
PZ
6251/*
6252 * NULL the sd_data elements we've used to build the sched_domain and
6253 * sched_group structure so that the subsequent __free_domain_allocs()
6254 * will not free the data we're using.
6255 */
6256static void claim_allocations(int cpu, struct sched_domain *sd)
6257{
6258 struct sd_data *sdd = sd->private;
dce840a0
PZ
6259
6260 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6261 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6262
e3589f6c 6263 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6264 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6265
63b2ca30
NP
6266 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6267 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6268}
6269
cb83b629 6270#ifdef CONFIG_NUMA
cb83b629 6271static int sched_domains_numa_levels;
e3fe70b1 6272enum numa_topology_type sched_numa_topology_type;
cb83b629 6273static int *sched_domains_numa_distance;
9942f79b 6274int sched_max_numa_distance;
cb83b629
PZ
6275static struct cpumask ***sched_domains_numa_masks;
6276static int sched_domains_curr_level;
143e1e28 6277#endif
cb83b629 6278
143e1e28
VG
6279/*
6280 * SD_flags allowed in topology descriptions.
6281 *
5d4dfddd 6282 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6283 * SD_SHARE_PKG_RESOURCES - describes shared caches
6284 * SD_NUMA - describes NUMA topologies
d77b3ed5 6285 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6286 *
6287 * Odd one out:
6288 * SD_ASYM_PACKING - describes SMT quirks
6289 */
6290#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6291 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6292 SD_SHARE_PKG_RESOURCES | \
6293 SD_NUMA | \
d77b3ed5
VG
6294 SD_ASYM_PACKING | \
6295 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6296
6297static struct sched_domain *
143e1e28 6298sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6299{
6300 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6301 int sd_weight, sd_flags = 0;
6302
6303#ifdef CONFIG_NUMA
6304 /*
6305 * Ugly hack to pass state to sd_numa_mask()...
6306 */
6307 sched_domains_curr_level = tl->numa_level;
6308#endif
6309
6310 sd_weight = cpumask_weight(tl->mask(cpu));
6311
6312 if (tl->sd_flags)
6313 sd_flags = (*tl->sd_flags)();
6314 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6315 "wrong sd_flags in topology description\n"))
6316 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6317
6318 *sd = (struct sched_domain){
6319 .min_interval = sd_weight,
6320 .max_interval = 2*sd_weight,
6321 .busy_factor = 32,
870a0bb5 6322 .imbalance_pct = 125,
143e1e28
VG
6323
6324 .cache_nice_tries = 0,
6325 .busy_idx = 0,
6326 .idle_idx = 0,
cb83b629
PZ
6327 .newidle_idx = 0,
6328 .wake_idx = 0,
6329 .forkexec_idx = 0,
6330
6331 .flags = 1*SD_LOAD_BALANCE
6332 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6333 | 1*SD_BALANCE_EXEC
6334 | 1*SD_BALANCE_FORK
cb83b629 6335 | 0*SD_BALANCE_WAKE
143e1e28 6336 | 1*SD_WAKE_AFFINE
5d4dfddd 6337 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6338 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6339 | 0*SD_SERIALIZE
cb83b629 6340 | 0*SD_PREFER_SIBLING
143e1e28
VG
6341 | 0*SD_NUMA
6342 | sd_flags
cb83b629 6343 ,
143e1e28 6344
cb83b629
PZ
6345 .last_balance = jiffies,
6346 .balance_interval = sd_weight,
143e1e28 6347 .smt_gain = 0,
2b4cfe64
JL
6348 .max_newidle_lb_cost = 0,
6349 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6350#ifdef CONFIG_SCHED_DEBUG
6351 .name = tl->name,
6352#endif
cb83b629 6353 };
cb83b629
PZ
6354
6355 /*
143e1e28 6356 * Convert topological properties into behaviour.
cb83b629 6357 */
143e1e28 6358
5d4dfddd 6359 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6360 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6361 sd->imbalance_pct = 110;
6362 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6363
6364 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6365 sd->imbalance_pct = 117;
6366 sd->cache_nice_tries = 1;
6367 sd->busy_idx = 2;
6368
6369#ifdef CONFIG_NUMA
6370 } else if (sd->flags & SD_NUMA) {
6371 sd->cache_nice_tries = 2;
6372 sd->busy_idx = 3;
6373 sd->idle_idx = 2;
6374
6375 sd->flags |= SD_SERIALIZE;
6376 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6377 sd->flags &= ~(SD_BALANCE_EXEC |
6378 SD_BALANCE_FORK |
6379 SD_WAKE_AFFINE);
6380 }
6381
6382#endif
6383 } else {
6384 sd->flags |= SD_PREFER_SIBLING;
6385 sd->cache_nice_tries = 1;
6386 sd->busy_idx = 2;
6387 sd->idle_idx = 1;
6388 }
6389
6390 sd->private = &tl->data;
cb83b629
PZ
6391
6392 return sd;
6393}
6394
143e1e28
VG
6395/*
6396 * Topology list, bottom-up.
6397 */
6398static struct sched_domain_topology_level default_topology[] = {
6399#ifdef CONFIG_SCHED_SMT
6400 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6401#endif
6402#ifdef CONFIG_SCHED_MC
6403 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6404#endif
6405 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6406 { NULL, },
6407};
6408
c6e1e7b5
JG
6409static struct sched_domain_topology_level *sched_domain_topology =
6410 default_topology;
143e1e28
VG
6411
6412#define for_each_sd_topology(tl) \
6413 for (tl = sched_domain_topology; tl->mask; tl++)
6414
6415void set_sched_topology(struct sched_domain_topology_level *tl)
6416{
6417 sched_domain_topology = tl;
6418}
6419
6420#ifdef CONFIG_NUMA
6421
cb83b629
PZ
6422static const struct cpumask *sd_numa_mask(int cpu)
6423{
6424 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6425}
6426
d039ac60
PZ
6427static void sched_numa_warn(const char *str)
6428{
6429 static int done = false;
6430 int i,j;
6431
6432 if (done)
6433 return;
6434
6435 done = true;
6436
6437 printk(KERN_WARNING "ERROR: %s\n\n", str);
6438
6439 for (i = 0; i < nr_node_ids; i++) {
6440 printk(KERN_WARNING " ");
6441 for (j = 0; j < nr_node_ids; j++)
6442 printk(KERN_CONT "%02d ", node_distance(i,j));
6443 printk(KERN_CONT "\n");
6444 }
6445 printk(KERN_WARNING "\n");
6446}
6447
9942f79b 6448bool find_numa_distance(int distance)
d039ac60
PZ
6449{
6450 int i;
6451
6452 if (distance == node_distance(0, 0))
6453 return true;
6454
6455 for (i = 0; i < sched_domains_numa_levels; i++) {
6456 if (sched_domains_numa_distance[i] == distance)
6457 return true;
6458 }
6459
6460 return false;
6461}
6462
e3fe70b1
RR
6463/*
6464 * A system can have three types of NUMA topology:
6465 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6466 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6467 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6468 *
6469 * The difference between a glueless mesh topology and a backplane
6470 * topology lies in whether communication between not directly
6471 * connected nodes goes through intermediary nodes (where programs
6472 * could run), or through backplane controllers. This affects
6473 * placement of programs.
6474 *
6475 * The type of topology can be discerned with the following tests:
6476 * - If the maximum distance between any nodes is 1 hop, the system
6477 * is directly connected.
6478 * - If for two nodes A and B, located N > 1 hops away from each other,
6479 * there is an intermediary node C, which is < N hops away from both
6480 * nodes A and B, the system is a glueless mesh.
6481 */
6482static void init_numa_topology_type(void)
6483{
6484 int a, b, c, n;
6485
6486 n = sched_max_numa_distance;
6487
e237882b 6488 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6489 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6490 return;
6491 }
e3fe70b1
RR
6492
6493 for_each_online_node(a) {
6494 for_each_online_node(b) {
6495 /* Find two nodes furthest removed from each other. */
6496 if (node_distance(a, b) < n)
6497 continue;
6498
6499 /* Is there an intermediary node between a and b? */
6500 for_each_online_node(c) {
6501 if (node_distance(a, c) < n &&
6502 node_distance(b, c) < n) {
6503 sched_numa_topology_type =
6504 NUMA_GLUELESS_MESH;
6505 return;
6506 }
6507 }
6508
6509 sched_numa_topology_type = NUMA_BACKPLANE;
6510 return;
6511 }
6512 }
6513}
6514
cb83b629
PZ
6515static void sched_init_numa(void)
6516{
6517 int next_distance, curr_distance = node_distance(0, 0);
6518 struct sched_domain_topology_level *tl;
6519 int level = 0;
6520 int i, j, k;
6521
cb83b629
PZ
6522 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6523 if (!sched_domains_numa_distance)
6524 return;
6525
6526 /*
6527 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6528 * unique distances in the node_distance() table.
6529 *
6530 * Assumes node_distance(0,j) includes all distances in
6531 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6532 */
6533 next_distance = curr_distance;
6534 for (i = 0; i < nr_node_ids; i++) {
6535 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6536 for (k = 0; k < nr_node_ids; k++) {
6537 int distance = node_distance(i, k);
6538
6539 if (distance > curr_distance &&
6540 (distance < next_distance ||
6541 next_distance == curr_distance))
6542 next_distance = distance;
6543
6544 /*
6545 * While not a strong assumption it would be nice to know
6546 * about cases where if node A is connected to B, B is not
6547 * equally connected to A.
6548 */
6549 if (sched_debug() && node_distance(k, i) != distance)
6550 sched_numa_warn("Node-distance not symmetric");
6551
6552 if (sched_debug() && i && !find_numa_distance(distance))
6553 sched_numa_warn("Node-0 not representative");
6554 }
6555 if (next_distance != curr_distance) {
6556 sched_domains_numa_distance[level++] = next_distance;
6557 sched_domains_numa_levels = level;
6558 curr_distance = next_distance;
6559 } else break;
cb83b629 6560 }
d039ac60
PZ
6561
6562 /*
6563 * In case of sched_debug() we verify the above assumption.
6564 */
6565 if (!sched_debug())
6566 break;
cb83b629 6567 }
c123588b
AR
6568
6569 if (!level)
6570 return;
6571
cb83b629
PZ
6572 /*
6573 * 'level' contains the number of unique distances, excluding the
6574 * identity distance node_distance(i,i).
6575 *
28b4a521 6576 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6577 * numbers.
6578 */
6579
5f7865f3
TC
6580 /*
6581 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6582 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6583 * the array will contain less then 'level' members. This could be
6584 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6585 * in other functions.
6586 *
6587 * We reset it to 'level' at the end of this function.
6588 */
6589 sched_domains_numa_levels = 0;
6590
cb83b629
PZ
6591 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6592 if (!sched_domains_numa_masks)
6593 return;
6594
6595 /*
6596 * Now for each level, construct a mask per node which contains all
6597 * cpus of nodes that are that many hops away from us.
6598 */
6599 for (i = 0; i < level; i++) {
6600 sched_domains_numa_masks[i] =
6601 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6602 if (!sched_domains_numa_masks[i])
6603 return;
6604
6605 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6606 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6607 if (!mask)
6608 return;
6609
6610 sched_domains_numa_masks[i][j] = mask;
6611
9c03ee14 6612 for_each_node(k) {
dd7d8634 6613 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6614 continue;
6615
6616 cpumask_or(mask, mask, cpumask_of_node(k));
6617 }
6618 }
6619 }
6620
143e1e28
VG
6621 /* Compute default topology size */
6622 for (i = 0; sched_domain_topology[i].mask; i++);
6623
c515db8c 6624 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6625 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6626 if (!tl)
6627 return;
6628
6629 /*
6630 * Copy the default topology bits..
6631 */
143e1e28
VG
6632 for (i = 0; sched_domain_topology[i].mask; i++)
6633 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6634
6635 /*
6636 * .. and append 'j' levels of NUMA goodness.
6637 */
6638 for (j = 0; j < level; i++, j++) {
6639 tl[i] = (struct sched_domain_topology_level){
cb83b629 6640 .mask = sd_numa_mask,
143e1e28 6641 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6642 .flags = SDTL_OVERLAP,
6643 .numa_level = j,
143e1e28 6644 SD_INIT_NAME(NUMA)
cb83b629
PZ
6645 };
6646 }
6647
6648 sched_domain_topology = tl;
5f7865f3
TC
6649
6650 sched_domains_numa_levels = level;
9942f79b 6651 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6652
6653 init_numa_topology_type();
cb83b629 6654}
301a5cba
TC
6655
6656static void sched_domains_numa_masks_set(int cpu)
6657{
6658 int i, j;
6659 int node = cpu_to_node(cpu);
6660
6661 for (i = 0; i < sched_domains_numa_levels; i++) {
6662 for (j = 0; j < nr_node_ids; j++) {
6663 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6664 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6665 }
6666 }
6667}
6668
6669static void sched_domains_numa_masks_clear(int cpu)
6670{
6671 int i, j;
6672 for (i = 0; i < sched_domains_numa_levels; i++) {
6673 for (j = 0; j < nr_node_ids; j++)
6674 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6675 }
6676}
6677
6678/*
6679 * Update sched_domains_numa_masks[level][node] array when new cpus
6680 * are onlined.
6681 */
6682static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6683 unsigned long action,
6684 void *hcpu)
6685{
6686 int cpu = (long)hcpu;
6687
6688 switch (action & ~CPU_TASKS_FROZEN) {
6689 case CPU_ONLINE:
6690 sched_domains_numa_masks_set(cpu);
6691 break;
6692
6693 case CPU_DEAD:
6694 sched_domains_numa_masks_clear(cpu);
6695 break;
6696
6697 default:
6698 return NOTIFY_DONE;
6699 }
6700
6701 return NOTIFY_OK;
cb83b629
PZ
6702}
6703#else
6704static inline void sched_init_numa(void)
6705{
6706}
301a5cba
TC
6707
6708static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6709 unsigned long action,
6710 void *hcpu)
6711{
6712 return 0;
6713}
cb83b629
PZ
6714#endif /* CONFIG_NUMA */
6715
54ab4ff4
PZ
6716static int __sdt_alloc(const struct cpumask *cpu_map)
6717{
6718 struct sched_domain_topology_level *tl;
6719 int j;
6720
27723a68 6721 for_each_sd_topology(tl) {
54ab4ff4
PZ
6722 struct sd_data *sdd = &tl->data;
6723
6724 sdd->sd = alloc_percpu(struct sched_domain *);
6725 if (!sdd->sd)
6726 return -ENOMEM;
6727
6728 sdd->sg = alloc_percpu(struct sched_group *);
6729 if (!sdd->sg)
6730 return -ENOMEM;
6731
63b2ca30
NP
6732 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6733 if (!sdd->sgc)
9c3f75cb
PZ
6734 return -ENOMEM;
6735
54ab4ff4
PZ
6736 for_each_cpu(j, cpu_map) {
6737 struct sched_domain *sd;
6738 struct sched_group *sg;
63b2ca30 6739 struct sched_group_capacity *sgc;
54ab4ff4 6740
5cc389bc 6741 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6742 GFP_KERNEL, cpu_to_node(j));
6743 if (!sd)
6744 return -ENOMEM;
6745
6746 *per_cpu_ptr(sdd->sd, j) = sd;
6747
6748 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6749 GFP_KERNEL, cpu_to_node(j));
6750 if (!sg)
6751 return -ENOMEM;
6752
30b4e9eb
IM
6753 sg->next = sg;
6754
54ab4ff4 6755 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6756
63b2ca30 6757 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6758 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6759 if (!sgc)
9c3f75cb
PZ
6760 return -ENOMEM;
6761
63b2ca30 6762 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6763 }
6764 }
6765
6766 return 0;
6767}
6768
6769static void __sdt_free(const struct cpumask *cpu_map)
6770{
6771 struct sched_domain_topology_level *tl;
6772 int j;
6773
27723a68 6774 for_each_sd_topology(tl) {
54ab4ff4
PZ
6775 struct sd_data *sdd = &tl->data;
6776
6777 for_each_cpu(j, cpu_map) {
fb2cf2c6 6778 struct sched_domain *sd;
6779
6780 if (sdd->sd) {
6781 sd = *per_cpu_ptr(sdd->sd, j);
6782 if (sd && (sd->flags & SD_OVERLAP))
6783 free_sched_groups(sd->groups, 0);
6784 kfree(*per_cpu_ptr(sdd->sd, j));
6785 }
6786
6787 if (sdd->sg)
6788 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6789 if (sdd->sgc)
6790 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6791 }
6792 free_percpu(sdd->sd);
fb2cf2c6 6793 sdd->sd = NULL;
54ab4ff4 6794 free_percpu(sdd->sg);
fb2cf2c6 6795 sdd->sg = NULL;
63b2ca30
NP
6796 free_percpu(sdd->sgc);
6797 sdd->sgc = NULL;
54ab4ff4
PZ
6798 }
6799}
6800
2c402dc3 6801struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6802 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6803 struct sched_domain *child, int cpu)
2c402dc3 6804{
143e1e28 6805 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6806 if (!sd)
d069b916 6807 return child;
2c402dc3 6808
2c402dc3 6809 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6810 if (child) {
6811 sd->level = child->level + 1;
6812 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6813 child->parent = sd;
c75e0128 6814 sd->child = child;
6ae72dff
PZ
6815
6816 if (!cpumask_subset(sched_domain_span(child),
6817 sched_domain_span(sd))) {
6818 pr_err("BUG: arch topology borken\n");
6819#ifdef CONFIG_SCHED_DEBUG
6820 pr_err(" the %s domain not a subset of the %s domain\n",
6821 child->name, sd->name);
6822#endif
6823 /* Fixup, ensure @sd has at least @child cpus. */
6824 cpumask_or(sched_domain_span(sd),
6825 sched_domain_span(sd),
6826 sched_domain_span(child));
6827 }
6828
60495e77 6829 }
a841f8ce 6830 set_domain_attribute(sd, attr);
2c402dc3
PZ
6831
6832 return sd;
6833}
6834
2109b99e
AH
6835/*
6836 * Build sched domains for a given set of cpus and attach the sched domains
6837 * to the individual cpus
6838 */
dce840a0
PZ
6839static int build_sched_domains(const struct cpumask *cpu_map,
6840 struct sched_domain_attr *attr)
2109b99e 6841{
1c632169 6842 enum s_alloc alloc_state;
dce840a0 6843 struct sched_domain *sd;
2109b99e 6844 struct s_data d;
822ff793 6845 int i, ret = -ENOMEM;
9c1cfda2 6846
2109b99e
AH
6847 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6848 if (alloc_state != sa_rootdomain)
6849 goto error;
9c1cfda2 6850
dce840a0 6851 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6852 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6853 struct sched_domain_topology_level *tl;
6854
3bd65a80 6855 sd = NULL;
27723a68 6856 for_each_sd_topology(tl) {
4a850cbe 6857 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6858 if (tl == sched_domain_topology)
6859 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6860 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6861 sd->flags |= SD_OVERLAP;
d110235d
PZ
6862 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6863 break;
e3589f6c 6864 }
dce840a0
PZ
6865 }
6866
6867 /* Build the groups for the domains */
6868 for_each_cpu(i, cpu_map) {
6869 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6870 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6871 if (sd->flags & SD_OVERLAP) {
6872 if (build_overlap_sched_groups(sd, i))
6873 goto error;
6874 } else {
6875 if (build_sched_groups(sd, i))
6876 goto error;
6877 }
1cf51902 6878 }
a06dadbe 6879 }
9c1cfda2 6880
ced549fa 6881 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6882 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6883 if (!cpumask_test_cpu(i, cpu_map))
6884 continue;
9c1cfda2 6885
dce840a0
PZ
6886 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6887 claim_allocations(i, sd);
63b2ca30 6888 init_sched_groups_capacity(i, sd);
dce840a0 6889 }
f712c0c7 6890 }
9c1cfda2 6891
1da177e4 6892 /* Attach the domains */
dce840a0 6893 rcu_read_lock();
abcd083a 6894 for_each_cpu(i, cpu_map) {
21d42ccf 6895 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6896 cpu_attach_domain(sd, d.rd, i);
1da177e4 6897 }
dce840a0 6898 rcu_read_unlock();
51888ca2 6899
822ff793 6900 ret = 0;
51888ca2 6901error:
2109b99e 6902 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6903 return ret;
1da177e4 6904}
029190c5 6905
acc3f5d7 6906static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6907static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6908static struct sched_domain_attr *dattr_cur;
6909 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6910
6911/*
6912 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6913 * cpumask) fails, then fallback to a single sched domain,
6914 * as determined by the single cpumask fallback_doms.
029190c5 6915 */
4212823f 6916static cpumask_var_t fallback_doms;
029190c5 6917
ee79d1bd
HC
6918/*
6919 * arch_update_cpu_topology lets virtualized architectures update the
6920 * cpu core maps. It is supposed to return 1 if the topology changed
6921 * or 0 if it stayed the same.
6922 */
52f5684c 6923int __weak arch_update_cpu_topology(void)
22e52b07 6924{
ee79d1bd 6925 return 0;
22e52b07
HC
6926}
6927
acc3f5d7
RR
6928cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6929{
6930 int i;
6931 cpumask_var_t *doms;
6932
6933 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6934 if (!doms)
6935 return NULL;
6936 for (i = 0; i < ndoms; i++) {
6937 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6938 free_sched_domains(doms, i);
6939 return NULL;
6940 }
6941 }
6942 return doms;
6943}
6944
6945void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6946{
6947 unsigned int i;
6948 for (i = 0; i < ndoms; i++)
6949 free_cpumask_var(doms[i]);
6950 kfree(doms);
6951}
6952
1a20ff27 6953/*
41a2d6cf 6954 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6955 * For now this just excludes isolated cpus, but could be used to
6956 * exclude other special cases in the future.
1a20ff27 6957 */
c4a8849a 6958static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6959{
7378547f
MM
6960 int err;
6961
22e52b07 6962 arch_update_cpu_topology();
029190c5 6963 ndoms_cur = 1;
acc3f5d7 6964 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6965 if (!doms_cur)
acc3f5d7
RR
6966 doms_cur = &fallback_doms;
6967 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6968 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6969 register_sched_domain_sysctl();
7378547f
MM
6970
6971 return err;
1a20ff27
DG
6972}
6973
1a20ff27
DG
6974/*
6975 * Detach sched domains from a group of cpus specified in cpu_map
6976 * These cpus will now be attached to the NULL domain
6977 */
96f874e2 6978static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6979{
6980 int i;
6981
dce840a0 6982 rcu_read_lock();
abcd083a 6983 for_each_cpu(i, cpu_map)
57d885fe 6984 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6985 rcu_read_unlock();
1a20ff27
DG
6986}
6987
1d3504fc
HS
6988/* handle null as "default" */
6989static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6990 struct sched_domain_attr *new, int idx_new)
6991{
6992 struct sched_domain_attr tmp;
6993
6994 /* fast path */
6995 if (!new && !cur)
6996 return 1;
6997
6998 tmp = SD_ATTR_INIT;
6999 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7000 new ? (new + idx_new) : &tmp,
7001 sizeof(struct sched_domain_attr));
7002}
7003
029190c5
PJ
7004/*
7005 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7006 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7007 * doms_new[] to the current sched domain partitioning, doms_cur[].
7008 * It destroys each deleted domain and builds each new domain.
7009 *
acc3f5d7 7010 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7011 * The masks don't intersect (don't overlap.) We should setup one
7012 * sched domain for each mask. CPUs not in any of the cpumasks will
7013 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7014 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7015 * it as it is.
7016 *
acc3f5d7
RR
7017 * The passed in 'doms_new' should be allocated using
7018 * alloc_sched_domains. This routine takes ownership of it and will
7019 * free_sched_domains it when done with it. If the caller failed the
7020 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7021 * and partition_sched_domains() will fallback to the single partition
7022 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7023 *
96f874e2 7024 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7025 * ndoms_new == 0 is a special case for destroying existing domains,
7026 * and it will not create the default domain.
dfb512ec 7027 *
029190c5
PJ
7028 * Call with hotplug lock held
7029 */
acc3f5d7 7030void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7031 struct sched_domain_attr *dattr_new)
029190c5 7032{
dfb512ec 7033 int i, j, n;
d65bd5ec 7034 int new_topology;
029190c5 7035
712555ee 7036 mutex_lock(&sched_domains_mutex);
a1835615 7037
7378547f
MM
7038 /* always unregister in case we don't destroy any domains */
7039 unregister_sched_domain_sysctl();
7040
d65bd5ec
HC
7041 /* Let architecture update cpu core mappings. */
7042 new_topology = arch_update_cpu_topology();
7043
dfb512ec 7044 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7045
7046 /* Destroy deleted domains */
7047 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7048 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7049 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7050 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7051 goto match1;
7052 }
7053 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7054 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7055match1:
7056 ;
7057 }
7058
c8d2d47a 7059 n = ndoms_cur;
e761b772 7060 if (doms_new == NULL) {
c8d2d47a 7061 n = 0;
acc3f5d7 7062 doms_new = &fallback_doms;
6ad4c188 7063 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7064 WARN_ON_ONCE(dattr_new);
e761b772
MK
7065 }
7066
029190c5
PJ
7067 /* Build new domains */
7068 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7069 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7070 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7071 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7072 goto match2;
7073 }
7074 /* no match - add a new doms_new */
dce840a0 7075 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7076match2:
7077 ;
7078 }
7079
7080 /* Remember the new sched domains */
acc3f5d7
RR
7081 if (doms_cur != &fallback_doms)
7082 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7083 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7084 doms_cur = doms_new;
1d3504fc 7085 dattr_cur = dattr_new;
029190c5 7086 ndoms_cur = ndoms_new;
7378547f
MM
7087
7088 register_sched_domain_sysctl();
a1835615 7089
712555ee 7090 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7091}
7092
d35be8ba
SB
7093static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7094
1da177e4 7095/*
3a101d05
TH
7096 * Update cpusets according to cpu_active mask. If cpusets are
7097 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7098 * around partition_sched_domains().
d35be8ba
SB
7099 *
7100 * If we come here as part of a suspend/resume, don't touch cpusets because we
7101 * want to restore it back to its original state upon resume anyway.
1da177e4 7102 */
0b2e918a
TH
7103static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7104 void *hcpu)
e761b772 7105{
d35be8ba
SB
7106 switch (action) {
7107 case CPU_ONLINE_FROZEN:
7108 case CPU_DOWN_FAILED_FROZEN:
7109
7110 /*
7111 * num_cpus_frozen tracks how many CPUs are involved in suspend
7112 * resume sequence. As long as this is not the last online
7113 * operation in the resume sequence, just build a single sched
7114 * domain, ignoring cpusets.
7115 */
7116 num_cpus_frozen--;
7117 if (likely(num_cpus_frozen)) {
7118 partition_sched_domains(1, NULL, NULL);
7119 break;
7120 }
7121
7122 /*
7123 * This is the last CPU online operation. So fall through and
7124 * restore the original sched domains by considering the
7125 * cpuset configurations.
7126 */
7127
e761b772 7128 case CPU_ONLINE:
7ddf96b0 7129 cpuset_update_active_cpus(true);
d35be8ba 7130 break;
3a101d05
TH
7131 default:
7132 return NOTIFY_DONE;
7133 }
d35be8ba 7134 return NOTIFY_OK;
3a101d05 7135}
e761b772 7136
0b2e918a
TH
7137static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7138 void *hcpu)
3a101d05 7139{
3c18d447
JL
7140 unsigned long flags;
7141 long cpu = (long)hcpu;
7142 struct dl_bw *dl_b;
533445c6
OS
7143 bool overflow;
7144 int cpus;
3c18d447 7145
533445c6 7146 switch (action) {
3a101d05 7147 case CPU_DOWN_PREPARE:
533445c6
OS
7148 rcu_read_lock_sched();
7149 dl_b = dl_bw_of(cpu);
3c18d447 7150
533445c6
OS
7151 raw_spin_lock_irqsave(&dl_b->lock, flags);
7152 cpus = dl_bw_cpus(cpu);
7153 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7154 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7155
533445c6 7156 rcu_read_unlock_sched();
3c18d447 7157
533445c6
OS
7158 if (overflow)
7159 return notifier_from_errno(-EBUSY);
7ddf96b0 7160 cpuset_update_active_cpus(false);
d35be8ba
SB
7161 break;
7162 case CPU_DOWN_PREPARE_FROZEN:
7163 num_cpus_frozen++;
7164 partition_sched_domains(1, NULL, NULL);
7165 break;
e761b772
MK
7166 default:
7167 return NOTIFY_DONE;
7168 }
d35be8ba 7169 return NOTIFY_OK;
e761b772 7170}
e761b772 7171
1da177e4
LT
7172void __init sched_init_smp(void)
7173{
dcc30a35
RR
7174 cpumask_var_t non_isolated_cpus;
7175
7176 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7177 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7178
cb83b629
PZ
7179 sched_init_numa();
7180
6acce3ef
PZ
7181 /*
7182 * There's no userspace yet to cause hotplug operations; hence all the
7183 * cpu masks are stable and all blatant races in the below code cannot
7184 * happen.
7185 */
712555ee 7186 mutex_lock(&sched_domains_mutex);
c4a8849a 7187 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7188 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7189 if (cpumask_empty(non_isolated_cpus))
7190 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7191 mutex_unlock(&sched_domains_mutex);
e761b772 7192
301a5cba 7193 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7194 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7195 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7196
b328ca18 7197 init_hrtick();
5c1e1767
NP
7198
7199 /* Move init over to a non-isolated CPU */
dcc30a35 7200 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7201 BUG();
19978ca6 7202 sched_init_granularity();
dcc30a35 7203 free_cpumask_var(non_isolated_cpus);
4212823f 7204
0e3900e6 7205 init_sched_rt_class();
1baca4ce 7206 init_sched_dl_class();
1da177e4
LT
7207}
7208#else
7209void __init sched_init_smp(void)
7210{
19978ca6 7211 sched_init_granularity();
1da177e4
LT
7212}
7213#endif /* CONFIG_SMP */
7214
7215int in_sched_functions(unsigned long addr)
7216{
1da177e4
LT
7217 return in_lock_functions(addr) ||
7218 (addr >= (unsigned long)__sched_text_start
7219 && addr < (unsigned long)__sched_text_end);
7220}
7221
029632fb 7222#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7223/*
7224 * Default task group.
7225 * Every task in system belongs to this group at bootup.
7226 */
029632fb 7227struct task_group root_task_group;
35cf4e50 7228LIST_HEAD(task_groups);
b0367629
WL
7229
7230/* Cacheline aligned slab cache for task_group */
7231static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7232#endif
6f505b16 7233
e6252c3e 7234DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7235
1da177e4
LT
7236void __init sched_init(void)
7237{
dd41f596 7238 int i, j;
434d53b0
MT
7239 unsigned long alloc_size = 0, ptr;
7240
7241#ifdef CONFIG_FAIR_GROUP_SCHED
7242 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7243#endif
7244#ifdef CONFIG_RT_GROUP_SCHED
7245 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7246#endif
434d53b0 7247 if (alloc_size) {
36b7b6d4 7248 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7249
7250#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7251 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7252 ptr += nr_cpu_ids * sizeof(void **);
7253
07e06b01 7254 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7255 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7256
6d6bc0ad 7257#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7258#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7259 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7260 ptr += nr_cpu_ids * sizeof(void **);
7261
07e06b01 7262 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7263 ptr += nr_cpu_ids * sizeof(void **);
7264
6d6bc0ad 7265#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7266 }
df7c8e84 7267#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7268 for_each_possible_cpu(i) {
7269 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7270 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7271 }
b74e6278 7272#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7273
332ac17e
DF
7274 init_rt_bandwidth(&def_rt_bandwidth,
7275 global_rt_period(), global_rt_runtime());
7276 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7277 global_rt_period(), global_rt_runtime());
332ac17e 7278
57d885fe
GH
7279#ifdef CONFIG_SMP
7280 init_defrootdomain();
7281#endif
7282
d0b27fa7 7283#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7284 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7285 global_rt_period(), global_rt_runtime());
6d6bc0ad 7286#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7287
7c941438 7288#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7289 task_group_cache = KMEM_CACHE(task_group, 0);
7290
07e06b01
YZ
7291 list_add(&root_task_group.list, &task_groups);
7292 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7293 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7294 autogroup_init(&init_task);
7c941438 7295#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7296
0a945022 7297 for_each_possible_cpu(i) {
70b97a7f 7298 struct rq *rq;
1da177e4
LT
7299
7300 rq = cpu_rq(i);
05fa785c 7301 raw_spin_lock_init(&rq->lock);
7897986b 7302 rq->nr_running = 0;
dce48a84
TG
7303 rq->calc_load_active = 0;
7304 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7305 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7306 init_rt_rq(&rq->rt);
7307 init_dl_rq(&rq->dl);
dd41f596 7308#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7309 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7310 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7311 /*
07e06b01 7312 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7313 *
7314 * In case of task-groups formed thr' the cgroup filesystem, it
7315 * gets 100% of the cpu resources in the system. This overall
7316 * system cpu resource is divided among the tasks of
07e06b01 7317 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7318 * based on each entity's (task or task-group's) weight
7319 * (se->load.weight).
7320 *
07e06b01 7321 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7322 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7323 * then A0's share of the cpu resource is:
7324 *
0d905bca 7325 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7326 *
07e06b01
YZ
7327 * We achieve this by letting root_task_group's tasks sit
7328 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7329 */
ab84d31e 7330 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7331 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7332#endif /* CONFIG_FAIR_GROUP_SCHED */
7333
7334 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7335#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7336 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7337#endif
1da177e4 7338
dd41f596
IM
7339 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7340 rq->cpu_load[j] = 0;
fdf3e95d
VP
7341
7342 rq->last_load_update_tick = jiffies;
7343
1da177e4 7344#ifdef CONFIG_SMP
41c7ce9a 7345 rq->sd = NULL;
57d885fe 7346 rq->rd = NULL;
ca6d75e6 7347 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7348 rq->balance_callback = NULL;
1da177e4 7349 rq->active_balance = 0;
dd41f596 7350 rq->next_balance = jiffies;
1da177e4 7351 rq->push_cpu = 0;
0a2966b4 7352 rq->cpu = i;
1f11eb6a 7353 rq->online = 0;
eae0c9df
MG
7354 rq->idle_stamp = 0;
7355 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7356 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7357
7358 INIT_LIST_HEAD(&rq->cfs_tasks);
7359
dc938520 7360 rq_attach_root(rq, &def_root_domain);
3451d024 7361#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7362 rq->nohz_flags = 0;
83cd4fe2 7363#endif
265f22a9
FW
7364#ifdef CONFIG_NO_HZ_FULL
7365 rq->last_sched_tick = 0;
7366#endif
1da177e4 7367#endif
8f4d37ec 7368 init_rq_hrtick(rq);
1da177e4 7369 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7370 }
7371
2dd73a4f 7372 set_load_weight(&init_task);
b50f60ce 7373
e107be36
AK
7374#ifdef CONFIG_PREEMPT_NOTIFIERS
7375 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7376#endif
7377
1da177e4
LT
7378 /*
7379 * The boot idle thread does lazy MMU switching as well:
7380 */
7381 atomic_inc(&init_mm.mm_count);
7382 enter_lazy_tlb(&init_mm, current);
7383
1b537c7d
YD
7384 /*
7385 * During early bootup we pretend to be a normal task:
7386 */
7387 current->sched_class = &fair_sched_class;
7388
1da177e4
LT
7389 /*
7390 * Make us the idle thread. Technically, schedule() should not be
7391 * called from this thread, however somewhere below it might be,
7392 * but because we are the idle thread, we just pick up running again
7393 * when this runqueue becomes "idle".
7394 */
7395 init_idle(current, smp_processor_id());
dce48a84
TG
7396
7397 calc_load_update = jiffies + LOAD_FREQ;
7398
bf4d83f6 7399#ifdef CONFIG_SMP
4cb98839 7400 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7401 /* May be allocated at isolcpus cmdline parse time */
7402 if (cpu_isolated_map == NULL)
7403 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7404 idle_thread_set_boot_cpu();
a803f026 7405 set_cpu_rq_start_time();
029632fb
PZ
7406#endif
7407 init_sched_fair_class();
6a7b3dc3 7408
6892b75e 7409 scheduler_running = 1;
1da177e4
LT
7410}
7411
d902db1e 7412#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7413static inline int preempt_count_equals(int preempt_offset)
7414{
da7142e2 7415 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7416
4ba8216c 7417 return (nested == preempt_offset);
e4aafea2
FW
7418}
7419
d894837f 7420void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7421{
8eb23b9f
PZ
7422 /*
7423 * Blocking primitives will set (and therefore destroy) current->state,
7424 * since we will exit with TASK_RUNNING make sure we enter with it,
7425 * otherwise we will destroy state.
7426 */
00845eb9 7427 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7428 "do not call blocking ops when !TASK_RUNNING; "
7429 "state=%lx set at [<%p>] %pS\n",
7430 current->state,
7431 (void *)current->task_state_change,
00845eb9 7432 (void *)current->task_state_change);
8eb23b9f 7433
3427445a
PZ
7434 ___might_sleep(file, line, preempt_offset);
7435}
7436EXPORT_SYMBOL(__might_sleep);
7437
7438void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7439{
1da177e4
LT
7440 static unsigned long prev_jiffy; /* ratelimiting */
7441
b3fbab05 7442 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7443 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7444 !is_idle_task(current)) ||
e4aafea2 7445 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7446 return;
7447 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7448 return;
7449 prev_jiffy = jiffies;
7450
3df0fc5b
PZ
7451 printk(KERN_ERR
7452 "BUG: sleeping function called from invalid context at %s:%d\n",
7453 file, line);
7454 printk(KERN_ERR
7455 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7456 in_atomic(), irqs_disabled(),
7457 current->pid, current->comm);
aef745fc 7458
a8b686b3
ES
7459 if (task_stack_end_corrupted(current))
7460 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7461
aef745fc
IM
7462 debug_show_held_locks(current);
7463 if (irqs_disabled())
7464 print_irqtrace_events(current);
8f47b187
TG
7465#ifdef CONFIG_DEBUG_PREEMPT
7466 if (!preempt_count_equals(preempt_offset)) {
7467 pr_err("Preemption disabled at:");
7468 print_ip_sym(current->preempt_disable_ip);
7469 pr_cont("\n");
7470 }
7471#endif
aef745fc 7472 dump_stack();
1da177e4 7473}
3427445a 7474EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7475#endif
7476
7477#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7478void normalize_rt_tasks(void)
3a5e4dc1 7479{
dbc7f069 7480 struct task_struct *g, *p;
d50dde5a
DF
7481 struct sched_attr attr = {
7482 .sched_policy = SCHED_NORMAL,
7483 };
1da177e4 7484
3472eaa1 7485 read_lock(&tasklist_lock);
5d07f420 7486 for_each_process_thread(g, p) {
178be793
IM
7487 /*
7488 * Only normalize user tasks:
7489 */
3472eaa1 7490 if (p->flags & PF_KTHREAD)
178be793
IM
7491 continue;
7492
6cfb0d5d 7493 p->se.exec_start = 0;
6cfb0d5d 7494#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7495 p->se.statistics.wait_start = 0;
7496 p->se.statistics.sleep_start = 0;
7497 p->se.statistics.block_start = 0;
6cfb0d5d 7498#endif
dd41f596 7499
aab03e05 7500 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7501 /*
7502 * Renice negative nice level userspace
7503 * tasks back to 0:
7504 */
3472eaa1 7505 if (task_nice(p) < 0)
dd41f596 7506 set_user_nice(p, 0);
1da177e4 7507 continue;
dd41f596 7508 }
1da177e4 7509
dbc7f069 7510 __sched_setscheduler(p, &attr, false, false);
5d07f420 7511 }
3472eaa1 7512 read_unlock(&tasklist_lock);
1da177e4
LT
7513}
7514
7515#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7516
67fc4e0c 7517#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7518/*
67fc4e0c 7519 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7520 *
7521 * They can only be called when the whole system has been
7522 * stopped - every CPU needs to be quiescent, and no scheduling
7523 * activity can take place. Using them for anything else would
7524 * be a serious bug, and as a result, they aren't even visible
7525 * under any other configuration.
7526 */
7527
7528/**
7529 * curr_task - return the current task for a given cpu.
7530 * @cpu: the processor in question.
7531 *
7532 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7533 *
7534 * Return: The current task for @cpu.
1df5c10a 7535 */
36c8b586 7536struct task_struct *curr_task(int cpu)
1df5c10a
LT
7537{
7538 return cpu_curr(cpu);
7539}
7540
67fc4e0c
JW
7541#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7542
7543#ifdef CONFIG_IA64
1df5c10a
LT
7544/**
7545 * set_curr_task - set the current task for a given cpu.
7546 * @cpu: the processor in question.
7547 * @p: the task pointer to set.
7548 *
7549 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7550 * are serviced on a separate stack. It allows the architecture to switch the
7551 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7552 * must be called with all CPU's synchronized, and interrupts disabled, the
7553 * and caller must save the original value of the current task (see
7554 * curr_task() above) and restore that value before reenabling interrupts and
7555 * re-starting the system.
7556 *
7557 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7558 */
36c8b586 7559void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7560{
7561 cpu_curr(cpu) = p;
7562}
7563
7564#endif
29f59db3 7565
7c941438 7566#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7567/* task_group_lock serializes the addition/removal of task groups */
7568static DEFINE_SPINLOCK(task_group_lock);
7569
2f5177f0 7570static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7571{
7572 free_fair_sched_group(tg);
7573 free_rt_sched_group(tg);
e9aa1dd1 7574 autogroup_free(tg);
b0367629 7575 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7576}
7577
7578/* allocate runqueue etc for a new task group */
ec7dc8ac 7579struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7580{
7581 struct task_group *tg;
bccbe08a 7582
b0367629 7583 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7584 if (!tg)
7585 return ERR_PTR(-ENOMEM);
7586
ec7dc8ac 7587 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7588 goto err;
7589
ec7dc8ac 7590 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7591 goto err;
7592
ace783b9
LZ
7593 return tg;
7594
7595err:
2f5177f0 7596 sched_free_group(tg);
ace783b9
LZ
7597 return ERR_PTR(-ENOMEM);
7598}
7599
7600void sched_online_group(struct task_group *tg, struct task_group *parent)
7601{
7602 unsigned long flags;
7603
8ed36996 7604 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7605 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7606
7607 WARN_ON(!parent); /* root should already exist */
7608
7609 tg->parent = parent;
f473aa5e 7610 INIT_LIST_HEAD(&tg->children);
09f2724a 7611 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7612 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7613}
7614
9b5b7751 7615/* rcu callback to free various structures associated with a task group */
2f5177f0 7616static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7617{
29f59db3 7618 /* now it should be safe to free those cfs_rqs */
2f5177f0 7619 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7620}
7621
4cf86d77 7622void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7623{
7624 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7625 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7626}
7627
7628void sched_offline_group(struct task_group *tg)
29f59db3 7629{
8ed36996 7630 unsigned long flags;
29f59db3 7631
3d4b47b4 7632 /* end participation in shares distribution */
6fe1f348 7633 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7634
7635 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7636 list_del_rcu(&tg->list);
f473aa5e 7637 list_del_rcu(&tg->siblings);
8ed36996 7638 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7639}
7640
9b5b7751 7641/* change task's runqueue when it moves between groups.
3a252015
IM
7642 * The caller of this function should have put the task in its new group
7643 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7644 * reflect its new group.
9b5b7751
SV
7645 */
7646void sched_move_task(struct task_struct *tsk)
29f59db3 7647{
8323f26c 7648 struct task_group *tg;
da0c1e65 7649 int queued, running;
29f59db3
SV
7650 unsigned long flags;
7651 struct rq *rq;
7652
7653 rq = task_rq_lock(tsk, &flags);
7654
051a1d1a 7655 running = task_current(rq, tsk);
da0c1e65 7656 queued = task_on_rq_queued(tsk);
29f59db3 7657
da0c1e65 7658 if (queued)
ff77e468 7659 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7660 if (unlikely(running))
f3cd1c4e 7661 put_prev_task(rq, tsk);
29f59db3 7662
f7b8a47d
KT
7663 /*
7664 * All callers are synchronized by task_rq_lock(); we do not use RCU
7665 * which is pointless here. Thus, we pass "true" to task_css_check()
7666 * to prevent lockdep warnings.
7667 */
7668 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7669 struct task_group, css);
7670 tg = autogroup_task_group(tsk, tg);
7671 tsk->sched_task_group = tg;
7672
810b3817 7673#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7674 if (tsk->sched_class->task_move_group)
bc54da21 7675 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7676 else
810b3817 7677#endif
b2b5ce02 7678 set_task_rq(tsk, task_cpu(tsk));
810b3817 7679
0e1f3483
HS
7680 if (unlikely(running))
7681 tsk->sched_class->set_curr_task(rq);
da0c1e65 7682 if (queued)
ff77e468 7683 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7684
0122ec5b 7685 task_rq_unlock(rq, tsk, &flags);
29f59db3 7686}
7c941438 7687#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7688
a790de99
PT
7689#ifdef CONFIG_RT_GROUP_SCHED
7690/*
7691 * Ensure that the real time constraints are schedulable.
7692 */
7693static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7694
9a7e0b18
PZ
7695/* Must be called with tasklist_lock held */
7696static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7697{
9a7e0b18 7698 struct task_struct *g, *p;
b40b2e8e 7699
1fe89e1b
PZ
7700 /*
7701 * Autogroups do not have RT tasks; see autogroup_create().
7702 */
7703 if (task_group_is_autogroup(tg))
7704 return 0;
7705
5d07f420 7706 for_each_process_thread(g, p) {
8651c658 7707 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7708 return 1;
5d07f420 7709 }
b40b2e8e 7710
9a7e0b18
PZ
7711 return 0;
7712}
b40b2e8e 7713
9a7e0b18
PZ
7714struct rt_schedulable_data {
7715 struct task_group *tg;
7716 u64 rt_period;
7717 u64 rt_runtime;
7718};
b40b2e8e 7719
a790de99 7720static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7721{
7722 struct rt_schedulable_data *d = data;
7723 struct task_group *child;
7724 unsigned long total, sum = 0;
7725 u64 period, runtime;
b40b2e8e 7726
9a7e0b18
PZ
7727 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7728 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7729
9a7e0b18
PZ
7730 if (tg == d->tg) {
7731 period = d->rt_period;
7732 runtime = d->rt_runtime;
b40b2e8e 7733 }
b40b2e8e 7734
4653f803
PZ
7735 /*
7736 * Cannot have more runtime than the period.
7737 */
7738 if (runtime > period && runtime != RUNTIME_INF)
7739 return -EINVAL;
6f505b16 7740
4653f803
PZ
7741 /*
7742 * Ensure we don't starve existing RT tasks.
7743 */
9a7e0b18
PZ
7744 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7745 return -EBUSY;
6f505b16 7746
9a7e0b18 7747 total = to_ratio(period, runtime);
6f505b16 7748
4653f803
PZ
7749 /*
7750 * Nobody can have more than the global setting allows.
7751 */
7752 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7753 return -EINVAL;
6f505b16 7754
4653f803
PZ
7755 /*
7756 * The sum of our children's runtime should not exceed our own.
7757 */
9a7e0b18
PZ
7758 list_for_each_entry_rcu(child, &tg->children, siblings) {
7759 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7760 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7761
9a7e0b18
PZ
7762 if (child == d->tg) {
7763 period = d->rt_period;
7764 runtime = d->rt_runtime;
7765 }
6f505b16 7766
9a7e0b18 7767 sum += to_ratio(period, runtime);
9f0c1e56 7768 }
6f505b16 7769
9a7e0b18
PZ
7770 if (sum > total)
7771 return -EINVAL;
7772
7773 return 0;
6f505b16
PZ
7774}
7775
9a7e0b18 7776static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7777{
8277434e
PT
7778 int ret;
7779
9a7e0b18
PZ
7780 struct rt_schedulable_data data = {
7781 .tg = tg,
7782 .rt_period = period,
7783 .rt_runtime = runtime,
7784 };
7785
8277434e
PT
7786 rcu_read_lock();
7787 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7788 rcu_read_unlock();
7789
7790 return ret;
521f1a24
DG
7791}
7792
ab84d31e 7793static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7794 u64 rt_period, u64 rt_runtime)
6f505b16 7795{
ac086bc2 7796 int i, err = 0;
9f0c1e56 7797
2636ed5f
PZ
7798 /*
7799 * Disallowing the root group RT runtime is BAD, it would disallow the
7800 * kernel creating (and or operating) RT threads.
7801 */
7802 if (tg == &root_task_group && rt_runtime == 0)
7803 return -EINVAL;
7804
7805 /* No period doesn't make any sense. */
7806 if (rt_period == 0)
7807 return -EINVAL;
7808
9f0c1e56 7809 mutex_lock(&rt_constraints_mutex);
521f1a24 7810 read_lock(&tasklist_lock);
9a7e0b18
PZ
7811 err = __rt_schedulable(tg, rt_period, rt_runtime);
7812 if (err)
9f0c1e56 7813 goto unlock;
ac086bc2 7814
0986b11b 7815 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7816 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7817 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7818
7819 for_each_possible_cpu(i) {
7820 struct rt_rq *rt_rq = tg->rt_rq[i];
7821
0986b11b 7822 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7823 rt_rq->rt_runtime = rt_runtime;
0986b11b 7824 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7825 }
0986b11b 7826 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7827unlock:
521f1a24 7828 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7829 mutex_unlock(&rt_constraints_mutex);
7830
7831 return err;
6f505b16
PZ
7832}
7833
25cc7da7 7834static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7835{
7836 u64 rt_runtime, rt_period;
7837
7838 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7839 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7840 if (rt_runtime_us < 0)
7841 rt_runtime = RUNTIME_INF;
7842
ab84d31e 7843 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7844}
7845
25cc7da7 7846static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7847{
7848 u64 rt_runtime_us;
7849
d0b27fa7 7850 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7851 return -1;
7852
d0b27fa7 7853 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7854 do_div(rt_runtime_us, NSEC_PER_USEC);
7855 return rt_runtime_us;
7856}
d0b27fa7 7857
ce2f5fe4 7858static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7859{
7860 u64 rt_runtime, rt_period;
7861
ce2f5fe4 7862 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7863 rt_runtime = tg->rt_bandwidth.rt_runtime;
7864
ab84d31e 7865 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7866}
7867
25cc7da7 7868static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7869{
7870 u64 rt_period_us;
7871
7872 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7873 do_div(rt_period_us, NSEC_PER_USEC);
7874 return rt_period_us;
7875}
332ac17e 7876#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7877
332ac17e 7878#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7879static int sched_rt_global_constraints(void)
7880{
7881 int ret = 0;
7882
7883 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7884 read_lock(&tasklist_lock);
4653f803 7885 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7886 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7887 mutex_unlock(&rt_constraints_mutex);
7888
7889 return ret;
7890}
54e99124 7891
25cc7da7 7892static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7893{
7894 /* Don't accept realtime tasks when there is no way for them to run */
7895 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7896 return 0;
7897
7898 return 1;
7899}
7900
6d6bc0ad 7901#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7902static int sched_rt_global_constraints(void)
7903{
ac086bc2 7904 unsigned long flags;
332ac17e 7905 int i, ret = 0;
ec5d4989 7906
0986b11b 7907 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7908 for_each_possible_cpu(i) {
7909 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7910
0986b11b 7911 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7912 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7913 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7914 }
0986b11b 7915 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7916
332ac17e 7917 return ret;
d0b27fa7 7918}
6d6bc0ad 7919#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7920
a1963b81 7921static int sched_dl_global_validate(void)
332ac17e 7922{
1724813d
PZ
7923 u64 runtime = global_rt_runtime();
7924 u64 period = global_rt_period();
332ac17e 7925 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7926 struct dl_bw *dl_b;
1724813d 7927 int cpu, ret = 0;
49516342 7928 unsigned long flags;
332ac17e
DF
7929
7930 /*
7931 * Here we want to check the bandwidth not being set to some
7932 * value smaller than the currently allocated bandwidth in
7933 * any of the root_domains.
7934 *
7935 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7936 * cycling on root_domains... Discussion on different/better
7937 * solutions is welcome!
7938 */
1724813d 7939 for_each_possible_cpu(cpu) {
f10e00f4
KT
7940 rcu_read_lock_sched();
7941 dl_b = dl_bw_of(cpu);
332ac17e 7942
49516342 7943 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7944 if (new_bw < dl_b->total_bw)
7945 ret = -EBUSY;
49516342 7946 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7947
f10e00f4
KT
7948 rcu_read_unlock_sched();
7949
1724813d
PZ
7950 if (ret)
7951 break;
332ac17e
DF
7952 }
7953
1724813d 7954 return ret;
332ac17e
DF
7955}
7956
1724813d 7957static void sched_dl_do_global(void)
ce0dbbbb 7958{
1724813d 7959 u64 new_bw = -1;
f10e00f4 7960 struct dl_bw *dl_b;
1724813d 7961 int cpu;
49516342 7962 unsigned long flags;
ce0dbbbb 7963
1724813d
PZ
7964 def_dl_bandwidth.dl_period = global_rt_period();
7965 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7966
7967 if (global_rt_runtime() != RUNTIME_INF)
7968 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7969
7970 /*
7971 * FIXME: As above...
7972 */
7973 for_each_possible_cpu(cpu) {
f10e00f4
KT
7974 rcu_read_lock_sched();
7975 dl_b = dl_bw_of(cpu);
1724813d 7976
49516342 7977 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7978 dl_b->bw = new_bw;
49516342 7979 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7980
7981 rcu_read_unlock_sched();
ce0dbbbb 7982 }
1724813d
PZ
7983}
7984
7985static int sched_rt_global_validate(void)
7986{
7987 if (sysctl_sched_rt_period <= 0)
7988 return -EINVAL;
7989
e9e7cb38
JL
7990 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7991 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7992 return -EINVAL;
7993
7994 return 0;
7995}
7996
7997static void sched_rt_do_global(void)
7998{
7999 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8000 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8001}
8002
d0b27fa7 8003int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8004 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8005 loff_t *ppos)
8006{
d0b27fa7
PZ
8007 int old_period, old_runtime;
8008 static DEFINE_MUTEX(mutex);
1724813d 8009 int ret;
d0b27fa7
PZ
8010
8011 mutex_lock(&mutex);
8012 old_period = sysctl_sched_rt_period;
8013 old_runtime = sysctl_sched_rt_runtime;
8014
8d65af78 8015 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8016
8017 if (!ret && write) {
1724813d
PZ
8018 ret = sched_rt_global_validate();
8019 if (ret)
8020 goto undo;
8021
a1963b81 8022 ret = sched_dl_global_validate();
1724813d
PZ
8023 if (ret)
8024 goto undo;
8025
a1963b81 8026 ret = sched_rt_global_constraints();
1724813d
PZ
8027 if (ret)
8028 goto undo;
8029
8030 sched_rt_do_global();
8031 sched_dl_do_global();
8032 }
8033 if (0) {
8034undo:
8035 sysctl_sched_rt_period = old_period;
8036 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8037 }
8038 mutex_unlock(&mutex);
8039
8040 return ret;
8041}
68318b8e 8042
1724813d 8043int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8044 void __user *buffer, size_t *lenp,
8045 loff_t *ppos)
8046{
8047 int ret;
332ac17e 8048 static DEFINE_MUTEX(mutex);
332ac17e
DF
8049
8050 mutex_lock(&mutex);
332ac17e 8051 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8052 /* make sure that internally we keep jiffies */
8053 /* also, writing zero resets timeslice to default */
332ac17e 8054 if (!ret && write) {
1724813d
PZ
8055 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8056 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8057 }
8058 mutex_unlock(&mutex);
332ac17e
DF
8059 return ret;
8060}
8061
052f1dc7 8062#ifdef CONFIG_CGROUP_SCHED
68318b8e 8063
a7c6d554 8064static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8065{
a7c6d554 8066 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8067}
8068
eb95419b
TH
8069static struct cgroup_subsys_state *
8070cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8071{
eb95419b
TH
8072 struct task_group *parent = css_tg(parent_css);
8073 struct task_group *tg;
68318b8e 8074
eb95419b 8075 if (!parent) {
68318b8e 8076 /* This is early initialization for the top cgroup */
07e06b01 8077 return &root_task_group.css;
68318b8e
SV
8078 }
8079
ec7dc8ac 8080 tg = sched_create_group(parent);
68318b8e
SV
8081 if (IS_ERR(tg))
8082 return ERR_PTR(-ENOMEM);
8083
2f5177f0
PZ
8084 sched_online_group(tg, parent);
8085
68318b8e
SV
8086 return &tg->css;
8087}
8088
2f5177f0 8089static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8090{
eb95419b 8091 struct task_group *tg = css_tg(css);
ace783b9 8092
2f5177f0 8093 sched_offline_group(tg);
ace783b9
LZ
8094}
8095
eb95419b 8096static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8097{
eb95419b 8098 struct task_group *tg = css_tg(css);
68318b8e 8099
2f5177f0
PZ
8100 /*
8101 * Relies on the RCU grace period between css_released() and this.
8102 */
8103 sched_free_group(tg);
ace783b9
LZ
8104}
8105
b53202e6 8106static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8107{
8108 sched_move_task(task);
8109}
8110
1f7dd3e5 8111static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8112{
bb9d97b6 8113 struct task_struct *task;
1f7dd3e5 8114 struct cgroup_subsys_state *css;
bb9d97b6 8115
1f7dd3e5 8116 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8117#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8118 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8119 return -EINVAL;
b68aa230 8120#else
bb9d97b6
TH
8121 /* We don't support RT-tasks being in separate groups */
8122 if (task->sched_class != &fair_sched_class)
8123 return -EINVAL;
b68aa230 8124#endif
bb9d97b6 8125 }
be367d09
BB
8126 return 0;
8127}
68318b8e 8128
1f7dd3e5 8129static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8130{
bb9d97b6 8131 struct task_struct *task;
1f7dd3e5 8132 struct cgroup_subsys_state *css;
bb9d97b6 8133
1f7dd3e5 8134 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8135 sched_move_task(task);
68318b8e
SV
8136}
8137
052f1dc7 8138#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8139static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8140 struct cftype *cftype, u64 shareval)
68318b8e 8141{
182446d0 8142 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8143}
8144
182446d0
TH
8145static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8146 struct cftype *cft)
68318b8e 8147{
182446d0 8148 struct task_group *tg = css_tg(css);
68318b8e 8149
c8b28116 8150 return (u64) scale_load_down(tg->shares);
68318b8e 8151}
ab84d31e
PT
8152
8153#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8154static DEFINE_MUTEX(cfs_constraints_mutex);
8155
ab84d31e
PT
8156const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8157const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8158
a790de99
PT
8159static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8160
ab84d31e
PT
8161static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8162{
56f570e5 8163 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8164 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8165
8166 if (tg == &root_task_group)
8167 return -EINVAL;
8168
8169 /*
8170 * Ensure we have at some amount of bandwidth every period. This is
8171 * to prevent reaching a state of large arrears when throttled via
8172 * entity_tick() resulting in prolonged exit starvation.
8173 */
8174 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8175 return -EINVAL;
8176
8177 /*
8178 * Likewise, bound things on the otherside by preventing insane quota
8179 * periods. This also allows us to normalize in computing quota
8180 * feasibility.
8181 */
8182 if (period > max_cfs_quota_period)
8183 return -EINVAL;
8184
0e59bdae
KT
8185 /*
8186 * Prevent race between setting of cfs_rq->runtime_enabled and
8187 * unthrottle_offline_cfs_rqs().
8188 */
8189 get_online_cpus();
a790de99
PT
8190 mutex_lock(&cfs_constraints_mutex);
8191 ret = __cfs_schedulable(tg, period, quota);
8192 if (ret)
8193 goto out_unlock;
8194
58088ad0 8195 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8196 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8197 /*
8198 * If we need to toggle cfs_bandwidth_used, off->on must occur
8199 * before making related changes, and on->off must occur afterwards
8200 */
8201 if (runtime_enabled && !runtime_was_enabled)
8202 cfs_bandwidth_usage_inc();
ab84d31e
PT
8203 raw_spin_lock_irq(&cfs_b->lock);
8204 cfs_b->period = ns_to_ktime(period);
8205 cfs_b->quota = quota;
58088ad0 8206
a9cf55b2 8207 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8208 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8209 if (runtime_enabled)
8210 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8211 raw_spin_unlock_irq(&cfs_b->lock);
8212
0e59bdae 8213 for_each_online_cpu(i) {
ab84d31e 8214 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8215 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8216
8217 raw_spin_lock_irq(&rq->lock);
58088ad0 8218 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8219 cfs_rq->runtime_remaining = 0;
671fd9da 8220
029632fb 8221 if (cfs_rq->throttled)
671fd9da 8222 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8223 raw_spin_unlock_irq(&rq->lock);
8224 }
1ee14e6c
BS
8225 if (runtime_was_enabled && !runtime_enabled)
8226 cfs_bandwidth_usage_dec();
a790de99
PT
8227out_unlock:
8228 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8229 put_online_cpus();
ab84d31e 8230
a790de99 8231 return ret;
ab84d31e
PT
8232}
8233
8234int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8235{
8236 u64 quota, period;
8237
029632fb 8238 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8239 if (cfs_quota_us < 0)
8240 quota = RUNTIME_INF;
8241 else
8242 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8243
8244 return tg_set_cfs_bandwidth(tg, period, quota);
8245}
8246
8247long tg_get_cfs_quota(struct task_group *tg)
8248{
8249 u64 quota_us;
8250
029632fb 8251 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8252 return -1;
8253
029632fb 8254 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8255 do_div(quota_us, NSEC_PER_USEC);
8256
8257 return quota_us;
8258}
8259
8260int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8261{
8262 u64 quota, period;
8263
8264 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8265 quota = tg->cfs_bandwidth.quota;
ab84d31e 8266
ab84d31e
PT
8267 return tg_set_cfs_bandwidth(tg, period, quota);
8268}
8269
8270long tg_get_cfs_period(struct task_group *tg)
8271{
8272 u64 cfs_period_us;
8273
029632fb 8274 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8275 do_div(cfs_period_us, NSEC_PER_USEC);
8276
8277 return cfs_period_us;
8278}
8279
182446d0
TH
8280static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8281 struct cftype *cft)
ab84d31e 8282{
182446d0 8283 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8284}
8285
182446d0
TH
8286static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8287 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8288{
182446d0 8289 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8290}
8291
182446d0
TH
8292static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8293 struct cftype *cft)
ab84d31e 8294{
182446d0 8295 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8296}
8297
182446d0
TH
8298static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8299 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8300{
182446d0 8301 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8302}
8303
a790de99
PT
8304struct cfs_schedulable_data {
8305 struct task_group *tg;
8306 u64 period, quota;
8307};
8308
8309/*
8310 * normalize group quota/period to be quota/max_period
8311 * note: units are usecs
8312 */
8313static u64 normalize_cfs_quota(struct task_group *tg,
8314 struct cfs_schedulable_data *d)
8315{
8316 u64 quota, period;
8317
8318 if (tg == d->tg) {
8319 period = d->period;
8320 quota = d->quota;
8321 } else {
8322 period = tg_get_cfs_period(tg);
8323 quota = tg_get_cfs_quota(tg);
8324 }
8325
8326 /* note: these should typically be equivalent */
8327 if (quota == RUNTIME_INF || quota == -1)
8328 return RUNTIME_INF;
8329
8330 return to_ratio(period, quota);
8331}
8332
8333static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8334{
8335 struct cfs_schedulable_data *d = data;
029632fb 8336 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8337 s64 quota = 0, parent_quota = -1;
8338
8339 if (!tg->parent) {
8340 quota = RUNTIME_INF;
8341 } else {
029632fb 8342 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8343
8344 quota = normalize_cfs_quota(tg, d);
9c58c79a 8345 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8346
8347 /*
8348 * ensure max(child_quota) <= parent_quota, inherit when no
8349 * limit is set
8350 */
8351 if (quota == RUNTIME_INF)
8352 quota = parent_quota;
8353 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8354 return -EINVAL;
8355 }
9c58c79a 8356 cfs_b->hierarchical_quota = quota;
a790de99
PT
8357
8358 return 0;
8359}
8360
8361static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8362{
8277434e 8363 int ret;
a790de99
PT
8364 struct cfs_schedulable_data data = {
8365 .tg = tg,
8366 .period = period,
8367 .quota = quota,
8368 };
8369
8370 if (quota != RUNTIME_INF) {
8371 do_div(data.period, NSEC_PER_USEC);
8372 do_div(data.quota, NSEC_PER_USEC);
8373 }
8374
8277434e
PT
8375 rcu_read_lock();
8376 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8377 rcu_read_unlock();
8378
8379 return ret;
a790de99 8380}
e8da1b18 8381
2da8ca82 8382static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8383{
2da8ca82 8384 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8385 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8386
44ffc75b
TH
8387 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8388 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8389 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8390
8391 return 0;
8392}
ab84d31e 8393#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8394#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8395
052f1dc7 8396#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8397static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8398 struct cftype *cft, s64 val)
6f505b16 8399{
182446d0 8400 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8401}
8402
182446d0
TH
8403static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8404 struct cftype *cft)
6f505b16 8405{
182446d0 8406 return sched_group_rt_runtime(css_tg(css));
6f505b16 8407}
d0b27fa7 8408
182446d0
TH
8409static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8410 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8411{
182446d0 8412 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8413}
8414
182446d0
TH
8415static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8416 struct cftype *cft)
d0b27fa7 8417{
182446d0 8418 return sched_group_rt_period(css_tg(css));
d0b27fa7 8419}
6d6bc0ad 8420#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8421
fe5c7cc2 8422static struct cftype cpu_files[] = {
052f1dc7 8423#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8424 {
8425 .name = "shares",
f4c753b7
PM
8426 .read_u64 = cpu_shares_read_u64,
8427 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8428 },
052f1dc7 8429#endif
ab84d31e
PT
8430#ifdef CONFIG_CFS_BANDWIDTH
8431 {
8432 .name = "cfs_quota_us",
8433 .read_s64 = cpu_cfs_quota_read_s64,
8434 .write_s64 = cpu_cfs_quota_write_s64,
8435 },
8436 {
8437 .name = "cfs_period_us",
8438 .read_u64 = cpu_cfs_period_read_u64,
8439 .write_u64 = cpu_cfs_period_write_u64,
8440 },
e8da1b18
NR
8441 {
8442 .name = "stat",
2da8ca82 8443 .seq_show = cpu_stats_show,
e8da1b18 8444 },
ab84d31e 8445#endif
052f1dc7 8446#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8447 {
9f0c1e56 8448 .name = "rt_runtime_us",
06ecb27c
PM
8449 .read_s64 = cpu_rt_runtime_read,
8450 .write_s64 = cpu_rt_runtime_write,
6f505b16 8451 },
d0b27fa7
PZ
8452 {
8453 .name = "rt_period_us",
f4c753b7
PM
8454 .read_u64 = cpu_rt_period_read_uint,
8455 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8456 },
052f1dc7 8457#endif
4baf6e33 8458 { } /* terminate */
68318b8e
SV
8459};
8460
073219e9 8461struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8462 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8463 .css_released = cpu_cgroup_css_released,
92fb9748 8464 .css_free = cpu_cgroup_css_free,
eeb61e53 8465 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8466 .can_attach = cpu_cgroup_can_attach,
8467 .attach = cpu_cgroup_attach,
5577964e 8468 .legacy_cftypes = cpu_files,
b38e42e9 8469 .early_init = true,
68318b8e
SV
8470};
8471
052f1dc7 8472#endif /* CONFIG_CGROUP_SCHED */
d842de87 8473
b637a328
PM
8474void dump_cpu_task(int cpu)
8475{
8476 pr_info("Task dump for CPU %d:\n", cpu);
8477 sched_show_task(cpu_curr(cpu));
8478}
ed82b8a1
AK
8479
8480/*
8481 * Nice levels are multiplicative, with a gentle 10% change for every
8482 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8483 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8484 * that remained on nice 0.
8485 *
8486 * The "10% effect" is relative and cumulative: from _any_ nice level,
8487 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8488 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8489 * If a task goes up by ~10% and another task goes down by ~10% then
8490 * the relative distance between them is ~25%.)
8491 */
8492const int sched_prio_to_weight[40] = {
8493 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8494 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8495 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8496 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8497 /* 0 */ 1024, 820, 655, 526, 423,
8498 /* 5 */ 335, 272, 215, 172, 137,
8499 /* 10 */ 110, 87, 70, 56, 45,
8500 /* 15 */ 36, 29, 23, 18, 15,
8501};
8502
8503/*
8504 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8505 *
8506 * In cases where the weight does not change often, we can use the
8507 * precalculated inverse to speed up arithmetics by turning divisions
8508 * into multiplications:
8509 */
8510const u32 sched_prio_to_wmult[40] = {
8511 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8512 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8513 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8514 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8515 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8516 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8517 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8518 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8519};
This page took 3.172494 seconds and 5 git commands to generate.